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Abstract
Disaggregated racks comprise dense pools of compute,
memory and storage blades, all interconnected through an in-
ternal network. However, their density poses a unique chal-
lenge for the rack’s network: it needs to connect an order
of magnitude more resource nodes than today’s racks with-
out exceeding the rack’s fixed power budget and without
compromising on performance. We present Shoal, a power-
efficient yet performant intra-rack network fabric built using
fast circuit switches. Such switches consume less power as
they have no buffers and no packet inspection mechanism,
yet can be reconfigured in nanoseconds. Rack nodes transmit
according to a static schedule such that there is no in-network
contention without requiring a centralized controller. Shoal’s
congestion control leverages the physical fabric to achieve
fairness and both bounded worst-case network throughput
and queuing. We use an FPGA-based prototype, testbed ex-
periments, and simulations to illustrate Shoal’s mechanisms
are practical, and can simultaneously achieve high density
and high performance: 71% lower power and comparable or
higher performance than today’s network designs.

1 Introduction
Traditional datacenter use a server-centric architecture in
which a number of racks, each comprising tens of servers
connected via a top-of-the-rack (ToR) switch, are inter-
connected by the datacenter network. However, the end
of Dennard’s scaling [18] and the slowdown of Moore’s
Law [14] are challenging the long-term sustainability of
this architecture [19]. Consequently, a new paradigm has
emerged: rack-scale architecture, where a server is replaced
by a rack as the unit of computation, with each rack host-
ing a number of System-on-Chip (SoC) [15, 35, 65] mi-
croservers, each comprising multi-core CPUs integrated with
some local memory, combined with separate pools of non-
volatile memory, storage and custom compute (e.g., Google
TPUs [82], GPGPUs [74, 78] and FPGAs [43]) blades,
all interconnected through an internal network. This en-
ables resource disaggregation as compute units are decou-
pled from memory and storage units. The benefits disag-
gregation are well understood in the computer architecture

community [5, 41]: it enables fine-grained resource pool-
ing and provisioning, lower power consumption and higher
density than traditional server-centric architectures, thus en-
abling each rack to host hundreds of resource “nodes” (com-
pute/memory/storage blades). Several examples of rack-
scale architecture have been proposed both in industry (In-
tel [72], Facebook [65, 74], Microsoft [43], SeaMicro [79],
HPE [28], Google [82]) and academia [5, 6, 15, 27, 35, 41].

Increasing rack density, however, poses new challenges
for the rack’s network. Traditional ToR switches can sup-
port only around a hundred ports at high speed. Therefore,
interconnecting several hundreds or even a thousand nodes
requires either a high-port count chassis switch or a num-
ber of low-port count switches arranged in a hierarchical
topology, e.g., a folded Clos [1]. Such a design, when cou-
pled with state-of-the-art protocols [2,4,20,25], can provide
high throughput and low latency that could potentially meet
the requirements of disaggregated workloads [19]. Unfor-
tunately, such packet-switched designs are significantly less
power and cost efficient as compared to today’s intra-rack
networks (§2). Power is a particular concern as the rack’s to-
tal power has a hard limit due to cooling [35,60], so network
inefficiency ultimately limits the density of other resources.

The limitations of packet-switched networks have already
prompted network designs that leverage circuit switches in
datacenters [11,23,24,38,42,53]. Such switches can be opti-
cal or electrical, and the fact that they operate at the physical
layer with no buffers, no arbitration and no packet inspection
mechanisms means they can be cheaper and more power ef-
ficient than an equivalent packet switch (§5). Adopting these
designs for intra-rack connectivity would thus alleviate the
power concern. However, achieving low latency would still
be challenging as traditional circuit switches have reconfig-
uration delays of the order of few microseconds to even mil-
liseconds. Such a solution, thus, would either compromise
on performance or still have to rely on a separate packet-
switched network to handle latency-sensitive traffic. In sum-
mary, adapting existing network solutions to high-density
racks would either compromise on power (packet-switched)
or on performance (purely circuit-switched).

In this paper, we show that it is possible to design a rack-
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scale network that operates comfortably within the rack’s
power budget while achieving performance comparable to
packet-switched networks. Our work is motivated by fast
circuit switches that can be reconfigured in a few to tens
of nanoseconds while still being power-efficient. These
are available commercially [76] as well as research proto-
types [10, 16, 17, 30, 35, 36, 48, 52]. Unfortunately, it is not
sufficient to simply take existing circuit-switch-based archi-
tectures and upgrade their switches as these architectures
were designed under the assumption of slow reconfiguration
times. In particular, these solutions rely either on a central-
ized controller to reconfigure the switches [11,23,24,35,42,
53], which would be infeasible at a nanosecond scale, or
on a scheduler-less design with a large congestion control
loop [38], which prevents taking advantage of fast reconfig-
uration speeds.

We present Shoal, a power-efficient yet performant net-
work fabric for disaggregated racks built using fast circuit
switches. Shoal reconfigures the fabric using a static sched-
ule that connects each pair of rack node at an equal rate. This
avoids the need for a centralized scheduler that can operate
at a sub-microsecond granularity. To accommodate dynamic
traffic patterns atop a static schedule, traffic from each node
is uniformly distributed across all rack nodes which then for-
ward it to the destination; a form of detour routing. Such
coordination-free scheduling, first proposed by Chang et
al. [9] as an extension of Valiant’s method [50], obviates the
complexity and latency associated with centralized sched-
ulers while guaranteeing the worst-case network throughput
across any traffic pattern [9]. Such scheduling, however,
requires that all nodes are connected through what looks
like a single non-blocking switch. To achieve this, Shoal’s
fabric uses many low port-count circuit switches connected
in a Clos topology. When reconfigured synchronously, the
switches operate like a single circuit switch. Further, we de-
compose the static, equal-rate schedule for the fabric into
static schedules for the constituent switches.

Overall, this paper makes the following contributions:
• We present a network architecture for disaggregated racks

that couples fast circuit switches with the servers’ network
stack to achieve low and predictable latency at low cost
and power.

• We designed a fabric that uses low port-count circuit
switches to offer the abstraction of a rack-wide circuit
switch. We also scaled the coordination-free scheduling
technique to operate across the fabric.

• We devised an efficient congestion control mechanism to
run atop Shoal’s fabric. This is particularly challenging to
achieve due to high multi-pathing—traffic between a pair
of nodes is routed through all rack nodes. Shoal lever-
ages the observation that the static schedule creates a peri-
odic connection between any pair of rack nodes to imple-
ment an efficient backpressure-based congestion control,

amenable to hardware implementation.

• We implemented Shoal’s NIC and circuit switch on an
FPGA; our prototype achieves small reconfiguration delay
(6.4 ns) for the circuit switches and is a faithful implemen-
tation of our entire design including the scheduling and the
congestion control mechanisms.

• We incorporated the NIC and the switch prototype into
an end-to-end small-scale rack testbed that comprises six
FPGA-based circuit switches in a leaf-spine topology con-
necting eight FPGA-based NICs at end hosts.

Experiments on this small-scale testbed shows that Shoal
offers high bandwidth and low latency; yet our analysis in-
dicates that its power can be 71% lower than an equiva-
lent packet-switched network. Using a cross-validated sim-
ulator, we show that Shoal’s properties hold at scale too.
Across datacenter-like workloads, Shoal achieves compara-
ble or higher performance than a packet-switched network
using state-of-the-art protocols [2,25,54], with improved tail
latency (up to 2× lower as compared to NDP [25]). Fur-
ther, through simulations based on real traces [19], we also
demonstrate that Shoal can cater to the demands of emerging
disaggregated workloads.

2 Motivation
We first consider how conventional datacenter networks
could be adapted for disaggregated racks and the shortcom-
ings of such an approach.
Strawman 1. Chassis switches with hundreds of ports, of-
ten used at higher levels of a datacenter’s network hierarchy,
could connect all rack nodes but at significant cost, power,
and space. For example, the Cisco Nexus 7700 switch can
support 768 ports at 10 Gbps (only 192 at 100 Gbps). Yet,
it consumes 4 KW power and occupies 26 RU [61], which
is 26% and 54% of the rack’s power and space budget re-
spectively. A rack’s total power has a hard limit of around
15 KW due to constraints on power supply density, rack
cooling and heat dissipation [35, 60, 66]. We also consid-
ered a custom solution involving commodity switches ar-
ranged in a Clos topology, which would still consume around
8.72 KW to connect 512 nodes (§ 5). The key reason for this
is that packet switching necessitates buffers and arbitration
inside each switch and serialization-deserialization at each
switch port, which are major contributors (up to 70%) to the
switch’s chip area and package complexity [34, 62], and in
turn, its power.
Strawman 2. Motivated by the observation that enabling
high-density racks requires a step change in the power-
efficiency of the network, practitioners have attempted to
integrate several very low-port (typically four or six ports)
packet switches in the system-on-chip (SoC) of the mi-
croserver. Thus, instead of building a ToR-based network,
the microservers can be connected to each other using direct-
connect topologies prevalent in HPC and super-computing
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systems, e.g., a 3D torus [41, 68, 79]. This design signifi-
cantly reduces the overall network power consumption as the
additional logic per SoC is small. However, a key drawback
of direct-connect networks is that they have a static topology
which cannot be reconfigured based on current traffic pat-
tern. Hence their performance is workload dependent—for
dynamically changing workloads such as datacenter work-
loads, it results in routing traffic across several rack nodes,
which hurts network throughput and latency (§7.3) and com-
plicates routing and congestion control [15].
Circuit switching. These strawmans lead to the question
whether packet-switched networks are well-suited to support
high-density racks. On the upside, packet-switched networks
offer excellent performance and allow the network core to be
loosely coupled with the servers’ network stack. In datacen-
ters and WANs, this has been a good trade-off—the increased
power of switches is not a key concern yet loose coupling has
allowed the core network technologies to evolve independent
of the servers’ network stack. This also allows the network
to be asynchronous, which helps scaling. These benefits,
however, do not hold up inside a rack. The physical size
of a rack means that achieving rack-wide synchronization is
feasible. Further, many density and cost benefits of disag-
gregated racks come from the co-design of servers and the
network, so independent evolution is not critical.

Instead, we argue that a circuit-switched network offers a
different set of trade-offs that are more suited to disaggre-
gated racks. Compared to a packet switch, circuit switches
can draw less power and be cheaper due to their simplicity,
and these gains could grow with future optical switches (§5).
Thus, they can better accommodate higher density. On the
flip side, circuit switching does necessitate a tight coupling
where all nodes are synchronized and traffic is explicitly
scheduled. Further, past solutions with slow circuit switches
have had to rely on a separate packet-switched network to
support low latency workloads which increases complexity
and hurts network manageability. Using fast circuit switches
helps on the performance front yet makes the scheduling
harder. We show that these challenges can be solved at the
scale of a rack and it is feasible to build a rack network that
satisfies its power constraints while achieving performance
on par with a packet-switched network.

3 Design
Shoal is a network architecture for disaggregated racks. It
comprises a network stack at the rack nodes which is tightly
coupled with a circuit-switched physical fabric.

3.1 Design overview
Shoal’s architecture is shown in Fig. 1. Each rack node
is equipped with a network interface connecting it to the
Shoal fabric. The fabric comprises a hierarchical collec-
tion of smaller circuit switches, electrical or optical, that
are reconfigured synchronously. Hence, the fabric operates
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Figure 1: Shoal architecture.

like a single, giant circuit switch (§3.2). The use of a cir-
cuit switched fabric means that we need to schedule it. One
possible approach is to schedule it on-demand, i.e., connect
nodes depending on the rack’s traffic matrix. However, such
on-demand scheduling requires complicated scheduling al-
gorithms and demand estimation, and would make it hard to
meet low-latency constraints.

Instead, Shoal uses coordination-free scheduling [9].
Specifically, each circuit switch forwards fixed-sized packets
or “cells” between its ports based on a predefined “sched-
ule”. These per-switch schedules, when taken together, yield
a schedule for the fabric which dictates when different node
pairs are connected to each other. The schedule for individ-
ual switches is chosen such that the fabric’s schedule pro-
vides equal rate connectivity between each pair of nodes. To
accommodate any traffic pattern atop the equal rate connec-
tivity offered by the fabric, each node spreads its traffic uni-
formly across all other rack nodes, which then forward it to
the destination (§3.3.1).

The second mechanism implemented in Shoal’s network
stack is a congestion control technique that ensures that
network flows converge to their max-min fair rates, while
bounding the maximum queuing at all rack nodes. Our
main insight here is that the periodic connection of rack
nodes by the fabric enables backpressure-based congestion
control amenable to hardware implementation. One of the
main challenges in implementing backpressure-based mech-
anisms over multi-hop networks is instability for dynamic
traffic [26]. In Shoal, we restrict the backpressure mecha-
nism to a single hop, avoiding the instability issue altogether.

3.2 Shoal fabric
Shoal uses a predefined, static schedule to reconfigure the
fabric such that the rack nodes are connected at an equal rate.
Fig. 3 shows an example schedule with N = 8 nodes. Thus,
in a rack with N nodes, each pair of nodes is directly con-
nected by the fabric once every N−1 time slots, where a slot
refers to the cell transmission time.

However, constructing a monolithic switch, electrical or
optical, with hundreds of high-bandwidth ports and fast re-
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Figure 4: Switch 1’s schedule
(see Fig. 2 for topology).

configuration is intractable due to fabrication constraints.
Instead, Shoal’s fabric comprises low port-count circuit
switches connected in a non-blocking Clos topology. Ar-
ranging k-port circuit switches in a two-stage Clos topology
allows the fabric to connect k2

2 nodes. For e.g., using 64-
port electrical circuit switches allows us to connect a rack
with 2,048 nodes. Fig. 2 shows six 4-port circuit switches
arranged in such a topology to implement an 8-port fabric.
Packets between any two nodes are always routed through
both stages of the topology, even if the nodes are connected
to the same switch (like nodes 1 and 2 in the figure). Since
the topology is non-blocking, this does not impact network
throughput. It ensures, however, that the distance between
any two nodes is the same which, in turn, aids rack-wide
time synchronization (§3.4).

We decompose the schedule of the overall fabric into the
schedule for each constituent circuit switch. Consider the
example fabric shown in Fig. 2. Fig. 3 shows the schedule
for this fabric while Fig. 4 shows the schedule for switch
1. Each switch’s schedule is contention-free, i.e., at a given
instant, any port is connected to only one port. This allows
the switch to do away with any buffers and any mechanisms
for packet inspection or packet arbitration.

3.3 Shoal network stack
Shoal’s mechanisms operate at the data link layer (layer-2)
of the network stack. At each node, Shoal spreads its layer-2
traffic uniformly across the rack to ensure guaranteed net-
work throughput and implements a congestion control tech-
nique that ensures fair bandwidth sharing and low latency.

3.3.1 Forwarding plane

Rack nodes send and receive fixed-sized cells. Packets re-
ceived from higher layers are thus fragmented into cells at
the source node and reassembled at the destination. Each cell
has a header (Fig. 5) that contains the corresponding packet’s
destination and other control information.

Cells sourced by a node, irrespective of their destination,
are sent to the next node the source is connected to. This uni-
formly spreads traffic across all rack nodes. Each node has
a set of FIFO queues, one for every node in the rack. Cells
arriving at an intermediate node are put into the queue corre-
sponding to their final destination. This ensures traffic is de-
toured through at most one intermediate node. These queues
are served according to the node’s transmission schedule.

We highlight two key aspects of this simple design. First,

uniformly distributing traffic is perfectly suited to the equal
rate connectivity provided by the Shoal fabric. This guar-
antees the worst-case throughput across any traffic pat-
tern [9]—Shoal’s network throughput can be at most 2×
worse than that achieved by a hypothetical, rack-wide ideal
packet switch. To compensate for this throughput reduction
due to detouring, we double the aggregate bisection band-
width of the fabric for Shoal. This is a good trade-off as cir-
cuit switches are expected to be cheaper and hence, adding
fabric bandwidth is inexpensive; in §5, the cost of the result-
ing network is still estimated to be lower than the cost of a
traditional packet-switched network.

Second, when the fabric’s schedule connects node i to node
j, the former always transmits a cell; the cell at the head
of the queue i→ j is transmitted, otherwise an empty cell
is sent. This ensures that each node periodically receives a
cell from every other node, which enables implementing an
efficient backpressure-based congestion control (§3.3.2) and
simple failure detection (§3.5).

3.3.2 Congestion control

Each node sending traffic computes the appropriate rate for
its traffic to avoid congesting the network. We begin with a
discussion of the network topology resulting from periodic
reconfiguration of the Shoal fabric and its implications for
congestion control, followed by the details of our design.

High Multi-pathing. The periodic reconfiguration of
Shoal’s fabric means that the entire network can be seen
as an all-to-all mesh with virtual links between each pair of
nodes. For e.g., consider a rack with 8 nodes whose sched-
ule is shown in Fig. 3. Since each node is connected to every
node 1/7th of the time, the network provides the illusion of a
complete mesh with virtual links whose capacity is 1/7th of
each node’s total network bandwidth.

Shoal’s use of detouring means that each node’s traffic
is routed through all the rack nodes on their way to their
destination, resulting in very high multi-pathing. In con-
trast, the TCP suite of protocols, including protocols tailored
for datacenters [2, 51] and recent protocols for RDMA net-
works [39,54] only use a single path. Even multi-path exten-
sions like MPTCP [44] target scenarios with tens of paths,
which is an order of magnitude less than the number of paths
used by traffic in our fabric.

Design insights. Shoal’s congestion control design is based
on three key insights. First, we leverage the fact that the fab-
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ric in an N-node rack directly connects each pair of nodes
once every N− 1 time slots. We refer to this interval as an
epoch. This means that, when the queues at an intermediate
node grow, it can send a timely backpressure signal to the
sender. As we detail below, the periodic nature of this sig-
nal coupled with careful design of how a sender reacts to it
allows us to bound the queue size across rack nodes.

Second, achieving per-flow fairness with backpressure
mechanisms is challenging [54], especially in multi-path sce-
narios. In Shoal, a flow refers to all layer-2 packets being
exchanged between a pair of nodes. For network traffic, this
includes all transport connections between the nodes. For
storage traffic, this includes all IO between them. Each flow
comprises N− 1 subflows, one corresponding to each inter-
mediate node. Shoal achieves max-min fairness across flows
by leveraging the fact that each flow comprises an equal
number of subflows that are routed uniformly across a sym-
metric network topology, so we can achieve per-flow fairness
by ensuring per-subflow fairness. We thus treat each subflow
independently and aim to determine their fair sending rates.
The mechanism can also be extended to accomodate other
flow-level sharing policies.

Finally, each subflow traverses two virtual links, either of
which can be the bottleneck. For e.g., a subflow i→ j→ k
can either be bottlenecked at the virtual link between nodes
i and j, or between nodes j and k. Shoal maintains a queue,
Qi j, at node i to store cells destined to node j. We use the
length of the queue Qi j as an indication of the load on the
virtual link between nodes i and j. Note that the node sourc-
ing the traffic, node i, can observe the size of the local queue
Qi j. It, however, also needs to obtain information about the
size of the remote queue Q jk that resides at node j.
Congestion control mechanism. We use a subflow from
source i to destination k through intermediate node j, i→
j→ k, as a running example to explain Shoal’s congestion
control. When node i sends a cell to node j, it records the
subflow that the cell belongs to. Similarly, when node j re-
ceives the cell, it records the index k of the queue that the cell
is added to. The next time node j is connected to node i, it
embeds the current length of queue Q jk into the cell header:

rate limit feedback ji = len(Q jk) (1)

Each pair of nodes in the rack exchange a cell every epoch,
even if there is no actual traffic to be sent. Thus, when
node i sends a cell to node j, it gets feedback regarding
the relevant queue at j within the next epoch. Let us as-
sume that node i receives this feedback at time T . At time
t (≥ T ), it knows the instantaneous length of its local queue
to node j, Qi j(t), and a sample of the length of the remote
queue between nodes j and k, Q jk(T ). The max-min fair
sending rate for a subflow is governed by the most bottle-
necked link on its path, i.e., the link with the maximum queu-
ing. As a result, the next cell for this subflow should only
be sent after both the queues have had time to drain, i.e.,

at least, max(len(Qi j(T )), len(Q jk(T ))) epochs have passed
since the feedback was received. To achieve this, node i re-
leases a cell for this subflow into its local queue for j only
when the current length of the queue, after accounting for the
time since the last feedback, exceeds the size of the remote
queue Q jk, i.e., a cell is released into Qi j at time t when,

len(Qi j(t))+(t−T )≥ len(Q jk(T )) (2)

Thus, when a new cell is released into the queue at its source,
the previous cell in that queue is guaranteed to have been
sent to the remote queue while the previous cell in the remote
queue is guaranteed to have been sent to the destination. This
ensures the invariant that at any given time a subflow has at
most one cell each in both the queue at its source and the
queue at its intermediate node. As a consequence, at any
given time, the size of each queue Qi j is bounded by:

len(Qi j)≤ outcast degree(i)+ incast degree( j) (3)

Thus, this mechanism ensures that, for each virtual link,
Shoal performs fair queuing at cell granularity across all the
subflows sharing that link. This, in turn, results in a tighter
distribution of flow completion times.

Note that while Shoal’s basic design assumes a single traf-
fic class for the flows, it can be easily extended to support
multiple traffic classes as explained in Appendix C.

3.3.3 Improving network latency

While Eq. 3 bounds the queue size, it also highlights one of
the challenges of detouring: network latency experienced by
a cell, while bounded, is impacted by cross-traffic — traffic
from remote nodes at the cell’s source node and traffic from
local node at the cell’s intermediate node. To reduce this
impact of detouring, we introduce following optimizations:
Reducing cell latency at the intermediate node. In addi-
tion to queue Q jk, node j also maintains a ready queue R jk.
Instead of adding cells to Q jk from local flows that satisfy
Eq. 2, Shoal adds the corresponding flow ids into the ready
queue R jk. Thus,

len(R jk)≤ outcast degree( j) ≤ N−1 (4)

Shoal then scans the local flow ids in R jk, and adds the corre-
sponding cells into the queue Q jk such that at any given time
there is at most one local cell in Q jk. Thus Eq. 3 changes to:

len(Q jk)≤ 1+ incast degree(k) ≤ N (5)

However, to ensure that the rate limit feedback accounts for
the local subflows, Eq. 1 needs to be updated accordingly:

rate limit feedback ji = len(Q jk)+ len(R jk)−1 (6)

The rack network is thus still shared in a max-min fashion,
while simultaneously reducing the impact of local traffic on
the latency of remote cells — the latency experienced by a
remote cell at any intermediate node is determined only by
the incast degree of cell’s destination.
Reducing cell latency at the source node. While Eq. 5 re-
duces the impact of detouring at the intermediate node, at
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the source node i, the latency for a local cell in Qi j is gov-
erned by incast degree of intermediate node j. To reduce
the impact of cross traffic (i.e., non-local traffic), Shoal se-
lectively adds cells from a new flow to queue Qi j only if
len(Qi j) ≤ 2age, where age is measured in epochs since the
flow started. Thus, for the first few epochs, cells will be re-
leased to queues over virtual links with low contention, and
afterwards will quickly converge to uniform load-balancing
using all virtual links after a max of log(N) epochs. This
achieves uniform load-balancing for long flows, and hence
preserves Shoal’s throughput bounds, while reducing com-
pletion time for short flows.

The impact of these optimizations is evaluated in Fig. 14.

3.3.4 Bounded queuing

Eq. 5 guarantees that at any given time, the size of each
queue Qi j at node i is bounded by the instantaneous num-
ber of flows destined to destination j plus one, with at most
one cell per flow. This queue bound can be used to deter-
mine the maximum buffering needed at each node’s network
interface to accomodate even the worst-case traffic pattern
of all-to-one incast. In a rack with 512 nodes and 64 B cells,
this requires a total buffering per node of 17 MB. Impor-
tantly, since Shoal accesses a queue only once every epoch
for transmission, and assuming the access latency of off-chip
memory is less than an epoch, Shoal only needs to buffer one
cell from each queue Qi j on the on-chip memory, resulting
in N− 1 total cells. Using the example above, this leads to
on-chip cell buffer size of just 32 KB per node.

3.4 Shoal slots and guard band
Shoal operates in a time-slotted fashion. Slots are separated
by a “guard band” during which the switches are reconfig-
ured. The guard band also accounts for any errors in rack
synchronization.
Circuit switch reconfiguration. Shoal uses fast reconfig-
urable circuit switches. For example, our prototype imple-
ments an FPGA-based circuit switch that can be reconfig-
ured in 6.4 ns (§4.1). Electrical circuit switches with fast
reconfiguration are also commercially available [76] while
fast optical circuit switches with nanosecond-reconfiguration
time have also been demonstrated [12, 16, 17, 30, 36, 48, 52].
Time synchronization. Shoal’s slotted operation requires
that all rack nodes and switches are time synchronized, i.e.,
they agree on when a slot begins and ends. Synchronizing
large networks is hard, primarily because of high propaga-
tion delay and the variability in it. In contrast, fine-grained
rack-wide synchronization is tractable due to their size—a
typical rack is only a few meters high which means that, even
when using optical transmission with a propagation delay of
5 ns/m, the maximum propagation latency across a rack is
about 10-15 ns. Furthermore, the rack can be constructed
with tight tolerances to aid synchronization. For example,
if all links are the same length with a tolerance of ± 2 cm,

the propagation delay would vary by a maximum of 0.2 ns.
Small physical distance also mitigates the impact of temper-
ature variations that could lead to variable propagation delay.

Shoal leverages the WhiteRabbit synchronization tech-
nique [32, 37, 40, 45] to achieve synchronization with bit-
level precision. WhiteRabbit has been shown to achieve sub-
50 picoseconds of synchronization precision [45]. The main
idea is to couple frequency synchronization with a time syn-
chronization protocol (§6.1).

Frequency synchronization is achieved by distributing a
global clock to all the nodes and switches in the rack. This
global clock is generally derived from one of the rack nodes,
designated as the clock master. The clock can be dis-
tributed explicitly, or implicitly through Synchronized Eth-
ernet (SyncE) [75] whereby nodes derive a clock from the
data they receive and use this clock for their transmissions.

In Shoal, time synchronization protocol like PTP [70] or
DTP [33] need to run only between the end nodes (and not
the switches). At bootstrap, each switch’s circuits are config-
ured according to their respective schedule’s configuration at
time slot 1 (e.g. Fig. 4) and they do not change. End nodes
then start running the time synchronization protocol. Once
all the nodes are synchronized to a desired level of precision,
they send a bootstrap signal to the switches, followed by ac-
tual data according to the fabric schedule (Fig. 3). Switches
on receiving the bootstrap signal start reconfiguring their cir-
cuits according to their respective schedules (Fig. 4).
Slot size configuration. Overall, the guard band size is
the sum of the reconfiguration delay, variability in propaga-
tion and the precision of synchronization. Given the guard
band size, the slot size can be configured to balance the
trade-off between latency and throughput: a smaller slot re-
duces epoch size resulting in smaller latency, yet it imposes
higher guard band overhead resulting in smaller duty cycle
and hence lower throughput.
Epoch size and multiple channels. In Shoal, two nodes
exchange cells at the interval of an epoch. Therefore, each
queue drains at the rate of one cell per epoch, meaning a
smaller epoch size results in smaller queuing delay. We can
reduce the epoch size by taking advantage of the fact that net-
work links comprise multiple channels. For e.g., 100 Gbps
links actually comprise four 25 Gbps channels, which can be
switched independently. Thus, in Shoal, each channel is used
to send cells to a quarter of the rack nodes in parallel. Given a
fixed slot size (as determined based on guard band size), this
shrinks the epoch size by a quarter (epoch = N−1 slots

num of channels ).
Finally, the actual cell size is determined by the slot size and
channel speed, for e.g. a slot size of 20.5 ns (without guard
band) will correspond to 64 B cells over a 25 Gbps channel.

3.5 Practical concerns
We now discuss a few practical concerns of the design.
Clock and data recovery (CDR). A key challenge for any
network relying on fast circuit switches is that each node
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Figure 5: Header fields in the 8 B cell header carried by each
cell. Header field sizes assume a max of 1024 rack nodes.

needs to be able to receive traffic from different senders at
each time slot. This requires that, at each time slot, the in-
coming bits are sampled appropriately so as to achieve error-
free reception. The sampling is done by the Clock and Data
Recovery (CDR) circuitry at the receiver and typically takes
a few hundred microseconds [46]. However, we note that this
is only a problem when using layer 0 circuit switches that
operate at the raw physical layer, e.g., when using an optical
circuit switch. Such a switch imposes no latency overhead
but requires very fast CDR at the receiver in order to achieve
a reasonable guard band. Recent work has shown that sub-
nanosecond CDR is achievable in datacenter settings [13].

Electrical circuit switch can also operate at layer 1 [76].
When a circuit is established between ports i→ j, the switch
retimes data received on port i before sending it to port j.
With such switches, each link in the network is a point-to-
point link and thus, fast CDR is not needed. Each switch,
however, does need to be equipped with a small buffer to ac-
count for any differences in the clocks associated with ports
i and j. For Shoal, only a few bits worth of buffering is re-
quired since the entire rack is frequency synchronized and
the buffer is only needed to absorb any clock jitter.
Cell reordering and reassembly. The sequence number

field in each cell’s header is used to assemble cells in-order
at the destination. Note that Shoal’s congestion control is
robust to reordering, as it operates at the granularity of indi-
vidual subflows with a congestion window of size 1. Once
the cells have been reordered, the start-of-packet and
end-of-packet fields in the cell header are used to figure
out the packet boundary, and the cells within each packet
boundary are then assembled together to re-construct the
original packet.
Failures. To detect failures, Shoal relies on the fact that
a node sends a cell to every other node in the rack, even if
there is no traffic to send, once every epoch. A path refers to
the set of links and switches through which a node j sends a
cell to some other node i once every epoch.

When a node i does not receive a cell from a node j in it’s
corresponding slot, either due to path failures or node failure,
it conservatively infers that node j has failed, and i) stops
sending any further cells to j, ii) notifies other nodes that it
can no longer communicate with j, so other nodes stop for-
warding cells destined to j via i, iii) forwards the last cell (if
it happens to be i’s local cell) it sent to j via some other node,
and iv) discards all the outstanding cells it was supposed to

1 node 1 node-leaf 1 leaf 1 leaf-spine 1 spine
link switch link switch

≈ 1/N ≈ 1/N ≈ 1/
√

2N ≈ 2/N ≈ 2
√

2/
√

N

Table 1: Fraction of failed slots against different failed com-
ponents, for a two-stage clos topology. N = no of rack nodes.

forward to j. Shoal relies on a higher layer end-to-end trans-
port protocol to recover from the loss of those outstanding
cells. Finally, in case of an actual node failure, Shoal again
relies on the transport protocol to recover all the cells that
were queued to be forwarded at the failed node. If the failed
node was the primary clock reference for synchronization,
another node needs to take over and remaining nodes seam-
lessly switch to it as the new reference. ITU standard for
SyncE [75] already supports this.

Note that the failure detection mechanism is symmetric —
when node i infers that node j has failed, it immediately
stops sending cells to j, causing j to infer that i has failed,
and hence immediately stop sending cells to i. This ensures
the consistency of Shoal’s closed-loop congestion control
mechanism (§3.3.2), even in the face of failures.

One of the consequences of Shoal’s design is if a node can
no longer “directly” communicate with some other node, ei-
ther because the other node or the path to it has failed, it
hurts node’s throughput as the corresponding slot is marked
as failed and hence goes unused (Table 1). We evaluate net-
work performance against fraction of failed nodes in §7.3.
Scalability. Shoal’s scalability is mainly limited by two
factors: i) On-chip resource consumption on the NIC, in
particular on-chip memory, and ii) epoch size, which con-
tributes to network latency. The on-chip memory consump-
tion for Shoal scales as Θ(N2log(N)) bits (§4). Even for a
very dense rack comprising ∼1000 nodes, this results in a
memory consumption only of the order of a megabyte. On
the other hand, epoch size increases linearly with the num-
ber of nodes (§3.4). The impact of increasing epoch size on
network latency is evaluated in §7.3.

4 Implementation
In this section, we discuss our FPGA-based implementation
of Shoal’s switch and NIC. We used Bluespec System Ver-
ilog [57] (∼1,000 LOCs). Our design runs at a clock speed
of 156.25 MHz, thus each clock cycle is 6.4 ns.

4.1 Switch design
Our circuit switch operates at layer 1, i.e., data traversing the
switch is routed through the PHY block at the ingress and
egress ports (Fig. 6). The mapping between the ingress and
egress ports varies at every time slot according to the static
schedule. This mapping is implemented using p different p:1
multiplexers, where p is the number of ports in the switch.
The control signals to these multiplexers are driven by p reg-
isters, one per multiplexer. In each time slot, all the p reg-
isters are configured in parallel according to the schedule.
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Figure 6: Switch and NIC implementation with the latency
of each block. Clock cycle is 6.4 ns. N = num of rack nodes.

Hence, the switch reconfiguration delay is simply the time
it takes to update the registers, which can be done in one
clock cycle. Our switch is driven by the clock that drives the
interface to PHY. The interface to 10G Ethernet PHY (XG-
MII) runs at 156.25 MHz, resulting in reconfiguration delay
of 6.4 ns for our switch. However, for higher link speeds the
clock frequency can be higher, for e.g., at 50 Gbps, the inter-
face to PHY (LGMII) runs at 390.625 MHz [55], yielding a
reconfiguration delay of 2.5 ns.

The transmit and receive paths of the switch are located in
two separate clock domains: the transmit path is driven by
the clock distributed throughout the rack, while the receive
path is driven by the clock recovered from the incoming bits.
To move data safely across clock domains, we use synchro-
nization FIFOs. The total port-to-port latency of our switch
is 50 cycles (320 ns): PHY block (45 cycles) + switching (1
cycle) + synchronization FIFO (4 cycles).

4.2 NIC design
Fig. 6. shows the routing and congestion control pipelines

implemented in Shoal’s NIC. Each NIC maintains a cell
cache on the on-chip memory, of size N − 1 cells, which
stores the next cell to forward per intermediate node. Re-
maining cells sit in the DRAM. The backpressure-based
mechanism underpinning Shoal’s congestion control (§3.3.2)
is implemented using two vectors of size N − 1 each, that
record the last cell sent (received) to (from) each interme-
diate node, and a (N − 1)× (N − 1) matrix that stores the

rate limit feedback received from each intermediate node for
each active local flow. The scheduler uses these data struc-
tures to schedule local cells into a ready queue in accordance
with the logic described in § 3.3.2 and § 3.3.3.

NIC latency is dominated by the PHY and MAC IP blocks,
with the routing and congestion control logic only adding 4
and 5 cycles on the transmit and receive paths, resp. Thus,
Shoal’s additional mechanisms impose low overhead.

Appendix B details the resource consumption for Shoal’s
FPGA-based implementation.

5 Power and cost implications
We now compare the power and cost of a Shoal network
to that of a packet-switched network (PSN). Along with the
performance evaluation in §7, we demonstrate that for 71%
lower power and an estimated cost reduction of up to 40%,
Shoal’s circuit-switched fabric can reduce tail latency by up
to 2× as compared to state-of-the-art congestion control pro-
tocols such as NDP [25] atop a PSN.

We analyze a 512-node rack. For a PSN, we consider
today’s packet switches [58, 81], which support 64 ports
at 50 Gbps and consume a maximum of 350 W [47, 49].
Nodes have 50 Gbps NICs with copper cables (i.e., no opto-
electronic transceivers) and connecting them using a non-
blocking Folded Clos topology requires 24 such switches.
For Shoal, extrapolating from today’s circuit switches [76],
we estimate that a 64×50 Gbps circuit switch would con-
sume 38.5 W. To compensate for the throughput overhead
of detouring packets, each node is equipped with 100 Gbps
links. So the Shoal network has 48 circuit switches. The
small physical size of the actual circuit switch ASIC means
that the space required for the extra switches is manageable.
Based on current SoC trends [59, 73, 79], we expect the NIC
to be integrated with the CPU on a single SoC and to benefit
from the same 10× reduction in power consumption. Given
a typical power consumption of 12.4 W for today’s 100 Gbps
NICs [77], this would lead to an estimated power consump-
tion of 1.37 W for the Shoal’s NIC (including 11% overhead
as computed in Appendix B) and of 0.62 W for PSN’s. Thus,
the total power of the Shoal network is 2.55 KW, 71% lower
than PSN (resp. 8.72 KW). Lower power density is crit-
ical because a rack’s total power has a hard limit around
15 KW [35, 60, 66].

Quantifying the cost of the Shoal network is harder as it
requires determining the at-volume cost of circuit switches.
Circuit switches can be electrical or optical; today, electri-
cal circuit switches are commercially used in scenarios like
HDTV [76] and are capable of fast switching while fast op-
tical switches only exist as research prototypes [16, 17, 30,
36, 48, 52]. Thus, instead of focussing on absolute costs, we
ask: how cheap would circuit switches need to be, relative
to equivalent packet switches, for Shoal to offer cost benefits
over PSN? We assume Shoal NICs cost between 2 and 3×
PSN NICs to account for the 2× bandwidth and extra func-
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tionality they provide. Fig. 11 shows how the relative cost of
the Shoal network varies as a function of the relative cost of
circuit switches to packet switches. A Shoal network would
cost the same as a PSN as long as circuit switches are 33.3–
41.6% the cost of packet switches while providing power
and performance gains. If the cost circuit switches was 9.6–
18.3% of the cost of packet switches, then Shoal would offer
a 40% cost reduction. While absolute costs are hard to com-
pare as they also depend on several non-technical factors, the
analysis below and our estimations based on hardware costs
indicate that at-volume circuit switches could cost as low as
15% of equivalent packet switches.

The lack of buffering, arbitration and packet inspection in
circuit switches means that they are fundamentally simpler
than packet switches which should mean lower cost. For
electrical switches, designers often use the switch package
area as a first-order approximation of switch cost—the ac-
tual chip area dictates yield during fabrication and therefore
fabrication cost while the total package area dictates the as-
sembly and packaging cost. In today’s packet switches 50%
of the total area is attributed to memory, 20% to packet pro-
cessing logic while 30% is due to serial I/O (SerDes) [62].
Electrical circuit switches, by contrast, have no memory and
packet processing, so the first two components have negli-
gible contribution. While the amount of I/O bandwidth in a
circuit switch remains the same, the actual SerDes is much
smaller because they are only retiming the signals, instead
of serializing and deserializing data from a high-rate serial
channel to lower-rate parallel channels. Even assuming the
SerDes are only halved in size, the total packaged area for
circuit switching could be as low as 15% that of a packet
switch. Overall, this analysis indicates that, with volume
manufacturing, the relative cost of electrical circuit switches
can be low enough for Shoal to simultaneously reduce both
power and cost as compared to PSN.

Looking ahead, optical circuit switches hold even more
promise: as bandwidth increases beyond 100Gbps per chan-
nel, copper transmission becomes noise limited even at
intra-rack distances and optical transmission becomes nec-
essary [64]. Optical circuit switches further reduce cost
and power because they obviate the need for expensive
transceivers for opto-electronic conversions. However, a few
technical challenges need to be solved for optical switches
to be used in Shoal [7]. For example, while several tech-
nologies being studied in the optics community can achieve
nanosecond switching, practical demonstrations have been
limited to 64-128 ports [12]. Another longstanding challenge
is to achieve fast CDR at layer 0 although recent work has
shown the feasibility of such CDR within 625ps [13].

6 Prototype

In this section, we evaluate our FPGA-based implementation
of Shoal through a 8-node prototype, shown in Fig. 7.

Figure 7: Shoal’s FPGA-
based prototype.

Figure 8: Shoal prototype’s
physical topology.

Figure 9: [Prototype] Avg
destination throughput for
full permutation matrix.

Figure 10: [Prototype]
Flow completion time for
7:1 synchronized incast.

6.1 Prototype setup

Our prototype comprises eight Terasaic DE5-Net
boards [63], each with an Altera Stratix V FPGA [80]
and four 10 Gbps SFP+ transceiver modules. Two FPGAs
are used to implement eight NICs, one per port. The
remaining six FPGAs implement six 4-port circuit switches.
The switches are connected in a leaf-spine topology and the
NICs are connected to the leaf switches as shown in Fig. 8.
We connect all eight FPGAs to a Dell T720 server. We use
the PCIe clock as the global clock and distribute it to the
Phase-locked loop (PLL) circuit running on each FPGA.
Thus all the local clocks derived from the respective PLL
circuits on each FPGA are frequency synchronized. For
time synchronization we use DTP [33].

Guard band. Our prototype achieves synchronization pre-
cision of less than a clock cycle. Further, the switch recon-
figuration delay is one clock cycle (§4.1), and all wires are of
same length. Hence a guard band of one clock cycle (6.4 ns)
is sufficient.

Slot size. To keep the guard band overhead to around 10%,
we select a slot size of 12 clock cycles (76.8 ns). This in-
cludes 1 cycle of guard band overhead and 24 B (3 cycles)
of Altera MAC overhead. Thus the usable slot size equals
8 cycles (51.2 ns), which translates to 64 B cells at 10 Gbps
link speed. The epoch size equals 0.53 us.
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6.2 Prototype experiments
We used the prototype to verify that our implementation
achieves throughput and latency in accordance with the de-
sign. We also use it to cross-validate our simulator which, in
turn, is used for a large-scale evaluation regarding the viabil-
ity and benefits of a real world deployment of Shoal.

Throughput. We consider a permutation matrix with N = 8
flows: each node starts a single long-running flow to another
random node such that each node has exactly one incoming
and outgoing flow. For throughput, this is the worst-case traf-
fic matrix. In Fig. 9, we show performance in terms of desti-
nation throughput, measured as the amount of “useful” cells
(i.e., excluding the cells to forward and the empty ones) re-
ceived by each destination. For full permutation matrix, the
throughput for Shoal is expected to converge to∼50% of the
ideal throughput. Interestingly, however, the throughput is
significantly lower for smaller slot sizes, and it converges to-
wards 50% only for larger slot sizes. This is an artifact of the
small scale of our prototype, which causes the node-to-node
cell propagation latency (1.57 us: 40 ns of wire propagation
latency + 3×320 ns of switching latency (dominated mostly
by Altera 10G PHY latency) for three switches along the path
+ 576 ns of Altera 10G MAC and PHY latency at the two
end nodes (Fig. 6)) to be higher than the epoch size (0.53 us
for 64 B cells). The problem is that Shoal’s congestion con-
trol mechanism prevents a node from sending its next cell
to an intermediate node until it has received feedback from
it. Therefore, if the cell propagation latency spans multiple
epochs, the overall throughput suffers as senders cannot fully
utilize their outgoing bandwidth. As the slot size increases,
the ratio between the cell propagation latency and the epoch
size decreases, and this explains why in our prototype the
throughput improves with larger slots. In practice, however,
even for modest-sized racks, this issue will not occur as the
cell propagation latency will be much smaller than the epoch
size, and can be easily accomodated in the schedule as ex-
plained in Appendix A.

Latency. We consider all-to-one incast, where seven nodes
each send 448 B of data (seven 64 B cells) to the same des-
tination at the same time. Fig. 10 shows the distribution of
flow completion time (FCT) of all seven flows. The queue at
each node corresponding to the destination node grows upto
a maximum of 7 (Eq. 5). This results in maximum FCT of
6.9 us : 3.76 us of queuing delay plus 2×1.57 us of prop-
agation latency. Also note that the difference between the
fastest and slowest flow is fairly small (6.05 us vs. 6.9 us),
highlighting Shoal’s fair queuing.

Overall, across all experiments, the prototype and simula-
tion results were in agreement.

7 Simulation
We complement the prototype experiments in §6 with simu-
lations to investigate the scalability of Shoal.

7.1 Simulation setup
We use the packet-level simulator that was cross-validated
against our prototype (§6). We simulate a 512-node rack,
where each node is equipped with an interface bandwidth of
100 Gbps, connected using a full bisection bandwidth Clos
topology comprising circuit switches.
Guard band. We assume a guard band of 2.75 ns, based on
a 2.5 ns switch reconfiguration delay (§4.1) and 0.25 ns to ac-
count for any variability in propagation and synchronization
imprecision (§3.4).
Slot size. To keep the guard band overhead to around 10%
(resulting in max throughput of 90 Gbps), we select the slot
size of 23.25 ns. This results in 20.5 ns of usable slot size.
As explained in §3.4, we use the fact that existing 100 Gbps
links comprise 4×25 Gbps channels, resulting in 4 parallel
uplinks and an epoch size of 2.9 us. Finally, usable slot size
of 20.5 ns translates to 64 B cells at 25 Gbps channel speed.

7.2 Microbenchmarks
We start with a set of microbenchmarks to verify that the
behavior observed in our testbed holds at large scale too.
Throughput. In Fig. 12, we plot the average destination
throughput, as defined in §6.2, for the permutation traffic
matrix: each communicating node sends and receives one
flow. We vary the number of communicating pairs from 1
to 512. As there is no contention at any of the source and
destination nodes, the ideal destination throughput equals
the maximum interface bandwidth. However, for Shoal,
as the number of communicating pairs increases, so does
the amount of detouring traffic, resulting in the expected
throughput trend: it starts from the peak value for a single
flow and then monotonically decreases until it halves when
all pairs are communicating (full permutation traffic matrix).
Fairness. To verify Shoal’s fairness, we ran several work-
loads comprising a variable number of flows from 50 to
1,024 with randomly selected sources and destinations. We
compared the throughput achieved by each flow against its
ideal throughput computed using the max-min water-filling
algorithm [8]. Across all workloads, 99% of the flows
achieve a throughput within 10% of the ideal one. This
shows that, despite the simplicity of its mechanisms, Shoal
closely approximates max-min fairness.
Latency under Incast. We evaluate Shoal under incast, the
most challenging traffic pattern for low latency. A set of
nodes send a small flow of size 130 KB each, to the same
destination at the same time. In Fig. 13, we plot the flow
completion time (FCT) of the slowest flow as well as the
mean completion time, against increasing number of sending
nodes. As expected, at each intermediate node, the queue
corresponding to the destination node grows linearly with
increasing number of sending nodes, but bounded by the in-
cast degree of the destination (Eq. 5). Hence the FCT for
the slowest flow increases linearly and is also the optimal
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Figure 13: Flow comple-
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Figure 14: Reduced impact
of detouring on latency via
optimizations in §3.3.3.

maximum FCT under such incast. The mean completion
time coincides with the slowest flow’s FCT, thus highlighting
Shoal’s fair queuing.

Reducing the impact of detouring on network latency. To
show that the optimizations described in §3.3.3 indeed im-
prove the network latency, we choose two nodes, Node-511
(source) and Node-0 (destination), to exchange short flows
(20 KB) at regular intervals, and generate random back-
ground traffic amongst the remianing nodes. We plot the
distribution of flow completion time (FCT) of short flows ex-
changed between nodes 511 and 0 in Fig. 14. The optimiza-
tions in §3.3.3 enable Shoal to achieve much smaller and
predictable FCT for target short flows—at the source, Shoal
selectively adds cells to local queues where there is low con-
tention, and at the intermediate node the queue length is
bounded to two regardless of the cross-traffic, as the incast
degree of Node-0 is one (Eq. 5). However, without the op-
timizations, the cross-traffic due to detouring significantly
increases the FCT of target short flows.

7.3 Datacenter workloads
We now investigate the performance of Shoal in dynamic set-
tings, using more realistic workloads.

Workload. We generate a synthetic workload, modeled af-
ter published datacenter traces [2, 22]. Flow sizes are heavy
tailed, drawn from a Pareto distribution with shape parame-
ter 1.05 and mean 100 KB [3, 4]. Flows arrive according to
a Poisson process and each simulation ends when one mil-
lion flows have completed. Flow sources and destinations
are chosen with uniform probability across all nodes (we will
study the impact of skewed workloads in §7.4).

Network load. We define network load L = F
R·N·τ where F

is the mean flow size, R is the per-node bandwidth, N is the
number of nodes, and τ is the mean inter-arrival flow time,
e.g., L = 1 means that, on average, there are N active flows.

Evaluation metric. We evaluate Shoal based on the flow
completion time (FCT) for short flows (≤100 KB) and av-
erage goodput (i.e., throughput after accounting for the 8 B
cell header overhead (§3.5)) for long flows (≥1 MB).

Baseline 1: Direct-connect network. We start with compar-
ing Shoal against a rack-scale network using a direct-connect

topology. We arranged the 512 nodes into a 3D torus, which
is the topology used in the AMD SeaMicro 15000-OP [79].
As with the Shoal network, we assume an aggregate node
bandwidth of 100 Gbps. We use R2C2 [15] for congestion
control. For all values of load, Shoal consistently outper-
forms the rack-scale setup up to a factor of 14.9 for tail FCT
for short flows (resp. a factor of 4.8 for avg goodput for long
flows). This is due to the multi-hop nature of direct-connect
topologies; it significantly increases the end-to-end latency
as queuing can occur at any hop. Further, node bandwidth
is also used to forward traffic originating several hops away,
which reduces the overall throughput. This does not occur
in Shoal as packets only traverse one hop and the congestion
control guarantees bounded queues.

Baseline 2: Packet-switched network. Now we compare
Shoal against a 512-node packet-switched network (PSN),
that connects the nodes using Clos topology with full-
bisection bandwidth. The interface bandwidth of each node
is 50 Gbps. Thus Shoal is provisioned with 2× bandwidth, to
compensate for the throughput overhead of detouring pack-
ets. Note that despite the extra bandwidth, Shoal’s power is
still estimated to be lower than that of PSN with a compa-
rable or lower cost (§5). As baselines, we use DCTCP [2],
NDP [25] and DCQCN [54] as the three state-of-the-art con-
gestion control algorithms atop a packet-switched network.
The baselines are based on the simulator used in [25]. We
assume 1500 B packets for all of them. DCTCP and DC-
QCN use standard ECMP routing, with the congestion win-
dow size of 35 packets and queue size of 100 packets. NDP
uses packet spraying for routing with initial window size of
35 packets and queue size of 12 packets.

As shown in Fig. 15a, at low to moderate load, Shoal ex-
hibits an average FCT comparable to DCQCN and DCTCP
and slightly higher than NDP. This increase is a consequence
of the use of detouring due to the static schedule ( 3.3.1).
However, Shoal outperforms DCTCP and DCQCN in terms
of tail FCT for short flows by a factor of 3× at low load
and 2× at high load (resp. outperforms NDP by a factor of
1.5× and 2×). The reason for this is three-fold: i) 2× band-
width per node in Shoal reduces the serialization delay, ii)
selectively adding cells from new flows to local queues with
low contention reduces queuing delay at the source, and iii)
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Shoal’s congestion control ensures small and bounded queu-
ing at intermediate nodes, thus reducing the queuing delay
at intermediate nodes. Shoal also outperforms all three base-
lines in terms of long flow goodput (Fig. 15b) by a factor of
1.7×, even at high load. This is primarily due to the fact that
each Shoal node is equipped with more bandwidth.
Queuing and reordering. To validate our claim that Shoal
operates with very small queues, we plot the maximum queu-
ing observed across all nodes in Fig. 16. Even at high load,
the maximum queue size is 11 cells (704 B) and the maxi-
mum aggregate queue per node is 336 cells (21 KB). Maxi-
mum cell reordering within a flow across all nodes and across
all values of load is 200 KB (Fig. 16).
Node failures. We now focus our attention to the impact of
node failures. We ran the same workload as in the previous
experiments (L = 1) but at the beginning of each experiment
we fail an increasing fraction of nodes (up to 50%). As ex-
pected, the goodput decreases linearly (2× worse for 50%
failure rate, Fig. 17) because the slots corresponding to the
failed nodes are wasted. We can alleviate this with a more
sophisticated mechanism that, on detecting long-term fail-
ures, updates the schedule of both rack nodes and switches
to discount the failed nodes. FCT also increases with in-
creasing failed nodes, as the number of paths along which
cells from a flow can be sent is reduced, resulting in higher
subflow collision and increased queuing. However, Fig. 17
shows that even for high failure rate the increase in com-
pletion time is rather marginal, e.g., 1.5× for a 40% failure
rate (resp. 1.2× for 20% failure rate), thus making Shoal
amenable even for sealed rack-scale deployments in which
replacing failed nodes is not possible.
Impact of epoch size on network latency. Next, we study
the impact of epoch size on the FCT. Larger epoch size
results in higher latency (§3.4). In the first experiment,
we reduced the number of channels from 4×25 Gbps to
2×50 Gbps, thus doubling the epoch size. This increased tail
FCT by 1.26× at low load (resp. 1.15× at high load). In the
second experiment, we kept the number of channels constant
at 4, and increased the number of nodes to 1,024, again dou-
bling the epoch size. In this case, tail FCT at low load grew
by 1.28× (resp. 1.2× at high load). This, in turn, shows that
Shoal’s performance scales reasonably well with number of
nodes, making it suitable even for very dense racks.

7.4 Disaggregated workloads
Finally, we evaluate the performance of Shoal on disaggre-
gated workloads, based on recently published traces [19].
These traces comprise a variety of real-world applications,
including batch processing, graph processing, interactive
queries, and relational queries. To generate the workloads,
we mapped each rack node to one of the server resources
(CPU, memory, and storage) and created flows between them
following the distributions observed in these traces. This
yielded a much more skewed workload than the one in §7.3

(a) Flow completion time. (b) Average flow goodput.
Figure 15: Flow completion time (short flows≤100 KB) and
avg flow goodput (long flows ≥1 MB) vs. traffic load.

Figure 16: Max queue size
and max cell reordering vs.
traffic load.

Figure 17: Short flow
99.9p FCT and long flow
avg goodput vs. failure.

(a) Flow completion time. (b) Average flow goodput.
Figure 18: Flow completion time (short flows≤100 KB) and
avg flow goodput (long flows ≥1 MB) for different applica-
tions with disaggregated workload.

with more than 84% of the flows being generated among a
third of the nodes.

Fig. 18 shows the results for all the six applications, assum-
ing a mean inter-arrival time of 12.65 ns. Shoal significantly
outperforms the baselines in terms of both the tail FCT for
short flows (factor of 2× or more) and avg goodput for long
flows (factor of 2.5×). As explained in §7.3, this is due to
higher bandwidth provisioning in Shoal in combination with
its highly effective scheduling and congestion control mech-
anisms (resulting in maximum queue size of just 10 cells
across all applications).

These results show the versatility of Shoal and its ability to
carry different types of traffic, including disaggregated work-
loads, with high throughput and low latency.
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8 Discussion
The focus of this paper is on the design of a network for
disaggregated racks. Here we discuss a few open questions.
Integrating a Shoal rack with rest of the datacenter. A
key question is how to seamlessly integrate a rack-scale net-
work, such as Shoal, with the rest of the datacenter, which
might consist of both disaggregated and traditional racks.
Existing rack-scale designs [35] typically use a few rack
nodes as gateways that are then directly connected to the dat-
acenter network. Such a design could be adapted for Shoal
as well—the gateway nodes would act as a bridge between
Shoal’s network stack and datacenter-wide network stack,
such as TCP/IP over Ethernet. There are, however, several
key challenges that still remain to be addressed such as the
interplay between different congestion controls and how to
design the interface between IP packets and Shoal cells (e.g.,
packet reassembly/fragmentation and encapsulation).
Running applications on top of Shoal. Shoal is a link layer
architecture with support for congestion control. Running
applications on top of Shoal, however, requires a transport
layer providing application multiplexing, reliability, and flow
control. One option would be to re-use an existing transport
layer such as TCP, although the impact of the interaction
of its congestion-control mechanism with Shoal’s remains
an open question. Another approach would be to design a
Shoal-specific transport layer. This would be significantly
simpler as congestion control is already handled by Shoal.
We leave the exploration of these options for future work.

9 Related work
Disaggregated architectures promise significant cost, power,
and performance gains [56, 67, 71]. However, unlocking
these benefits requires solving numerous challenges.
Topology and technology. Several topologies have been in-
vestigated for disaggregated racks. Direct-connect topolo-
gies whereby each node is connected to a small subset of
other rack nodes through point-to-point links are common in
super computers and have been adopted in some commer-
cial disaggregated racks. For example, both AMD SeaMi-
cro [79] and HP Moonshot [69] use the 3D Torus topol-
ogy and custom routing. Motivated by the fact that the
best direct-connect topology is workload-dependent, recon-
figurable networks have emerged as an attractive alternative.
At rack scale, XFabric [35] combines circuit switches with
SoC-based packet switches to reconfigure the rack’s topol-
ogy on the fly, while for datacenter networks, electrical [10],
optical [11,21,24,42,53] and wireless technologies [23] that
operate like a circuit switch have been proposed. These so-
lutions typically rely on a centralized controller to schedule
traffic. This imposes significant communication and compu-
tation overhead and requires accurate demand estimation.
Congestion control through tight network-host coupling.
Shoal’s congestion control tightly couples the network fab-

ric with host network stack. For packet-switched networks,
there is already a trend towards tighter coupling between the
network and servers for low latency congestion control in
datacenters; for example, using ECN as a feedback signal
in DCTCP [2]. Congestion control mechanisms specialized
for RDMA over converged Ethernet, such as DCQCN [54]
and TIMELY [39], also rely on a closer coupling with the
network. Shoal is an extreme design point in this direc-
tion as the coupling of its congestion mechanism to its fab-
ric achieves bounded queuing and fairness despite very high
multi-pathing. For direct-connect topologies, R2C2 [15] is
a recently proposed congestion control that relies on broad-
casting of flow events across the rack. It achieves computa-
tion tractability at the expense of network utilization.
Load-balanced switch. In 2002, load-balanced switches [9,
29] were proposed as a way to obviate arbitration in mono-
lithic switches. Shoal’s fabric operates like a load-balanced
switch. However, instead of using an explicit intermediate
stage (i.e., special nodes for detouring) as in the original
proposal, Shoal detours cells through other rack nodes. Fur-
thermore, while the original technique focused on monolithic
switches, we scale it to a hierarchy of switches.

The load-balancing approach is also at the core of Ro-
torNet [38], an optical network for datacenters that does
not require a centralized controller. By leveraging multi-
ple rack uplinks, RotorNet reduces epoch duration and pro-
poses a novel indirection technique that lowers the through-
put impact of load balancing. However, it uses optical cir-
cuit switches with a relatively high reconfiguration delay
(20 µs) and hence, requires a separate packet-switched net-
work for low-latency traffic. It also does not ensure bounded
queuing. In contrast, Shoal works atop circuit switches
with nanosecond-reconfiguration, and proposes novel con-
gestion control and scheduling mechanisms that achieve high
throughput, low latency, fairness and bounded queuing for all
flows atop a purely circuit-switched fabric.

10 Summary
We presented Shoal, a network architecture for disaggre-
gated racks that couples a circuit-switched fabric with the
nodes’ network stack. The fabric operates like a rack-
wide switch with a static schedule. Rack nodes achieve
coordination-free scheduling by detouring their traffic uni-
formly, and implement backpressure-based congestion con-
trol which achieves fairness and bounded queuing. Our
FPGA-based prototype achieves good performance and il-
lustrates that Shoal’s mechanisms are amenable to hardware
implementation. Our results show that Shoal can achieve
high throughput and low latency across diverse workloads
while operating comfortably within the rack’s power budget.
This demonstrates that disaggregated architectures can be
deployed using today’s technologies and not need be gated
on the viability of future advancements in low-power tech-
nologies for packet-switches.
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Appendix
A Accounting for propagation delay
Even at the scale of a rack, the propagation delay is not neg-
ligible as compared to the transmission time of a cell. This
means that a cell sent at time slot t will not be received within
the same slot at the receiver. More generally, say that the
cell is received at slot t + k. For the feedback mechanism
described in § 3.3.2 to work optimally in the face of such
propagation delay, there should be at least k slots from the
time node i transmits to node j and the time node j trans-
mits to i, as j needs to know the destination of the last cell
that i sent to j to send back the right rate limit feedback. We
can easily re-arrange any cyclic permutation schedule such
as in Fig. 3 to ensure this property, as long as k is less than
half the number of slots in an epoch—when number of rack
nodes, N, is odd, this constraint can be easily accommodated
by inverting the order of the last N−1

2 columns. This would
ensure that there are exactly N−1

2 slots between the slot in
which i communicates with j and the one in which j com-
municates with i. This is shown in Fig. 19(a). For even N,
this is slightly more complicated as it requires to introduce
an additional empty slot per node to satisfy this requirement
as demonstrated in Fig. 19(b), consequently resulting in a
throughput reduction by a factor of 1

N for each node.

B Resource consumption for Shoal’s FPGA-
based implementation

To understand the resource utilization at scale, we synthesize
our design onto a Stratix-V FPGA [80], which comprises
234,720 adaptive logic modules (ALMs) and 52 Mbits of
BRAM. Assuming 500 nodes and 64-port switches, our NIC
logic consumes about 84% of ALMs and 13% of BRAM
(resp. 2% and 0.2% for the switch). Finally, we did a power
analysis to quantify the overhead of Shoal’s additional func-
tionalities. We leverage the study done in [31] to translate
the power consumption of our FPGA-based design into an
equivalent ASIC design. Assuming a 500-node rack, this re-
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Figure 19: Fabric schedule accounting for propagation delay.

sulted in Shoal NIC’s on-chip extra functionality – routing
and congestion control – consuming up to 11% of the power
consumed by commercial ASIC NICs, and Shoal switch’s
extra functionality – reconfiguration using a static schedule
– consuming just 0.1% of the power consumed by commeri-
cal ASIC circuit switches.

C Quality-of-Service
By default, Shoal assumes that each cell belongs to the same
traffic class, and schedules them using a single per destina-
tion FIFO queue. However, Shoal can be easily extended to
support multiple traffic classes by maintaining multiple per
destination FIFO queues, one per traffic class, and schedul-
ing cells from the FIFOs in the order of their priority. Note
that in this case the queue bound (§3.3.4) will only hold for
the highest priority traffic, while the lower priority traffic can
see tail drops. To notify the sender of the tail drop, the node
sets the last-cell-dropped field to 1 in the header of the
next cell it sends to the sender. And finally, the rate limit
feedback for a single traffic class in Eq 6 is updated for mul-
tiple traffic classes as follows—for a cell in traffic class c,

rate limit feedbackc
ji = ∑

p
[len(Qp

jk)+ len(Rp
jk)−1]

∀ traffic class p s.t. priority(p)� priority(c)

D Recovering from cell corruption
Shoal uses the CRC field in the cell header to check for
cell corruption. If node j receives a corrupted cell from
node i, it first extracts the header fields corresponding to
congestion control, namely the rate limit feedback and
last-cell-dropped, and then discards the cell. It also sig-
nals the sender i that the cell was dropped by setting the
last-cell-dropped field to 1 in the header of the next
cell sent to node i. Node i then re-transmits the last cell it
sent to node j. Since the last-cell-dropped field in the
corrupted cell might also have been corrupted, node j takes
the conservative approach of assuming the field was set to 1
and re-transmits the last cell it sent to node i. Further, if the
rate limit feedback field also happens to be corrupted,
the queue bound as described in §3.3.4 might get violated
and there could be tail drops in the worst case. Shoal again
uses the last-cell-dropped field in the cell header to no-
tify the sender of any tail drop.
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