
MilliSort and MilliQuery: Large-Scale
Data-Intensive Computing in Milliseconds

Yilong Li*, Seo Jin Park*, John Ousterhout

*co-first authors

● Current datacenter applications couple scale and time
○ Batch processing applications

■ Scale to clusters with 1000s of nodes
■ Execute for long periods of time: minutes to hours

○ Serverless computing: short-lived tasks, small Lambda functions (1-2 vCPUs)

● Flash burst: large-scale computing in milliseconds
○ Harness hundreds or thousands of servers
○ Very short lifetime (e.g., 1-10 ms)
○ Enable data-intensive real-time analytics

● Goal: understanding the limits of flash bursts
○ What is the smallest possible timescale to operate efficiently?
○ What is the largest number of servers that can be harnessed?
○ What aspects of the current systems limit the duration and scale?

Introduction

Slide 2

● Developed two example apps to understand flash bursts
○ MilliSort: distributed sorting of 100-byte records
○ MilliQuery: three representative SQL queries
○ Goal: process as much data as possible in 1 ms (or 10 ms) using unlimited resources
○ Assumption: input data already exist in memory

● Lessons learned
○ Feasibility: flash bursts can harness 100s of servers efficiently even under 1 ms
○ Scaling: total data processed grows at least quadratically with the time budget
○ Limiting factors (both can be attributed to small-message throughput)

■ Coordination overhead
■ Shuffle cost

Contributions

Slide 3

● Challenge of distributed sorting
○ Complex data flow: any record may end up

on any server
● MilliSort implements a distributed

bucket sort algorithm
○ Optimize network bandwidth usage

● Four basic steps:
○ Local sort: each server sorts its initial data
○ Partitioning: determine the key range each

server stores after the sorting (details later)
○ Shuffle data: each server transmits its

records to the targets
○ Rearrangement: merge-sort incoming

records as they arrive

MilliSort Algorithm

Slide 4

B3 A4 B1 A2 B4A1 B2 A3

B3A4 B1A2 B4A3 B2A1

B2B1 B4B3A2A1 A4A3

Server 1 Server 2

KeyRange: A0-A9 KeyRange: B0-B9

Challenge of Partitioning

Slide 5

Terminology:
● Sample: estimate the key distribution
● Splitter: split key space into buckets

Partition by regular sampling

One server can’t sort the
samples fast enough!

Challenge of Partitioning

Slide 6

Solution: recursive distributed sort
● Select a small group of servers to sort

the samples
● Apply the same distributed bucket sort

algorithm

Apply more levels of recursion for
larger clusters.

One server can’t sort the
samples fast enough!

Partition by regular sampling

● Q1: embarrassingly parallel scan-aggregate query
○ Count Wikipedia article views by language

● Q2: like Q1, but repartition records by shuffle before aggregation
○ Find top 10 IP addresses by the number of edits to Wikipedia

● Q3: distributed join operation that requires multiple shuffles
○ Complex analytics on GitHub data

MilliSort and MilliQuery capture a wide range of interesting behaviors

MilliQuery

Slide 7

C
om

pl
ex

ity
 o

f C
oo

rd
in

at
io

n

● Hardware configuration

● Prototype built atop RAMCloud’s transport system
○ Kernel bypass: 5 µs RTT, 25 Gbps network bandwidth
○ Message throughput limited by the single dispatch thread

● Run four servers on each machine to better utilize the network
○ Each server has 8 cores and 25 Gbps network bandwidth

● We had access to 70 machines, which allowed up to 280 servers

Experiment Setup

Slide 8

CPU Xeon Gold 6148 (2 sockets × 20 cores @ 2.40GHz)

RAM 384 GB DDR4-2666

Networking 100Gbps Intel Omni-Path Interconnect

Overall Performance

Slide 9

Time
budget

Total records processed

MilliSort Q1 Q2 Q3

1 ms 0.84M 47.6M* 6.72M 0.034M

10 ms 26M* 980M* 224M* 2.24M*

● In 1 ms, all applications except Q3 can harness >100 servers

● In 10 ms, all applications can scale beyond 280 servers

Time
budget

servers used

MilliSort Q1 Q2 Q3

1 ms 120 280* 140 60

10 ms 280* 280* 280* 280*

*limited by the cluster size in experiment

MilliSort can sort 0.84M records using 120 servers in 1ms.

Super-linear increase in total data processed?

Quadratic Scaling w/ Time Budget

Slide 10

● Total data processed grows at least quadratically with the time budget
○ Both #servers and #records/server grow at least linearly
○ Not a lot of work can be done for time budgets less than 1 ms

● Time breakdown (µs) of each MilliSort phase

● Coordination and shuffle costs prevent us from using more servers
○ Both costs increase with the cluster size (due to small-message throughput)

Why not more servers?

Slide 11

Phase
120 servers

(0.84M records)
240 servers

(1.68M records)

Local Sort 147.0 137.8

Partitioning 200.5 410.4

Shuffle 377.2 738.9

Rearrangement 128.1 146.9

Total 942.3 1523.8

remain almost the same

7000 records/server

2x

2x

● MilliSort (10 ms) vs. other distributed sorting systems

Efficiency of MilliSort

Slide 12

Flash bursts are efficient despite running at millisecond timescales.

CPU Model # HW
Threads/core

NetBW/core
(Gbps)

Throughput
(recs/ms/core)

MilliSort Xeon@2.4GHz 1 3.1 1297

TencentSort POWER8@2.9GHz 8 5.0 1977

CloudRAMSort Xeon@2.9GHz 2 2.7 707

per-core throughput

Discussion

Slide 13

● Is 1-10 ms the right target?
○ >100 ms just to communicate with the datacenter over WAN today
○ New edge computing offerings enable <10 ms latency

● Potential applications?
○ Real-time decision making without humans in the loop
○ e.g., controllers for IoT devices, financial applications, etc.

● Limitations/future work
○ Low duty cycles: colocate flash bursts with batch jobs to achieve high

CPU utilization
○ Tackle the problem of loading application data
○ General-purpose infrastructure for executing flash bursts (storage

systems, cluster schedulers, networking infrastructure, etc.)

Conclusion

Slide 14

● Flash burst is feasible for several core patterns in data analytics
○ MilliSort and MilliQuery can harness >100 servers in 1 ms
○ Quite efficient despite running in milliseconds

● Small message throughput is the primary limiting factor to scalability
○ At least equally important as latency and network bandwidth in flash bursts

● We hope our results will spark interests in flash bursts
○ Encourage application developers to explore practical usage of flash bursts

Questions

