MilliSort and MilliQuery: Large-Scale Data-Intensive Computing in Milliseconds

Yilong Li*, Seo Jin Park*, John Ousterhout

*co-first authors

Introduction

• Current datacenter applications couple scale and time

- Batch processing applications
 - Scale to clusters with 1000s of nodes
 - Execute for long periods of time: minutes to hours
- Serverless computing: short-lived tasks, small Lambda functions (1-2 vCPUs)

• Flash burst: large-scale computing in milliseconds

- Harness hundreds or thousands of servers
- Very short lifetime (e.g., 1-10 ms)
- Enable data-intensive real-time analytics

• Goal: understanding the limits of flash bursts

- What is the <u>smallest possible timescale</u> to operate efficiently?
- What is the largest number of servers that can be harnessed?
- What aspects of the current systems limit the duration and scale?

Contributions

• Developed two example apps to understand flash bursts

- **MilliSort**: distributed sorting of 100-byte records
- **MilliQuery**: three representative SQL queries
- Goal: process as much data as possible in 1 ms (or 10 ms) using unlimited resources
- Assumption: input data already exist in memory

Lessons learned

- **Feasibility**: flash bursts can harness <u>100s of servers</u> efficiently even under <u>1 ms</u>
- **Scaling**: total data processed grows <u>at least quadratically</u> with the time budget
- Limiting factors (both can be attributed to small-message throughput)
 - Coordination overhead
 - Shuffle cost

MilliSort Algorithm

Challenge of distributed sorting

 Complex data flow: any record may end up on any server

MilliSort implements a distributed bucket sort algorithm

• Optimize network bandwidth usage

• Four basic steps:

- <u>Local sort</u>: each server sorts its initial data
- <u>Partitioning</u>: determine the key range each server stores after the sorting (details later)
- <u>Shuffle data</u>: each server transmits its records to the targets
- <u>Rearrangement</u>: merge-sort incoming records as they arrive

Challenge of Partitioning

Partition by regular sampling

Challenge of Partitioning

Partition by regular sampling

Solution: recursive distributed sort

- Select a small group of servers to sort the samples
- Apply the same distributed bucket sort algorithm

Apply more levels of recursion for larger clusters.

Q1: embarrassingly parallel scan-aggregate query

• Count Wikipedia article views by language

Q2: like Q1, but repartition records by shuffle before aggregation

• Find top 10 IP addresses by the number of edits to Wikipedia

Q3: distributed join operation that requires multiple shuffles

• Complex analytics on GitHub data

MilliSort and MilliQuery capture a wide range of interesting behaviors

• Hardware configuration

CPU	Xeon Gold 6148 (2 sockets × 20 cores @ 2.40GHz)				
RAM	384 GB DDR4-2666				
Networking	100Gbps Intel Omni-Path Interconnect				

• Prototype built atop RAMCloud's transport system

- Kernel bypass: 5 µs RTT, 25 Gbps network bandwidth
- Message throughput limited by the single dispatch thread
- Run four servers on each machine to better utilize the network
 - Each server has 8 cores and 25 Gbps network bandwidth
- We had access to 70 machines, which allowed up to 280 servers

Overall Performance

MilliSort can sort 0.84M records using 120 servers in 1ms.

*limited by the cluster size in experiment

- In 1 ms, all applications except Q3 can harness >100 servers
- In 10 ms, all applications can scale **beyond 280** servers

Super-linear increase in total data processed?

Quadratic Scaling w/ Time Budget

• Total data processed grows at least quadratically with the time budget

- Both #servers and #records/server grow at least linearly
- Not a lot of work can be done for time budgets less than 1 ms

Why not more servers?

• Time breakdown (µs) of each MilliSort phase

• Coordination and shuffle costs prevent us from using more servers

• Both costs increase with the cluster size (due to small-message throughput)

Efficiency of MilliSort

• MilliSort (10 ms) vs. other distributed sorting systems

	CPU Model	# HW Threads/core	NetBW/core (Gbps)	Throughput (recs/ms/core)	
MilliSort	Xeon@2.4GHz	1	3.1	1297	
TencentSort	POWER8@2.9GHz	8	5.0	1977	per-core inroughput
CloudRAMSort	Xeon@2.9GHz	2	2.7	707	

Flash bursts are efficient despite running at millisecond timescales.

Discussion

• Is 1-10 ms the right target?

- >100 ms just to communicate with the datacenter over WAN today
- New edge computing offerings enable <10 ms latency

• Potential applications?

- Real-time decision making without humans in the loop
- e.g., controllers for IoT devices, financial applications, etc.

• Limitations/future work

- Low duty cycles: colocate flash bursts with batch jobs to achieve high CPU utilization
- Tackle the problem of loading application data
- General-purpose infrastructure for executing flash bursts (storage systems, cluster schedulers, networking infrastructure, etc.)

Conclusion

• Flash burst is feasible for several core patterns in data analytics

- MilliSort and MilliQuery can harness >100 servers in 1 ms
- Quite efficient despite running in milliseconds
- Small message throughput is the primary limiting factor to scalability
 - At least equally important as latency and network bandwidth in flash bursts
- We hope our results will spark interests in flash bursts
 - Encourage application developers to explore practical usage of flash bursts

Contacts: yilongl@cs.stanford.edu seojin@csail.mit.edu