
This paper is included in the 
Proceedings of the 18th USENIX Symposium on 

Networked Systems Design and Implementation.
April 12–14, 2021

978-1-939133-21-2

Open access to the Proceedings of the 
18th USENIX Symposium on Networked 

Systems Design and Implementation 
is sponsored by

Orion: Google’s Software-Defined Networking 
Control Plane

Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian, Waqar Mohsin, 
Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano, 
Richard Alimi, Shawn Shuoshuo Chen, Mike Conley, Subhasree Mandal,  
Karthik Nagaraj, Kondapa Naidu Bollineni, Amr Sabaa, Shidong Zhang,  

Min Zhu, and Amin Vahdat, Google
https://www.usenix.org/conference/nsdi21/presentation/ferguson



Orion: Google’s Software-Defined Networking Control Plane

Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian, Waqar Mohsin
Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano, Richard Alimi

Shawn Shuoshuo Chen, Mike Conley, Subhasree Mandal, Karthik Nagaraj, Kondapa Naidu Bollineni
Amr Sabaa, Shidong Zhang, Min Zhu, Amin Vahdat

Google
orion-nsdi2021@google.com

Abstract
We present Orion, a distributed Software-Defined Net-

working platform deployed globally in Google’s datacenter
(Jupiter) and Wide Area (B4) networks. Orion was designed
around a modular, micro-service architecture with a central
publish-subscribe database to enable a distributed, yet tightly-
coupled, software-defined network control system. Orion
enables intent-based management and control, is highly scal-
able and amenable to global control hierarchies.

Over the years, Orion has matured with continuously
improving performance in convergence (up to 40x faster),
throughput (handling up to 1.16 million network updates per
second), system scalability (supporting 16x larger networks),
and data plane availability (50x, 100x reduction in unavail-
able time in Jupiter and B4, respectively) while maintaining
high development velocity with bi-weekly release cadence.
Today, Orion enables Google’s Software-Defined Networks,
defending against failure modes that are both generic to large
scale production networks as well as unique to SDN systems.

1 Introduction
The last decade has seen tremendous activity in Software-
Defined Networking (SDN) motivated by delivering new net-
work capabilities, fundamentally improving network reliabil-
ity, and increasing the velocity of network evolution. SDN
starts with a simple, but far-reaching shift in approach: mov-
ing network control, such as routing and configuration man-
agement, from individual hardware forwarding elements to a
central pool of servers that collectively manage both real-time
and static network state. This move to a logically central-
ized view of network state enables a profound transition from
defining pairwise protocols with emergent behavior to dis-
tributed algorithms with guarantees on liveness, safety, scale,
and performance.

For example, SDN’s global view of network state presents
an opportunity for more robust network verification and intent-
based networking [16, 17]. At a high level, SDN affords the
opportunity to transition the network from one consistent
state to another, where consistency can be defined as policy

compliant and blackhole-free. This same global view and
real-time control enables traffic engineering responsive to
topology, maintenance events, failures, and even fine-grained
communication patterns such that the network as a whole
can operate more efficiently and reliably [2, 12, 13]. There is
ongoing work to tie end host and fabric networking together to
ensure individual flows, RPCs, and Coflows meet higher-level
application requirements [1,11,22], a capability that would be
hard or impossible with traditional protocols. Perhaps one of
the largest long-term benefits of SDN is support for software
engineering and qualification practices to enable safe weekly
software upgrades and incremental feature delivery, which
can hasten network evolution by an order of magnitude.

While the promise of SDN is immense, realizing this
promise requires a production-grade control plane that meets
or exceeds existing network performance and availability lev-
els. Further, the SDN must seamlessly inter-operate with peer
legacy networks as no network, SDN or otherwise, operates
solely in its own tech island.

In this paper, we describe the design and implementation
of Orion, Google’s SDN control plane. Orion is our second
generation control plane and is responsible for the configu-
ration, management, and real-time control of all of our data
center (Jupiter [28]), campus, and private Wide Area (B4 [15])
networks. Orion has been in production for more than four
years. The SDN transition from protocols to algorithms, to-
gether with a micro-services based controller architecture,
enables bi-weekly software releases that together have not
only delivered over 30 new significant capabilities, but also
have improved scale by a factor of 16, availability by a factor
of 50x in Jupiter and 100x in B4, and network convergence
time by a factor of 40. Such rapid evolution would have been
hard or impossible without SDN-based software velocity

Orion’s design centers around a constellation of indepen-
dent micro-services, from routing to configuration manage-
ment to network management, that coordinate all state through
an extensible Network Information Base (NIB). The NIB
sequences and replicates updates through a key-value abstrac-
tion. We describe the performance, semantic, and availability

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    83



requirements of the NIB and the development model that al-
lows dozens of engineers to independently and simultaneously
develop, test, and deploy their services through well-defined,
simple, but long-lived contractual APIs.

While Orion has been a success at Google, neither our
design nor the SDN approach are panaceas. We describe four
key challenges we faced in Orion—some fundamental to SDN
and some resulting from our own design choices—along with
our approach to addressing them:

#1: Logically centralized control require fundamentally
high performance for updates, in-memory representation
of state, and appropriate consistency levels among loosely-
coordinating micro-service SDN applications.

#2: The decoupling of control from hardware elements
breaks fate sharing in ways that make corner-case failure han-
dling more complex. In particular, control software failure
does not always mean the corresponding hardware element
has failed. Consider the case where the control software runs
in a separate physical failure domain connected through an
independent out-of-band control network. Either the physical
infrastructure (control servers, their power or cooling) or con-
trol network failure can now result in at least the perception
of a sudden, massively correlated failure in the data plane.

#3: Managing the tension between centralization and fault
isolation must be balanced carefully. At an extreme, one could
imagine a single logical controller for all of Google’s network
infrastructure. At another extreme, one could consider a single
controller for every physical switch in our network. While
both extremes can be discarded relatively easily, finding the
appropriate middle ground is important. On the one hand,
centralization is simpler to reason about, implement, and
optimize. On the other, a centralized design is harder to scale
up vertically and exposes a larger failure domain.

#4: In a global network setting, we must integrate existing
routing protocols, primarily BGP, into Orion to allow inter-
operation with non-SDN peer networks. The semantics of
these protocols, including streaming updates and fate sharing
between control and data plane, are a poor match to our choice
of SDN semantics requiring adaptation at a number of levels.

This paper presents an introductory survey of Orion. We
outline how we manage these concerns in its architecture,
implementation, and evolution. We also discuss our produc-
tion experiences with running Orion, pointing to a number of
still open questions in SDN’s evolution. We will share more
details and experiences in subsequent work.

2 Related Work
Orion was designed with lessons learned from Onix [18].
Unlike Onix’s monolithic design with cooperative multi-
threading, Orion introduced a distributed design with each
application in a separate process. While Onix introduced
a NIB accessible only to applications in the same process,
Orion’s is accessible by applications within and across do-
mains, providing a mechanism for hierarchy, which few exist-

ing controllers incorporate (Kandoo [35] being an exception).
Hierarchy enabled fabric-level drain sequencing 1 and optimal
WCMP-based (Weighted Cost Multi-Pathing) routing [36].

We distribute Orion’s logic over multiple processes for
scalability and fault-tolerance, a feature shared with other
production-oriented controllers such as ONOS [4] and Open-
Daylight [24], and originally proposed by Hyperflow [30].
Unlike our previous design, Orion uses a single configuration
for all processes, applied atomically via the NIB, precluding
errors due to inconsistent intended state.

Orion uses database-like tables to centrally organize state
produced and consumed by SDN programs, a feature shared
with a few other OpenFlow controllers such as ONOS [4],
Flowlog [27], and Ravel [32]. The combination of all of
these techniques – hierarchy, distribution, and database-like
abstractions – allowed Orion to meet Google’s availability
and performance requirements in the datacenter and WAN.

While Orion is an evolution in the development of Open-
Flow controllers, its modular decomposition of network func-
tions (e.g., routing, flow programming, switch-level protocols,
etc.) is a design goal shared with pre-OpenFlow systems such
as 4D/Tesseract [33] and RCP [6]. Single-switch operating
systems that similarly employ microservices and a centralized
database architecture include Arista EOS [3] and SONiC [25].

3 Design Principles
We next describe principles governing Orion’s design. We
established many of these during the early stages of building
Orion, while we derived others from our experience operating
Orion-based networks. We group the principles into three
categories: environmental – those that apply to production
networks, architectural – those related to SDN, and imple-
mentation – those that guide our software design.

3.1 Principles of production networks
Intent-based network management and control. Intent-

based networks specify management or design changes by
describing the new intended end-state of the network (the
“what”) rather than prescribing the sequence of modifications
to bring the network to that end-state (the “how”). Intent-
based networking tends to be robust at scale, since high-level
intent is usually stable over time, even when the low-level
state of network elements fluctuates rapidly.

For example, consider a situation where we wish to tem-
porarily “drain” (divert traffic away from) a cluster while we
simultaneously add new network links to augment the ingress
and egress capacity of the cluster. As those new links turn
up, the stable drain intent will also apply to them, causing the
underlying networking control system to avoid using them.

In Orion, we use an intent-based approach for updating the
network design, invoking operational changes, and adding
new features to the SDN controller. For example, we capture

1Fabric-level drain sequencing refers to redirecting traffic in a loss-free
manner, throughout the fabric, away from a target device being drained.

84    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



intended changes to the network’s topology in a model [26],
which in turn triggers our deployment systems and opera-
tional staff to make the necessary physical and configuration
changes to the network. As we will describe later, Orion
propagates this top-level intent into network control applica-
tions, such as routing, through configuration and dynamic
state changes. Applications react to top-level intent changes
by mutating their internal state and by generating intermedi-
ate intent, which is in turn consumed by other applications.
The overall system state evolves through a hierarchical prop-
agation of intent ultimately resulting in changes to the pro-
grammed flow state in network switches.

Align control plane and physical failure domains. One
potential challenge with decoupling control software from
physical elements is failure domains that are misaligned or too
large. For misalignment, consider the case in which a single
SDN controller manages network hardware across portions of
two buildings. A failure in that controller can cause correlated
failures across two buildings, making it harder to meet higher-
level service SLOs. Similarly, the failure of a single SDN
controller responsible for all network elements in a campus
would constitute too large a vulnerability even if it improved
efficiency due to a centralized view.

We address these challenges by carefully aligning network
control domains with physical, storage, and compute domains.
As one simple example, a single failure in network control
should not impact more than one physical, storage, or com-
pute domain. To limit the “blast radius” of individual con-
troller failures, we leverage hierarchical, partitioned control
with soft state progressing up the hierarchy (§5.1). We explic-
itly design and test the network to continue correct, though
likely degraded, operation in the face of controller failures.

3.2 Principles related to an SDN controller
SDN enables novel approaches to handling failures, but

it also introduces new challenges requiring careful design.
The SDN controller is remote from the network switches,
resulting in the lack of fate sharing but also the possibility of
not being able to communicate with the switches.

Lack of fate sharing can often be used to our advantage.
For example, the network continues forwarding based on
its existing state when the controller fails. Conversely, the
controller can repair paths accurately and in a timely manner
when individual switches fail, by rerouting around them.

React optimistically to correlated unreachability. The
loss of communication between controller and switches poses
a difficult design challenge as the controller must deal with
incomplete information. We handle incomplete information
by first deciding whether we are dealing with a minor failure
or a major one, and then reacting pessimistically to the former
and optimistically to the latter.

We start by associating a ternary health state with network
elements: (i) healthy with a recent control communication (a
switch reports healthy link and programming state with no

Figure 1: Network behavior in three cases: Normal (left): A net-
work with healthy switches. Flows from top to bottom switches use
all middle switches. Fail Closed (mid): With few switches in un-
known state (grey), the controller conservatively routes around them.
Fail Static (right): With enough switches in unknown state, the
controller no longer routes around newly perceived failed switches.

packet loss), (ii) unhealthy, when a switch declares itself to
be unhealthy, when neighbouring switches report unhealthy
conditions or indirect signals implicate the switch, and (iii)
unknown, with no recent control communication with a switch
and no indirect signals to implicate the switch.

A switch in the unknown state could be malfunctioning, or
it could simply be unable to communicate with a controller
(a fairly common occurrence at scale). In comparison, the
unhealthy state is fairly rare, as there are few opportunities to
diagnose unequivocal failure conditions in real time.2

The controller aggregates individual switch states into a
network-wide health state, which it uses to decide between
a pessimistic or an optimistic reaction. We call these Fail
Closed and Fail Static, respectively. In Fail Closed, the con-
troller re-programs flows to route around a (perceived) failed
switch. In Fail Static, the controller decides not to react to a
switch in an unknown, potentially failed, state, keeping traffic
flowing toward it until the switch state changes or the network
operator intervenes. Figure 1 illustrates an example of normal
operation, Fail Closed reaction, and Fail Static condition.

In Fail Static, the controller holds back from reacting to
avoid worsening the overall state of the network, both in
terms of connectivity and congestion. The trade-off between
Fail Closed and Fail Static is governed by the cost/benefit
implication of reacting to the unknown state: if the element
in the unknown state can be avoided without a significant
performance cost, the controller conservatively reacts to this
state and triggers coordinated actions to steer traffic away
from the possible failures. If the reaction would result in a
significant loss in capacity or loss in end-to-end connectivity,
the controller instead enters Fail Static mode for that switch.
In practice we use a simple “capacity degradation threshold”
to move from Fail Closed to Fail Static. The actual threshold
value is directly related to: (1) the operating parameters of
the network, especially the capacity headroom we typically
reserve, for example, to support planned maintenance; (2) the
level of redundancy we design in the topology and control

2It is not common for a software component to be able to self-diagnose a
failure, without being able to avoid it in the first place, or at least repair it.
Slightly more common is the ability to observe a failure from an external
vantage point, e.g. a neighboring switch detecting a link “going down.”

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    85



domains. We aim to preserve a certain amount of redundancy
even in the face of capacity degradation.

In our experience, occurrences of Fail Static are fairly com-
mon and almost always appropriate, in the sense that they are
not associated with loss of data plane performance. Often Fail
Static is triggered by failures in the control plane connectivity
between the SDN controller and the network elements, or by
software failures in the controller. Neither of these directly
affect the data plane health.

We view the ability to Fail Static as an advantage of SDN
systems over traditional distributed-protocol systems. Dis-
tributed systems are also subject to some of the failures that
could benefit from a Fail Static response. However, they are
not easily amenable to realize a Fail Static behavior because
they only have a local view. It is far easier for a centralized
controller to assess if it should enter Fail Static when it can
observe correlated network failures across its entire domain.

Exploit both out-of-band and in-band control plane
connectivity. In a software-defined network, a key consid-
eration is connectivity between the “off box” controller and
the data plane switches. We must solve the bootstrap prob-
lem of requiring a functioning network to establish baseline
control. Options include using: i) the very network being con-
trolled (“in-band”) or ii) a (physically or logically) separate
“out-of-band” network. While a seemingly simple question,
considerations regarding pure off-box SDN control, circu-
lar dependencies between the control and dataplane network,
ease of debuggability, availability, manageability and cost of
ownership make this topic surprisingly complex.

The simplest approach is to have a physically separate out-
of-band control/management plane network (CPN) for com-
munication between controller and switches orthogonal to
the dataplane network. This approach cleanly avoids circular
dependencies, keeping the control model simple and enabling
easy recovery from bugs and misconfiguration. Ideally, we
would like the out-of-band control network to be highly avail-
able, easy to manage and maintain, and cost effective. In
the end, a separate CPN means installing and operating two
distinct networks with different operational models and inde-
pendent failure characteristics. While failure independence
is often a desirable property, subtle or rare failure scenarios
mean the entire data plane could go down if either the data-
plane or control plane fails. We describe our choice of hybrid
CPN for Orion in §5.

3.3 Software design principles
Enabling a large-scale software development environment

was a key motivation for building our own SDN controller.
Critical to the success of SDN is the ability to safely deploy
new functionality across the network incrementally with fre-
quent software releases. This, in turn, means that a substantial
team of engineers must be able to develop multiple indepen-
dent features concurrently. The need to scale engineering
processes led to a modular system with a large number of

decoupled components. At the same time, these components
had to interact with one another to realize a tightly-coupled
control system reflecting the structure and dynamics of net-
work control. We achieved this goal through:
• a microservice architecture with separate processes rather

than a monolithic block which we adopted in our first
generation SDN controller [18], for software evolvability
and fault isolation.

• a central pub-sub system (NIB) for all the communication
between microservices, which took care of the tightly-
coupled interaction across processes.
Failure domain containment (§3.1) imposes an upper limit

to the size of control domains. Nevertheless, we were con-
cerned with the performance, scalability, and fault model of a
single NIB to coordinate all communication and state within
a control domain. We satisfied our performance concerns
through benchmarking efforts, and fault tolerance concerns
by limiting control domain scope and the ability to fail static,
including between control domains.

Based on years of experience, the NIB has been one of
our most successful design elements. It manages all inter-
component communications, allows us to create a “single
arrow of time,” establishing an order among the otherwise
concurrent events across processes. This brought significantly
useful side effects including much improved debuggability of
the overall system. It also allows us to store event sequences
(NIB traces) in external systems and use them for offline
troubleshooting and independent validation of subsystems,
which we use in component-level regression testing.

Next, we discuss the principles of intent based control,
introduced in 3.1, reconciliation of state as well as the impli-
cations of various failure modes in an SDN-based system:

Intent flows from top to bottom. The top level intent for
the system as a whole is the operator intent and the static con-
figuration. As intent propagates through the system via NIB
messages, it triggers local reactions in subsystems that gen-
erate intermediate intent consumable by other sub-systems.
Higher-level intent is authoritative and any intermediate in-
tent (also known as derived state) is rebuilt from it. The
programmed switch state is the ground truth corresponding
to the intent programmed into dataplane devices.

The authoritative intent must always be reflected in the
ground truth. The controller ensures that any mismatch is
corrected by migrating the ground truth toward the intended
state in a way that is minimally disruptive to existing data
plane traffic. We refer to this process as “state reconciliation”.

Reconciliation is best performed in the controller
which has a global view since minimal disruption often re-
quires coordination across switches such that changes are
sequenced in a graceful and loop-free manner. Reconciliation
is a powerful concept that allows reasoning about complex
failure modes such as Orion process restarts as well as lack
of fate sharing between the data and control planes.

Availability of high level intent is crucial to keep the top-

86    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 2: Overview of Orion SDN architecture and core apps.

down intent-based system simple. To achieve this goal we
minimize the time when the intent is temporarily unavailable
(e.g., because of process restarts or communication failure
between components).

4 Architecture
Figure 2 depicts the high-level architecture of Orion, and how
it maps to the textbook ONF view [7]. For scalability and
fault isolation, we partition the network into domains, where
each domain is an instance of an Orion SDN controller.

The data plane consists of SDN switches at the bottom.
Orion uses OpenFlow [23] as the Control to Data Plane In-
terface (CDPI). Each switch runs an OpenFlow Agent (OFA)
for programmatic control of forwarding tables, statistics gath-
ering, and event notification. The control plane consists of
Orion Core in the center and SDN applications at the top.
The control plane is physically separate from the data plane
and logically centralized, providing a global view of the do-
main. Though logically centralized, the Orion Core controls
the network through distributed controller processes. The
NIB provides a uniform SDN NorthBound Interface for these
applications to share state and communicate requirements.
The Orion Core is responsible for (i) translating these re-
quirements into OpenFlow primitives to reconcile switches’
programmed state with intended state and (ii) providing a
view of the runtime state of the network (forwarding rules,
statistics, data plane events) to applications.

4.1 Orion Core
The NIB is the intent store for all Orion applications. It

is implemented as a centralized, in-memory datastore with
replicas that reconstruct the state from ground-truth on failure.
The NIB is coupled with a publish-subscribe mechanism to
share state among Orion applications. The same infrastructure
is used externally to collect all changes in the NIB to facilitate
debugging. The NIB must meet the following requirements:
• Low External Dependency. As Orion programs the net-

work supporting all higher-level compute and storage ser-
vices, it cannot itself depend on higher-level services.

• Sequential Consistency of Event Ordering. To simplify
coordination among apps, all apps must see events in the
same order (arrow of time [20]).

Of note, durability [14] was not a requirement for the NIB be-
cause its state could be reconstructed from network switches
and other sources in the event of a catastrophic failure.

NIB Entities. The NIB consists of a set of NIB entity tables
where each entity describes some information of interest to
other applications or observers both local or external to the
domain. Some of the entity types include:

• Configured network topology. These capture the config-
ured identities and graph relationship between various net-
work topological elements. Examples include Port, Link,
Interface, and Node tables.

• Network run-time state. This could be topological state,
forwarding state (e.g. ProgrammedFlow table), pro-
tocol state (e.g. LLDPPeerPort table), statistics (e.g.
PortStatistics table).

• Orion App Configuration. Each app’s configuration is
captured as one or more NIB tables, e.g. LLDPConfig.

Protocol Buffer Schema. We represent the schema for
each NIB entity as a protocol buffer message [8]. Each row
in that NIB entity table is an instantiation of this schema. The
first field of each entity schema is required to be a NIBHeader
message which serves as the key for that entity. The NIB does
not enforce referential integrity for foreign keys; however,
inconsistencies fail an internal health-check.

An example entity represented in the NIB is a Link entity.
A link is modelled as foreign key references to Port and Node
entities respectively. This expresses the connection between
two ports of two switches. Additionally, a status (up, down,
or unknown), is modelled as part of the Link entity. The full
protocol buffer is shown in the appendix.

Protocol buffers allow us to reuse well-understood patterns
for schema migrations. For example, adding a new field to
a table has built-in support for backward and forward com-
patibility during an upgrade despite some applications still
running with the previous schema.

NIB API. The NIB provides a simple RPC API (Read,
Write, Subscribe) to operate on NIB tables. The Write opera-
tion is atomic and supports batching. The Subscribe operation
supports basic filtering to express entities of interest. The NIB
notification model provides sequential consistency of event
ordering. It also supports coalescing multiple updates into a
single notification for scale and efficiency reasons.

The Config Manager provides an external management
API to configure all components in an Orion domain. The
domain configuration is the set of app configurations running
in that domain. For uniformity and ease of sharing, an app
config consists of one or more NIB tables. To ensure a new
configuration is valid, it is first validated by the running in-
stance. The semantics of pushing config need to be atomic, i.e.
if one or more parts of the overall config fail validation, the
overall config push must fail without any side effects. Since
Orion apps that validate various parts of the config run de-
coupled, we employ a two-phase commit protocol to update

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    87

https://commons.wikimedia.org/wiki/File:SDN-architecture-overview-transparent.png


the NIB: The config is first staged in shadow NIB tables, and
each app verifies its config. Upon success, we commit the
shadow tables to live tables atomically.

The Topology Manager sets and reports the runtime state
of network dataplane topology (node, port, link, interface,
etc.). It learns the intended topology from its config in the
NIB. By subscribing to events from the switches, it writes the
current topology to tables in the NIB. The Topology Manager
also periodically queries port statistics from the switches.

The Flow Manager performs flow state reconciliation, en-
suring forwarding state in switches matches intended state
computed by Orion apps and reflected in the NIB. Recon-
ciliation occurs when intent changes or every 30 seconds by
comparing switch state. The latter primarily provides Orion
with switch statistics and corrects out-of-sync state in the rare
case that reconciliation on intent change failed.

The OFE (Openflow FrontEnd) multiplexes connections
to each switch in an Orion domain. The OpenFlow protocol
provides programmatic APIs for (i) capabilities advertise-
ment, (ii) forwarding operations, (iii) packet IO, (iv) teleme-
try/statistics, and (v) dataplane event notifications (e.g. link
down) [23]. These are exposed to the Topology and Flow
Manager components via OFE’s northbound RPC interface.

Packet-I/O. Orion supports apps that send or receive con-
trol messages to/from the data plane through OpenFlow’s
Packet-I/O API: a Packet-Out message sends a packet
through a given port on the switch, while a Packet-In no-
tification delivers a data plane packet punted by the switch to
the control plane. The notification includes metadata such as
the packet’s ingress port. Orion apps can program punt flows
and specify filters to receive packets of interest.

Orion Core apps are network-type agnostic by design. No
“policy” is baked into them; it belongs to higher-level SDN
applications instead. Core apps program, and faithfully reflect,
the state of the data plane in the NIB in a generic manner.

4.2 Routing Engine
Routing Engine (RE) is Orion’s intra-domain routing con-

troller app, providing common routing mechanisms, such as
L3 multi-path forwarding, load balancing, encapsulation, etc.

RE provides abstracted topology and reachability infor-
mation to client routing applications (e.g. an inter-domain
routing app or a BGP speaker app). It models a configured
collection of switches within an Orion domain as an abstract
routing node called a supernode [13] or middleblock [28].
Client routing applications provide route advertisements at
supernode granularity, specifying nexthops for each route in
terms of aggregate or singleton external ports.

RE disaggregates the route advertisements from its clients
into individual node-level reachability over respective exter-
nal ports and computes SPF (Shortest Path First) paths for
each prefix. RE avoids paths that traverse drained, down or
potentially miscabled links.3 It also reacts to local failure by

3A link is considered miscabled when a port ID learned by a neighbor

computing the next available shortest path when the current
set of nexthops for a prefix becomes unreachable. For im-
proved capacity, RE performs load balancing within a domain
by spreading traffic across multiple viable paths, and through
non-shortest-path forwarding, as requested by client apps. RE
also manages the associated switch hardware resources (e.g.
Layer-3 tables) among its client routing apps.

A key highlight of Orion Routing Engine is the ability
to do loss-free sequencing from the currently programmed
pathing solution to a new pathing solution. This may happen
in reaction to changes in network states (e.g. a link being
avoided). In a legacy network, the eventually consistent nature
of updates from distributed routing protocols (e.g. BGP) can
result in transient loops and blackholes in the data plane.
In contrast, RE exploits its global view to sequence flow
programming: before programming a flow that steers traffic to
a set of switches, RE ensures the corresponding prefixes have
been programmed on those nexthop switches. Analogous
checks are done before removing a flow.

Figure 3 walks through an end-to-end route programming
example. As evident from the sequence of operations, the NIB
semantics lend themselves to an asynchronous intent-based
programming model (as opposed to a strict request-response
interaction). A common design pattern is to use a pair of
NIB tables, where one expresses the intent from the producer,
while the other captures the result from the consumer. Both
intent and result tables are versioned. An app can change
the intent many times without waiting for the result, and the
result table is updated asynchronously.

4.3 Orion Application Framework
The Orion Application Framework is the foundation for

every Orion application.The framework ensures developers
use the same patterns to write applications so knowledge of
one SDN application’s control-flow translates to all applica-
tions. Furthermore, the framework provides basic functional-
ity (e.g. leader-election, NIB-connectivity, health-monitoring)
required by all applications in all deployments.
High Availability. Availability is a fundamental feature for
networks and thereby SDN controllers. Orion apps run as
separate binaries distributed across network control server ma-
chines. This ensures applications are isolated from bugs (e.g.,
memory corruption that leads to a crash) in other applications.

Beyond isolation, replicating each application on three
different physical machines ensures fault tolerance for both
planned (e.g. maintenance) as well as unplanned (e.g. power
failures) outages. The application framework facilitates repli-
cation by providing an abstraction on top of leader election
as well as life-cycle callbacks into the application.

An application goes through a life-cycle of being activated,
receiving intent/state updates from the NIB, and then being
deactivated. Identifying/arbitrating leadership and its transi-
tion (referred to as failover) among replicas is abstracted and

node via LLDP and reported to Orion does not match the configured port ID.

88    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 3: Intent-based route programming on abstracted domain topology: (a) Routing Engine learns external prefix 1.2.3.0/24 over trk-1, and
programs nodes to establish reachability. (b) Example of end-to-end route programming. The Routing App provides a high-level RouteAdvert
on supernode-1 via the NIB. Routing Engine translates the RouteAdvert to a low-level Flow update on node i and sends to Flow Manager.
Acknowledgements follow the reverse direction to the Routing App. Similar route programming applies to all domain nodes.

thereby hidden from the application author, reducing surface
area for bugs as well as complexity.

Capability Readiness Protocol. One of the challenges we
faced previously was an orderly resumption of operation after
controller failover. In particular, when a controller’s NIB fails,
the state of the new NIB needs to be made consistent with the
runtime state of the network, as well as the functional state
of all apps and remote controllers. In an extreme case, an
Orion requirement is to be able to, without traffic loss, recover
from a complete loss/restart of the control plane. To support
this, the Orion architecture provides a Capability Readiness
Protocol. With this protocol, applications have a uniform way
of specifying which data they require to resume operation,
and which data they provide for other applications.

A capability is an abstraction of NIB state, each can be
provided and consumed by multiple apps. Capability-based
coordination keeps the Orion apps from becoming “coupled”,
in which a specific implementation of one app relies on imple-
mentation details or deployment configuration of another app.
Such dependencies are a problem for iteration and release ve-
locity. For example, multiple apps can provide the capability
of “producing flows to program”, and the Flow Manager can
be oblivious to which ones are present in the domain.

Figure 4: Capability Readiness graph for flow programming.

The Capability Readiness protocol requires, after a NIB
failover, that all apps report readiness of their flows before

Flow Manager begins reconciling NIB state to the physical
switches. This prevents unintentional erasure of flow state
from switches, which would lead to traffic loss. As Figure 4
shows, the required and provided data that each application
specifies creates a directed acyclic graph of capabilities de-
pended upon and provided, and thus the complete NIB state
is reconciled consistently after any restart. Apps can have
mutual dependency on different capabilities as long as they
do not form a loop. A healthy Orion domain completes the
full capability graph quickly on reconciliation, a condition we
check in testing and alert on in production. Since this graph
is static, such testing prevents introducing dependency loops.

In the event of a total loss of state, Config Manager re-
trieves the static topology from Chubby [5], an external,
highly-available service for locking and small file storage.
It then provides a CONFIG_SYNC capability to unblock Topol-
ogy Manager and Flow Manager. The two connect to switches
specified in the config and read switch states and programmed
flows. Then, ARP and Routing Engine can be unblocked to
generate intended flows that need to be programmed; they
also provide their own FLOWS_DESIRED capability to Flow
Manager, which proceeds to program the switches.

Apps that retrieve their state from a remote service must
explicitly manage and support the case in which the service
is unavailable or disconnected to prevent prolonged domain
reconciliation delays. Cached data is typically used until the
authoritative source of the inputs can be reached.

5 Orion-based Systems
Among the many design choices when implementing Orion
to control a specific network, three prominent ones include
the mapping of network elements to controllers, the method
of controller to switch communication, and connectivity to ex-
ternal networks running standard routing protocols. We first
review these common choices across two Google network ar-
chitectures, Jupiter and B4, and then describe specific details
for each architecture. Less relevant in a networking context,

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    89



details of the NIB implementation are in the appendix.

Control domains. The choice of elements to control in an
Orion domain involves multiple tradeoffs. Larger domains
yield optimal traffic distributions and loss-free route sequenc-
ing for more intent changes, at the price of increased blast
radius from any failure. In Jupiter, we use a hierarchy of par-
titioned Orion domains; in B4, a flat partitioning of Orion do-
mains communicating with non-Orion global services. Each
came with challenges in production, which we review in §7.

Control channel. As discussed in §3.1, we faced tradeoffs
when designing the Control Plane Network (CPN) connecting
Orion controllers to the data plane. The cost and complexity
of a second network led us to a hybrid design where only the
Top-of-Rack (ToR) switches were controlled in-band.

• Separation of control and data plane: When we embarked
on building B4 and Jupiter, we embraced the SDN philoso-
phy in its purest form: software-defined control of the net-
work based on a logically centralized view of the network
state outside the forwarding devices. To this end, we did
not run any routing protocols on the switches. For the con-
trol plane, we ran a separate physical network connected to
the switches’ management ports. We ran conventional on-
box distributed routing protocols on the CPN. Compared
to the data plane network, the CPN has smaller bandwidth
requirements, though it required N+1 redundancy.

• CPN scale and cost: Typical Clos-based data center net-
works are non-oversubscribed in the aggregation layers
[28] with oversubscription of ToR uplinks based on the
bandwidth requirements of compute and storage in the
rack. A Clos network built with identical switches in each
of its N stages will have the same number of switches
(say, K) in all but two stages. The topmost stage will have
K/2 switches since all ports are connected to the previ-
ous stage. The ToR stage will have SK switches, where
S is the average oversubscription of uplinks compared to
downlinks. Thus, the number of ToR switches as a frac-
tion of the total is 2S/(2S+2N −3). In a Clos network
with N = 5 stages and an average ToR oversubscription, S,
ranging from 2-4, ToR switches account for 36% to 53%
of the total. Thus, not requiring CPN connectivity to them
substantially reduces CPN scale and cost.

• CPN cable management: Managing ToRs inband removes
the burden of deploying individual CPN cables to each
rack spot in the datacenter.

• Software complexity of inband ToRs: Since ToRs are the
leaf switches in a Clos topology, their inband management
does not require on-box routing protocols. We designed
simple in-band management logic in the switch stack to set
the return path to the controller via the ToR uplink from
which the ToR’s CPU last heard from the controller.

• Availability and debuggability considerations: Over the
years, we have hardened both the CPN and the inband-
controlled ToR to improve availability. “Fail static” has

been a key design to reduce vulnerability to CPN failures.
Furthermore, we introduced in-band backup control of
devices connected to the CPN for additional robustness.

External connectivity. We use BGP at the border of data-
center networks to exchange routes with Google’s wide-area
networks: B2 (which also connects to the Internet) and B4.
These routes include machine addresses and also unicast and
anycast IPs for Google services. BGP attributes such as com-
munities, metrics, and AS path propagate state throughout
Google’s networks. In addition to reachability, this can in-
clude drain state, IPv6-readiness, and bandwidth for WCMP.

The use of BGP is a necessity for eventual route propaga-
tion to the Internet, but a design choice internally. The choice
was made to simplify inter-connection with traditional, non-
SDN routers as well as previous SDN software [18]. BGP also
brings operator familiarity when defining polices to specify
path preferences during topological changes.

An Orion app, Raven [34], integrates BGP and IS-IS into
Orion. Raven exchanges messages with peers via Orion’s
Packet-I/O. Raven combines these updates with local routes
from the NIB into a standard BGP RIB (Route Information
Base). Routes selected by traditional Best-Path Selection are
then sent, depending on policy, to peer speakers as BGP mes-
sages, as well as the local NIB in the form of RouteAdvert
updates. To reduce complexity, Raven’s associated BGP
“router” is the abstract supernode provided by RE (§4.2).

Unfortunately, BGP is somewhat mismatched with our
design principles: it uses streaming rather than full intent
updates, its local view precludes a threshold-based fail static
policy and global rebalancing during partial failures, and it
ties control-plane liveness to data-plane liveness. In our pro-
duction experience, we have had both kinds of uncorrelated
failures, which, as in non-SDN networks, become correlated
and cause a significant outage only due to BGP. By contrast,
Orion’s fail static policies explicitly consider control-plane
and data-plane failure as independent. Adding fail static be-
havior to these adjacencies is an area of ongoing development.

5.1 Jupiter
We initially developed Jupiter [28], Google’s datacenter

network, with our first generation SDN-based control system,
Onix [18]. The Orion-based solution presented here is a
second iteration based on lessons from the Onix deployment.

The Jupiter datacenter network consists of three kinds of
building blocks, each internally composed of switches form-
ing a Clos-network topology: (i) aggregation blocks [28]
connected to a set of hosts, (ii) FBRs (Fabric Border Routers,
also called Cluster Border Routers in [28]) connected to the
WAN/Campus network, and (iii) spine blocks that intercon-
nect aggregation blocks and FBRs.

We organize Orion domains for Jupiter hierarchically as
shown in Figure 5. First, we map physical Orion domains to
the Jupiter building blocks. Each physical domain programs
switches within that domain. Aggregation block domains es-

90    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 5: Jupiter topology overlaid with Orion domains partitioned
by color. Colored links and spine domains are controlled by the
respectively colored IBR-C. Uncolored aggregation block/FBR
domains are controlled by all IBR-Cs. Only control sessions and
data links of the red color are displayed.

tablish connectivity among hosts attached to it. FBR domains
use Raven to maintain BGP sessions with fabric-external
peers. Multiple spine blocks can map to a single Orion do-
main, but each domain must contain fewer than 25% of all
spine blocks to limit the blast radius of domain failure.

Second-level Orion domains host a partitioned and central-
ized routing controller IBR-C (Inter-Block Routing Central).
Operating over Routing Engine’s abstract topology, IBR-C
aggregates network states across physical domains, computes
fabric-wide routes, and programs physical domains to estab-
lish fabric-wide reachability. While these virtual domains
start from the same foundations, they do not contain some
Orion core apps for controlling devices directly.

To avoid a single point of failure, we partitioned (or
sharded) IBR-C into four planes called “colors,” each control-
ling 25% of the spine blocks and hence a quarter of paths be-
tween each pair of spine blocks and aggregation blocks/FBRs.
Therefore, the blast radius of a single controller does not
exceed 25% of the fabric capacity. Sharding centralized
controllers avoids failures where a single configuration or
software upgrade affects the whole fabric. Additional protec-
tion was added to stage configuration changes and upgrades
to avoid simultaneous updates across colors. While sharding
provided higher resiliency to failures, the trade-off was an
increased complexity in merging routing updates across col-
ors in aggregation block and FBR domains, as well as a loss
in routing optimality in case of asymmetric failures across
colors. We have considered even deeper sharding by splitting
aggregation blocks into separate domains, each controlling a
portion of the switches. This option was rejected due to even
higher complexity while marginally improving availability.

Figure 6 illustrates the fabric-level control flow of one
IBR-C color. IBR-C subscribes to NIBs in all aggregation
block/FBR domains and spine domains of the same color
for state updates. After aggregation at Change Manager, the
Solver computes inter-block routes and Operation Sequencer
writes the next intended routing state into NIB tables of corre-
sponding domains. IBR-D (Inter-Block Routing Domain), a

Figure 6: Jupiter fabric-level IBR-C control flow of one color.

domain-level component, merges routes from different IBR-C
colors into RouteAdvert updates. Finally, Routing Engine
and Orion Core program flows as shown in Figure 3.

Convergence. We care about two types of convergence in
Jupiter: data plane convergence and control plane conver-
gence. Data plane convergence ensures there are valid paths
among all source/destination pairs (no blackholing) while
control plane convergence restores (near) optimal paths and
weights in the fabric. Workflows that require changes to the
network use control plane convergence as a signal they can
proceed safely. Convergence time is the duration between a
triggering event and all work complete in data/control plane.

Jupiter’s reaction to link/node failures is threefold. First,
upon detection of link-layer disruption, switches adjacent
to the failed entity perform local port pruning on the output
group. However, this is not possible if no alternative port
exists or peer failure is undetectable (e.g., switch memory
corruption). Second, RE programs the domain to avoid this
entity. This is similar to switch port pruning, but could happen
on non-adjacent switches within the domain. For failures that
do not affect inter-block routing, the chain of reaction ends
here. Otherwise, in a third step, RE notifies IBR-C of the
failure, as shown in Figure 6. When fabric-wide programming
is complete, IBR-C signals the control plane has converged.
This multi-tier reaction is advantageous for operations, as it
minimizes data plane convergence time and thus traffic loss.

Since a single entity failure can lead to successive events
in different domains (e.g., spine switch failure causing aggre-
gation block links to fail), it could trigger multiple IBR-C and
domain programming iterations to reach final convergence.
Many independent events also happen simultaneously and get
processed by Orion together, which can further delay con-
vergence. Hence, we will evaluate Orion’s performance in
example convergence scenarios in §6.

Implementation Challenges. One challenge with the orig-
inal Jupiter implementation [28] was optimally distributing
traffic across multiple paths. Capacity across paths can differ
due to link failures and topology asymmetry (e.g., different
link count between a spine-aggregation block pair). In order
to optimally allocate traffic, Jupiter/Orion employs WCMP
to vary weights for each path and nexthop. Due to the precise

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    91



Figure 7: B4 Control Diagram

weight computation for each forwarding entry, weights need
to be adjusted across the entire fabric to fully balance traffic.
Another challenge was transient loops or blackholes during
route changes. This is due to asynchronous flow program-
ming in traditional routing protocols and in our previous SDN
controller [18]. With Orion-based Jupiter, we implement
end-to-end flow sequencing in both IBR-C and RE.

At the scale of Jupiter, network events arrive at IBR-C at
a high frequency, which sometimes surpasses its processing
speed. To avoid queue buildup, IBR-C prioritizes processing
certain loss-inducing events (e.g., link down) over noncritical
events (e.g., drain). Upon an influx of events, IBR-C only pre-
empts its pipeline for loss-inducing events. It reorders/queues
other events for batch processing upon the completion of
higher priority processing. This is a trade-off to minimize
traffic loss while avoiding starvation of lower priority events.
§6 quantifies the benefits of this approach in more detail.

5.2 B4
Onix [18], the first-generation SDN controller for B4, ran

control applications using cooperative multithreading. Onix
had a tightly-coupled architecture, in which control apps share
fate and a common threading pool. With Onix’s architecture,
it was increasingly challenging to meet B4’s availability and
scale requirements; both have grown by 100x over a five year
period [13]. Orion solved B4’s availability and scale problems
via a distributed architecture in which B4’s control logic is
decoupled into micro-services with separate processes.

Figure 7 shows an overview of the B4 control architecture.
Each Orion domain manages a B4 supernode, which is a 2-
stage folded-Clos network where the lower stage switches are
external facing (see details in [13]). In B4, Routing Engine
sends ingress traffic to all viable switches in the upper stage
using a link aggregation group (LAG), and uses two-layer
WCMP to load-balance traffic toward the nexthop supernode.

The TE App is a traffic engineering agent for B4. It es-
tablishes a session with global TE server instances to syn-
chronize the tunnel forwarding state. It learns TE tunneling
ops from the primary TE server, and programs the ops via
the RouteAdvert table. In addition, TE App also supports
Fast ReRoute (FRR), which restores connectivity for broken
tunnels by temporarily re-steering the traffic to the backup

tunnel set or BGP/ISIS routes.
The Path Exporter subscribes to multiple NIB tables and

exports the observed dataplane state to the global services. It
reports the dataplane state at the supernode level, including
the abstract topology (e.g., supernode-supernode link capac-
ities), the abstract forwarding table (TE tunnels and BGP
routes), and the abstract port statistics.

The Central TE Server [13,15] is a global traffic engineer-
ing service which optimizes B4 paths using the TE protocol
offered by the TE App in each domain. The Bandwidth En-
forcer [19] is Google’s global bandwidth allocation service
which provides bandwidth isolation between competing ser-
vices via host rate limiting. For scalability, both the Central
TE Server and Bandwidth Enforcer use the abstract network
state provided by the Path Exporter.

6 Evaluation
We present microbenchmarks of the Orion NIB, followed
by Jupiter evaluation using production monitoring traces col-
lected since January 2018. Orion also improved B4 perfor-
mance, as published previously [13].

NIB performance. To characterize NIB performance, we
show results of a microbenchmark measuring the NIB’s
read/write throughput while varying the number of updates
per batch. A batch is a set of write operations composed
by an app that updates rows of different NIB tables atom-
ically. In Figure 8, we observe throughput increase as the
batch size becomes larger. At 50K updates per batch, the
NIB achieves 1.16 million updates/sec in read throughput and
809K updates/sec in write throughput.

Write throughput at 500 updates per batch sees a de-
cline. This reveals an implementation choice where the NIB
switches from single-threaded write to multi-threaded write
if the batch size is greater than 500. When the batch size is
not large enough, up-front partitioning to enable parallelism
is more expensive than the performance improvement. This
fixed threshold achieves peak performance on sampled pro-
duction test data and performs well in production overall.
It could be removed in favor of a more dynamic adaption
strategy to smooth the throughput curve.

Data and control plane convergence. One key Jupiter per-
formance characteristic is convergence time (§5.1). We mea-
sure convergence times in several fabrics, ranging from 1/16-
size Jupiter to full-size Jupiter (full-size means 64 aggregation
blocks [28]). Figure 9 captures data and control plane con-
vergence times of three types of common daily events in our
fleet. The measurements are observed by Orion; switch-local
port pruning is an independent decision that completes within
a few milliseconds without Orion involvement.

In node/link down scenarios, the data plane converges
within a fraction of a second. Both data and control plane
convergence times become longer as the fabric scales up by
16x. This is mainly because a larger number of aggregation

92    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 8: NIB throughput. Figure 9: Jupiter data/control plane convergence time in response to various network events.

Figure 10: Time series of full fabric control plane convergence
on three large Jupiter fabrics. Y-axis is normalized to the base-
line convergence time in January 2018. Orion releases with major
performance improvements are highlighted by markers.

Figure 11: Orion CPU/RAM usage in Jupiter domains.

blocks and spine blocks require more affected paths to be
re-computed and re-programmed. Data plane convergence is
35-43x faster than control plane convergence, which effec-
tively keeps traffic loss at a minimum.

Jupiter’s reaction to link drains is slightly different from
failure handling. Drains are lossless, and do not include an
initial sub-optimal data plane reaction to divert traffic. Instead,
Orion only shifts traffic after computing a new optimal routing
state. Therefore, data and control plane convergence are
considered equal. Overall, control plane convergence time
for link drain is on par with node/link down scenarios.

We have continuously evolved Orion to improve Jupiter
scalability and workflow velocity. Key to this were enhance-
ments in IBR-C such as prioritized handling of select updates,
batch processing/reordering, and a conditionally preemptive
control pipeline. Figure 10 shows the trend of three large
fabrics from January 2018 to April 2020; the control plane
convergence time in January 2018 was before these improve-
ments. Deployed over three major releases, each contributing
an average 2-4x reduction, the new processing pipeline (§5.1)
delivered a 10-40x reduction in convergence time.

Controller footprint: CPU and memory. Orion controller
jobs run on dedicated network control servers connected to the
CPN. This pool is comprised of regular server-class platforms.
We measure CPU and memory usage of each controller job
(including all three replicas) and group them by domain. Fig-
ure 11 shows that even in a full-size Jupiter, Orion domains
use no more than 23 CPU cores and 24 GiB of memory.

7 Production Experience
We briefly review some challenging experiences with Orion
when adhering to our production principles of limited blast-
radius and fail-static safety, and some more positive experi-
ences from following our software design principles.

7.1 Reliability and robustness
Failure to enforce blast radius containment. As de-
scribed in §5.1, the inter-block routing domain is global but
sharded into four colors to limit the blast radius to 25%. A
buggy IBR-C configuration upgrade caused a domain to re-
voke all forwarding rules from the switches in that domain
resulting in 25% capacity loss. Since high-priority traffic
demand was below 25% of the fabric’s total capacity, only
after all four domains’ configurations were pushed did the
workflow flag (complete) high-priority packet loss in the fab-
ric. To prevent such a “slow wreck” and enforce blast radius
containment, subsequent progressive updates proceeded only
after confirming the previous domain’s rollout was successful,
and not simply the absence of high-priority packet loss.

Failure to align blast radius domains. A significant Orion
outage occurred in 2019 due to misalignment of job-control
and network-control failure domains. Like many services at
Google, these Orion jobs were running in Borg cells [31]. Al-
though the Orion jobs were themselves topologically-scoped
to reduce blast radius (§3.1), their assignment to Borg cells
was not. As described in the incident report [9], when a fa-
cility maintenance event triggered a series of misconfigured
behaviors that disabled Orion in those Borg cells, the result-
ing failure was significantly larger than Google’s networks
had been previously designed to withstand. This outage high-
lighted the need for all management activities (job control,
configuration update, OS maintenance, etc.) to be scoped and
rate-limited in a coordinated manner to fully realize the prin-
ciple of blast-radius reduction. In addition, it highlighted a
gap in our fail-static implementation with regards to BGP.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    93



Failure to differentiate between missing and empty state.
In 2018, a significant B4 outage illustrated a challenge when
integrating Orion and non-Orion control layers. A gradual
increase in routes crossed an outdated validation threshold
on the maximum number of routes a neighborhood should
receive from attached clusters. Consequently, the TE app
suppressed the data to the B4-Gateway, which correctly failed
static using cached data. However, subsequent maintenance
restarted B4-Gateway instances while in this state, clearing
the cached data. Lacking any differentiation between empty
data and missing data, subsequent actions by the TE Server
and Bandwidth Enforcer resulted in severe congestion for
low-priority traffic. Within Orion, the capability readiness
protocol prevents reading missing or invalid derived state.

Orion’s post-outage improvements and continuous feature
evolution such as loss-free flow sequencing and in-band CPN
backup, brought substantial improvements in data plane avail-
ability to Jupiter (50x less unavailable time) and B4 (100x
less unavailable time [13]).

7.2 Deployability and software design
With Orion, we moved to a platform deeply integrated with

Google’s internal infrastructure. This enabled us to leverage
existing integration testing, debugging, and release proce-
dures to increase velocity. We also moved from a periodic
release cycle to a continuous release: we start software val-
idation of the next version as soon as the current version is
ready. This reduces the amount of “queued up” bugs, which
improves overall velocity.

Release cadence. SDN shifts the burden of validation from
“distributed protocols” to “distributed algorithms”, which is
smaller. Software rollouts are also faster: the number of
Network Control Servers is orders of magnitude smaller than
the number of network devices. The embedded stack on the
devices is also simpler and more stable over time.

Orion’s micro-service-based architecture leads to clear
component API boundaries and effective per-component test-
ing. Onix, on the other hand, was more monolithic, and our
process required more full-system, end-to-end testing to find
all newly introduced bugs which was less efficient.

In steady state, after initial development and production-
ization, it took about five months to validate a new major
Onix release. The process was manual, leveraging a quality
assurance team and iterative cherry-picking of fixes for dis-
covered issues. With Orion, we shrank validation latency to
an average of 14.7 days after the initial stabilization phase,
with a target of eventually qualifying a release every week.

Release granularity. As a distributed, micro-service-based
architecture, each Orion application could release at its own
cadence. In our move from the monolithic Onix to Orion, we
have not yet leveraged this flexibility gain. Since Orion is
widely deployed and has high availability demands, we strive
to test all versions that run at the same time in production,

for instance as some applications are upgraded but other up-
grades are still pending. An increase in release granularity
would increase both the skew duration and total number of
combinations that need to be tested. Therefore, we releas all
Orion applications that make up a particular product (e.g., B4
or Jupiter) together.

Improved debugging. Serializing all intent and state
changes through the NIB facilitates debugging: Engineers
investigating an issue can rely on the fact that the order of
changes observed by all applications in the distributed system
is the same and therefore establish causality more easily.

Storing the stream of NIB updates for every Orion deploy-
ment also allowed us to build replay tooling that automatically
reproduces bugs in lab environments. This was first used in
the aftermath of an outage: only the precise ordering of pro-
gramming operations that occurred in production, replayed to
a lab switch, reliably reproduced a memory corruption bug in
Google’s switch firmware. This enabled delivering as well as,
more importantly, verifying the fix for this issue.

8 Conclusion and future work
This paper presents Orion, the SDN control plane for Google’s
Jupiter datacenter and B4 Wide Area Networks. Orion decou-
ples control from individual hardware elements, enabling
a transition from pair-wise coordination through slowly-
evolving protocols to a high-performance distributed system
with a logically centralized view of global fabric state. We
highlight Orion’s benefits in availability, feature velocity, and
scale while addressing challenges with SDN including align-
ing failure domains, inter-operating with existing networks,
and decoupled failures in the control versus data planes.

While Orion has been battle-tested in production for over 4
years, we still have open questions to consider as future work.
These include (i) evaluating the split between on-box and
off-box control, (ii) standardizing the Control to Data Plane
Interface with P4Runtime API [10], (iii) exploring making
the NIB durable, (iv) investigating fail-static features in BGP,
and (v) experimenting with finer-grained application release.

Acknowledgments For their significant contributions to
the evolution of Orion, we thank Deepak Arulkannan, Arda
Balkanay, Matt Beaumont-Gay, Mike Bennett, Bryant Chang,
Xinming Chen, Roshan Chepuri, Dharti Dhami, Charles Eck-
man, Oliver Fisher, Lisa Fowler, Barry Friedman, Goldie
Gadde, Luca Giraudo, Anatoliy Glagolev, Jia Guo, Ja-
hangir Hasan, Jay Kaimal, Stephen Kratzer, Nanfang Li,
Zhuotao Liu, Aamer Mahmood, John McCullough, Bhuva
Muthukumar, Susan Pence, Tony Qian, Bharath Raghavan,
Mike Rubin, Jeffrey Seibert, Ruth Sivilotti, Mukarram Tariq,
Malveeka Tewari, Lisa Vitolo, Jim Wanderer, Curt Wohlge-
muth, Zhehua Wu, Yavuz Yetim, Sunghwan Yoo, Jiaying
Zhang, and Tian Yu Zhang. We also thank our shepherd,
Katerina Argyraki, Jeff Mogul, David Wetherall, and the
anonymous reviewers for their valuable feedback.

94    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References
[1] Saksham Agarwal, Shijin Rajakrishnan, Akshay

Narayan, Rachit Agarwal, David Shmoys, and Amin
Vahdat. Sincronia: Near-Optimal Network Design for
Coflows. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
pages 16–29, 2018.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic Flow Scheduling for Data Center
Networks. In 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 10), San
Jose, CA, April 2010. USENIX Association.

[3] Arista. Arista EOS Whitepaper. https://www.
arista.com/assets/data/pdf/EOSWhitepaper.
pdf, 2013.

[4] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta
Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob
Lantz, Brian O’Connor, Pavlin Radoslavov, William
Snow, and Guru Parulkar. ONOS: Towards an Open,
Distributed SDN OS. In Proceedings of the Third Work-
shop on Hot Topics in Software Defined Networking,
HotSDN ’14, page 1–6, New York, NY, USA, 2014.
Association for Computing Machinery.

[5] Mike Burrows. The Chubby lock service for loosely-
coupled distributed systems. In 7th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2006.

[6] Matthew Caesar, Donald Caldwell, Nick Feamster, Jen-
nifer Rexford, Aman Shaikh, and Jacobus van der
Merwe. Design and Implementation of a Routing Con-
trol Platform. In Symposium on Networked Systems
Design and Implementation (NSDI), NSDI’05, page
15–28, USA, 2005. USENIX Association.

[7] Open Networking Foundation. SDN
Architecture Overview. https://www.
opennetworking.org/wp-content/uploads/
2013/02/SDN-architecture-overview-1.0.pdf,
2013.

[8] Google. Protocol buffers: Google’s data interchange
format. https://code.google.com/p/protobuf/,
2008.

[9] Google Cloud Networking Incident 19009, 2019.
https://status.cloud.google.com/incident/
cloud-networking/19009.

[10] The P4.org API Working Group. P4 Runtime Specifi-
cation. https://p4.org/p4runtime/spec/v1.2.0/
P4Runtime-Spec.html, 2020.

[11] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 29–42, 2017.

[12] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-
hofer. Achieving high utilization with software-driven
wan. In Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, pages 15–26, 2013.

[13] Chi-Yao Hong, Subhasree Mandal, Mohammad A. Al-
fares, Min Zhu, Rich Alimi, Kondapa Naidu Bollineni,
Chandan Bhagat, Sourabh Jain, Jay Kaimal, Jeffrey
Liang, Kirill Mendelev, Steve Padgett, Faro Thomas
Rabe, Saikat Ray, Malveeka Tewari, Matt Tierney,
Monika Zahn, Jon Zolla, Joon Ong, and Amin Vah-
dat. B4 and After: Managing Hierarchy, Partitioning,
and Asymmetry for Availability and Scale in Google’s
Software-Defined WAN. In SIGCOMM’18, 2018.

[14] Theo Härder and Andreas Reuter. Principles of
transaction-oriented database recovery. ACM Comput.
Surv., 15(4):287–317, 1983.

[15] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Ex-
perience with a Globally Deployed Software Defined
WAN. In Proceedings of the ACM SIGCOMM Confer-
ence, Hong Kong, China, 2013.

[16] Peyman Kazemian, Michael Chang, Hongyi Zeng,
George Varghese, Nick McKeown, and Scott Whyte.
Real time network policy checking using header space
analysis. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
99–111, Lombard, IL, April 2013. USENIX Associa-
tion.

[17] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew
Caesar, and P. Brighten Godfrey. Veriflow: Verifying
network-wide invariants in real time. In 10th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 13), pages 15–27, Lombard, IL, April
2013. USENIX Association.

[18] Teemu Koponen, Martín Casado, Natasha Gude, Jeremy
Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan,
Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and
Scott Shenker. Onix: A Distributed Control Platform
for Large-scale Production Networks. In Symposium on
Operating Systems Design and Implementation (OSDI),
2010.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    95

https://www.arista.com/assets/data/pdf/EOSWhitepaper.pdf
https://www.arista.com/assets/data/pdf/EOSWhitepaper.pdf
https://www.arista.com/assets/data/pdf/EOSWhitepaper.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf
https://code.google.com/p/protobuf/
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
https://p4.org/p4runtime/spec/v1.2.0/P4Runtime-Spec.html
https://p4.org/p4runtime/spec/v1.2.0/P4Runtime-Spec.html


[19] Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing
Ai, Björn Carlin, Mihai Amarandei-Stavila, Mathieu
Robin, Aspi Siganporia, Stephen Stuart, and Amin Vah-
dat. BwE: Flexible, Hierarchical Bandwidth Allocation
for WAN Distributed Computing. In SIGCOMM’15,
2015.

[20] Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM, 21(7):558–565,
1978.

[21] Viktor Leis, Alfons Kemper, and Thomas Neumann.
The adaptive radix tree: Artful indexing for main-
memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pages 38–49.
IEEE, 2013.

[22] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. HPCC: High Precision Congestion Control.
In Proceedings of the ACM Special Interest Group on
Data Communication, SIGCOMM ’19, page 44–58,
New York, NY, USA, 2019. Association for Computing
Machinery.

[23] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott
Shenker, and Jonathan Turner. OpenFlow: Enabling
Innovation in Campus Networks. ACM Computer Com-
munication Review (CCR), 38:69–74, 2008.

[24] J. Medved, R. Varga, A. Tkacik, and K. Gray. Open-
Daylight: Towards a Model-Driven SDN Controller
architecture. In Proceeding of IEEE International Sym-
posium on a World of Wireless, Mobile and Multimedia
Networks 2014, pages 1–6, 2014.

[25] Microsoft. SONiC System Architecture. https:
//github.com/Azure/SONiC/wiki/Architecture,
2016.

[26] Jeffrey C. Mogul, Drago Goricanec, Martin Pool, Anees
Shaikh, Douglas Turk, Bikash Koley, and Xiaoxue Zhao.
Experiences with Modeling Network Topologies at Mul-
tiple Levels of Abstraction. In 17th Symposium on
Networked Systems Design and Implementation (NSDI),
2020.

[27] Timothy Nelson, Andrew D. Ferguson, Michael J. G.
Scheer, and Shriram Krishnamurthi. Tierless Program-
ming and Reasoning for Software-Defined Networks.
In Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2014.

[28] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,
Ashby Armistead, Roy Bannon, Seb Boving, Gaurav
Desai, Bob Felderman, Paulie Germano, Anand Kana-
gala, Hanying Liu, Jeff Provost, Jason Simmons, Eiichi
Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and
Amin Vahdat. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter
Network. In SIGCOMM ’15, 2015.

[29] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange
Albertini, and Yarik Markov. The first collision for full
SHA-1. In Annual International Cryptology Conference,
pages 570–596. Springer, 2017.

[30] Amin Tootoonchian and Yashar Ganjali. HyperFlow:
A Distributed Control Plane for OpenFlow. In Pro-
ceedings of the 2010 Internet Network Management
Conference on Research on Enterprise Networking,
INM/WREN’10, page 3, USA, 2010. USENIX As-
sociation.

[31] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer
Systems (EuroSys), Bordeaux, France, 2015.

[32] Anduo Wang, Xueyuan Mei, Jason Croft, Matthew Cae-
sar, and Brighten Godfrey. Ravel: A Database-Defined
Network. In Proceedings of the Symposium on SDN
Research, SOSR ’16, New York, NY, USA, 2016. Asso-
ciation for Computing Machinery.

[33] Hong Yan, David A. Maltz, T. S. Eugene Ng, Hemant
Gogineni, Hui Zhang, and Zheng Cai. Tesseract: a 4D
network control plane. In Symposium on Networked
Systems Design and Implementation (NSDI), pages 27–
27, 2007.

[34] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve
Padgett, Matthew Holliman, Gary Baldus, Marcus
Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
Victor Lin, Colin Rice, Brian Rogan, Arjun Singh,
Bert Tanaka, Manish Verma, Puneet Sood, Mukarram
Tariq, Matt Tierney, Dzevad Trumic, Vytautas Valan-
cius, Calvin Ying, Mahesh Kallahalla, Bikash Koley,
and Amin Vahdat. Taking the Edge off with Espresso:
Scale, Reliability and Programmability for Global Inter-
net Peering. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 432–445, New York, NY, USA,
2017. Association for Computing Machinery.

[35] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo:
A Framework for Efficient and Scalable Offloading of
Control Applications. In Workshop on Hot Topics in
SDN (HotSDN), 2012.

96    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/Azure/SONiC/wiki/Architecture
https://github.com/Azure/SONiC/wiki/Architecture


[36] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kab-
bani, Leon Poutievski, Arjun Singh, and Amin Vahdat.
WCMP: Weighted Cost Multipathing for Improved Fair-
ness in Data Centers. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, page Article
No. 5, 2014.

9 Appendix
An example table schema definition in the NIB.

message Link {
enum Status {
STATUS_UNKNOWN = 0;
DOWN = 1;
UP = 2;

}
optional NIBHeader nib_header = 1;
optional string name = 2;
optional Status status = 3;
// references Node.nib_header.id
optional string src_node_id = 4;
// references Port.nib_header.id
optional string src_port_id = 5;
// references Node.nib_header.id
optional string dst_node_id = 6;
// references Port.nib_header.id
optional string dst_port_id = 7;

}

9.1 Orion Core Implementation
To productionize the Orion systems described in this paper,

we address some common engineering challenges in the Orion
Core. In particular, Orion’s architectural choices require great
care with both the memory footprint and performance of all
data flowing through the NIB. Here, we illustrate multiple
implementation choices we made to scale this architecture.

State replication and synchronization. Orion enables a
large group of developers in Google to author new SDN ap-
plications. To simplify interacting with the intent/state stored
in the NIB, we synchronize all relevant data into an app-local
cache that trails the NIB’s authoritative state. The state visible
to each application is always a prefix of the sequential atomic
writes applied to the NIB. Each application’s ability to see
a prefix and therefore (potentially) not the most recent NIB
state is acceptable given that the NIB itself is only a trailing
reflection of the global system state. Applications do not
subscribe to the NIB data they wrote as they were previously
responsible for the write.

The app-local cache allows developers to access data as
they would access an in-memory hash table. Additionally,
since data is local, developers write fast applications by de-
fault as they do not have to reason about network round-trips
to load data from the NIB. This replication approach re-
quires transmitting cached data efficiently to reduce reaction
time to data-plane events. While sequential communication
through the NIB has many upsides, e.g., reduced complexity
and traces for debugging, it should not dominate reaction time
to data-plane events.

Additionally, we require a compact memory representation
of all state to support a large number of micro-services, with
overlapping subsets of the NIB state in their local caches. Pro-
tocol buffers are not well-suited for this requirement because
they hold copies of the same nested and repeated fields in
more than one entity (e.g., the same output port ID string in
multiple forwarding rules). Orion works around this space
inefficiency by exploiting the read-only nature of cached data.
As all entity mutations are sent directly to the NIB for full se-
rializability, it is possible to de-duplicate select sub-messages
and data types in the app-local cache to conserve memory.
Given our schema, this reduces memory overhead by more
than 5x while retaining the same read-only API offered by
regular protocol buffers.

Hash table / key size. Both the dictionary implementation
as well as the key length used for the data in the NIB influence
memory utilization. In early testing, about 50% of memory
was consumed by key-strings and dictionary data structures.

Many data entries in the NIB use descriptive identifiers.
For instance, a physical port on a switch, represented in the
Port table of the NIB, combines the FQDN (Fully Qualified
Domain Name) of its parent switch and its own port name
identifier as the entity key in the NIB. As the payload per
port is only a handful of simple data types, the key size may
be larger than the payload. To reduce the memory impact of
many entities with relatively small payloads, the NIB initially
stored all data in a trie modelled after [21]. This was advan-
tageous both because of prefix compression and because it
enables inexpensive creation of consistent snapshots.

While we retain the M-Trie data structure for its copy-on-
write capability, we have changed to storing a SHA-1 hash of
the identifier only. This reduces the NIB memory footprint at
the price of a theoretical, but not practical [29], collision risk.
If a collision occurred, it would require human intervention.

Large updates. Large updates must be reflected in all SDN
apps that consume changed data as their input. In some sit-
uations, for instance extensive rerouting, or, when an SDN
app restarts and needs to be brought in sync with the NIB, the
size of changed intent/state can be multiple gigabytes.

To reduce wall-clock time for such synchronization and
peak memory spikes, Orion handles large atomic writes by
splitting them into many small ones with special annotations
delineating that the small writes are part of one atomic batch.
This allows pipeline processing in the NIB, data transfer and
cache application on the receiver. As long as the partial small
updates are guaranteed to be exposed only after the complete
set is available, this optimization is transparent.

In case of synchronizing client application and NIB state
after a disconnect, the update size is kept to a minimum to
reduce transmission delay. Each application supplies the
NIB with a vector of ID-hashes of entities and entity hashes.
Matching ID-hashes and entity hashes between the NIB and
the application cache tells the NIB to skip updating such

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    97



entities. All other entities with mismatched or missing hashes
will be replaced/deleted/inserted accordingly.

Software upgrade strategy. Since the controller is dis-
tributed across multiple apps running in separate binaries,
software upgrades lead to version skew across applications.
While this version skew is commonly short-lived, it can per-
sist in rare cases as manual intervention is required to resolve
the skew when an upgrade is stuck in a partially succeeded
state. Given this, a key functionality that Orion provides to
developers is enabling features atomically across applications
when all are ready. Likewise, Orion can deactivate features
atomically in case a participating app no longer supports it.

As an example, take two applications that interact through
a NIB table A. Consider that the interaction pattern is changed
to go through table B in a later version. Both applications
have to ensure that the appropriate table is used depending on
the readiness of the peer application. To reduce bug surface,
Orion allows describing which applications need to support
a certain feature for it to be enabled and abstracts this nego-
tiation from the application developers. Developers simply
protect the new interaction through table B inside a condition
check, the condition is automatically marked true by Orion
based on the feature readiness of both sides. If one of the two
applications interacts through the old table, the feature stays
disabled. Once both applications support the feature, Orion
will enable it atomically.

9.2 Jupiter Fabric Drain
Orion provides support for network management opera-

tions. In order to take a network element out of service for
repair or upgrade, the control systems needs to first drain
it, i.e. divert traffic from it. Orion provides explicit han-
dling and tracking of drain state. Drain Conductor (DC) is an
Orion application in a separate non-sharded virtual control
domain, providing an external API for network management
systems to drain, undrain and check drain status for each el-
ement. Once DC receives a drain request for a networking
element, it persists the new drain intent in Chubby [5] and
dispatches the drain intent to the NIB in a physical domain.
Drain Agent (DA), an application running in each physical
domain, subscribes to drain intent changes published by DC,
and dispatches the drain intent across routing applications.
A routing app processes the drain intent by de-preferencing
a networking element and updates the drain status. Finally,
DC subscribes to drain statuses across physical domains and
provides drain acknowledgements via its API.

98    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association


	Introduction
	Related Work
	Design Principles
	Principles of production networks
	Principles related to an SDN controller
	Software design principles

	Architecture
	Orion Core
	Routing Engine
	Orion Application Framework

	Orion-based Systems
	Jupiter
	B4

	Evaluation
	Production Experience
	Reliability and robustness
	Deployability and software design

	Conclusion and future work
	Appendix
	Orion Core Implementation
	Jupiter Fabric Drain


