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Abstract
There is a growing body of work that reports positive results

from applying ML-based performance prediction to a particu-

lar application or use-case (e.g., server configuration, capacity

planning). Yet, a critical question remains unanswered: does

ML make prediction simpler (i.e., allowing us to treat systems

as blackboxes) and general (i.e., across a range of applications

and use-cases)? After all, the potential for simplicity and gen-

erality is a key part of what makes ML-based prediction so

attractive compared to the traditional approach of relying on

handcrafted and specialized performance models. In this pa-

per, we attempt to answer this broader question. We develop

a methodology for systematically diagnosing whether, when,

and why ML does (not) work for performance prediction, and

identify steps to improve predictability.

We apply our methodology to test 6 ML models in predict-

ing the performance of 13 real-world applications. We find

that 12 out of our 13 applications exhibit inherent variability

in performance that fundamentally limits prediction accuracy.

Our findings motivate the need for system-level modifications

and/or ML-level extensions that can improve predictability,

showing how ML fails to be an easy-to-use predictor. On im-

plementing and evaluating these changes, we find that while

they do improve the overall prediction accuracy, prediction

error remains high for multiple realistic scenarios, showing

how ML fails as a general predictor. Hence our answer is

clear: ML is not a general and easy-to-use hammer for system

performance prediction.

1 Introduction
Performance prediction has long been a difficult problem,

traditionally tackled using handcrafted performance models

tailored to a specific application [26, 27, 43, 44, 53, 56, 61, 62]

or use-case1 [23,30,55,58]. However, this approach is tedious,

doesn’t generalize, and is increasingly difficult given the grow-

ing complexity of modern systems. Ideally, one would want

a predictor that is accurate, general, and easy to use. By

general, we mean an approach that applies to a broad range

of applications and a broad range of use-cases; by easy to use,

we mean an approach that can be applied without requiring

detailed knowledge of the application internals or use-case.

1Throughout this paper, we use the term use-case to refer to an application

of prediction such as scheduling (e.g., where/when to run jobs), configuration

(e.g.,, how many workers or how much memory to use), or capacity planning

(e.g., determining what server configurations to purchase).

Given the success of machine learning (ML) in many do-

mains, it is natural to think that ML might offer a solution to

this challenge: i.e., that an ML model can learn the relation-

ship between a system’s externally observable features and

its resultant performance while treating the application as a
black-box. The ability to treat the application as a black-box

and remain agnostic to the prediction’s use-case would enable

a predictor that meets our goals of generality and ease-of-use.

But does ML deliver on this promise? Several recent ef-

forts have applied ML to predict or optimize performance

[22, 37, 47, 57, 60]; these report positive results and hence

one might assume that the answer to our question is “yes.”

However, as we discuss in §9, these effort focus on specific

applications, models, or use-cases and hence do not shed light

on our question of broad generality and ease-of-use. In this

paper, we take a first step towards filling this gap, empirically

evaluating whether ML-based prediction can simultaneously

offer high accuracy, generality, and ease-of-use.

The first step in such an undertaking is to define a methodol-

ogy for evaluation. As we shall show, evaluating the accuracy

of a model’s prediction is subtle particularly when prediction

fails because in such cases we need to understand the cause

of failure: was it a poor choice of model? was the model

poorly tuned? or was the application’s performance somehow

fundamentally not predictable? In other words, we need a

methodology that allows us to both, evaluate the accuracy of

a predictor and attribute errors in prediction.

This observation led us to define a methodology for sys-

tematic evaluation and analysis of ML-based predictors that,

as we detail in §2, provides us with two bounds: a lower

bound on the prediction error that any model can hope to

achieve, and a more realistic bound that is based on the best

prediction made by the ML models that we consider. We

apply our methodology to evaluate 6 different ML models

(e.g., k-nearest neighbors, random forest, neural networks) in

predicting performance for 13 real-world applications (e.g.,
Tensorflow, Spark, nginx) under a range of test scenarios (e.g.,
predicting the impact of dataset size).

Our first key finding is that irreducible prediction errors are

common (§4). In particular, we find that the majority of our

applications exhibit a high degree of performance variability

that cannot be captured by any black-box parameters and that

manifests even in best-case scenarios (e.g., running an iden-

tical configuration of the application, on identical hardware,

with no contention for resources). E.g., we show that, even
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across identical runs, the performance of the JVM Garbage

Collector (GC) varies between two modes depending on the

precise timing of GC events (§5). Because of this variability,

our lower bound on prediction error is non-trivial: we show

that no application consistently achieves a lower bound on

prediction error that is <10% and many applications fare far

worse; e.g., the lower bound on prediction error in memcached

is >40% in ∼20% of our prediction scenarios. Borrowing the

terminology of the ML community [34], we say that the pre-

diction error that results from this variability is "irreducible"

as it stems from behavior that cannot be modeled or controlled,

and hence cannot be learned. Irreducible error fundamentally

limits the accuracy that any ML model can achieve.

We further find that, while the root cause of irreducible

error varies across applications, a common theme is that they

stem from design decisions that were made to optimize per-

formance, efficiency or resilience but in the process led to a

fundamental trade-off between predictability and these other

design goals (§5).

These findings suggest a clear negative result for our goal

of an ML-based predictor that is both accurate and general.

So, where do we go from here? A natural follow-on is to ask

whether we can usefully relax our goals of generality and ease-

of-use - i.e., make some assumptions about application design

or prediction use-cases that would improve predictability.

The second part of our paper explores this question. We do

so from two different vantage points: that of the application

developer and that of the operator who is using predictions

for some operational task.

Our developer-centric exploration asks: if developers ex-

pose knobs that give operators the option to disable design

features that lead to irreducible errors, how much would this

improve the accuracy of ML predictors?

Our operator-centric exploration asks: if we assume oper-

ators can accommodate some notion of uncertainty in how

they use the predictions, then could ML meet our goals for a

useful predictor?

We note that both of the above represent a non-trivial com-

promise on our original goal and, perhaps more importantly,

in neither case do we address the question of how developers/-

operators would make such changes nor the impact that such

changes might have on other design goals such as efficiency,

resilience, etc. Instead we are merely asking whether making

these changes would improve predictability.

Our findings on this front are mixed. We find that, in both

cases, our relaxed assumptions do significantly improve pre-

dictability in our best-case scenarios, but we continue to see

prediction fail in a non-trivial fraction of our more realistic

tests. E.g., in our best-case setup, the lower bound on predic-

tion error is now <6% in >90% of our test cases but, in our

more realistic tests, 3 (out of 13) applications see error rates

>30% in ∼10% of test cases.

While not the clean result that one might have hoped for,

they reinforce that ML-based performance prediction is best

applied with a scalpel rather than a hatchet. In this sense, our

study mirrors the extensive literature in applied machine learn-

ing that explores the trade offs between black- vs. gray-box

learning. While this trade off has been studied (and debated!)

in many other domains [35, 38, 54], to our knowledge we are

the first to do so for performance prediction in systems.

Thus unlike many NSDI papers, our contribution lies not

in the design and implementation of a particular system but

instead in triaging and critically examining the role of ML for

managing system performance. Specifically:

• We provide the first broad evaluation of the generality of

ML-based prediction, showing that blackbox prediction is

often fundamentally limited and expose why this is the case.

• In light of these limitations, we propose and empirically

evaluate two complementary approaches aimed at broadening

the applicability of ML-based prediction and show that these

approaches alleviate but don’t eliminate the above limitations.

We view our study as a first step and recognize that it

must be extended to more applications and models before

we can draw final conclusions on the generality of ML-based

performance predictors. We hope that our methodology and

results provide the foundation for such future work.

2 Methodology
Our methodology is based on two tests and two predictors:

the Best-Case (BC) and Beyond Best-Case (BBC) tests, plus

the Oracle and Best-of-Models predictor. In what follows, we

first define our metrics and parameters followed by these tests

and predictors.

2.1 Metrics and Parameters

We test prediction accuracy by comparing an ML model’s pre-

diction to the true performance measured in our experiments.

We measure quality of predictions using the root mean square

relative error (rMSRE) which is computed as:

rMSRE =

√
1

n

n

∑
i=1

(
Yi − f (Xi)

Yi

)2

, (1)

where n is the number of points in the test set for a given

prediction scenario and (Xi,Yi) is a test sample where Yi is the

true measured performance and f is the function learned by

the ML model that, given a test feature of value Xi, predicts

the performance as f (Xi). rMSRE is a common metric used

in regression analysis [34] and in prior work on performance

prediction [60]. Note that rMSRE measures the true error in

predicted performance - i.e., comparing predicted to actual

performance. It is possible that a predictor with high rMSRE

is still “good enough” for a particular use-case2 and, indeed,

it is common in papers that focus on specific use-cases to

evaluate prediction in terms of the benefit to their use-case.

However, given our goal of generality and remaining agnostic

2For example: say that a predictor must pick between two configurations

c1 and c2 where c1 leads to a JCT of 10s and c2 to 100s, then even a predictor

with an rMSRE of 50% would successfully pick the right configuration.
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to the specifics of a use-case, we believe rMSRE is the correct

metric for a predictor and one can separately study what

prediction accuracy is required for a target use-case.

We consider the following three classes of parameters that

impact an application’s performance3:

(i) Application-level input parameters capture inputs that

the application acts on; e.g., the records being sorted, or the

images being classified. We consider both the size of these

inputs and (when noted) the actual values of these inputs.

(ii) Application-level configuration parameters capture the

knobs that the application exposes to tune its behavior – e.g.,
the degree of parallelism, buffer sizes, etc.

(iii) Infrastructure parameters capture the computational

resources on which the application runs – e.g., CPU speed,

memory size, whether resources are shared vs. dedicated.

These parameters correspond to what-if questions that are

likely to be of practical relevance: e.g., predicting how per-

formance scales with input data size, under increasing paral-

lelism (executors), or with more infrastructure resources. We

note that the above parameters, when used as features for our

ML models, capture the application as a black-box, together

with the infrastructure it runs on. We also note that these are

static parameters known prior to running the application, in

contrast to runtime metrics and counters such as a task’s CPU

or cache utilization. While runtime counters are widely used

for monitoring performance, relying on them for prediction

limits our potential use-cases to scenarios where prediction is

invoked after the application is already running rather than

at the time of planning, placement, or scheduling. Moreover,

it is unclear how one might use a predictor based on runtime

counters to manage performance: e.g., even if an operator can

predict that a CPU utilization value of C leads to a desired

performance target, she must still know how to set system

parameters in order to achieve the desired CPU utilization. In

other words, runtime counters are measures not parameters.4

Hence, in this paper, we assume the ML models cannot use

runtime counters as features for prediction.

2.2 The Best-Case (BC) Test

Our BC test is designed to give a predictor the "best chance"

at making accurate predictions. It does so by making very

strong assumptions on both the systems and ML front, as we

describe below.

(1) ML front: simplifying the predictive task. The BC test

makes two assumptions that greatly simplify the prediction

task. First, in all the data given to the model (training and test),

only a single parameter is being varied and that parameter

is the only feature on which the model is trained. In other

3We define these precisely in the context of each application in §3.
4I.e., one would need to predict how a parameter impacts the runtime

metric in addition to how the runtime metric impacts performance. This

might be appropriate for certain use-cases that include long-running jobs,

e.g., [61], and where we cannot directly predict how parameters impact

performance but, for now, we focus on understanding whether the more

general and direct/simple approach works.

words: say we ask an ML model M to predict an application’s

performance for a particular configuration ci that is defined by

k parameters: i.e., ci =< p1 = X1, p2 = X2, p3 = X3, . . . , pk =
Xk> , where the pi are parameters and Xi are parameter values.

In the BC test, we give M a training data set in which only

one parameter - say p2 – is varied and all other parameters

are set to the test value; i.e., all training data will come from

runs where p2 is varied while p1 = X1, p3 = X3, . . . , pk = Xk.

We call this our one-feature-at-a-time assumption.

Second, the model’s training data always includes data-

points from the scenario it is being asked to predict. I.e., con-

tinuing with the above example, when predicting the applica-

tion’s performance for an input configuration <p1 = X1, p2 =
X2, p3 = X3, . . . , pk = Xk>, not only do we enforce the one-

feature-at-a-time assumption, we also require that the training

set for the task include datapoints with p2 = X2. Hence, the

training set contains data points from an identical configu-

ration to the one the model is being asked to predict! For

example, if we ask the model to predict the time it takes to

sort a dataset of size 5GB, the training set already includes

times for sorting the same 5GB dataset. We call this the seen-
configuration assumption since it ensures that, during train-

ing, the ML model has already "seen" the configuration it is

being asked to predict.

We emphasize the extreme simplification due to the above

assumptions: the complexity of prediction has been reduced

from understanding the impact of k features to just one feature

(e.g., p2), the training data is deliberately selected to cleanly

highlight the impact of this feature, and the training set in-

cludes data from test configurations that are identical to what

the model is being asked to predict!

(2) Systems front: best-case assumptions. Given our as-

sumptions so far, the only reason prediction might be non-

trivial is if we see variable performance across repeated runs

of the application even with a fixed configuration of parame-

ters. That software systems may exhibit variable performance

is well recognized in the systems community with two com-

monly cited reasons for this: (i) contention for resources that

an application might experience when it shares physical in-

frastructure with other applications/tenants [33,40,49,52] and

(ii) variability that arises when the processing time depends

on the values of data inputs [29] Our assumptions on the sys-

tems side aim to remove the likelihood of such variability. To

avoid variability due to contention, we run our workloads on

dedicated EC2 instances [1], and only run a single experiment

at a time on a given server. We call this our no-contention
requirement. We are still left with the possibility of contention

within the datacenter network.Our workloads are not network-

heavy and, with one exception (nginx, discussed later) none of

our workloads appear to be impacted by contention with other

apps over network bandwidth and hence we optimistically

conclude that network contention is unlikely to have affected

predictability for our workloads. We still cannot entirely avoid

contention, however – e.g., some of our apps use shared cloud
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services such as the S3 and DNS. Nonetheless, we believe

the scenario we construct is far more conservative than what

is commonly used in production and hence we view it as a

pragmatic approximation of the best case while still running

on real-world deployment environments like EC2.

Our second assumption is that, for a given input dataset size,

the application’s input data is identical across all experiments.

I.e., repeated runs of a test configuration act on the same input

data. E.g., all training/test data for an application that sorts N
records, will involve exactly the same N records. We call this

our identical-inputs assumption.

The sheer simplicity of our prediction tasks should be im-

mediately apparent:we’re essentially asking a model to predict

performance for a test configuration that is identical to that

seen in training. Our expectation was that, under these condi-

tions, a model should be able to predict performance with a

very high level of accuracy - e.g., with error rates well under

5-10% – and if a model cannot accurately predict performance

under the above conditions then it is unlikely to be a useful

predictor under more realistic conditions.

2.3 The Beyond Best-Case (BBC) Test

In the BBC test, we systematically relax each of the con-

straints/assumptions imposed in the BC test to study predic-

tion accuracy under more realistic scenarios:

(i) Relaxing the seen-configuration assumption. For this,

we perform a leave-one-out analysis in which all data sam-

ples corresponding to the configuration on which a model is

tested are withheld from the training set. More precisely, for

a performance dataset with N configurations {c1,c2, . . . ,cN},

when testing a datapoint with configuration ci, we use a model

trained on a dataset that consists of the N −1 configurations

other than ci; i.e., our training set excludes all training data-

points for configuration ci. We perform this N-fold leave-one-

out analysis for each of our prediction scenarios.

Note that predictions are now harder as models must learn

the trend in performance as a function of the parameter be-

ing varied. Such predictions are useful in answering what-if
questions of the form: “what performance can we expect if
we increase the number of workers to 10?”
(ii) Relaxing the one-feature-at-a-time assumption. We re-

lax our constraint of varying only one parameter at a time

and instead enumerate the configuration space generated by

simultaneously varying all the features in question and then

sample from this space to collect training and test data on

which we rerun our predictions. We describe the details of

our approach inline when presenting our results.

(iii) Relaxing the no-contention assumption. For this, we

repeat the experiments used to collect training and test data

but this time do not run our experiments on dedicated EC2

instances. We present additional detail on our experimental

setup in the following section.

(iv) Relaxing the identical-inputs assumption. For this, we

generate a different input dataset for each datapoint in the

training and test set. Section 3 provides additional detail on

our input datasets in the context of each test application.

We studied the impact of relaxing each of the above as-

sumptions individually and then all together. In this paper, we

present a subset of our results as relevant.

2.4 Predictors

As mentioned, our evaluation considers two predictors.

The Best-of-Models (BoM) predictor. Recall that in order to

obtain a broad view of ML-based performance prediction, we

consider a range of ML models (§3). For any given prediction

test, we compute the rMSRE for each ML model, and define

the best-of-models error (BoM-err) as the minimum rMSRE

across all the models we consider. Thus BoM-err tells us

how well some ML model can predict system performance.

However, if BoM-err is high, we still cannot tell whether this is

because of a poor choice or tuning of ML models, or whether

performance prediction was inherently hard. For this, what

we would like to have is a lower bound on the error rate we

can expect from any ML model. We achieve this through our

Oracle Predictor.

The Oracle predictor looks at all the data points in the test
set that share the same feature values as the prediction task,

and returns a prediction that will minimize the metric in Eqn. 1

for all these data points. We obtain this by differentiating the

expression for the metric in Eqn. 1 with respect to the pre-

diction and finding the global optima for each unique feature
value, , as below.

foracle(X) =
(

∑n
i=1

δ(Xi,X)
Yi

)
/
(

∑n
i=1

δ(Xi,X)

Y 2
i

)
, (2)

δ(a,b) = 1 if a is equal to b, and 0 otherwise. (3)

Note that our features are discrete entities (number of workers,

size of dataset, type of instance) and thus the oracle is well-

defined. We use O-err to denote the error rate obtained by this

Oracle. If there is no variance at all in these data points, the

Oracle will achieve zero error. Simply put, O-err quantifies

the impact of variance in performance – across multiple runs

of the same application and under identical configurations –

on prediction accuracy.

Clearly, our Oracle predictor is not usable in practice since

it is allowed to “peek” at both the test data and the error func-

tion; nonetheless O-err is helpful in attribution. Specifically,

it gives us a lower bound on the prediction error that any
ML model could achieve and, in this sense, sheds light on

whether performance prediction is at all feasible, i.e., a high

O-err perhaps suggests that predicting system performance

is “impossible.” In addition, a small gap between O-err and

BoM-err confirms that our model is well tuned (§3).

3 Test Setup
Our experimental setup comprises two main stages: applica-

tion profiling and model training. In the profiling stage, an

application is run under different configurations to generate a
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raw dataset. In the training stage, the dataset first undergoes

pre-processing (featurization, normalization, and outlier re-

moval), and is then randomly split into two disjoint datasets:

the training set is used to train models and the test set is re-

served for model evaluation. The training set is also used for

hyper-parameter tuning of ML models. In what follows, we

discuss key aspects of each stage. This is not an exhaustive

description of our experimental setup – all datasets [6] and

tooling [20] from our experiments are publicly available.

3.1 Application Profiling

Applications. Table 1 enumerates the applications used in our

study. Our selection reflects multiple considerations includ-

ing the application’s relevance in production environments,

diversity (spanning web services, timeseries database, mi-

croservices, data analytics, and model serving), and ease of

instrumentation. See Appendix A for additional details.

Parameter Values and Performance Metrics. We select

values for our three broad classes of parameters as follows:

(i) application-level input parameters. We experiment with

varying the size of these inputs on a scale of 1 to 10, with

scale 1 being the default input size in the workload generator;

(ii) app-level configuration parameters. We experiment with

varying the number of worker nodes between 1 and 10.

(iii) infrastructure parameters. We experiment with 13 differ-

ent EC2 instance types: from the 150+ instance types offered

on EC2 we select the latest generation of the three common

instance families (c5, m5 and r5) with four different scales

(large, xlarge, 2xlarge, 4xlarge) plus a c4.4xlarge instance for

a total of 13 instance types (see [2] for details). This selection

matches the instances used in prior work [57, 60].

As listed in Table 1, we use different performance metrics

(e.g., job completion time, request throughput) depending

on the application. We run each parameter setting 10 times

recording the resulting performance. This constitutes our raw

dataset. Appendix A and our code repository [20] include

additional details on the setup.

3.2 Model Training

We select six ML algorithms: k-nearest neighbors, random for-

est regression, linear regression, linear support vector machine

(SVM) regression, kernelized SVM regression, and neural net-

works. We select these as they are commonly used in practice

and, taken together, represent well the various families of ML

techniques: parametric and non-parametric models, linear and

non-linear models, discrete and continuous [34]. This diver-

sity is in contrast to prior work that focuses on a single ML

technique [22, 37, 47, 57, 60].We follow the standard machine

learning practice of k-fold cross-validation (k=3) for setting

hyper-parameters. Folds were carefully picked such that they

represented the data well and included points for each feature

value present in the training set. We searched for regulariza-

tion parameters (all models); kernels (RBF, polynomial, and

sigmoid) and their parameters for SVMs; number and depth

of trees for random forests; number of neighbors for nearest

neighbors; and number of hidden layers (varying from zero

to four), size of layers, activation functions (ReLU, tanh), and

learning rates for neural networks. The neural networks we

used, MLPs with different non-linearity, are the standard mod-

els for treating data of the form in this paper (as opposed to

RNN/LSTM/CNNs).

As is standard in machine learning, we pre-process our

dataset before training our models. We convert numeric fea-

tures to have zero mean and unit standard deviation (by sub-

tracting the mean and dividing by the standard deviation,

computed per feature channel across the entire training set).

We map all categorical features to their numerical index. We

also throw out outlier data-points (that have any feature value

or performance metric beyond the 99th percentile) from the

training set. We use scikit-learn, a widely used machine

learning tool-set for data preparation and model training [46].

We then train each model to predict the impact of a partic-

ular parameter p on performance for a given app A. For this,

we select data points corresponding to runs of A in which all
parameters other than p are fixed. We do a 50:50 random split

of the resultant dataset into a training and test set.

4 Results: Existing Applications and Models
We start with the results from our BC test. Recall that each

prediction task involves predicting the performance of a given

application for a given configuration of: (i) application input

size, (ii) number of workers, and (iii) instance types, while

subject to the constraints and assumptions presented in §2.2.

We start by looking at the results for our BC test. Fig.1a

plots the cumulative distribution function (CDF) of the O-err

for each application across all predictions tasks while Fig.1b

shows the same for the BoM-err.5 Recall that O-err captures

the irreducible error inherent to an application (i.e., no ML

model could achieve an error rate lower than the O-err) while

the BoM-err captures the lowest error rate achieved by some

ML model. Given the extreme simplicity of our best-case

prediction task, we expected a very high degree of accuracy

with an O-err of (say) well under 5% error. To our surprise, our

results did not match this expectation. For example: in 5 of our

13 applications, O-err is >15% for at least 20% of prediction

tasks; for LR1 O-err is >30% for 10% of the prediction tasks;

for memcached O-err exceeds 40% for approximately 20%

of prediction tasks; in fact, no application enjoys an O-err of

<10% in all prediction scenarios.

The high O-err that we see in our (extremely generous)

best-case scenario tells us that many applications suffer from

non-trivial irreducible error which fundamentally limits our

ability to achieve high prediction accuracy under the general

black-box conditions that we desired. Given that we fail even

at the BC test, we focus next on understanding the sources of

this irreducible error. But first, a few additional observations:

5We show a detailed breakdown of error based on the feature being

predicted in Appendix C.
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Framework Application/Description Input Workload Input
Parameter

App. Config.
Parameter

Infra.
Parameter

Metric

Memcached [12] Disributed in-memory k-v store Mutilate [13] value size # servers inst. type mean query lat.

Nginx [9] Web server, LB, Reverse Proxy Wrk2 [5] req. rate # servers inst. type median req. lat.

Influxdb [15] Open source time series database Inch [10] # points per

timeseries

# servers inst. type mean query lat.

Go-fasthttp [7] Fast HTTP package for Go wrk2 [5] # conn. # servers inst. type median req. lat.

Spark [3]

TeraSort: sorting records TeraGen # records

# executors inst. type JCT

PageRank: graph computation GraphX

SynthBenchmark [8]

# vertices

LR1: logistic regression MLLib examples

# examples

LR2: logistic regression

Databricks

Perf Test [16]

KMeans: clustering

Word2vec: feature extraction

FPGrowth: data mining

ALS: recommendation

TensorFlow [17],

Kubernetes [11]

TFS: Tensorflow model serving Resnet examples [18] # conn. # servers inst. type requests/sec

Table 1: Applications, input workload, parameters, and metrics used in our study.

(a) CDF of O-err in the BC test (b) CDF of BoM-err in the BC test (c) CDF of BoM-err in the BBC test

Figure 1: O-err and BoM-err for existing applications and ML models.

(i) As one might expect, prediction accuracy deteriorates as

we move from the BC to the BBC test. As a sample result,

Figure 1c shows the CDF of the BoM-err for our BBC test

when relaxing our seen-configuration assumption: for 6 of

our 13 applications (vs. 3 in the BC test), the 80%ile BoM-err

exceeds 20% (for 1 app, it exceeds 60% error!)

(ii) As the CDFs suggest (and as we validated on individual

data points), BoM-err on our BC test tracks O-err very closely,

confirming that the higher-than-expected errors arise from

irreducible causes, as opposed to poor ML engineering.

(iii) The error rates vary across applications even when they

use the same framework (e.g., Spark-based sort vs. LR2). This

reinforces the importance of considering a range of applica-

tions when evaluating ML for performance prediction.

5 Tackling Irreducible Error
The high irreducible errors that we saw in the previous sec-

tion tells us that, even for a fixed configuration of parameters,

there are times when an application’s performance was so

variable that no predictor could predict performance with high

accuracy. While it is well recognized that software systems

can experience variable performance due to various runtime

factors, we were surprised to see the extent of this variability

even in our best-case scenario. Recall that, in our best-case

scenario, we are essentially just repeatedly running an identi-

cal software stack, on identical hardware, with identical data

inputs, and without contention on our servers. What can cause

performance to vary significantly across runs? In particular,

we were interested in understanding whether the sources of

variability could be captured by features that are known prior

to runtime. If so, we could hope to achieve higher prediction

accuracy by simply adding more features to our ML models.

Unfortunately, we find that this variability stems from de-

sign choices – often optimizations – the effect of which could

not have been captured by system parameters known prior to

running the application. In this section, we briefly summarize

our findings (§5.1) and then discuss their implications (§5.2).

5.1 Root-Cause Analysis

Table 2 summarizes the findings from our root cause analy-

sis. Each entry summarizes the root cause we discovered, the

applications it impacted, the trade-off that eliminating this

root cause would impose, the manner in which we modified

applications to eliminate/mask their impact, and the burden

associated with undertaking such analysis. We stress that the

modifications we make are ad-hoc hacks intended only to

verify that we correctly identified our root-causes; as we dis-

cuss later, we do not view them as the desirable long-term fix.
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Finally, we report the person hours it took to identify and val-

idate these root causes. We recognize that any such estimate

depends on many nebulous factors such as our familiarity

with the codebase and experience in performance analysis.

We present it merely as anecdotal evidence that analyzing per-

formance in modern systems is non-trivial and would benefit

from better developer support as we discuss in §8.

To give the reader a tangible sense of these root causes, we

first present a longer description of the first two root causes,

followed by a very brief summary of the remaining ones. A

detailed description – with experimental validation – is in

Appendix B, while the following section (§6) evaluates the

impact of eliminating these root causes on O-err and BoM-err.

5.1.1 Spark’s “Worker Readiness” Optimization

We found that the relatively high O-err in Spark’s Terasort ap-

plication stems from a dynamic sizing optimization in Spark.

By default, Spark launches an application once at least 80%

of its target worker nodes are ready, and the application parti-

tions the input dataset based on the number of workers ready

at this time. This optimization ensures resilience to failure

and stragglers, but leads to variable parallelism and hence

JCTs. This variability leads to irreducible errors and cannot

be captured by any input parameters/features as the exact de-

gree of parallelism is affected by small differences in worker

launch times which cannot be predicted prior to runtime.

Disabling this optimization lowered Terasort’s average O-

err from 12.6% to 2.6% in our predictions that involve varying

the instance type. While this optimization also affected other

Spark apps (e.g., PageRank), its impact there was small.

5.1.2 Adaptive Garbage Collection in the JVM

Our analysis showed that

LR1’s error stems from

an optimization in the

Java Virtual Machine’s

(JVM) garbage collector

(GC). Specifically, we

found a positive correlation

between the number of “full” GC events (explained below)

and JCT, leading to the bimodal behavior in the figure above.

As a performance optimization, the JVM GC divides the

memory heap into two regions – young and old – and typically

tries to constrain garbage collection to just the young region.

However, in situations where the memory heap is consistently

low on free space, the JVM GC runs a “full” collection that

operates over the entire heap space (young and old regions).

To determine whether a full GC is needed, the JVM maintains

a promotion estimate metric. Our analysis revealed that due

to minor differences in the timing of memory allocation and

GC events, the promotion estimate ends up just above the

threshold (triggering a full GC) in some runs and just below it

in others, leading to the bimodal behavior (see Appendix B.2).

Once again, since the exact mode being triggered depends

on the detailed timing of runtime events, this effect could not

have been captured by any input parameters/features known

prior to actually running the job.

We verify our analysis by rerunning our experiments with

an extra 50MB of memory which ensures that the promotion

estimate remains below the threshold in all runs. This elimi-

nates the high-mode runs, reducing average O-err by 9× from

18.2% to 2.1% in our predictions that involve varying the

number of workers.

5.1.3 Other Root Causes

We briefly mention the remaining entries in Table 2; detailed

tracing for each is in Appendix 9.

HTTP Redirection and DNS Caching in S3. We found that

multiple applications built on Amazon’s S3 storage service

suffered variable performance that arose from the DNS-based

resolution of S3 object names; some name resolution requests

experienced HTTP redirects while others didn’t depending on

the detailed timing of when DNS updates were propagated.

Imperfect Load-Balancing. We observed high irreducible

errors when predicting the request throughput of a Tensor-

flow Serving (TFS) cluster. We run TFS within a Kubernetes

cluster and found that this error stems from the randomized

load-balancing policy that Kubernetes employs, which leads

to an inherent imbalance in the load at each server; when run-

ning the cluster at high utilization this imbalance led to some

servers being overloaded and the variability in this imbalance
leads to variations in the overall request throughput.

Non-deterministic Scheduling. We found that independent

Spark tasks were being scheduled in different orders across

different runs leading to different JCTs. This variability

arose because the data structure used to track runnable tasks

(Scala’s HashSet) offers no guarantees on the order of itera-

tion through the set members. Switching to a different data

structure eliminated this variability.

Variability in Cloud APIs. Our last two cases of high O-

err stemmed from variability across repeated invocations of

cloud APIs: memcached was affected by variability in how

worker instances were placed (which affects node-to-node

latency) while nginx suffered from variability in the default

network bandwidth associated with particular instances types.

Again, with little visibility into (or control over) cloud API

implementations, the impact of this variability could not be

predicted by input parameters/features prior to runtime.

5.2 Implications and Next Steps

At a high level, many of the irreducible errors we encoun-

tered may be attributed to two common design techniques:

the use of randomization (e.g., in load-balancing, scheduling)

and the use of system optimizations in which a new mode

of behavior is triggered by a threshold parameter (e.g., a pro-

motion estimate, timeouts, a threshold on available workers).

Some of these design choices can be altered with little loss to

design goals such as performance or resilience (e.g., remov-
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Root Cause Applications
Impacted

Trade-off Modification Effort to
diagnose

Spark’s “start when 80% of workers

are ready” optimization

Terasort Decreased resilience to stragglers

and worker failure

Disable optimization 5 person days

Multi-mode optimization in JVM

Garbage Collector

LR1 Slower garbage collection Avoid triggering, or disable,

optimization

39 person days

Non-determinism in Spark sched. PageRank None Use deterministic data structure 14 person days

HTTP redirects and DNS caching in

S3’s name resolution

KMeans, LR2,

FPGrowth, ALS

Decreased flexibility6 (OR slower

name resolutions)

Client-side caching of HTTP

redirects (OR always redirect)

10 person days

Imperfect load-balancing at high

load

TensorFlow

serving

Load imbalance when each server

has different numbers of workers

Modified load-balancing policy to

always favor local workers

7 person days

Variability in implementations of

Cloud APIs (EC2)

memcached,

Nginx

Cloud APIs expose more

information (less flexibility)

Use AWS placement APIs / include

inter-node RTTs as ML feature

5 person days

Table 2: Root causes of the irreducible errors we observed in our test applications. Person hours were calculated using the timestamps in our

debugging logs and covers the entire process of reproducing observed behavior, adding instrumentation, processing logs, modifying the system

to eliminate suspected causes, running tests for validation, etc.

ing the non-determinism in Spark’s scheduler). However, for

many others, eliminating them would come at some loss in

performance/efficiency (e.g., DNS caching improves scalabil-

ity, partitioning regions offers faster GC). Moreover, because

of the recent emphasis on extracting performance, modern

systems now make extensive use of such optimizations.

Given the lower bound set by the O-err (as discussed in

§2.4) and the underlying root causes, no amount of model

modifications or feature engineering would have resulted in

significantly better prediction accuracy. So, where do we go

from here? We set out to test an ambitious hypothesis: that

ML could serve as a general and easy-to-use predictor of sys-

tem performance. Unfortunately, we found that most of the

applications we studied suffered poor prediction accuracy on

a non-trivial number of test cases even under extremely fa-

vorable test conditions. Moreover, the design choices that led

to low accuracy cannot be easily forsaken without impacting

other goals such as performance.

Thus a natural follow-on is to ask whether we can usefully

relax our goal of generality - i.e., make some assumptions

about application design or prediction use-cases that would

still allow us to leverage ML-based prediction in a (mostly)

general and easy-to-use manner. As mentioned in §1, the re-

mainder of this paper explores this question from the vantage

point of application developers (§6) vs. operators (§7).

6 Results: Modified Applications
We now examine the impact of removing the above root-

causes on performance predictability. If doing so improves

prediction accuracy, then we can envision a workflow where

the application developer identifies the root causes of irre-

ducible errors and makes them configurable. For example, the

JVM garbage collector (GC) designer can expose a knob to

turn off the optimization for reducing full GCs. This, in turn,

would enable system operators to disable such techniques

depending on their desired trade-off between predictability

and other design goals such as performance.

We emphasize that our goal here is not to provide a mech-

anism for identifying and eliminating sources of irreducible

errors. Developing a systematic approach for this is an inter-

esting problem but beyond the scope of this paper. Instead,

we focus on the consequences of doing so: if these sources

are identified and eliminated, to what extent would it improve

performance predictability? Further note that, in line with

this objective, we focus on evaluating the resultant impact on

performance predictability, and not on performance itself.7

We now (re)evaluate predictability for our BC (§6.1) and

BBC (§6.2) tests after applying the “fixes” to remove the root

causes of irreducible errors as discussed in §5.

6.1 BC test results

Fig. 2a shows the CDF of the O-err for our modified applica-

tions across all prediction tasks. As expected, removing the

sources of irreducible errors results in a dramatic reduction in

O-err. All applications now have O-err well within 10% for

at least 90% of their prediction tasks. In other words, 90%ile

O-err is < 10% for all 13 applications, and in fact, only two

applications have O-err > 6%.

Fig. 2b shows the corresponding CDF for BoM-err. Again,

only two applications have 90%ile BoM-err > 6%, of which

only one (TFS) has 90%ile BoM-err > 10%. Further observe

that the trends for BoM-err closely track those of O-err above,

highlighting that ML comes close to achieving the lower

bound on prediction errors for our simple BC predictions.

6.2 BBC test results

With the promising BC test results, we next turned our atten-

tion to BBC tests after application modifications. We system-

atically relaxed the assumptions of our BC test (as described

in §2), and present a subset of results for brevity.

Fig. 2c presents the CDF for BoM-err after we relax the

seen-configuration assumption by performing a leave-one-out

test as described in §2. Note that, since the test dataset re-

mains unchanged, O-err is the same as in our BC prediction

above. Comparing Figures 2b and 2c, we see that the BoM-

7In fact, many of our “fixes” would actually improve performance (e.g.,
allocating more memory, caching the correct server address) and hence in-

cluding such results would be misleading!
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(a) CDF of O-err in the BC test (b) CDF of BoM-err in the BC test (c) CDF of BoM-err in the BBC test

Figure 2: O-err and BoM-err in the BC and BBC test after modifying applications to remove sources of irreducible errors. Note the sharp drop

in performance prediction errors, as compared to unmodified applications in Fig. 1.

Figure 3: CDF of BoM-err in the BBC leave-one-out test where

input data content is not identical, for predictions across varying

input data scale. Relaxing the identical-inputs assumption reduces

the prediction accuracy for multiple applications.

err is significantly higher for the BBC leave-one-out test than

for the BC test. 10 out of the 13 applications exhibit 90%ile

BoM-err > 10%. Some degradation in prediction accuracy

is expected due to the increased difficulty of the prediction

tasks, which now require the ML models to learn the trend
in performance. What is surprising is that multiple applica-

tions experience exceptionally high BoM-err for a significant

fraction of prediction tasks. For example, the 90%ile BoM-

err of memcached exceeds 60%, while that of KMeans and

TFS exceeds 25%. As can be seen, the corresponding 95%ile

BoM-err is even higher. We dig deeper into the reasons behind

these high errors in §6.3.

While we observe these high prediction errors for only a

subset of applications and prediction scenarios, these results

emphasize that we cannot simply rely on ML as a general

predictor that works across all apps and prediction scenarios.

We next present results from tests in which we relaxed

the identical-inputs assumption in addition to relaxing the

seen-configuration assumption. In other words, we perform

a leave-one-out analysis, but now generate a different input

dataset for each datapoint in the training and test set. We do

so for 10 applications by varying the random seed in the work-

load generator, keeping the distribution underlying the input

data unchanged. Fig. 3 shows the corresponding CDF for

BoM-err across prediction tasks where we vary input scale.

We observe that, in general, relaxing the identical-inputs as-

sumption further reduces the prediction accuracy for multiple

Figure 4: JCTs for KMeans with fixed vs. varied inputs for each

value of input scale. KMeans JCT is sensitive to the input dataset.

applications.8 The applications that are most notably impacted

are KMeans and LR2. This is because the performance of

these applications is sensitive to the input data. For example,

as we show in §6.3, the number of iterations for KMeans, and

therefore its JCT, depends on the actual values/content of the

input data. This results in a multi-modal behaviour for a given

input scale, and thus, high prediction errors. As expected, the

corresponding O-err (not shown for brevity) is also high.

Finally, we relaxed our no-contention assumption by re-

peating the above experiments on non-dedicated (or “shared”)

instances and found that doing so did not produce statistically

meaningful differences in our results. In particular, moving

to shared instances resulted in <3% degradation in BoM-err

across all scenarios (detailed results in Appendix D.2).

6.3 Deep Dive on high BBC prediction errors

Our BBC leave-one-out tests required the ML models to learn

the underlying trend in performance as a function of the pa-

rameter being varied. We observed that in many cases (with

high BoM-err), this trend is inherently hard to predict because

it changes too fast (i.e. the underlying function has a high

Lipschitz constant). This causes our ML models to generalize

poorly [24, 42]. We highlight this phenomena for three appli-

cations here, and discuss some of the others in Appendix D.4.

(i) KMeans has a high average BoM-err of 40.4% and 30.4%
for prediction across varying input-scale with identical inputs
and non-identical inputs respectively. We observed that the

8Note that Fig. 3 captures a subset of prediction scenarios (i.e. across

varied input scale). This is in contrast to Fig. 2c that captures a wider range

of prediction scenarios, which explains any observed deviation from this

general trend. Appendix D.3 shows the results for our leave-one-out test with

only the predictions across varied input scale, for a more direct comparison.
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Figure 5: Average request latency of go-fasthttp and TFS at varying

input scales. These functions vary too fast, and are hence inherently

hard to predict.

performance of KMeans is sensitive to the content of its input

dataset. At larger input sizes, Kmeans exhibits multi-modal

behavior; specifically, the number of iterations to converge

(and hence, the JCT) depends on the input data content (this

effect is shown in Fig. 4(b)). This multi-modality impacts

O-err and BoM-err in prediction tasks where input content is

varied. With identical inputs, this multi-modality impacts the

underlying trend as the input scale is varied, making it (sur-

prisingly, even more) difficult to learn. The JCT for an input

scale factor of 9 in Fig. 4(a) is an example of this behavior.

(ii) Go-fasthttp has an exceptionally high average BoM-err of
128.6% for predictions across varying input-scale.The mean

query latency increases dramatically at the highest input scale

because the system behavior changes under such high load due

to queuing (Fig. 5(a)). This sudden change makes prediction

on that value inherently difficult. The BoM-err for go-fasthttp

reduces to 4.9% if the test datapoints for the highest input

scale are removed from consideration.

(iii) TFS has a higher BoM-err of 52.7% for prediction across
varying input-scale. This is again due to the underlying func-

tion being difficult to learn, as shown in Fig. 5(b). We are still

investigating the root-cause behind this.

6.4 Summary

Application modifications to eliminate sources of irreducible

errors do produce a notable increase in prediction accuracy,

suggesting that a workflow where application developers pro-

vide knobs that give operators the option of disabling these

error sources could be a promising direction moving forward.

However, there are important concerns that cannot be ne-

glected: (1) From the viewpoint of predictability, as we move

to more realistic BBC scenarios, prediction errors do remain

high for certain applications due to the underlying trend be-

ing difficult to learn (as illustrated in §6.3). Eliminating irre-

ducible errors via application modification is not sufficient

in these scenarios. (2) From the viewpoint of generality and

ease-of-use, identifying the root causes of errors and making

them configurable imposes a non-trivial burden on application

developers; the same is true of asking system operators to

reason about the trade-offs between predictability and other

goals such as performance. In other words, such changes do

weaken the black-box nature of performance prediction that

we originally hoped ML-based predictors could provide.

7 Probabilistic Predictions
It may not always be possible to identify and eliminate sources

of irreducible errors as required by the previous section. For

instance, it might be too time-consuming to do so, or the sys-

tem may be closed-source and not amenable to modifications.

Or, operators may not want to compromise on the benefits of

the relevant system optimizations (e.g., experiencing slower

garbage collection by disabling the GC optimization). There-

fore, we now explore an approach that allows operators to

embrace, rather than eliminate, performance variability.

Our empirical observations in §5 reveal that the optimiza-

tions causing irreducible error often lead to bimodal/multi-

modal performance distributions. This is the key insight that

drives our approach, leading us to hypothesize that a way

forward could be to extend ML models to predict not just one

performance value, but a probability distribution from which

we derive k possible values, with the goal that the true value

is one of the k predictions, for a low k.

This immediately raises the question of whether such top-k
probabilistic predictions would even be useful to an operator?

We believe they can be, depending on the use case. For in-

stance, the operator can use the worst among the k predictions

when provisioning to meet SLOs; or they can use the average

expectations across the k predictions to pick an initial number

of workers in a system that anyway dynamically adapts this

number over time; or they can use the probability distribution

to compare which system configuration will perform better in

expectation when purchasing new servers. Note that, as in §6,

this approach also comes with a trade-off – using the worst

of k predictions may lead to over-provisioning, or using the

expected average may lead to sub-optimal choices.

Our goal here is not to design such use cases of probabilistic

predictions, or reason about these trade-offs. We instead focus

on the following questions: assuming operators could make

use of top-k probabilistic predictions: (i) how do we extend

ML models to enable top-k predictions, and (ii) is there a small

enough value of k that results in accurate top-k predictions? If

not, exploring use cases of top-k predictions would be moot.

We thus proceed with discussing how we extended two of

our models to predict probabilistic outputs (§7.1), and our

prediction results (§7.2).

7.1 Extending ML models

We extend random forest and neural network to predict perfor-

mance as a probability distribution across k possible outputs.

We chose these models as they were most natural to extend.

Probabilistic Random Forests (Prob. RF). Instead of using

the average JCT of the training points at the leaf node as

the prediction (as is done in conventional decision trees), we

use the distribution of the JCT data points at the leaf node,

modeled using a Gaussian Mixture Model (GMM) [34] with

k components. We train this Prob. RF as before, still picking

splits that minimize the variance of JCT in child nodes.

Mixture Density Networks (MDNs). We adopt MDNs [25],
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Figure 6: CDF of BoM-err in the BC test where models with prob.

outputs are used (k=3). Compare to Fig. 1b.

Figure 7: CDF of BoM-err in the BBC leave-one-out test where the

models with probabilistic outputs are used (k=3). Compare to Fig 1c.

and modify our neural network to predict parameters for a

Gaussian Mixture Model with k components (mean and vari-

ance for each component and mixing coefficients). We use

negative log-likelihood of the data under the predicted GMM,

as the loss function to train the MDN.

We implement Prob. RF based on random forest module in

scikit-learn, and MDN in TensorFlow [21].

7.2 Top-k Prediction Results

To evaluate predictability with the probabilistic models above,

we obtain k predictions from the models as the k different

means of the k component GMM, and report the top-k rMSRE
score, i.e. the rMSRE score of the best prediction among the

k predictions made by the model. Such a top-k rMSRE shares

the same interpretation as the rMSRE score – in fact, rMSRE

scores reported so far can be thought of as top-1 rMSRE

scores. In our evaluation, we observed a sharp drop in error

rates as we move from a top-1 to top-2 measure and that

further improvement plateaus off for k > 3. For brevity, we

present a subset of our results for k = 3.

BC Test Fig.6 shows the top-3 BoM-err under the BC pre-

dictions. We see a significant decrease in BoM-err com-

pared to our top-1 prediction presented earlier in Fig.1b. The

90%ile BoM-err is less than 10% for all but two applications.

Note that the test data set remains unchanged by our use of

probabilistic models, and hence O-err remains as high as in

Fig.1a. The reduced BoM-err with top-k predictions shows

the promise of this approach in embracing inherent variability.

BBC Test Fig.7 presents the top-3 BoM-err under the BBC

test, where we relax the seen-configuration assumption by

conducting leave-one-out predictions. While there is an im-

provement over models that make a single prediction (as in

Fig 1c), we note that our multi-modal predictions don’t im-

prove performance in cases where the underlying trend is

hard to predict for a reason other than multi-modality (e.g.,
TFS and go-fasthttp).

7.3 Summary

Our findings along this direction are similar to those in §6.

While it is possible to reduce prediction errors by extending

our ML models to predict top-k performance values, two

concerns with regard to generality and ease-of-use remain: (1)

Even with top-k predictors, we continue to see scenarios with

high error rates when we consider our more realistic BBC tests

because the underlying performance trend is difficult to learn.

Thus achieving a fully general predictor remains out of reach.

(2) The use of top-k predictors complicates the process of

applying performance prediction (which compromises ease-

of-use) and may lead to sub-optimal decisions; in fact, how

to best use such predictions and reason about the resulting

trade-offs remains an open question.

8 Takeaways and Next Steps
We set out to evaluate whether ML offers a simpler, more

general approach to performance prediction. We showed that:

(1) Taken “out of the box”, many of the applications we stud-

ied exhibit a surprisingly high degree of irreducible error,

which fundamentally limits the accuracy that any ML-based

predictor can achieve, and (2) We can significantly improve

accuracy if we relax our goals (accepting the trade offs) and

modify applications and/or modify how we use predictions.

But even with these relaxations we still see a non-trivial num-

ber of predictions with high error rates! E.g., apps where

∼10% of the BBC tests have BoM-err > 30-40%.

While ML fails to meet our goal of generality, we did find

several scenarios where ML-based prediction was effective,

showing that we must apply ML in a more nuanced manner

by first identifying whether/when ML-based prediction is ef-

fective. Our methodology provides a blueprint for this, as

summarized in Figure 8. Concretely, say that operators want

to assess and improve the predictability of a target application.

The first step is to run our BC test with the target workloads.

If O-err is low, they can continue to the BBC test and check

BoM-err. Otherwise, they have two options. The first is to

disable any root-causes of variability if possible, rebuild the

application, and re-run the BC test. If disabling root-causes is

not possible or not desirable, operators can choose to use the

top-k predictions. They can also combine both options, recon-

figuring the application and using probabilistic predictions.

Even for this more nuanced approach, many open questions

remain: (i) do our findings hold beyond the 13 apps and 6

models studied? (ii) how do we design systems to more easily

identify sources of irreducible error? (iii) how can developers

and operators more easily reason about trade offs between

predictability and other design goals? Etc.

Our work provides empirical evidence motivating the above
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Figure 8: Methodology blueprint. As examples from our findings: Terasort’s path (shown in blue) started out with only 73% of prediction tests

having an O-err <10% in our BC test but once we eliminated its root-cause of irreducible error (the worker-readiness optimization), 99+% of

test cases saw an O-err <10% and the BoM-err even in our BBC test was <10% for ∼90% of test cases leading to what we would deem a

successful outcome. By contrast, KMeans (shown by the red path) started with a good O-err in our BC test (>90% of test cases had O-err

<10%) but ultimately failed when we relaxed our identical-inputs assumption where point >60% of prediction tests had O-err >20%!

questions and a blueprint for how to approach and evaluate

them. Overall, we remain cautiously skeptical about the role

of ML in predicting system performance. We note that a

common thread in the above questions is the need to evaluate

predictors in a manner that is systematic and consistent across
studies. We call on the community to adopt and extend our

methodology as the foundation for such evaluation.

9 Related Work
Prior work has explored using ML based performance pre-

diction for tuning and optimizing system configuration.

Ernest [57] uses domain expert knowledge to build an an-

alytical model for Spark performance, that is based on trans-

formations and combinations of different features (such as

number of cloud instances and input dataset scale), and trains

the parameters of this model using ML.

Similar data-driven, gray-box modeling approaches have

been applied to predicting and tuning performance for

deep learning workloads and scientific computing [47, 48].

Paris [60] is a black-box performance modeling tool for se-

lecting the best instance type by training a Random Forest

model for each instance, and profiling unseen test applications

on a small subset of instances to feed as input to the model.

Selecta [37] makes innovative use of collaborative filtering

to predict performance and select the best-performing storage

configuration for data analytics applications. CherryPick [22]

explores black-box optimization (Bayesian Optimization) for

a guided search towards the optimal cloud configurations with-

out accurately predicting performance. Google’s Vizier [31]

leverages similar black-box optimization and makes it an in-

ternal application service for various workloads. Each of the

above focus on answering a specific question with a specific

ML technique. Our goal is to understand how ML can be more

broadly applied to predicting performance across a range of

systems and predictive tasks. We hope that our results, partic-

ularly as they relate to our methodology and irreducible error,

can be applied to many of the contexts explored in prior work.

Monotasks [44] proposes a radically new design for Spark

aiming at assisting performance diagnostics and prediction; it

does not explore the role of ML for performance prediction.

Similar to our proposal in §7.1, several recent papers recog-

nize that performance is perhaps better represented as a prob-

ability distribution. [51] proposes modeling the performance

of individual functions/methods as probability distributions

and presents automatic instrumentation to capture such distri-

butions. [45] shows how to design cluster schedulers that take

as input, distributions derived from historical performance.

Our proposal adds a new dimension to this general approach:

we show how to extend ML models to generate probabilistic

performance predictions.

Google Wide Profiler [36, 50] explores the use of perfor-

mance counter information collected on an always-on pro-

filing infrastructure in datacenters to provide performance

insights and drive job scheduling decisions. As mentioned in

§2, our work differs in that we focus on static parameters to

enable use-cases where predictions happen before runtime.

Performance variability has been widely reported in con-

texts from hardware-induced variability [41], to stragglers

in batch analytics [59], variability in VM network perfor-

mance [52], and tail request latencies in microservices [29].

Our work can be thought as complementary: we studied a

wide range of applications, report variability even under best-

case scenarios, focus on the impact of variability to ML-based

performance prediction, and propose systematic approaches

to cope with variability.
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Appendix
A Test Applications: Additional Detail
We include Memcached, a popular in-memory key-value

store. We use the mutilate [13, 39] memcached load gen-

erator which generates realistic memcached request streams

and records fine-grained latency measurements. We vary the

key size (corresponding to the varying input scale prediction),

number of memcached servers (varying number of servers),

and the server instance type, while keeping the other workload

parameters in mutilate as fixed values9. We report results on

predicting the average query latency.

We include Influxdb, a widely used timeseries database.

We use its official benchmarking tool Inch as the client. Inch

sends write queries to Influxdb and reports the time it takes to

complete each write query. We vary the number of points per

timeseries written per query (varying input scale prediction),

the number of Influxdb servers, and the server instance type.

We report results on predicting the query latency.

We include nginx. We use wrk2, an http benchmarking

tool used by nginx’s official benchmark reports [19]. It sends

http requests and reports fine-grain latency and throughput

measurements. We vary the per-client request rate, number of

worker processes (each worker process is a single-threaded

process; the maximum number of worker processes we vary to

is equal to the number of cores of the instance), and the server

instance type. We report results on predicting the median

request latency.

We include go-fasthttp, a high-performance HTTP pack-

age for building REST services. We use the wrk2 tool to

generate HTTP loads again. We vary the request rate, number

of server instances, and the server instance type. We report

results on predicting the median request latency.

We include multiple Spark-based applications spanning

diverse forms of computation: sorting, graph computation,

classification (two different implementations), data mining,

recommendation etc.

We include Tensorflow Serving (TFS), a high perfor-

mance model serving system, which we orchestrate using

Kubernetes (k8s). Our TFS setup resembles that of other (e.g.,

Web) serving systems in which a front-end load balancer (we

use EC2 ELB) spreads client requests across a backend of

(model) serving instances.

B Understanding Irreducible Errors – Details
B.1 Spark’s “Worker-readiness” Optimization

Details included in the main text.

B.2 Multi-mode Optimization in JVM GC

We elaborate on the details of how the JVM adapative GC

leads to variable application performance in the context of

our Spark Logistic Regression (LR1) workload.

9See https://github.com/perfd/perfd/blob/master/apps/memcached/

manifests/perf_predict/suite_1/keySize.yaml for an example setup.

Figure 9: High-mode (top) and Low-mode (bottom) trajectories for

promotion estimate and free space in old region during the first 30

garbage collections. Hollow blue dots depict major/full GCs and

solid blue dots depict minor GCs.

§5.1.2 revealed a positive correlation between the number

of full GCs (explained below) and JCT with a distinct bimodal

behaviour. We now describe how this bimodality arises. For

this, we first explain relevant aspects of the GC mechanism

in Java Virtual Machine (JVM) that Spark uses.

JVM divides the Java memory heap into two regions –

a young region to allocate new objects, and an old region

to accommodate ‘old’ objects that have survived multiple

GC rounds. It supports three different types of GCs over

these regions: (i) minor GC on the young region, (ii) major
GC on the old region, and (iii) full GC over the entire heap

space (both young and old regions), with the surviving objects

residing in the old region.

In the face of heap space shortage, JVM first runs a minor

GC on the young region, deleting the unused objects and

promoting the old objects (that have survived multiple GC

rounds) to the old region. A minor GC triggers a major GC if

the old region has too little free space to hold the promoted

objects. If a minor GC constantly triggers a major GC, the

garbage collector can save time by skipping the minor GC

(and the ensuing major GC), and directly running full GC

over the entire space. JVM implements this adaptive skipping

of minor GC as a performance optimization. To estimate

whether a minor GC would trigger a major GC, it maintains a

promotion estimate, calculated as the moving average of the

number of promoted objects after each round of minor GC.

If the promotion estimate is higher than the amount of free

space in the old region, JVM GC skips the minor GC and runs

a full GC directly.

We now show how this adaptive skipping behavior impacts

performance predictability. We randomly pick one sample
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each from the slower “high-mode” runs (whose JCTs sit at

the top-right corner of the figure in §5.1.2) and the faster

“low-mode” runs (whose JCTs sits in the bottom-left corner of

the figure in §5.1.2). The top and bottom plots in Fig.9 show

the promotion estimate values and the amount of free space

in the old region observed for the first 30 GC events in the

two sample runs respectively.

Fig.9(top) reveals that beyond GC event #21, the promo-

tion estimate in the high-mode run remains greater than the

amount of free space in the old region (even after event 30,

beyond what the plot shows). This results in consecutive full

GCs (shown as hollow blue dots). Note that since no objects

get promoted in a full GC, the JVM does not update the pro-

motion estimate.

Fig.9(bottom) shows how the low-mode run escapes from

such a fate: the promotion estimate is higher than the amount

of free old space only for a few GC events, and stays lower

than that beyond GC event #26. Consequently, the low mode

run sees more minor GCs than full GCs (shown as solid blue

dots). Since a full GC, which scans objects across a larger

memory space, is significantly more time consuming than a

minor GC, the perpetuation of full GCs has a large impact

JCT (witnessed in the scatter-plot in §5.1.2).

Fig.10 shows the corresponding time-series of GC events

along with events that mark the start and finish of individual

tasks (for clarity, we only show the time range of 20-26s,

which captures the regime where the two runs start deviating

from one another). Careful observation of Fig.10 reveals that

the GC behaviour of the two runs begins to diverge around

time 24s, when two of tasks finish slightly earlier in the high

mode run than in the low mode run. We checked that around

this time, the two modes see a difference of about 10MB in

the amount of free old space (which is rather small compared

to the total heap size of 1GB).

Such subtle differences cannot be determined without

knowing the runtime state of the garbage collection and the

Spark application.

B.3 Non-determinism in the Spark Scheduler

Our analysis revealed that PageRank’s high O-err stems from

non-determinism in the Spark scheduler. Specifically, in a job

with multiple stages, a stage A may be independent of stage

B in the sense that A’s tasks can be scheduled to run whether

or not B’s tasks have completed. Our traces showed that in-

dependent stages were being scheduled in different orders in

different runs leading to different JCTs. This arises because of

how the Spark scheduler tracks dependencies between stages.

Spark’s scheduler maintains a graph that captures the depen-

dencies between stages; a stage v’s parents in the graph are

those stages that can only be scheduled after v is complete.

Spark’s scheduler uses the Scala HashSet data structure to

track the parents of a stage. When the search propagates to the

parents, the order of visiting these parents can be inconsistent

across runs because HashSet makes no guarantees on the

Figure 10: High-mode (top) and Low-mode (bottom) trajectories

for the run-time events. Note that unlike Fig.9, the x-axis unit here

is the wall time.

Figure 11: Bimodal performance that results from scheduling inde-

pendent stages in different orders.

order of iteration through the set members.

Fig.11 shows the effect of this non-determinism. Stages 1

and 7 are two independent stages and the figure plots the JCT

for runs where stage 7 is scheduled before stage 1 (dots on the

bottom-left) and vice versa (dots on the top-right). We see that

the difference in scheduling order corresponds to bimodality

in the JCTs. We emphasize that this bimodality could not be

predicted prior to runtime as it depends on the runtime state of

the HashSet structure rather than any static input parameters.

Setup Naive-err BoM-err O-err

Baseline 44.7% 19.2% 18.2%

+Sched. mod. 40.7% 5.7% 3.2%

Table 3: Prediction error before vs. after.

To verify our analysis, we modify the Spark scheduler

such that the order of scheduled stages is consistent across

runs with identical configurations (replacing HashSet with

a LinkedHashSet). Table 3 shows that our modification (the

“+Sched. mod.” row) reduces the O-err by more than 5.7x

bringing the error to under 4%.
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B.4 HTTP Redirection and DNS Caching in S3

Multiple applications in our study – KMeans, LR2, FPGrowth,

and ALS – experienced irreducible errors due to name resolu-

tion in Amazon’s S3 storage service. We explain this effect in

the context of the KMeans application.

Figure 12: Breakdowns of Spark KMeans job completion time as

time spent on cloud storage IO (writing the results to S3) and on

computation for 100 experiment runs.

When triaging the overall JCT, we often found that, on

average, the computation time was on par with the S3 IO time

but that the standard deviation for the latter was 24× times

higher than the former (Fig.12). Analysis of the application’s

runtime logs for KMeans revealed that the variance in per-

formance stems from I/O to Amazon’s S3 storage service.

This is shown in Fig.12 which breaks down the overall JCT

into computation time and S3 IO time. We see that the com-

putation time has little variance while the S3 IO time has

substantial variance (between 17.5s and 9s).

Further instrumentation revealed a correlation between the

time spent on S3 IO and the number of HTTP redirection

events, and that the latter varied across multiple runs of iden-

tical test configurations.

S3 is a distributed storage service in which objects are

spread across multiple datacenters. When a new object

“bucket” is created, its DNS entry points to a default data-

center location. If a user creates a bucket in a datacenter other

than the default one, then a request to that bucket is first sent

to the default server, which responds with an HTTP redirect

containing a new URL that resolves to the datacenter where

the bucket is located.

Such redirection continues until the DNS entry for the

bucket is correctly updated.10 The S3 buckets in our experi-

ments were created in a different datacenter from the default

one, leading to such HTTP redirects.

Fig.13 illustrates the above behavior during one of our

experiments. We plot two values over time: (a) the number of

distinct S3 servers that our application connected to, and, (b)

the time spent on S3 IO. We observe three distinct phases to

S3 performance, demarcated by green lines in Fig.13.

Interestingly, we observe a significant intermediate period

where the two values oscillate. We found that this oscillation

arises because AWS load-balances DNS requests across a

pool of DNS servers and the servers in this pool converge to

the new DNS entry at different times. In summary, we see

10AWS states that DNS entries can take up to 24 hours to be fully propa-

gated; we observed average delays of approx 4 hours. AWS also recommends

that clients not cache the redirect URL as its validity is only temporary.

Figure 13: The number of S3 servers visited during the cloud storage

IO (top) and the total IO time (bottom). This is plotted over wall-

clock time during multiple rounds of experiments.

variable performance even for identical test configurations due

to the distributed and eventually-consistent nature of object

name resolution in S3. To validate our analysis, we repeated

our experiments after modifying the KMeans application to

cache the correct bucket location after the first redirection

event (yes, ignoring AWS’ recommendation). Table 4 shows

that this modification dramatically reduces prediction error to

an O-err of 1.0% and a BoM-err of 1.1%.
Setup Naive-err BoM-err O-err

Baseline 22.7% 16.0% 15.2%

Correct bucket loc. 5.6% 1.1% 1.0%

Table 4: Prediction error before vs. after.

One might ask whether it is possible to predict the impact of

AWS’s DNS service on applications. An in-depth exploration

of this question is beyond the scope of this paper. However,

we note that doing so appears impractical, if not infeasible,

since we would have to know how an application’s lifetime

overlaps with the DNS timers not just for a single server but

for an entire pool of servers, as well as precisely knowing

how DNS requests are load-balanced across this pool.

B.5 Imperfect load-balancing at high load

We observed high irreducible errors when predicting the re-

quest throughput provided by a TFS cluster under increasing

numbers of workers (servers). Our analysis revealed that this

high error stems from how client requests are load-balanced

across TFS servers. We run TFS servers within a Kuber-

netes cluster and hence incoming client requests undergo two

levels of load balancing. First, the AWS Elastic Load Bal-

ancer round-robins incoming client connections across the

k8s nodes. Next, each k8s node load balances incoming RPCs

across the TFS instances.

We found that the irreducible errors in TFS stem from the

second stage of load-balancing. The load-balancing within

k8s is based on selecting a TFS server at random, leading

to some inherent imbalance in the load at each server. When

running the TFS cluster at high utilization (as our experiments

do), this imbalance means that some servers are already run-

ning at capacity while others are running below the maximum

request rate they can sustain. The variability in this imbalance
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leads to variations in the overall request throughput; e.g., in

repeated runs of one identical test setup, we saw aggregate

throughput vary between 80-140 req/sec.

Setup Naive-err BoM-err O-err

Baseline tput. 123.5% 26.7% 11.8%

-Rnd LB tput. 163.2% 7.6% 6.7%

Table 5: Prediction error before vs. after.

To verify this effect, we reconfigure the k8s load-balancer

to always direct client RPCs to the local TFS server instance.

In effect, this disables the k8s load-balancer which is accept-

able for our test purposes. Table 5 shows that this modification

substantially reduces the prediction error. We found a similar

effect when predicting request latency and also found that

incorporating heavy-hitter clients exacerbated the error due

to randomized load-balancing.

B.6 Variability in Implementations of Cloud APIs

We observed high O-err in the memcached and ngnix appli-

cations, both stemming from variability in how the cluster is

configured and the limited control/visibility that default cloud

APIs provide for this process.

In the case of memcached, the variability stemmed from

how our worker instances were being placed within the cloud

infrastructure. Our experiments used EC2’s default VM place-

ment which offers no guarantee on the proximity between our

allocated instances and hence our node-to-node latency var-

ied across runs. This in turn led to variable memcached read

latencies, as we found memcached read times are dominated

by the network latency between the client and server in our

setup. We found that switching to an API that consistently

places a set of instances close together reduced the O-err from

36.9% to 2.4% (varying input scale) [14].

For nginx, the high O-err stemmed from variability in

the default network bandwidth associated with smaller in-

stance types. Specifically, with EC2’s “c5” instances types,

those smaller than c5.9xlarge are by default assigned "up to"

10Gbps network bandwidth while c5.9xlarge instances are

assigned exactly 10Gbps. For smaller instance types we found

that EC2 occasionally throttles network bandwidth and the

degree of throttling varies across runs (see Appendix B.6).

The response time in nginx is also dominated by the network

latency between client and server and hence this variability

in throttling leads to unpredictable request latencies. Repeat-

ing our scale-out and input-scaling tests with a c5.9xlarge

instance (instead of our previous default of c5.xlarge for the

client and c5.4xlarge for the server) reduced the O-err from

15.6% to 2.0% under varying number of workers.

Fig.20 depicts the varying available bandwidth across dif-

ferent runs of the same configuration (specifically, the number

of worker processes in varying number of worker process sce-

nario). We measured the node-to-node bandwidth using iperf

between the instance running the client (wrk2) and the in-

stance running the nginx right before the experiments were

Figure 14: Available bandwidth (measured with iperf) between

client and server nodes across different runs of the same configura-

tion.

run. The results show that despite the configurations (instance

types, number of worker processes) remaining the same, the

available bandwidth can vary. We conjecture this is a result of

the bandwidth allocation mechanism AWS employs, which

throttles bandwidth usage based on an estimation of the aver-

age network utilization of the instances [4].

Note that it is arguable whether the above sources of error

are "irreducible". On the one hand, it might be possible to aug-

ment cloud APIs or incorporate the parameters of cloud APIs

as a feature in our ML models, however, doing so is likely

to come at a loss in flexibility and efficiency for cloud opera-

tors. E.g., one might envisage placement APIs that guarantee

consistent proximity between instances, but the achievable

proximity is likely to vary depending on the number and type

of instances (we will see an example of this in §??). Simi-

larly, if the AWS throttling that we observed is determined

by current network load,11 then it is not clear how one might

capture the impact of throttling prior to runtime. We leave the

question of how cloud providers might augment their APIs to

aid performance predictability as a topic for future work.

C Best-Case Analysis - More Details
Fig.15 and Fig.16 describe the per-app average prediction

error rates for best-case experiments.

D Beyond Best-Case Analysis - More Details
D.1 Leave-one-out - More Details

Fig.17 and Fig.18 describe the per-app average prediction

error rates for leave-one-out experiments.

D.2 Dedicated Instance vs. Shared Instance

Fig.20 shows the impact of changing dedicated instance type

to shared instance type for the Memcached and Spark sorting

applications. We see that overall the relaxation does not have

a statistically meaningful impact on the predictability of these

two applications.

11AWS documentation does not elaborate on the exact conditions under

which they implement throttling [4]
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Figure 15: Best-case prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers, and (c)

scaling-up the instances; before system modifications.

Figure 16: Best-case prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers, and (c)

scaling-up the instances; after system modifications.

D.3 Leave-one-out Test with only Varied Input Scale

Fig.21 shows the CDFs of BoM-err in the BBC leave-one-out

test, for only the predicitons across varying input data scale.

D.4 High BoM-err in BBC after App. Modifications -
Other Applications

(i) TFS has a higher BoM-err of 52.7% for prediction across
varying input-scale. This proved to be because the trend in

TFS throughput under varying input scale is inherently hard

to predict. The underlying function – shown in Fig.5(a) – has

a high Lipschitz constant (i.e., it changes too fast), which

causes the trained model to have poor generalization [24, 42].

We have not yet been able to determine the root cause for this

odd trend in TFS.

(ii) Memcached has a high BoM-err of 50.9% for prediction
across scaling up instance types. Recall from §5 that mem-

cached performance is sensitive to the node-to-node latency

and hence we modified our experiments to use AWS’s clus-

ter placement group API that ensures nodes in a cluster are

consistently placed close to each other. This avoids variability

in placement across multiple runs of an identical test config-

uration. However, what we discovered is that while AWS’s

placement API is consistent in the proximity at which it places

instances of a particular type, this proximity may vary across

different instance types, making it hard for our ML models

to learn a trend across instance types (as is needed for our

leave-one-out analysis).

E Comparing ML Models

So far, we focused on the error of the best-performing ML

model for a given task. We now compare across our six ML

models. We do so in the context of our leave-one-out analysis

since it is both more challenging and realistic. Table 6(top)

reports the error rate that each model achieves for each of the

three prediction scenarios, averaged across all applications.

We normalize each of these error rates by the lowest average

error for the corresponding prediction scenario. Therefore,

a normalized value of 1.0 indicates that the corresponding

model performed the best (on average) for the corresponding

prediction scenario. Table 6(bottom) similarly reports the

normalized error rates for each model and each application,

but now averaged across all prediction tasks.

It is important to note that our analysis uses only out-of-the-

box versions of each ML model and applies the same hyper-

parameter tuning approach to each of them. This is in contrast

to many prior studies (in systems contexts and beyond) in

which a particular model is often specialized and carefully

tuned to achieve high accuracy for a given prediction task [28,

32, 60]. In this sense, our results can be viewed as a "fair"

comparison of models while at the same time we acknowledge

that the performance of any individual model/prediction could

probably be improved through careful tuning. We view our

approach as establishing a useful baseline and conjecture that

there is value to a low-effort ML predictor, especially given

the rapid pace of evolution in modern software services.

We draw the following conclusions from our results:

782    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 17: Leave-one-out prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers,

and (c) scaling-up the instances; before system modifications.

Figure 18: Leave-one-out prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers,

and (c) scaling-up the instances; after system modifications.

Figure 19: CDF of BoM-err in the BBC leave-one-out test where

input data content is identical, for predictions across varying input

data scale

(i) The key takeaway from our results is that there is no clear

winner: no ML model performs the best across all prediction

scenarios and across all applications. This validates the merits

of studying a range of ML models and applications so that we

can understand how to best apply or combine various models.

(ii) There is no clear loser either: each model performs the

best for at least one prediction scenario or application.

(iii) Even though there is no clear winner, neural network often

results in the best performance or has error rates close to the

best performing model. There were a few exceptions where

neural network resulted in 2× higher error rates than the low-

est error. We found that using a different hyper-parameter

tuning methodology reduced the neural network error in these

cases. This confirms the common wisdom that neural net-

Figure 20: Memcached (md) and Spark sorting (sort) prediction

accuracy in the three prediction scenarios with dedicated instances

and shared instances.

works, while powerful, can be difficult to train and tune.

(iv) For cases where neural network performed the best, there

was often at least one other simpler model performed as well.
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Figure 21: CDF of O-err in the BBC leave-one-out test where input

data content is not identical, for predictions across varying input data

scale

Prediction Linear kNN Random SVM SVM Neural
Type Regression Forest kernelized Network

Input scale 1.0 3.5 3.5 1.0 2.4 1.0
# workers 2.0 2.0 2.1 1.6 1.4 1.0
Inst. type 4.0 1.2 1.0 1.4 1.4 1.6

Application Linear kNN Random SVM SVM Neural
Regression Forest kernelized Network

sort 4.8 2.9 3.3 2.2 1.8 1.0
LR1 1.3 1.6 2.0 1.2 1.1 1.0
TFS 4.3 2.4 2.2 1.3 1.0 1.1

pagerank 2.5 1.7 1.8 1.8 3.4 1.0
nginx 6.6 2.6 1.1 1.1 1.0 1.7

influxdb 1.2 2.9 2.9 1.0 1.2 2.6

memcached 1.0 1.0 1.0 1.0 1.0 1.4

go-fasthttp 1.5 1.1 1.2 1.5 1.0 1.1

kmeans 1.3 1.4 1.0 1.3 1.6 1.2

LR2 2.3 2.6 2.2 2.4 1.0 1.9

word2vec 1.2 5.0 5.1 1.0 4.1 2.1

fpgrowth 6.0 2.8 2.7 1.0 2.0 1.1

ALS 1.7 1.2 1.1 1.3 2.5 1.0

Table 6: Comparison across ML models. The top table reports the

error rates for each type of prediction scenario and ML model, aver-

aged across all applications, and normalized by the lowest average

error for that scenario. The bottom table similarly reports normalized

error rates for each application, averaged across different prediction

scenarios.
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