
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Performant TCP for Low-Power
Wireless Networks

Sam Kumar, Michael P Andersen, Hyung-Sin Kim, and David E. Culler,
University of California, Berkeley

https://www.usenix.org/conference/nsdi20/presentation/kumar

Performant TCP for Low-Power Wireless Networks

Sam Kumar, Michael P Andersen, Hyung-Sin Kim, and David E. Culler
University of California, Berkeley

Abstract

Low-power and lossy networks (LLNs) enable diverse appli-
cations integrating many resource-constrained embedded de-
vices, often requiring interconnectivity with existing TCP/IP
networks as part of the Internet of Things. But TCP has re-
ceived little attention in LLNs due to concerns about its over-
head and performance, leading to LLN-specific protocols that
require specialized gateways for interoperability. We present
a systematic study of a well-designed TCP stack in IEEE
802.15.4-based LLNs, based on the TCP protocol logic in
FreeBSD. Through careful implementation and extensive ex-
periments, we show that modern low-power sensor platforms
are capable of running full-scale TCP and that TCP, counter
to common belief, performs well despite the lossy nature of
LLNs. By carefully studying the interaction between the trans-
port and link layers, we identify subtle but important modi-
fications to both, achieving TCP goodput within 25% of an
upper bound (5–40x higher than prior results) and low-power
operation commensurate to CoAP in a practical LLN applica-
tion scenario. This suggests that a TCP-based transport layer,
seamlessly interoperable with existing TCP/IP networks, is
viable and performant in LLNs.

1 Introduction
Research on wireless networks of low-power, resource con-
strained, embedded devices—low-power and lossy networks
(LLNs) in IETF terms [128]—blossomed in the late 1990s.
To obtain freedom to tackle the unique challenges of LLNs,
researchers initially departed from the established conven-
tions of the Internet architecture [50, 68]. As the field ma-
tured, however, researchers found ways to address these chal-
lenges within the Internet architecture [70]. Since then, it
has become commonplace to use IPv6 in LLNs via the
6LoWPAN [105] adaptation layer. IPv6-based routing pro-
tocols, like RPL [33], and application-layer transports over
UDP, like CoAP [35], have become standards in LLNs. Most
wireless sensor network (WSN) operating systems, such as
TinyOS [95], RIOT [24], and Contiki [45], ship with IP imple-
mentations enabled and configured. Major industry vendors
offer branded and supported 6LoWPAN stacks (e.g., TI Sim-
pleLink, Atmel SmartConnect). A consortium, Thread [64],
has formed around 6LoWPAN-based interoperability.

Despite these developments, transport in LLNs has re-
mained ad-hoc and TCP has received little serious consid-
eration. Many embedded IP stacks (e.g., OpenThread [106])
do not even support TCP, and those that do implement only a
subset of its features (Appendix B). The conventional wisdom

is that IP holds merit, but TCP is ill-suited to LLNs. This view
is represented by concerns about TCP, such as:

• “TCP is not light weight ... and may not be suitable for
implementation in low-cost sensor nodes with limited pro-
cessing, memory and energy resources.” [110] (Similar ar-
gument in [42], [75].)

• That “TCP is a connection-oriented protocol” is a poor
match for WSNs, “where actual data might be only in the
order of a few bytes.” [114] (Similar argument in [110].)

• “TCP uses a single packet drop to infer that the network
is congested.” This “can result in extremely poor trans-
port performance because wireless links tend to exhibit
relatively high packet loss rates.” [109] (Similar argument
in [43], [44], [75].)

Such viewpoints have led to a plethora of WSN-specialized
protocols and systems [110, 117, 132] for reliable data trans-
port, such as PSFQ [130], STCP [75], RCRT [109], Flush [88],
RMST [125], Wisden [138], CRRT [10], and CoAP [31], and
for unreliable data transport, like CODA [131], ESRT [118],
Fusion [71], CentRoute [126], Surge [94], and RBC [142].

As LLNs become part of the emerging Internet of Things
(IoT), it behooves us to re-examine the transport question,
with attention to how the landscape has shifted: (1) As part
of IoT, LLNs must be interoperable with traditional TCP/IP
networks; to this end, using TCP in LLNs simplifies IoT
gateway design. (2) Popular IoT application protocols, like
MQTT [39] and ZeroMQ [8], assume that TCP is used at the
transport layer. (3) Some IoT application scenarios demand
high link utilization and reliability on low-bandwidth lossy
links. Embedded hardware has also evolved substantially,
prompting us to revisit TCP’s overhead. In this context, this
paper seeks to determine: Do the “common wisdom” con-
cerns about TCP hold in a modern IEEE 802.15.4-based
LLN? Is TCP (still) unsuitable for use in LLNs?

To answer this question, we leverage the fully-featured TCP
implementation in the FreeBSD Operating System (rather
than a limited locally-developed implementation) and refactor
it to work with the Berkeley Low-Power IP Stack (BLIP),
Generic Network Stack (GNRC), and OpenThread network
stack, on two modern LLN platforms (§5). Naïvely running
TCP in an LLN indeed results in poor performance. However,
upon close examination, we discover that this is not caused by
the expected reasons, such as those listed above. The actual
reasons for poor TCP performance include (1) small link-
layer frames that increase TCP header overhead, (2) hidden
terminal effects over multiple wireless hops, and (3) poor
interaction between TCP and a duty-cycled link. Through

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 911

Challenge Technique Observed Improvement
Resource Zero-Copy Send Send Buffer: 50% less mem.

Constraints In-Place Reass. Recv Buffer: 38% less mem.
Link-Layer Large MSS TCP Goodput: 4–5x higher
Properties Link Retry Delay TCP Seg. Loss: 6%→ 1%

Energy Adaptive DC HTTP Latency: ≈ 2x lower
Constraints L2 Queue Mgmt. TCP Radio DC: 3%→ 2%

Table 1: Impact of techniques to run full-scale TCP in LLNs

a systematic study of TCP in LLNs, we develop techniques
to resolve these issues (Table 1), uncover why the generally
assumed problems do not apply to TCP in LLNs, and show
that TCP perfoms well in LLNs once these issues are resolved:

We find that full-scale TCP fits well within the CPU and
memory constraints of modern LLN platforms (§5, §6).
Owing to the low bandwidth of a low-power wireless link, a
small window size (≈ 2 KiB) is sufficient to fill the bandwidth-
delay product and achieve good TCP performance. This trans-
lates into small send/receive buffers that fit comfortably within
the memory of modern WSN hardware. Furthermore, we
propose using an atypical Maximum Segment Size (MSS)
to manage header overhead and packet fragmentation. As
a result, full-scale TCP operates well in LLNs, with 5–40
times higher throughput than existing (relatively simplis-
tic) embedded TCP stacks (§6).

Hidden terminals are a serious problem when running TCP
over multiple wireless hops. We propose adding a delay d
between link-layer retransmissions, and demonstrate that it
effectively reduces hidden-terminal-induced packet loss for
TCP. We find that, because a small window size is sufficient
for good performance in LLNs, TCP is quite resilient to spu-
rious packet losses, as the congestion window can recover
to a full window quickly after loss (§7).

To run TCP in a low-power context, we adaptively duty-
cycle the radio to avoid poor interactions with TCP’s self-
clocking behavior. We also propose careful link-layer queue
management to make TCP more robust to interference. We
demonstrate that TCP can operate at low power, compara-
ble to alternatives tailored specifically for WSNs, and that
TCP brings value for real IoT sensor applications (§8).

We conclude that TCP is entirely capable of running on
IEEE 802.15.4 networks and low-cost embedded devices in
LLN application scenarios (§9). Since our improvements to
TCP and the link layer maintain seamless interoperability with
other TCP/IP networks, we believe that a TCP-based transport
architecture for LLNs could yield considerable benefit.

In summary, this paper’s contributions are:
1. We implement a full-scale TCP stack for low-power em-

bedded devices and reduce its resource usage.
2. We identify the actual issues causing poor TCP perfor-

mance and develop techniques to address them.
3. We explain why the expected insurmountable reasons for

poor TCP performance actually do not apply.

4. We demonstrate that, once these issues are resolved, TCP
performs comparably to LoWPAN-specialized protocols.

Table 1 lists our techniques to run TCP in an LLN. Although
prior LLN work has already used various forms of link-layer
delays [136] and adaptive duty-cycling [140], our work shows,
where applicable, how to adapt these techniques to work well
with TCP, and demonstrates that they can address the chal-
lenges of LLNs within a TCP-based transport architecture.

2 Background and Related Work
Since the introduction of TCP, a vast literature has emerged,
focusing on improving it as the Internet evolved. Some rep-
resentative areas include congestion control [9, 51, 62, 76],
performance on wireless links [15, 27], performance in high-
bandwidth environments [11, 30, 53, 65, 78], mobility [124],
and multipath operation [115]. Below, we discuss TCP in the
context of LLNs and embedded devices.

2.1 Low-Power and Lossy Networks (LLNs)
Although the term LLN can be applied to a variety of tech-
nologies, including LoRa and Bluetooth Low Energy, we re-
strict our attention in this paper to embedded networks using
IEEE 802.15.4. Such networks are called LoWPANs [93]—
Low-Power Wireless Personal Area Networks—in contrast
to WANs, LANs (802.3), and WLANs (802.11). Outside of
LoWPANs, TCP has been successfully adapted to a variety of
networks, including serial [77], Wi-Fi [27], cellular [25, 100],
and satellite [15,25] links. While an 802.15.4 radio can in prin-
ciple be added as a NIC to any device, we consider only em-
bedded devices where it is the primary means of communica-
tion, running operating systems like TinyOS [68], RIOT [24],
Contiki [45], or FreeRTOS. These devices are currently built
around microcontrollers with Cortex-M CPUs, which lack
MMUs. Below, we explain how LoWPANs are different from
other networks where TCP has been successfully adapted.
Resource Constraints. When TCP was initially adopted
by ARPANET in the early 1980s, contemporary Internet
citizens—typically minicomputers and high-end workstations,
but not yet personal computers—usually had at least 1 MiB of
RAM. 1 MiB is tiny by today’s standards, yet the LLN-class
devices we consider in this work have 1-2 orders of magnitude
less RAM than even the earliest computers connected with
TCP/IP. Due to energy constraints, particularly SRAM leak-
age, RAM size in low-power MCUs does not follow Moore’s
Law. For example, comparing Hamilton [83], which we use
in this work, to TelosB [113], an LLN platform from 2004,
shows only a 3.2x increase in RAM size over 16 years. This
has caused LLN-class embedded devices to have a different
balance of resources than conventional systems, a trend that is
likely to continue well into the future. For example, whereas
conventional computers have historically had roughly 1 MiB
of RAM for every MIPS of CPU, as captured by the 3M rule,
Hamilton has ≈ 50 DMIPS of CPU but only 32 KiB of RAM.
Link-Layer Properties. IEEE 802.15.4 is a low-bandwidth,
wireless link with an MTU of only 104 bytes. The research

912 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

community has explored using TCP with links that are sepa-
rately low-bandwidth, wireless [27], or low-MTU [77], but
addressing these issues together raises new challenges. For ex-
ample, RTS-CTS, used in WLANs to avoid hidden terminals,
has high overhead in LoWPANs [71, 136] due to the small
MTU—control frames are comparable in size to data frames.
Thus, LoWPAN researchers have moved away from RTS-
CTS, instead carefully designing application traffic patterns
to avoid hidden terminals [71, 88, 112]. Unlike Wi-Fi/LTE,
LoWPANs do not use physical-layer techniques like adaptive
modulation/coding or multi-antenna beamforming. Thus, they
are directly impacted by link quality degradation due to vary-
ing environmental conditions [112, 127]. Additionally, IEEE
802.15.4 coexists with Wi-Fi in the 2.4 GHz frequency band,
making Wi-Fi interference particularly relevant in indoor set-
tings [99]. As LoWPANs are embedded networks, there is no
human in the loop to react to and repair bad link quality.

Energy Constraints. Embedded nodes—the “hosts” of an
LLN—are subject to strict power constraints. Low-power ra-
dios consume almost as much energy listening for a packet as
they do when actually sending or receiving [20, 83]. There-
fore, it is customary to duty-cycle the radio, keeping it in a
low-power sleep state, in which it cannot send or receive data,
most of the time [70,112,139]. The radio is only occasionally
turned on to send/receive packets or determine if reception
is likely. This requires Media Management Control (MMC)
protocols [70, 112, 139] at the link layer to ensure that frames
destined for a node are delivered to it only when its radio is on
and listening. Similarly, the CPU also consumes a significant
amount of energy [83], and must be kept idle most of the time.

Over the past 20 years, LLN researchers have addressed
these challenges, but only in the context of special-purpose
networks highly tailored to the particular application task at
hand. The remaining open question is how to do so with a
general-purpose reliable transport protocol like TCP.

2.2 TCP/IP for Embedded LLN-Class Devices
In the late 1990s and early 2000s, developers attempted to
bring TCP/IP to embedded and resource-constrained systems
to connect them to the Internet, usually over serial or Ethernet.
Such systems [32, 80] were often designed with a specific
application—often, a web server—in mind. These TCP/IP
stacks were tailored to the specific applications at hand and
were not suitable for general use. uIP (“micro IP”) [42], in-
troduced in 2002, was a standalone general TCP/IP stack
optimized for 8-bit microcontrollers and serial or Ethernet
links. To minimize resource consumption to run on such plat-
forms, uIP omits standard features of TCP; for example, it
allows only a single outstanding (unACKed) TCP segment
per connection, rather than a sliding window of in-flight data.

Since the introduction of uIP, embedded networks have
changed substantially. With wireless sensor networks and
IEEE 802.15.4, various low-power networking protocols have
been developed to overcome lossy links with strict energy

and resource constraints, from S-MAC [139], B-MAC [112],
X-MAC [34], and A-MAC [49], to Trickle [96] and CTP [59].
Researchers have viewed TCP as unsuitable, however, ques-
tioning end-to-end recovery, loss-triggered congestion con-
trol, and bi-directional data flow in LLNs [44]. Furthermore,
WSNs of this era typically did not even use IP; instead, each
WSN was designed specifically to support a particular appli-
cation [89, 102, 138]. Those that require global connectivity
rely on application-specific “base stations” or “gateways” con-
nected to a TCP/IP network, treating the LLN like a peripheral
interconnect (e.g., USB, bluetooth) rather than a network in its
own right. This is because the prevailing sentiment at the time
was that LLNs are too different from other types of networks
and have to operate in too extreme conditions for the layered
Internet architecture to be appropriate [50].

In 2007, the 6LoWPAN adaptation layer [105] was intro-
duced, enabling IPv6 over IEEE 802.15.4. IPv6 has since been
adopted in LLNs, bringing forth IoT [70]. uIP has been ported
to LLNs [48], and IPv6 routing protocols, like RPL [33], and
UDP-based application-layer transports, like CoAP [35], have
emerged in LLNs. Representative operating systems, like
TinyOS and Contiki, implement UDP/RPL/IPv6/6LoWPAN
network stacks with IEEE 802.15.4-compatible MMC proto-
cols for 16-bit platforms like TelosB [113].

TCP, however, is not widely adopted in LLNs. The few
LLN studies that use TCP [47,60,67,70,72,86,144] generally
use a simplified TCP stack (Appendix B), such as uIP.

In summary, despite the acceptance of IPv6, LLNs remain
highly tailored at the transport layer to the application at hand.
They typically use application-specific protocols on top of
UDP; of such protocols, CoAP [31] has the widest adoption.
In this context, this paper explores whether adopting TCP—
and more broadly, the ecosystem of IP-based protocols, rather
than IP alone—might bring value to LLNs moving forward.

3 Motivation: The Case for TCP in LLNs
As explained in §2, LLN design has historically been highly
tailored to the specific application task at hand, for maxi-
mum efficiency. For example, PSFQ broadcasts data from a
single source node to all others, RMST supports “directed
diffusion” [73], and CoAP is tied to REST semantics. But
embedded networks are not just isolated devices (e.g., periph-
eral interconnects like USB or bluetooth)—they are now true
Internet citizens, and should be designed as such.

In particular, the recent megatrend of IoT requires LLNs to
have a greater degree of interoperability with regular TCP/IP
networks. Yet, LLN-specific protocols lack a clear separa-
tion between the transport and application layers, requiring
application-layer gateways to communicate with TCP/IP-
based services. This has encouraged IoT applications to de-
velop as vertically-integrated silos, where devices cooperate
only within an individual application or a particular manufac-
turer’s ecosystem, with little to no interoperability between
applications or with the general TCP/IP-based Internet. This
phenomenon, sometimes called the “CompuServe of Things,”

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 913

is a serious obstacle to the IoT vision [57,97,104,133,141]. In
contrast, other networks are seamlessly interoperable with the
rest of the Internet. Accessing a new web application from a
laptop does not require any new functionality at the Wi-Fi ac-
cess point, but running a new application in a gateway-based
LLN does require additional application-specific functionality
to be installed at the gateway.

In this context, TCP-enabled LLN devices would be first-
class citizens of the Internet, natively interoperable with the
rest of the Internet via TCP/IP. They could use IoT protocols
that assume a TCP-based transport layer (e.g., MQTT [39])
and security tools for TCP/IP networks (e.g., stateful fire-
walls), without an application-layer gateway. In addition,
while traditional LLN applications like environment mon-
itoring can be supported by unreliable UDP, certain applica-
tions do require high throughput and reliable delivery (e.g.,
anemometry (Appendix D), vibration monitoring [81]). TCP,
if it performs well in LLNs, could benefit these applications.

Adopting TCP in LLNs may also open an interesting re-
search agenda for IoT. TCP is the default transport protocol
outside of LLNs, and history has shown that, to justify other
transport protocols, application characteristics must offer sub-
stantial opportunity for optimization (e.g., [55, 134, 135]). If
TCP becomes a viable option in LLNs, it would raise the
bar for application-specific LLN protocols, resulting in some
potentially interesting alternatives.

Although adopting TCP in LLNs could yield significant
benefit and an interesting agenda, its feasibility and perfor-
mance remain in question. This motivates our study.

4 Empirical Methodology
This section presents our methodology, carefully chosen to
ground our study of full-scale TCP in LLNs.

4.1 Network Stack
Transport layer. That only a few full-scale TCP stacks exist,
with a body of literature covering decades of refining, demon-
strates that developing a feature-complete implementation of
TCP is complex and error-prone [111]. Using a well-tested
TCP implementation would ensure that results from our mea-
surement study are due to the TCP protocol, not an artifact
of the TCP implementation we used. Thus, we leverage the
TCP implementation in FreeBSD 10.3 [56] to ground our
study. We ported it to run in embedded operating systems and
resource-constrained embedded devices (§4.2).

To verify the effectiveness of full-scale TCP in LLNs, we
compare with CoAP [123], CoCoA [29], and unreliable UDP.
CoAP is a standard LLN protocol that provides reliability
on top of UDP. It is the most promising LLN alternative to
TCP, gaining momentum in both academia [29, 38, 90, 119,
121, 129] and industry [3, 79], with adoption by Cisco [5, 41],
Nest/Google [4], and Arm [1, 2]. CoCoA [29] is a recent
proposal that augments CoAP with RTT estimation.

It is attractive to compare TCP to a variety of commer-
cial systems, as has been done by a number of studies in

TelosB Hamilton Firestorm Raspberry Pi
CPU MSP430 Cortex-M0+ Cortex-M4 Cortex-A53
RAM 10 KiB 32 KiB 64 KiB 256 MB
ROM 48 KiB 256 KiB 512 KiB SD Card

Table 2: Comparison of the platforms we used (Hamilton and
Firestorm) to TelosB and Raspberry Pi

LTE/WLANs [55, 135]. Unfortunately, multihop LLNs have
not yet reached the level of maturity to support a variety of
commercial offerings; only CoAP has an appreciable level of
commercial adoption. Other protocols are research proposals
that often (1) are implemented for now-outdated operating
systems and hardware or exist only in simulation [10, 75, 88],
(2) target a very specific application paradigm [125,130,138],
and/or (3) do not use IP [75, 88, 109, 130]. We choose CoAP
and CoCoA because they are not subject to these constraints.

Layers 1 to 3. Because it is burdensome to place a border
router with LAN connectivity within wireless range of every
low-power host (e.g., sensor node), it is common to transmit
data (e.g., readings) over multiple wireless LLN hops. Al-
though each sensor must be battery-powered, it is reasonable
to have a wall-powered LLN router node within transmission
range of it.1 This motivates Thread2 [64,87], a recently devel-
oped protocol standard that constructs a multihop LLN over
IEEE 802.15.4 links with wall-powered, always-on router
nodes and battery-powered, duty-cycled leaf nodes. We use
OpenThread [106], an open-source implementation of Thread.

Thread decouples routing from energy efficiency, providing
a full-mesh topology among routers, frequent route updates,
and asymmetric bidirectional routing for reliability. Each leaf
node duty cycles its radio, and simply chooses a core router
with good link quality, called its parent, as its next hop to all
other nodes. The duty cycling uses listen-after-send [120]. A
leaf node’s parent stores downstream packets destined for that
leaf node, until the leaf node sends it a data request message.
A leaf node, therefore, can keep its radio powered off most
of the time; infrequently, it sends a data request message to
its parent, and turns on its radio for a short interval afterward
to listen for downstream packets queued at its parent. Leaf
nodes may send upstream traffic at any time. Each node uses
CSMA-CA for medium access.

4.2 Embedded Hardware
We use two embedded hardware platforms: Hamilton [83]
and Firestorm [18]. Hamilton uses a SAMR21 SoC with a 48
MHz Cortex-M0+, 256 KiB of ROM, and 32 KiB of RAM.
Firestorm uses a SAM4L 48 MHz Cortex-M4 with 512 KiB
of ROM and 64 KiB of RAM. While these platforms are more
powerful than the TelosB [113], an older LLN platform widely

1The assumption of powered “core routers” is reasonable for most IoT use
cases, which are typically indoors. Recent IoT protocols, such as Thread [64]
and BLEmesh [63], take advantage of powered core routers.

2Thread has a large amount of industry support with a consortium already
consisting of over 100 members [6], and is used in real IoT products sold by
Nest/Google [7]. Given this trend, using Thread makes our work timely.

914 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 1: Snapshot of uplink routes in OpenThread topology
at transmission power of -8 dBm (5 hops). Node 1 is the
border router with Internet connectivity.

used in past studies, they are heavily resource-constrained
compared to a Raspberry Pi (Table 2). Both platforms use the
AT86RF233 radio, which supports IEEE 802.15.4. We use its
standard data rate, 250 kb/s. We use Hamilton/OpenThread
in our experiments; for comparison, we provide some results
from Firestorm and other network stacks in Appendix A.

Handling automatic radio features. The AT86RF233 radio
has built-in hardware support for link-layer retransmissions
and CSMA-CA. However, it automatically enters low-power
mode during CSMA backoff, during which it does not listen
for incoming frames [20]. This behavior, which we call deaf
listening, interacts poorly with TCP when radios are always
on, because TCP requires bidirectional flow of packets—data
in one direction and ACKs in the other. This may initially
seem concerning, as deaf listening is an important power-
saving feature. Fortunately, this problem disappears when
using OpenThread’s listen-after-send duty-cycling protocol,
as leaf nodes never transmit data when listening for down-
stream packets. For experiments with always-on radios, we
do not use the radio’s capability for hardware CSMA and link
retries; instead, we perform these operations in software.

Multihop Testbed. We construct an indoor LLN testbed, de-
picted in Figure 1, with 15 Hamiltons where node 1 is con-
figured as the border router. OpenThread forms a 3-to-5-hop
topology at transmission power of -8 dBm. Embedded TCP
endpoints (Hamiltons) communicate with a Linux TCP end-
point (server on Amazon EC2) via the border router. During
working hours, interference is present in the channel, due to
people in the space using Wi-Fi and Bluetooth devices in the
2.4 GHz frequency band. At night, when there are few/no
people in the space, there is much less interference.

5 Implementation of TCPlp
We seek to answer the following two questions: (1) Does
full-scale TCP fit within the limited memory of modern LLN
platforms? (2) How can we integrate a TCP implementation
from a traditional OS into an embedded OS? To this end,
we develop a TCP stack for LLNs based on the TCP imple-
mentation in FreeBSD 10.3, called TCPlp [91], on multiple
embedded operating systems, RIOT OS [24] and TinyOS [95].
We use TCPlp in our measurement study in future sections.

Although we carefully preserved the protocol logic in the
FreeBSD TCP implementation, achieving correct and perfor-

Protocol Socket Layer posix_sockets

ROM 19972 B 6216 B 5468 B
RAM (Active) 364 B 88 B 48 B
RAM (Passive) 12 B 88 B 48 B

Table 3: Memory usage of TCPlp on RIOT OS. We also
include RIOT’s posix_sockets module, used by TCPlp to
provide a Unix-like interface.

mant operation on sensor platforms was a nontrivial effort.
We had to modify the FreeBSD implementation according to
the concurrency model of each embedded network stack and
the timer abstractions provided by each embedded operating
system (Appendix A). Our other modifications to FreeBSD,
aimed at reducing memory footprint, are described below.

5.1 Connection State for TCPlp
As discussed in Appendix B, TCPlp includes features from
FreeBSD that improve standard communication, like a slid-
ing window, New Reno congestion control, zero-window
probes, delayed ACKs, selective ACKs, TCP timestamps, and
header prediction. TCPlp, however, omits some features in
FreeBSD’s TCP/IP stack. We omit dynamic window scaling,
as buffers large enough to necessitate it (≥ 64 KiB) would
not fit in memory. We omit the urgent pointer, as it not rec-
ommended for use [61] and would only complicate buffering.
Certain security features, such as host cache, TCP signatures,
SYN cache, and SYN cookies are outside the scope of this
work. We do, however, retain challenge ACKs [116].

We use separate structures for active sockets used to send
and receive bytes, and passive sockets used to listen for in-
coming connections, as passive sockets require less memory.

Table 3 depicts the memory footprint of TCPlp on RIOT
OS. The memory required for the protocol and application
state of an active TCP socket fits in a few hundred bytes, less
than 1% of the available RAM on the Cortex-M4 (Firestorm)
and 2% of that on the Cortex-M0+ (Hamilton). Although TC-
Plp includes heavyweight features not traditionally included
in embedded TCP stacks, it fits well within available memory.

5.2 Memory-Efficient Data Buffering
Existing embedded TCP stacks, such as uIP and BLIP, allow
only one TCP packet in the air, eschewing careful imple-
mentation of send and receive buffers [86]. These buffers,
however, are key to supporting TCP’s sliding window func-
tionality. We observe in §6.2 that TCPlp performs well with
only 2-3 KiB send and receive buffers, which comfortably fit
in memory even when naïvely pre-allocated at compile time.
Given that buffers dominate TCPlp’s memory usage, however,
we discuss techniques to optimize their memory usage.
5.2.1 Send Buffer: Zero-Copy
Zero-copy techniques [28, 40, 82, 98, 101] were devised for
situations where the time for the CPU to copy memory is
a significant bottleneck. Our situation is very different; the
radio, not the CPU, is the bottleneck, owing to the low band-
width of IEEE 802.15.4. By using a zero-copy send buffer,

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 915

(a) Naïve receive buffer. Note that size of advertised window +
size of buffered data = size of receive buffer.

(b) Receive buffer with in-place reassembly queue. In-sequence data
(yellow) is kept in a circular buffer, and out-of-order segments (red)
are written in the space past the received data.

Figure 2: Naïve and final TCP receive buffers

however, we can avoid allocating memory to intermediate
buffers that would otherwise be needed to copy data, thereby
reducing the network stack’s total memory usage.

In TinyOS, for example, the BLIP network stack supports
vectored I/O; an outgoing packet passed to the IPv6 layer is
specified as an iovec. Instead of allocating memory in the
packet heap for each outgoing packet, TCPlp simply creates
iovecs that point to existing data in the send buffer. This
decreases the required size of the packet heap.

Unfortunately, zero-copy optimizations were not possible
for the OpenThread implementation, because OpenThread
does not support vectored I/O for sending packets. The result
is that the TCPlp implementation requires a few kilobytes of
additional memory for the send buffer on this platform.
5.2.2 Receive Buffer: In-Place Reassembly Queue
Not all zero-copy optimizations are useful in the embedded
setting. In FreeBSD, received packets are passed to the TCP
implementation as mbufs [137]. The receive buffer and re-
assembly buffer are mbuf chains, so data need not be copied
out of mbufs to add them to either buffer or recover from
out-of-order delivery. Furthermore, buffer sizes are chosen
dynamically [122], and are merely a limit on their actual size.
In our memory-constrained setting, such a design is danger-
ous because its memory usage is nondeterministic; there is
additional memory overhead, due to headers, if the data are
delivered in many small packets instead of a few large ones.

We opted for a flat array-based circular buffer for the re-
ceive buffer in TCPlp, primarily owing to its determinism in
a limited-memory environment: buffer space is reserved at
compile-time. Head/tail pointers delimit which part of the ar-
ray stores in-sequence data. To reduce memory consumption,
we store out-of-order data in the same receive buffer, at the
same position as if they were in-sequence. We use a bitmap,
not head/tail pointers, to record where out-of-order data are
stored, because out-of-order data need not be contiguous. We
call this an in-place reassembly queue (Figure 2).

6 TCP in a Low-Power Network
In this section, we characterize how full-scale TCP interacts
with a low-power network stack, resource-constrained hard-
ware, and a low-bandwidth link.

6.1 Reducing Header Overhead using MSS
In traditional networks, it is customary to set the Maximum
Segment Size (MSS) to the link MTU (or path MTU) mi-

Fast Ethernet Wi-Fi Ethernet 802.15.4
Capacity 100 Mb/s 54 Mb/s 10 Mb/s 250 kb/s
MTU 1500 B 1500 B 1500 B 104–116 B
Tx Time 0.12 ms 0.22 ms 1.2 ms 4.1 ms

Table 4: Comparison of TCP/IP links
Header 802.15.4 6LoWPAN IPv6 TCP Total

1st Frame 11–23 B 5 B 2–28 B 20–44 B 38–107 B
nth Frame 11–23 B 5–12 B 0 B 0 B 16–35 B
Table 5: Header overhead with 6LoWPAN fragmentation

nus the size of the TCP/IP headers. IEEE 802.15.4 frames,
however, are an order of magnitude smaller than frames in
traditional networks (Table 4). The TCP/IP headers consume
more than half of the frame’s available MTU. As a result, TCP
performs poorly, incurring more than 50% header overhead.

Earlier approaches to running TCP over low-MTU links
(e.g., low-speed serial links) have used TCP/IP header com-
pression based on per-flow state [77] to reduce header over-
head. In contrast, the 6LoWPAN adaptation layer [105], de-
signed for LLNs, supports only flow-independent compression
of the IPv6 header using shared link-layer state, a clear depar-
ture from per-flow techniques. A key reason for this is that
the compressor and decompressor in an LLN (host and border
router) are separated by several IP hops3, making it desirable
for intermediate nodes to be able to determine a packet’s IP
header without per-flow context (see §10 of [105]).

That said, compressing TCP headers separately from IP
addresses using per-flow state is a promising approach to fur-
ther amortize header overhead. There is preliminary work in
this direction [22, 23], but it is based on uIP, which has one
in-flight segment, and does not fully specify how to resynchro-
nize compression state after packet loss with a multi-segment
window. It is also not officially standardized by the IETF.

Therefore, this paper takes an approach orthogonal to
header compression. We instead choose an MSS larger than
the link MTU admits, relying on fragmentation at the lower
layers to decrease header overhead. Fragmentation is han-
dled by 6LoWPAN, which acts at Layer 2.5, between the
link and network layers. Unlike end-to-end IP fragmentation,
the 6LoWPAN fragments exist only within the LLN, and are
reassembled into IPv6 packets when leaving the network.

Relying on fragmentation is effective because, as shown
in Table 5, TCP/IP headers consume space in the first frag-
ment, but not in subsequent fragments. Using an excessively
large MSS, however, decreases reliability because the loss
of one fragment results in the loss of an entire packet. Exist-
ing work [21] has identified this trade-off and investigated
it in simulation in the context of power consumption. We
investigate it in the context of goodput in a live network.

Figure 3a shows the bandwidth as the MSS varies. As

3Thread deliberately does not abstract the mesh as a single IP link. Instead,
it organizes the LLN mesh as a set of overlapping link-local scopes, using
IP-layer routing to determine the path packets take through the mesh [70].

916 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8 9
Maximum Segment Size (No. Frames)

0

20

40

60

80

TC
P

Go
od

pu
t (

kb
/s

)

uplink
downlink

(a) Effect of varying MSS

1 2 3 4 5 6 7 8
Buffer Size (No. Segments)

0

20

40

60

80

TC
P

Go
od

pu
t (

kb
/s

)

uplink
downlink

(b) Effect of varying buffer size
Figure 3: TCP goodput over one IEEE 802.15.4 hop

0 1 2 3 4 5 6 7
Time (ms)

0

5

10

15

20

Cu
rre

nt
 D

ra
w

(m
A)

Init

SPI Xfer
CSMA

Backoff
Tx Frame

Rx L2
ACK

(a) Unicast of a single frame,
measured with an oscilloscope

Ideal Empirical
0.000

0.005

0.010

0.015

In
ve

rs
e

Gp
ut

 (s
/k

b)
[L

ow
er

 is
 B

et
te

r]

95 kb/s
75 kb/s TCPlp

L4 Hdr
Unused
L3 Hdr
L2 Hdr
L4 ACKs
Radio
Link

(b) TCPlp goodput compared with
raw link bandwidth and overheads

Figure 4: Analysis of overhead limiting TCPlp’s goodput

expected, we see poor performance at a small MSS due to
header overhead. Performance gains diminish when the MSS
becomes larger than 5 frames. We recommend using an MSS
of about 5 frames, but it is reasonable to decrease it to 3 frames
if more wireless loss is expected. Despite the small frame
size of IEEE 802.15.4, we can effectively amortize header
overhead for TCP using an atypical MSS. Adjusting the
MSS is orthogonal to TCP header compression. We hope that
widespread use of TCP over 6LoWPAN, perhaps based on our
work, will cause TCP header compression to be separately
investigated and possibly used together with a large MSS.

6.2 Impact of Buffer Size
Whereas simple TCP stacks, like uIP, allow only one in-flight
segment, full-scale TCP requires complex buffering (§5.2). In
this section, we vary the size of the buffers (send buffer for up-
link experiments and receive buffer for downlink experiments)
to study how it affects the bandwidth. In varying the buffer
size, we are directly affecting the size of TCP’s flow window.
We expect throughput to increase with the flow window size,
with diminishing returns once it exceeds the bandwidth-delay
product (BDP). The result is shown in Figure 3b. Goodput
levels off at a buffer size of 3 to 4 segments (1386 B to
1848 B), indicating that the buffer size needed to fill the
BDP fits comfortably in memory. Indeed, the BDP in this
case is about 125kb/s ·0.1s≈ 1.6KiB.4

Downlink goodput at a buffer size of one segment is un-
usually high. This is because FreeBSD does not delay ACKs
if the receive buffer is full, reducing the effective RTT from
≈ 130 ms to ≈ 70 ms. Indeed, goodput is very sensitive to
RTT when the buffer size is small, because TCP exhibits
“stop-and-wait” behavior due to the small flow window.

4We estimate the bandwidth as 125 kb/s rather than 250 kb/s to account
for the radio overhead identified in §6.3.

6.3 Upper Bound on Single-Hop Goodput
We consider TCP goodput between two nodes over the IEEE
802.15.4 link, over a single hop without any border router.
Using the Hamilton/OpenThread platform, we are able to
achieve 75 kb/s.5 Figure 4b lists various sources of overhead
that limit TCPlp’s goodput, along with the ideal upper bounds
that they admit. Link overhead refers to the 250 kb/s link
capacity. Radio overhead includes SPI transfer to/from the ra-
dio (i.e., packet copying [107]), CSMA, and link-layer ACKs,
which cannot be pipelined because the AT86RF233 radio has
only one frame buffer. A full-sized 127-byte frame spends 4.1
ms in the air at 250 kb/s, but the radio takes 7.2 ms to send
it (Figure 4a), almost halving the link bandwidth available
to a single node. This is consistent with prior results [107].
Unused refers to unused space in link frames due to inefficien-
cies in the 6LoWPAN implementation. Overall, we estimate
a 95 kb/s upper bound on goodput (100 kb/s without TCP
headers). Our 75 kb/s measurement is within 25% of this
upper bound, substantially higher than prior work (Table 6).
The difference from the upper bound is likely due to network
stack processing and other real-world inefficiencies.

7 TCP Over Multiple Wireless Hops
We instrument TCP connections between Hamilton nodes in
our multi-hop testbed, without using the EC2 server.

7.1 Mitigating Hidden Terminals in LLNs
Prior work over traditional WLANs has shown that hidden
terminals degrade TCP performance over multiple wireless
hops [58]. Using RTS/CTS for hidden terminal avoidance has
been shown to be effective in WLANs. This technique has an
unacceptably high overhead in LLNs [136], however, because
data frames are small (Table 4), comparable in size to the
additional control frames required. Prior work in LLNs has
carefully designed application traffic, using rate control [71,
88] and link-layer delays [136], to avoid hidden terminals.

But prior work does not explore these techniques in the con-
text of TCP. Unlike protocols like CoAP and simplified TCP
implementations like uIP, a full-scale TCP flow has a multi-
segment sliding window of unacknowledged data, making it
unclear a priori whether existing LLN techniques will be
sufficient. In particular, rate control seems sufficient because
of bi-directional packet flow in TCP (data in one direction
and ACKs in the other). So, rather than applying rate control,
we attempt to avoid hidden terminals by adding a delay d
between link-layer retries in addition to CSMA backoff. After
a failed link transmission, a node waits for a random duration
between 0 and d, before retransmitting the frame. The idea is

5Appendix A.4 provides the corresponding goodput figures for Hamil-
ton/GNRC and Firestorm/BLIP platforms, for comparison.

6One study [47] achieves ≈ 16 kb/s over multiple hops using the Linux
TCP stack. We do not include it in Table 6 because it does not capture the
resource constraints of LLNs—it uses traditional computers (PCs) for the end
hosts—and does not consider hidden terminals—each hop uses a different
wireless channel. It also uses TCP as a workload to evaluate a new link-layer
protocol (burst forwarding), instead of evaluating TCP in its own right

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 917

[144] [22] [67] [86] [69, 70] This Paper (Hamilton Platform)
TCP Stack uIP uIP uIP BLIP Arch Rock TCPlp (RIOT OS, OpenThread)
Max. Seg Size 1 Frame 1 Frame 4 Frames 1 Frame 1024 bytes 5 Frames
Window Size 1 Seg. 1 Seg. 1 Seg. 1 Seg. 1 Seg. 1848 bytes (4 Seg.)
Goodput (One Hop) 1.5 kb/s ≈ 6.4 kb/s ≈ 12 kb/s ≈ 4.8 kb/s 15 kb/s 75 kb/s
Goodput (Multi-Hop) ≈ 0.55 kb/s ≈ 1.9 kb/s ≈ 12 kb/s ≈ 2.4 kb/s 9.6 kb/s 20 kb/s

Table 6: Comparison of TCPlp to existing TCP implementations used in network studies over IEEE 802.15.4 networks.6 Goodput
figures obtained by reading graphs in the original paper (rather than stated numbers) are marked with the ≈ symbol.

Seg. Loss

0 25 50 75 100
Maximum Link Delay (ms)

0.00

0.02

0.04

0.06

0.08

0.10

Se
gm

en
t L

os
s (

1
Ho

p)

Goodput
Model Goodput (§7.4)

0

20

40

60

80
Go

od
pu

t (
kb

/s
)

(a) TCP goodput, one hop

Seg. Loss

0 25 50 75 100
Maximum Link Delay (ms)

0.00

0.02

0.04

0.06

0.08

0.10
Se

gm
en

t L
os

s (
3

Ho
ps

)
Goodput

Ideal Goodput (§7.2)
Model Goodput (§7.4)

0

20

40

60

80

Go
od

pu
t (

kb
/s

)

(b) TCP goodput, three hops

0 5 10 15 20 25 30 40 50 60 80 100
Maximum Link Delay (ms)

0

500

1000

1500

2000

2500

Ro
un

d-
Tr

ip
 T

im
e

(m
s)

(c) RTT, three hops (outliers omitted)

0 50 100
Maximum Link Delay (ms)

0

100000

200000

300000

Fr
am

es
 T

ra
ns

m
itt

ed

(d) Total frames sent, three hops
Figure 5: Effect of varying time between link-layer retransmissions. Reported “segment loss” is the loss rate of TCP segments,
not individual IEEE 802.15.4 frames. It includes only losses not masked by link-layer retries.

that if two frames collide due to a hidden terminal, the delay
will prevent their link-layer retransmissions from colliding.

We modified OpenThread, which previously had no delay
between link retries, to implement this. As expected, single-
hop performance (Figure 5a) decreases as the delay between
link retries increases; hidden terminals are not an issue in
that setting. Packet loss is high for the multihop experiment
(Figure 5b) when the link retry delay is 0, as is expected
from hidden terminals. Adding a small delay between link
retries, however, effectively reduces packet loss. Making
the delay too large raises the RTT (Figure 5c).

We prefer a smaller frame/segment loss rate, even if good-
put stays the same, in order to make more efficient use of
network resources. Therefore, we prefer a moderate delay
(d = 40 ms) to a small delay (d = 5 ms), even though both
provide the same goodput, because the frame and segment
loss rates are smaller when d is large (Figures 5b and 5d).

7.2 Upper Bound on Multi-Hop Goodput
Comparing Figures 5a and 5b, goodput over three wireless
hops is substantially smaller than goodput over a single hop.
Prior work has observed similar throughput reductions over
multiple hops [86, 107]. It is due to radio scheduling con-
straints inherent in the multihop setting, which we describe
in this section. Let B be the bandwidth over a single hop.

Consider a two-hop setup: S→ R1→ D. R1 cannot receive
a frame from S while sending a frame to D, because its ra-
dio cannot transmit and receive simultaneously. Thus, the
maximum achievable bandwidth over two hops is B

2 .
Now consider a three-hop setup: S→R1→R2→D. By the

same argument, if a frame is being transferred over R1→ R2,
then neither S→ R1 nor R2→ D can be active. Furthermore,
if a frame is being transferred over R2→ D, then R1 can hear
that frame. Therefore, S→ R1 cannot transfer a frame at that
time; if it does, then its frame will collide at R1 with the
frame being transferred over R2 → D. Thus, the maximum

bandwidth is B
3 . We depict this ideal upper bound in Figure

5b, taking B to be the ideal single-hop goodput from §6.3.
In setups with more than three hops, every set of three adja-

cent hops is subject to this constraint. The first hop and fourth
hop, however, may be able to transfer frames simultaneously.
Therefore, the maximum bandwidth is still B

3 . In practice,
goodput may fall slightly because transmissions from a node
may interfere with nodes multiple hops away, even if they can
only be received by its immediate neighbors.

We made empirical measurements with d = 40 ms to vali-
date this analysis. Goodput over one hop was 64.1 kb/s; over
two hops, 28.3 kb/s; over three hops, 19.5 kb/s; and over four
hops, 17.5 kb/s. This roughly fits the model.

This analysis justifies why the same window size works
well for both the one-hop experiments and the three-hop exper-
iments in §7.1. Although the RTT is three times higher, the
bandwidth-delay product is approximately the same. Cru-
cially, this means that the 2 KiB buffer size we deter-
mined in §6.2, which fits comfortably in memory, remains
applicable for up to three wireless hops.
7.3 TCP Congestion Control in LLNs
Recall that small send/receive buffers of only 1848 bytes (4
TCP segments) each are enough to achieve good TCP perfor-
mance. This profoundly impacts TCP’s congestion control
mechanism. For example, consider Figure 5b. It is remarkable
that throughput is almost the same at d = 0 ms and d = 30
ms, despite having 6% packet loss in the first case and less
than 1% packet loss in the second.

Figure 6a depicts the congestion window over a 100 sec-
ond interval during the d = 0 ms experiment.7 Interestingly,

7All congestion events in Figure 6a were fast retransmissions, except
for one timeout at t = 569 s. cwnd is temporarily set to 1 MSS during fast
retransmissions due to an artifact of FreeBSD’s implementation of SACK
recovery. For clarity, we cap cwnd at the size of the send buffer, and we
remove fluctuations in cwnd which resulted from “bad retransmissions” that
the FreeBSD implementation corrected in the course of its normal execution.

918 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

500 520 540 560 580 600
Time (seconds)

0

500

1000

1500

2000

Si
ze

 (b
yt

es
)

cwnd ssthresh

(a) TCP cwnd for d = 0, three hops

0 25 50 75 100
Maximum Link Delay (ms)

0

100

200

300

Co
un

t

Timeouts
Fast Retransmissions

(b) TCP loss recovery, three hops
Figure 6: Congestion behavior of TCP over IEEE 802.15.4

the cwnd graph is far from the canonical sawtooth shape
(e.g., Figure 11(b) in [26]); cwnd is almost always maxed
out even though losses are frequent (6%). This is specific to
small buffers. In traditional environments, where links have
higher throughput and buffers are large, it takes longer for
cwnd to recover after packet loss, greatly limiting the send-
ing rate with frequent packet losses. In contrast, in LLNs,
where send/receive buffers are small, cwnd recovers to
the maximum size quickly after packet loss, making TCP
performance robust to packet loss.

Congestion behavior also provides insight into loss pat-
terns, as shown in Figure 6b. Fast retransmissions (used for
isolated losses) become less frequent as d increases, suggest-
ing that they are primarily caused by hidden-terminal-related
losses. Timeouts do not become less frequent as d is increased,
suggesting that they are caused by something else.

7.4 Modeling TCP Goodput in an LLN
Our findings in §7.3 suggest that, in LLNs, cwnd is limited by
the buffer size, not packet loss. To validate this, we analyti-
cally model TCP performance according to our observations
in §7.3, and then check if the resulting model is consistent
with the data. Comprehensive models of TCP, which take
window size limitations into account, already exist [108]; in
contrast, our model is intentionally simple to provide intuition.

Observations in §7.3 suggest that we can neglect the time
it takes the congestion window to recover after packet loss.
So, we model a TCP connection as binary: either it is sending
data with a full window, or it is not sending new data because
it is recovering from packet loss. According to this model, a
TCP flow alternates between bursts when it is transmitting
at a full window, and rests when it is in recovery and not
sending new data. Burst lengths depend on the packet loss
rate p and rest lengths depend on RTT. This approach leads
to the following model (full derivation is in Appendix C):

B =
MSS
RTT

· 1
1
w +2p

(1)

where B, the TCP goodput, is written in terms of the maximum
segment size MSS, round-trip time RTT, packet loss rate p
(0 < p < 1), and window size w (sized to BDP, in packets).
Figures 5a and 5b include the predicted goodput as dotted
lines, calculated according to Equation 1 using the empirical
RTT and segment loss rate for each experiment. Our model
of TCP goodput closely matches the empirical results.

An established model of TCP outside of LLNs is [92, 103]:

B =
MSS
RTT

·

√
3

2p
(2)

Equation 2 fundamentally relies on there being many com-
peting flows, so we do not expect it to match our empirical
results from §7.3. But, given that existing work examining
TCP in LLNs makes use of this formula to ground new algo-
rithms [72], the differences between Equations 1 and 2 are
interesting to study. In particular, Equation 1 has an added
1
w in the denominator and depends on p rather than

√
p, ex-

plaining, mathematically, how TCP in LLNs is more robust to
small amounts of packet loss. We hope Equation 1, together
with Equation 4 in Appendix C, will provide a foundation for
future research on TCP in LLNs.

8 TCP in LLN Applications
To demonstrate that TCP is practical for real IoT use cases,
we compare its performance to that of CoAP, CoCoA, and un-
reliable UDP in three workloads inspired by real application
scenarios: web server, sense-and-send, and event detection.
We evaluate the protocols over multiple hops with duty-cycled
radios and wireless interference, present in our testbed in the
day (§4.2). In our experiments, nodes 12–15 (Figure 1) send
data to a server running on Amazon EC2. The RTT from the
border router to the server was ≈ 12 ms, much smaller than
within the low-power mesh (≈ 100-300 ms).

In our preliminary experiments, we found that in the pres-
ence of simultaneous TCP flows, tail drops at a relay node
significantly impacted fairness. Implementing Random Early
Detection (RED) [54] with Explicit Congestion Notification
(ECN) support solved this problem. Therefore, we use RED
and ECN for experiments in this section with multiple flows.
While such solutions have sometimes been problematic since
they are implemented in routers, they are more natural in
LLNs because the intermediate “routers” relaying packets in
an LLN typically also participate in the network as hosts.

We generally use a smaller MSS (3 frames) in this section,
because it is more robust to interference in the day (§6). We
briefly discuss how this affects our model in Appendix C, but
leave a rigorous treatment to future work.

Running TCP in these application scenarios motivates
Adaptive Duty Cycle and Finer-Grained Link Queue
Management, which we introduce below as they are needed.

8.1 Web Server Application Scenario
To study TCP with multiple wireless hops and duty cycling,
we begin with a web server hosted on a low-power device.
We compare HTTP/TCP and CoAP/UDP (§4.1).
8.1.1 Latency Analysis
An HTTP request requires two round-trips: one to establish
a TCP connection, and another for request/response. CoAP
requires only one round trip (no connection establishment)
and has smaller headers. Therefore, CoAP has a lower latency

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 919

CoAP HTTP
0

1000
2000
3000
4000

La
te

nc
y

(m
s)

(a) No duty cycling

CoAP HTTP
0

1000
2000
3000
4000

La
te

nc
y

(m
s)

(b) 1 s sleep interval

CoAP HTTP
0

1000
2000
3000
4000

La
te

nc
y

(m
s)

(c) 1 s sleep interval
with adaptive duty cycle

Figure 7: Latency of web request: CoAP vs. HTTP/TCP

than HTTP/TCP when using an always-on link (Figure 7a).
Even so, the latency of HTTP/TCP in this case is well below
1 second, not so large as to degrade user experience.

We now explore how a duty-cycled link affects the latency.
Recall that leaf nodes in OpenThread (§4.1) periodically poll
their parent to receive downstream packets, and keep their
radios in a low-power sleep state between polls. We set the
sleep interval—the time that a node waits between polls—to
1 s and show the latency in Figure 7b. Interestingly, HTTP’s
minimum observed latency is much higher than CoAP’s, more
than is explained by its additional round trip.

Upon investigation, we found that this is because the self-
clocking nature of TCP [76] interacts poorly with the
duty-cycled link. Concretely, the web server receives the
SYN packet when it polls its parent, and sends the SYN-ACK
immediately afterward, at the beginning of the next sleep in-
terval. The web server therefore waits for the entire sleep
interval before polling its parent again to receive the HTTP
request, thereby experiencing the worst-case latency for the
second round trip. We also observed this problem for batch
transfer over TCP; TCP’s self-clocking behavior causes it to
consistently experience the worst-case round-trip time.

To solve this problem, we propose a technique called Adap-
tive Duty Cycling. After the web server receives a SYN, it re-
duces the sleep interval in anticipation of receiving an HTTP
request. After serving the request, it restores the sleep interval
to its old value. Unlike early LLN link-layer protocols like S-
MAC [140] that use an adaptive duty cycle, we use transport-
layer state to inform the duty cycle. Figure 7c shows the
latency with adaptive duty cycling, where the sleep interval
is temporarily reduced to 100 ms after connection establish-
ment. With adaptive duty-cycling, the latency overhead of
HTTP compared to CoAP is small, despite larger headers
and an extra round trip for connection establishment.

Adaptive duty cycling is also useful in high-throughput
scenarios, and in situations with persistent TCP connections.
We apply adaptive duty cycling to one such scenario in §8.2.

8.1.2 Throughput Analysis
In §8.1.1, the size of the web server’s response was 82 bytes,
intentionally small to focus on latency. In a real application,
however, the response may be large (e.g., it may contain a
batch of sensor readings). In this section, we explore larger
response sizes. We use a short sleep interval of 100 ms. This

0 2500 5000 7500 10000
Response Size (bytes)

0

2000

4000

6000

8000

Re
sp

on
se

 T
im

e
(m

s) CoAP
HTTP

(a) Response time vs. size

CoAP HTTP
0

20

40

60

80

100

Re
sp

on
se

 T
im

e
(s

)

(b) 50 KiB response size

Figure 8: Goodput: CoAP vs. HTTP/TCP

is realistic because, using adaptive duty cycling, the sleep
interval may be longer when the node is idle, and reduced to
100 ms only when transferring the response.

Figure 8a shows the total time from dispatching the re-
quest to receiving the full response, as we vary the size of
the response. It plots the median time, with quartiles shown
in error bars. HTTP takes longer than CoAP when the re-
sponse size is small (consistent with Figure 7), but CoAP takes
longer when the response size is larger. This indicates that
while HTTP/TCP has a greater fixed-size overhead than CoAP
(higher y-intercept), it transfers data at a higher throughput
(lower slope). TCP achieves a higher throughput than CoAP
because CoAP sends response segments one-at-a-time (“stop
and wait”), whereas TCP allows multiple segments to be in
flight simultaneously (“sliding window”).

To quantify the difference in throughput, we compare
TCP and CoAP when transferring 50 KiB of data in Fig-
ure 8b. TCP achieves 40% higher throughput compared
to CoAP, over multiple hops and a duty-cycled link.
8.1.3 Power Consumption
TCP consumes more energy than CoAP due to the extra round-
trip at the beginning. In practice, however, a web server is
interactive, and therefore will be idle most of the time. Thus,
the idle power consumption dominates. For example, TCP
keeps the radio on 35% longer than CoAP for a response size
of 1024 bytes, but if the user makes one request every 100
seconds on average, this difference drops to only 0.35%.

Thus, we relegate in-depth power measurements to the
sense-and-send application (§8.2), which is non-interactive.

8.2 Sense-and-Send Application Scenario
We turn our focus to the common sense-and-send paradigm,
in which devices periodically collect sensor readings and send
them upstream. For concreteness, we model our experiments
on the deployment of anemometers in a building, a real-world
LLN use case described in Appendix D. Anemometers collect
measurements frequently (once per second), making heavy
use of the transport protocol; given that our focus is on trans-
port performance, this makes anemometers a good fit for our
study. Other sensor deployments (e.g., temperature, humidity,
building occupancy, etc.) sample data at a lower rate (e.g.,
0.05 Hz), but are otherwise similar. Thus, we expect our re-
sults to generalize to other sense-and-send applications.

Nodes 12–15 (Figure 1) each generate one 82-byte reading
every 1 second, and send it to the cloud server using either

920 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

CoAP CoCoA TCPlp
0

2

4

6

Ra
di

o
Du

ty
 C

yc
le

 (%
)

No Batching
Batching

(a) Radio duty cycle
CoAP CoCoA TCPlp

0

2

4

6

CP
U

Du
ty

 C
yc

le
 (%

) No Batching
Batching

(b) CPU duty cycle
Figure 9: Effect of batching on power consumption

TCP or CoAP. We use most of the remaining RAM as an
application-layer queue to prevent data from being lost if
CoAP or TCP is in backoff after packet loss and cannot send
out new data immediately. We make use of adaptive duty
cycling for both TCP and CoAP, with a base sleep interval of
four minutes (OpenThread’s default) and decreasing it to 100
ms8 when a TCP ACK or CoAP response is expected.

We measure a solution’s reliability as the proportion of
generated readings delivered to the server. Given that TCP and
CoAP both guarantee reliability, a reliability measurement of
less than 100% is caused by overflow of the application-layer
queue due to poor network conditions preventing data from
being reliably communicated as fast as they are generated.
Generating data more slowly would result in higher reliability.
8.2.1 Performance in Favorable Conditions
We begin with experiments in our testbed at night, when there
is less wireless interference. We compare three setups: (1)
CoAP, (2) CoCoA, and (3) TCPlp. We also compare two
sending scenarios: (1) sending each sensor reading right away
(“No Batching”), and (2) sending sensor readings in batches
of 64 (“Batching”) [89]. We ensure that packets in a CoAP
batch are the same size as segments in TCP (five frames).

All setups achieved 100% reliability due to end-to-end
acknowledgments (figures are omitted for brevity). Figures 9a
and 9b also show that all the three protocols consume similar
power; TCP is comparable to LLN-specific solutions.

Both the radio and CPU duty cycle are significantly
smaller with batching than without batching. By sending
data in batches, nodes can amortize the cost of sending data
and waiting for a response. Thus, batching is the more realistic
workload, so we use it to continue our evaluation.
8.2.2 Resilience to Packet Loss
In this section, we inject uniformly random packet loss at the
border router and measure each solution.The result is shown
in Figure 10. Note that the injected loss rate corresponds to
the packet-level loss rate after link retries and 6LoWPAN re-
assembly. Although we plot loss rates up to 21%, we consider
loss rates > 15% exceptional; we focus on the loss rate up
to 15%. A number of WSN studies have already achieved
> 90% end-to-end packet delivery, using only link/routing
layer techniques (not transport) [46, 84, 85]. In our testbed
environment, we have not observed the loss rate exceed 15%
for an extended time, even with wireless interference.

8100 ms is comparable to ContikiMAC’s default sleep interval of 125 ms.

0.00 0.05 0.10 0.15 0.20
Injected Loss Rate

0

25

50

75

100

Re
lia

bi
lit

y
(%

)

TCPlp
CoCoA
CoAP

(a) Reliability

TCPlp
TCPlp RTOs
CoCoA
CoAP

0.00 0.05 0.10 0.15 0.20
Injected Loss Rate

0

20

40

60

Re
tra

ns
m

its
 p

er
 1

0
M

in
.

(b) Transport-layer retries

TCPlp
CoCoA
CoAP
Ideal

0.00 0.05 0.10 0.15 0.20
Injected Loss Rate

0

2

4

6

8

Ra
di

o
Du

ty
 C

yc
le

 (%
)

(c) Radio duty cycle

0.00 0.05 0.10 0.15 0.20
Injected Loss Rate

0

2

4

6

8

CP
U

Du
ty

 C
yc

le
 (%

) TCPlp
CoCoA
CoAP

(d) CPU duty cycle
Figure 10: Performance with injected packet loss

Both CoAP and TCP achieve nearly 100% reliability
at packet loss rates less than 15%, as shown in Figure 10a. At
loss rates greater than 9%, CoCoA performs poorly. The rea-
son is that CoCoA attempts to measure RTT for retransmitted
packets, and conservatively calculates the RTT relative to the
first transmission. This results in an inflated RTT value that
causes CoCoA to delay longer before retransmitting, causing
the application-layer queue to overflow. Full-scale TCP is
immune to this problem despite measuring the RTT, because
the TCP timestamp option allows TCP to unambiguously
determine the RTT even for retransmitted segments.

Figures 10c and 10d show that, overall, TCP and CoAP
perform comparably in terms of radio and CPU duty cy-
cle. At 0% injected loss, TCPlp has a slightly higher duty
cycle, consistent with Figure 9. At moderate packet loss, TC-
Plp appears to have a slightly lower duty cycle. This may be
due to TCP’s sliding window, which allows it to tolerate some
ACK losses without retries. Additionally, Figure 10b shows
that, although most of TCP’s retransmissions are explained by
timeouts, a significant portion were triggered in other ways
(e.g., duplicate ACKs). In contrast, CoAP and CoCoA rely
exclusively on timeouts, which has intrinsic limitations [143].

With exceptionally high packet loss rates (>15%), CoAP
achieves higher reliability than TCP, because it “gives up”
after just 4 retries; it exponentially increases the wait time
between those retries, but then resets its RTO to 3 seconds
when giving up and moving to the next packet. In contrast,
TCP performs up to 12 retries with exponential backoff. Thus,
TCP backs off further than CoAP upon consecutive packet
losses, witnessed by the smaller retransmission count in Fig-
ure 10b, causing the application-layer queue to overflow more.
This performance gap could be filled by parameter tuning.

We also consider an ideal “roofline” protocol to calculate a
fairly loose lower bound on the duty cycle. This ideal proto-
col has the same header overhead as TCP, but learns which

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 921

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223
Hour

0

2

4

6

8

10

Ra
di

o
Du

ty
 C

yc
le

 (%
)

TCPlp
CoAP

Figure 11: Radio duty cycle of TCP and CoAP in a lossy
wireless environment, in one representative trial (losses are
caused by natural human activity)

packets were lost for “free,” without using ACKs or running
MMC. Thus, it turns on its radio only to send out data and
retransmit lost packets. The real protocols have much higher
duty cycles than the ideal protocol would have (Figure 10c),
suggesting that a significant amount of their overhead stems
from determining which packets were lost—polling the par-
ent node for downstream TCP ACKs/CoAP responses. This
gap could be reduced by improving OpenThread’s MMC pro-
tocol. For example, rather than using a fixed sleep interval of
100 ms when an ACK is expected, one could use exponential
backoff to increase the sleep interval if an ACK is not quickly
received. We leave exploring such ideas to future work.

8.2.3 Performance in Lossy Conditions
We compare the protocols over the course of a full day in our
testbed, to study the impact of real wireless interference asso-
ciated with human activity in an office. We focus on TCPlp
and CoAP since they were the most promising protocols from
the previous experiment. To ensure that TCPlp and CoAP
are subject to similar interference patterns, we (1) run them
simultaneously, and (2) hardcode adjacent TCPlp and CoAP
nodes to have the same first hop in the multihop topology.

Improving Queue Management. OpenThread’s queue man-
agement interacts poorly with TCP in the presence of inter-
ference. When a duty-cycled leaf node sends a data request
message to its parent, it turns its radio on and listens until it re-
ceives a reply (called an “indirect message”). In OpenThread,
the parent finishes sending its current frame (which may re-
quire link retries in the presence of interference), and then
sends the indirect message. The duty-cycled leaf node keeps
its radio on during this time, causing its radio duty cycle to in-
crease. This is particularly bad for TCP, as its sliding window
makes it more likely for the parent node to be in the middle of
sending a frame when it receives a data request packet from
a leaf node. Thus, we modified OpenThread to allow in-
direct messages to preempt the current frame in between
link-layer retries, to minimize the time that duty-cycled leaf
nodes must wait for a reply with their radios on. Both TCP
and CoAP benefitted from this; TCP benefitted more because
it suffered more from the problem to begin with.

Power Consumption. To improve power consumption for
both TCP and CoAP, we adjusted parameters according to

Protocol Reliability Radio DC CPU DC
TCPlp 99.3% 2.29% 0.973%
CoAP 99.5% 1.84% 0.834%
Unrel., no batch 93.4% 1.13% 0.52%
Unrel., with batch 95.3% 0.734% 0.30%

Table 7: Performance in the testbed over a full day, averaged
over multiple trials. The ideal protocol (§8.2.2) would have a
radio DC of≈ 0.63%–0.70% under similarly lossy conditions.

the lossy environment: (1) we enabled link-layer retries for
indirect messages, (2) we decreased the data request timeout
and performed link-layer retries more rapidly for indirect
messages, to deliver them to leaves more quickly, and (3)
given the high level of daytime interference, we decreased the
MSS from five frames to three frames (as in §8).

Figure 11 depicts the radio duty cycle of TCP and CoAP for
a trial representative of our overall results. CoAP maintains
a lower duty cycle than TCPlp outside of working hours,
when there is less interference; TCPlp has a slightly lower
duty cycle than CoAP during working hours, when there
is more wireless interference. TCPlp’s better performance
at a higher loss rate is consistent with our results from §8.2.2.
At a lower packet loss rate, TCP performs slightly worse
than CoAP. This could be due to hidden terminal losses; more
retries, on average, are required for indirect messages for TCP,
causing leaf nodes to stay awake longer. Overall, CoAP and
TCPlp perform similarly (Table 7).
8.2.4 Unreliable UDP
As a point of comparison, we repeat the sense-and-send exper-
iment using a UDP-based protocol that does not provide relia-
bility. Concretely, we run CoAP in “nonconfirmable” mode, in
which it does not use transport-layer ACKs or retransmissions.
The result is in the last two rows of Table 7. Compared to
unreliable UDP, reliable approaches increase the radio/CPU
duty cycle by 3x, in exchange for nearly 100% reliability.
That said, the corresponding decrease in battery life will be
less than 3x, because other sources of power consumption
(reading from sensors, idle current) are also significant.

For other sense-and-send applications that sample at a
lower rate, TCP and CoAP would see higher reliability (less
application queue loss), but UDP would not similarly benefit
(no application queue). Furthermore, the power consumption
of TCP, CoAP, and unreliable UDP would all be closer to-
gether, given that the radio and CPU spend more time idle.

8.3 Event Detection Application Scenario
Finally, we consider an application scenario where multiple
flows compete for available bandwidth in an LLN. One such
scenario is event detection: sensors wait until an interesting
event occurs, at which point they report data upstream at a
high data rate. Because such events tend to be correlated,
multiple sensors send data simultaneously.

Nodes 12-15 in our testbed simultaneously transmit data
to the EC2 instance (Figure 1), which measures the goodput

922 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

CoAP

0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

CoCoA

0 1 2 3 4 5
Offered load per flow (kb/s)

0

1

2

3

4

5

Go
od

pu
t p

er
 fl

ow
 (k

b/
s)

TCP

Figure 12: CoAP, CoCoA, and TCP with four competing flows

of each flow. We use the same duty-cycling policy as in §8.2.
We divide each flow into 40-second intervals, measure the
goodput in each interval, and compute the median and quar-
tiles of goodput across all flows and intervals. The median
gives a sense of aggregate goodput, and the quartiles gives a
sense of fairness (quartiles close to the median are better).

Figure 12 shows the median and quartiles (as error bars) as
the offered load increases. For small offered load, the per-flow
goodput increases linearly. Once the aggregate load saturates
the network, goodput declines slightly and the interquartile
range increases, due to inefficiences in independent flows
competing for bandwidth. Overall, TCP performs similarly
to CoAP and CoCoA, indicating that TCP’s congestion
control remains effective despite our observations in §7.3
that it behaves differently in LLNs.

9 Conclusion
TCP is the de facto reliability protocol in the Internet. Over
the past 40 years, new physical-, datalink-, and application-
layer protocols have evolved alongside TCP, and supporting
good TCP performance was a consideration in their design.
TCP is the obvious performance baseline for new transport-
layer proposals. To warrant adoption, novel transports must
be much better than TCP in the intended application domain.

In contrast, when LLN research flourished two decades
ago, LLN hardware could not run full-scale TCP. The original
system architecture for networked sensors [68], for example,
targeted an 8-bit MCU with only 512 bytes of memory. It
naturally became taken for granted that TCP is too heavy
for LLNs. Furthermore, contemporary research on TCP in
WLANs [27] suggested that TCP would perform poorly in
LLNs even if the resource constraints were surmounted.

In revisiting the TCP question, after the resource constraints
relaxed, we find that the expected pitfalls of wireless TCP
actually do not carry over to LLNs. Although naïve TCP in-
deed performs poorly in LLNs, this is not due to fundamental
problems with TCP as were observed in WLANs. Rather, it
is caused by incompatibilities with a low-power link layer,
which likely arose because canonical LLN protocols were
developed in the absence of TCP considerations. We show
how to fix these incompatibilities while preserving seamless
interoperability with other TCP/IP networks. This enables a
viable TCP-based transport architecture for LLNs.

Our results have several implications for LLNs moving
forward. First, the use of lightweight protocols that emu-
late part of TCP’s functionality, like CoAP, needs to be

reconsidered. Protocol stacks like OpenThread should sup-
port full-scale TCP as an option. TCP should also serve as a
benchmark to assess new LLN transport proposals.

Second, full-scale TCP will influence the design of net-
worked systems using LLNs. Such systems are presently
designed with application-layer gateways in mind (§3). Using
TCP/IP in the LLN itself would allow the use of commodity
network management tools, like firewalls and NIDS. TCP
would also allow the application-layer gateway to be replaced
with a network-layer router, allowing clients to interact with
LLN applications in much the same way as a Wi-Fi router
allows users to interact with web applications. This is much
more flexible than the status quo, where each LLN application
needs application-specific functionality to be installed at the
gateway [141]. In cases where a new LLN transport protocol
is truly necessary, the new protocol may be wise to consider
the byte-stream abstraction of TCP. This would allow the
application-layer gateway to be replaced by a transport-layer
gateway. The mere presence of a transport layer, distinct from
the application layer, goes a long way to providing interoper-
ability with the rest of the Internet.

Third, UDP-based protocols will still have a place in
LLNs, just as they have a place in the Internet. UDP
is used for applications that benefit from greater control
of segment transmission and loss response than TCP pro-
vides. These are typically real-time or multimedia applica-
tions where losing information is preferable to late delivery.
It is entirely seemly for some sensing applications in LLNs,
particularly those with similar real-time constraints, to trans-
fer data using UDP-based protocols, even if TCP is an option.
But TCP still benefits such applications by providing a reli-
able channel for control information. For example, TCP may
be used for device configuration, or to provide a shell for
debugging, without yet another reliability protocol.

In summary, LLN-class devices are ready to become first-
class citizens of the Internet. To this end, we believe that TCP
should have a place in the LLN architecture moving forward,
and that it will help put the “I” in IoT for LLN-class devices.

Acknowledgments
We thank the anonymous reviewers, including in prior submis-
sions, and our shepherd, Keith Winstein, for their invaluable
feedback. We are thankful to researchers in the BETS research
group, including Kaifei Chen, Gabe Fierro, and Jack Kolb,
for their feedback on early drafts of this paper, and to Prabal
Dutta and Sylvia Ratnasamy for their advice and discussion.
We also thank Albert Goto for his help with the LLN testbed.

This research is supported by the Department of Energy
Grant DE-EE0007685, California Energy Commission, Intel
Corporation, NSF Grant CPS-1239552, Fulbright Scholarship
Program, UC Berkeley, and NSF Graduate Research Fellow-
ship Program under Grant DGE-1752814. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 923

References
[1] Device management connect. https:

//www.arm.com/products/iot/pelion-iot-
platform/device-management/connect. Ac-
cessed: 2018-09-09.

[2] Java speaks CoAP. https://community.arm.com/
iot/b/blog/posts/java-speaks-coap. Accessed:
2018-09-09.

[3] MQTT and CoAP, IoT protocols. https:
//www.eclipse.org/community/eclipse_
newsletter/2014/february/article2.php.
Accessed: 2018-09-09.

[4] OpenThread. https://openthread.io/. Accessed:
2018-09-09.

[5] Software configuration guide, Cisco IOS re-
lease 15.2(5)ex (catalyst digital building series
switches). https://www.cisco.com/c/en/us/
td/docs/switches/lan/catalyst_digital_
building_series_switches/software/15-
2_5_ex/configuration_guide/b_1525ex_
consolidated_cdb_cg/b_1525ex_consolidated_
cdb_cg_chapter_0111101.html. Accessed: 2018-
09-09.

[6] Thread group. https://www.threadgroup.org/
thread-group#OurMembers. Accessed: 2018-09-11.

[7] What is Thread. https://www.threadgroup.org/
What-is-Thread#threadready. Accessed: 2018-09-
12.

[8] ZeroMQ. http://zeromq.org/. Accessed: 2019-01-
29.

[9] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock.
Host-to-host congestion control for TCP. IEEE Com-
munications Surveys & Tutorials, 12(3), 2010.

[10] M. M. Alam and C. S. Hong. CRRT: congestion-aware
and rate-controlled reliable transport in wireless sensor
networks. IEICE Transactions on Communications,
92(1), 2009.

[11] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data center TCP (DCTCP). In SIGCOMM. ACM,
2010.

[12] M. Allman. TCP byte counting refinements. ACM
SIGCOMM Computer Communication Review, 29(3),
1999.

[13] M. Allman. TCP congestion control with appropriate
byte counting (ABC). RFC 3465, 2003.

[14] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing
TCP’s loss recovery using limited transmit. RFC 3042,
2000.

[15] M. Allman, D. Glover, and L. Sanchez. Enhancing
TCP over satellite channels using standard mechanisms.
RFC 2488, 1999.

[16] M. Allman and V. Paxson. On estimating end-to-end
network path properties. ACM SIGCOMM Computer
Communication Review, 29(4), 1999.

[17] M. Allman, V. Paxson, and E. Blanton. TCP congestion
control. RFC 5681, 2009.

[18] M. P Andersen, G. Fierro, and D. E. Culler. System de-
sign for a synergistic, low power mote/BLE embedded
platform. In IPSN. ACM/IEEE, 2016.

[19] E. Arens, A. Ghahramani, R. Przybyla, M. P Ander-
sen, S. Min, T. Peffer, P. Raftery, M. Zhu, V. Luu, and
H. Zhang. Measuring 3D indoor air velocity via an
inexpensive low-power ultrasonic anemometer. Energy
and Buildings, 211, 2020.

[20] Atmel Corporation. Low Power, 2.4GHz Transceiver
for ZigBee, RF4CE, IEEE 802.15.4, 6LoWPAN, and
ISM Applications, 2014. Preliminary Datasheet.

[21] A. Ayadi, P. Maillé, and D. Ros. TCP over low-power
and lossy networks: tuning the segment size to mini-
mize energy consumption. In NTMS. IEEE, 2011.

[22] A. Ayadi, P. Maillé, D. Ros, L. Toutain, and T. Zheng.
Implementation and evaluation of a TCP header com-
pression for 6LoWPAN. In IWCMC. IEEE, 2011.

[23] A. Ayadi, D. Ros, and L. Toutain. TCP header compres-
sion for 6LoWPAN: draft-aayadi-6lowpan-tcphc-01.
Technical report, 2010. https://tools.ietf.org/
id/draft-aayadi-6lowpan-tcphc-01.

[24] E. Baccelli, C. Gündoğan, O. Hahm, P. Kietzmann,
M. S. Lenders, H. Petersen, K. Schleiser, T. C. Schmidt,
and M. Wählisch. RIOT: an open source operating
system for low-end embedded devices in the IoT. IEEE
Internet of Things Journal, 2018.

[25] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz.
The effects of asymmetry on TCP performance. In
MobiCom. ACM, 1997.

[26] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and
R. H. Katz. A comparison of mechanisms for improv-
ing TCP performance over wireless links. IEEE/ACM
Transactions on Networking, 5(6), 1997.

924 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.arm.com/products/iot/pelion-iot-platform/device-management/connect
https://www.arm.com/products/iot/pelion-iot-platform/device-management/connect
https://www.arm.com/products/iot/pelion-iot-platform/device-management/connect
https://community.arm.com/iot/b/blog/posts/java-speaks-coap
https://community.arm.com/iot/b/blog/posts/java-speaks-coap
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://openthread.io/
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_digital_building_series_switches/software/15-2_5_ex/configuration_guide/b_1525ex_consolidated_cdb_cg/b_1525ex_consolidated_cdb_cg_chapter_0111101.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_digital_building_series_switches/software/15-2_5_ex/configuration_guide/b_1525ex_consolidated_cdb_cg/b_1525ex_consolidated_cdb_cg_chapter_0111101.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_digital_building_series_switches/software/15-2_5_ex/configuration_guide/b_1525ex_consolidated_cdb_cg/b_1525ex_consolidated_cdb_cg_chapter_0111101.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_digital_building_series_switches/software/15-2_5_ex/configuration_guide/b_1525ex_consolidated_cdb_cg/b_1525ex_consolidated_cdb_cg_chapter_0111101.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_digital_building_series_switches/software/15-2_5_ex/configuration_guide/b_1525ex_consolidated_cdb_cg/b_1525ex_consolidated_cdb_cg_chapter_0111101.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst_digital_building_series_switches/software/15-2_5_ex/configuration_guide/b_1525ex_consolidated_cdb_cg/b_1525ex_consolidated_cdb_cg_chapter_0111101.html
https://www.threadgroup.org/thread-group##OurMembers
https://www.threadgroup.org/thread-group##OurMembers
https://www.threadgroup.org/What-is-Thread##threadready
https://www.threadgroup.org/What-is-Thread##threadready
http://zeromq.org/
https://tools.ietf.org/id/draft-aayadi-6lowpan-tcphc-01
https://tools.ietf.org/id/draft-aayadi-6lowpan-tcphc-01

[27] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz.
Improving TCP/IP performance over wireless net-
works. In MobiCom. ACM, 1995.

[28] B. Bershad, T. Anderson, E. Lazowska, and H. Levy.
Lightweight remote procedure call. In SOSP. ACM,
1989.

[29] A. Betzler, C. Gomez, I. Demirkol, and J. Paradells.
CoAP congestion control for the Internet of Things.
IEEE Communications Magazine, 54(7), 2016.

[30] D. Borman, B. Braden, and V. Jacobson. TCP exten-
sions for high performance. (7323), 2014.

[31] C. Bormann, A. P. Castellani, and Z. Shelby. CoAP:
An application protocol for billions of tiny internet
nodes. IEEE Internet Computing, 16(2), 2012.

[32] G. Borriello and R. Want. Embedded computation
meets the world wide web. Communications of the
ACM, 43(5), 2000.

[33] A. Brandt, J. W. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J.-P. Vasseur, and R. Alexander. RPL: IPv6
routing protocol for low-power and lossy networks.
RFC 6550, 2012.

[34] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-
MAC: a short preamble MAC protocol for duty-cycled
wireless sensor networks. In SenSys. ACM, 2006.

[35] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and
M. Zorzi. Web services for the Internet of Things
through CoAP and EXI. In ICC. IEEE, 2011.

[36] D. D. Clark. The structuring of systems using upcalls.
In SOSP. ACM, 1985.

[37] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen.
An analysis of TCP processing overhead. IEEE Com-
munications magazine, 27(6), 1989.

[38] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and
V. Dobrota. Evaluation of constrained application pro-
tocol for wireless sensor networks. In LANMAN. IEEE,
2011.

[39] MQTT Community. MQTT. http://mqtt.org. Ac-
cessed: January 25, 2018.

[40] P. Druschel and L. L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. In SOSP.
ACM, 1993.

[41] P. Duffy. Beyond MQTT: A Cisco view on IoT proto-
cols. https://blogs.cisco.com/digital/beyond-
mqtt-a-cisco-view-on-iot-protocols. Ac-
cessed: 2018-09-09.

[42] A. Dunkels. Full TCP/IP for 8-bit architectures. In
MobiSys. ACM, 2003.

[43] A. Dunkels, J. Alonso, and T. Voigt. Making TCP/IP
viable for wireless sensor networks. SICS Research
Report, 2003.

[44] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, and
J. Schiller. Connecting wireless sensornets with
TCP/IP networks. In International Conference on
Wired/Wireless Internet Communications. Springer,
2004.

[45] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny net-
worked sensors. In LCN. IEEE, 2004.

[46] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Wat-
teyne. Orchestra: Robust mesh networks through au-
tonomously scheduled TSCH. In SenSys. ACM, 2015.

[47] S. Duquennoy, F. Österlind, and A. Dunkels. Lossy
links, low power, high throughput. In SenSys. ACM,
2011.

[48] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn,
B. Leverett, E. Gnoske, M. Vidales, G. Mulligan,
N. Tsiftes, N. Finne, and A. Dunkels. Making sen-
sor networks IPv6 ready. In SenSys. ACM, 2008.

[49] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang,
and A. Terzis. Design and evaluation of a versatile
and efficient receiver-initiated link layer for low-power
wireless. In SenSys. ACM, 2010.

[50] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar.
Next century challenges: Scalable coordination in sen-
sor networks. In MobiCom. ACM, 1999.

[51] K. Fall and S. Floyd. Simulation-based comparisons
of tahoe, reno and SACK TCP. ACM SIGCOMM Com-
puter Communication Review, 26(3), 1996.

[52] S. Floyd. TCP and explicit congestion notification.
ACM SIGCOMM Computer Communication Review,
24(5), 1994.

[53] S. Floyd. HighSpeed TCP for large congestion win-
dows. RFC 3649, 2003.

[54] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM Trans-
actions on Networking, 1(4), 1993.

[55] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby,
and K. Winstein. Salsify: Low-latency network video
through tighter integration between a video codec and
a transport protocol. In NSDI. USENIX, 2018.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 925

http://mqtt.org
https://blogs.cisco.com/digital/beyond-mqtt-a-cisco-view-on-iot-protocols
https://blogs.cisco.com/digital/beyond-mqtt-a-cisco-view-on-iot-protocols

[56] The FreeBSD Foundation. FreeBSD 10.3, 2016.
https://www.freebsd.org/releases/10.3R/
announce.html.

[57] J. Fürst, K. Chen, M. Aljarrah, and P. Bonnet. Lever-
aging physical locality to integrate smart appliances in
non-residential buildings with ultrasound and bluetooth
low energy. In IoTDI. IEEE, 2016.

[58] M. Gerla, K. Tang, and R. Bagrodia. TCP performance
in wireless multi-hop networks. In WMCSA. IEEE,
1999.

[59] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection tree protocol. In SenSys. ACM,
2009.

[60] C. Gomez, A. Arcia-Moret, and J. Crowcroft. TCP in
the Internet of Things: From ostracism to prominence.
IEEE Internet Computing, 22(1), 2018.

[61] F. Gont and A. Yourtchenko. On the implementation
of the TCP urgent mechanism. RFC 6093, 2011.

[62] L. A. Grieco and S. Mascolo. Performance evaluation
and comparison of Westwood+, New Reno, and Vegas
TCP congestion control. ACM SIGCOMM Computer
Communication Review, 34(2), 2004.

[63] Bluetooth Mesh Working Group. Mesh profile v1.0,
2017.

[64] Thread Group. Thread, 2016. https://
threadgroup.org.

[65] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating
Systems Review, 42(5), 2008.

[66] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida.
The NewReno modification to TCP’s fast recovery
algorithm. RFC 6582, 2012.

[67] K. Hewage, S. Duquennoy, V. Iyer, and T. Voigt. En-
abling TCP in mobile cyber-physical systems. In
MASS. IEEE, 2015.

[68] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. Pister. System architecture directions for net-
worked sensors. In ASPLOS. ACM, 2000.

[69] J. W. Hui. Personal Communication.

[70] J. W. Hui and D. E. Culler. IP is dead, long live IP for
wireless sensor networks. In SenSys. ACM, 2008.

[71] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating
congestion in wireless sensor networks. In SenSys.
ACM, 2004.

[72] H. Im. TCP Performance Enhancement in Wireless
Networks. PhD thesis, Seoul National University, 2015.

[73] C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected diffusion: A scalable and robust communication
paradigm for sensor networks. In MobiCom. ACM,
2000.

[74] D. Italiano and A. Motin. Calloutng: a new infras-
tructure for timer facilities in the FreeBSD kernel. In
AsiaBSDCon, 2013.

[75] Y. G. Iyer, S. Gandham, and S. Venkatesan. STCP:
a generic transport layer protocol for wireless sensor
networks. In ICCCN. IEEE, 2005.

[76] V. Jacobson. Congestion avoidance and control. In
SIGCOMM. ACM, 1988.

[77] V. Jacobson. Compressing TCP/IP headers for low-
speed serial links. RFC 1144, 1990.

[78] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: motiva-
tion, architecture, algorithms, performance. In INFO-
COM. IEEE, 2004.

[79] S. Johnson. Constrained application pro-
tocol: CoAP is IoT’s ‘modern’ proto-
col. https://www.omaspecworks.org/
constrained-application-protocol-
coap-is-iots-modern-protocol/, https:
//internetofthingsagenda.techtarget.com/
feature/Constrained-Application-Protocol-
CoAP-is-IoTs-modern-protocol. Accessed:
2018-09-09.

[80] H.-T. Ju, M.-J. Choi, and J. W. Hong. An efficient
and lightweight embedded web server for web-based
network element management. International Journal
of Network Management, 10(5), 2000.

[81] D. Jung, Z. Zhang, and M. Winslett. Vibration analy-
sis for IoT enabled predictive maintenance. In ICDE.
IEEE, 2017.

[82] Yousef A. Khalidi and Moti N. Thadani. An efficient
zero-copy I/O framework for UNIX. Technical report,
Mountain View, CA, USA, 1995.

[83] H.-S. Kim, M. P Andersen, K. Chen, S. Kumar, W. J.
Zhao, K. Ma, and D. E. Culler. System architecture
directions for post-SoC/32-bit networked sensors. In
SenSys. ACM, 2018.

[84] H.-S. Kim, H. Cho, H. Kim, and S. Bahk. DT-RPL: Di-
verse bidirectional traffic delivery through RPL routing
protocol in low power and lossy networks. Computer
Networks, 126, 2017.

926 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.freebsd.org/releases/10.3R/announce.html
https://www.freebsd.org/releases/10.3R/announce.html
https://threadgroup.org
https://threadgroup.org
https://www.omaspecworks.org/constrained-application-protocol-coap-is-iots-modern-protocol/
https://www.omaspecworks.org/constrained-application-protocol-coap-is-iots-modern-protocol/
https://www.omaspecworks.org/constrained-application-protocol-coap-is-iots-modern-protocol/
https://internetofthingsagenda.techtarget.com/feature/Constrained-Application-Protocol-CoAP-is-IoTs-modern-protocol
https://internetofthingsagenda.techtarget.com/feature/Constrained-Application-Protocol-CoAP-is-IoTs-modern-protocol
https://internetofthingsagenda.techtarget.com/feature/Constrained-Application-Protocol-CoAP-is-IoTs-modern-protocol
https://internetofthingsagenda.techtarget.com/feature/Constrained-Application-Protocol-CoAP-is-IoTs-modern-protocol

[85] H.-S. Kim, H. Cho, M.-S. Lee, J. Paek, J. Ko, and
S. Bahk. MarketNet: An asymmetric transmission
power-based wireless system for managing e-price tags
in markets. In SenSys. ACM, 2015.

[86] H.-S. Kim, H. Im, M.-S. Lee, J. Paek, and S. Bahk. A
measurement study of TCP over RPL in low-power
and lossy networks. Journal of Communications and
Networks, 17(6), 2015.

[87] H.-S. Kim, S. Kumar, and D. E. Culler.
Thread/OpenThread: A compromise in low-power
wireless multihop network architecture for the Internet
of Things. IEEE Communications Magazine, 57(7),
2019.

[88] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. E. Culler,
P. Levis, S. Shenker, and I. Stoica. Flush: A reliable
bulk transport protocol for multihop wireless networks.
In SenSys. ACM, 2007.

[89] S. Kim, S. Pakzad, D. E. Culler, J. Demmel, G. Fenves,
S. Glaser, and M. Turon. Health monitoring of civil in-
frastructures using wireless sensor networks. In IPSN.
ACM/IEEE, 2007.

[90] M. Kovatsch, M. Lanter, and Z. Shelby. Californium:
Scalable cloud services for the Internet of Things with
CoAP. In IOT. IEEE, 2014.

[91] S. Kumar, M. P Andersen, H.-S. Kim, and D. E. Culler.
Bringing full-scale TCP to low-power networks. In
SenSys. ACM, 2018.

[92] J. Kurose and K. Ross. Computer Networking: A Top-
Down Approach, chapter 3, pages 278–279. 6th edition,
2013.

[93] N. Kushalnagar, G. Montenegro, and C. Schumacher.
IPv6 over low-power wireless personal area networks
(6LoWPANs): Overview, assumptions, problem state-
ment, and goals. RFC 4919, 2007.

[94] P. Levis, N. Lee, M. Welsh, and D. E. Culler. TOSSIM:
Accurate and scalable simulation of entire TinyOS ap-
plications. In SenSys. ACM, 2003.

[95] P. Levis, S. Madden, J. Polastre, R. Szewczyk,
K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. E. Culler. TinyOS: An operating
system for sensor networks. 2005.

[96] P. Levis, N. Patel, D. E. Culler, and S. Shenker. Trickle:
A self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. In NSDI.
USENIX, 2004.

[97] A. A. Levy, J. Hong, L. Riliskis, P. Levis, and K. Win-
stein. Beetle: Flexible communication for bluetooth
low energy. In MobiSys. ACM, 2016.

[98] Y.-C. Li and M.-L. Chiang. LyraNET: a zero-copy
TCP/IP protocol stack for embedded operating systems.
In RTCSA. IEEE, 2005.

[99] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis.
Surviving Wi-Fi interference in low power ZigBee
networks. In SenSys. ACM, 2010.

[100] R. Ludwig, A. Gurtov, and F. Khafizov. TCP over
second (2.5G) and third (3G) generation wireless net-
works. RFC 3481, 2003.

[101] C. Maeda and B. N. Bershad. Protocol service decom-
position for high-performance networking. In SOSP.
ACM, 1993.

[102] A. Mainwaring, D. E. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In WSNA. ACM, 2002.

[103] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The
macroscopic behavior of the TCP congestion avoid-
ance algorithm. ACM SIGCOMM Computer Commu-
nication Review, 27(3), 1997.

[104] A. McEwen. Risking a compuserve of things.
https://mcqn.com/posts/wuthering-bytes-
slides-risking-a-compuserve-of-things/.
Accessed: 2018-12-08.

[105] G. Montenegro, N. Kushalnagar, J. W. Hui, and D. E.
Culler. Transmission of IPv6 packets over IEEE
802.15.4 networks. RFC 4944, 2007.

[106] Google Nest. OpenThread, 2017. https://
github.com/openthread/openthread.

[107] F. Österlind and A. Dunkels. Approaching the maxi-
mum 802.15.4 multi-hop throughput. In HotEmNets.
ACM, 2008.

[108] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Model-
ing TCP throughput: A simple model and its empirical
validation. ACM SIGCOMM Computer Communica-
tion Review, 28(4), 1998.

[109] J. Paek and R. Govindan. RCRT: Rate-controlled reli-
able transport for wireless sensor networks. In SenSys.
ACM, 2007.

[110] Q. Pang, V. W. S. Wong, and V. C. M. Leung. Reliable
data transport and congestion control in wireless sensor
networks. International Journal of Sensor Networks,
3(1), 2008.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 927

https://mcqn.com/posts/wuthering-bytes-slides-risking-a-compuserve-of-things/
https://mcqn.com/posts/wuthering-bytes-slides-risking-a-compuserve-of-things/
https://github.com/openthread/openthread
https://github.com/openthread/openthread

[111] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner,
I. Heavens, K. Lahey, J. Semke, and B. Volz. Known
TCP implementation problems. RFC 2525, 1999.

[112] J. Polastre, J. Hill, and D. E. Culler. Versatile low
power media access for wireless sensor networks. In
SenSys. ACM, 2004.

[113] J. Polastre, R. Szewczyk, and D. E. Culler. Telos:
Enabling ultra-low power wireless research. In IPSN.
ACM/IEEE, 2005.

[114] M. A. Rahman, A. El Saddik, and W. Gueaieb. Wire-
less Sensor Network Transport Layer: State of the Art.
2008.

[115] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? Designing and implementing a deploy-
able multipath TCP. In NSDI. USENIX, 2012.

[116] A. Ramaiah, M. Stewart, and M. Dalal. Improving
TCP’s robustness to blind in-window attacks. RFC
5961, 2010.

[117] A. J. D. Rathnayaka and V. M. Potdar. Wireless sensor
network transport protocol: A critical review. Journal
of Network and Computer Applications, 36(1), 2013.

[118] Y. Sankarasubramaniam, Ö. B. Akan, and I. F. Akyildiz.
Esrt: event-to-sink reliable transport in wireless sensor
networks. In MobiHoc. ACM, 2003.

[119] D. F. S. Santos, H. O. Almeida, and A. Perkusich. A
personal connected health system for the Internet of
Things based on the Constrained Application Protocol.
Computers & Electrical Engineering, 44, 2015.

[120] T. Schmid, R. Shea, M. B. Srivastava, and P. Dutta.
Disentangling wireless sensing from mesh networking.
In HotEmNets, 2010.

[121] K. Seitz, S. Serth, K.-F. Krentz, and C. Meinel. En-
abling en-route filtering for end-to-end encrypted
CoAP messages. In SenSys. ACM, 2017.

[122] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP
buffer tuning. In SIGCOMM. ACM, 1998.

[123] Z. Shelby, K. Hartke, and C. Bormann. The constrained
application protocol (CoAP). RFC 7252, 2014.

[124] A. C. Snoeren and H. Balakrishnan. An end-to-end
approach to host mobility. In MobiCom. ACM, 2000.

[125] F. Stann and J. Heidemann. RMST: Reliable data
transport in sensor networks. In SNPA. IEEE, 2003.

[126] T. Stathopoulos, L. Girod, J. Heidemann, and D. Es-
trin. Mote herding for tiered wireless sensor networks.
Technical Report 58, University of California, Los An-
geles, Center for Embedded Networked Computing,
December 2005.

[127] R. Szewczyk, J. Polastre, A. Mainwaring, and D. E.
Culler. Lessons from a sensor network expedition.
In H. Karl, A. Wolisz, and A. Willig, editors, EWSN.
Springer Berlin Heidelberg, 2004.

[128] J.-P. Vasseur. Terms used in routing for low-power and
lossy networks. RFC 7102, 2014.

[129] B. C. Villaverde, D. Pesch, R. De Paz Alberola, S. Fe-
dor, and M. Boubekeur. Constrained Application Pro-
tocol for low power embedded networks: A survey. In
IMIS. IEEE, 2012.

[130] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy.
PSFQ: a reliable transport protocol for wireless sensor
networks. In WSNA. ACM, 2002.

[131] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell.
CODA: Congestion detection and avoidance in sen-
sor networks. In SenSys. ACM, 2003.

[132] C. Wang, K. Sohraby, Y. Hu, B. Li, and W. Tang. Is-
sues of transport control protocols for wireless sensor
networks. In ICCCAS. IEEE, 2005.

[133] P. Windley. The compuserve of things.
http://www.windley.com/archives/2014/04/
the_compuserve_of_things.shtml. Accessed:
2018-12-08.

[134] K. Winstein and H. Balakrishnan. Mosh: An interactive
remote shell for mobile clients. In ATC. USENIX,
2012.

[135] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic forecasts achieve high throughput and low
delay over cellular networks. In NSDI. USENIX, 2013.

[136] A. Woo and D. E. Culler. A transmission control
scheme for media access in sensor networks. In Mobi-
Com. ACM, 2001.

[137] G. R. Wright and W. R. Stevens. TCP/IP Illustrated,
volume 2, chapter 2. 1995.

[138] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin. A wireless
sensor network for structural monitoring. In SenSys.
ACM, 2004.

[139] W. Ye, J. Heidemann, and D. Estrin. An energy-
efficient MAC protocol for wireless sensor networks.
In INFOCOM. IEEE, 2002.

928 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.windley.com/archives/2014/04/the_compuserve_of_things.shtml
http://www.windley.com/archives/2014/04/the_compuserve_of_things.shtml

[140] W. Ye, J. Heidemann, and D. Estrin. Medium access
control with coordinated adaptive sleeping for wireless
sensor networks. IEEE/ACM Transactions on Network-
ing, 12(3), 2004.

[141] T. Zachariah, N. Klugman, B. Campbell, J. Adkins,
N. Jackson, and P. Dutta. The Internet of Things has a
gateway problem. In HotMobile. ACM, 2015.

[142] H. Zhang, A. Arora, Y.-R. Choi, and M. G. Gouda. Re-
liable bursty convergecast in wireless sensor networks.
In MobiHoc. ACM, 2005.

[143] L. Zhang. Why TCP timers don’t work well. ACM
SIGCOMM Computer Communication Review, 16(3),
1986.

[144] T. Zheng, A. Ayadi, and X. Jiang. TCP over 6LoWPAN
for industrial applications: An experimental study. In
NTMS. IEEE, 2011.

A Impact of Network Stack Design
As mentioned in §5, we made nontrivial modifications to
FreeBSD’s TCP stack to port it to each embedded operating
system and embedded network stack. Below we provide addi-
tional information about these changes, and about our imple-
mentations for platforms other than Hamilton/OpenThread.

A.1 Concurrency Model
GNRC and OpenThread (RIOT OS). RIOT OS provides
threads as the basic unit of concurrency. Asynchronous in-
teraction with hardware is done by interrupt handlers that
preempt the current thread, perform a short operation in the
interrupt context, and signal a related thread to perform any
remaining operation outside of interrupt context. Then the
thread is placed on the RIOT OS scheduler queue and is
scheduled for execution depending on its priority.

The GNRC network stack for RIOT OS runs each network
layer (or module) in a separate thread. Each thread has a
priority and can be preempted by a thread with higher priority
or by an interrupt. The thread for a lower network layer has
higher priority than the thread for a higher layer.

The port of OpenThread for RIOT OS handles received
packets in one thread and sends packets from another thread,
where the thread for received packets has higher priority [83].
The rationale for this design is to ensure timely processing of
received packets at the radio, which is especially important in
the context of a high-throughput flow.

To adapt TCPlp for GNRC, we run the FreeBSD implemen-
tation as a single TCP-layer thread, whose priority is between
that of the application-layer thread and the IPv6-layer thread.
To adapt TCPlp for OpenThread on RIOT OS, we call the
TCP protocol logic (tcp_input()) at the appropriate point
along the receive path, and send packets from the TCP proto-
col logic (tcp_output()) using the established send path. As

explained in Appendix A.2, we also use an additional thread
for timer callbacks in RIOT OS.

Given that TCP state can be accessed concurrently from
multiple threads—the TCP thread (GNRC) or receive thread
(OpenThread), the application thread(s), and timer callbacks—
we needed to synchronize access to it. The FreeBSD imple-
mentation allows fine-grained locking of connection state to
allow different connections to be serviced in parallel on differ-
ent CPUs. Given that low-power embedded sensors typically
have only one CPU, however, we opted for simplicity, instead
using a single global TCP lock for TCPlp.

BLIP (TinyOS). TinyOS uses an event-driven concurrency
model based on split-phase operations, consisting of an event
loop that executes on a single stack. For concurrency, TinyOS
provides three types of unique operations: commands and
events, which are executed immediately, and tasks, which are
scheduled for execution after all preceding tasks are com-
pleted. An interrupt handler may preempt the current func-
tion, perform a short operation in the interrupt context us-
ing asynchronous events and commands, and post a task
to perform any remaining computation later. To adapt the
thread-based FreeBSD implementation to the event-driven
TinyOS, we execute the primary functions of FreeBSD, such
as tcp_output() and tcp_input(), within tasks outside of
interrupt context. Because tasks in TinyOS cannot preempt
each other, we remove the locking present in the FreeBSD
TCP implementation.

A.2 Timer Event Management
Given that many TCP operations are based on timer events,
achieving correct timer operation is important. For example,
if an RTO timer event is dropped by the embedded operat-
ing system, the RTO timer will not be rescheduled, and the
connection may hang.

For a simple and stable operation, many existing embedded
TCP stacks, including the uIP, lwIP, and BLIP TCP stacks,
rely on a periodic, fixed-interval clock in order to check for
expired timeouts. Instead, TCPlp uses one-shot tickless timers
as FreeBSD 10.3 does [74], which is beneficial in two ways:
(1) When there are no scheduled timers, the tickless timers
allow the CPU to sleep, rather than being needlessly woken
up at a fixed interval, resulting in lower energy consump-
tion [83]. (2) Unlike fixed periodic timers, which can only
be serviced on the next tick after they expire, tickless timers
can be serviced as soon as they expire. To obtain these advan-
tages, however, an embedded operating system must robustly
manage asynchronous timer callbacks.

TinyOS has a single event queue maintained by the sched-
uler. The semantics of TinyOS guarantee that a task can exist
in the event queue only once, even if it is posted (i.e., sched-
uled for execution) multiple times before executing. There-
fore, the event queue can be sized appropriately at compile-
time to not overflow. Furthermore, TinyOS handles received
packets in a separate queue than tasks. This ensures that TCP

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 929

Protocol Event Sched. User Library
ROM 21352 B 1696 B 5384 B
RAM (Active) 488 B 40 B 36 B
RAM (Passive) 16 B 16 B 36 B

Table 8: Memory usage of TCPlp on TinyOS. Our imple-
mentation of TCPlp spans three modules: (1) protocol im-
plementation, (2) event scheduler that injects callbacks into
userspace, and (3) userland library.

timer callbacks will not be dropped.

This is not the case for RIOT OS. Timer callbacks either
handle the timer entirely in interrupt context, or put an event
on a thread’s message queue, so that the thread performs the
required callback operation. Each network protocol supported
by RIOT OS has a single thread. Because a thread’s message
queue in RIOT OS is used to hold both received packets and
timer events, there is no guarantee when a timer expires that
there is enough space in the thread message queue to accept
a timer event; if there is not enough space, RIOT OS drops
the timer event. Furthermore, if a timer expires multiple times
before its event is handled by the thread, multiple events for
the same timer can exist simultaneously in the queue; we
cannot find an upper bound on the number of slots in the
message queue used by a single timer. To provide robust
TCP operation on RIOT OS, we create a second thread used
exclusively for TCP timers. We handle timers similarly to
TinyOS’ post operation, by preventing the message queue
from having multiple callback events of a single timer. This
eliminates the possibility of timer event drops.

A.3 Memory Usage: Connection State
To complement Table 3, which shows TCPlp’s memory foot-
print on RIOT OS, we include Table 8, which shows TCPlp’s
memory footprint on TinyOS.

A.4 Performance Comparison
We consider TCP goodput between two embedded nodes over
the IEEE 802.15.4 link, over a single hop without any border
router, as we did in §6.3. We are able to produce a 63 kb/s
goodput over a TCP connection between two Hamilton motes
using RIOT’s GNRC network stack. For comparison, we are
able to achieve 71 kb/s using the BLIP stack on Firestorm, and
75 kb/s using the OpenThread network stack with RIOT OS on
Hamilton. This suggests that our results are reproducible
across multiple platforms and embedded network stacks.
The minor performance degradation in GNRC is partially ex-
plained by its greater header overhead due to implementation
differences, and by its IPC-based thread-per-layer concur-
rency architecture, which has known inefficiencies [36]. This
suggests that the implementation of the underlying network
stack, particularly with regard to concurrency, could affect
TCP performance in LLNs.

uIP BLIP GNRC TCPlp
Flow Control Yes Yes Yes Yes
Congestion Control N/A No Yes Yes
RTT Estimation Yes No Yes Yes
MSS Option Yes No Yes Yes
OOO Reassembly No No Yes Yes
TCP Timestamps No No No Yes
Selective ACKs No No No Yes
Delayed ACKs No No No Yes

Table 9: Comparison of core features among embedded TCP
stacks: uIP (Contiki), BLIP (TinyOS), GNRC (RIOT), and
TCPlp (this paper)

B Comparison of Features in Embedded TCP
Implementations

Table 9 compares the featureset of TCPlp to features in embed-
ded TCP stacks. The TCP implementations in uIP and BLIP
lack features core to TCP. uIP allows only one unACKed
in-flight segment, eschewing TCP’s sliding window. BLIP
does not implement RTT estimation or congestion control.
The TCP implementation in GNRC lacks features such as
TCP timestamps, selective ACKs, and delayed ACKs, which
are present in most full-scale TCP implementations.

Benefits of full-scale TCP. In addition to supporting the
protocol-level features summarized in Table 9, TCPlp is likely
more robust than other embedded TCP stacks because it is
based on a well-tested TCP implementation. While seemingly
minor, some details, implemented incorrectly by TCP stacks,
have had important consequences for TCP’s behavior [111].
TCPlp benefits from a thorough implementation of each as-
pect of TCP.

For example, TCPlp, by virtue of using the FreeBSD TCP
implementation, benefits from a robust implementation of
congestion control. TCPlp implements not only the basic
New Reno algorithm, but also Explicit Congestion Notifica-
tion [52], Appropriate Byte Counting [12, 13] and Limited
Transmissions [14]. It also inherits from FreeBSD heuris-
tics to identify and correct “bad retransmissions” (as in §2.8
of [16]): if, after a retransmission, the corresponding ACK
is received very soon (within RTT

2 of the retransmission), the
ACK is assumed to correspond to the originally transmit-
ted segment as opposed to the retransmission. The FreeBSD
implementation and TCPlp recover from such “bad retrans-
missions” by restoring cwnd and ssthresh to their former
values before the packet loss. Aside from congestion control,
TCPlp benefits from header prediction [37], which introduces
a “fast code path” to process common-case TCP segments
(in-sequence data and ACKs) more efficiently, and Challenge
ACKs [116], which make it more difficult for an attacker to
inject an RST into a TCP connection.

Enhancements such as these make us more confident that
our observed results are fundamental to TCP, as opposed to
artifacts of poor implementation. Furthermore, they allow us

930 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

to focus on performance problems arising from the challenges
of LLNs, as opposed to general TCP-related challenges that
the research community has already solved in the context of
traditional networks and operating systems.

C Derivation of TCP Model
This appendix provides the derivation of Equation 1, the
model of TCP performance proposed in §7.4.

We think of a TCP flow as a sequence of bursts. A burst is
a sequence of full windows of data successfully transferred,
which ends in a packet loss. After this loss, the flow spends
some time recovering from the packet loss, which we call a
rest. Then, the next burst begins. Let w be the size of TCP’s
flow window, measured in segments (for our experiments in
§7.3, we would have w = 4). Define b as the average number
of windows sent in a burst. The goodput of TCP is the number
of bytes sent in each burst, which is w ·b ·MSS, divided by the
duration of each burst. A burst lasts for the time to transmit
b windows of data, plus the time to recover from the packet
loss that ended the burst. The time to transmit b windows
is b ·RTT. We define trec to be the time to recover from the
packet loss. Then we have

B =
w ·b ·MSS

b ·RTT+ trec
. (3)

The value of b depends on the packet loss rate. We define a
new variable, pwin, which denotes the probability that at least
one packet in a window is lost. Then b = 1

pwin
.

To complete the model, we must estimate trec and pwin.
The value of trec depends on whether the retransmission

timer expires (called an RTO) or a fast retransmission is per-
formed. If an RTO occurs, the total time lost is the excess time
budgeted to the retransmit timer beyond one RTT, plus the
time to retransmit the lost segments. We denote the time bud-
geted to the retransmit timer as ETO. So the total time lost due
to a timeout, assuming it takes about 2 RTTs to recover lost
segments, would be (ETO−RTT)+2 ·RTT = ETO+RTT.
After a fast retransmission, TCP enters a “fast recovery”
state [17, 66]. Fast recovery requires buffer space to be effec-
tive, however. In particular, if the buffer contains only four
TCP segments, then the lost packet, and three packets after-
ward which resulted in duplicate ACKs, account for the entire
send buffer; therefore, TCP cannot send new data during fast
recovery, and instead stalls for one RTT, until the ACK for the
fast retransmission is received. In contrast, choosing a larger
send buffer will allow fast recovery to more effectively mask
this loss [122].

As discussed in §7.3, these two types of losses may be
caused by different factors. Therefore, we do not attempt to
distinguish them on basis of probability. Instead, we use a very
simple model: trec = ` ·RTT. The constant ` can be chosen
to describe the number of “productive” RTTs lost due to a
packet loss. Based on the estimates above, choosing ` = 2
seems reasonable for our experiments in §7 which used a
buffer size of four segments.

To model pwin, we assume that, in each window, segment
losses are independent. This gives us pwin = 1− (1− p)w,
where p is the probability of an individual segment being lost
(after link retries). Because p is likely to be small (less than
20%), we apply the approximation that (1− x)a ≈ 1−ax for
small x. This gives us pwin ≈ wp.

Applying these equations for trec and pwin, along with some
minor algebraic manipulation to put our equation in a similar
form to Equation 2, we obtain our model for TCP performance
in LLNs, for small w and p:

B =
MSS
RTT

· 1
1
w + `p

(4)

Equation 1, stated in §7.4, takes `= 2, as discussed above.
Generalizing the model. In §8, we generally use a smaller
MSS (3 frames) than we used in §7. Furthermore, duty-
cycling increases the RTT. It is natural to ask whether our
conclusions in §7, on which the model is based, still hold in
this setting. With a sleep interval of 100 ms, we qualitatively
observed that, although cwnd tends to recover more slowly
after loss, due to the smaller MSS and larger RTT, it is still
“maxed out” past the BDP most of the time. Therefore, we
expect our conclusion, that TCP is more resilient to packet
loss, to also apply in this setting.

One may consider adapting our model for this setting by
choosing a larger value of ` to reflect the fact that cwnd re-
covers from loss less quickly due to the smaller MSS. It is
possible, however, that one could derive a better model by
explicitly modeling the phase when cwnd is recovering, sim-
ilar to other existing TCP models (in contrast to our model
above, where we assume that the TCP flow is binary—either
transmitting at a full window, or in backoff after loss). We
leave exploration of this idea to future work.

D Anemometry: An LLN Application
An anemometer is a sensor that measures air velocity. Ane-
mometers may be deployed in a building to diagnose problems
with the Heating, Ventilation, and Cooling system (HVAC),
and also to collect air flow measurements for improved HVAC
control. This requires anemometers in difficult-to-reach loca-
tions, such as in air flow ducts, where it is infeasible to run
wires. Therefore, anemometers must be battery-powered and
must transmit readings wirelessly, making LLNs attractive.

We used anemometers based on the Hamilton platform [19],
each consisting of four ultrasonic transceivers arranged as ver-
tices of a tetrahedron (Figure 13). To measure the air velocity,
each transceiver, in turn, emits a burst of ultrasound, and the
impulse is measured by the other three transceivers. This
process results in a total of 12 measurements.

Calculating the air velocity from these measurements is
computationally infeasible on the anemometer itself, because
Hamilton does not have hardware floating point support and
the computations require complex trigonometry. Measure-
ments must be transmitted over the network to a server that

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 931

(a) Anemometer (b) Hamilton-based PCB (bottom and top)

Figure 13: Hamilton-based ultrasonic anemometer

processes the data. Furthermore, a specific property of the
analytics is that it requires a contiguous stream of data to
maintain calibration (a numerical integration is performed
on the measurements). Thus, the application requires a high
sample rate (1 Hz), and is sensitive to data loss. A protocol for

reliable delivery, like TCP or CoAP, is therefore necessary.

We note that the 1 Hz sample rate for this application is
much higher than the sample rate of most sensors deployed in
buildings. For example, a sensor measuring temperature, hu-
midity, or occupancy in a building typically only generates a
single reading every few tens of seconds or every few minutes.
Furthermore, each individual reading from the anemometer
is quite large (82 bytes), given that it encodes all 12 mea-
surements (plus a small header). Given the higher data rate
requirements of the anemometer application, we plan to use a
higher-capacity battery than the standard AA batteries used
in most motes. The higher cost of such a battery is justified
by the higher cost of the anemometer transducers.

932 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Related Work
	Low-Power and Lossy Networks (LLNs)
	TCP/IP for Embedded LLN-Class Devices

	Motivation: The Case for TCP in LLNs
	Empirical Methodology
	Network Stack
	Embedded Hardware

	Implementation of TCPlp
	Connection State for TCPlp
	Memory-Efficient Data Buffering
	Send Buffer: Zero-Copy
	Receive Buffer: In-Place Reassembly Queue

	TCP in a Low-Power Network
	Reducing Header Overhead using MSS
	Impact of Buffer Size
	Upper Bound on Single-Hop Goodput

	TCP Over Multiple Wireless Hops
	Mitigating Hidden Terminals in LLNs
	Upper Bound on Multi-Hop Goodput
	TCP Congestion Control in LLNs
	Modeling TCP Goodput in an LLN

	TCP in LLN Applications
	Web Server Application Scenario
	Latency Analysis
	Throughput Analysis
	Power Consumption

	Sense-and-Send Application Scenario
	Performance in Favorable Conditions
	Resilience to Packet Loss
	Performance in Lossy Conditions
	Unreliable UDP

	Event Detection Application Scenario

	Conclusion
	Impact of Network Stack Design
	Concurrency Model
	Timer Event Management
	Memory Usage: Connection State
	Performance Comparison

	Comparison of Features in Embedded TCP Implementations
	Derivation of TCP Model
	Anemometry: An LLN Application

