








Figure 5: Average request latency of go-fasthttp and TFS at varying

input scales. These functions vary too fast, and are hence inherently

hard to predict.

performance of KMeans is sensitive to the content of its input

dataset. At larger input sizes, Kmeans exhibits multi-modal

behavior; specifically, the number of iterations to converge

(and hence, the JCT) depends on the input data content (this

effect is shown in Fig. 4(b)). This multi-modality impacts

O-err and BoM-err in prediction tasks where input content is

varied. With identical inputs, this multi-modality impacts the

underlying trend as the input scale is varied, making it (sur-

prisingly, even more) difficult to learn. The JCT for an input

scale factor of 9 in Fig. 4(a) is an example of this behavior.

(ii) Go-fasthttp has an exceptionally high average BoM-err of
128.6% for predictions across varying input-scale.The mean

query latency increases dramatically at the highest input scale

because the system behavior changes under such high load due

to queuing (Fig. 5(a)). This sudden change makes prediction

on that value inherently difficult. The BoM-err for go-fasthttp

reduces to 4.9% if the test datapoints for the highest input

scale are removed from consideration.

(iii) TFS has a higher BoM-err of 52.7% for prediction across
varying input-scale. This is again due to the underlying func-

tion being difficult to learn, as shown in Fig. 5(b). We are still

investigating the root-cause behind this.

6.4 Summary

Application modifications to eliminate sources of irreducible

errors do produce a notable increase in prediction accuracy,

suggesting that a workflow where application developers pro-

vide knobs that give operators the option of disabling these

error sources could be a promising direction moving forward.

However, there are important concerns that cannot be ne-

glected: (1) From the viewpoint of predictability, as we move

to more realistic BBC scenarios, prediction errors do remain

high for certain applications due to the underlying trend be-

ing difficult to learn (as illustrated in §6.3). Eliminating irre-

ducible errors via application modification is not sufficient

in these scenarios. (2) From the viewpoint of generality and

ease-of-use, identifying the root causes of errors and making

them configurable imposes a non-trivial burden on application

developers; the same is true of asking system operators to

reason about the trade-offs between predictability and other

goals such as performance. In other words, such changes do

weaken the black-box nature of performance prediction that

we originally hoped ML-based predictors could provide.

7 Probabilistic Predictions
It may not always be possible to identify and eliminate sources

of irreducible errors as required by the previous section. For

instance, it might be too time-consuming to do so, or the sys-

tem may be closed-source and not amenable to modifications.

Or, operators may not want to compromise on the benefits of

the relevant system optimizations (e.g., experiencing slower

garbage collection by disabling the GC optimization). There-

fore, we now explore an approach that allows operators to

embrace, rather than eliminate, performance variability.

Our empirical observations in §5 reveal that the optimiza-

tions causing irreducible error often lead to bimodal/multi-

modal performance distributions. This is the key insight that

drives our approach, leading us to hypothesize that a way

forward could be to extend ML models to predict not just one

performance value, but a probability distribution from which

we derive k possible values, with the goal that the true value

is one of the k predictions, for a low k.

This immediately raises the question of whether such top-k
probabilistic predictions would even be useful to an operator?

We believe they can be, depending on the use case. For in-

stance, the operator can use the worst among the k predictions

when provisioning to meet SLOs; or they can use the average

expectations across the k predictions to pick an initial number

of workers in a system that anyway dynamically adapts this

number over time; or they can use the probability distribution

to compare which system configuration will perform better in

expectation when purchasing new servers. Note that, as in §6,

this approach also comes with a trade-off – using the worst

of k predictions may lead to over-provisioning, or using the

expected average may lead to sub-optimal choices.

Our goal here is not to design such use cases of probabilistic

predictions, or reason about these trade-offs. We instead focus

on the following questions: assuming operators could make

use of top-k probabilistic predictions: (i) how do we extend

ML models to enable top-k predictions, and (ii) is there a small

enough value of k that results in accurate top-k predictions? If

not, exploring use cases of top-k predictions would be moot.

We thus proceed with discussing how we extended two of

our models to predict probabilistic outputs (§7.1), and our

prediction results (§7.2).

7.1 Extending ML models

We extend random forest and neural network to predict perfor-

mance as a probability distribution across k possible outputs.

We chose these models as they were most natural to extend.

Probabilistic Random Forests (Prob. RF). Instead of using

the average JCT of the training points at the leaf node as

the prediction (as is done in conventional decision trees), we

use the distribution of the JCT data points at the leaf node,

modeled using a Gaussian Mixture Model (GMM) [34] with

k components. We train this Prob. RF as before, still picking

splits that minimize the variance of JCT in child nodes.

Mixture Density Networks (MDNs). We adopt MDNs [25],

772    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 6: CDF of BoM-err in the BC test where models with prob.

outputs are used (k=3). Compare to Fig. 1b.

Figure 7: CDF of BoM-err in the BBC leave-one-out test where the

models with probabilistic outputs are used (k=3). Compare to Fig 1c.

and modify our neural network to predict parameters for a

Gaussian Mixture Model with k components (mean and vari-

ance for each component and mixing coefficients). We use

negative log-likelihood of the data under the predicted GMM,

as the loss function to train the MDN.

We implement Prob. RF based on random forest module in

scikit-learn, and MDN in TensorFlow [21].

7.2 Top-k Prediction Results

To evaluate predictability with the probabilistic models above,

we obtain k predictions from the models as the k different

means of the k component GMM, and report the top-k rMSRE
score, i.e. the rMSRE score of the best prediction among the

k predictions made by the model. Such a top-k rMSRE shares

the same interpretation as the rMSRE score – in fact, rMSRE

scores reported so far can be thought of as top-1 rMSRE

scores. In our evaluation, we observed a sharp drop in error

rates as we move from a top-1 to top-2 measure and that

further improvement plateaus off for k > 3. For brevity, we

present a subset of our results for k = 3.

BC Test Fig.6 shows the top-3 BoM-err under the BC pre-

dictions. We see a significant decrease in BoM-err com-

pared to our top-1 prediction presented earlier in Fig.1b. The

90%ile BoM-err is less than 10% for all but two applications.

Note that the test data set remains unchanged by our use of

probabilistic models, and hence O-err remains as high as in

Fig.1a. The reduced BoM-err with top-k predictions shows

the promise of this approach in embracing inherent variability.

BBC Test Fig.7 presents the top-3 BoM-err under the BBC

test, where we relax the seen-configuration assumption by

conducting leave-one-out predictions. While there is an im-

provement over models that make a single prediction (as in

Fig 1c), we note that our multi-modal predictions don’t im-

prove performance in cases where the underlying trend is

hard to predict for a reason other than multi-modality (e.g.,
TFS and go-fasthttp).

7.3 Summary

Our findings along this direction are similar to those in §6.

While it is possible to reduce prediction errors by extending

our ML models to predict top-k performance values, two

concerns with regard to generality and ease-of-use remain: (1)

Even with top-k predictors, we continue to see scenarios with

high error rates when we consider our more realistic BBC tests

because the underlying performance trend is difficult to learn.

Thus achieving a fully general predictor remains out of reach.

(2) The use of top-k predictors complicates the process of

applying performance prediction (which compromises ease-

of-use) and may lead to sub-optimal decisions; in fact, how

to best use such predictions and reason about the resulting

trade-offs remains an open question.

8 Takeaways and Next Steps
We set out to evaluate whether ML offers a simpler, more

general approach to performance prediction. We showed that:

(1) Taken “out of the box”, many of the applications we stud-

ied exhibit a surprisingly high degree of irreducible error,

which fundamentally limits the accuracy that any ML-based

predictor can achieve, and (2) We can significantly improve

accuracy if we relax our goals (accepting the trade offs) and

modify applications and/or modify how we use predictions.

But even with these relaxations we still see a non-trivial num-

ber of predictions with high error rates! E.g., apps where

∼10% of the BBC tests have BoM-err > 30-40%.

While ML fails to meet our goal of generality, we did find

several scenarios where ML-based prediction was effective,

showing that we must apply ML in a more nuanced manner

by first identifying whether/when ML-based prediction is ef-

fective. Our methodology provides a blueprint for this, as

summarized in Figure 8. Concretely, say that operators want

to assess and improve the predictability of a target application.

The first step is to run our BC test with the target workloads.

If O-err is low, they can continue to the BBC test and check

BoM-err. Otherwise, they have two options. The first is to

disable any root-causes of variability if possible, rebuild the

application, and re-run the BC test. If disabling root-causes is

not possible or not desirable, operators can choose to use the

top-k predictions. They can also combine both options, recon-

figuring the application and using probabilistic predictions.

Even for this more nuanced approach, many open questions

remain: (i) do our findings hold beyond the 13 apps and 6

models studied? (ii) how do we design systems to more easily

identify sources of irreducible error? (iii) how can developers

and operators more easily reason about trade offs between

predictability and other design goals? Etc.

Our work provides empirical evidence motivating the above

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    773



Figure 8: Methodology blueprint. As examples from our findings: Terasort’s path (shown in blue) started out with only 73% of prediction tests

having an O-err <10% in our BC test but once we eliminated its root-cause of irreducible error (the worker-readiness optimization), 99+% of

test cases saw an O-err <10% and the BoM-err even in our BBC test was <10% for ∼90% of test cases leading to what we would deem a

successful outcome. By contrast, KMeans (shown by the red path) started with a good O-err in our BC test (>90% of test cases had O-err

<10%) but ultimately failed when we relaxed our identical-inputs assumption where point >60% of prediction tests had O-err >20%!

questions and a blueprint for how to approach and evaluate

them. Overall, we remain cautiously skeptical about the role

of ML in predicting system performance. We note that a

common thread in the above questions is the need to evaluate

predictors in a manner that is systematic and consistent across
studies. We call on the community to adopt and extend our

methodology as the foundation for such evaluation.

9 Related Work
Prior work has explored using ML based performance pre-

diction for tuning and optimizing system configuration.

Ernest [57] uses domain expert knowledge to build an an-

alytical model for Spark performance, that is based on trans-

formations and combinations of different features (such as

number of cloud instances and input dataset scale), and trains

the parameters of this model using ML.

Similar data-driven, gray-box modeling approaches have

been applied to predicting and tuning performance for

deep learning workloads and scientific computing [47, 48].

Paris [60] is a black-box performance modeling tool for se-

lecting the best instance type by training a Random Forest

model for each instance, and profiling unseen test applications

on a small subset of instances to feed as input to the model.

Selecta [37] makes innovative use of collaborative filtering

to predict performance and select the best-performing storage

configuration for data analytics applications. CherryPick [22]

explores black-box optimization (Bayesian Optimization) for

a guided search towards the optimal cloud configurations with-

out accurately predicting performance. Google’s Vizier [31]

leverages similar black-box optimization and makes it an in-

ternal application service for various workloads. Each of the

above focus on answering a specific question with a specific

ML technique. Our goal is to understand how ML can be more

broadly applied to predicting performance across a range of

systems and predictive tasks. We hope that our results, partic-

ularly as they relate to our methodology and irreducible error,

can be applied to many of the contexts explored in prior work.

Monotasks [44] proposes a radically new design for Spark

aiming at assisting performance diagnostics and prediction; it

does not explore the role of ML for performance prediction.

Similar to our proposal in §7.1, several recent papers recog-

nize that performance is perhaps better represented as a prob-

ability distribution. [51] proposes modeling the performance

of individual functions/methods as probability distributions

and presents automatic instrumentation to capture such distri-

butions. [45] shows how to design cluster schedulers that take

as input, distributions derived from historical performance.

Our proposal adds a new dimension to this general approach:

we show how to extend ML models to generate probabilistic

performance predictions.

Google Wide Profiler [36, 50] explores the use of perfor-

mance counter information collected on an always-on pro-

filing infrastructure in datacenters to provide performance

insights and drive job scheduling decisions. As mentioned in

§2, our work differs in that we focus on static parameters to

enable use-cases where predictions happen before runtime.

Performance variability has been widely reported in con-

texts from hardware-induced variability [41], to stragglers

in batch analytics [59], variability in VM network perfor-

mance [52], and tail request latencies in microservices [29].

Our work can be thought as complementary: we studied a

wide range of applications, report variability even under best-

case scenarios, focus on the impact of variability to ML-based

performance prediction, and propose systematic approaches

to cope with variability.

774    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References
[1] Amazon EC2 dedicated instances. https://aws.amazon.

com/ec2/pricing/dedicated-instances/.

[2] Amazon EC2 instance types. https://aws.amazon.com/

ec2/instance-types/.

[3] Apache spark. https://spark.apache.org/.

[4] Compute optimized instances. https://docs.

aws.amazon.com/AWSEC2/latest/UserGuide/

compute-optimized-instances.html.

[5] A constant throughput, correct latency recording variant

of wrk. https://github.com/giltene/wrk2.

[6] Datasets used in this paper. https://s3.console.aws.

amazon.com/s3/buckets/perfd-data.

[7] Fast HTTP package for Go. https://github.com/valyala/

fasthttp.

[8] Graphx synthbenchmark. https://github.com/apache/

spark/blob/master/examples/src/main/scala/org/

apache/spark/examples/graphx/SynthBenchmark.

scala/.

[9] High performance load balancer, web server, & reverse

proxy. https://www.nginx.com/.

[10] An influxdb benchmarking tool. https://github.com/

influxdata/inch.

[11] Kubernetes: Production-grade container orchestration.

https://kubernetes.io/.

[12] memcached - a distributed memory object caching sys-

tem. https://memcached.org/.

[13] Mutilate: high-performance memcached load generator.

https://github.com/leverich/mutilate.

[14] Placement groups. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/placement-groups.html.

[15] Scalable datastore for metrics, events, and real-time an-

alytics. https://github.com/influxdata/influxdb.

[16] Spark performance tests. https://github.com/databricks/

spark-sql-perf.

[17] Tensorflow serving. https://github.com/tensorflow/

serving.

[18] Tensorflow serving on kubernetes. https://www.

tensorflow.org/tfx/serving/serving_kubernetes.

[19] Testing the performance of nginx and nginx plus web

servers. https://tinyurl.com/yccm2uf6.

[20] Tooling and setup used in this paper. https://github.com/

perfd/perfd.

[21] Martın Abadi et al. Tensorflow: Large-scale machine

learning on heterogeneous systems, 2015. Software
available from tensorflow. org, 1(2), 2015.

[22] Omid Alipourfard et al. Cherrypick: Adaptively un-

earthing the best cloud configurations for big data ana-

lytics. In Proc. USENIX NSDI, 2017.

[23] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy,

and Ulrich Kremer. A static performance estimator to

guide data partitioning decisions. In Proc. ACM PPoPP,

pages 213–223, 1991.

[24] Peter L Bartlett, Dylan J Foster, and Matus J Telgar-

sky. Spectrally-normalized margin bounds for neural

networks. In Advances in Neural Information Process-
ing Systems, pages 6240–6249, 2017.

[25] Christopher M Bishop. Mixture density networks. 1994.

[26] Jianhua Cao, Mikael Andersson, Christian Nyberg, and

Maria Kihl. Web server performance modeling using an

m/g/1/k* ps queue. In 10th International Conference on
Telecommunications, 2003. ICT 2003., volume 2, pages

1501–1506. IEEE, 2003.

[27] Harshal S Chhaya and Sanjay Gupta. Performance mod-

eling of asynchronous data transfer methods of ieee

802.11 mac protocol. Wireless networks, 3(3):217–234,

1997.

[28] Jasmine Collins, Jascha Sohl-Dickstein, and David Sus-

sillo. Capacity and trainability in recurrent neural net-

works. In ICLR, 2017.

[29] Jeffrey Dean and Luiz André Barroso. The tail at scale.

Communications of the ACM, 56(2):74–80, 2013.

[30] Christina Delimitrou and Christos Kozyrakis. Quasar:

resource-efficient and qos-aware cluster management.

In Proc. ACM ASPLOS, 2014.

[31] Daniel Golovin et al. Google vizier: A service for black-

box optimization. In Proc. ACM KDD, 2017.

[32] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R

Steunebrink, and Jürgen Schmidhuber. LSTM: A search

space odyssey. IEEE transactions on neural networks
and learning systems, 28(10):2222–2232, 2016.

[33] Xinlei Han, Raymond Schooley, Delvin Mackenzie,

Olaf David, and Wes J Lloyd. Characterizing public

cloud resource contention to support virtual machine

co-residency prediction. In Proc. IEEE IC2E, 2020.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    775



[34] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and

James Franklin. The elements of statistical learning:

data mining, inference and prediction. The Mathemati-
cal Intelligencer, 27(2):83–85, 2005.

[35] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,

Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Se-

nior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. Deep neural networks for acoustic mod-

eling in speech recognition: The shared views of four

research groups. IEEE Signal processing magazine,

29(6):82–97, 2012.

[36] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,

Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon

Wei, and David Brooks. Profiling a warehouse-scale

computer. In Proc. ACM ISCA, 2015.

[37] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Se-

lecta: heterogeneous cloud storage configuration for data

analytics. In Proc. USENIX ATC, 2018.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[39] Jacob Leverich and Christos Kozyrakis. Reconciling

high server utilization and sub-millisecond quality-of-

service. In Proc. ACM EuroSys, 2014.

[40] Amiya K Maji, Subrata Mitra, Bowen Zhou, Saurabh

Bagchi, and Akshat Verma. Mitigating interference in

cloud services by middleware reconfiguration. In Proc.
of the 15th International Middleware Conference, 2014.

[41] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,

Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.

Taming performance variability. In Proc. USENIX
OSDI), 2018.

[42] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Tal-

walkar. Foundations of machine learning. MIT press,

2018.

[43] Matthias Nicola and Matthias Jarke. Performance mod-

eling of distributed and replicated databases. IEEE
Transactions on Knowledge and Data Engineering,

2000.

[44] Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy,

and Scott Shenker. Monotasks: Architecting for perfor-

mance clarity in data analytics frameworks. In Proc.
ACM SOSP, 2017.

[45] Jun Woo Park, Alexey Tumanov, Angela Jiang,

Michael A Kozuch, and Gregory R Ganger. 3sigma:

distribution-based cluster scheduling for runtime uncer-

tainty. In Proc. ACM EuroSys, 2018.

[46] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-

fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,

Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-

cent Dubourg, et al. Scikit-learn: Machine learning

in python. Journal of machine learning research,

12(Oct):2825–2830, 2011.

[47] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,

and Chuanxiong Guo. Optimus: an efficient dynamic

resource scheduler for deep learning clusters. In Proc.
ACM EuroSys, 2018.

[48] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuf-

fling, fast and slow: scalable analytics on serverless in-

frastructure. In Proc. USENIX NSDI, 2019.

[49] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu,

Younggyun Koh, and Calton Pu. Understanding per-

formance interference of i/o workload in virtualized

cloud environments. In Proc. IEEE Cloud, 2010.

[50] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius

Rus, and Robert Hundt. Google-wide profiling: A con-

tinuous profiling infrastructure for data centers. IEEE
Micro, 30(4):65–79, 2010.

[51] Daniele Rogora, Antonio Carzaniga, Amer Diwan,

Matthias Hauswirth, and Robert Soulé. Analyzing sys-

tem performance with probabilistic performance anno-

tations. In Proc. ACM EuroSys, 2020.

[52] Ryan Shea, Feng Wang, Haiyang Wang, and Jiangchuan

Liu. A deep investigation into network performance

in virtual machine based cloud environments. In Proc.
IEEE INFOCOM, 2014.

[53] Harish Sukhwani, José M Martínez, Xiaolin Chang,

Kishor S Trivedi, and Andy Rindos. Performance

modeling of pbft consensus process for permissioned

blockchain network (hyperledger fabric). In 2017
IEEE 36th Symposium on Reliable Distributed Systems
(SRDS), pages 253–255. IEEE, 2017.

[54] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence

to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–

3112, 2014.

[55] Omesh Tickoo, Ravi Iyer, Ramesh Illikkal, and Don

Newell. Modeling virtual machine performance: chal-

lenges and approaches. ACM SIGMETRICS Perfor-
mance Evaluation Review, 37(3):55–60, 2010.

[56] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and

Bohan Zhang. Automatic database management system

tuning through large-scale machine learning. In Proc.
ACM SIGMOD, 2017.

776    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



[57] Shivaram Venkataraman, Zongheng Yang, Michael

Franklin, Benjamin Recht, and Ion Stoica. Ernest: effi-

cient performance prediction for large-scale advanced

analytics. In Proc. USENIX NSDI, 2011.

[58] Yangyang Wu and Ming Zhao. Performance modeling

of virtual machine live migration. In 2011 IEEE 4th
International Conference on Cloud Computing, pages

492–499. IEEE, 2011.

[59] Neeraja J Yadwadkar, Ganesh Ananthanarayanan, and

Randy Katz. Wrangler: Predictable and faster jobs using

fewer resources. In Proc. ACM SoCC, 2014.

[60] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gon-

zalez, Burton Smith, and Randy H Katz. Selecting the

best vm across multiple public clouds: a data-driven

performance modeling approach. In Proc. ACM SoCC,

2017.

[61] Ji Zhang et al. An end-to-end automatic cloud database

tuning system using deep reinforcement learning. In

Proc. ACM SIGMOD, 2019.

[62] Xiaolan Zhang, Giovanni Neglia, Jim Kurose, and Don

Towsley. Performance modeling of epidemic routing.

Computer Networks, 51(10):2867–2891, 2007.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    777



Appendix
A Test Applications: Additional Detail
We include Memcached, a popular in-memory key-value

store. We use the mutilate [13, 39] memcached load gen-

erator which generates realistic memcached request streams

and records fine-grained latency measurements. We vary the

key size (corresponding to the varying input scale prediction),

number of memcached servers (varying number of servers),

and the server instance type, while keeping the other workload

parameters in mutilate as fixed values9. We report results on

predicting the average query latency.

We include Influxdb, a widely used timeseries database.

We use its official benchmarking tool Inch as the client. Inch

sends write queries to Influxdb and reports the time it takes to

complete each write query. We vary the number of points per

timeseries written per query (varying input scale prediction),

the number of Influxdb servers, and the server instance type.

We report results on predicting the query latency.

We include nginx. We use wrk2, an http benchmarking

tool used by nginx’s official benchmark reports [19]. It sends

http requests and reports fine-grain latency and throughput

measurements. We vary the per-client request rate, number of

worker processes (each worker process is a single-threaded

process; the maximum number of worker processes we vary to

is equal to the number of cores of the instance), and the server

instance type. We report results on predicting the median

request latency.

We include go-fasthttp, a high-performance HTTP pack-

age for building REST services. We use the wrk2 tool to

generate HTTP loads again. We vary the request rate, number

of server instances, and the server instance type. We report

results on predicting the median request latency.

We include multiple Spark-based applications spanning

diverse forms of computation: sorting, graph computation,

classification (two different implementations), data mining,

recommendation etc.

We include Tensorflow Serving (TFS), a high perfor-

mance model serving system, which we orchestrate using

Kubernetes (k8s). Our TFS setup resembles that of other (e.g.,

Web) serving systems in which a front-end load balancer (we

use EC2 ELB) spreads client requests across a backend of

(model) serving instances.

B Understanding Irreducible Errors – Details
B.1 Spark’s “Worker-readiness” Optimization

Details included in the main text.

B.2 Multi-mode Optimization in JVM GC

We elaborate on the details of how the JVM adapative GC

leads to variable application performance in the context of

our Spark Logistic Regression (LR1) workload.

9See https://github.com/perfd/perfd/blob/master/apps/memcached/

manifests/perf_predict/suite_1/keySize.yaml for an example setup.

Figure 9: High-mode (top) and Low-mode (bottom) trajectories for

promotion estimate and free space in old region during the first 30

garbage collections. Hollow blue dots depict major/full GCs and

solid blue dots depict minor GCs.

§5.1.2 revealed a positive correlation between the number

of full GCs (explained below) and JCT with a distinct bimodal

behaviour. We now describe how this bimodality arises. For

this, we first explain relevant aspects of the GC mechanism

in Java Virtual Machine (JVM) that Spark uses.

JVM divides the Java memory heap into two regions –

a young region to allocate new objects, and an old region

to accommodate ‘old’ objects that have survived multiple

GC rounds. It supports three different types of GCs over

these regions: (i) minor GC on the young region, (ii) major
GC on the old region, and (iii) full GC over the entire heap

space (both young and old regions), with the surviving objects

residing in the old region.

In the face of heap space shortage, JVM first runs a minor

GC on the young region, deleting the unused objects and

promoting the old objects (that have survived multiple GC

rounds) to the old region. A minor GC triggers a major GC if

the old region has too little free space to hold the promoted

objects. If a minor GC constantly triggers a major GC, the

garbage collector can save time by skipping the minor GC

(and the ensuing major GC), and directly running full GC

over the entire space. JVM implements this adaptive skipping

of minor GC as a performance optimization. To estimate

whether a minor GC would trigger a major GC, it maintains a

promotion estimate, calculated as the moving average of the

number of promoted objects after each round of minor GC.

If the promotion estimate is higher than the amount of free

space in the old region, JVM GC skips the minor GC and runs

a full GC directly.

We now show how this adaptive skipping behavior impacts

performance predictability. We randomly pick one sample

778    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



each from the slower “high-mode” runs (whose JCTs sit at

the top-right corner of the figure in §5.1.2) and the faster

“low-mode” runs (whose JCTs sits in the bottom-left corner of

the figure in §5.1.2). The top and bottom plots in Fig.9 show

the promotion estimate values and the amount of free space

in the old region observed for the first 30 GC events in the

two sample runs respectively.

Fig.9(top) reveals that beyond GC event #21, the promo-

tion estimate in the high-mode run remains greater than the

amount of free space in the old region (even after event 30,

beyond what the plot shows). This results in consecutive full

GCs (shown as hollow blue dots). Note that since no objects

get promoted in a full GC, the JVM does not update the pro-

motion estimate.

Fig.9(bottom) shows how the low-mode run escapes from

such a fate: the promotion estimate is higher than the amount

of free old space only for a few GC events, and stays lower

than that beyond GC event #26. Consequently, the low mode

run sees more minor GCs than full GCs (shown as solid blue

dots). Since a full GC, which scans objects across a larger

memory space, is significantly more time consuming than a

minor GC, the perpetuation of full GCs has a large impact

JCT (witnessed in the scatter-plot in §5.1.2).

Fig.10 shows the corresponding time-series of GC events

along with events that mark the start and finish of individual

tasks (for clarity, we only show the time range of 20-26s,

which captures the regime where the two runs start deviating

from one another). Careful observation of Fig.10 reveals that

the GC behaviour of the two runs begins to diverge around

time 24s, when two of tasks finish slightly earlier in the high

mode run than in the low mode run. We checked that around

this time, the two modes see a difference of about 10MB in

the amount of free old space (which is rather small compared

to the total heap size of 1GB).

Such subtle differences cannot be determined without

knowing the runtime state of the garbage collection and the

Spark application.

B.3 Non-determinism in the Spark Scheduler

Our analysis revealed that PageRank’s high O-err stems from

non-determinism in the Spark scheduler. Specifically, in a job

with multiple stages, a stage A may be independent of stage

B in the sense that A’s tasks can be scheduled to run whether

or not B’s tasks have completed. Our traces showed that in-

dependent stages were being scheduled in different orders in

different runs leading to different JCTs. This arises because of

how the Spark scheduler tracks dependencies between stages.

Spark’s scheduler maintains a graph that captures the depen-

dencies between stages; a stage v’s parents in the graph are

those stages that can only be scheduled after v is complete.

Spark’s scheduler uses the Scala HashSet data structure to

track the parents of a stage. When the search propagates to the

parents, the order of visiting these parents can be inconsistent

across runs because HashSet makes no guarantees on the

Figure 10: High-mode (top) and Low-mode (bottom) trajectories

for the run-time events. Note that unlike Fig.9, the x-axis unit here

is the wall time.

Figure 11: Bimodal performance that results from scheduling inde-

pendent stages in different orders.

order of iteration through the set members.

Fig.11 shows the effect of this non-determinism. Stages 1

and 7 are two independent stages and the figure plots the JCT

for runs where stage 7 is scheduled before stage 1 (dots on the

bottom-left) and vice versa (dots on the top-right). We see that

the difference in scheduling order corresponds to bimodality

in the JCTs. We emphasize that this bimodality could not be

predicted prior to runtime as it depends on the runtime state of

the HashSet structure rather than any static input parameters.

Setup Naive-err BoM-err O-err

Baseline 44.7% 19.2% 18.2%

+Sched. mod. 40.7% 5.7% 3.2%

Table 3: Prediction error before vs. after.

To verify our analysis, we modify the Spark scheduler

such that the order of scheduled stages is consistent across

runs with identical configurations (replacing HashSet with

a LinkedHashSet). Table 3 shows that our modification (the

“+Sched. mod.” row) reduces the O-err by more than 5.7x

bringing the error to under 4%.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    779



B.4 HTTP Redirection and DNS Caching in S3

Multiple applications in our study – KMeans, LR2, FPGrowth,

and ALS – experienced irreducible errors due to name resolu-

tion in Amazon’s S3 storage service. We explain this effect in

the context of the KMeans application.

Figure 12: Breakdowns of Spark KMeans job completion time as

time spent on cloud storage IO (writing the results to S3) and on

computation for 100 experiment runs.

When triaging the overall JCT, we often found that, on

average, the computation time was on par with the S3 IO time

but that the standard deviation for the latter was 24× times

higher than the former (Fig.12). Analysis of the application’s

runtime logs for KMeans revealed that the variance in per-

formance stems from I/O to Amazon’s S3 storage service.

This is shown in Fig.12 which breaks down the overall JCT

into computation time and S3 IO time. We see that the com-

putation time has little variance while the S3 IO time has

substantial variance (between 17.5s and 9s).

Further instrumentation revealed a correlation between the

time spent on S3 IO and the number of HTTP redirection

events, and that the latter varied across multiple runs of iden-

tical test configurations.

S3 is a distributed storage service in which objects are

spread across multiple datacenters. When a new object

“bucket” is created, its DNS entry points to a default data-

center location. If a user creates a bucket in a datacenter other

than the default one, then a request to that bucket is first sent

to the default server, which responds with an HTTP redirect

containing a new URL that resolves to the datacenter where

the bucket is located.

Such redirection continues until the DNS entry for the

bucket is correctly updated.10 The S3 buckets in our experi-

ments were created in a different datacenter from the default

one, leading to such HTTP redirects.

Fig.13 illustrates the above behavior during one of our

experiments. We plot two values over time: (a) the number of

distinct S3 servers that our application connected to, and, (b)

the time spent on S3 IO. We observe three distinct phases to

S3 performance, demarcated by green lines in Fig.13.

Interestingly, we observe a significant intermediate period

where the two values oscillate. We found that this oscillation

arises because AWS load-balances DNS requests across a

pool of DNS servers and the servers in this pool converge to

the new DNS entry at different times. In summary, we see

10AWS states that DNS entries can take up to 24 hours to be fully propa-

gated; we observed average delays of approx 4 hours. AWS also recommends

that clients not cache the redirect URL as its validity is only temporary.

Figure 13: The number of S3 servers visited during the cloud storage

IO (top) and the total IO time (bottom). This is plotted over wall-

clock time during multiple rounds of experiments.

variable performance even for identical test configurations due

to the distributed and eventually-consistent nature of object

name resolution in S3. To validate our analysis, we repeated

our experiments after modifying the KMeans application to

cache the correct bucket location after the first redirection

event (yes, ignoring AWS’ recommendation). Table 4 shows

that this modification dramatically reduces prediction error to

an O-err of 1.0% and a BoM-err of 1.1%.
Setup Naive-err BoM-err O-err

Baseline 22.7% 16.0% 15.2%

Correct bucket loc. 5.6% 1.1% 1.0%

Table 4: Prediction error before vs. after.

One might ask whether it is possible to predict the impact of

AWS’s DNS service on applications. An in-depth exploration

of this question is beyond the scope of this paper. However,

we note that doing so appears impractical, if not infeasible,

since we would have to know how an application’s lifetime

overlaps with the DNS timers not just for a single server but

for an entire pool of servers, as well as precisely knowing

how DNS requests are load-balanced across this pool.

B.5 Imperfect load-balancing at high load

We observed high irreducible errors when predicting the re-

quest throughput provided by a TFS cluster under increasing

numbers of workers (servers). Our analysis revealed that this

high error stems from how client requests are load-balanced

across TFS servers. We run TFS servers within a Kuber-

netes cluster and hence incoming client requests undergo two

levels of load balancing. First, the AWS Elastic Load Bal-

ancer round-robins incoming client connections across the

k8s nodes. Next, each k8s node load balances incoming RPCs

across the TFS instances.

We found that the irreducible errors in TFS stem from the

second stage of load-balancing. The load-balancing within

k8s is based on selecting a TFS server at random, leading

to some inherent imbalance in the load at each server. When

running the TFS cluster at high utilization (as our experiments

do), this imbalance means that some servers are already run-

ning at capacity while others are running below the maximum

request rate they can sustain. The variability in this imbalance

780    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



leads to variations in the overall request throughput; e.g., in

repeated runs of one identical test setup, we saw aggregate

throughput vary between 80-140 req/sec.

Setup Naive-err BoM-err O-err

Baseline tput. 123.5% 26.7% 11.8%

-Rnd LB tput. 163.2% 7.6% 6.7%

Table 5: Prediction error before vs. after.

To verify this effect, we reconfigure the k8s load-balancer

to always direct client RPCs to the local TFS server instance.

In effect, this disables the k8s load-balancer which is accept-

able for our test purposes. Table 5 shows that this modification

substantially reduces the prediction error. We found a similar

effect when predicting request latency and also found that

incorporating heavy-hitter clients exacerbated the error due

to randomized load-balancing.

B.6 Variability in Implementations of Cloud APIs

We observed high O-err in the memcached and ngnix appli-

cations, both stemming from variability in how the cluster is

configured and the limited control/visibility that default cloud

APIs provide for this process.

In the case of memcached, the variability stemmed from

how our worker instances were being placed within the cloud

infrastructure. Our experiments used EC2’s default VM place-

ment which offers no guarantee on the proximity between our

allocated instances and hence our node-to-node latency var-

ied across runs. This in turn led to variable memcached read

latencies, as we found memcached read times are dominated

by the network latency between the client and server in our

setup. We found that switching to an API that consistently

places a set of instances close together reduced the O-err from

36.9% to 2.4% (varying input scale) [14].

For nginx, the high O-err stemmed from variability in

the default network bandwidth associated with smaller in-

stance types. Specifically, with EC2’s “c5” instances types,

those smaller than c5.9xlarge are by default assigned "up to"

10Gbps network bandwidth while c5.9xlarge instances are

assigned exactly 10Gbps. For smaller instance types we found

that EC2 occasionally throttles network bandwidth and the

degree of throttling varies across runs (see Appendix B.6).

The response time in nginx is also dominated by the network

latency between client and server and hence this variability

in throttling leads to unpredictable request latencies. Repeat-

ing our scale-out and input-scaling tests with a c5.9xlarge

instance (instead of our previous default of c5.xlarge for the

client and c5.4xlarge for the server) reduced the O-err from

15.6% to 2.0% under varying number of workers.

Fig.20 depicts the varying available bandwidth across dif-

ferent runs of the same configuration (specifically, the number

of worker processes in varying number of worker process sce-

nario). We measured the node-to-node bandwidth using iperf

between the instance running the client (wrk2) and the in-

stance running the nginx right before the experiments were

Figure 14: Available bandwidth (measured with iperf) between

client and server nodes across different runs of the same configura-

tion.

run. The results show that despite the configurations (instance

types, number of worker processes) remaining the same, the

available bandwidth can vary. We conjecture this is a result of

the bandwidth allocation mechanism AWS employs, which

throttles bandwidth usage based on an estimation of the aver-

age network utilization of the instances [4].

Note that it is arguable whether the above sources of error

are "irreducible". On the one hand, it might be possible to aug-

ment cloud APIs or incorporate the parameters of cloud APIs

as a feature in our ML models, however, doing so is likely

to come at a loss in flexibility and efficiency for cloud opera-

tors. E.g., one might envisage placement APIs that guarantee

consistent proximity between instances, but the achievable

proximity is likely to vary depending on the number and type

of instances (we will see an example of this in §??). Simi-

larly, if the AWS throttling that we observed is determined

by current network load,11 then it is not clear how one might

capture the impact of throttling prior to runtime. We leave the

question of how cloud providers might augment their APIs to

aid performance predictability as a topic for future work.

C Best-Case Analysis - More Details
Fig.15 and Fig.16 describe the per-app average prediction

error rates for best-case experiments.

D Beyond Best-Case Analysis - More Details
D.1 Leave-one-out - More Details

Fig.17 and Fig.18 describe the per-app average prediction

error rates for leave-one-out experiments.

D.2 Dedicated Instance vs. Shared Instance

Fig.20 shows the impact of changing dedicated instance type

to shared instance type for the Memcached and Spark sorting

applications. We see that overall the relaxation does not have

a statistically meaningful impact on the predictability of these

two applications.

11AWS documentation does not elaborate on the exact conditions under

which they implement throttling [4]

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    781



Figure 15: Best-case prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers, and (c)

scaling-up the instances; before system modifications.

Figure 16: Best-case prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers, and (c)

scaling-up the instances; after system modifications.

D.3 Leave-one-out Test with only Varied Input Scale

Fig.21 shows the CDFs of BoM-err in the BBC leave-one-out

test, for only the predicitons across varying input data scale.

D.4 High BoM-err in BBC after App. Modifications -
Other Applications

(i) TFS has a higher BoM-err of 52.7% for prediction across
varying input-scale. This proved to be because the trend in

TFS throughput under varying input scale is inherently hard

to predict. The underlying function – shown in Fig.5(a) – has

a high Lipschitz constant (i.e., it changes too fast), which

causes the trained model to have poor generalization [24, 42].

We have not yet been able to determine the root cause for this

odd trend in TFS.

(ii) Memcached has a high BoM-err of 50.9% for prediction
across scaling up instance types. Recall from §5 that mem-

cached performance is sensitive to the node-to-node latency

and hence we modified our experiments to use AWS’s clus-

ter placement group API that ensures nodes in a cluster are

consistently placed close to each other. This avoids variability

in placement across multiple runs of an identical test config-

uration. However, what we discovered is that while AWS’s

placement API is consistent in the proximity at which it places

instances of a particular type, this proximity may vary across

different instance types, making it hard for our ML models

to learn a trend across instance types (as is needed for our

leave-one-out analysis).

E Comparing ML Models

So far, we focused on the error of the best-performing ML

model for a given task. We now compare across our six ML

models. We do so in the context of our leave-one-out analysis

since it is both more challenging and realistic. Table 6(top)

reports the error rate that each model achieves for each of the

three prediction scenarios, averaged across all applications.

We normalize each of these error rates by the lowest average

error for the corresponding prediction scenario. Therefore,

a normalized value of 1.0 indicates that the corresponding

model performed the best (on average) for the corresponding

prediction scenario. Table 6(bottom) similarly reports the

normalized error rates for each model and each application,

but now averaged across all prediction tasks.

It is important to note that our analysis uses only out-of-the-

box versions of each ML model and applies the same hyper-

parameter tuning approach to each of them. This is in contrast

to many prior studies (in systems contexts and beyond) in

which a particular model is often specialized and carefully

tuned to achieve high accuracy for a given prediction task [28,

32, 60]. In this sense, our results can be viewed as a "fair"

comparison of models while at the same time we acknowledge

that the performance of any individual model/prediction could

probably be improved through careful tuning. We view our

approach as establishing a useful baseline and conjecture that

there is value to a low-effort ML predictor, especially given

the rapid pace of evolution in modern software services.

We draw the following conclusions from our results:

782    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 17: Leave-one-out prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers,

and (c) scaling-up the instances; before system modifications.

Figure 18: Leave-one-out prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers,

and (c) scaling-up the instances; after system modifications.

Figure 19: CDF of BoM-err in the BBC leave-one-out test where

input data content is identical, for predictions across varying input

data scale

(i) The key takeaway from our results is that there is no clear

winner: no ML model performs the best across all prediction

scenarios and across all applications. This validates the merits

of studying a range of ML models and applications so that we

can understand how to best apply or combine various models.

(ii) There is no clear loser either: each model performs the

best for at least one prediction scenario or application.

(iii) Even though there is no clear winner, neural network often

results in the best performance or has error rates close to the

best performing model. There were a few exceptions where

neural network resulted in 2× higher error rates than the low-

est error. We found that using a different hyper-parameter

tuning methodology reduced the neural network error in these

cases. This confirms the common wisdom that neural net-

Figure 20: Memcached (md) and Spark sorting (sort) prediction

accuracy in the three prediction scenarios with dedicated instances

and shared instances.

works, while powerful, can be difficult to train and tune.

(iv) For cases where neural network performed the best, there

was often at least one other simpler model performed as well.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    783



Figure 21: CDF of O-err in the BBC leave-one-out test where input

data content is not identical, for predictions across varying input data

scale

Prediction Linear kNN Random SVM SVM Neural
Type Regression Forest kernelized Network

Input scale 1.0 3.5 3.5 1.0 2.4 1.0
# workers 2.0 2.0 2.1 1.6 1.4 1.0
Inst. type 4.0 1.2 1.0 1.4 1.4 1.6

Application Linear kNN Random SVM SVM Neural
Regression Forest kernelized Network

sort 4.8 2.9 3.3 2.2 1.8 1.0
LR1 1.3 1.6 2.0 1.2 1.1 1.0
TFS 4.3 2.4 2.2 1.3 1.0 1.1

pagerank 2.5 1.7 1.8 1.8 3.4 1.0
nginx 6.6 2.6 1.1 1.1 1.0 1.7

influxdb 1.2 2.9 2.9 1.0 1.2 2.6

memcached 1.0 1.0 1.0 1.0 1.0 1.4

go-fasthttp 1.5 1.1 1.2 1.5 1.0 1.1

kmeans 1.3 1.4 1.0 1.3 1.6 1.2

LR2 2.3 2.6 2.2 2.4 1.0 1.9

word2vec 1.2 5.0 5.1 1.0 4.1 2.1

fpgrowth 6.0 2.8 2.7 1.0 2.0 1.1

ALS 1.7 1.2 1.1 1.3 2.5 1.0

Table 6: Comparison across ML models. The top table reports the

error rates for each type of prediction scenario and ML model, aver-

aged across all applications, and normalized by the lowest average

error for that scenario. The bottom table similarly reports normalized

error rates for each application, averaged across different prediction

scenarios.

784    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association


