
Mojave: A Recommendation System for Software Upgrades∗

Rekha Bachwani, Olivier Crameri†, Ricardo Bianchini, and Willy Zwaenepoel†

Rutgers University, USA †EPFL, Switzerland

Abstract
Software upgrades are frequent. Unfortunately, many of the
upgrades either fail or misbehave. We argue that many of
these failures can be avoided for new users of each upgrade
by exploiting the characteristics of the upgrade and feedback
from the users that have already installed it. To demonstrate
that this can be achieved, we build Mojave, the first recom-
mendation system for software upgrades. Mojave leverages
data from the existing and new users, machine learning, and
static and dynamic source analyses. For each new user, Mo-
jave computes the likelihood that the upgrade will fail for
him/her. Based on this value, Mojave recommends for or
against the upgrade. We evaluate Mojave for two real up-
grade problems with the OpenSSH suite. Initial results show
that it provides accurate recommendations.

1. Introduction
Modern software is complex and consists of many inter-
related components. Due to this complexity, developers fre-
quently have to produce upgrades to fix bugs, patch security
vulnerabilities, add or remove features, and perform other
critical tasks. It is infeasible, if not impossible, for thede-
velopers to envisage, much less test their upgrades with ev-
ery possible environment setting and input with which users
drive the software. As a result, many of the upgrades either
fail or misbehave for some users. We defineupgrade fail-
ures/bugsas misbehavior caused by the code introduced in
an upgrade, not just crashes.

A survey by Crameriet al. [6] showed that 90% of sys-
tem administrators upgraded their software at least once a
month, and that 5-10% of these upgrades misbehaved. The
same survey also found that the difference between the envi-
ronment (i.e., version of the operating system and libraries,
configuration settings, hardware, etc) at the developer’s site
and users’ sites was a major source of upgrade failures.

To further study the prevalence of upgrade failures, and
the reasons for these problems, we surveyed 96 bug reports
about the OpenSSH suite. Our intention was to study around
100 bug reports spanning multiple consecutive versions of
OpenSSH. The following set of five versions met this crite-
rion: 4.1p1, 4.2p1, 4.3p1, 4.3p2, and 4.5p1. The results show
that 41% of the problems reported were due to upgrades.
Furthermore, we find that the majority of the bugs are caused
by both the user’s environment and input.

∗This research was partially funded by NSF grant CNS-0916878.

To avoid some upgrade failures, developers typically
deploy upgrades as packages to be handled by package-
management systems. However, package-management sys-
tems only try to enforce that the right packages are in place.
Users try to avoid failures by delaying the installation of
each upgrade until after many other users have installed it
and provided positive feedback on it. Crameri showed that
70% of the administrators refrain from installing each up-
grade at first. However, a positive feedback from others may
be useless if their environments and/or inputs are different.

Obviously, deploying upgrades as packages and/or delay-
ing upgrades is not enough to prevent upgrade failures. In-
stead, we argue that the developer and the users cancollab-
orateto achieve this goal. The developer can aggregate data
from the “existing users” (users who have already installed
the upgrade) and use it to predict success or failure for “new
users” (users who intend to install the upgrade).

Along these lines, this paper proposes Mojave, the first
recommendation system for software upgrades. Mojave’s
design is based on 4 observations: (1) upgrade bugs often
take significant time to fix, so delaying crucial upgrades
for users that may not be affected by the bugs is unneces-
sary and inefficient; (2) the upgrade failures are most likely
caused by the particular characteristics of the corresponding
users’ environments or inputs; (3) new users that have char-
acteristics similar to those of the existing users where the
upgrade has failed are likely to experience similar failures;
and (4) two users’ sites at which the software behaved sim-
ilarly in the past (execution behavior prior to the upgrade)
are likely to behave similarly in the future (execution behav-
ior after the upgrade). This latter observation is the basisfor
many recommendation systems based on collaborative filter-
ing [12, 25, 26].

Mojave collects and aggregates success/failure feedback
from (willing) existing users, along with their environment
settings and execution behavior data from before the upgrade
was installed (collectively called user “attributes”). Itthen
uses machine learning, and static and dynamic source analy-
ses to identify the attributes that are most likely related to the
upgrade failures. Mojave compares these suspect attributes
to those of each new user to predict whether the upgrade
would fail for him/her. Based on this prediction, Mojave rec-
ommends in favor or against the upgrade.

We evaluate Mojave on 2 real upgrade problems with
OpenSSH. Mojave accurately predicts the upgrade failure
for 96 − 100% of the users. Given the accuracy of the

1. #define PSHELL "/bin/sh"
2. int env2 = 0;
3.
4. int checklength(int len) {
5. if (len <= 9)
6. return len;
7. else
8. return -1;
9. }
10. void do_option(int x) {
11. printf("\nGot option %d",x);
12. }
13. int main(int argc, char *argv[]) {
14. int retval1 = 0, i = 1;
15. char shell[80];
16. if (argc >= 2) {
17. while (argv[i] != NULL) {
18. if (strcmp(argv[i],"Option1") == 0) {
19. do_option(1);
20. }//end strcmp
21. if (strcmp(argv[i],"Proxycmd") == 0) {
22. strcpy(shell,PSHELL);
23. env2 = strlen(shell);
24. retval1 = checklength(env2);
25. if (retval1 > 0)
26. printf("\nSuccess:proxycmd");
27. else
28. printf("\nOops:checklength failed");
29. }//end strcmp
30. i++;
31. }//end while
32. }//end argc
33. }//end main

Figure 1. Example (failure-inducing) upgrade.

preliminary results, we expect that Mojave would be able
to prevent most upgrade failures in the field.

2. Mojave
2.1 Motivating Example

Consider the example in Figure 1. It reads strings (lines 16-
18) one at a time. If one of the strings isOption1, it calls
do option (lines 18-19) to process them (lines 10-12). If
one of the strings isProxycmd, it assignsPSHELL as the
shell, computes its length, and callschecklength (line
21-24).checklength checks if the length of the string is
less than or equal to9, returns the length of the string if it is,
and−1 otherwise (lines 4-9).

Now let us assume that the upgrade replaces line 22 with
the following three lines to get the value of$SHELL from
the user’s environment.

strcpy(shell, getenv("SHELL"));

if (shell == NULL)

strcpy (shell,PSHELL);

The upgrade will fail at the user sites where (1)Proxycmd

is passed as input, and (2) the$SHELL variable is a string
of length 0. Note that aNULL string is different from a
string of length 0. Specifically, the upgrade will fail when
checklength returns0, because the length of the shell
variable is0. However, the program ran successfully at these
sites before the upgrade, because it was not dependent on
the user’s setting of$SHELL.

Although the two versions are input-compatible, the ex-
ecution behavior changes with the upgrade, both in terms
of the path (call sequence) executed, and the output pro-
duced. This was not the intended behavior of the upgrade.

Therefore, the key to preventing this failure for future users
is to check if they have the failure-inducing environment
($SHELL) set to an empty string, and if their execution
path with the current version of the software has the failure-
relating routine call,checklength.

Next, we describe Mojave’s learning and recommenda-
tion phases.

2.2 Learning Phase

Upgrade deployment, tracing, and user feedback (steps
0-3).As shown in Figure 2, Mojave first deploys the upgrade
to an initial set of users (step 0). Mojave then collects user
input, environment, and call sequence data for thecurrent
(pre-upgrade) versionof the software (step 1).

Mojave uses the tracing infrastructure detailed in Mirage
and Sahara [2, 6] to record the inputs and identify all the
“environmental resources” a software depends on. The envi-
ronmental resources include the name and version of the op-
erating system and libraries, the configuration settings, the
name and version of the other software packages installed,
and a description of the hardware. Mojave allows the devel-
oper to include or exclude additional resources. In addition,
Mojave leverages the parsers created for Mirage and Sahara
to compute a concise representation (key/value fingerprint)
for each environmental resource. The key of each fingerprint
is the name of the resource, and the value is its hash value.
The user input includes any command line arguments and
data manually entered as input.

A call sequence comprises the routines executed during
one run of the software. Mojave may collect multiple call
sequences from each user. To collect call sequence data, Mo-
jave uses theC Intermediate Language(CIL) [21] to auto-
matically instrument the application. A new CIL module,
called call-logger, inserts calls to our runtime library that
logs the names of the routines executed. In case the software
forks multiple processes, the module logs the call sequence
for each process individually.

After these pre-upgrade runs, Mojave installs the upgrade
and tests it with the previously saved inputs (step 2). At the
end of each test run, Mojave asks the user for a success/-
failure flag. When the user provides it, Mojave obscures and
then sends this information, along with the environment and
call sequence data, back to the developer’s site (step 3). The
call sequences (excluding any confidential data, such as rou-
tine arguments and return data) are a proxy for the real en-
vironment settings and inputs, which Mojave does not trans-
fer to the developer because of privacy concerns. These data
represent the profile of the user site. Mojave collects these
data from all users that are willing to participate. User pro-
files from all sites serve as the input to the other steps. Now
suppose that the upgrade misbehaved at one user site at least.

Call sequence filtering for environment-related failures
(steps 4-6).With the users’ environment and upgrade suc-
cess/failure information, Mojave runs a machine learning
algorithm to determine if the misbehavior is likely due to

Figure 2. Learning phase in Mojave. Figure 3. Recommendation phase in Mojave.

some aspect of the environment (step 4). For this, it uses
Sahara’s feature selection and static analysis infrastructure
[2]. Specifically, Mojave uses the GainRatio [24] decision
tree algorithm with feature ranking [16] for selection. The
algorithm builds a decision tree by recursively selecting a
feature that splits up the dataset into subsets with homoge-
neous classes. In Mojave, there are only two classes: success
or failure. The Gain Ratio is higher for the features that cre-
ate subsets with mostly success or mostly failure user pro-
files. For instance, in Figure 1, the root feature would be the
SHELL variable. The subsets with SHELL strings of length
0 are failures, whereas the others are successes.

The output of the algorithm is a set of features, their Gain
Ratios, and their ranks. To validate the feature selection and
compute the standard deviation of the feature ranks, Mojave
uses 10-fold cross-validation [13]. If the standard deviations
of the top-ranked features are high, the environment is un-
likely to be the reason for the failures. In this case, Mojave
skips to the call sequence similarity step (step 7). Other-
wise, Mojave considers all the features that have Gain Ra-
tios within 30% of the highest ranked feature asSuspect En-
vironment Resources (SERs). These SERs serve as input to
the static analysis.

Next, using def-use static analysis, Mojave isolates the
variables in the pre-upgrade code that derive from those
suspects; the routines that use these variables are consid-
ered suspect (step 5). Mojave performs static analysis us-
ing two CIL [21] modules,call-graphanddef-use. The call-
graph module computes a whole-program static call graph
by traversing the source files. Every node in the call graph
is a routine, and its children nodes are the routines it calls.
The def-use module links all the variables that derive directly
or indirectly from each SER using a def-use chain [1]. The
module handles arrays as single variables, whereas the struct
and union fields are handled separately.

Mojave analyzes each statement of a routine, starting
with the root routine. For every variable access, it checks

whether the variable is a suspect or is affected by another
suspect, either directly or indirectly. If so, the variableand
the corresponding routine become suspects. If a routine calls
another routine with a suspect variable as an argument,
the caller and the corresponding formal parameter of the
callee become suspect. The callee becomes a suspect if the
suspect parameter is used in the function, and not otherwise.
Furthermore, a routine becomes suspect if the return value
of any of its callees is suspect, and it is used in the routine.
Similarly, a routine becomes suspect if any parameter passed
by reference to one of its callees becomes suspect, and it is
used in the routine. This step outputs theSuspectRoutines
set, after the entire graph has been traversed. In Figure 1,
main andchecklength are the two suspect routines.

Since SuspectRoutinesis the set of routines that are
highly correlated with the failure, Mojave filters out the call
sequence data to comprise only the sequence connecting the
suspect routines (SCSR). Specifically, it removes all the rou-
tines that are not suspect, resulting in shorter sequences,and
faster similarity computation (step 6). This step updates the
call sequence data for all users.

Call sequence similarity (step 7).In this step, Mojave de-
termines how similar a (pre-upgrade) execution at a user site
is (in terms of its call sequence) to other users’ (pre-upgrade)
executions where the upgrade succeeded or failed. Mojave
measures similarity as the length of the longest common sub-
sequence (LCS); the longer the LCS, the greater the similar-
ity. Mojave computes the pairwise length of the LCS as a
percentage, between call sequences for every existing user.
For each user and sequence, Mojave then computes the90th

percentile length of the LCS with the sequences of the users
where the upgrade has failed (FSimilarity), and with those
where the upgrade has succeeded (SSimilarity).

Figure 4 illustrates the possible call sequences for the ex-
ample in Figure 1. Figure 4(a) shows the call sequence when
the program is run without the input arguments “Option1”

(a) (b) (c)

(d) (e)

Figure 4. Call sequences for the example program.
and “ProxyCommand”. Figures 4(b) and 4(c) depict the call
sequence when the program is executed with “Option1” or
“ProxyCommand” arguments, but not both. Figures 4(d) and
4(e) exhibit the call sequence when the program is executed
with both arguments.

The LCS between the call sequences in Figure 4(a) and
Figure 4(b), and between Figure 4(a) and 4(c) is themain
routine. Since the length of the longer of the two sequences
is 2 routines, the length of the LCS as a percentage is
50% for both these cases. Similarly, the length of the LCS
as a percentage between Figure 4(a) and Figure 4(d), and
between Figure 4(a) and 4(e) is33% (the LCS contains only
themain routine and the length of the longer sequence is
3 routines). Note that two users may have the exact same
call sequence, in which case the length of the LCS as a
percentage for those users would be100%. FSimilarity and
SSimilarityrange from33−100% for the example depending
on the total number of initial users, the number of users
where the upgrade passed or failed, and their call sequences.

Mojave computes the two similarity measures for every
user and sequence, and adds them to the user’s profile. The
updated profiles (environment data, call sequences, similar-
ity measures, and upgrade success/failure labels) form the
training set for the classification step.

Classification (step 8).This step takes the user profiles and
tries to learn a binary classifier that gives good predictions
on the test set. Specifically, Mojave uses theLogistic Re-
gression[14] classification algorithm. Logistic Regression
produces a binary classifier where the output function is as-
sumed to be logistic. The logistic function is a continuous S-
shaped curve approaching 0 on one end, and 1 on the other.
The output can be interpreted as a probability that the data
point falls within class 0 or 1. The algorithm learns the re-
lationship between all attributes (except for call sequences)
and the binary class variable. It outputs a model that predicts
whether an upgrade will succeed or fail for a new user, given
his/her attributes. The model is a linear equation, where
each term is the multiplication of an attribute rule (testing
whether the attribute has a specific value) and a weight as-
signed to the rule. The model for the example in Figure 1 is
p(fail) = a0 + a1 ∗ (SHELL == Hash), whereai are
the weights that are learned from the training set, andHash

is the hash of the failure-inducing shell name (empty string).
If the value ofp(fail) is greater than0.5, the predicted class
is fail, otherwise it issuccess. In some cases, the model may
include separate equations for the two classes; the predicted
class is the one with the higher of the two probabilities.

As we mention above, Mojave performs static analysis
and call sequence filtering on the pre-upgrade version of the
software. Obviously, this approach does not help identify the
root cause of upgrade failures. Fortunately, Mojave’s goalis
different: it simply seeks to determine whether an upgrade
is likely to fail at each new user site.It relies on the fact
that pre-upgrade behaviors are a good indication for post-
upgrade success and failure.

2.3 Recommendation Phase

Mojave stays in the learning phase till the prediction accu-
racy on the training set becomes high. When this is achieved,
Mojave moves to the recommendation phase (Figure 3).

User feedback (steps 9-10).When a new user arrives to
download the upgrade, Mojave collects the fingerprints of
the new user’s environment settings, and the call sequence(s)
from the current version of the software using the tracing
infrastructure described above. Mojave then obscures and
transfers the data back to the developer.

Filtering for environment-related failures (step 11).If the
upgrade is likely to have environment-related bugs, Mojave
filters the new user’s call sequence data withSuspectRou-
tines (from the learning phase) to contain only the SCSR,
in cases when the existing users observed failures that are
likely environment-related. The SCSR is then passed on to
the call sequence similarity step.

Call sequence similarity (step 12).In this step, Mojave
quantifies the similarity of the call sequence(s) from the
current version of the software at the new user’s site with the
call sequences from the same version at the existing users’
sites where the upgrade has succeeded or failed. Specifically,
Mojave (a) computes the pairwise length of the LCS of each
user’s sequence (or the SCSR if the failure is environment-
related) with other users where the upgrade succeeded and
failed, respectively; (b) takes the90th percentile length of
the LCS to compute the two similarity measures,SSimilarity
andFSimilarity, for each sequence of the new user; and (c)
updates the user’s profile with the similarity measures for
each sequence. This step is similar to that performed in the
learning phase to compute similarity between initial users.

Note that a new user may have skipped the most recent
upgrades of the software. This does not pose a problem,
since Mojave compares the new user’s profile only to those
of existing users who ran the same version of the software
andhave installed the current upgrade.

Recommendation (steps 13-14).Mojave inputs the user’s
updated profile to the prediction model (from the learning
phase) to compute the probability that the new user belongs
to class 0 (success) or 1 (failure). The predicted class for

the new user is the one that has the highest probability.
If the predicted class for the new user is success, Mojave
recommends the upgrade to the user, and not otherwise.

3. Evaluation
We now describe our methodology and results with 2 real
bugs in OpenSSH.

3.1 Methodology

OpenSSH: Port forwarding bug. Port forwarding allows
tunneling of TCP traffic over a secure shell. The bug [5]
manifested for users that issued large transfers when using
port forwarding in version 4.7. Some users observed the
following error:
buffer get string ret: bad string length 557056

buffer get string: buffer error

The transfers aborted because: (a) the users had en-
abled port forwarding using theTunnel parameter in the
sshconfigfile; (b) the increase in the default window size
from 128KB to 2MB in version 4.7 of thesshclient code;
(c) port forwarding code incorrectly advertising the default
window size as the default packet size; and (d)sshdlimiting
the maximum packet size to 256KB. Given these character-
istics, when users issued large transfers (over thesshtunnel),
some of the packets exceeded the 256KB limit causing the
abort after the upgrade.

OpenSSH: X11 forwarding bug.This bug [4] is a regres-
sion bug in version 4.2p1. When the users tried to start X11
forwarding in the background, they observed:
xterm Xt error: Can’t open display: localhost:10.0

This problem occurred because the developers modified
the X11 forwarding code insshdto fix channel leaks, includ-
ing closing connections whose session had ended. When the
forwarding process was started in the background, there was
no session attached to it, causing an immediate exit.

User data collection.To simulate a real-world upgrade de-
ployment to a large number of users with varied environment
settings, we collected system-environment (e.g., operating
system and library versions) and hardware data from 87 ma-
chines at our site across two clusters. The system environ-
ment is similar within a cluster, but different across clusters.
In terms of hardware data, there are multiple classes of ma-
chines within and across the clusters. Machines are assigned
different application-specific configurations and inputs.The
space of inputs and system, hardware, and application envi-
ronments results in diverse environment settings overall.

We used the methodology described in Section 2.2 to (1)
automatically generate instrumented versions of OpenSSH;
(2) identify their environmental resources; and (3) collect
call sequence data and compute success and failure similar-
ity measures. We use parsers described in [2] for environ-
mental resources. When Mojave collects call sequences, the
software runs around 2X slower. (We ran all experiments on

2.8-GHz Intel Pentium 4 machines with 512MB of RAM
and the Ubuntu 8.04.4 Linux distribution.)

In addition, we downloaded 8 complete OpenSSH con-
figuration files from the Web. For each bug, we modify 3
of these files to include the settings that activate the bug.
Furthermore, we use 8 inputs, 3 of them would trigger the
bugs if the suspect environment settings were present, and
the other 5 would not. One of the 8 configuration files and 1
input are assigned to each of the 87 user profiles randomly.
We assume by default that 20 profiles include environment
settings and input that can activate a bug, whereas 67 do not.
Some of the 67 profiles may have failure-inducing input, but
not the environment settings that activate the bug.

To mimic the situation where some users have failure-
inducing settings, but their inputs do not activate the bug,we
perform three types of experiments:perfect, imperfect60,
andimperfect20. In theperfect case, the 20 profiles with
environment settings that can activate the bug are classified
as failed profiles, whereas the other 67 are classified as
successful ones. As a result, there is a 100% correlation
between those resources and the failure.

In the two imperfect cases, the environment settings are
the same as in the perfect case. However, not all profiles with
environment settings that cause the failure are assigned an
input that activates the bug, and therefore, not labeled as fail-
ures. In particular, only 60% of these profiles are assigned
failure-inducing input (and labeled failures) in theimperf -
ect60 case, and 20% in theimperfect20 case. These sce-
narios may cause the feature selection to pick more SERs
for the environment-related failures than in the perfect case.

In all experiments, the feature selection step considers the
features ranked within 30% of the highest ranked feature
as suspects. Across all experiments, this step takes1 − 3
seconds, and the static analysis step takes82− 100 seconds.

Learning and recommendation.Our experiments use two-
thirds (57) of the profiles as training data to learn the predic-
tion model, and the remaining one-third (30) as test data for
the recommendation phase. We assume that users will install
the upgrade irrespective of the recommendation, and report
back if it succeeded or failed. In all experiments, this step
takes27 − 59 seconds to learn the prediction model.

3.2 Results

OpenSSH: Port forwarding bug.Mojave identifies 101 en-
vironmental resources, many of which are split into smaller
chunks; for others, each parameter is a separate feature.
Overall, there are 325 features, forming the input to the fea-
ture selection. Feature selection ranks 3 features (configura-
tion parameters) highly across all experiments. These 3 pa-
rameters correspond to 8 suspect variables in ssh. The static
analysis results in 22 suspect routines.

Filtering shortens the sequences to 275–605 calls (from
6K–47K) for the users where the upgrade succeeded, and
380–632 calls (from 29K–73K) for the users where the up-

Bug Experiment Training Test Mojave Accuracy
Success Failure Success Failure True Pos. True Neg. False Pos. False Neg. Precision Recall

Port
perfect 42 15 25 5 25 5 0 0 1 1

imperfect60 48 9 27 3 27 2 0 1 1 0.96
imperfect20 34 3 29 1 29 1 0 0 1 1

X11
perfect 42 15 25 5 25 5 0 0 1 1

imperfect60 48 9 27 3 27 3 0 0 1 1
imperfect20 34 3 29 1 29 1 0 0 1 1

Table 1. Recommendations for two bugs (Port = Port forwarding; X11 = X11 forwarding);

grade failed. This reduction speeds up the similarity compu-
tation significantly. The success and failure similarity mea-
sures are 79–100% and 80–98%, respectively. Mojave up-
dates the user profiles with these similarities and passes 57
of the updated profiles to the classification algorithm. The
classification outputs a prediction model comprising 1 fea-
ture for theperfect case, 7 for theimperfect60 case, and
5 for theimperfect20 case.

Using the prediction model, Mojave computes recom-
mendations for the 30 test profiles. Table 1 presents the re-
sults for the 3 experiments. In theperfect and theimper-
fect20 cases, Mojave correctly predicts whether the upgrade
will succeed or fail for all new users resulting in 100% ac-
curacy (precision and recall of 1). In theimperfect60 case,
it correctly predicts outcomes for all but 1 user, an accuracy
of 97% (recall of 0.96).

OpenSSH: X11 forwarding bug. Mojave identifies 123
environmental resources, resulting in 354 features. Feature
selection selects 3 features for theperfect case. For the
imperfect60 andimperfect20 cases, it also selects 3 fea-
tures, 2 of which are the same as for theperfect case. These
4 features correspond to 7 variables in sshd. Static analysis
finds 20 suspect routines in theperfect case, and21 in the
imperfect cases. Filtering shortens the sequences to 104–
107 calls (from 2.7K–81K) for the success, and 99–390 calls
(from 2.8K–2.9K) for the failed instances. The success and
failure similarities are 28–100% and 50–100%, respectively.
The classification outputs a prediction model with 2 features
for theperfect case, 7 for theimperfect60, and 5 for the
imperfect20 case.

Using the prediction model, Mojave computes recom-
mendations for the 30 test profiles. It correctly predicts out-
comes for all the new users, an accuracy of 100%.

Summary. Mojave provides recommendations with 96–
100% accuracy (precision and recall in the 0.96–1 range),
and can help prevent upgrade failures for most users.

4. Related Work
Recommendation systems.Prior research [12, 25, 26] has
used collaborative filtering to recommend videos, articles,
and music based on the preferences of other users with sim-
ilar tastes. The principle is that past similarity between users
is a good predictor of the user’s future behavior. Mojave em-
ploys this principle to build the first upgrade recommenda-
tion system: it uses the similarity between (a) a new user’s

environment and past program execution behavior, and (b)
those of users where the upgrade succeeded or failed.

Upgrade deployment, testing, and debugging.A few stud-
ies have focused on improving the management of upgrades
[2, 6, 17, 18]. Crameriet al. [6] proposed deploying up-
grades in stages to clusters of users that have similar envi-
ronments. Bachwaniet al.[2] collect information from many
users to simplify the debugging of upgrades. Neither of these
works attempt to predict future upgrade failures based on en-
vironment and past execution behavior. Mojave seeks to pre-
vent upgrade bugs or misbehavior for new users before they
install the upgrade, rather than the bugs that appear much
after they have applied the upgrade.

Machine learning and execution profiles in debugging.
Without a focus on upgrades, previous work [7, 23] grouped
failure reports using machine learning and call sequence
similarity to aid the diagnosis and debugging of software
failures. Other authors have used graph mining, feature se-
lection, and classification algorithms on execution profiles to
localize non-crash bugs [15, 30]. Dickinsonet al. [8] used
cluster analysis of execution profiles to find failures in a
set of test executions. In [19], Mirgorodskiyet al. collected
function call traces from software running at user sites. They
compared the traces, and run classification to isolate the sub-
set of the trace or a single function that is the root cause of
the failure. Triage [28] dynamically changes the execution
environment while attempting to diagnose failures at users’
sites. PeerPressure [29] identifies the cause of misconfigura-
tions by analyzing Windows registry snapshots from many
machines. Autobash [27] uses an instrumented kernel and
causal analysis to manage configurations.

Mojave is fundamentally different in that it prevents up-
grade failures for future users, rather than finding the root
cause of upgrade failures or troubleshooting misconfigura-
tions. Nevertheless, its use of machine learning and exe-
cution profiles does have similarities to previous systems.
However, Mojave is the first system to use these techniques
on earlier versions of the software to predict behavior for
later versions.

Source analyses in debugging.Several researchers have
used static analysis for debugging (e.g., [9, 20, 22]). [20]
used the rate of past failures and the complexity of software
components as failure predictors. In patchAdvisor [22], the
authors use static analysis of control-flow graphs to study
the potential impact of a patch. Other studies [3, 10, 11]

automatically extracted likely program invariants based on
dynamic program behavior.

Our work is different in the following ways: (1) we con-
sider user environment and/or inputs as failure predictors;
(2) we do not use static analysis to find bugs; rather, we use
it to reduce the length of call sequences for environment-
related bugs; (3) we use the commonality between execution
profiles (or the lack thereof) as a failure predictor rather than
the invariants over the executions; (4) we use the learned pre-
diction model and execution similarity to prevent upgrade
failures for future users; and (5) we restrict the executionof
instrumented versions of the software to a very short time
(just before or briefly after the upgrade).

5. Conclusion
We proposed Mojave, the first recommendation system for
preventing software upgrade failures. Our evaluation with
two OpenSSH upgrade failures shows that Mojave provides
accurate recommendations to most users. Based on these
positive initial results and the potentially high cost of fail-
ures, we conclude that Mojave can be useful in practice.

References
[1] A HO, A. V., SETHI, R.,AND ULLMAN , J. D.Compilers: Principles,

Practices and Techniques. Addison-Wesley, 1986.

[2] BACHWANI , R., CRAMERI, O., BIANCHINI , R., KOSTIĆ, D., AND

ZWAENEPOEL, W. Sahara: Guiding the Debugging of Failed Software
Upgrades. InProceedings of International Conference on Software
Maintenance(2011).

[3] BRUN, Y., AND ERNST, M. D. Finding Latent Code Errors via
Machine Learning over Program Executions. InProceedings of the
International Conference on Software Engineering(2004).

[4] Bug: X forwarding will not start when a command is executed in
background. https://bugzilla.mindrot.org/showbug.cgi?id=1086.

[5] Bug: Connection aborted on large data -R transfer.
https://bugzilla.mindrot.org/showbug.cgi?id=1360.

[6] CRAMERI, O., KNEZEVIC, N., BIANCHINI , R., KOSTIĆ, D., AND

ZWAENEPOEL, W. Staged Deployment in Mirage, An Integrated
Software Upgrade Testing and Distribution System. InProceedings
of Symposium on Operating Systems Principles(2007).

[7] DHALIWAL , T., KHOMH, F., AND ZOU, Y. Classifying Field Crash
Reports for Fixing Bugs: A Case Study of Mozilla Firefox. In
Proceedings of the International Conference on Software Maintenance
(2006).

[8] D ICKINSON, W., LEON, D., AND PODGURSKI, A. Finding Failures
by Cluster Analysis of Execution Profiles. InProceedings of the
International Conference on Software engineering(2001).

[9] ENGLER, D., CHEN, D., HALLEM , S., CHOU, A., AND CHELF, B.
Bugs as Deviant Behavior: A General Approach to Inferring Errors
in Systems Code. InProceedings of the International Symposium on
Operating Systems Principles(2001).

[10] ERNST, M., COCKRELL, J., GRISWOLD, W., AND NOTKIN , D.
Dynamically discovering likely program invariants to support program
evolution. In Proceedings of International conference on Software
engineering(1999).

[11] HANGAL , S., AND LAM , M. Tracking Down Software Bugs Using
Automatic Anomaly Detection. InProceedings of International Con-
ference on Software Engineering(2002).

[12] HILL , W., AND L. STEAD, M. ROSENSTEIN, G. F. Recommend-
ing and Evaluating Choices in a Virtual Community of Use. InPro-

ceedings of the Conference on Human factors in Computing Systems
(1995).

[13] KOHAVI , R. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. InProceedings of the International
Joint Conference on Artificial Intellligence(1995).

[14] LANDWEHR, N., HALL , M., AND FRANK , E. Logistic model trees.
In Machine Learning(2003).

[15] L IU , C., AND X. YAN , H. YU, J. H. P. Y. Mining Behavior
Graphs for Backtrace of Noncrashing Bugs. InProceedings of the
International Conference on Data Mining(2005).

[16] MARKOV, Z., AND RUSSELL, I. An Introduction to the WEKA Data
Mining System. InProceedings of Annual Conference on Innovation
and Technology in Computer Science Education(2006).

[17] MCCAMANT, S., AND ERNST, M. Predicting Problems Caused
by Component Upgrades. InProceedings of European Software
Engineering Conference(2003).

[18] MCCAMANT, S.,AND ERNST, M. Early Identification of Incompati-
bilities in Multi-component Upgrades. InProceedings of the European
Conference on Object-Oriented Programming(2004).

[19] M IRGORODSKIY, A., MARUYAMA , N., AND M ILLER , B. Problem
Diagnosis in Large-scale Computing Environments. InProceedings of
the Conference on Supercomputing(2006).

[20] NAGAPPAN, N., BALL , T., AND ZELLER, A. Mining Metrics to
Predict Component Failures. InProceedings of the International
Conference on Software engineering(2006).

[21] NECULA, G., MCPEAK , S., RAHUL , S., AND WEIMER, W. CIL:
Intermediate Language and Tools for Analysis and Transformation
of C Programs. InProceedings of the International Conference on
Compiler Construction(2002).

[22] OBERHEIDE, J., COOKE, E., AND JAHANIAN , F. If It Ain’t Broke,
Don’t Fix It: Challenges and New Directions for Inferring the Impact
of Software Patches. InProceedings of the Hot Topics in Operating
Systems(2009).

[23] PODGURSKI, A., LEON, D., FRANCIS, P., MASRI, W., MINCH, M.,
SUN, J.,AND WANG, B. Automated Support for Classifying Software
Failure Reports. InProceedings of the International Conference on
Software Engineering(2003).

[24] QUINLAN , J. R. Induction of Decision Trees.Machine Learning
(1986).

[25] RESNICK, P., IACOVOU, N., SUCHAK , M., BERGSTROM, P., AND

RIEDL , J. GroupLens: An Open Architecture for Collaborative Fil-
tering of Netnews. InProceedings of the Conference on Computer
Supported Cooperative Work(1994).

[26] SHARDANAND , U., AND PATTIE , M. Social Information Filtering:
Algorithms for Automating ”Word of Mouth”. InProceedings of the
Conference on Human Factors in Computing Systems(1995).

[27] SU, Y., ATTARIYAN , M., AND FLINN , J. Autobash: Improving con-
figuration management with operating system causality analysis. In
Proceedings of Symposium on Operating Systems Principles(2007).

[28] TUCEK, J., LU, S., HUANG, C., AND S. XANTHOS, Y. Z. Triage:
diagnosing production run failures at the user’s site. InProceedings of
Symposium on Operating Systems Principles(2007).

[29] WANG, H., J. PLATT, Y. CHEN, R. Z., AND WANG, Y. Automatic
Misconfiguration Troubleshooting with PeerPressure. InProceedings
of the Symposium on Operating Systems Design and Implementation
(2004).

[30] YUAN , C., L. NI , J. W., LI , J., ZHANG, Z., WANG, Y., AND

MA , W. Automated Known Problem Diagnosis with Event Traces.
In Proceedings of the European Conference on Computer Systems
(2006).

