
Finding Invariants of Distributed Systems:
It’s a Small (Enough) World After All

Travis Hance
Marijn Heule

Ruben Martins
Bryan Parno

Carnegie Mellon University
1

2

Distributed systems are hard to get right

Solution: Verification?

• Formal verification can rule out bugs in:
• Abstract protocol descriptions
• Implementation
• Liveness

• Problem: Verification is hard
• Hand-crafted system invariants
• Invariants must be checked for inductiveness

3

Solution: Automated Verification

• Less painstaking manual proof work
• Problem: Automated Verification is also hard, often undecidable
• Prior work
• Automate invariant checking (IVy)
• Automate invariant finding

• I4 (Ma et al.) (SOSP, 2019)
• Separators algorithm (Padon et al.) based on IC3 (PLDI, 2020)

• Many useful protocols (e.g., Paxos) still out of reach of fully-
automated solutions

4

SWISS Contributions

• System to automatically prove safety for distributed protocols
• Scales to automate the verification of Paxos
• Handles universal & existential quantifiers
• Can accept additional user guidance—otherwise fully automated
• Produces partial invariants even when it doesn’t complete

5

SWISS Overview
Consensus
protocol

Nodes agree
on result

6

SWISS

Abstract
protocol

description

Safety
property

Invariants & proof of
safety condition

Partial invariants

Find
invariants

SWISS Overview: Invariants

7

• An invariant is a statement about the system which holds true at
every point in the execution
• We need an invariant which is …
• Useful – it can be used to prove the safety condition
• Inductive – it is itself strong enough to prove that it remains true

An Example Invariant (Paxos)

8

PADON, O., LOSA, G., SAGIV, M., AND SHOHAM, S.
Paxos made EPR: Decidable reasoning about distributed protocols.
Proc. ACM Program. Lang. 1, OOPSLA (Oct. 2017).

SWISS Overview

10

Abstract
protocol

description

Safety
property

Invariants & proof of
safety condition

Partial invariants

SWISS

Cast a “wide net”
Find any invariant

Find invariant to
complete proof

I1, I2, I3, …, In Ilast

Breadth Finisher

Many small invariants One big invariant

Candidate
invariant

space

Number of candidate
invariants

Symmetries Counter-
example

filters

Removing
redundant
invariants

Invariant
predicates

Finisher 6 terms ~ 99,000,000,000,000 ~ 200,000,000,000 155 155 5
Breadth 3 terms ~ 820,000,000 ~ 3,000,000 ~ 900,000 2,250 801

SWISS Invariant Search

Finisher—which is directed by the desired safety property—is more
effective at filtering a large space of candidate invariants.

11

Exploring the space of candidate invariant predicates for Paxos

100 ms on average
Brute force is not feasible

Counterexample-guided synthesis:
When one predicate fails to be inductive, use it
to narrow your search space.

Evaluation

• Benchmark synthesis on 27 protocols, including 6 Paxos variants
• SWISS solves 18 / 27 each within 6 hours
• Includes Paxos and variant Flexible Paxos
• Also solves Multi Paxos if given additional guidance on input search space

12

Evaluation

13

4 other
benchmarks

7 other
benchmarksChain

Distributed
Lock

Chord

I4 (2019) is usually the
fastest, but doesn’t
handle existential
quantifiers.

MA, H., GOEL, A., JEANNIN, J., KAPRITSOS, M., KASIKCI, B., AND SAKALLAH, K. A.
I4: incremental inference of inductive invariants for verification of distributed protocols.
In Proceedings of the ACM Symposium on Operating Systems Principles, (SOSP) (2019), T. Brecht and C. Williamson, Eds., ACM, pp. 370–384.

7 benchmarks
requiring

∃ quantifiers

SWISS
18 / 27I4

10 / 27

Evaluation

14

KOENIG, J. R., PADON, O., IMMERMAN, N., AND AIKEN, A.
First-order quantified separators.
In Proceedings of the ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI) (2020),
A. F. Donaldson and E. Torlak, Eds., ACM, pp. 703–717.

Separators

Paxos

Flexible
Paxos

Learning
Switch

(2 variants)

14 other
benchmarks

Chord

Ticket

Hybrid Reliable
Broadcast

SWISS

Padon et al.’s Separators
algorithm (2020) does not
scale to Paxos, but is often
faster on other benchmarks.

Still out of reach
Fast Paxos

Vertical Paxos
Stoppable Paxos

18 / 2717 / 27

Further Evaluation in Paper

• Analysis of the sizes of invariants we expect harder protocols to
require
• Benchmarks of individual optimizations
• Optimizations that didn’t help

• Parallelizability
• SMT bottlenecks
• Performance on restricted search spaces

15

Conclusion

• SWISS scales invariant synthesis to protocols not tackled previously
• SWISS has differing strengths relative to prior approaches—suggests

there are still ideas that can be combined and improved

Finding Invariants of Distributed Systems: It’s a Small (Enough) World After All
Travis Hance
thance@andrew.cmu.edu

16

