Mojave: A Recommendation System for Software Upgrades’

Rekha Bachwani, Olivier CraméyiRicardo Bianchini, and Willy Zwaenepdel
Rutgers University, USA TEPFL, Switzerland

Abstract To avoid some upgrade failures, developers typically

Software upgrades are frequent. Unfortunately, many of the dePI0Y upgrades as packages to be handled by package-
upgrades either fail or misbehave. We argue that many of Management systems. However, package-management sys-
these failures can be avoided for new users of each upgraddems only try to enforce that the right packages are in place.
by exploiting the characteristics of the upgrade and feekiba Users try to avoid failures by delaying the installation of

from the users that have already installed it. To demorestrat 2ch upgrade until after many other users have installed it
that this can be achieved, we build Mojave, the first recom- and provided positive feedback on it. Crameri showed that

mendation system for software upgrades. Mojave Ieverages70% of the administrators refrain from installing each up-

data from the existing and new users, machine learning, anddrade at first. However, a positive feedback from others may
be useless if their environments and/or inputs are differen

static and dynamic source analyses. For each new user, Mo- i)
jave computes the likelihood that the upgrade will fail for Obviously, (_1eploy|ng upgrades as packages ano!/ordelay-
him/her. Based on this value, Mojave recommends for or IN9 UPgrades is not enough to prevent upgrade failures. In-
against the upgrade. We evaluate Mojave for two real up- St€ad, we argue that the developer and the usersai&b-
grade problems with the OpenSSH suite. Initial results show Orateto achieve this goal. The developer can aggregate data
that it provides accurate recommendations. from the “existing use_rs” (user; who have aIready installed
the upgrade) and use it to predict success or failure for “new
1. Introduction users” (users WhO inten(_j to install the upgrade_). _
Modern software is complex and consists of many inter- recﬁlr?wr:r?ertjest?oﬁngj,strg ?ciirp:cr)f?vrv(;[?gss;gl\r/lg)éi\;e,'\';Ircl)?acgsé
related components. Due to this complexity, developers fr_e design is based on 4 observations: (1) upgrade bugs often
quently h_a_\\{e to produce upgrades to fix bugs, patch security,y significant time to fix, so delaying crucial upgrades
vulnerabilities, add or remove features, and perform other ¢, | \sers that may not be affected by the bugs is unneces-

critical tasks. It_|s infeasible, if not |mpo§3|ble, for tkie_— sary and inefficient; (2) the upgrade failures are mostyikel
velopers to envisage, much less test their upgrades with ev-,4 ;e by the particular characteristics of the correspgnd
ery possible environment setting and input with which users

drive th o : £ th q it users’ environments or inputs; (3) new users that have char-
rive the software. As a result, many of the upgrades either , g ristics similar to those of the existing users where the
fail or misbehave for some users. We definggrade fail-

; i X . upgrade has failed are likely to experience similar fastre
ures/bugsas mlspehawor caused by the code introduced in and (4) two users' sites at which the software behaved sim-
an upgrade, not just crashes.

: 0 ilarly in the past (execution behavior prior to the upgrade)
A survey by Crameret al. [6] showed that 90% of sys- 50 ikely to behave similarly in the future (execution beha

tem administrators upgraded their software at least once 8, atter the upgrade). This latter observation is the biasis

month, and that 5-10% of these l_Jpgrades misbehaved. Th_emany recommendation systems based on collaborative filter-
same survey also found that the difference between the enw-ing [12, 25, 26].

ronment (i.e., version of the operating system and libsarie
configuration settings, hardware, etc) at the develop#es s

and users’ sites was a major source of upgrade failures. goyings and execution behavior data from before the uggrad
To further study the prevalence of upgrade failures, and o5 ingtalied (collectively called user “attributes”).thten

the reasons for these p_roblemg, we §urveyed 96 bug reports,ses machine learning, and static and dynamic source analy-
about the OpenSSH suite. Our intention was to study aroundses to identify the attributes that are most likely relatethe

100 bug reports spanning multiple consecutive versions of 4 4e failures. Mojave compares these suspect attsibute
OpenSSH. The following set of five versions met this crite- to those of each new user to predict whether the upgrade

rion: 4.1p1,4.2p1, 4.3p1, 4.3p2, and 4.5p1. The result®'sho ., q ail for him/her. Based on this prediction, Mojave-rec
that 41% of the problems reported were due to upgrades., . mends in favor or against the upgrade.

Furthermore, we find that the majority of the bugs are caused We evaluate Mojave on 2 real upgrade problems with
by both the user’'s environment and input.

Mojave collects and aggregates success/failure feedback
from (willing) existing users, along with their environnten

OpenSSH. Mojave accurately predicts the upgrade failure
for 96 — 100% of the users. Given the accuracy of the

* This research was partially funded by NSF grant CNS-0916878

#defi ne PSHELL "/bin/sh"
int env2 = 0;

int checklength(int len) {
if (len <= 9)
return len;
el se

return -1;

COoONOORWONE

void do_option(int x) {
printf("\nGot option %", x);
12. }
. int main(int argc, char *argv[]) {
int retvall =0, i =1;
char shel 1[80];
if (argc >= 2) {
while (argv[i] !'= NULL) {
if (strcnp(argv[i],"Optionl") == 0) {
do_option(1);
}//end strcnp
if (strcnp(argv[i],"Proxycnd") == 0) {
strcpy(shel |, PSHELL) ;
env2 = strlen(shell);
retval 1 = checkl ength(env2);
if (retvall > 0)
printf("\nSuccess: proxycnd");
el se
printf("\nOops: checkl ength failed");
}//end strcnp
i ++;
Y/ /end while
}//end argc
}//end main

Figure 1. Example (failure-inducing) upgrade.

preliminary results, we expect that Mojave would be able
to prevent most upgrade failures in the field.

31.
32.
33.

2. Mojave
2.1 Motivating Example

Consider the example in Figure 1. It reads strings (lines 16-
18) one at a time. If one of the strings@ptionl, it calls
do_opti on (lines 18-19) to process them (lines 10-12). If
one of the strings iFrozycmd, it assignsPSHELL as the
shell, computes its length, and catlbeckl engt h (line
21-24).checkl engt h checks if the length of the string is
less than or equal 1, returns the length of the string if it is,
and—1 otherwise (lines 4-9).

Therefore, the key to preventing this failure for futurergse
is to check if they have the failure-inducing environment
($SHELL) set to an empty string, and if their execution
path with the current version of the software has the failure
relating routine callcheckl engt h.

Next, we describe Mojave’s learning and recommenda-
tion phases.

2.2 Learning Phase

Upgrade deployment, tracing, and user feedback (steps
0-3).As shown in Figure 2, Mojave first deploys the upgrade
to an initial set of users (step 0). Mojave then collects user
input, environment, and call sequence data forahaent
(pre-upgrade) versioof the software (step 1).

Mojave uses the tracing infrastructure detailed in Mirage
and Sahara [2, 6] to record the inputs and identify all the
“environmental resources” a software depends on. The envi-
ronmental resources include the name and version of the op-
erating system and libraries, the configuration settings, t
name and version of the other software packages installed,
and a description of the hardware. Mojave allows the devel-
oper to include or exclude additional resources. In addljtio
Mojave leverages the parsers created for Mirage and Sahara
to compute a concise representation (key/value fingejprint
for each environmental resource. The key of each fingerprint
is the name of the resource, and the value is its hash value.
The user input includes any command line arguments and
data manually entered as input.

A call sequence comprises the routines executed during
one run of the software. Mojave may collect multiple call
sequences from each user. To collect call sequence data, Mo-
jave uses th€ Intermediate LanguaggCIL) [21] to auto-
matically instrument the application. A new CIL module,
called call-logger, inserts calls to our runtime library that
logs the names of the routines executed. In case the software
forks multiple processes, the module logs the call sequence
for each process individually.

Now let us assume that the upgrade replaces line 22 with ~ After these pre-upgrade runs, Mojave installs the upgrade

the following three lines to get the value $8HELL from
the user’s environment.

strcpy(shell, getenv("SHELL"));

if (shell NULL)

strcpy (shell, PSHELL);

The upgrade will fail at the user sites where Poxycmd
is passed as input, and (2) tB&HELL variable is a string
of length 0. Note that &NULL string is different from a
string of length 0. Specifically, the upgrade will fail when
checkl engt h returns0, because the length of the shell

and tests it with the previously saved inputs (step 2). At the

end of each test run, Mojave asks the user for a success/
failure flag. When the user provides it, Mojave obscures and
then sends this information, along with the environment and
call sequence data, back to the developer’s site (step 8). Th
call sequences (excluding any confidential data, such as rou
tine arguments and return data) are a proxy for the real en-
vironment settings and inputs, which Mojave does not trans-
fer to the developer because of privacy concerns. These data
represent the profile of the user site. Mojave collects these

variable is). However, the program ran successfully at these data from all users that are willing to participate. User-pro
sites before the upgrade, because it was not dependent ofiles from all sites serve as the input to the other steps. Now

the user’s setting dBSHELL.
Although the two versions are input-compatible, the ex-

suppose that the upgrade misbehaved at one user site at least
Call sequence filtering for environment-related failures

ecution behavior changes with the upgrade, both in terms (steps 4-6).With the users’ environment and upgrade suc-

of the path (call sequence) executed, and the output pro-
duced. This was not the intended behavior of the upgrade.

cess/failure information, Mojave runs a machine learning
algorithm to determine if the misbehavior is likely due to

o
% Deploy Upgrade ‘Ttollect call sequence and Developer
- i data (1)

?WI Enwnen and call 0
Q3 User feedback ¥ i m— ;ollectcall sequence and

| I
environment data

Suspect Routines

(2 -
Feature Selection
Suspect Environment
P static Anaiysis |
P ruer |
Call Sequences
€2 Call Sequence
Similarit

imjlarity

Filter

Call Sequences
Call sequences of
initial users
llirseoilll

imilarity

SSimilarity, FSimilarity

13 Rec

Classification Decision for or against

Prediction Model the upgrad
Figure 2. Learning phase in Mojave. Figure 3. Recommendation phase in Mojave.

some aspect of the environment (step 4). For this, it useswhether the variable is a suspect or is affected by another
Sahara’s feature selection and static analysis infratstreic ~ suspect, either directly or indirectly. If so, the variabled
[2]. Specifically, Mojave uses the GainRatio [24] decision the corresponding routine become suspects. If a routithe cal
tree algorithm with feature ranking [16] for selection. The another routine with a suspect variable as an argument,
algorithm builds a decision tree by recursively selecting a the caller and the corresponding formal parameter of the
feature that splits up the dataset into subsets with homoge-callee become suspect. The callee becomes a suspect if the
neous classes. In Mojave, there are only two classes: ficcessuspect parameter is used in the function, and not otherwise
or failure. The Gain Ratio is higher for the features that cre Furthermore, a routine becomes suspect if the return value
ate subsets with mostly success or mostly failure user pro-of any of its callees is suspect, and it is used in the routine.
files. For instance, in Figure 1, the root feature would be the Similarly, a routine becomes suspect if any parameter passe
SHELL variable. The subsets with SHELL strings of length by reference to one of its callees becomes suspect, and it is
0 are failures, whereas the others are successes. used in the routine. This step outputs tBespectRoutines
The output of the algorithm is a set of features, their Gain set, after the entire graph has been traversed. In Figure 1,
Ratios, and their ranks. To validate the feature selectimh a nmai n andcheckl engt h are the two suspect routines.
compute the standard deviation of the feature ranks, Mojave Since SuspectRoutines the set of routines that are
uses 10-fold cross-validation [13]. If the standard déwis highly correlated with the failure, Mojave filters out thdlca
of the top-ranked features are high, the environment is un- sequence data to comprise only the sequence connecting the
likely to be the reason for the failures. In this case, Mojave suspect routines (SCSR). Specifically, it removes all tlie ro
skips to the call sequence similarity step (step 7). Other- tines that are not suspect, resulting in shorter sequeaids,
wise, Mojave considers all the features that have Gain Ra-faster similarity computation (step 6). This step updates t
tios within 30% of the highest ranked featureasspect En- call sequence data for all users.

vironment Resources (SER$hese SERs serve as inputto ca|| sequence similarity (step 7)In this step, Mojave de-

the static analysis. termines how similar a (pre-upgrade) execution at a user sit
Next, using def-use static analysis, Mojave isolates the jg (in terms of its call sequence) to other users’ (pre-ugeya

variables in the pre-upgrade code that derive from those executions where the upgrade succeeded or failed. Mojave

suspects; the routines that use these variables are considmeasures similarity as the length of the longest common sub-

ered suspect (step 5). Mojave performs static analysis us-sequence (LCS); the longer the LCS, the greater the similar-

ing two CIL [21] modulescall-graphanddef-useThe call- jty. Mojave computes the pairwise length of the LCS as a

graph module computes a whole-program static call graph percentage, between call sequences for every existing user

by traversing the source files. Every node in the call graph gor each user and sequence, Mojave then computé®the

is a routine, and its children nodes are the routines it calls percentile length of the LCS with the sequences of the users

The def-use module links all the variables that derive diyec \yhere the upgrade has faileBSimilarity), and with those

or indirectly from each SER using a def-use chain [1]. The \where the upgrade has succeeda8ifnilarity.

module handles arrays as single variables, whereas thee stru Figure 4 illustrates the possible call sequences for the ex-

and union fields are handled separately. ample in Figure 1. Figure 4(a) shows the call sequence when

Mojave analyzes each statement of a routine, starting the program is run without the input arguments “Option1”
with the root routine. For every variable access, it checks

is the hash of the failure-inducing shell name (empty sjring

[_main] [_main] If the value ofp(fail) is greater thaf.5, the predicted class
is fail, otherwise it issuccessin some cases, the model may

include separate equations for the two classes; the peedict

@ (b) (©) : . . o
class is the one with the higher of the two probabilities.

main) [main] As we mention gboye, Mojave performs static _analysis
and call sequence filtering on the pre-upgrade version of the
software. Obviously, this approach does not help identiéy t
root cause of upgrade failures. Fortunately, Mojave’s ¢oal
different: it simply seeks to determine whether an upgrade
(d) ©) is likely to fail at each new user sitét relies on the fact

that pre-upgrade behaviors are a good indication for post-

Figure 4. Call sequences for the example program. upgrade success and failure.

and “ProxyCommand”. Figures 4(b) and 4(c) depict the call
sequence when the program is executed with “Option1” or 2.3 Recommendation Phase

“ProxyCommand” arguments, but not both. Figures 4(d) and \pjave stays in the learning phase till the prediction accu-

4(e) exhibit the call sequence when the program is executedracy on the training set becomes high. When this is achieved,
with both arguments. o Mojave moves to the recommendation phase (Figure 3).
The LCS between the call sequences in Figure 4(a) and .
. . o User feedback (steps 9-10\When a new user arrives to
Figure 4(b), and between Figure 4(a) and 4(c) isrthén ’ i i
: . download the upgrade, Mojave collects the fingerprints of
routine. Since the length of the longer of the two sequences) . .
: : . the new user’s environment settings, and the call sequence(
is 2 routines, the length of the LCS as a percentage is . : :
from the current version of the software using the tracing

50% for both these cases. Similarly, the length of the LCS . . :
. : nfrastructure described above. Mojave then obscures and
as a percentage between Figure 4(a) and Figure 4(d), an(iransfers the data back to the developer.

between Figure 4(a) and 4(e)38% (the LCS contains only
the mai n routine and the length of the longer sequence is Filtering for environment-related failures (step 11).If the

3 routines). Note that two users may have the exact sameuPgrade is likely to have environment-related bugs, Mojave
call sequence, in which case the length of the LCS as afilters the new user’s call sequence data vétirspectRou-
percentage for those users would I88%. FSimilarity and tines (from the learning phase) to contain only the SCSR,
SSimilarityrange from83—100% for the example depending in cases when the existing users observed failures that are
on the total number of initial users, the number of users likely environment-related. The SCSR is then passed on to
where the upgrade passed or failed, and their call sequenceghe call sequence similarity step.

Mojave computes the two similarity measures for every Call sequence similarity (step 12).In this step, Mojave
user and sequence, and adds them to the user’s profile. Theguantifies the similarity of the call sequence(s) from the
updated profiles (environment data, call sequences, stmila current version of the software at the new user’s site wigh th
ity measures, and upgrade success/failure labels) form thecall sequences from the same version at the existing users’
training set for the classification step. sites where the upgrade has succeeded or failed. Spegificall

Classification (step 8)This step takes the user profiles and Mojave (a) computes the pairwise length of the LCS of each
tries to learn a binary classifier that gives good prediation Users sequence (or the SCSR if the failure is environment-
on the test set. Specifically, Mojave uses thegistic Re- related) with other users where the upgrade succeeded and
gression[14] classification algorithm. Logistic Regression failed, respectively; (b) takes th#@"" percentile length of
produces a binary classifier where the output function is as- the LCS to compute the two similarity measur@Sjmilarity
sumed to be logistic. The logistic function is a continuous S @ndFSimilarity, for each sequence of the new user; and (c)
shaped curve approaching 0 on one end, and 1 on the otheupdates the user’s profile with the similarity measures for
The output can be interpreted as a probability that the data€ach sequence. This step is similar to that performed in the
point falls within class 0 or 1. The algorithm learns the re- learning phase to compute similarity between initial users
lationship between all attributes (except for call seqesihc Note that a new user may have skipped the most recent
and the binary class variable. It outputs a model that ptedic UPgrades of the software. This does not pose a problem,
whether an upgrade will succeed or fail for a new user, given Since Mojave compares the new user’s profile only to those
his/her attributes. The model is a linear equation, where f existing users who ran the same version of the software
each term is the multiplication of an attribute rule (tegtin andhave installed the current upgrade.

whether the attribute has a specific value) and a weight as-Recommendation (steps 13-14Mojave inputs the user’s
signed to the rule. The model for the example in Figure 1 is updated profile to the prediction model (from the learning
p(fail) = ap + a1 * (SHELL == Hash), wherea; are phase) to compute the probability that the new user belongs
the weights that are learned from the training set, Hadh to class O (success) or 1 (failure). The predicted class for

the new user is the one that has the highest probability. 2.8-GHz Intel Pentium 4 machines with 512MB of RAM

If the predicted class for the new user is success, Mojave and the Ubuntu 8.04.4 Linux distribution.)

recommends the upgrade to the user, and not otherwise. In addition, we downloaded 8 complete OpenSSH con-

figuration files from the Web. For each bug, we modify 3

. of these files to include the settings that activate the bug.
3. Evaluation Furthermore, we use 8 inputs, 3 of them would trigger the

We now describe our methodology and results with 2 real bugs if the suspect environment settings were present, and

bugs in OpenSSH. the other 5 would not. One of the 8 configuration files and 1
input are assigned to each of the 87 user profiles randomly.
3.1 Methodology We assume by default that 20 profiles include environment

OpenSSH: Port forwarding bug. Port forwarding allows settings and input th_at can activate a bug,_ wher_eas_ 67 do not.
tunneling of TCP traffic over a secure shell. The bug [5] Some of the 67 profiles may have failure-inducing input, but

manifested for users that issued large transfers when usingt the environment settings that activate the bug.

port forwarding in version 4.7. Some users observed the 10 Mimic the situation where some users have failure-
following error: inducing settings, but their inputs do not activate the by,

buf fer get stringret: bad string |ength 557056 perform three types of experimenter f ect, imper f ect60,
andimper fect20. In theper fect case, the 20 profiles with
environment settings that can activate the bug are clagsifie

abled port forwarding using theunnel parameter in the S failed profiles, whereas the othe_r 67 are Classified_as
sshconfigfile; (b) the increase in the default window size successful ones. As a result, therg is a 100% correlation
from 128KB to 2MB in version 4.7 of theshclient code; between thosg resources and the faﬂure. .

(c) port forwarding code incorrectly advertising the défau In the two imperfect cases, the environment settings are
window size as the default packet size; andsghdimiting the same asin th_e perfect case. Howeve_r, notall prof_lles with
the maximum packet size to 256KB. Given these character- €Nvironment settings that cause the failure are assigned an

istics, when users issued large transfers (ovessheunnel) input that activates the bug, and therefore, not labeledibs f
some of the packets exceeded the 256KB limit causing the

ures. In particular, only 60% of these profiles are assigned
abort after the upgrade.

failure-inducing input (and labeled failures) in thaper f-
OpenSSH: X11 forwarding bug. This bug [4] is a regres-

ect60 case, and 20% in thénper fect20 case. These sce-
. . . . narios may cause the feature selection to pick more SERs
sion bug in version 4.2p1. When the users tried to start X11
forwarding in the background, they observed:

for the environment-related failures than in the perfeseca
xterm Xt error: Can't open display: |ocal host:10.0

In all experiments, the feature selection step considers th
features ranked within 30% of the highest ranked feature

This problem occurred because the developers modified . el > 9 N
the X11 forwarding code iashdto fix channel leaks, includ-

as suspects. Across all experiments, this step takes3

, , , , seconds, and the static analysis step t&Res 100 seconds.
ing closing connections whose session had ended. When the _ y P _
forwarding process was started in the background, there was-a/ning and recommendation.Our experiments use two-
no session attached to it, causing an immediate exit. thirds (7) of the profiles as training data to learn the predic-
User dat llection. To simulat | id de d tion model, and the remaining one-thidDj as test data for

Iser a ?tco Iec lon.fo Elmufa €a rea_lt;]wor_ (lijgra_\ € de- tthe recommendation phase. We assume that users will install
ployment1o a large number oTusers with varied environment y, upgrade irrespective of the recommendation, and report
settings, we collected system-environment (e.g., opegati

. ; back if it succeeded or failed. In all experiments, this step
sy_stem and "bff”“y versions) and hardware data from 87_ma'take327 — 59 seconds to learn the prediction model.
chines at our site across two clusters. The system environ-
ment is similar within a cluster, but different across ctust
In terms of hardware data, there are multiple classes of ma-3-2 Results
chines within and across the clusters. Machines are asbigne OpenSSH: Port forwarding bug. Mojave identifies 101 en-
different application-specific configurations and inpitse vironmental resources, many of which are split into smaller
space of inputs and system, hardware, and application envi-chunks; for others, each parameter is a separate feature.
ronments results in diverse environment settings overall. ~ Overall, there are 325 features, forming the input to the fea

We used the methodology described in Section 2.2 to (1) ture selection. Feature selection ranks 3 features (caafigu

automatically generate instrumented versions of OpenSSH;tion parameters) highly across all experiments. These 3 pa-
(2) identify their environmental resources; and (3) cdllec rameters correspond to 8 suspect variables in ssh. The stati
call sequence data and compute success and failure similaranalysis results in 22 suspect routines.
ity measures. We use parsers described in [2] for environ- Filtering shortens the sequences to 275-605 calls (from
mental resources. When Mojave collects call sequences, the6K-47K) for the users where the upgrade succeeded, and
software runs around 2X slower. (We ran all experiments on 380-632 calls (from 29K-73K) for the users where the up-

buf f er get string: buffer error
The transfers aborted because: (a) the users had en

B . Training Test Mojave Accuracy
ug Experiment - . —
Success| Failure | Success| Failure | True Pos. | True Neg. | False Pos.| False Neg.| Precision | Recall
perfect 42 15 25 5 25 5 0 0 1 1
Port imperfect60 48 9 27 3 27 2 0 1 1 0.96
imperfect20 34 3 29 1 29 1 0 0 1 1
perfect 42 15 25 5 25 5 0 0 1 1
X11 imperfect60 48 9 27 3 27 3 0 0 1 1
imperfect20 34 3 29 1 29 1 0 0 1 1

Table 1. Recommendations for two bugs (Port = Port forwarding; X113 Xorwarding);

grade failed. This reduction speeds up the similarity compu environment and past program execution behavior, and (b)
tation significantly. The success and failure similarityane those of users where the upgrade succeeded or failed.

sures are 79-100% and 80-98%, respectively. Mojave up-ypgrade deployment, testing, and debugging few stud-
dates the user profiles with these similarities and passes 5%q5 have focused on improving the management of upgrades
of the updated profiles to the classification algorithm. The [2 6 17, 18]. Crameret al. [6] proposed deploying up-
classification outputs a prediction model comprising 1 fea- grades in stages to clusters of users that have similar envi-
ture for theper fect case, 7 for thémper fect60 case, and ronments. Bachwarit al.[2] collect information from many
5 for theimper fect20 case. _ users to simplify the debugging of upgrades. Neither of¢hes
Using the prediction model, Mojave computes recom- orks attempt to predict future upgrade failures based en en
mendations for the 30 test profiles. Table 1 presents the re-yironment and past execution behavior. Mojave seeks to pre-
sults for the 3 experiments. In ther fect and theimper- vent upgrade bugs or misbehavior for new users before they

fect20 cases, Mojave correctly predicts whether the upgrade jstall the upgrade, rather than the bugs that appear much
will succeed or fail for all new users resulting in 100% ac- after they have applied the upgrade.

curacy (precision and recall of 1). In theyper fectG0 case, Machine learning and execution profiles in debugging.

it correctly predicts outcomes for all but 1 user, an accgrac Without a focus on upgrades, previous work [7, 23] grouped
of 97% (recall of 0.96). fai . ; .

.]] N ailure reports using machine learning and call sequence
OpenSSH: X11 forwarding bug. Mojave identifies 123 gimijlarity to aid the diagnosis and debugging of software
environmental resources, resulting in 354 features. Featu fajjures. Other authors have used graph mining, feature se-
selection selects 3 features for therfect case. For the |ection, and classification algorithms on execution prefite
imper fect60 andimper fect20 cases, it also selects 3 fea- |gcalize non-crash bugs [15, 30]. Dickinsehal. [8] used
tures, 2 of which are the same as for fhe fect case. These ¢lyster analysis of execution profiles to find failures in a
4 features correspond to 7 variables in sshd. Static asalysi set of test executions. In [19], Mirgorodskéy al. collected
finds 20 suspect routines in ther fect case, an@l inthe fynction call traces from software running at user siteyTh
imper fect cases. Filtering shortens the sequences to 104-compared the traces, and run classification to isolate tre su
107 calls (from 2.7K-81K) for the success, and 99-390 calls set of the trace or a single function that is the root cause of
(from 2.8K-2.9K) for the failed instances. The success and he failure. Triage [28] dynamically changes the execution
failure similarities are 28-100% and 50-100%, respegtivel - environment while attempting to diagnose failures at users
The classification outputs a prediction model with 2 feaure sjtes. PeerPressure [29] identifies the cause of miscoafigur
for the per fect case, 7 for themper fect60, and 5 for the - tjons by analyzing Windows registry snapshots from many

imper fect20 case. machines. Autobash [27] uses an instrumented kernel and
Using the prediction model, Mojave computes recom- cgsal analysis to manage configurations.

mendations for the 30 test profiles. It correctly predicts ou Mojave is fundamentally different in that it prevents up-

comes for all the new users, an accuracy of 100%. grade failures for future users, rather than finding the root

Summary. Mojave provides recommendations with 96— cause of upgrade failures or troubleshooting misconfigura-
100% accuracy (precision and recall in the 0.96—1 range), tions. Nevertheless, its use of machine learning and exe-
and can help prevent upgrade failures for most users. cution profiles does have similarities to previous systems.

However, Mojave is the first system to use these techniques

on earlier versions of the software to predict behavior for
4. Related Work later versions.

Recommendation systemsPrior research [12, 25, 26] has source analyses in debuggingSeveral researchers have
used collaborative filtering to recommend videos, articles | sed static analysis for debugging (e.g., [9, 20, 22]). [20]
and music based on the preferences of other users with simy;sed the rate of past failures and the complexity of software
ilar tastes. The principle is that past similarity betwesers components as failure predictors. In patchAdvisor [223, th
is a good predictor of the user’s future behavior. Mojave em- gythors use static analysis of control-flow graphs to study

ploys this principle to build the first upgrade recommenda- the potential impact of a patch. Other studies [3, 10, 11]
tion system: it uses the similarity between (a) a new user’s

automatically extracted likely program invariants based o
dynamic program behavior.
Our work is different in the following ways: (1) we con-

sider user environment and/or inputs as failure predigtors
(2) we do not use static analysis to find bugs; rather, we use
it to reduce the length of call sequences for environment-

ceedings of the Conference on Human factors in Computingi@gs
(1995).

[13] KoHAvI, R. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. Proceedings of the International
Joint Conference on Artificial Intellligencg995).

[14] LANDWEHR, N., HALL, M., AND FRANK, E. Logistic model trees.
In Machine Learning2003).

related bugs; (3) we use the commonality between executionys; |y, .. anp X. YAN, H. YU, J. H. P. Y. Mining Behavior

profiles (or the lack thereof) as a failure predictor rathant

the invariants over the executions; (4) we use the learred pr

Graphs for Backtrace of Noncrashing Bugs. Rroceedings of the
International Conference on Data Minin@005).

diction model and execution similarity to prevent upgrade [16] MARKOV, Z., AND RUSSELL, |. An Introduction to the WEKA Data

failures for future users; and (5) we restrict the executibn

instrumented versions of the software to a very short time

(just before or briefly after the upgrade).
5. Conclusion

We proposed Mojave, the first recommendation system for
preventing software upgrade failures. Our evaluation with

Mining System. InProceedings of Annual Conference on Innovation
and Technology in Computer Science Educa(@p06).

[17] MCCAMANT, S., AND ERNST, M.
by Component Upgrades.
Engineering Conferencg003).

[18] McCAMANT, S.,AND ERNST, M. Early Identification of Incompati-
bilities in Multi-component Upgrades. Proceedings of the European
Conference on Object-Oriented Programmi2§04).

Predicting Problems Caused
IRroceedings of European Software

two OpenSSH upgrade failures shows that Mojave provides[19] MIRGORODsKIY, A., MARUYAMA, N., AND MILLER, B. Problem

accurate recommendations to most users. Based on these

positive initial results and the potentially high cost ofi-fa
ures, we conclude that Mojave can be useful in practice.

References

[1] AHO, A. V., SETHI, R.,AND ULLMAN , J. D.Compilers: Principles,
Practices and Techniqueé&\ddison-Wesley, 1986.

[2] BACHWANI, R., CRAMERI, O., BIANCHINI, R., KOSTIC, D., AND
ZWAENEPOEL W. Sahara: Guiding the Debugging of Failed Software
Upgrades. InProceedings of International Conference on Software
Maintenancg2011).

[3] BRUN, Y., AND ERNST, M. D. Finding Latent Code Errors via
Machine Learning over Program Executions. RAroceedings of the
International Conference on Software Engineer{2904).

[4] Bug: X forwarding will not start when a command is execlte
background. https://bugzilla.mindrot.org/shdwg.cgi?id=1086.

[5] Bug: Connection aborted on large data -R
https://bugzilla.mindrot.org/shaveug.cgi?id=1360.

[6] CRAMERI, O., KNEZEVIC, N., BIANCHINI, R., KOSTIC, D., AND
ZWAENEPOEL, W. Staged Deployment in Mirage, An Integrated
Software Upgrade Testing and Distribution System.Pmceedings
of Symposium on Operating Systems Princip28907).

[7] DHALIWAL , T., KHOMH, F.,AND Zou, Y. Classifying Field Crash
Reports for Fixing Bugs: A Case Study of Mozilla Firefox. In
Proceedings of the International Conference on Softwarantdaance
(20086).

[8] DICKINSON, W., LEON, D., AND PODGURSKI, A. Finding Failures
by Cluster Analysis of Execution Profiles. Proceedings of the
International Conference on Software engineerf@g01).

[9] ENGLER, D., CHEN, D., HALLEM, S., CHOU, A., AND CHELF, B.
Bugs as Deviant Behavior: A General Approach to InferringoEr

in Systems Code. |IRroceedings of the International Symposium on
Operating Systems Principl¢2001).

ERNST, M., COCKRELL, J., GRiIswoLD, W., AND NOTKIN, D.
Dynamically discovering likely program invariants to sepyprogram
evolution. InProceedings of International conference on Software
engineering(1999).

HANGAL, S.,AND LAM, M. Tracking Down Software Bugs Using
Automatic Anomaly Detection. IRroceedings of International Con-
ference on Software Engineeri2002).

[12] HiLL, W., AND L. STEAD, M. ROSENSTEIN G. F. Recommend-
ing and Evaluating Choices in a Virtual Community of Use. Piro-

transfer.

[10]

[11]

Diagnosis in Large-scale Computing EnvironmentsPtoceedings of
the Conference on Supercomputii2®06).

[20] NAGAPPAN, N., BALL, T., AND ZELLER, A. Mining Metrics to
Predict Component Failures. IRroceedings of the International
Conference on Software engineerif&p06).

[21] NEcULA, G., MCPEAK, S., RAHUL, S.,AND WEIMER, W. CIL:
Intermediate Language and Tools for Analysis and Transition
of C Programs. IrProceedings of the International Conference on
Compiler Constructior{2002).

[22] OBERHEIDE, J., GOOKE, E.,AND JAHANIAN, F. If It Ain't Broke,
Don't Fix It: Challenges and New Directions for Inferringethmpact
of Software Patches. IRroceedings of the Hot Topics in Operating
System$2009).

[23] PODGURSKI, A., LEON, D., FRANCIS, P., MASRI, W., MINCH, M.,
SUN, J.,AND WANG, B. Automated Support for Classifying Software
Failure Reports. IProceedings of the International Conference on
Software Engineerind2003).

[24] QUINLAN, J. R.
(1986).

[25] RESNICK, P., Iacovou, N., SUCHAK, M., BERGSTROM P., AND
RIEDL, J. GroupLens: An Open Architecture for Collaborative Fil-
tering of Netnews. IrProceedings of the Conference on Computer
Supported Cooperative Wo(k994).

[26] SHARDANAND, U., AND PATTIE, M. Social Information Filtering:
Algorithms for Automating "Word of Mouth”. IrProceedings of the
Conference on Human Factors in Computing Systgri85s).

[27] Su, Y., ATTARIYAN, M., AND FLINN, J. Autobash: Improving con-
figuration management with operating system causalityyaisal In
Proceedings of Symposium on Operating Systems Prinip08y).

[28] TucEk, J., Lu, S., HUANG, C.,AND S. XANTHOS, Y. Z. Triage:
diagnosing production run failures at the user’s sitePioceedings of
Symposium on Operating Systems PrinciBg07).

[29] WANG, H., J. RATT, Y. CHEN, R. Z.,AND WANG, Y. Automatic
Misconfiguration Troubleshooting with PeerPressurePrioceedings
of the Symposium on Operating Systems Design and Impletinenta
(2004).

[30] Yuan, C., L. NI, J. W., L, J., ZHANG, Z., WANG, Y., AND
MA, W. Automated Known Problem Diagnosis with Event Traces.

In Proceedings of the European Conference on Computer Systems
(2006).

Induction of Decision TreesMachine Learning

