
This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19).
February 26–28, 2019 • Boston, MA, USA

ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19)
is sponsored by

Hyperscan: A Fast Multi-pattern Regex Matcher
for Modern CPUs

Xiang Wang, Yang Hong, and Harry Chang, Intel; KyoungSoo Park, KAIST;
Geoff Langdale, branchfree.org; Jiayu Hu and Heqing Zhu, Intel

https://www.usenix.org/conference/nsdi19/presentation/wang-xiang

Hyperscan: A Fast Multi-pattern Regex Matcher for Modern CPUs

Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park∗

Geoff Langdale+, Jiayu Hu, and Heqing Zhu

Intel Corporation ∗KAIST +branchfree.org

Abstract

Regular expression matching serves as a key functionality
of modern network security applications. Unfortunately,
it often becomes the performance bottleneck as it involves
compute-intensive scan of every byte of packet payload.
With trends towards increasing network bandwidth and
a large ruleset of complex patterns, the performance re-
quirement gets ever more demanding.

In this paper, we present Hyperscan, a high perfor-
mance regular expression matcher for commodity server
machines. Hyperscan employs two core techniques for
efficient pattern matching. First, it exploits graph de-
composition that translates regular expression matching
into a series of string and finite automata matching. Un-
like existing solutions, string matching becomes a part of
regular expression matching, eliminating duplicate opera-
tions. Decomposed regular expression components also
increase the chance of fast DFA matching as they tend
to be smaller than the original pattern. Second, Hyper-
scan accelerates both string and finite automata matching
using SIMD operations, which brings substantial through-
put improvement. Our evaluation shows that Hyperscan
improves the performance of Snort by a factor of 8.7 for
a real traffic trace.

1 Introduction
Deep packet inspection (DPI) provides the fundamental
functionality for many middlebox applications that deal
with L7 protocols, such as intrusion detection systems
(IDS) [9, 10, 28], application identification systems [4],
and web application firewalls (WAFs) [3]. Today’s DPI
employs regular expression (regex) as a standard tool
for pattern description as it flexibly represents various
attack signatures in a concise form. Not surprisingly,
numerous research works [16, 18, 32, 38, 39, 41, 42]
have proposed efficient regex matching as its performance
often dominates that of an entire DPI application.

Despite continued efforts, the performance of regex
matching on a commodity server still remains imprac-
tical to directly serve today’s large network bandwidth.
Instead, the de-facto best practice of high-performance
DPI generally employs multi-string pattern matching as
a pre-condition for expensive regex matching. This hy-
brid approach (or prefiltering) is attractive as multi-string
matching is known to outperform multi-regex matching
by two orders of magnitude [21], and most input traffic
is innocent, making it more efficient to defer a rigorous
check. For example, popular IDSes like Snort [9] and
Suricata [10] specify a string pattern per each regex for
prefiltering, and launch the corresponding regex matching
only if the string is found in the input stream.

However, the current prefilter-based matching has a
number of limitations. First, string keywords are often
defined manually by humans 1. Manual choice does not
scale as the ruleset expands over time, and improper key-
words would waste CPU cycles on redundant regex match-
ing. Second, string matching and regex matching are ex-
ecuted as two separate tasks, with the former leveraged
only as a trigger for the latter. This results in duplicate
matching of the string keywords when the corresponding
regex matching is executed. Third, current regex match-
ing typically translates an entire regex into a single finite
automaton (FA). If the number of deterministic finite au-
tomaton (DFA) states becomes too large, one must resort
to a slower non-deterministic finite automaton (NFA) for
matching of the whole regex.

In this paper, we present Hyperscan, a high perfor-
mance regex matching system that exploits regex decom-
position as the first principle. Regex decomposition splits
a regex pattern into a series of disjoint string and FA com-
ponents 2. This translates regex matching into a sequence

1The content option in Snort and Suricata are determined by humans
with domain knowledge.

2We refer to a subregex that contains regex meta-characters or quan-
tifiers, which has to be translated into either a DFA or an NFA for

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 631

of decomposed subregex matching whose execution and
matching order is controlled by fast string matching. This
design brings a number of benefits. First, our regex de-
composition identifies string components automatically
by performing rigorous structural analyses on the NFA
graph of a regex. Our algorithm ensures that the extracted
strings are pre-requisite for the rest of regex matching.
Second, string matching is run as a part of regex match-
ing rather than being employed only as a trigger. Unlike
the prefilter-based design, Hyperscan keeps track of the
state of string matching throughout regex matching and
avoids any redundant operations. Third, FA component
matching is executed only when all relevant string and FA
components are matched. This eliminates unnecessary FA
component matching, which allows efficient CPU utiliza-
tion. Finally, most decomposed FA components tend to be
small, so they are more likely to be able to be converted
to a DFA and benefit from fast DFA matching.

Beyond the benefits of regex decomposition, Hyper-
scan also brings a significant performance boost with
single-instruction-multiple-data (SIMD)-accelerated pat-
tern matching algorithms. For string matching, we extend
the shift-or algorithm [13] to support efficient multi-string
matching with bit-level SIMD operations. For FA match-
ing, we represent a state with a bit position while we
implement state transitions and successor state-set calcu-
lation with SIMD instructions on a large bitmap. We find
that our SIMD-accelerated string matching outperforms
state-of-the-art multi-string matching by a factor of 1.3 to
2.5. We also find that our SIMD-accelerated regex match-
ing achieves 24.8x to 40.1x performance improvement
over PCRE [6] widely adopted by DPI middleboxes such
as Snort and Suricata.

In summary, we make the following contributions:

• We present a novel regex matching strategy that ex-
ploits regex decomposition. Regex decomposition per-
forms rigorous graph analysis algorithms that extract
key strings of a regex for efficient matching, and drives
the order of pattern matching by fast string matching.
This drastically improves the performance.

• We develop SIMD-accelerated pattern matching algo-
rithms for both string matching and FA matching to
leverage CPU’s compute capability on data parallelism.

• Our evaluation shows Hyperscan greatly helps improve
the performance of real-world DPI applications. It
improves the performance of Snort by 8.7x for a real
traffic trace.

• We share our experience with developing Hyperscan
and present lessons learned through commercialization.

matching as an FA component.

1
a

2
b

3
c 7. 8

g
9
h

5
e

6
f

0.
4
d

10
i

Figure 1: Glushkov NFA for (abc|def).*ghi

2 Background and Motivation

DPI is a common functionality in many security middle-
boxes, and its performance has been mainly driven by
that of regex matching [19, 41]. There has been a large
body of research that improves the performance of regex
matching. Due to space constraint, we briefly review only
a few, categorizing them by their approach.
String matching is a subset of regex matching, which re-
quires specialized algorithms [12, 24, 29] to achieve high
performance. The most popular one is the Aho-Corasick
(AC) algorithm [12] that uses a variant of DFA for fast
multi-string matching. It runs in O(n) time complexity
where n is the number of input bytes. Unfortunately, AC
suffers from frequent cache misses due to large memory
footprint and random memory access pattern, which sig-
nificantly impairs the performance. In addition, the model
of processing one byte at a time creates a sequential data
dependency that stalls instruction pipelines of modern
processors. DFC [21] employs a set of small bitmap fil-
ters that quickly pass out innocent traffic by checking the
first few bytes of string patterns against the input stream.
Each matched input moves onto the verification stage
for full pattern comparison. DFC substantially reduces
memory accesses and cache misses by using small and
cache-friendly data structures, which outperforms AC by
2 to 3.6 times. The string matcher of Hyperscan takes the
two-stage matching similar to DFC, but its bucket-based
shift-or algorithm benefits from SIMD instructions, which
further improves the performance beyond that of DFC.
An NFA implements a space-efficient state machine even
for complex regexes. Despite its small memory footprint,
the execution is typically slow as each input character
triggers O(m) memory lookups (m = # of current states).
For this reason, a DFA is preferred to an NFA whenever
a regex can be translated into the former. One place
where NFA might be preferred is a logic-based design that
maps automata to hardware accelerators such as FPGA
[14, 22, 23, 34, 35, 40]. An FPGA-based design can
exploit parallelism by running multiple finite automata
simultaneously and does not suffer from sequential state
transition table lookups. On the down side, it is limited
to a small ruleset due to its hardware constraints. Also, it

632 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

suffers from the DMA overhead of moving data between
the CPU and the FPGA device. This overhead can impose
prohibitive latency, especially when input data is not large
(as would be the case for scanning of small packets).

We use Glushkov NFA [27] for Hyperscan, which is
widely used due to its two useful properties. First, it
does not have epsilon transitions, which simplifies state
transition implementation. Second, all transitions into
a given state are triggered by the same input symbol.
Figure 1 shows an example of a Glushkov NFA. Each
circle represents a state whose id is shown as a number,
and each character represents the input symbol by which
any previous state transitions into this state. For example,
one can transition into state 8 from state 3, 6, or 7 only
for an input symbol, ‘g’. The second property implies
that the total number of states is bounded by the number
of input symbols and a few special states – a start state,
states with ‘.’, etc.
A DFA achieves high performance as it runs in O(1)
per each input character. Its main disadvantage, how-
ever, is a large memory footprint and a potential of
state explosion at transforming an NFA to a DFA. Thus,
most works on DFA focus on memory footprint reduc-
tion [15, 17, 18, 20, 26, 31, 32, 33]. D2FA [32] com-
presses the memory space by sharing multiple transitions
of states with a similar transition table and by establishing
a default transition between them. A-DFA [18] presents
useful features such as alphabet reduction that classifies
alphabets into smaller groups, indirect addressing that
reduces memory bandwidth by translating unique state
identifiers to memory address, and multi-stride structure
that processes multiple characters at a time.
An extended FA is a proposal that restructures the state-
of-the-art FA to address state explosion. XFA [38, 39]
associates update functions with states and transitions
by having a scratch memory that compresses the space.
HFA [16] presents a hybrid-FA that achieves compara-
ble space to that of an NFA by making head DFAs and
trailing NFA or DFAs. The theory behind it is to discover
boundary states so that one can conduct partial conversion
of an NFA to a DFA to avoid exponential state explosion
from a full conversion.
Prefilter-based approaches are the most popular way to
scale performance of regex matching in practice. Both
Snort and Suricata extract string keywords from regex
rules and perform unified multi-string matching with
the Aho-Corasick algorithm. Expensive regex match-
ing is only needed if AC detects literal strings in the
input. SplitScreen [36] applies a similar approach to Cla-
mAV [30], a widely-used anti-malware application, and
achieves a 2x speedup compared to original ClamAV.

SIMD Register XX2 X1 X0X3

Y2 Y1 Y0Y3 SIMD Register Y

X2 OP Y2 X1 OP Y1 X0 OP Y0X3 OP Y3

OP

SIMD Register Z

OP OP OP

Figure 2: Typical two-operand SIMD operation

A SIMD instruction executes the same operation on mul-
tiple data in parallel. As shown in Figure 2, a SIMD
operation is performed on multiple lanes of two SIMD
registers independently, and the results are stored in the
third register. Modern CPU supports a number of SIMD
instructions that can work on specialized vector registers
(SSE, AVX, etc.). The latest AVX512 instructions support
up to 512-bit operations simultaneously.

Despite its great potential, few research works have
exploited SIMD instructions for regex matching. Sitaridi
et al. propose a SIMD-based regex matching design [37]
for database, which uses a gather instruction to traverse
DFA for multiple inputs simultaneously. However, it
cannot be applied to our case as regex matching for DPI
is typically performed on a single input stream.
Summary and our approach. Most prior works on
regex matching attempt to build a special FA that per-
forms as well as a DFA while its memory footprint is as
small as an NFA. However, one common problem in all
these works is that FA restructuring inevitably imposes ex-
tra performance overhead compared to the original DFA.
For example, XFA takes multiple tens to hundreds of
CPU cycles per input byte, which is slower than a nor-
mal DFA by one or two orders of magnitude. In contrast,
the prefilter-based approach looks attractive as it benefits
from multi-string matching most time, which is faster
than multi-regex matching by a few orders of magnitude.
However, it is still suboptimal as it must perform duplicate
string matching during regex matching, and wrong choice
of string patterns would trigger redundant regex matching
(as shown in Section 6.2). To avoid the inefficiency, we
take a fresh approach that divides a regex pattern into mul-
tiple components, and leverages fast string matching to
coordinate the order of component matching. This would
minimize the waste of CPU cycles on redundant match-
ing and thus improves the performance. In addition, we
develop our own multi-string matching and FA matching
algorithms carefully tailored to exploit SIMD operations.

3 Regular Expression Decomposition
In this section, we present the concept of regex decompo-
sition, and explain how Hyperscan matches a sequence of
regex components against the input. Then, we introduce

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 633

graph-based decomposition whose graph analysis tech-
niques reliably identify the strings in regex patterns most
desirable for string matching.

3.1 Matching with Regex Decomposition
The key idea of Hyperscan is to decompose each regex
pattern into a disjoint set of string and subregex (or FA)
components, and to match each component until it finds
a complete match. A string component consists of a
stream of literals (or input symbols). Subregex compo-
nents are the remaining parts of a regex after all string
components are removed. They may include one or more
meta-characters or quantifiers in regex syntax (like ‘ ˆ ’,
‘$’, ‘*’, ‘?’, etc.) that need to be translated into an FA for
matching. Thus, we refer to it as an FA component.
Linear regex. We start with a simple regex where each
component is concatenated without alternation. We call it
a linear regex. Formally, a linear regex pattern that con-
tains at least one string can be represented as the following
production rules:

1. regex → left str FA
2. left → left str FA | FA

where str and FA are both indivisible components, and
FA can be empty. A linear regex without any string is im-
plemented as a single DFA or NFA. In practice, however,
we find that 87% to 94% of the regex rules in IDSes have
at least one extractable string, so a majority of real-world
regexes would benefit from decomposition. The produc-
tion rules imply that if we find the rightmost string in a
linear regex pattern, we can recursively apply the same
algorithm to decompose the rest of the pattern. One com-
plication lies in a subregex with a repetition operator such
as (R)?, (R)∗, (R)+, and (R){m,n}, where R is arbitrar-
ily complex. Hyperscan treats (R)? and (R)∗ as a single
FA since R is optional while it converts (R)+ = (R)(R)∗,
and (R){m,n}= (R)...(R)(R){0,n−m} ((R) appears m
times)). Then, it decomposes their prefixes and treats the
suffix as an FA.

In general, a decomposable linear regex can be ex-
pressed as /FAn strn FAn−1 strn−1 · · · str2 FA1 str1 FA0/.
For any successful match of the original regex, all strings
must be matched in the same order as they appear. Based
on the observation, Hyperscan applies the following three
rules for regex matching.
1. String matching is the first step. It scans the entire

input to find all strs. Each successful match of str may
trigger the execution of its neighbor FA matching.

2. Each FA has its own switch for execution. It is off by
default except for the leftmost FA components.

3. For a generalized form like /left FA str right/ where
"left" or "right" is an arbitrary set of decomposed com-

ponents including an empty character. Only if all com-
ponents of "left" are matched successfully, the switch
of FA is turned on. Only if str is matched successfully
and the FA switch is on, FA matching is executed. Fi-
nally, only if FA is matched successfully, the leftmost
FA of "right" is turned on.
Let’s take one example regex, /.*foo[ˆX]barY+/,

and consider two input cases. The regex pattern
is decomposed into /FA2 str2 FA1 str1 FA0/, where
FA2=".*", str2="foo",FA1="[ˆX]", str1="bar", FA0="Y+".
• Input="XfooZbarY": This is overall a successful

match. First, the string matcher finds str2 ("foo"), and
triggers matching of FA2 (".*") against "X" since the
leftmost FA switch is always on. Then, the switch of
FA1 ("[ˆX]") is turned on. After that, the matcher finds
str1 ("bar"), which triggers matching of FA1 against
"Z", and its success turns on the the switch of FA0
("Y+"). Since FA0 is the rightmost FA, it is executed
against the remaining input, "Y".

• Input="XfoZbarY": This is overall a failed match.
First, the string matcher finds str1 ("bar"), and sees if it
can trigger matching of FA1 ("[ˆX]"). Then, it figures
out that the switch of FA1 is off since str2 ("foo") was
not found, and thus none of FA2 and str2 was a success-
ful match. So, the matching of regex FA1 terminates,
ensuring no waste of CPU resources.
Our implementation tracks of the input offsets of

matched strings and the state of matching individual com-
ponents, which allows invoking appropriate FA matching
with a correct byte range of the input.
Regex with alternation. If a regex includes an alterna-
tion like (A|B), we expand the alternation into two regexes
only if both A and B are decomposed into str and FA
components (decomposable). If not, (A|B) is treated as
a single FA. In case A or B itself has an alternation, we
need to recursively apply the same rule until there is no al-
ternation in their subregexes. Then, each expanded regex
would become a linear regex, which would benefit from
the same rules for decomposition and matching as before.

Pattern matching with regex decomposition presents
its main benefit – it minimizes the waste of CPU cycles
on unnecessary FA matching because FA matching is
executed only when it is needed. Also, it increases the
chance of fast DFA matching as each decomposed FA
is smaller, so it is more likely to be converted into a
DFA. In contrast, the prefiltering approach has to execute
matching of the entire regex even when it is not needed
(e.g., matching "bar" in the example above would trigger
regex matching even if "foo" is not found), and regex
matching must re-match the string already found in string

634 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

matching. Furthermore, conversion of a whole regex into
a single FA is not only more complex, but often ends up
with a slower NFA to avoid state explosion. In terms of
correctness, pattern matching with regex decomposition
produces the same result as the original regex, but we
leave its formal proof as our future work.

3.2 Rationale and Guidelines
In practice, performing regex decomposition on its textual
form is often tricky as some string segments might look
hidden behind special regex syntax. We provide several
such examples below:
• Character class (or character-set). /b[il1]l \ s{0,10}/

includes a character class that can be expanded to three
strings ("bil", "bll" and "b1l") while naïve textual ex-
traction might find only ‘b’ and ‘l’.

• Alternation. The alternation sequence in
/(. ∗ \x2d(h|H)(t|T)(t|T)(p|P))/ makes it harder to
discover "http" sequences from textual extraction.

• Bounded repeats. From the perspective of text, the
strings with a minimum length of 32 are hidden from
bounded repeats in /[\x40\ x90]{32,}/.

To reliably find these strings, we perform regex decom-
position on the Glushkov NFA graph [27], which would
benefit from structural graph analyses. We describe use-
ful guidelines for finding the strings effective for regex
matching.
1. Find the string that would divide the graph into two
subgraphs, with the start state in one subgraph, and the
set of accept states in the other. Matching such a string
is a necessary condition for any successful match on the
entire regex. If the start and accept states happen to be
in the same subgraph, the corresponding FA will always
have to run regardless of a string match.
2. Avoid short strings. Short strings are prone to match
more frequently, and are likely to trigger expensive FA
matching that fails.3

3. Expand small character-sets 4 to multiple strings to
facilitate decomposition. This would not only increase
the chance of successful decomposition but also lead to a
longer string if a character-set intercepts a string sequence
(i.e. "document[\x22\ x27]ob ject").
4. Avoid having too many strings. Having too many
strings for matching would overload the matcher and
degrade the entire performance. So, it is important to find
a small set of "good" strings effective for regex matching.

3Our current limit is 2 to 3 characters.
4Our current implementation treats a character-set that expands to

11 or smaller strings as a small character-set.

1
[^a]

2. 4
[^a]

6
a

7
b

8
c

3
[^a] 5

d
10
f

9
[^e]

11
c

0.

Figure 3: Dominant path analysis

3.3 Graph-based String Extraction
We develop three graph analysis techniques that discover
strings in the critical path for matching. We describe
the key idea of each algorithm below, and provide more
detailed algorithms in an appendix.
Dominant path analysis. A vertex u is called a domina-
tor of vertex v if every path from the start state to vertex
v must go through vertex u. A dominant path of vertex v
is defined as a set of vertices W in a graph, where each
vertex in W is a dominator of v and the vertices form a
trace of a single path. Dominant path analysis finds the
longest common string that exists in all dominant paths of
any accept state. For example, Figure 3 shows the string
on the dominant path of the accept state (vertex 11).

The string selected by the analysis is highly desirable
for matching as it clearly divides start and accept states
into two separate subgraphs, satisfying the first guide-
line. The algorithm calculates the dominant path per each
accept state, and finds the longest common prefix of all
dominant paths. Then, it extracts the string on the chosen
path. If a vertex on the path is a small character-set, we
expand it and obtain multiple strings.
Dominant region analysis. If the dominant path analy-
sis fails to extract a string, we perform dominant region
analysis. It finds a region of vertices that partition the start
state into one graph and all accept states into the other.
More formally, a dominant region is defined as a subset
of vertices in a graph such that (a) the set of all edges that
enter and exit the region constitute a cut-set of the graph,
(b) for every in-edge (u, v) to the region, there exist edges
(u, w) for all w in {w : w is in the region and w has an
in-edge}, where (u, v) refers to an edge from vertex u to
v in the graph, and (c) for every out-edge (u, v) from the
region, there exist edges (w, v) for all w in {w : w in is in
the region and w has an out-edge}.

If a discovered region consists of only string or small
character-set vertices, we transform the region into a set of
strings. Since these strings connect two disjoint subgraphs
of the original graph, any match of the whole regex must
match one of these strings. Figure 4 shows one example of
a dominant region with 9 vertices. Vertices 5, 6, and 7 are
the entry points with the same predecessors and vertices

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 635

1
[^a]

2. 3
[^a]

6
b

9
a

12
r

3
[^a]

4
d

14
[^e]

15
c0.

7
a

10
b

13
c

5
f

8
o

11
o

Figure 4: Dominant region analysis

2[^a]

3. 6[^a]

10
f

13g 16
h

5
[^a] 8.

19
[^c] 22.0.

11
a

14
b

17
c

9
f

12
o

15
o

7
e

4.
20
[^m]

18
[^e] 21

c
1[^a]

23g

Figure 5: Network flow analysis

11, 12, and 13 are the exits with the same successor. We
can extract strings, " f oo", "bar", and "abc", as a result of
dominant region analysis.

The algorithm for dominant region analysis first creates
a directed acyclic graph (DAG) from the origin graph to
avoid any interference from back edges. Then, it performs
topological sort on the DAG, and iterates each vertex
to see if it is added to the current candidate region, its
boundary edges form a valid cut-set. We repeat this to
discover all regions in the graph. Since we only analyze
the DAG, the back edges of the original graph might affect
the correctness. Thus, for each back edge, if its source
and target vertices are in different regions, we merge them
(and all intervening regions) into a single region. Finally,
we extract the strings from the dominant region.
Network flow analysis. Since dominant path and domi-
nant region analyses depend on a special graph structure,
they may not be always successful. Thus, we run network
flow analysis for generic graphs. For each edge, the analy-
sis finds a string (or multiple strings) that ends at the edge.
Then, the edge is assigned a score inversely proportional
to the length of the string(s) ending there. The longer the
string is, the smaller the score gets. With a score per edge,
the analysis runs “max-flow min-cut” algorithm [25] to
find a minimum cut-set that splits the graph into two that
separate the start state from all accept states. Then, the
“max-flow min-cut” algorithm discovers a cut-set of edges
that generate the longest strings from this graph.

Figure 5 shows a result of network flow analysis, ex-
tracting a string set of " f oo", "e f gh", and "abc" that
would divide the whole graph into two parts.
Effectiveness of graph analysis. Our graph analysis ef-
fectively produces "good" strings for most of real-world
rules. Table 1 shows that 97.2% to 99.2% of decompos-
able real-world regex rules benefit from dominant path

Ruleset Total Decomp D-Path D-Reg N-flow
S-V 1,663 1,563 1,551 32 16
S-E 7,564 6,756 6,575 100 203
Suri 7,430 6,501 6,318 94 201

Table 1: Effectiveness of graph analysis on real-world rulesets.
S-V: Snort Talos (May 2015), S-E: Snort ET-Open 2.9.0, Suri:
Suricata rulesets 4.0.4. D-Path, D-Reg, and N-flow refer to
dominant path, dominant region, and network flow analysis,
respectively. Decomp is the total number of decomposable rules.
Note that one regex could benefit from multiple graph analyses,
so the sum of graph analyses is larger than the Decomp fields.

Extended
Shift-or

Matching

Verification
Input

Stream
Exact

Matching

Candidate
Matching

Input

String Pattern

…

Hashing

Figure 6: Two-stage matching with FDR

analysis while remaining patterns exploit dominant re-
gion and network flow analysis. These strings prove to
be highly beneficial for reducing the number of regex
matching invocations, as shown in Section 6.2.

4 SIMD-accelerated Pattern Matching
In this section, we present the design of multi-string and
FA matching algorithms that leverage SIMD operations
of modern CPU.

4.1 Multi-string Pattern Matching
We introduce an efficient multi-string matcher called
FDR. 5 The key idea of FDR is to quickly filter out inno-
cent traffic by fast input scanning. As shown in Figure 6,
FDR performs extended shift-or matching [13] to find can-
didate input strings that are likely to match some string
pattern. Then, it verifies them to confirm an exact match.
Shift-or matching. We first provide a brief background
of shift-or matching that serves as the base algorithm of
FDR. The shift-or algorithm finds all occurrences of a
string pattern in the input bytestream by performing bit-
wise shift and or operations, as shown in Figure 7. It
uses two data structures – a shift-or mask for each charac-
ter c in the symbol set, (sh-mask(‘c’)), and a state mask
(st-mask) for matching operation. sh-mask(‘c’) zeros all
bits whose bit position corresponds to the byte position of
c in the string pattern while all other bits are set to 1. The
bit position in a sh-mask is counted from the rightmost
bit while the byte position in a pattern is counted from the
leftmost byte. For example, for a string pattern, "aphp",

5It is named after the 32nd President of the U.S.

636 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

sh-mask(‘h’) =

sh-mask(‘a’) =

sh-mask(‘p’) =

aphp

m4 = (m3 << 1) | sh-mask(‘p’)

m3 = (m2 << 1) | sh-mask(‘h’)

m2 = (m1 << 1) | sh-mask(‘p’)

m1 = (st-state << 1)| sh-mask(‘a’)

lowhigh

Sh
ift-o

r m
asks

string pattern

aphp…

Input

m
at

ch
in

g
w

it
h

 in
p

u
t

st-mask = 11111111

Match!

11111110

11111011

11110101

11111110

11111101

11111011

11110111

Figure 7: Classical shift-or matching

ab sh-mask(‘b’) =

sh-mask(‘a’) =

sh-mask(‘c’) =

lowhigh

Bucket 0

cd

sh-mask(‘d’) =

Padding Bytes

… 11111110 11111110 11111111

… 11111110 11111111 11111110

… 11111110 11111110 11111111

… 11111110 11111111 11111110

Figure 8: Example shift-or masks with two patterns at bucket 0.
No other buckets contain ‘a’, ‘b’, ‘c’, ‘d’ in their patterns.

sh-mask(‘p’) = 11110101 as ‘p’ appears at the second
and the fourth position in the pattern. If a character is
unused in the pattern, all bits of its sh-mask are set to 1.
The algorithm keeps a st-mask whose size is equal to the
length of a sh-mask. Initially, all bits of the st-mask are
set to 1. The algorithm updates the st-mask for each input
character, ‘x’ as st-mask = ((st-mask ≪ 1) | sh-mask(‘x’)).
For each matching input character, 0 is propagated to the
left by one bit. If the zero bit position becomes the length
of the pattern, it indicates that the pattern string is found.

The original shift-or algorithm runs fast with high space
efficiency, but it leaves two limitations. First, it supports
only a single string pattern. Second, although it consists
of bit-level operations, the implementation cannot benefit
from SIMD instructions except for very long patterns. We
tackle these problems as below.
Multi-string shift-or matching. To support multi-string
patterns, we update our data structures. First, we divide
the set of string patterns into n distinct buckets where each
bucket has an id from 0 to n-1. For now, assume that each
string pattern belongs to one of n buckets as we will dis-
cuss how we divide the patterns later (‘pattern grouping’).
Second, we increase the size of sh-mask and st-mask by
n times so that a group of n bits in sh-mask(‘x’) record all
the buckets that have ‘x’ in some of their patterns. More
precisely, the k-th n bits of sh-mask(‘x’) encode the ids
of all buckets that hold at least one pattern which has ‘x’
at the k-th byte position. One difference from the original
algorithm is that the byte position in a pattern is counted
from the rightmost byte. This enables parallel execution
of multiple CPU instructions per cycle as explained later
(‘SIMD acceleration’). For efficient implementation, we

hp

aphp…

sh-mask(‘a’)

OR

aphp

sh-mask(‘p’) << 24

sh-mask(‘h’) << 16

sh-mask(‘p’) << 8

sh-mask(‘a’)

st-mask

lowhigh

Bucket 4

Bucket 0

Input

… 11101110 11111110 11111111 11111111

… 11111110 11111110 11101110 11111111

… 11111110 11101110 11111111 11101110

… 00000000 00000000 00000000 11111111

… 11101110 11111110 11111111 11111111

… 11101110 11111111 11101110 00000000

… 11101110 11111111 00000000 00000000

… 11101110 00000000 00000000 00000000

sh-mask(‘h’)

sh-mask(‘p’)

m
at

ch
in

g
w

it
h

 in
p

u
t

Match! (bucket = 0, position = 3)Match! (bucket = 4, position = 3)

11101110

Figure 9: FDR’s extended shift-or matching

set n to 8 so that the byte position in a sh-mask matches
the same position in a pattern. This implies that the length
of a sh-mask should be no smaller than the longest pattern.

Figure 8 shows an example. Bucket 0 has two string
patterns, "ab" and "cd". Since ‘a’ appears at the second
byte of only "ab" in bucket 0, sh-mask(‘a’) zeros only the
first bit (= bucket 0) of the second byte. The i-th bit within
each byte of a sh-mask indicates the bucket id, i-1. If the
byte position of a sh-mask exceeds the longest pattern
of a certain bucket (called ‘padding byte’), we encode
the bucket id in the padding byte. This ensures matching
correctness by carrying a match at a lower input byte
along in the shift process. Examples of this are shown
in the padding bytes in Figure 8, and in the sh-masks in
Figure 9 that zero the first bit in the third and fourth bytes.

The pattern matching process is similar to the original
algorithm except that sh-masks are shifted left instead
of the st-mask. The st-mask is initially 0 except for the
byte positions smaller than the shortest pattern. This
avoids a false-positive match at a position smaller than
the shortest pattern. Now, we proceed with input char-
acters. The matcher keeps k, the number of characters
processed so far modulo n. For an input character, ‘x’,
st-mask |= (sh-mask(‘x’) ≪ (k bytes)). The matcher re-
peats this for n input characters, and checks if the st-mask
has any zero bits. Zero bits represent a possible match at
the corresponding bucket. For example, Figure 9 shows
that bucket 0 and 4 have a potential match at input byte
position 3. The verification stage illustrated later checks
whether they are a real match or a false positive.
Pattern grouping. The strategy for grouping patterns
into each bucket affects matching performance. A good

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 637

strategy would distribute the patterns well such that most
innocent traffic would pass with a low false positive rate.
Towards the goal, we design our algorithm based on two
guidelines. First, we group the patterns of a similar length
into the same bucket. This is to minimize the information
loss of longer patterns as the input characters match only
up to the length of the shortest pattern in a bucket for
matching correctness. Second, we avoid grouping too
many short patterns into one bucket. In general, shorter
patterns are more likely to increase false positives. To
meet these requirements, we sort the patterns in the as-
cending order of their length, and assign an id of 0 to
(s-1) to each pattern by the sorted order. Then, we run
the following algorithm that calculates the minimum cost
of grouping the patterns into n buckets using dynamic
programming. The algorithm is summarized by the two
equations below:

1. t[i][j] =
s−1
min

k=i+1
(costik + t[k+1][j−1]), where s is the

number of patterns and t[i][j] stores the minimum cost
of grouping the patterns i to (s-1) into (j+1) buckets.

2. costik = (k− i+1)α/lengthβ

i , where costik is the cost
of grouping patterns i to k into one bucket, lengthi is
for pattern i, α and β are constant parameters.

t[i][j] is calculated as the minimum of the sum of the cost
of grouping patterns i to k into one bucket (costik) and the
minimum cost of grouping remaining patterns (k+1) to
(s-1) into j buckets (t[k+1][j-1]). costik gets smaller as the
bucket has a longer pattern, which allows more patterns in
the bucket. It gets larger as the bucket has a shorter pattern,
limiting the number of such patterns. Our implementation
currently uses α = 1.05 and β = 3 towards this goal,
and computes t[0][7] to divide all string patterns into 8
buckets, and records the bucket id per each pattern in the
process. In practice, we find that the algorithm works
well, automatically reaching the sweetspot that minimizes
the total cost.
Super Characters. One problem with the bucket-based
matching is that it produces false positives with patterns
in the same bucket. For example, if a bucket has /ab/ and
/cd/, the algorithm not only matches the correct patterns
but also matches false positives, /ad/ and /cb/. To suppress
them, we use an m-bit (m>8) super character (instead
of an 8-bit ASCII character) to build and index the sh-
masks. An m-bit super character consists of a normal
(8-bit) character in the lower 8 bits and low-order (m-
8) bits of the next character in the upper bits. If it is
the last character of a pattern (or in the input), we use
a null character (0) as the next character. The key idea
is to reflect some information of the next character in a
pattern into building the sh-mask for the current character.

Only if the same two characters appear in the input 6 , we
declare a match at that input byte position. This would
significantly reduce false positives at the cost of a slightly
large memory for sh-masks.

In practice, m should be between 9 and 15. Let’s say
m = 12 bits. For a pattern, /ab/, we see two 12-bit super
characters, α = ((low-order 4 bits of ‘b’ ≪ 8) | ‘a’), and
β = ‘b’. Then, we build sh-masks for α and β , respec-
tively. When the input arrives, we construct a 12-bit super
character based on the current input byte offset, and use
it as an index to fetch its sh-mask. We advance the input
one byte at a time as before. For example, if the input is
‘ad’, it first constructs γ = ((low-order 4 bits of ‘d’ ≪ 8) |
‘a’), fetches sh-mask(‘γ’), and performs "shift" and "or"
operations as before. Then, it advances to the next byte
and constructs δ = ‘d’. So, the input ‘ad’ will not match
even if a bucket contains /ab/ and /cd/.
SIMD acceleration. Our implementation of FDR heav-
ily exploits SIMD operations and instruction-level paral-
lelism. First, it uses 128-bit sh-masks so that it employs
128-bit SIMD instructions (e.g., pslldq for "left shift"
and por for "or" in the Intel x86-64 instruction set) to up-
date the masks. As "shift" and "or" are the most frequent
operations in FDR, it enjoys a substantial performance
boost with the SIMD instructions. Second, it exploits
parallel execution with multiple CPU execution ports. In
the original shift-or matching, the execution of "shift"
and "or" operations is completely serialized as they have
dependency on the previous result. This under-utilizes
modern CPU even if it can issue multiple instructions per
CPU cycle. In contrast, FDR exploits instruction-level
parallelism by pre-shifting the sh-masks with multiple in-
put characters in parallel. Note that this is made possible
as we count the byte position differently from the origi-
nal version. The parallel execution effectively increases
instructions per cycle (IPC) and significantly improves
the performance. To accommodate the parallel shifting,
we limit the length of a pattern to 8 bytes and extract
the lower 8 bytes from any pattern longer than 8 bytes.
Because it requires minimum 8-byte masks and up to 7
bytes of shifting, a 128-bit mask would not lose high bit
information during left shift. In actual matching, FDR
handles 8 bytes of input at a time. To guarantee a contigu-
ous matching across 8-byte input boundaries, the st-mask
of the previous iteration is shifted right by 8 bytes for the
next iteration.
Verification. As our shift-or matching can still generate
false positives, we need to verify if a candidate match is

6Of course, there is still a small chance of a false positive as we use
partial bits of the next character, but the probability becomes fairly small
as the pattern length grows.

638 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 FDR Multi-string Matcher
1: function MATCH
2: n := number o f bits o f a super character
3: R := startMask
4: for each 8–byte V ∈ input do
5: for i ∈ 0...7 do
6: index =V [i∗8..i∗8+n−1]
7: M[i] := shi f tOrMask[index]
8: S[i] := LSHIFT (M[i], i)
9: end for

10: for i ∈ 0...7 do
11: R := OR128(R,S[i])
12: end for
13: for zero bit b in low 8 bytes o f R do
14: j := the byte position containing bit b
15: l := length o f string in bucket b
16: h := HASH(V [j− l +1.. j])
17: if h is valid then
18: Per f orm exact matching f or each
19: string in hash bucket[h]
20: end if
21: end for
22: R := RSHIFT (R,8))
23: end for
24: end function

an exact match. This phase consists of hashing and exact
string comparison. To minimize hash collisions, we build
a separate hash table for each bucket. Then, we leverage
the byte position of a match and compare the input with
each string in the hash bucket to confirm a match. In
practice, we find hashing filters out a large portion of
false positives.

4.2 Finite Automata Pattern Matching
Successful string matching often triggers FA component
matching, which is essentially the same as general regex
matching. Our strategy is to use a DFA whenever is possi-
ble, but if the number of DFA states exceeds a threshold 7,
we fall back to NFA-based matching. As the state-of-the-
art DFA already delivers high performance, we introduce
fast NFA-based matching with SIMD operations here.

In NFA-based matching, there can be multiple current
states (current set) that are active at any time. A state tran-
sition with an input character is performed on every active
state in the current set in parallel, which produces a set of
successor states (successor set). A match is successful if
any state reaches one of the accept states.

We develop bit-based NFA where each bit represents a
state. We choose the bit-based representation as it outper-
forms traditional NFA representations that use byte arrays
to store transitions, and look up a transition table for each
current state in a serialized manner. Also, bit-based NFA
leverages SIMD instructions to perform vectorized bit

7We use 16,384 states as the threshold.

operations to further accelerate the performance. Our
scheme assigns an id to each state (i.e. each vertex in
an n-node NFA graph) from 0 to n-1 by the topological
order, and maintains a current set as a bit mask (called
current-set mask) that sets a bit to 1 if its position matches
a current state id. We define a span of a state transition as
the id difference between the two states of the transition.
Since state ids are sequentially assigned by the topologi-
cal order, the span of a state transition is typically small.
We exploit this fact to compactly represent the transitions
below.

The bit-based NFA implements a state transition with
an input character, ‘c’, in three steps. First, it calculates
the successor set that can be transitioned to, from any
state in the current set with any input character. Second,
it computes the set of all states that can be transitioned
to, from any state with ‘c’ (called reachable states by ‘c’).
Third, it computes the intersection of the two sets. This
produces a correct successor set as a Glushkov NFA graph
guarantees that one can enter a specific state only with
the same character or with the same character-set.

The challenge is to efficiently calculate the successor
set. One can pre-calculate a successor set for every combi-
nation of current states, and look up the successor set for
the current-set mask. While this is fast, it requires storing
2n successor sets, which becomes intractable except for
a small n. An alternative is to keep a successor-set mask
per each individual state, and to combine the successor
set of every state in the current set. This is more space-
efficient but it costs up to n memory lookups and (n−1)
"or" operations. We implement the latter, but optimize it
by minimizing the number of successor-set masks, which
would save memory lookups. To achieve this, we keep a
set of shift-k masks shared by all relevant states. A shift-k
mask records all states with a forward transition of span
k, where a forward transition moves from a smaller state
id to a larger one, and a backward transition does the op-
posite. Figure 10 shows some examples of shift-k masks.
Shift-1 mask sets every bit to 1 except for bit 7 since all
states except state 7 has a forward transition of span 1.

We divide each state transition into two types – typical
or exceptional. A typical transition is the one whose span
is smaller or equal to a pre-defined shift limit. Given a
shift limit, we build shift-k masks for every k (0≤k≤limit)
at initialization. These masks allow us to efficiently com-
pute the successor set from the current set following typ-
ical transitions. If the current-set mask is S, then ((S
& shift-k mask) ≪ k) would represent all possible suc-
cessor states with transitions of span k from S. If we
combine successor sets for all k, we obtain the successor
set reached by all typical transitions.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 639

-3
1
A

4
D

5
A

6
F

7
F

0. 3
C

2
B

-1 -13
5

3

Exception
mask Exceptional transitions

Shift-0 mask

Shift-1 mask

Typical transitions
high low

1 0 0 0 0 0 1

Shift-2 mask
0 0 0 0 0 0 0

1
0
1
0
1
0
0
0

0

1 1 1 1 1 1 10

0

0 0 1 0 1 0 0 0

0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0

Succ mask for state 0

Succ mask for state 2

Succ mask for state 4

high low

Figure 10: NFA representation for (AB|CD)∗AFF∗

We call all other transitions exceptional. These include
forward transitions whose span exceeds the limit and any
backward transitions. 8 Any state that has at least one
exceptional transition keeps its own successor mask. The
successor mask records all states reached by exceptional
transitions of its owner state. All exceptional states are
maintained in an exception mask.

As you can see, the choice of the shift limit affects the
performance. If it is too large, we would have too many
shift-k masks representing rare transitions, and if it is too
small, we would have to handle many exceptional states.
Our current implementation uses 7 after performance tun-
ing with real-world regex patterns.

Figure 10 shows an NFA graph for (AB|CD)∗AFF∗.
We set the shift limit to 2 and mark exceptional edges with
the difference of ids. State 0, 2, and 4 are highlighted as
they have exceptional out-edge transitions. The exception
mask holds all exceptional states, and each state points to
its own successor mask. For example, successor mask for
state 2 sets bits 1 and 5 as its exceptional transitions point
to states 1 and 5.

Algorithm 2 shows our bit-based NFA matching. It
combines the successor masks possibly reached by typi-
cal transitions (SUCC_TY P) and exceptional transitions
(SUCC_EX). Then, it fetches the reachable state set with
the current input character, c, (reach[c]) and perform a bit-
wise "and" operation with the combined successor mask
(SUCC). The result is the final successor set, and we re-
port a match if the successor set includes any accept state.
Otherwise, it proceeds with the next input character. For
each character, it runs in O(l + e) where l is the shift limit,
and e is the number of "exception" states. Our implemen-

8In our implementation, forward transitions that cross the 64-bit
boundary of the state id space (e.g., from an id smaller than 64 to an
id larger than 64) are also treated as exceptional. This is related to a
specific SIMD instruction that we use, so we omit the detail here.

Algorithm 2 Bit-based NFA Matching
1: # SH_MSKS[i] : shift-i masks for typical transitions
2: # SUCC_MSKS[i] : successor mask for state i
3: # EX_MSK : exception mask
4: # reach[k] : reachable state set for character k
5: function RUNNFA(S: current active state set)
6: SUCC_TY P := 0, SUCC_EX := 0
7: for c ∈ input do
8: if any state is active in S then
9: for i := 0 to shi f tlimit do

10: R0 := AND(S,SH_MSKS[i])
11: R1 := LSHIFT (R0, i)
12: SUCC_TY P := OR(SUCC_TY P,R1)
13: end for
14: S_EX := AND(S,EX_MSK)
15: for active state s in S_EX do
16: SUCC_EX :=
17: OR(SUCC_EX ,SUCC_MSKS[s])
18: end for
19: SUCC := OR(SUCC_TY P,SUCC_EX)
20: S := AND(SUCC,reach[c])
21: Report accept states in S
22: end if
23: end for
24: end function

Total Size 1 GBytes
Number of Packets 818,682
Number of TCP Packets 818,520
Percent of TCP Bytes 97.2%
Percent of HTTP Bytes 92.9%
Average Packet Size 1265 Bytes

Table 2: HTTP traffic trace from a cloud service provider.

tation uses a 128-bit mask (and extends it up to a 512-bit
mask with four variables if needed), and employs 128-bit
SIMD instructions for fast bitwise operations. In practice,
we find that 512 states are enough for representing the
NFA graph of most regexes.

5 Implementation
Hyperscan consists of compile and run time functions.
Compile-time functions include regex-to-NFA graph con-
version, graph decomposition, and matching components
generation. The run time executes regex matching on the
input stream. While we cover the core functions in Sec-
tion 3 and 4, Hyperscan has a number of other subsystems
and optimizations:
• Small string-set (<80) matching. This subsystem imple-

ments a shift-or algorithm using the SSSE3 "PSHUFB"
instruction applied over a small number (2-8) of 4-bit
regions in the suffix of each string.

• NFA and DFA cyclic state acceleration. Where a state
(in the case of the DFA) or a set of states (in the case
of the NFA) can be shown to recur until some input is
seen, we consider these cyclic states. In case where

640 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of regexes Prefilter Hyperscan Reduction
500 2,971,652 645,326 4.6x
1000 93,595,304 714,582 131.0x
1500 110,122,972 791,017 139.2x
2000 139,804,519 780,665 179.1x
2500 156,332,187 857,100 182.4x

Table 3: Regex invocations of Snort’s ET-Open ruleset

current states in NFA or DFA are all cyclic states with
a large reachable symbol set, there is a high probability
of staying at current state(s) for many input characters.
We have SIMD acceleration for searching the first ex-
ceptional input sequence (1-2 bytes) that leads to one
or more transitions out of current states or switches off
one of the current states.

• Small-size DFA matching. We design a SIMD-based
algorithm for a small-size DFA (< 16 states) that outper-
forms the state-of-the-art DFA by utilizing the shuffle
instruction for fast state transitions.

• Anchored pattern matching. When an anchored pattern
consists of comparatively short acyclic sequences (i.e.
no loops), the automata corresponding to them are both
simple and short-lived. They are thus cheap to scan
and scale well. We run DFA-based subsystems special-
ized to attempt to discover when anchored patterns are
matched or rejected.

• Suppression of futile FA matching. We design a fast
lookaround approach that peeks at inputs that are near
the triggers for an FA before running it. This often
allows us to discover that the FA either does not need
to run at all or will have reached a dormant state before
the triggers arrive. These checks are implemented as
comparatively simple SIMD checks and can be done in
parallel over a range of input characters and character
classes. For example, in the regex fragment /R \ d \
s{4,5} f oo/, where R is a complex regex, we can first
detect that the digit and space character classes have
matched with SIMD checks, and, if not, avoid or defer
running a potentially expensive FA associated with R.

6 Evaluation
In this section, we evaluate the performance of Hyper-
scan to answer the following questions. (1) Does regex
decomposition extract better strings than those by manual
choice? (2) How well do multi-string matching and regex
matching perform in comparison with the existing state-
of-the-art? (3) How much performance improvement does
Hyperscan bring to a real DPI application?

6.1 Experiment Setup
We use a server machine with Intel Xeon Platinum 8180
CPU @ 2.50GHz and 48 GB of memory, and compile the

of regexes Prefilter Hyperscan Reduction
700 699,622 18,164 38.5x
850 7,516,464 19,214 391.2x
1000 17,063,344 32,533 524.5x
1150 17,737,814 34,075 520.6x
1300 25,143,574 36,040 697.7x

Table 4: Regex invocations for Snort’s Talos ruleset

code with GCC 5.4. To separate the impact by network
I/O, we evaluate the performance with a single CPU core
by feeding the packets from memory. We test with packets
of random content as well as a real-world Web traffic trace
obtained at a cloud service provider as shown in Table 2.
For all evaluation, we use the latest version of Hyperscan
(v5.0) [2].

6.2 Effectiveness of Regex Decomposition
The primary goal of regex decomposition is to mini-
mize unnecessary FA matching by extracting "good"
strings from a set of regexes with rigorous graph anal-
yses. To evaluate this point, we compare the number
of regex matching invocations triggered by a prefilter-
based DPI and by Hyperscan. We extract the content
options and their associated regex from Snort rulesets,
and count the number of regex matching invocations for
a prefilter-based DPI. And then, we measure the same
number for Hyperscan where Hyperscan automatically
extracts the strings from regexes rather than using the
keywords from the content option. For the ruleset, we use
ET-Open 2.9.0 [8] and Talos 2.9.11.1 [11] against the real
traffic trace, and confirm the correctness – both versions
produce the identical output for the traffic.

Tables 3 and 4 show that Hyperscan dramatically re-
duces the number of regex matching invocations by over
two orders of magnitude! As the number of regex rules
increases, the reduction by Hyperscan grows, affirming
that regex decomposition is the key contributor to effi-
cient pattern matching. Close examination reveals that
there are many single-character strings in the content op-
tion of the Snort rulesets, which invokes redundant regex
matching too frequently. In practice, other rule options in
Snort may mitigate the excessive regex invocations, but
frequent string matching alone poses a severe overhead.
In contrast, Hyperscan completely avoids this problem by
triggering regex matching only if it is necessary.

6.3 Microbenchmarks
We evaluate the performance of FDR, our multi-string
matcher, as well as that of regex matching of Hyperscan.
Multi-string pattern matching. We compare the perfor-
mance of FDR with that of DFC and AC. We measure the
performance over different numbers of string patterns ex-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 641

Ruleset PCRE PCRE2 RE2-s Hyperscan-s RE2-m Hyperscan-m
Talos 6,942 394 1,777 173 29 2.15
ET-Open 12,800 913 4,696 516 1,116 133

Table 5: Performance comparison with PCRE, PCRE2, RE2 and Hyperscan for Snort Talos (1,300 regexes) and Suricata (2,800
regexes) rulesets with the real Web traffic trace. Numbers are in seconds.

3.2

1.3 1.2 1.1

0

1

2

3

4

0

3

6

9

12

15

1k 5k 10k 26k

Th
ro

u
gh

p
u

t
(G

b
p

s)

Number of String Patterns

FDR DFC

(a) ET-Open ruleset

2.3

1.5 1.4
1.2

0

1

2

3

0

3

6

9

12

1k 5k 10k 20k

Im
p

ro
ve

m
en

t
o

ve
r

D
FC

Number of String Patterns

AC Improvement

(b) Talos ruleset
Figure 11: String matching performance with random packets

2.5
2.1

1.7 1.5

0

1

2

3

0

2

4

6

8

10

1k 5k 10k 26k

Th
ro

u
gh

p
u

t
(G

b
p

s)

Number of String Patterns

FDR DFC

(a) ET-Open ruleset

2.2

1.6
1.4 1.3

0

1

2

3

0

2

4

6

8

10

1k 5k 10k 20k

Im
p

ro
ve

m
en

t
o

ve
r

D
FC

Number of String Patterns

AC Improvement

(b) Talos ruleset
Figure 12: String matching performance with a real traffic trace

tracted from Snort ET-Open and Talos rulesets. Figure 11
and Figure 12 show that FDR outperforms the state-of-
the-art matcher, DFC, by 1.1x to 3.2x (and AC by 4.2x to
8.8x) for packets of random content and by 1.3x to 2.5x
(and AC by 3.2x to 8.2x) for the real traffic trace. We also
evaluate it with the Suricata ruleset but we omit the result
here since it exhibits the similar performance trend. When
the number of string patterns is small, Hyperscan benefits
from small CPU cache footprint and SIMD acceleration,
but when the number of patterns grows, the performance
becomes compatible with DFC due to increased cache
usage, but it is still much better than AC.
Regex matching. We now evaluate the performance of
regex matching of Hyperscan. We compare the perfor-
mance with PCRE (v8.41) [6] as it is most widely used
in network DPI applications, and PCRE2 (v10.32) [7], a
more recent fork from PCRE with a new API. We en-
able the JIT option for both PCRE and PCRE2. We
also compare with RE2 (v2018-09-01) [1], a fast, small
memory-footprint regex matcher, developed by Google.
Both Hyperscan and RE2 support multi-regex matching
in parallel while PCRE matches one regex at a time. For
fair comparison with PCRE and PCRE2, we measure the
total time for matching all regexes in a serial manner (e.g.,

match against one regex at a time), which would require
passing the entire input for each regex. For Hyperscan and
RE2, we measure two numbers – one for matching one
regex at a time (RE2-s, Hyperscan-s), and the other for
matching all regexes in parallel (RE2-m, Hyperscan-m).
For testing, we use 1,300 regexes from the Snort Talos
ruleset and 2,800 regexes from the Suricata ruleset.

Table 5 shows the result. For the Snort Talos ruleset,
Hyperscan-s outperforms PCRE, RE2-s, and PCRE2 by
40.1x, 10.3x, and 2.3x, respectively. Hyperscan-m is
13.5x faster than RE2-m while it reveals 183.3x perfor-
mance improvement over PCRE2! For the Suricata rule-
set, Hyperscan-s shows 24.8x, 9.1x, and 1.8x speedups
over PCRE, RE2-s, and PCRE2. Hyperscan-m outper-
forms RE2-m and PCRE2 by 8.4x and 6.9x, respectively.
We do not report DFA-based PCRE performance as we
find it much slower than the default operation with NFA-
based matching [5]. RE2-s uses a DFA for regex matching
(and fails on a large regex that requires an NFA), but it
needs to translate the whole regex into a single DFA. In
contrast, Hyperscan splits a regex into strings and FAs,
and benefits from fast string matching as well as smaller
DFA matching of the FA components, which explains the
performance boost.

6.4 Real-world DPI Application
We now evaluate how much performance improvement
Hyperscan brings to a popular IDS like Snort. We
compare the performance of stock Snort (ST-Snort) and
Hyperscan-ported Snort (HS-Snort) that performs pattern
matching with Hyperscan, both with a single CPU core.
ST-Snort employs AC and PCRE for multi-string match-
ing and regex matching, respectively. HS-Snort keeps the
basic design of Snort but it replaces AC and PCRE with
the multi-string and single-regex matchers of Hyperscan.
It also replaces the Boyer-Moore algorithm in Snort with
a fast single-literal matcher of Hyperscan. With the Snort
Talos ruleset, ST-Snort achieves 113 Mbps on our real
Web traffic. In contrast, HS-Snort produces 986 Mbps on
the same traffic, a factor of 8.73 performance improve-
ment. We find that the main contributor for performance
improvement is the highly-efficient multi-string matcher
of Hyperscan as shown in Figure 11. In practice, we
expect a much higher performance improvement if we
restructure Snort to use multi-regex matching in parallel.

642 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

7 Evolution, Experience, and Lessons
Hyperscan has been developed since 2008, and was first
open-sourced in 2013. Hyperscan has been successfully
adopted by over 40 commercial projects globally, and it is
in production use by tens of thousands of cloud servers in
data centers. In addition, Hyperscan has been integrated
into 37 open-source projects, and it supports various op-
erating systems such as Linux, FreeBSD, and Windows.
Hyperscan APIs are initially developed in C, but there
are public projects that provide bindings for other pro-
gramming languages such as Java, Python, Go, Node.js,
Ruby, Lua, and Rust. In this section, we briefly share
our experience with developing Hyperscan and lay out its
future direction.

7.1 Evolution of Hyperscan
Hyperscan was developed at a start-up company, Sen-
sory Networks, after a move away from hardware match-
ing, which was expensive in terms of material costs and
development time. We investigated GPU-based regex
matching, but it imposed unacceptable latency and sys-
tem complexity. As CPU technology advances, we settled
at CPU-based regex matching, which not only became
cost-effective with high performance, but also made it
simple to be employed by applications.
Version 1.0. The initial version was released in 2008,
with the intent of providing a simple block-mode regex
package that could handle large numbers of regexes. Like
other popular solutions at that time, it used string-based
prefiltering to avoid expensive regex matching. How-
ever, the initial version was algorithmically primitive and
lacked streaming capability (e.g., pattern matching over
streamed data). Also, it suffered from quadratic matching
time as it had to re-scan the input from a matched literal
for each match.

Version 1.0 did include a large-scale string matcher
(a hash-based matcher called "hlm", akin to Rabin-Karp
[29] with multiple hash tables for different length strings)
as well as a bit-based implementation of Glushkov NFAs.
The NFA implementation allowed support of a broad
range of regexes that would suffer from combinatorial
explosions if the DFA construction algorithm was used.
The Glushkov construction mapped well to Intel SIMD
instructions, allowing NFA states to be held in one or
more SIMD registers.
Version 2.0. The algorithmic issues and the absence of
a streaming capability led to major changes to version
1.0, which became Hyperscan version 2.0. First, it moved
towards a Glushkov NFA-based internal representation
(the "NFA Graph") that all transformations operated over,
departing from ad-hoc optimizations on the regex syntax

tree. Second, it supported ‘streaming’ – scanning multiple
blocks without retaining old data and with a fixed-at-
pattern-compile-time amount of stream state. Support for
efficient streaming was especially desirable for network
traffic monitoring as patterns may spread over multiple
packets. Third, it scanned patterns that used one or more
strings, detected by a string matching pre-pass, followed
by a series of NFA or DFA engines running over the input
only when the required strings are found. This approach
avoids the high risk of potential quadratic behavior of
version 1.0, with the tradeoff of potentially bypassing
some comparatively lesser optimizations if a regex could
be quickly falsified at each string matching site.

Unfortunately, version 2.0 still had a number of limita-
tions. First, we observed the adverse performance impact
of prefiltering. Prefiltering did not reduce the size of the
NFA or DFA engines even if a string factor completely
separated a pattern into two smaller ones. This exac-
erbated the problem of a large regex that often needed
to be converted into an NFA. As the system had a hard
limit of 512 NFA states (dictated by the practicalities of a
data-parallel SIMD implementation of the Glushkov NFA;
more than 512 states resulted in extremely slow code), it
often did not accommodate user-provided regexes when
they were too large. Further, if prefiltering failed (i.e.,
when the string factors were all present), it ended up con-
suming more CPU cycles than naïvely performing the
NFA engines over all the input.

Another serious limitation was that matches emerged
from the system in an undefined order. Since the NFAs
were run after string matching had finished, the matches
from these NFAs would emerge based on the order of
which NFAs were run first and no rigorous order was de-
fined for when these matches would appear. Further con-
fusing matters, the string matcher was capable of produc-
ing matches of plain strings ahead of the NFA executions.
In fact, due to potential optimizations where NFA graphs
might be split (for example, splitting into connected com-
ponents to allow an unimplementably large NFA to be run
as smaller components), it was even possible to receive
duplicate matches for a given pattern at a given location.
After an NFA is split into connected components and
run in separate engines, no mechanism existed to detect
whether these different components (which would be run-
ning at different times) might be sometimes producing
matches with the same match id and location.

For example, a regex workload consisting of patterns
/ f oo/, /abc[xyz]/ and /abc[xy]. ∗ de f |abc.z. ∗ de[f g]/
might first produce matches for the simple literal / f oo/,
then provide all the matches for the components of the
pattern /abc[xyz]/, then provide matches for the two parts

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 643

of the alternation abc[xy].∗de f and abc.z.∗de[f g] with-
out removing duplicate matches for inputs that happened
to match both parts of the pattern on the same offset (e.g.
the input "abcxxxxzde f ").
Versions 2.1 and 3.0. (The version 2.1 release series of
Hyperscan saw considerable development and in retro-
spect should have merited a full version number incre-
ment) The limitation of prefiltering spurred the develop-
ment of an alternate matching subsystem called ‘Rose’.
‘Rose’ allowed both ordered matching, duplicate match
avoidance, and pattern decomposition. This subsystem
was maintained in parallel to the prefiltering system inher-
ited from the original 2.0 design. Whenever it was possi-
ble to decompose patterns, the patterns were matched with
the ‘Rose’ subsystem, which initially was not capable of
handling all regular expressions.

FDR was developed during in the version 2.1 release
series; it replaced the hash-based literal matcher ("hlm")
with considerably performance improvements and reduc-
tion in memory footprint.

Eventually, by version 3.0, the old prefiltering system
was entirely removed, as the Rose path was made fully
general. Version 3.0 also marked an organizational change
in that Intel Corporation had acquired Sensory Networks.
Version 4.0. Version 4.0 was released in October 2013
under an open-source BSD license to further increase
the usage of Hyperscan, by removing barriers of cost
and allowing customization. Many elements of Hyper-
scan’s design continued to evolve. For example, the initial
Rose subsystem had a host of special-purpose matching
mechanisms that identify the strings separated by various
common regex constructs such as .∗ or X+ for some char-
acter class X . For example, it is frequently the case that
strings in regexes might be separated by the .* construct
(i.e. / f oo. ∗ bar/s). This is usually implementable by
requiring only that " f oo" is seen before "bar" (usually,
but not always: consider the expression / f oo.∗oar/s).
The original version of Rose had many special-purpose
engines to handle these type of subcases; during the evo-
lution of the system, this special-purpose code was almost
entirely replaced with generalized NFA and DFA mecha-
nisms, amenable to analysis and optimization, and were
needed for the general case of regex matching in any case.
Version 5.0. Version 5.0, which is the latest version as
of writing this paper, mainly focused on enhancing the
usability of Hyperscan. Two key added features are sup-
port for logical combinations of patterns and Chimera,
a hybrid regex engine of Hyperscan and PCRE [6]. As
the detection technology of malicious network traffic ma-
tures, it often requires evaluating a logical combination of
a group of patterns beyond matching a single pattern. To

support this, the system now allows user-defined AND,
OR, NOT along their patterns. For example, an AND op-
eration between patterns /foobar/ and /teakettle/ required
that both patterns are matched for input before reporting
a match. Version 5.0 added Chimera, a hybrid matcher of
Hyperscan and PCRE, brings the benefit of both worlds –
support for full PCRE syntax while enjoying the high per-
formance of Hyperscan. Lack of support of Hyperscan for
full PCRE syntax (such as capturing and back-references)
made it difficult to completely replace PCRE in adopted
solutions. Chimera employs Hyperscan as a fast filter for
input, and triggers the PCRE library functions to confirm
a real match only when Hyperscan reports a match on a
pattern that has features not supported by Hyperscan.

7.2 Lessons Learned
We summarize a few lessons that we learned in the course
of development and commercialization of Hyperscan.
Release quickly and iterate, even with partial feature
support. The difficulty of generalized regex matching
often led Hyperscan to focus on the delivery of some
capability in partial form. From a theoretical standpoint,
it is unsatisfactory that Hyperscan still cannot support
all regexes (even from the subset of ’true’ regexes) and
that the support of regexes with the ’start of match’ flag
turned on is even smaller. However, customers can still
find the system practically useful despite these limitations.
Despite the limited pattern support of version 2.0 and
the problems of ordering and duplicated matches, there
was immediate commercial use of the product even in
that early form (use which made subsequent development
possible). This lends support to the idea of releasing a
"Minimal Viable Product" early, rather than developing a
product with a long list of features that customers may or
may not want.
Evolve new features over several versions, at the ex-
pense of maintaining multiple code paths. Academic
systems are usually built for elegance and to illustrate
a particular methodology. However, a commercial sys-
tem must stay viable as a product while a new subsystem
is built. For example, Hyperscan maintained both the
’prefilter’ arrangement and the new ’Rose-based’ decom-
position arrangement in the same code base, resulting in
considerable extra complexity. However, the benefits of
having the new ’ordered’ semantics (with additional pow-
ers of support for large patterns due to decomposition)
outweighed the complexity cost. It was almost impossible
that a small start-up could have managed to transition
from one system to the other in a span of a single release,
or to have simply not meaningfully updated the project for
an extended time while working on a substantial update.

644 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Commercial products may need to emphasize less in-
teresting subcases of a task, or unusual corner cases.
There was also considerable commercial pressure to be
the best option at some comparatively degenerate sub-
set of regex matching, or some relatively ’hard case’.
Customers often wanted Hyperscan to function as a
string matcher - sometimes even a single-string-at-a-time
matcher! Other customers wanted high performance de-
spite very high regex match rates (for example, more than
1 match per character). Such demands often force special
optimizations that lack deep ‘algorithmic interest’, but are
necessary for commercial success.
Be cautious of cross-cutting complexity resulting
from customer API requests. One illuminating expe-
rience in the delivery of a commercially viable regex
matcher was that customer feature requests for new
’modes’ or unusual calls at the API level resulted in cross-
cutting complexity that made the code base considerably
more complicated (due to a combinatorial explosion of in-
teractions between features) while rarely being reused by
other customers. Features added in the 2.0 or 3.0 release
series over time were not carried forward to the 4.0 series;
we found that frequently such features were only used by
a single customer (despite being made available to all).

Examples of two such features were "precise alive"
(the ability to tell at any given stream write boundary
whether a pattern might still be able to match) and an
ad-hoc stream state compression scheme that allowed
some stream states to be discarded if no NFA engines
had started running. These features were complicated and
suppressed potential optimizations as well as interacting
poorly with other parts of the system.

7.3 Future Directions
Hyperscan is performance-oriented; future development
in Hyperscan will still focus on delivering the best possi-
ble performance, especially on upcoming Intel Architec-
ture cores featuring new instruction set extensions such
as Vector Byte Manipulation Instructions (VBMI). Im-
provement of scanning performance as well as reduction
of overheads such as the size of bytecodes, size of stream
states and time to compile the pattern matching bytecode
are obvious next steps.

Beyond this, adding richer functionality, including sup-
port for currently unsupported constructs such as gener-
alized "lookaround" asserts and possible some level of
support for back-references would aid some users. There
is a considerable amount of usage of the ‘capturing’ func-
tionality of regexes, which Hyperscan does not support at
all (an experimental subbranch of Hyperscan, not widely
released, supported capturing functionality for a limited

set of expressions). Hyperscan could be extended to have
enriched semantics to support capturing, which would al-
low portions of the regexes to ‘capture’ parts of the input
that matched particular parts of the regular expression.

8 Conclusion
In this paper, we have presented Hyperscan, a high-
performance regex matching system that suggests a new
strategy for efficient pattern matching. We have shown
that the existing prefilter-based DPI suffers from fre-
quent executions of unnecessary regex matching. Even
though Hyperscan started with the similar approach, it
has evolved to address the limitation over time with novel
regex decomposition based on rigorous graph analyses.
Its performance advantage is further boosted by efficient
multi-string matching and bit-based NFA implementation
that effectively harnesses the capacity of modern CPU.
Hyperscan is open sourced for wider use, and it is gen-
erally recognized as the state-of-the-art regex matcher
adopted by many commercial systems around the world.

Acknowledgment

We appreciate valuable feedback by anonymous reviewers
of USENIX NSDI’19 as well as our shepherd, Vyas Sekar.
We acknowledge the code contributions over the years
by the Sensory Networks team: Matt Barr, Alex Coyte
and Justin Viiret. This work is in part supported by the
ICT Research and Development Program of MSIP/IITP,
South Korea, under projects [2018-0-00693, Development
of an ultra-low latency user-level transfer protocol] and
[2016-0-00563, Research on Adaptive Machine Learn-
ing Technology Development for Intelligent Autonomous
Digital Companion].

References

[1] Google RE2. https://github.com/google/
re2/.

[2] Hyperscan GitHub Repository. https://github.
com/intel/hyperscan.

[3] ModSecurity. https://www.modsecurity.
org/.

[4] nDPI. https://www.ntop.org/products/
deep-packet-inspection/ndpi/.

[5] PCRE Manual Pages. https:/pcre.org/pcre.
txt.

[6] PCRE: Perl Compatible Regular Expressions.
https://www.pcre.org/.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 645

https://github.com/google/re2/
https://github.com/google/re2/
https://github.com/intel/hyperscan
https://github.com/intel/hyperscan
https://www.modsecurity.org/
https://www.modsecurity.org/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https://www.ntop.org/products/deep-packet-inspection/ndpi/
https:/pcre.org/pcre.txt
https:/pcre.org/pcre.txt
https://www.pcre.org/

[7] Perl-compatible Regular Expressions (revised API:
PCRE2). https://www.pcre.org/current/
doc/html/index.html.

[8] Snort Emerging Threats Rules 2.9.0.
https://rules.emergingthreats.net/
open/snort-2.9.0/rules/.

[9] Snort Intrusion Detection System. https://snort.
org.

[10] Suricata: Open Source IDS. http:
//suricata-ids.org/.

[11] Talos Ruleset. https://www.snort.org/talos,.
[12] Aho, Alfred V. and Corasick, Margaret J. Efficient

String Matching: An Aid to Bibliographic Search.
Communications of the ACM, 18(6):333–340, June
1975.

[13] Ricardo A. Baeza-Yates and Gaston H. Gonnet. A
new approach to text searching. Communications of
the ACM (CACM), 35(10):74–82, 1992.

[14] Zachary K. Baker and Viktor K. Prasanna. Time and
Area Efficient Pattern Matching on FPGAs. In Pro-
ceedings of the ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays (FPGA),
2004.

[15] M. Becchi and S. Cadambi. Memory-efficient reg-
ular expression search using state merging. In Pro-
ceedings of the IEEE International Conference on
Computer Communications (INFOCOM), 2007.

[16] M. Becchi and P. Crowley. A Hybrid Finite Au-
tomaton for Practical Deep Packet Inspection. In
Proceedings of the ACM International Conference
on Emerging Networking Experiments and Technolo-
gies (CoNEXT), 2007.

[17] M. Becchi and P. Crowley. An improved algorithm
to accelerate regular expression evaluation. In Pro-
ceedings of the ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems
(ANCS), 2007.

[18] M. Becchi and P. Crowley. A-DFA: A Time- and
Space-Efficient DFA Compression Algorithm for
Fast Regular Expression Evaluation. ACM Trans-
actions on Architecture and Code Optimization
(TACO), 10(1), April 2013.

[19] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Ko-
ral. Deep Packet Inspection as a Service. In Pro-
ceedings of the ACM International Conference on
Emerging Networking Experiments and Technolo-
gies (CoNEXT), 2014.

[20] Taylor-D. E. Brodie, B. and R. K. Cytron. A scalable
architecture for high-throughput regular expression
pattern matching. In Proceedings of the Interna-

tional Symposium on Computer Architecture (ISCA),
2006.

[21] B. Choi, J. Chae, M. Jamshed, K. Park, and D. Han.
DFC: Accelerating string pattern matching for net-
work applications. In Proceedings of USENIX Sym-
posium on Networked Systems Design and Imple-
mentation (NSDI), 2016.

[22] Chris Clark, Wenke Lee, David Schimmel, Didier
Contis, Mohamed Koné, and Ashley Thomas. A
Hardware Platform for Network Intrusion Detection
and Prevention. In Proceedings of the Workshop on
Network Processors Applications (NP3), 2004.

[23] Christopher R. Clark and David E. Schimmel. Ef-
ficient Reconfigurable Logic Circuits for Match-
ing Complex Network Intrusion Detection Patterns.
In Proceedings of the International Conference on
Field-Programmable Logic and Applications (FPL),
2003.

[24] Beate Commentz-Walter. A string matching algo-
rithm fast on the average. In Proceedings of the
Colloquium, on Automata, Languages and Program-
ming, 1979.

[25] Jack Edmonds and Richard M Karp. Theoretical
improvements in algorithmic efficiency for network
flow problems. Journal of the ACM, 19(2):248–264,
1972.

[26] Giordano-S. Procissi G. Vitucci F. Antichi G. Ficara,
D. and A. Di Petro. An improved DFA for fast reg-
ular expression matching. ACM SIGCOMM Com-
puter Communication Review (CCR), 38(5), 2008.

[27] V.M. Glushkov. The abstract theory of automata.
Russian Mathematical Surveys, 16(5):1–53, 1961.

[28] Muhammad Asim Jamshed, Jihyung Lee, Sang-
woo Moon, Insu Yun, Deokjin Kim, Sungryoul Lee,
Yung Yi, and KyoungSoo Park. Kargus: a highly-
scalable software-based intrusion detection system.
In Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), pages
317–328, 2012.

[29] Richard M Karp and Michael O Rabin. Efficient
randomized pattern-matching algorithms. IBM Jour-
nal of Research and Development, 31(2):249–260,
1987.

[30] T. Kojm. ClamAV. http://www.clamav.net/.
[31] Smith-R. Kong, S. and C. Estan. Efficient signature

matching with multiple alphabet compression tables.
In Proceedings of the International ICST Confer-
ence on Security and Privacy in Communication
Networks (SecureComm), 2008.

[32] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and

646 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.pcre.org/current/doc/html/index.html
https://www.pcre.org/current/doc/html/index.html
https://rules.emergingthreats.net/open/snort-2.9.0/rules/
https://rules.emergingthreats.net/open/snort-2.9.0/rules/
https://snort.org
https://snort.org
http://suricata-ids.org/
http://suricata-ids.org/
https://www.snort.org/talos
http://www.clamav.net/

J. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection.
In Proceedings of the ACM SIGCOMM on Data
communication (SIGCOMM), 2006.

[33] Turner-J. Kumar, S. and J. Williams. Advanced algo-
rithms for fast and scalable deep packet inspection.
In Proceedings of the ACM/IEEE Symposium on
Architecture for Networking and Communications
Systems (ANCS), 2006.

[34] Janghaeng Lee, Sung Ho Hwang, Neungsoo Park,
Seong-Won Lee, Sunglk Jun, and Young Soo Kim.
A High Performance NIDS using FPGA-based Reg-
ular Expression Matching. In Proceedings of the
ACM symposium on Applied computing, 2007.

[35] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan.
Compiling PCRE to FPGA for accelerating Snort
IDS. In Proceedings of the ACM/IEEE Symposium
on Architectures for Networking and Communica-
tions Systems (ANCS), 2007.

[36] J. Jang J. Truelove D. G. Andersen S. K. Cha,
I. Moraru and D. Brumley. SplitScreen: Enabling
efficient, distributed malware detection. In Proceed-
ings of the USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2010.

[37] E. Sitaridi, O. Polychroniou, and K. A. Ross. SIMD-
accelerated regular expression matching. In Pro-
ceedings of the Workshop on Data Management on
New Hardware (DaMoN), 2016.

[38] R. Smith, C. Estan, and S. Jha. XFA: Faster Sig-
nature Matching with Extended Automata. In Pro-
ceedings of the IEEE Symposium on Security and
Privacy, 2008.

[39] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating
the big bang: fast and scalable deep packet inspec-
tion with extended finite automata. In Proceedings
of the ACM SIGCOMM on Data communication
(SIGCOMM), 2008.

[40] Y. E. Yang, W. Jiang, and V. K. Prasanna. Compact
architecture for high-throughput regular expression
matching on fpga. In Proceedings of the ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems (ANCS), 2008.

[41] F. Yu, Z. Chen, Y. Diao, T.V. Lakshman, and R. H.
Kats. Fast and memory-efficient regular expression
matching for deep packet inspection. In Proceedings
of the ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS),
2014.

[42] Xiaodong Yu, Bill Lin, , and Michela Becchi.
Revisiting state blow-up: Automatically building
augmented-fa while preserving functional equiva-

lence. IEEE Journal on Selected Areas in Commu-
nications, 32(10), October 2014.

Appendix

Algorithm 3 Dominant Path Analysis

Require: Graph G=(E,V)
1: function DOMINANTPATHANALYSIS(G)
2: d path := {}
3: for v ∈ accepts do
4: calculate dominant path p[v] for v
5: if d path = {} then
6: d path := p[v]
7: else
8: d path := common_pre f ix(d path, p[v])
9: if d path = {} then

10: return null_string
11: end if
12: end if
13: strings := expand_and_extract(d path)
14: end for
15: return strings
16: end function

The dominant path analysis algorithm finds the dom-
inant path (p[v]) for every accept state (v), and find the
common path of all dominant paths. The function, ex-
pand_and_extract(), expands small character-sets in the
path, and extracts the string on the path.

Algorithm 4 Dominant Region Analysis

Require: Graph G=(E,V)
1: function DOMINANTREGIONANALYSIS(G)
2: acyclic_g := build_acyclic(G)
3: Gt := build_topology_order(acyclic_g)
4: candidate := q0
5: it = begin(Gt)
6: while it != end(Gt) do
7: if isValidCut(candidate) then
8: setRegion(candidate)
9: initializeCandidate(candidate)

10: else
11: addToCandidate(it)
12: it := it +1
13: end if
14: end while
15: setRegion(candidate)
16: Merge regions connected with back edge
17: strings := expand_and_extract(regions)
18: return strings
19: end function

The dominant region analysis builds an acyclic graph
and sorts the vertices by the topological order. Then, it
adds each vertex of the graph into a candidate vertex set,

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 647

and sees if the candidate vertex set forms a valid cut. If
so, it creates a region. It continues to create regions by
iterating all vertices. Finally, it merges the regions by
back edges, and extracts strings from the merged region.

Algorithm 5 Network Flow Analysis

Require: Graph G=(E,V)
1: function NETWORKFLOWANALYSIS(G)
2: for edge ∈ E do
3: strings := f ind_strings(edge)
4: scoreEdge(edge,strings)
5: end for
6: cuts := MinCut(G)
7: strings := extract and expand strings f rom cuts
8: return strings
9: end function

The network flow analysis assigns a score to every edge
and runs the "max-flow min-cut" algorithm. An edge is
assigned a score inverse proportional to the length of a
string that ends at the edge. So, the longer the string is,
the smaller the score gets. Then, the max-flow min-cut
algorithm finds a cut whose edge has the longest strings.

648 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	Regular Expression Decomposition
	Matching with Regex Decomposition
	Rationale and Guidelines
	Graph-based String Extraction

	SIMD-accelerated Pattern Matching
	Multi-string Pattern Matching
	Finite Automata Pattern Matching

	Implementation
	Evaluation
	Experiment Setup
	Effectiveness of Regex Decomposition
	Microbenchmarks
	Real-world DPI Application

	Evolution, Experience, and Lessons
	Evolution of Hyperscan
	Lessons Learned
	Future Directions

	Conclusion

