MilliSort and MilliQuery: Large-Scale
Data-Intensive Computing in Milliseconds

Yilong Li*, Seo Jin Park®, John Ousterhout

Stanford University
¥ PLATFORMLAB

*co-first authors

Introduction

e Current datacenter applications couple scale and time

o Batch processing applications
m Scale to clusters with 1000s of nodes
m Execute for long periods of time: minutes to hours
o Serverless computing: short-lived tasks, small Lambda functions (1-2 vCPUSs)

e Flash burst: large-scale computing in milliseconds
o Harness hundreds or thousands of servers
o Very short lifetime (e.g., 1-10 ms)
o Enable data-intensive real-time analytics

e Goal: understanding the limits of flash bursts
o What is the smallest possible timescale to operate efficiently?
o What is the largest number of servers that can be harnessed?
o What aspects of the current systems limit the duration and scale?

Slide 2

Contributions

Developed two example apps to understand flash bursts
o MilliSort: distributed sorting of 100-byte records
o MilliQuery: three representative SQL queries
o Goal: process as much data as possible in 1 ms (or 10 ms) using unlimited resources
o Assumption: input data already exist in memory
Lessons learned
o Feasibility: flash bursts can harness 100s of servers efficiently even under 1 ms
o Scaling: total data processed grows at least quadratically with the time budget
o Limiting factors (both can be attributed to small-message throughput)
= Coordination overhead
m Shuffle cost

Slide 3

MilliSort Algorithm

Challenge of distributed sorting

o Complex data flow: any record may end up
on any server

MilliSort implements a distributed Server 1 Server 2
bucket sort algorithm . A4 . A2 A1 A3

o Optimize network bandwidth usage
Four basic steps: l l

o Local sort: each server sorts its initial data A2 | A4 - A3 -

o Partitioning: determine the key range each

server stores after the sorting (details later) l l

o Shuffle data: each server transmits its
records to the targets A1 | A2 | A3 | A4 _
o Rearrangement: merge-sort incoming
, KeyRange: A0-A9 KeyRange: B0-B9
records as they arrive

Slide 4

Challenge of Partitioning

n; n, n; ny Ny

| keys | | keys | | keys | keys | keys
pick samples T 111 1111 4444 44141 P
Lt L3 &1 i) \)

gather samples

sort samples

select splitter

broadcast splitters

Terminology:

lafl 01

ll1 lll f_l_\
Y A 1 L |

| keys |

[heys] [keys] [Cheys] -

Partition by regular sampling

e Sample: estimate the key distribution
e Splitter: split key space into buckets

Slide 5

Challenge of Partitioning

n; n, n; ny Ny

| keys | | keys | | keys | keys | keys
pick samples T 111 1111 4444 44141 P
Lt L3 &1 i) \)

gather samples

Solution: recursive distributed sort

» e Select a small group of servers to sort
the samples

e Apply the same distributed bucket sort
algorithm

sort samples
select splitter

broadcast splitters
Apply more levels of recursion for

——j ——3 —— ,_‘_i —
[A 1 b | larger clusters.
[heys] [keys] [keys] [Cheys | -

Partition by regular sampling

Slide 6

MilliQuery

Q1: embarrassingly parallel scan-aggregate query

o Count Wikipedia article views by language

: like Q1, but repartition records by shuffle before aggregation

Find top 10 IP addresses by the number of edits to Wikipedia

: distributed join operation that requires multiple shuffles

Complexity of Coordination

Complex analytics on GitHub data

MilliSort and MilliQuery capture a wide range of interesting behaviors

Slide 7

Experiment Setup

Hardware configuration

CPU Xeon Gold 6148 (2 sockets x 20 cores @ 2.40GHz)
RAM 384 GB DDR4-2666
Networking 100Gbps Intel Omni-Path Interconnect

Prototype built atop RAMCloud’s transport system
o Kernel bypass: 5 us RTT, 25 Gbps network bandwidth
o Message throughput limited by the single dispatch thread

Run four servers on each machine to better utilize the network
o Each server has 8 cores and 25 Gbps network bandwidth

We had access to 70 machines, which allowed up to 280 servers

Slide 8

Overall Performance

MilliSort can sort 0.84M records using 120 servers in 1ms.

Tof#il records processed # servers used
Time ime
budget | MilliS Q1 Q2 Q3 bud®gt | MilliSort | Q1 Q2 | Q3
1ms | 0.84M 47.6M* | 6.72M | 0.034M 1ms 120 280* | 140 | 60
10 ms 26M* 980M* | 224M* | 2.24M* 10 ms 280* 280* | 280* | 280*

*limited by the cluster size in experiment

e In 1 ms, all applications except Q3 can harness >100 servers
e In 10 ms, all applications can scale beyond 280 servers

Super-linear increase in total data processed?

Slide 9

Quadratic Scaling w/ Time Budget

5

— —— MiliSort |

B
&

Scaling of total # of records

o = N W
O 01— 01N OorTw o1 &

. Time budget (ms)

e Total data processed grows at least quadratically with the time budget
o Both #servers and #records/server grow at least linearly
o Not a lot of work can be done for time budgets less than 1 ms

Slide 10

Why not more servers?

Time breakdown (us) of each MilliSort phase

120 servers 240 servers

Phase (0.84M records) | (1.68M records)
Local Sort 147.0 137.8

2%
Partitioning 200.5 q 410.4

zX
Shuffle 3772 mp 7389
Rearrangement 128.1 146.9
Total 942.3 1523.8

- 7000 records/server

\
/

remain almost the same

Coordination and shuffle costs prevent us from using more servers
o Both costs increase with the cluster size (due to small-message throughput)

Slide 11

Efficiency of MilliSort

MilliSort (10 ms) vs. other distributed sorting systems

CPU Model # HW NetBW/core Throughput
Threads/core (Gbps) (recs/ms/core)
MilliSort Xeon@2.4GHz 1 3.1 1297\
TencentSort | POWER8@2.9GHz 8 5.0 1977
CloudRAMSort Xeon@2.9GHz 2 2.7 707

er-core throughput

Flash bursts are efficient despite running at millisecond timescales.

Slide 12

Discussion

e Is 1-10 ms the right target?
o >100 ms just to communicate with the datacenter over WAN today
o New edge computing offerings enable <10 ms latency

e Potential applications?
o Real-time decision making without humans in the loop
o e.g., controllers for loT devices, financial applications, etc.

e Limitations/future work
o Low duty cycles: colocate flash bursts with batch jobs to achieve high
CPU utilization
o Tackle the problem of loading application data
o General-purpose infrastructure for executing flash bursts (storage
systems, cluster schedulers, networking infrastructure, etc.)

Slide 13

Conclusion

e Flash burst is feasible for several core patterns in data analytics
o MilliSort and MilliQuery can harness >100 servers in 1 ms
o Quite efficient despite running in milliseconds

e Small message throughput is the primary limiting factor to scalability
o Atleast equally important as latency and network bandwidth in flash bursts

e We hope our results will spark interests in flash bursts
o Encourage application developers to explore practical usage of flash bursts

Slide 14

Questions

Contacts:
vilongl@cs.stanford.edu
seojin@csail.mit.edu

