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Abstract
Internet path failure recovery relies on routing protocols, such
as BGP. However, routing can take minutes to detect fail-
ures and reconverge; in some cases, like partial failures or
severe performance degradation, it may never intervene. For
large scale network outages, such as those caused by route
leaks, bypassing the affected party completely may be the
only effective solution.

This paper presents Connection Path Reselection (CPR),
a novel system that operates on edge networks such as Con-
tent Delivery Networks and edge peering facilities [52, 64]
and augments TCP to deliver transparent, scalable, multipath-
aware end-to-end path failure recovery.

The key intuition behind it is that edge networks need not
rely on BGP to learn of path impairments: they can infer
the status of a path by monitoring transport-layer forward
progress, and then reroute stalled flows onto healthy paths.
Unlike routing protocols such as BGP, CPR operates at the
timescale of round-trip times, providing connection recovery
in seconds rather than minutes. By delegating routing respon-
sibilities to the edge hosts themselves, CPR achieves per-
connection re-routing protection for all destination prefixes
without incurring additional costs reconstructing transport
protocol state within the network. Unlike previous multipath-
aware transport protocols, CPR is unilaterally deployable and
has been running in production at a large edge network for
over two years.

1 Introduction

Survivability is a core design tenet of the Internet, and a key
factor in its enduring success. In reviewing the formative
years of the DARPA Internet Protocols, Clark [19] listed sur-
vivability second in importance only to the top level goal of
interconnecting existing networks:

It was an assumption in this architecture that syn-
chronization would never be lost unless there was
no physical path over which any sort of communi-

cation could be achieved. In other words, at the top
of transport, there is only one failure, and it is total
partition. The architecture was to mask completely
any transient failure.

The Internet today falls short of this assumption. Failures
are not only common on the Internet, they are often visi-
ble [25,28,29], sometimes spectacularly so [39,41,42,53,54].
While large outages are rare, transient reachability fluctua-
tions, colloquially referred to as internet weather, are fre-
quent [25]. Attempting to prevent all sources of outages is an
exercise in futility: failures are endemic to every component
at every layer along every path on the Internet, and subsets
of components interact to form complex failure conditions
which cannot be anticipated. Instead, the most cost-effective
way of improving reliability on the Internet is to circumvent
failures when they occur. Traditionally, this task has fallen
upon network providers, who rely on routing protocols such
as the Border Gateway Protocol (BGP) and Open Shortest
Path First (OSPF) to route around failures. Routing alone,
however, is not enough.

Firstly, since the successful delivery of keepalive messages
does not imply the successful delivery of client traffic, routing
protocols can only detect a subset of failure conditions. For
example, a BGP session may be hashed onto a healthy Link
Aggregation Group (LAG) member, while other links in the
same group falter. Misconfigurations, such as those that result
in route leaks, can impact large swathes of the Internet [26,35,
41, 53]. Such events, undetected by routing protocols, often
require manual intervention to mitigate at significant cost to
the stakeholders involved.

Secondly, the time required by routing to re-establish a
consistent state after a failure increases with the size of the
network and can take minutes [37], during which loops and
blackholes can occur [28, 29]. Even detection itself can be
slow. The recommended value for the BGP hold timer (the
time after which a non-responsive BGP peer is marked as
failed) is 90s [33, 48], but many implementations set the de-
fault value as high as 180s [4, 5, 11, 18] or even 240s [23].
Even with sophisticated monitoring infrastructure [17,32,51],



transient performance degradations have often disappeared
by the time corrective updates can fully propagate.

Rather than relying on routing reconfiguration, protocols
such as SCTP [55] and MPTCP [24] propose pushing the
responsibility for mitigating path failures to the transport
layer. Unfortunately, multipath transport protocols have strug-
gled with adoption, and are today still circumscribed to niche
use cases. Although multipath-aware protocols provide com-
pelling reliability improvements, the current Internet archi-
tecture provides limited means (and incentives) for network
providers to push multipath options out towards clients. With
deployments limited to subsets of traffic or client popula-
tion [16, 36, 46], their promise remains largely unfulfilled.

Edge networks [51, 52, 64] provide a natural vantage point
from which to improve reliability, acting as a critical interme-
diary between application/content providers, hosted on highly
centralized cloud infrastructure, and a globally distributed
set of clients. By providing caching, security and compute
functions as close to clients as possible, edge networks have
positioned themselves to carry most of the customer facing
traffic on the Internet [51, 52, 64]. Further, because they are
expected to commit to SLAs guaranteeing the successful pro-
cessing of end user requests, they end up bearing the costs
of network layer failures and have a tremendous economic
incentive to improve reliability. Conveniently, they also have
the means. Unlike access/transit providers, edge networks
have end-to-end visibility of traffic, and can therefore detect
and react to failures faster and at finer granularity. By design,
edge networks are multihomed and have access to better path
diversity than end clients.

This paper presents Connection Path Reselection (CPR), a
software-based approach improving the end-to-end reliability
of edge network traffic. The key intuition behind it is that
edge networks do not need to rely on BGP to learn of path
degradation: they can infer the status of a path by monitor-
ing transport-layer forward progress, and then reroute stalled
flows onto healthy paths. This not only improves connection
recovery, but also allows traffic to be shifted on a per-flow ba-
sis, greatly reducing the likelihood of load-induced cascading
failures. Unlike previous proposals, CPR is unilaterally de-
ployable, applicable to all flows, and simple to configure. Its
implementation is entirely contained in a server-side kernel
patch; it does not require programmable switches or any extra
infrastructure. CPR has been in production for over two years
at Fastly, a multi-Tbps edge cloud provider, where it success-
fully mitigates ∼120 degradation events every day, each ∼8
minutes long (over ∼16 hours per day).

Having described our motivation, the remainder of this pa-
per is organized as follows. First, we discuss the background
of this work (§2), explain first how CPR detects path im-
pairments (§3) and reroutes traffic as a result (§4). We then
share results from production measurements (§5), followed
by some operational considerations (§6). Finally, we compare
CPR with related work (§7) and present our conclusions (§8).

2 Background and motivation

Edge networks (as understood in e.g., [52, 64]) have unique
characteristics that must be considered when designing a
mechanism to improve end-to-end customer traffic reliability.

Edge networks support a diverse and changing set of
applications. Early edge networks such as Content Delivery
Networks (CDNs) were designed to support a narrow segment
of Internet traffic: large, static content that could benefit from
caching. This narrow traffic profile allowed for a wide set of
potential optimizations. Edge networks have since evolved
to support a much wider set of use cases (security, edge com-
pute) and applications which no longer fit a neat traffic profile:
a video client may need to retrieve small manifest files before
requesting video chunks, or a browser session may download
cached assets while maintaining a long-polling connection
over which it receives update notifications. As such, edge
networks today represent a microcosm of Internet traffic, not
a segment. While it may be tempting to focus our efforts
on improving reliability for a subset of traffic, performance
degradation on any flow can adversely impact an entire ap-
plication. A further complication is that it is not always a
given that end clients will retry. For example, packaging a
container image can involve retrieving potentially hundreds
of individual assets. Failure to acquire any single one of these
assets can result in the entire build process failing, at which
point a user must decide whether to retry. This implies that we
must detect any potential source of failure, for every type of
flow, independently of its source, length, or capabilities of the
end-client. We must also take into account that most traffic
towards end-users will likely flow through middleboxes.

Edge networks are constrained by physical capacity.
Points of Presence (POPs) are limited by physical space, and
are designed to maximize the number of requests per second
(RPS) they can serve [59]. Peak RPS is primarily dictated by
storage and compute capacity - not bandwidth. Unlike tradi-
tional cloud environments, we cannot increase the physical
footprint of network hardware, since that would necessarily
reduce the amount of hardware dedicated to serving requests.
Given our motivation for improving reliability is to reduce
costs, we can not do so at the expense of efficiency.

Edge networks have unpredictable traffic patterns.
Edge networks are subject to sudden fluctuations in demand
due to flashcrowds or DDoS attacks. While physical capacity
at any given POP is fixed, operators can shift traffic between
POPs by adjusting DNS and BGP anycast configurations. This
traffic engineering wreaks havoc on any potential solution that
acts only on a set of heavy-hitter prefixes which is periodi-
cally updated. For instance, a POP located in Los Angeles
may only observe traffic from prefixes in southern California
in normal conditions, but this can change abruptly if e.g., a
POP in San Jose undergoes maintenance, or if a DDoS at-
tack targets POPs in Japan. Traffic patterns shift dramatically
during significant congestion and routing events, which is



precisely when reliability suffers the most. Our design takes
these constraints into account, and presents a system which
strives to:

• detect and react to failures affecting any flow, at any
point in its lifetime;

• minimize operational and infrastructure costs;
• interact safely with concurrent traffic engineering and

routing processes.
Such a system is possible because edge networks support

routing architectures which expose multipath capability to
end servers [57,64]. By maintaining multiple routing tables in
the kernel and allowing transport sockets and userspace appli-
cations to select which one to use on a per-packet basis, edge
servers can override standard BGP route selection and instead
implement objective-driven routing policy by themselves.

The benefits of path diversity have been amply studied
(e.g., [21,60]), in particular for stub networks [27]; even when
performance gains are not forthcoming, cost benefits can be
achieved [6]. Previous work on path-switching revealed that
it is possible to improve average path loss performance by
an order of magnitude on average by dynamically switching
paths [56]. Previous work on CDN multihoming demonstrated
25% performance improvement for 3 out of 4 metro areas
simply by selecting the best of two transit providers, with
comparable reliability improvement [7]. One specific type
of simple path diversity is highly prevalent: path load bal-
ancing. 72% of source-destination network pairs explored
in [12, 13] show evidence of load balancing; for ∼12% of
these, load balanced paths are asymmetric and explicit selec-
tion can significantly improve end-to-end latency. A more
recent study [47] showed even more significant benefits: not
only do paths from large cloud providers show latency differ-
ences between load-balanced paths exceeding 20ms to 21%
of public IPv4 addresses; 8 pairs of datacenters were found
to have latency differences between load-balanced paths ex-
ceeding 40ms. Path diversity is high for edge networks: in the
CPR deployment presented here each POP typically connects
to a few transit providers and several peers1.

This is the starting point for Connection Path Reselection
(CPR). Given the multipath capabilities of edge servers, how
can we extend TCP to circumvent failures? Focusing on TCP
is appealing not only because its congestion control and loss
recovery mechanisms are sufficient on their own for a large
class of end-to-end impairments, but also because any auto-
mated, short-timescale re-routing of large volumes of traffic
can override traffic engineering and create undesirable traffic
distributions. By performing path selection decisions at the
connection (rather than the route/prefix) level, CPR minimizes
its impact on traffic volumes.

CPR is embedded within TCP and implemented as a server-
side patch to the Linux kernel, and relies on extensions to
the tcp_sock struct to keep essential re-route-related state.

1See §5.3 and appendix A.1 for further details.

Because the kernel itself abstracts the IP address version at
the socket level, CPR naturally covers both IPv4 and IPv6
traffic. Since CPR is parsimonious with both its execution
and instrumentation state, it remains scalable even under ex-
treme situations such as flashcrowds or DDoS attacks. The
operation of CPR can be decomposed into two independent
sub-problems: how to detect genuine path failures through
impairment detection, and how to circumvent an impaired
route through path reselection. We will tackle each of these
problems in turn.

3 Impairment detection

The main task of CPR’s impairment detection algorithms is to
accurately identify path failures based on transport layer per-
formance in a timely manner. A key challenge is to distinguish
between spurious packet loss, which should be recoverable
with retransmission over the same path, and persistent fail-
ures, which are better addressed by selecting a different one.
From a transport layer perspective, connections routed over
an impaired path experience stalls, i.e., fail to make forward
progress for some amount of time in spite of retransmissions.
CPR works by detecting stalls and using them as a signal
to select an alternate path, with the objective of eventually
resuming forward progress.

Two different impairment detection mechanisms are nec-
essary, each addressing complementary stages in the TCP
connection lifecycle. The first (§3.1) deals with path impair-
ments before connection establishment; the second (§3.2)
deals with impairments arising after connections have suc-
cessfully established.

3.1 Pre-establishment impairments
A TCP connection is initiated by a client transmitting a SYN
packet to commence a three-way handshake, to which the
server will reply with a SYN-ACK. If the server’s outbound
path has failed before a connection is established, the SYN-
ACK transmitted by the server will be lost. The client then re-
transmits the SYN after a predefined interval (1s on Linux [3]),
to which the server will reply again with a SYN-ACK that
will also be lost. This retry behavior continues until the path
becomes available again or the client stops retrying (a Linux
client retries 6 times by default). In such cases (fig. 1a) CPR
will declare a stall upon exceeding the threshold of n pre-
sumed lost SYN-ACKs. Upon detecting a stall, route rese-
lection is triggered on every subsequent SYN-ACK retrans-
mission until the connection is successfully established or the
client times out.

This detection mechanism is quite coarse because its ability
to detect a failure is limited by the frequency of SYN retrans-
missions at the client. The precision and speed of failure
detection could be improved if the server proactively retrans-
mitted SYN-ACKs at a higher frequency without waiting for
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Figure 1: Impairment detection and reroute

SYN retransmissions from the client. This would however
create an amplification vector that could be exploited by SYN
flood attacks and therefore would not be safe to deploy in
untrusted environments.

CPR’s pre-establishment impairment detection algorithm
cannot be used when SYN cookies are enabled, because then
the kernel will not keep any state for incoming pre-establish
connections. This is a desirable feature. By default, the Linux
kernel sends SYN cookies upon listen queue overflow, which
is typically triggered by SYN floods. This will result in SYN-
ACK stall detection being disabled during an attack, and SYN-
ACKs using the preferred path.

Finally, we note that the same mechanism could be applied
to connections initiated by edge servers (see fig. 1b), whereby
we reroute after a given number of lost SYN packets rather
than SYN-ACK packets. This case is less relevant in practice
however, since most edge server traffic results from inbound
connection requests.

3.2 Post-establishment impairments
For established connections (see fig. 1c) CPR verifies, before
a retransmission, whether the connection has failed to make
forward progress for a time threshold δ. If so, it declares a
stall and selects a new egress path. CPR marks a connection
as making forward progress whenever an (S)ACK is received
for data that has been sent, but not yet acknowledged. This
requires storing a timestamp variable in each TCP socket to
keep track of forward progress. The algorithm operates as
follows:

• clear the timestamp as long as there are no outbound
segments in flight, and set it to the current time when
the segment that is at the front of the transmit queue is
transmitted for the first time;

• update the timestamp to the current time whenever the
connection makes forward progress, i.e., receives an
(S)ACK that acknowledges data byte ranges previously
transmitted but not yet acknowledged;

• clear the timestamp when the last outstanding byte range
has been fully acknowledged;

• declare a stall when (re)transmitting a TCP segment if

1) the timestamp is set, and 2) the time elapsed since the
timestamp exceeds a threshold δ.

Because this algorithm declares stalls on retransmission,
connections that become idle whilst using paths that subse-
quently fail cannot declare a stall until their first retransmis-
sion. This behavior minimizes spurious path reselection.

Algorithm parameters. As with n, setting an appropriate
value of δ needs to strike an appropriate tradeoff between re-
activity and accuracy. The key challenge is to ensure that the
threshold works consistently well across connections, regard-
less of their RTT. Setting δ to a fixed, global value would lead
to either spurious stalls for high RTT connections, or sluggish
response for low RTT connections. This can be addressed
by defining δ in terms of path properties already estimated
by TCP. We could, for instance, define δ as a multiple µrto
of the connection retransmission timeout (RTO) Trto, so that
δ = µrtoTrto. As usual, Trto = srtt+4×rttvar, where srtt
is the smoothed round-trip time and rttvar is the round-trip
time variance [50]. Unfortunately, this solution on its own
could be problematic for connections with very low srtt and
rttvar, because, given a low value of δ, temporary router
queue build-ups and subsequent increased latency may be
misidentified as stalls and trigger spurious reroutes. We guard
against this issue by defining δmin, a lower bound for δ, and
setting δ = max(δmin,µrtoTrto).

Using a small value for µrto (e.g., µrto = 1) may spuriously
trigger reroutes during the slow start phase of the connection.
For paths with moderate background packet loss, RTO ex-
piration is more likely to happen when there are few TCP
segments in flight, e.g., during slow start: once the connection
has filled its bandwidth-delay product, a constant stream of
incoming ACKs makes the triggering of RTOs less likely.

Rate limiting reroutes. Re-routing onto a new path does
not necessarily result in recovery: the new egress path could
share a failure with the original one, or the impairment re-
sponsible for the stalling could be on the inbound path. When
this occurs, CPR will simply continue to probe paths until
forward progress is made. If the reroute threshold δ of the
connection is low, the connection may end up being rerouted
multiple times in rapid succession. This could result in CPR
not being able to gather enough data about the state of a new



path to make an accurate decision about its suitability before
trying yet another path. We addressed this by implementing a
rate limiting over periods of length wait, so that connections
will not be re-routed more than once in every period.

Triggering stall detection logic. Since CPR performs stall
detection on retransmission with a timeout expressed as a
multiple of the RTO, it is natural to ask whether stall detection
logic could be co-located with the RTO triggering logic of
the TCP state machine. The answer is negative, because not
all retransmissions relevant to connection forward progress
are triggered by RTO expiration. Consider the case where the
outbound path used by a connection has failed and both the
local and the remote ends have outstanding (unacknowledged)
data. It is possible for retransmissions by the local end to keep
being triggered by the reception of retransmissions from the
remote end, before a local RTO can elapse. For this reason,
stall detection logic reuses the RTO value, but is evaluated
independently of RTO logic at relevant points in the TCP state
machine (e.g., when sending retransmissions).

4 Path reselection
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Figure 2: Routing architecture

CPR leverages a routing architecture similar to Espresso
[64] and Silverton [14, 57] which push visibility of all avail-
able routes down to edge hosts. In this architecture (depicted
in fig. 2) each host is connected to a number of switches,
which are in turn connected to a number of upstream providers.
These include both transit providers and settlement-free peers,
connected directly through Private Network Interconnects
(PNI) or Internet Exchange Points (IXP).

Each switch performs two tasks. First, an MPLS label is
configured for each upstream provider, and a corresponding
nexthop entry is inserted into the local routing table. Second,
BGP route updates received from upstream providers are
tagged with the associated MPLS label, and forwarded to
routing daemons on the host. The routing daemon on end
hosts populates two routing tables:

• The main table contains all policy-preferred routes
among those learned from all peers, and is used for rout-
ing traffic under normal circumstances i.e., when path
reselection has not been requested. It contains routes pre-
ferred under performance, capacity and cost constraints.

• The transits table is populated with all default routes
(i.e., 0.0.0.0/0 or ::/0) learned from upstream providers.
Since settlement-free peers do not provide universal

reachability (i.e., export a full routing table), only de-
fault routes provided by transit providers are included.

Given the routing architecture in fig. 2, and having access
to the main and transits table, the next objective of CPR is to
provide a mechanism to allow the stall detection algorithms
in §3 to select a new path for a stalled connection. We achieve
this by associating a reroute counter r with each connection,
and incrementing it every time a stall is declared for that con-
nection. This counter is stored in the 4 most significant bits of
the firewall mark (fwmark) of a connection, a 32 bit value that
can be used to tag packets traversing the Linux network stack
and make routing decisions about them. To make rerouting
based on r possible, we made two relevant changes. First, we
changed the Equal Cost Multipath (ECMP) hashing function
used by the Linux kernel. The standard Linux implementation
of ECMP selects a nexthop by hashing the connection 5-tuple
(i.e., source and destination IP addresses, source and desti-
nation ports and protocol number). CPR includes the value
of the reroute counter r into the hash computation. Second,
we configure an ip rule to ensure that, for any connection for
which r > 0, a next hop is looked up from the transits table
rather than from the main table. Hence, we use r as a flag
that triggers CPR-specific routing for connections that have
suffered stalls. The combined effect of these two changes is
that simply incrementing the reroute counter will force a new
route lookup.

‣ proto: tcp 
‣ local: 124.12.34.2:443 
‣ remote: 1.0.2.3:13874 transits
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Figure 3: Path reselection upon stall detection
As an illustration, consider a hypothetical connection that

has not yet experienced a stall, as shown in fig. 3. At this
point in its lifetime, r = 0, route lookups are performed us-
ing the main table, and the BGP-defined egress path is used.
When the stall detection algorithm (§3.2) declares a stall, it
increments r. From that point on, since r > 0, route lookups
are performed using the transits table, and the next hop for
IP packets forming this connection is pseudorandomly se-
lected among all the nexthops of the default route present in
the transits table according to ECMP(5-tuple, r). Since each
increment of r forces a new route lookup, as r increases the
stalled connection will follow a unique, pseudorandom se-
quence of egress paths which will depend on both its 5-tuple



and the ECMP hash used. The aggregate effect of this pro-
cess is that rerouted connections are homogeneously “load
balanced” among all available egress paths.

We now show that CPR should be able to resolve recov-
erable stalls with relatively few retries. If np is the number
of egress paths available, of which ns lead to stalled connec-
tions, each path reselection is a Bernoulli trial with a success
probability p =

np−ns
np

. The number of re-routes k required
until recovery will be geometrically distributed [2] so that
P(X ≤ k) = 1−(1− p)k. Hence, the expected maximum num-
ber of re-routes that will be required to find a good path with
a given probability β is k∗ = log(1−β)

log(1−p) . Even a conservative2

p = 50% and β = 95% results in only k∗ ≈ 4 re-routes.
We note that, although fig. 2 states that the main table

should contain a full routing table, CPR does not require this
to be the case. As noted above, path reselection only relies on
the transits table. Further, although our implementation uses
MPLS to steer specific flows towards a given provider, this
can also be done using GRE tunneling [64] or DSCP marking
[52]. Routes can be pushed down to the host using BGP add-
path [62] or proprietary mechanisms. Our architecture is just
one of many that could support CPR deployment; the basic
primitives of CPR are applicable to many scenarios.

5 Evaluation

This section evaluates the performance of CPR in a large
edge cloud production deployment with daily traffic peaks on
the order of tens of Tbps. All results were collected through
passive measurements of production traffic.

5.1 Parameter tuning

Tuning CPR involves resolving a tradeoff: whereas unneces-
sarily rerouting connections could place them on paths with
potentially lower performance and higher cost, failing to react
to a recoverable path impairment increases its potential to
harm client connections. This section discusses how we tuned
the CPR parameters (§3) to resolve this tradeoff between
accuracy and reactivity.

Tuning pre-establishment impairment detection. The
only parameter involved in detecting impairments prior to
connection establishment is n, the number of presumed lost
SYN-ACKs after which a reroute is executed (§3.1). Hence,
at this stage tuning involves determining the value of n af-
ter which timely connection establishment becomes unlikely
without CPR intervention.

We proceeded by instrumenting servers in three distinct
geographical regions (North America, Europe and Asia) with
CPR disabled. We then measured how many SYN retrans-
missions occurred for all connections that were eventually

2See §5.3 and appendix A.1 for further details.

n APAC EU NA

0 .63 .64 .70
1 .13 .17 .28
2 .05 .09 .12
3 .03 .06 .08
4 .01 .05 .05
5 .01 .03 .03

Table 1: Proportion of
connections not establish-
ing after n consecutive
SYNACK losses (%)

Stall
duration

lower
bound

APAC EU NA

RTO 1.79 .57 2.18
2s .34 .36 .10
3s .23 .24 .06

Table 2: Proportion of connections
experiencing at least one stall dur-
ing their lifetime, as a function of
the stall duration (%)

established3. As shown in table 1, only ∼0.63% to ∼0.7%
of connections experience impairments before establishing,
depending on the region. This means that more than ∼99.3%
of connections establish without any retransmissions. Fur-
ther retransmissions help connection establishment, but with
noticeable diminishing returns. For example, after two con-
secutive retransmissions without a reroute, the probability
of a connection being successfully established was between
∼0.05% to ∼0.12%. Based on these findings, we set n = 2 in
our production configuration.

Tuning post-establishment impairment detection. We
addressed the tuning of δmin and µrto (§3.2) in two steps.
First, we followed a similar measurement methodology as
that used to tune n, this time focusing on connections expe-
riencing at least one RTO expiration during their lifetime.
Our results, reported in table 2, provide evidence of signifi-
cant regional variability. Whereas ∼0.1% of connections in
North America experience stalls lasting for 2 seconds or more,
this increases to ∼0.35% for connections in Europe or Asia-
Pacific4. However, these results also show that the probability
that a connection recovers after experiencing a stall for 2 or 3
seconds was very low irrespective of geographical region.
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Figure 4: Duration of TCP stalls by region and RTO
3This was done during a period free of obvious biases such as outages,

high-load client events, DDoS attacks, etc.
4These values constitute a lower bound; during the active phase of an

impairment event the proportion of affected connections can rise by an order
of magnitude or more (see §5.2).



The next step was to investigate the time required for a
connection to resume forward progress after an RTO (fig. 4).
We begin by noting the two vertical lines in fig. 4a: these
correspond to the two candidates found in the previous study.
For connections with RTO ≤ 500ms, most of the probability
mass in the dataset lies to the left of the first line, providing
evidence that for these connections the length of a stall is
largely independent of RTO and δmin = 2s is sufficient to
ensure adequate impairment detection.

To understand how best to handle connections with RTO >
500ms, we first note the probability mass “bumps” in fig. 4b.
These intervals of 3, 7 and 15 RTOs stem from TCP retrans-
mission behavior under exponential backoff. Since the ma-
jority of the probability mass lies to the left of the first line,
a large proportion of connections will recover on their own
before µrto = 3, irrespective of their RTO. This addresses
the high RTO connections that were not already covered by
δmin = 2s, and provides a rationale to set µrto = 3.

Finally, we set wait (§3.2) by observing day-to-day oper-
ation of the system in production. We select wait = 1s sec
on the basis of keeping the volume of steady-state rerouted
traffic to a sufficiently low level.

5.2 Evaluating benefit and non-harm
Methodology. To ascertain the impact that CPR has on on-
going connections we follow an experimental approach, in
which we (pseudo)randomly label some connections as part
of a treatment group, and the remainder as part of a control
group for which path reselection logic is disabled. While the
state and output of the impairment detection algorithms are
maintained for both groups, network-layer path changes are
triggered only for treatment connections. This setup allows
us to explore the degree to which the benefits of CPR during
path outages outweigh its potential costs when no impair-
ments are present. We begin by exploring whether rerouting
a stalled connection could make its performance significantly
worse than doing nothing. To the extent that the answer to this
question is negative, CPR will be innocuous when triggering
due to stalls not associated with path impairments, and hence,
non-recoverable by rerouting. We then move on to analyze the
benefits that CPR provides during path impairment episodes.

Evaluating non-harm in the steady state. For both treat-
ment and control we quantify the reroute effect on connection
properties such as RTT or retransmission rate. Since connec-
tion properties need time to settle to their new values after
a reroute in order to be meaningful, we focus on long-lived
connections. We define the onset of a stall as the TCP sending
event immediately prior to an RTO, and the full resolution as
the first sending event after forward progress is restored and
305 segments have been sent. We define the reroute effect on
a connection property as the difference between its value at

5This number was arbitrarily selected to provide enough samples for TCP
connection properties to stabilize.
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Figure 5: Steady-state reroute effect experiment results

onset and at full resolution.
The CDF of the reroute effect on the TCP retransmission

rate6 is presented in fig. 5a. Whereas it seems to be negligible
for IPv6, for IPv4 the treatment connections have a greater
proportion of their probability mass on the negative effect
sizes, implying that rerouted IPv4 connections tend to have
lower retransmission rates after the reroute than before it.
This points towards CPR having some small benefit during
the measurement period. Otherwise, the curves are very close
to one another, providing evidence that CPR is not introducing
significant retransmissions during steady state.

We can also use the results of the previously described
reroute effects experiment to understand the effect of CPR on
stall recovery speed. From fig. 5b we can see that treatment
connections tend to have shorter resolution times compared
to control connections, both for IPv4 and IPv6. The effect
during steady state is small, as expected: ∼80% of control
connections recover within 20s of a reroute, compared to
∼85% of treatment connections.

Finally, fig. 5c shows the effect of reroutes on srtt (§3.2).
Again, a seemingly negligible effect for IPv6 is accompanied
by a clear effect for IPv4, this time demonstrating higher srtt
values after the reroute (usually by less than ∼30 ms, but
sometimes more than ∼100 ms). This performance penalty is
expected since our BGP traffic engineering policy optimizes
for latency, and is more finely tuned in IPv4 than in IPv6
due to operational maturity. Since CPR explicitly reroutes
away from paths selected by this policy, we are more likely
to experience an increase in RTT than not. In this light, our
configuration of CPR is an expression of the extent we are
willing to subvert local routing policy in an attempt to recover
from failure. Since this is a matter of policy, we observe there
is no single correct configuration, but a range of potentially
acceptable outcomes.

Evaluating benefit during stall events. During path im-
pairments, the most common outcome for control connections
is failure (rather than e.g., increased RTT or retransmission

6Every connection in this dataset experienced a stall during the measure-
ment period. Hence, retransmission rates are expected to be higher than the
blended averages typically reported.
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Figure 6: CPR operation during two stall events (i and ii). The timeseries plots in figs. 6a to 6c show the control • (dashed) and
treatment • (solid) group values (left y-axis). Each one of the thin lines corresponds to a single host; thick lines track the average
for all hosts in a POP. In the same plot we also show the proportion of hosts in a POP for which the timestamp has been classified
as part of an active event � or its context � (right y-axis). Beneath each timeseries plot we show a violin plot for the PDF of
∆π (fig. 6a) or ∆p• (figs. 6b and 6c), the difference between treatment and control values, for both context • (top) and event •
(bottom) periods. Each subplot in fig. 6d shows BGP update/withdrawal rates for peering sessions which triggered anomaly
detection in proximity to the active event span. Since only relative changes are relevant, y-axis tickmarks have been removed.

rates). Hence, to accurately assess the benefits of CPR we
must look beyond the reroute effect measures presented above.
Broadly, we resort to anomaly detection on the performance
differences between treatment and control groups in order to
identify stall events. The benefit of CPR for a given stall event
can then be measured by comparing treatment and control per-
formance differences during the event, with the correspond-
ing performance differences during the immediately adjacent
timespans. We refer to the union of timespans immediately
preceding and following a stall event as its context.

In order to identify stall events, we instrumented the kernel
to export additional metrics. First, we store per-connection
information on the operation of the recovery mechanism as
part of the socket metadata; this includes the reroute counter r,
last forward progress timestamp, etc. Second, we maintain ag-
gregate counters in the kernel which track state transitions as
each connection traverses both TCP and CPR state machines.
Each edge server aggregates separate counters for treatment
and control group connections, allowing us to estimate the ef-
ficacy of CPR on each host according to multiple performance
measures7, including:

• π•(HEALTHY), the proportion of TCP connections in the
HEALTHY state;

• po
•(HEALTHY|SYNRCVD), the proportion of TCP connec-

tions that transition out from the SYNRCVD state towards

7A more detailed overview of stall event detection is included in appen-
dices B and C.

the HEALTHY state, per unit time. This gives an indication
of the instantaneous probability of connections connect-
ing successfully; and

• pi
•(CLOSE|HEALTHY), the proportion of TCP connec-

tions that transition into the CLOSE state from the
HEALTHY state, per unit time. This gives an indication
of the instantaneous probability of connections closing
while healthy (rather than stalled).

We present two CPR stall events in fig. 6, embedded in their
context so that their impact is clearly visible. Each event is pre-
sented along its BGP affinity score, a synthetic measure of the
degree to which observed routing plane events are correlated
with transport layer anomalies (appendix C). Our examples
were selected to juxtapose the case where there is a high BGP
affinity score (i), and therefore an association between CPR
and BGP behavior, and a low BGP affinity score (ii). In both
cases we can observe that immediately after the start of the
stall event (at the left context/event boundary) CPR treatment
connections start experiencing better performance, as inferred
from a higher π•(HEALTHY) (fig. 6a). Treatment connections
also have better chances of establishing (fig. 6b), evidencing
connection setup distress for control connections, and exhibit
a greater chance of closing while HEALTHY, rather than when
STALLED (fig. 6c). When taken together, these facts point
towards a small but significant proportion of affected connec-
tions, both established and pre-establish, clearly benefiting
from CPR, irrespective of the BGP affinity of the event. When
a clear association with BGP is present, such as with fig. 6d (i),
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