
;login:
W I N T E R  2 0 1 8 V O L .  4 3 ,  N O .  4

Columns
Changes on the Horizon
Peter Norton

Using S3 from Golang
Chris “Mac” McEniry

Flow, Part II
Dave Josephsen 

Counting Hosts
Dan Geer and Paul Vixie

The Great Simulation
Robert G. Ferrell

&  Meltdown Remedies and 
Performance
Daniel Gruss, Dave Hansen, and Brendan Gregg

& The Deconstructed Database
Amandeep Khurana and Julien Le Dem

& The Five Stages of SRE
Ben Purgason

& Atlas Cluster Trace Repository
 George Amvrosiadis, Michael Kuchnik, Jun 
Woo Park, Chuck Cranor, Gregory R. Ganger, 
Elisabeth Moore, and Nathan DeBardeleben



UPCOMING EVENTS
Enigma 2019

January 28–30, 2019, Burlingame, CA, USA
www.usenix.org/enigma2019

FAST ’19: 17th USENIX Conference on File and 
Storage Technologies

February 25–28, 2019, Boston, MA, USA
Sponsored by USENIX in cooperation with ACM SIGOPS
Co-located with NSDI ’19
www.usenix.org/fast19

Vault ’19: 2019 Linux Storage and Filesystems 
Conference

Feburary 25–26, 2019
Co-located with FAST ’19
www.usenix.org/vault19

NSDI ’19: 16th USENIX Symposium on 
Networked Systems Design and 
Implementation

February 26–28, 2019, Boston, MA, USA
Sponsored by USENIX in cooperation with ACM SIGCOMM 
and ACM SIGOPS
Co-located with FAST ’19
www.usenix.org/nsdi19

SREcon19 Americas
March 25–27, 2019, Brooklyn, NY, USA
www.usenix.org/srecon19americas

OpML ’19: 2019 USENIX Conference on 
Operational Machine Learning

May 20, 2019, Santa Clara, CA, USA
Submissions due January 11, 2019
www.usenix.org/opml19

SREcon19 Asia/Australia
June 12–14, 2019, Singapore

2019 USENIX Annual Technical Conference
July 10–12, 2019, Renton, WA, USA
Submissions due January 10, 2019
www.usenix.org/atc19

Co-located with USENIX ATC ’19
HotStorage ’19: 11th USENIX Workshop on Hot 
Topics in Storage and File Systems
July 8–9, 2019
Submissions due March 12, 2019
www.usenix.org/hotstorage19

HotCloud ’19: 11th USENIX Workshop on Hot 
Topics in Cloud Computing
July 8, 2019

HotEdge ’19: 2nd USENIX Workshop on Hot Topics 
in Edge Computing
July 9, 2019

SOUPS 2019: Fifteenth Symposium on Usable 
Privacy and Security 

August 11–13, 2019, Santa Clara, CA, USA
Co-located with USENIX Security ’19

28th USENIX Security Symposium
August 14–16, 2019, Santa Clara, CA, USA
Co-located with SOUPS 2019
Winter quarter submissions due February 15, 2019
www.usenix.org/sec19

SREcon19 Europe/Middle East/Africa
October 2–4, 2019, Dublin, Ireland

LISA19
October 28–30, 2019, Portland, OR, USA

USENIX Open Access Policy
USENIX is the fi rst computing association to off er free and open access to all of our conference proceedings 
and videos. We stand by our mission to foster excellence and innovation while supporting research with a 
practical bias. Your membership fees play a major role in making this endeavor successful.

Please help us support open access. Renew your  USENIX membership and ask your colleagues to join or 
renew today!

www.usenix.org/membership

  
www.usenix.org/facebook

  
twitter.com/usenix

  
www.usenix.org/youtube

  
www.usenix.org/linkedin



E D I T O R
Rik Farrow 
rik@usenix.org

M A N A G I N G  E D I T O R
Michele Nelson 
michele@usenix.org

C O P Y  E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type 
startype@comcast.net

U S E N I X  A S S O C I AT I O N
2560 Ninth Street, Suite 215  
Berkeley, California 94710 
Phone: (510) 528-8649 
FAX: (510) 548-5738 

www.usenix.org

;login: is the official magazine of the USENIX 
Association. ;login: (ISSN 1044-6397) 
is published quarterly by the USENIX 
Association, 2560 Ninth Street, Suite 215, 
 Berkeley, CA 94710.

$90 of each member’s annual dues is for 
a subscription to ;login:. Subscriptions for 
non members are $90 per year. Periodicals 
postage paid at  Berkeley, CA, and additional 
mailing offices.

POSTMASTER: Send address changes to 
;login:, USENIX Association, 2560 Ninth Street, 
Suite 215, Berkeley, CA 94710.

©2018 USENIX Association 
USENIX is a registered trademark of the 
USENIX Association. Many of the designa-
tions used by manufacturers and sellers 
to distinguish their products are claimed 
as trademarks. USENIX acknowledges all 
trademarks herein. Where those desig-
nations appear in this publication and 
USENIX is aware of a trademark claim,  
the designations have been printed in caps  
or initial caps.

Cover Image created by freevector.com and 
distributed under the Creative Commons 
Attribution-ShareAlike 4.0 license 
(https://creativecommons.org/licenses 
/by-sa/4.0/).

W I N T E R  2 0 1 8 V O L .  4 3 ,  N O .  4

E D I T O R I A L
2 Musings Rik Farrow

S R E  A N D  S Y S A D M I N
5 The Five Stages of SRE Ben Purgason

S E C U R I T Y
10  Kernel Isolation: From an Academic Idea to an Efficient Patch  

for Every Computer Daniel Gruss, Dave Hansen, and Brendan Gregg

15  The Secure Socket API: TLS as an Operating System Service 
Mark O’Neill, Kent Seamons, and Daniel Zappala

21 Strings Considered Harmful Erik Poll

26  CSET ’18: The 11th USENIX Workshop on Cyber Security 
Experimentation and Test Peter A. H. Peterson

S Y S T E M S
29  The Atlas Cluster Trace Repository George Amvrosiadis, Michael 

Kuchnik, Jun Woo Park, Chuck Cranor, Gregory R. Ganger, Elisabeth 
Moore, and Nathan DeBardeleben

36  The Modern Data Architecture: The Deconstructed 
Database Amandeep Khurana and Julien Le Dem

C O L U M N S
41 And Now for Something Completely Different Peter Norton

44  Custom Binaries to Ease Onboarding Using Go  
Chris “Mac” McEniry

48 iVoyeur: Flow, Part II Dave Josephsen

53 For Good Measure: Nameless Dread Dan Geer and Paul Vixie

57 /dev/random: Simulation Station Robert G. Ferrell

B O O K S
59 Book Reviews Mark Lamourine and Rik Farrow

U S E N I X  N O T E S
62 Meet the Board: Kurt Andersen Liz Markel

63 USENIX Association Financial Statements for 2017



2   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org Change is hard. Once you have things working, however shakily, you 

realize that making changes could result in a slippery slide back to 
where you were. Yet change is critical if you are going to advance.

The SRE culture is built upon supporting rapid change and automating away every routine 
activity possible. But for people outside of that culture, change remains scary, as failure is 
always an option. And an unpleasant option at that if things were already basically working.

The first article in this issue, by Ben Purgason, got me thinking about the culture of change. 
There’s also a lot about security in this issue, and the combination of the two reminded me of 
a security audit I helped with many years ago.

Changeless
I was sitting in a cubicle in a state-level IT department. The other part of the audit team had 
the easier job. They were running password sniffers, and on a late ’90s mostly Windows net-
work; they were laughing a lot as the sniffer scarfed up passwords. I, on the other hand, had to 
comprehend the Cisco router’s access control lists, about 15 pages of them.

After a few hours, I could see I was wasting my time. The network guys weren’t using most of 
the ACLs they had given me. They were a smoke screen. They were using exactly one ACL.

And that ACL referenced a system they hadn’t told me about and were pretending wasn’t 
there. I ran an early vulnerability scanner (SATAN) on the demilitarized zone (DMZ), 
looking both for systems and for vulnerabilities, as presented by network services, on those 
systems. And not only was the mystery system there, it was unpatched and vulnerable.

The IT group had a replacement system in place and ready to go. But they hadn’t enabled it, 
postponing the change, one that would affect any user who logged in remotely in this large 
state. Not changing over appeared safer then leaving the old, dangerously vulnerable system 
in place. Fear of what might happen if they changed over was greater than the fear of penetra-
tion of their internal network. This was in the early days of intrusion detection, and ID was 
beyond the scope of the audit. I still find what was likely happening scary to think about.

I can look at myself, and see how often in my life I’ve been forced into making changes I 
should have made earlier. Systems that died long after I should have migrated them to newer 
hardware, not hardening security because of fears I would break things I had fixed long 
before, and changes forced upon me by advances in technology.

In many ways, the rapid pace of changes in the big Internet-facing companies of today is both 
daunting and frightening. They have learned how, not just to live with change, but to thrive. 
For the rest of us, these are important lessons that we need to learn as well.

The Lineup
Ben Purgason starts off this issue with the five stages of SRE, based on his experience work-
ing with the SRE teams at LinkedIn. Purgason begins this article, based on his keynote at 
SRECon18 Asia, by describing the three founding principles of SRE at LinkedIn: Site Up, 
Empower Developer Ownership, and Operations Is an Engineering Problem. Purgason then 
enumerates the five stages, as he experienced them, working in the trenches.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 3

EDITORIAL
Musings

Gruss, Hansen, and Gregg examine the patches made to three 
major OSes in response to the Meltdown exploit found in recent 
Intel processors. The initial work was done using Linux on a 
single hardware platform more as an academic project, but the 
solutions tried there later became the basis for patches to Linux, 
macOS, and Windows. Gruss also discusses how, and why, this 
patch impacts performance. For the most common workloads, 
the impact on performance is surprising.

O’Neill, Seamons, and Zappala discuss their USENIX Security ’18 
paper [1], where they examine the failures in the usage of TLS in 
OpenSSL and how to avoid them. Instead of allowing program-
mers to set possibly insecure defaults, their solution moves TLS 
into the sockets interface of the Linux kernel, and uses a system-
wide set of minimal defaults. The programming model is simple 
enough that adding support for TLS in a tool like netcat required 
only five lines of code.

Erik Poll explains the intersection of forwarding and parsing. 
Most service applications today consist of front and back ends, 
with the front end accepting requests, then distributing the work 
to be done to back-end services. The problem, as Poll points out, 
is where and how should forwarded input, or potential injection 
faults, be processed, as these may conceal forward attacks. Poll 
describes anti-patterns, techniques that have been shown to 
be flawed, and then suggests remedies that are safer and follow 
LangSec best practices, as found in his paper [2].

Peter Peterson wrote a summary of CSET ’18, a one-day workshop 
about cybertesting, measurement, and experimental testbeds. 
The talks were wider-ranging than I would have thought, and 
Peterson provides succinct summaries of each talk and one panel.

George Amvrosiadis et al. have also taken a crack at experimen-
tal verification. In their USENIX ATC ’18 paper [3], the group 
compares Google cluster-behavior traces to traces they have 
 collected from two US defense/scientific and two financial ana-
lytics clusters. The Google cluster traces have been the standard 
for measuring the value of techniques in cluster research, but 
this group shows that Google traces might actually be outliers 
when compared to how many others use cluster computing.

Amandeep Khurana and Julien Le Dem demonstrate how data-
base storage has changed over the decades. From IBM main-
frames specifically designed for storing records, to SQL, and 
finally to the much more loosely structured data-lakes we see 
today, this team explains how and why data storage has evolved.

Peter Norton takes his column in an unusual direction. Peter 
focuses on the changes taking place in the Python community 
with the departure of its Benevolent Dictator for Life, Guido van 
Rossum. The community seems to be cautiously and carefully 
moving forward, perhaps to avoid disturbing the ecosystem that 
is Python.

David Blank-Edelman is taking this issue off.

Mac McEniry chose to write about how to access AWS S3 stor-
age using Golang. His particular challenge was how to provide 
some configuration information to a widely distributed set of 
servers, and while his example does rely on S3, the ideas in his 
column can be used as the basis for other ways of sharing some 
small amount of data.

Dave Josephsen continues the discussion of flow that he started 
in his Fall ’18 column. Dave explains the problems the team at 
Sparkpost ran into when they attempted to use syslogd to collect 
and distribute log messages from their front-end Nginx servers. 
Think “firehose” and you are getting the idea of the volume of log 
messages.

Dan Geer and Paul Vixie work at enumerating the number of 
systems attached to the Internet. Starting with named systems, 
they examine other means of at least estimating just how many 
devices are out there, a daunting task. The ballooning growth of 
IoT devices, along with generally poor security (by negligence) 
and inability ever to be updated bodes poorly for the future of 
Internet security.

Robert Ferrell considers the notion that we exist only as a great 
simulation. Other great minds, like Elon Musk, have proposed 
this recently, but, as always, Robert has his own take on our 
digital future.

Mark Lamourine has three book reviews, and I have written one.

Announcements
The year 2019 marks the 50th anniversary of the UNIX system (™), 
and Clem Cole, past USENIX Board President, has written an 
article that helps to explain just why UNIX has been so success-
ful. I’ve read his article several times, and attempted to either 
create a “digest” version or split his article into smaller parts. In 
the end, I felt you are better off reading the original.

Clem makes many good points about UNIX, such as, unlike other 
operating systems of the time, UNIX was a system written by 
programmers for programmers. If you consider IBM’s OS/360 
using the perspective presented by Khurana and Le Dem in their 
article, you can see that Clem’s point is valid: UNIX had a very 
different purpose right from the start. 

Clem’s article originally appeared in CNAM, a French publica-
tion that examines the history of technology sciences [4], and 
we present an English version of his article here [5]. If you plan 
on disrupting the usual course of events when it comes to new 
systems, I recommend that you take the time to read his entire 
article.



4   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

EDITORIAL
Musings

There was another event that occurred recently, although I 
suspect that it passed well below most people’s radar. Early 
issues of ;login:, starting with volume 8 in February 1983, are 
now online. Thanks to the efforts of USENIX staff, particularly 
Olivia Vernetti and Arnold Gatilao, you can now find these 
issues of ;login:, up to the year 2000 at the time of this writing, on 
archive.org [6]. When USENIX made the transition to a modern 
web server design, some older issues were lost, and these are now 
also being hosted online again.

I can sincerely say that great changes are afoot. Not because I 
have a crystal ball or can pull predictions out of my naval lint, 
but simply because change constantly occurs. There is no stop-
ping change, not even with death.

References
[1] M. O’Neill, S. Heidbrink, J. Whitehead, T. Perdue, L. Dick-
inson, T. Collett, N. Bonner, K. Seamons, and D. Zappala, “The 
Secure Socket API: TLS as an Operating System Service,” in 
Proceedings of the 27th USENIX Security Symposium (Secu-
rity ’18), pp. 799–816: https://www.usenix.org/system/files 
/conference/usenixsecurity18/sec18-o_neill.pdf.

[2] E. Poll, “LangSec Revisited: Input Security Flaws of the 
Second Kind,” in Proceedings of the IEEE Symposium on 
 Security and Privacy Workshops, 2018, pp. 329–334: http:// 
spw18.langsec.org/papers/Poll-Flaws-of-second-kind.pdf.

[3] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. 
Baseman, and N. DeBardeleben, “On the Diversity of Cluster 
Workloads and Its Impact on Research Results,” in Proceed-
ings of the 2018 USENIX Annual Technical Conference (ATC ’18), 
pp. 533–546: https://www.usenix.org/system/files/conference 
/atc18/atc18-amvrosiadis.pdf.

[4] Conservatoire national des arts et métiers (CNAM), 
Cahiers d’histoire du Cnam, vol. 7–8, La recherche sur les 
systèmes : des pivots dans l’histoire de l’informatique, vol. 
7–8: http://technique-societe.cnam.fr/la-recherche-sur-les 
-systemes-des-pivots-dans-l-histoire-de-l-informatique-ii-ii 
-988170.kjsp?RH=cdhte.

[5] C. T. Cole, “Unix: A View from the Field as We Played the 
Game,” Cahiers d’histoire du Cnam, vol. 7–8, La recherche 
sur les systèmes : des pivots dans l’histoire de l’informatique, 
 January 2 to July 1, 2018, pp. 111–127: www.usenix.org/login 
_winter18_cole_unix_cnam.pdf.  This article is licensed under 
CC BY 2.0: https://creativecommons.org/licenses/by/2.0/.

[6] USENIX Archives: ;login: magazine: https://archive.org 
/details/usenix-login.

https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-o_neill.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-o_neill.pdf
http://spw18.langsec.org/papers/Poll-Flaws-of-second-kind.pdf
http://spw18.langsec.org/papers/Poll-Flaws-of-second-kind.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-amvrosiadis.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-amvrosiadis.pdf
http://technique-societe.cnam.fr/la-recherche-sur-les-systemes-des-pivots-dans-l-histoire-de-l-informatique-ii-ii-988170.kjsp?RH=cdhte
http://technique-societe.cnam.fr/la-recherche-sur-les-systemes-des-pivots-dans-l-histoire-de-l-informatique-ii-ii-988170.kjsp?RH=cdhte
http://technique-societe.cnam.fr/la-recherche-sur-les-systemes-des-pivots-dans-l-histoire-de-l-informatique-ii-ii-988170.kjsp?RH=cdhte
http://www.usenix.org/login_winter18_cole_unix_cnam.pdf
http://www.usenix.org/login_winter18_cole_unix_cnam.pdf
https://creativecommons.org/licenses/by/2.0/
https://archive.org/details/usenix-login
https://archive.org/details/usenix-login


www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 5

SRE AND SYSADMINThe Five Stages of SRE
B E N  P U R G A S O N

Ben Purgason is a Director 
of Site Reliability Engineering 
at LinkedIn, responsible for 
the operational integrity of 
LinkedIn’s internal software 

development, trust, and security infrastructure. 
In his six years at LinkedIn, he’s developed 
seven successful SRE teams that partner 
with more than 21 distinct teams to build 
reliability into their entire software life cycle. 
bpurgason@linkedin.com

I am a rebel in a world that made development vs. operations the status 
quo. I am an SRE leader with LinkedIn, and I’d like to share with you my 
observations and experiences building and making Site Reliability Engi-

neering (SRE) teams successful there. In particular, I want to share a few key 
observations on the evolutionary path of SRE, how that path is influenced by 
the relationship with the software engineer (SWE), and how the allocation of 
roles and responsibilities changes with time.

Founding Principles
Back in 2010, SRE was founded at LinkedIn as a scrappy band of firefighters. Their first job 
was to put out the blazing operational fires that threatened LinkedIn’s stability on a daily 
basis. I joined two years later in 2012, and though progress had been made, the environment 
was still chaotic. Putting things in perspective, when I joined the company, all on-calls were 
expected to be on-site by 6 a.m. each day. At the time, most of LinkedIn’s traffic came from 
the Americas, which resulted in a drastic traffic increase as the continents woke up, usually 
knocking over the site. In spite of the chaos, or perhaps because of it, three fundamental prin-
ciples were created to guide the development of the SRE organization.

The first is Site Up [1]. This is our highest technical priority—always. Site Up is  ensuring 
that the site, service, experience, app, etc. you offer to customers work correctly and quickly 
enough to be relevant. Without Site Up you cannot uphold the commitments you made to 
your customers. If you cannot uphold your commitments, your users will eventually lose 
their trust in your company and will take their business elsewhere. Let this go on long 
enough and eventually everyone at your company (including you) will be out on the street 
looking for a new job. 

The second is Empower Developer Ownership. As Bruno Connelly, head of SRE at  LinkedIn, 
likes to say: “It takes a village to run a website.” In other words, it is crucial that developers 
own the Operations problem as much as everyone else. Operations is a hard problem, and 
we’re going to do a better job solving it if we bring 100 percent of our engineering talent to 
bear rather than just the 10 percent that happens to have “site reliability” in their title.

The third is Operations Is an Engineering Problem. We think Operations should be solved 
like any other software problem: by engineering permanent solutions to problems or, better, 
preventing them from happening in the first place. We do not want to solve our problems 
through heroes and raw effort.

As previously mentioned, Site Up is our chief technical operating priority, and nothing will 
ever beat it. This introduces a challenge, for Site Up is a far-reaching concept that can lead 
us down a short-sighted and dangerous path if we aren’t careful. The other two principles, 
“Empower Developer Ownership” and “Operations Is an Engineering Problem,” are both 
constraints. They ensure that our efforts to uphold Site Up are sustainable today and become 
increasingly effective with time.



6   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SRE AND SYSADMIN
The Five Stages of SRE

Generation 1: The Firefighter
Let’s face it, few companies invest in creating an SRE organi-
zation until either they have a raging operational fire on their 
hands or the minimum change velocity—that’s the minimum 
amount of change that must occur each day for the company to 
still remain competitive—exceeds what traditional operations 
processes can handle.

At this early stage, SRE is essentially fighting fires whenever 
the need arises while simultaneously trying to automate the 
process of fire suppression. With each piece of reliable automation 
written, the time saved on fire suppression is freed up for use on 
permanently fixing problems or for forward-looking priorities 
such as monitoring and alerting.

Though the focus is on Site Up (incident management), we can 
also see the earliest influences of Operations Is an Engineering 
Problem through the automation of manual operational work.

Tools SRE, the Firefighters
Tools SRE, the team I founded at LinkedIn, is responsible for all 
SRE-related tasks around our internal Tooling (development, 
build, and deploy pipelines), along with those around Trust and 
Security.

When Tools SRE was founded, the mean time to resolve an 
incident (MTTR) was over 1500 minutes (yes, that is more than 
a full 24-hour day). So frequent and long were the outages that 
if we lined them all up end-to-end we would have had some level 
of outage every second of every day for the entire calendar year. 
Worse, for just under half the year, two would have been active at 
the same time.

So what did we do? We got after it and began our pursuit of Site 
Up. After every outage we held a blameless postmortem with our 
partner SWEs. We learned from our collective mistakes. We did 
our best and we didn’t give up.

We instrumented our products as well as we could, and when we 
couldn’t, we developed external observers to generate the miss-
ing metrics. We wrote alerts, we got woken up in the middle of 
the night, and we kept solving problems.

Be Relentless and Measure Success
Winston Churchill has been quoted, or misquoted, over the years 
as saying: “If you’re going through hell, keep going.” In a nutshell, 
that is the theme behind moving past this dysfunctional stage. 
Digging out of this particular hole takes time, patience, and an 
unyielding determination to succeed, but it isn’t rocket science. 

First, understand that every day is Monday in Operations 
[2]. There will never be an end to the problems we need to solve. 
In spite of that, we must continuously identify the biggest, most 
impactful problems and solve them. Eventually, we end up with a 

collection of problems that are roughly the same in quantity but 
greatly reduced in level of impact. Gone will be the days when 
developers go home early after being unable to get a build for the 
better part of six hours. Now you’ll have users complaining about 
a six-minute delay in getting their build. The problems don’t go 
away, but they do shrink in size.

Second, what gets measured gets fixed [3]. “What gets mea-
sured gets fixed” is a famous adage taken from a company that 
knew a thing or two about measurements: Hewlett Packard. 
Long before printers, computers, and the Internet, HP built test 
and measurement devices that would be more at home in a sci-
entific laboratory than in a tech company (think oscilloscopes). 
They knew what they were doing—if you can measure some-
thing, you can reason about it, understand it, discuss it, and act 
upon it with confidence. If you cannot measure something, not 
only are you unable to fix it, you’re unable to really understand if 
it’s even broken or not.

If you can do just these two things, you will eventually achieve 
improved site stability, have more time available to invest in the 
future, and have a better understanding of where the next set of 
problems are hiding.

Generation 2: The Gatekeeper
A quick disclaimer: the gatekeeper is an evolutionary dead end 
that can be (almost) entirely bypassed. I include it here not to 
show it as the next logical step in SRE’s evolution but, instead, to 
help any SRE team that finds itself already in it to grow past it.

As we grow past the first generation of firefighters, we achieve a 
basic level of operational integrity. The active operational fires 
are put out, and we have an increasing amount of time available 
for forward-looking tasks. So where do we go from here?

The natural instinct is a protective one. We just spent years 
digging ourselves out of a major operational hole and the last 
thing we want to do is immediately fall back into it. Usually this 
translates into a set of behaviors that amount to building a wall 
around “our” production with a few locked doors and keeping the 
keys with SRE. That way, “those” pesky developers will have to 
go through “us” before “their” change can impact “our” prod.

The thought is straightforward, and not entirely without merit  
if I’m being honest. It’s motivated by fear, the fear of being in 
pain again.

Avoid Creating an “Us” vs. “Them” Culture
The problem with this mindset is that it quickly cements itself 
as a culture of “us vs. them.” This is incredibly dangerous to the 
development of any SRE team because it will essentially limit 
your ability to contribute to the company and that of your SWE 
partners as well.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 7

SRE AND SYSADMIN
The Five Stages of SRE

During this stage it is common for SREs to leverage their role 
power to claim ownership of production deployments or more 
generally change control. In doing so we add a new job responsi-
bility to our SWE counterparts: get past SRE gatekeeping in the 
most efficient way possible.

Tools SRE, Never the Gatekeepers
The Tools SRE team I lead managed to skip this stage almost 
entirely. It wasn’t because we were more creative or had a unique 
vision—it’s because we got started late. When Tools SRE was 
founded we were outnumbered 41:1 (SWE:SRE). As a result, 
we knew immediately we couldn’t succeed alone. Worse, any 
attempts at human gatekeeping would likely be ineffective— 
we’d just get overrun by the SWEs even if we tried to use our  
role power.

However, we did get a few requests for features (we were Tools 
SRE, after all) that directly supported human gatekeeping from 
other teams. Most notably was one called “service guard,” which 
let SREs create a whitelist of individuals who could run deploy-
ments for a particular product. Essentially, this was a feature 
designed to force untrusted individuals to route through trusted 
individuals in order to do their jobs. This feature accomplished 
its tactical purpose in stopping unapproved deployments but 
also greatly increased the friction between teams, reducing their 
ability to collaborate.

Tribalism Has No Place in an Effective SRE Team
A man far wiser than I, Fred Kofman, has said many times that 
“There is no such thing as ‘the hole is in your side of the boat.’” 
The moment you accept that your success is unachievable with-
out your SWE partners and vice versa, you have started to grow 
past this generation and have begun to realize your potential. To 
accomplish this, you only have to do two things.

First, you must attack the problem, not the person [4]. 
Remember, your problem is neither the developers nor their 
changes. Your problem is Site Up. Do not attack people, they’re 
just trying to do their jobs as best they can. Help them do their 
jobs better while supporting Site Up.

Second, we have to remember that Operations Is an Engineer-
ing Problem. If we accept that as an axiom, then we must reject 
the notion of human gatekeepers as the norm. Remember, we 
don’t want to solve the operational problem using manual effort. 
We want to solve it as any other software problem, that is, by 
improving the software.

This isn’t to say we don’t need gatekeeping, we just don’t want 
human gatekeepers. The second principle introduced earlier in 
this paper, Empower Developer Ownership, now begins to mark-
edly influence our work.

To get rid of human gatekeeping, we need to mutually agree on 
what the acceptable standards are for change. Once we have an 
agreement, we can build automation that enforces the standards 
we agreed to with our SWEs. This empowers SWEs to do their 
job without interference, assuming the standards are met. 

Let’s look at how this might be applied to deployments. If an 
engineer is told they can’t deploy their build, they’re going to 
be unhappy. If a human tells them their build is too slow, they 
resent the (human) SRE, saying “They won’t let me deploy.” 
If, instead, the deployment system tells an engineer they can’t 
deploy because their build violates the agreed upon standards, 
the engineer will say, “I need to make my build faster so that I 
can deploy.” You’ve effectively turned a very human problem, 
“They won’t let me deploy,” into a simple engineering conversa-
tion: “I need to improve the performance of this build so that I 
can deploy.” Well done.

As you near the exit from gatekeeper, all three core principles are 
now clearly on display: Site Up, Empower Developer Ownership, 
and Operations Is an Engineering Problem.

Generation 3: The Advocate
The advocate SREs are the ones who lay the foundational rela-
tionships required to collaborate well with our partner teams 
at scale. Their biggest value add is the repair and rebuilding 
of trusted relationships damaged during the firefighter and 
gatekeeper generations. How do they accomplish such a feat? 
They uphold the original three founding principles through their 
engineering solutions and their interactions with others.

Finally, we can see the list of roles and responsibilities begin-
ning to converge with “monitoring and alerting” now appearing 
on both lists. By using mutually agreed upon data as a gate-
keeper, both SWE and SRE end up losing something significant 
if the signal quality provided by the gatekeeping data degraded.

Tools SRE, the Advocates
Tools SRE was founded years after our SWE counterparts. 
That meant we had years of code previously written in order to 
keep up with the needs of a company that was rapidly growing 
its business and its engineering body. Reliability was difficult to 
achieve. Remember, we were also outnumbered 41:1. Even if we 
tried to use human gatekeeping, it would have failed—what good is 
building a gate when you don’t have the resources to build a fence?

Instead, we tried a different approach. We explained that we 
didn’t want to hold anyone back. To the contrary, we wanted to 
empower every engineer to do more and spend less of their time 
fighting fires. Over time, we refined the pitch until it came down 
to just a few sentences: “Look, we need your help to ensure the 
products built are reliable and scalable. You can either spend 
your time helping us fix the outages as they happen or you can 
create new features. Which do you want it to be?”

SWE:SRE


8   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SRE AND SYSADMIN
The Five Stages of SRE

Trust Is Everything
As Jeff Weiner, CEO of LinkedIn, has said, “Consistency over 
time equals trust.” This generation of SRE is all about rebuilding 
trusted relationships by consistently propagating Site Up culture 
and through building trusted relationships.

First: be an advocate, make an advocate. In every conversa-
tion or interaction, make sure everyone understands why Site 
Up matters to them. Be relentless in making this point. At a 
minimum, they’ll eventually agree to help you because of the 
benefits you’ve attributed to Site Up and, possibly, even because 
they believe in the concept. Either way, once the benefits begin 
to appear, they’ll become advocates themselves. Your job will get 
a bit easier as you end up with an increasingly large number of 
advocates.

Second: do not insulate, share pain. Both the firefighter and 
the gatekeeper tend to insulate their partner teams from pain 
indirectly. When the firefighters enter the scene, they help 
shoulder the burden of incident management. When gatekeepers 
build their wall, the only pain felt is that of the SREs’ change-
management process. If both groups are in pain, you can expect 
easy commitments to end the suffering of both. If only one group 
is in severe pain and the other feels none, you can expect only 
disagreements. 

Generation 4: The Partner
From this point forward, SRE and SWE need to increasingly 
function as a single logical unit to do the most possible good. The 
first step in this alignment is to ensure both SWE and SRE have 
an equal level of dissatisfaction with the current state of reliabil-
ity. Another good starting point is to begin joint SRE-SWE plan-
ning, if you haven’t already. This provides a chance for mutual 
understanding and will serve to prevent the bulk of mid-quarter 
priority misalignments.

At first, your team won’t be involved in every project; not every 
SWE team will want to play ball, and that is entirely OK. As the 
planning cycles go by, it’ll become obvious that projects that 
had both SWE and SRE funding were more reliable, easier to 
maintain, consumed less time due to scaling problems, and were 
generally more successful. No one likes missing out on a com-
petitive advantage, and any holdouts will be banging down your 
door demanding SRE engagement. Once this happens, your plan-
ning process gets much easier. You don’t need to spend as much 
time trying to get involved with projects, you just have to agree to 
work on projects that are going to matter most to your company. 
Even better, when there are too many “important projects that 
need SRE partnership,” you can go together with your SWE team 
to justify increased head count, since the value add is apparent to 
everyone in the conversation.

The roles and responsibilities of SWE-SRE are now beginning 
to converge rapidly, with many responsibilities being the same. 
One notable call out: SWE is no longer “an escalation point for 
SRE.” Instead, both groups command a strong understanding of 
the code base, enough so that you may have a single hybrid on-
call rotation comprising both SWE and SRE. Whether a SWE 
or SRE picks up the phone would simply be a matter of which 
week you happened to call. Alternatively, if you continued with a 
traditional tiered escalation format, then an “escalation” to SWE 
isn’t so much a call for a subject matter expert but, instead, for 
an additional collaborator to help track things down in parallel. 
Most commonly, we see this as a prelude to a war-room.

A second big departure from prior allocations of roles and respon-
sibilities are the type and scope of our contributions to Site Up. At 
this point we should be directly improving the products we own 
or partner on through meaningful engineering contributions. 

From this point forward it’s all about building reliability and 
scalability into every product we create or partner with SWE on.

Tools SRE, the Partners
A quick disclaimer: not all of my teams have made it to genera-
tion four. For those that have, part of the reason they reached 
this level was because they had freed up a tremendous amount of 
their time to focus on the future. We looked for opportunities to 
allow others to leverage our skills without needing to necessar-
ily talk to us. We created or overhauled services as well as core 
libraries so that others could be more reliable simply by leverag-
ing our code.

As a team we began to embody “Operations is an engineering 
problem” by providing leverage to the rest of the company. More 
importantly, we continued to prioritize the work that would 
make the most impact for the company, and it naturally led us to 
more rewarding engineering work.

One Team, One Plan, One Set of Priorities
To advance past Partner SREs, you will need to make two foun-
dational improvements to your team. First, you must participate 
in unified SRE-SWE planning. While overall alignment of 
teams is mentioned in the “Partner” paragraph, a shared pain 
needs to be felt by both teams. This helps to drive the unified 
planning phase. It’s important to actually produce a single plan 
that allocates SRE-SWE resources for the projects where they 
can add the most value.

Second, you must leverage the plan to create a unified set of 
priorities. This should be a single, stack-ranked set of business 
priorities that both leadership teams have publicly committed 
to. These should include priorities such as Talent, Site Up, and 
Site Secure. By creating the plan and priorities, any engineer in 
any organization will be able to understand not just what they’re 
doing but why and how they fit into it.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 9

SRE AND SYSADMIN
The Five Stages of SRE

Generation 5: The Engineer
This generation functions as a true north for what SRE should 
be: fully capable engineers that just so happen to prioritize reli-
ability, scalability, and operability. By this point there should 
be no further references, save organizational structure itself, to 
“us vs. them” in policy, day-to-day interaction, or planning. This 
brings us to the defining characteristic of a generation 5 SRE 
team: every engineer, regardless of title, organizational affilia-
tion, or the specific job functions of their day-to-day role should 
be able to answer my favorite question with absolute confidence.

“What is your job?” 

And the answer? “My job is to help our company win.”

References
[1] Site Up: https://www.linkedin.com/pulse/site-up-benjamin 
-purgason/.

[2] Every day is Monday in Operations: https://www 
.linkedin.com/pulse/every-day-monday-operations-benjamin 
-purgason/.

[3] What gets measured gets fixed: https://www.linkedin.com 
/pulse/what-gets-measured-fixed-benjamin-purgason/.

[4] Attack the problem, not the person: https://www.linkedin 
.com/pulse/attack-problem-person-benjamin-purgason/.

https://www.linkedin.com/pulse/site-up-benjamin-purgason/
https://www.linkedin.com/pulse/site-up-benjamin-purgason/
https://www.linkedin.com/pulse/every-day-monday-operations-benjamin-purgason/
https://www.linkedin.com/pulse/every-day-monday-operations-benjamin-purgason/
https://www.linkedin.com/pulse/every-day-monday-operations-benjamin-purgason/
https://www.linkedin.com/pulse/what-gets-measured-fixed-benjamin-purgason/
https://www.linkedin.com/pulse/what-gets-measured-fixed-benjamin-purgason/
https://www.linkedin.com/pulse/attack-problem-person-benjamin-purgason/
https://www.linkedin.com/pulse/attack-problem-person-benjamin-purgason/


10   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITYKernel Isolation
From an Academic Idea to an Efficient Patch for Every Computer

D A N I E L  G R U S S ,  D A V E  H A N S E N ,  A N D  B R E N D A N  G R E G G

Daniel Gruss (@lavados) 
is a postdoc fellow at Graz 
University of Technology. He 
has been involved with teaching 
at the university since 2010. 

In 2015, he demonstrated Rowhammer.js, the 
first remote fault attack running in a website. 
He was part of the research team that found 
the Meltdown and Spectre bugs published in 
early 2018. daniel.gruss@iaik.tugraz.at

Dave Hansen works in Intel’s 
Open Source Technology 
Center in Hillsboro, Oregon. He 
has been involved in Linux for 
over 15 years and has worked 

on side-channel hardening, scalability, NUMA, 
memory management, and many other areas. 
dave.hansen@intel.com

Brendan Gregg is an 
industry expert in computing 
performance and cloud 
computing. He is a Senior 
Performance Architect at 

Netflix, where he does performance design, 
evaluation, analysis, and tuning. He is the 
author of Systems Performance published by 
Prentice Hall, and he received the USENIX 
LISA Award for Outstanding Achievement in 
System Administration. Brendan has created 
performance analysis tools included in multiple 
operating systems, and visualizations and 
methodologies for performance analysis, 
including flame graphs. bgregg@netflix.com

The disclosure of the Meltdown vulnerability [9] in early 2018 was an 
earthquake for the security community. Meltdown allows tempo-
rarily bypassing the most fundamental access permissions before a 

deferred permission check is finished: that is, the userspace-accessible bit 
is not reliable, allowing unrestricted access to kernel pages. More specifi-
cally, during out-of-order execution, the processor fetches or stores memory 
locations that are protected via access permissions and continues the out-
of-order execution of subsequent instructions with the retrieved or modified 
data, even if the access permission check failed. Most Intel, IBM, and Apple 
processors from recent years are affected as are several other processors. 
While AMD also defers the permission check, it does not continue the out- 
of-order execution of subsequent instructions with data that is supposed to 
be inaccessible.

KAISER [4, 5] was designed as a software-workaround to the userspace-accessible bit. Hence, 
KAISER eliminates any side-channel timing differences for inaccessible pages, making the 
hardware bit mostly superfluous. In this article, we discuss the basic design and the different 
patches for Linux, Windows, and XNU (the kernel in modern Apple operating systems).

Basic Design
Historically, the kernel was mapped into the address space of every user program, but kernel 
addresses were not accessible in userspace because of the userspace-accessible bit. Concep-
tually, this is a very compact way to define two address spaces, one for user mode and one for 
kernel mode. The basic design of the KAISER mechanism and its derivates is based on the 
idea that the userspace-accessible bit is not reliable during transient out-of-order execution. 
Consequently, it becomes necessary to work around this permission bit and not rely on it.

As shown in Figure 1, we try to emulate what the userspace-accessible bit was supposed to 
provide, namely two address spaces for the user program: a kernel address space with all 
addresses mapped, protected with proper use of SMAP, SMEP, and NX; and a user address 
space that only includes a very small fraction of the kernel. This small fraction is required 
due to the way context switches are defined on the x86 architecture. However,  immediately 
after switching into kernel mode, we switch from the user address space to the kernel 
address space. Thus, we only have to make sure that read-only access to the small fraction  
of the kernel does not pose a security problem.

As we discuss in more detail in the performance section, emulating the userspace-accessible 
bit through this hard split of the address spaces comes with a performance cost.

The global bit. As page table lookups can take much time, a multi-level cache hierarchy 
(the translation lookaside buffer, TLB) is used to improve the performance. When switching 
between processes, the TLB has to be cleared at least partially. Most operating systems opti-
mize the performance of context switches by using the global bit for TLB entries that are also 
valid in the next address space. Consequently, we have to use it with care when  implementing 



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 11

SECURITY
Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer

the design outlined above. In particular, marking kernel pages as 
global (as operating systems previously did) completely under-
mines the security provided by the KAISER mechanism. Setting 
the bit to 0 eliminates this problem but leads to another perfor-
mance reduction.

 Patches. The name KAISER is supposed to be 
an acronym for Kernel Address Isolation to have Side channels 
Efficiently Removed. It is also a reference to the emperor penguin 
(German: “Kaiserpinguin”), the largest penguin on earth, with 
the penguin being the Linux mascot and KAISER being a patch 
to make Linux stronger. Still under the name KAISER, a signifi-
cant amount of work was put into the patches that we outline 
later in this article. Both the authors of the KAISER patch and 
the Linux kernel maintainers also discussed other names that 
were deemed less appropriate. Shortly before merging KAISER 
into the mainline kernel, it was renamed to KPTI, which fits in 
the typical Linux naming scheme. 

Naturally, Microsoft and Apple could not just copy either of the 
names of the Linux patch. Consequently, they came up with their 
own names (i.e., KVA Shadow and Double Map) for their own 
variants of the same idea.

Actual Implementations
The KAISER implementation, developed mainly on virtual 
machines and a specific off-the-shelf Skylake system, focused on 
proving that the basic approach was sound. Consequently, reli-
ability and stability that would allow deployment in a real-world 
environment were out of scope for KAISER. Bringing KAISER 
up to industry and community standards required ensuring sup-
port for all existing hardware and software features and improv-
ing its performance and security properties. Furthermore, for 
Windows and XNU, the patches had to be redeveloped from 
scratch since their design and implementation is substantially 
different from Linux.

While the focus on specific machine environments limited the 
scope of the effort and enabled the implementation of a rapid 
proof of concept, the environment did not have to cope with 
certain hardware features like non-maskable interrupts (NMIs), 
or corner cases when entering or exiting the kernel. These corner 

cases are rarely encountered in the real world but must still be 
handled because they might be exploited to cause crashes or 
escalate privileges (e.g., CVE-2014-4699). NMIs are a particular 
challenge because they can occur in almost any context, includ-
ing while the kernel is attempting to transition to or from user-
space. For example, before the kernel attempts to return from 
an interrupt to userspace, it first switches to the user address 
space. At least one instruction later, it actually transitions to 
userspace. This means there is always a window where the ker-
nel appears to be running with the “wrong” address space. This 
can confuse the address-space-switching code, which must use 
a different method to determine which address space to restore 
when returning from the NMI.

Linux’s KPTI
Much of the process of building on the KAISER proof of concept 
(PoC) was iterative: find a test that fails or crashes the kernel, 
debug, fix, check for regressions, then move to the next test. 
Fortunately, the “x86 selftests” test many infrequently used 
features, such as the modify ldt system call, which is rarely 
used outside of DOS emulators. Virtually all of these tests 
existed before KAISER. The key part of the development was 
finding the tests that exercised the KAISER-impacted code 
paths and ensuring the tests got executed in a wide variety of 
environments.

KAISER focused on identifying all of the memory areas that 
needed to be shared by the kernel and user address spaces and 
mapping those areas into both. Once it neared being feature-
complete and fully functional, the focus shifted to code simplifi-
cation and improving security.

The shared memory areas were scattered in the kernel portion 
of the address space. This led to a complicated kernel memory 
map that made it challenging to determine whether a given 
mapping was correct, or might have exposed valuable secrets to 
an application. The solution to this complexity is a data struc-
ture called cpu_entry_area. This structure maps all of the data 
and code needed for a given CPU to enter or exit the kernel. It is 
located at a consistent virtual address, making it simple to use 
in the restricted environment near kernel entry and exit points. 
The cpu_entry_area is strictly an alias for memory mapped 
elsewhere by the kernel. This allows it to have hardened permis-
sions for structures such as the “task state segment,” mapping 
them read-only into the cpu_entry_area while still permitting 
the other alias to be used for modifications.

While the kernel does have special “interrupt stacks,” inter-
rupts and system call instructions still use a process’s kernel 
stack for a short time after entering the kernel. For this reason, 
KAISER mapped all process kernel stacks into the user address 
space. This potentially exposes the stack contents to Meltdown, 

Figure 1: The basic KAISER mechanism



12   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY
Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer

and it also creates performance overhead in the fork() and exit() 
paths. To mitigate both the performance and attack exposure, 
KPTI added special “entry stacks” to the cpu_entry_area. These 
stacks are only used for a short time during kernel entry/exit 
and contain much more limited data than the full process stack, 
limiting the likelihood that they might contain secrets.

Historically, any write to the CR3 register invalidates the contents 
of the TLB, which has hundreds of entries on modern processors. 
It takes a significant amount of processor resources to replace 
these contents when frequent kernel entry/exits necessitate 
frequent CR3 writes. However, a feature on some x86 processors, 
Process Context Identifiers (PCIDs), provides a mechanism 
to allow TLB entries to persist over CR3 updates. This allows 
TLB contents to be preserved over system calls and interrupts, 
greatly reducing the TLB impact from CR3 updates [6]. However, 
allowing multiple address spaces to live within the TLB simul-
taneously requires additional work to track and invalidate these 
entries. But the advantages of PCIDs outweigh the disadvan-
tages, and it continues to be used in Linux both to accelerate 
KPTI and to preserve TLB contents across normal process 
context-switching.

Microsoft Windows’ KVA Shadow
Windows introduced Kernel Virtual Address (KVA) Shadow 
mapping [7], which follows the same basic idea as KAISER, 
with necessary adaptations to the Windows operating system. 
However, KVA Shadow does not have the goal of ensuring the 
robustness of KASLR in general, but only seeks to mitigate 
Meltdown-style attacks. This is a deliberate design choice made 
to avoid unnecessary design complexity of KVA Shadow. 

Similar to Linux, KVA Shadow tries to minimize the number 
of kernel pages that remain mapped in the user address space. 
This includes hardware-required per-processor data and special 
per-processor transition stacks. To not leak any kernel infor-
mation through these transition stacks, the context switching 
code keeps interrupts disabled and makes sure not to trigger any 
kernel traps.

The significant deviations from the basic KAISER approach are 
in the performance optimizations implemented to make KVA 
Shadow practical for the huge Windows user base. Similar to 
Linux, this included the use of PCIDs to minimize the number of 
implicit TLB flushes. Another interesting optimization is “user/
global acceleration” [7]. As stated in the Basic Design section, 
above, the global bit tells the hardware whether or not to keep 
TLB entries across the next context switch. While the global bit 
can no longer be used for kernel pages, Windows now uses it for 
user pages. Consequently, switching from user to kernel mode 
does not flush the user TLB entries, although the CR3 register is 
switched. This yields a measurable performance advantage. The 
user pages are not marked global in the kernel address space, 

and, hence, the corresponding TLB entries are correctly invali-
dated during the context switch to the next process.

Windows further optimizes the execution of highly privileged 
tasks by letting them run with a conventional shared address 
space, which is identical to what the “kernel” address space is now.

With a large number of third-party drivers and software deeply 
rooted in the system (e.g., anti-viruses), it is not unexpected that 
some contained code assumes a shared address space. While 
this first caused compatibility problems, subsequent updates 
resolved these issues.

Apple XNU’s Double Map
Apple introduced the Double Map feature in macOS 10.13.2 (i.e., 
XNU kernel 4570.31.3, Darwin 17.3.0). Apple used PCIDs on x86 
already in earlier macOS versions. However, because mobile 
Apple devices are also affected by Meltdown, mitigations in the 
ARMv8-64 XNU kernel were required. Here Apple introduced 
an interesting technique to leverage the two Translation Table 
Base Registers (TTBRs) present on ARMv8-64 cores and the 
Translation Control Register (TCR), which controls how the 
TTBRs are used in the address translation.

The virtual memory is split into two halves, a userspace half 
mapped via TTBR0 and a kernel space half mapped via TTBR1. 
The TCR allows splitting the address space and assigning differ-
ent TTBRs to disjoint address space ranges. Apple’s XNU kernel 
uses the TCR to unmap the protected part of the kernel in user 
mode. That is, the kernel space generally remains mapped in 
every user process, but it’s unmapped via the TCRs when leaving 
the kernel. Kernel parts required for the context switch, inter-
rupt entry code, and data structures are below a certain virtual 
address and remain mapped. When entering the kernel again, 
the kernel reconfigures the address space range of TTBR1 via 
the TCR and, by that, remaps the protected part of the kernel.

The most important advantage of this approach is that the 
translation tables are not duplicated or modified while running 
in user mode. Hence, any integrity mechanisms checking the 
translation tables continue to work.

Performance
When publishing the first unstable PoC of KAISER, the ques-
tion of performance impact was raised. While the performance 
impact was initially estimated to be below 5% [5], KAISER 
showed once more how difficult it is to measure performance 
in a way that allows comparison of performance numbers. With 
PCIDs or ASIDs, as now used by all major operating systems, 
the performance overheads of the different real-world KAISER 
implementations were reduced, but there are still overheads that 
may be significant, depending on the workload and the specific 
hardware. Still, the performance loss for different use cases, 



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 13

SECURITY
Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer

macrobenchmarks, and microbenchmarks varies between −5% 
and 800%. One reason is the increase in TLB flushes, especially 
on systems without PCID support, as well as extra cycles for CR3 
manipulation. More indirect is the increase in TLB pressure, 
caused by the additional TLB entries due to the large number of 
duplicated page table entries. CPU- or GPU-intense workloads 
that trigger a negligible number of context switches, and thus a 
negligible number of TLB flushes and CR3 manipulations, are 
mostly unaffected.

The different implementations of KAISER have different optimi-
zations. In this performance analysis, we focus on Linux (i.e., 
KPTI). However, the reported numbers are well aligned with 
reports of performance overheads on other operating systems [1, 7].

We explore the overheads for different system call rates [2] by 
timing a simultaneous working-set walk, as shown in Figure 2.

Without PCID, at low system call rates, the overheads were neg-
ligible, as expected: near 0%. At the other end of the spectrum, 
at over 10 million system calls per second per CPU, the overhead 
was extreme: the benchmark ran over 800% slower. While it 
is unlikely that a real-world application will come anywhere 
close tonthis, it still points out a relevant bottleneck that has 
not existed without the KAISER patches. For perspective, the 

 system call rates for different cloud services at Netflix were 
studied, and it was found that database services were the high-
est, with around 50,000 system calls per second per CPU. The 
overhead at this rate was about 2.6% slower.

While PCID support greatly reduced the overhead, from 2.6% to 
1.1%, there is another technique to reduce TLB pressure: large 
pages. Using large pages reduces the overhead for our specific 
benchmark so much that for any real-world system call rate 
there is a performance gain.

Another interesting observation while running the microben-
chmarks was an abrupt drop in performance overhead, depend-
ing on the hardware and benchmark, at a syscall rate of 5000. 
While this was correlated with the last-level cache hit ratio, it is 
unclear what the exact reason is. One suspected cause is a sweet 
spot in either the amount of memory touched or the access pat-
tern between two system calls, where, for example, the processor 
switches the cache eviction policy [3].

With PCID support and using large pages when possible, one can 
conclude that the overheads of Linux’s KPTI and other KAISER 
implementations are acceptable. Furthermore, rudimentary 
performance tuning (i.e., analyzing and reducing system call and 
context switch rates) may yield additional performance gains.

Outlook and Conclusion
With KAISER and related real-world patches, we accepted a 
performance overhead to cope with the insufficient hardware-
based isolation. While more strict isolation can be a more resil-
ient design in general, it currently functions as a workaround for 
a specific hardware bug. However, there are more Meltdown-
type hardware bugs [8, 10], causing unreliable permission checks 
during transient out-of-order execution, for other page table bits. 
Mitigating them requires additional countermeasures beyond 
KAISER. For now, KAISER will still be necessary for commod-
ity processors.

Acknowledgments
We would like to thank Matt Miller, Jon Masters, and Jacques 
Fortier for helpful comments on early drafts of this article.

Figure 2: The runtime overhead for different workloads with different 
KPTI configurations [2]. The overhead increases with the system call rate 
due to the additional TLB flushes and CR3 manipulations during context 
switches.



14   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY
Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer

References
[1] fG!, “Measuring OS X Meltdown Patches Performance,” 
January 2018: https://reverse.put.as/2018/01/07/measuring 
-osx-meltdown-patches-performance/.

[2] B. Gregg, “KPTI/KAISER Meltdown Initial Performance 
Regressions,” 2018: http://www.brendangregg.com/blog/2018 
-02-09/kpti-kaiser-meltdown-performance.html.

[3] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: 
A Remote Software-Induced Fault Attack in JavaScript,” in 
Proceedings of the 13th International Conference on Detection of 
Intrusions and Malware, and Vulnerability Assessment (DIMVA 
’16), pp. 300–321: https://gruss.cc/files/rowhammerjs.pdf.

[4] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, 
“Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel 
ASLR,” in 23rd ACM Conference on Computer and Communi-
cations Security (CCS, 2016): https://gruss.cc/files/prefetch.pdf.

[5] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and 
S. Mangard, “KASLR Is Dead: Long Live KASLR,” in Proceed-
ings of the 9th International Symposium on Engineering Secure 
Software and Systems (ESSoS ’17), pp.161–176: https://gruss.cc 
/files/kaiser.pdf.

[6] D. Hansen, “KAISER: Unmap Most of the Kernel from User-
space Page Table,” Linux Kernel Mailing List, October 2017: 
https://lkml.org/lkml/2017/10/31/884.

[7] K. Johnson, “KVA Shadow: Mitigating Meltdown on Win-
dows,” March 2018: https://blogs.technet.microsoft.com/srd 
/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/.

[8] V. Kiriansky and C. Waldspurger, “Speculative Buffer Over-
flows: Attacks and Defenses,” arXiv:1807.03757, 2018.

[9] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. 
Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and 
M. Hamburg, “Meltdown: Reading Kernel Memory from User 
Space,” in Proceedings of the 27th USENIX Security Symposium 
(USENIX Security ’18), pp. 973–990: https://www.usenix.org 
/system/files/conference/usenixsecurity18/sec18-lipp.pdf.

[10] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, 
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. 
Strackx, “Foreshadow: Extracting the Keys to the Intel SGX 
Kingdom with Transient Out-of-Order Execution,” in Proceed-
ings of the 27th USENIX Security Symposium (USENIX Secu-
rity ’18), pp. 991–1008: https://www.usenix.org/system/files 
/conference/usenixsecurity18/sec18-van_bulck.pdf.

XKCD xkcd.com

https://reverse.put.as/2018/01/07/measuring-osx-meltdown-patches-performance/
https://reverse.put.as/2018/01/07/measuring-osx-meltdown-patches-performance/
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://gruss.cc/files/rowhammerjs.pdf
https://gruss.cc/files/prefetch.pdf
file:///Users/linda/Clients/USENIX/2018%20USENIX/2019%20Winter_login/usenix%2010-11-18/mybox-selected(6)/3-Gruss/Engineering Secure Software and Systems (ESSoS '17), 
file:///Users/linda/Clients/USENIX/2018%20USENIX/2019%20Winter_login/usenix%2010-11-18/mybox-selected(6)/3-Gruss/Engineering Secure Software and Systems (ESSoS '17), 
https://gruss.cc/files/kaiser.pdf
https://gruss.cc/files/kaiser.pdf
https://lkml.org/lkml/2017/10/31/884
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
https://blogs.technet.microsoft.com/srd/2018/03/23/kva-shadow-mitigating-meltdown-on-windows/
arXiv:1807.03757
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-lipp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-van_bulck.pdf


www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 15

SECURITY

The Secure Socket API
TLS as an Operating System Service

M A R K  O ’ N E I L L ,  K E N T  S E A M O N S ,  A N D  D A N I E L  Z A P P A L A

TLS APIs are often complex, leading to developer mistakes. In addi-
tion, even with well-written applications, security administrators 
lack control over how TLS is used on their machines and don’t have 

the ability to ensure applications follow best practices. Our solution is to 
provide a Secure Socket API that is integrated into the well-known POSIX 
sockets API. This is both simple for developers to use and allows system 
administrators to set device policy for TLS. In this article, we both explain 
and demonstrate how the Secure Socket API works.

Transport Layer Security (TLS) is the most popular security protocol used on the Inter-
net. Proper use of TLS allows two network applications to establish a secure communica-
tion channel between them. However, improper use can result in vulnerabilities to various 
attacks. Unfortunately, popular security libraries, such as OpenSSL and GnuTLS, while 
feature-rich and widely used, have long been plagued by programmer misuse. The complexity 
and design of these libraries can make them hard to use correctly for application developers 
and even security experts. For example, Georgiev et al. find that the “terrible design of [secu-
rity library] APIs” is the root cause of authentication vulnerabilities [1]. Significant efforts 
to catalog developer mistakes and the complexities of modern security APIs have been 
published in recent years. As a result, projects have emerged that reduce the size of security 
APIs (e.g., libtls in LibreSSL), enhance library security [2], and perform certificate validation 
checks on behalf of vulnerable applications [3, 4]. A common conclusion of these works is 
that TLS libraries need to be redesigned to be simpler for developers to use securely.

A related problem is that the reliance on application developers to implement security inhib-
its the control administrators have over their own machines. For example, administrators 
cannot currently dictate what version of TLS, which ciphersuites, key sizes, etc. are used by 
applications they install. This coupling of application functionality with security policy can 
make otherwise desirable applications unadoptable by administrators with incompatible 
security requirements. This problem is exacerbated when security flaws are discovered in 
applications and administrators must wait for security patches from developers, which may 
not ever be provided.

The synthesis of these two problems is that developers lack a common, usable security API, 
and administrators lack control over secure connections. To address these issues, we present 
the Secure Socket API (SSA), a TLS API that leverages the existing standard POSIX socket 
API. This reduces the TLS API to a handful of functions that are already offered to and 
used by network programmers, effectively making the TLS API itself nearly transparent. 
This drastically reduces the code required to use TLS, as developers merely select TLS as 
if it were a built-in protocol, such as TCP or UDP. Moreover, our implementation of this API 
enables administrators to configure TLS policies system-wide and to centrally update all 
applications using the API.

Mark O’Neill is a PhD candidate 
in computer science at 
Brigham Young University and 
currently working at ManTech 
International. His research 

interests include security, networking, and 
artificial intelligence. His dissertation is an 
effort to solve modern problems in TLS by 
leveraging operating system and administrator 
control. When he’s not working on research, 
you can find him tinkering with robots and 
playing StarCraft 2. Mark@markoneill.name

Kent Seamons is a Professor 
of Computer Science at 
Brigham Young University 
and Director of the Internet 
Security Research Lab. His 

research interests are in usable security, 
privacy, authentication, and trust management. 
His research has been funded by NSF, DHS, 
DARPA, and industry. He is also a co-inventor 
on four patents in the areas of automated 
trust negotiation, single sign-on, and security 
overlays. seamons@cs.byu.edu 

Daniel Zappala is an Associate 
Professor of Computer Science 
at Brigham Young University 
and the Director of the Internet 
Research Lab. His research 

interests include network security and usable 
security. His research has been funded 
regularly by NSF and DHS. Daniel is an open 
source enthusiast and has used Linux and 
Emacs for about 30 years.  
zappala@cs.byu.edu



16   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY
The Secure Socket API: TLS as an Operating System Service

Secure Socket API Design
Under the POSIX socket API, developers specify their desired 
protocol using the last two parameters of the socket function, 
which specify the type of protocol (e.g., SOCK_DGRAM, SOCK_

STREAM) and optionally the protocol itself (e.g., IPPROTO_TCP). 
Corresponding network operations such as connect, send, and 
recv then use the selected protocol in a manner transparent to 
the developer. In designing the SSA, we sought to cleanly inte-
grate TLS into this API. Our design goals are as follows:

1. Enable developers to use TLS through the existing set of func-
tions provided by the POSIX socket API without adding any 
new functions or changing function signatures. Modifications 
to the API are acceptable only in the form of new values for 
existing parameters.

2. Support direct administrator control over the parameters and 
settings for TLS connections made by the SSA. Applications 
should be able to increase, but not decrease, the security pre-
ferred by the administrator.

3. Export a minimal set of TLS options to applications that allow 
general TLS use and drastically reduce the amount of functions 
in contemporary TLS APIs.

4. Facilitate the adoption of the SSA by other programming 
languages, easing the security burden on language implementa-
tions and providing broader security control to administrators.

To inform the design of the SSA, we first analyzed the OpenSSL 
API and its use by popular software packages. This included 
automated and manual assessment of 410 Ubuntu packages 
using TLS in client and server capacities, and assessment of the 
OpenSSL API itself. More details regarding our methods and 
results for this analysis are available at https://owntrust.org.

The API
Under the Secure Socket API, all TLS functionality is built 
directly into the POSIX socket API. The POSIX socket API was 
derived from Berkeley sockets and is meant to be portable and 
extensible, supporting a variety of network communication 
protocols. Under our SSA extension, developers select TLS by 
specifying IPPROTO_TLS as the protocol in socket. Applications 
send and receive data using standard functions such as send and 
recv, which will be encrypted and decrypted using TLS, just as 
network programmers expect their data to be placed inside and 
removed from TCP segments under IPPROTO_TCP. To transpar-
ently employ TLS in this fashion, other functions of the POSIX 
socket API have specialized TLS behaviors under IPPROTO_TLS 
as well. In particular, getsockopt and setsockopt are used for 
developer configuration. A complete listing of the behaviors 
of the POSIX socket functions and the TLS socket options are 
provided in our recent paper [5]. 

To avoid developer misuse of TLS, the SSA is responsible for 
automatic management of various TLS parameters and settings, 
including selection of TLS versions, ciphersuites and extensions, 
and validation of certificates. All of these are subject to a system 
configuration policy with secure defaults, and customization 
options are exported to system administrators and developers.

To offer concrete examples of SSA use, we show code for a 
simple client and server below. Both the client and the server 
create a socket with the IPPROTO_TLS protocol. The client uses 
the standard connect function to connect to the remote host, 
also employing a new AF_HOSTNAME address family to indicate 
which hostname it wishes to connect to. In this case, the con-

nect function performs the necessary host lookup and performs 
a TLS handshake with the resulting address. Alternatively, the 
client could have specified the hostname via a new socket option 
and called connect using traditional INET address families. The 
former method obviates the need for developers to explicitly 
call gethostbyname or getaddrinfo, which further simplifies 
their code. Either way, the SSA uses the provided hostname for 
certificate validation and the Server Name Indication extension 
to TLS. Later, the client uses send to transmit a plaintext HTTP 
request to the server, which is encrypted by the SSA before 
transmission. The response received is also decrypted by the 
SSA before placing it into the buffer provided by recv. 

In the server case, the application binds and listens on port 443. 
Before it calls listen, it uses two calls to setsockopt to provide 
the location of its private key and certificate chain file to be used 
for authenticating itself to clients during the TLS handshake. 
Afterward, the server iteratively handles requests from incom-
ing clients, and the SSA performs a TLS handshake with clients 
transparently. As with the client case, calls to send and recv 
have their data encrypted and decrypted in accordance with the 
TLS session, before they are delivered to their destinations.

/* Use hostname address family */

struct sockaddr_host addr;

addr.sin_family = AF_HOSTNAME;

strcpy(addr.sin_addr.name, “www.example.com”);

addr.sin_port = htons(443);

/* Request a TLS socket (instead of TCP) */

fd = socket(PF_INET, SOCK_STREAM, IPPROTO_TLS);

/* TLS Handshake (verification done for us) */

connect(fd, &addr, sizeof(addr));

/* Hardcoded HTTP request */

char http_request[] = “GET / HTTP/1.1\r\n...”

char http_response[2048];

memset(http_response, 0, 2048);

/* Send HTTP request encrypted with TLS */



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 17

SECURITY
The Secure Socket API: TLS as an Operating System Service

send(fd,http_request,sizeof(http_request)-1,0);

/* Receive decrypted response */

recv(fd, http_response, 2047, 0);

/* Shutdown TLS connection and socket */

close(fd);

return 0;

Listing 1: A simple HTTPS client example under the SSA. Error checks and 
some trivial code are removed for brevity. 

/* Use standard IPv4 address type */

struct sockaddr_in addr;

addr.sin_family = AF_INET;

addr.sin_addr.s_addr = INADDR_ANY;

addr.sin_port = htons(443);

/* Request a TLS socket */

fd = socket(PF_INET, SOCK_STREAM, IPPROTO_TLS);

bind(fd, &addr, sizeof(addr));

/* Assign certificate chain */

setsockopt(fd,  IPPROTO_TLS, 

 TLS_CERTIFICATE_CHAIN,

 CERT_FILE, sizeof(CERT_FILE));

/* Assign private key */

setsockopt(fd,  IPPROTO_TLS,

 TLS_PRIVATE_KEY,

 KEY_FILE, sizeof(KEY_FILE));

listen(fd, SOMAXCONN);

while (1) {

  struct sockaddr_storage addr;

  socklen_t addr_len = sizeof(addr);

  /* Accept new client and do TLS handshake

  using cert and keys provided */

  int c_fd = accept(fd, &addr, &addr_len);

  /* Receive decrypted request */

  recv(c_fd, request, BUFFER_SIZE, 0);

  handle_req(request, response);

  /* Send encrypted response */

  send(c_fd, response, BUFFER_SIZE, 0);

  close(c_fd);

}

Listing 2: A simple server example under the SSA. Error checks and some 
trivial code are removed for brevity.

Administrator Options
Reflecting our second goal, administrator control over TLS 
parameters, the SSA gives administrators a protected configura-
tion file that allows administrators to indicate their preferences 
for TLS versions, ciphersuites, certificate validation method-
ologies, extensions, and other TLS settings. These settings 
are applied to all TLS connections made with the SSA on the 

machine. However, additional configuration profiles can be cre-
ated or installed by the administrator for specific applications 
that override global settings.

Our definition of administrators includes both power users 
as well as operating system vendors, who may wish to provide 
strong default policies for their users. 

Developer Options
The setsockopt and getsockopt POSIX functions provide a 
means to support additional settings in cases where a protocol 
offers more functionality than can be expressed by the limited 
set of principal functions. Linux, for example, supports 34 TCP-
specific socket options to customize protocol behavior. Arbitrary 
data can be transferred to and from the API implementation 
using setsockopt and getsockopt, because they take a generic 
pointer and a data length (in bytes) as parameters, along with an 
optname constant identifier. Adding a new option can be done 
by merely defining a new optname constant to represent it and 
adding appropriate code to the implementation of setsockopt 
and getsockopt.

In accordance with this standard, the SSA adds a few options 
for IPPROTO_TLS. These options include setting the remote 
hostname, specifying a certificate chain or private key, setting 
a session TTL, disabling a cipher, requesting client authentica-
tion, and others. A full list is given in our recent paper [5]. Our 
specification of TLS options reflects a minimal set of recom-
mendations gathered from our analysis of existing TLS use by 
applications, in keeping with our third design goal. 

Porting Applications to the SSA
We modified the source code of four network programs to use 
the SSA for their TLS functionality. Two of these already used 
OpenSSL for their TLS functionality, and two were not built to 
use TLS at all. Table 1 summarizes the results of these efforts.

Both the command-line wget web client and the lighttpd web 
server required fewer than 20 lines of source code (Table 1), and 
each application was modified by a developer who had no prior 
experience with the code of these tools, the SSA, or OpenSSL. In 
addition, the modifications made it possible to remove thousands 
of lines of existing code. In porting these applications, most of 
the time spent was used to become familiar with the source code 
and remove OpenSSL calls.

We also modified an in-house web server and the netcat utility, 
neither of which previously supported TLS. The web server 
required modifying only one line of code—the call to socket 
to use IPPROTO_TLS on its listening socket. Under these cir-
cumstances, the certificate and private key used are from the 
SSA configuration. However, these can be specified by the 
application with another four lines of code to set the private 



18   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY
The Secure Socket API: TLS as an Operating System Service

key and  certificate chain and check for corresponding errors. 
The TLS upgrade for netcat for both server and client connec-
tions required modifying five lines of code. In both cases, TLS 
upgrades required less than 10 minutes. 

Language Support
One of the benefits of using the POSIX socket API as the basis 
for the SSA is that it is easy to provide SSA support to a vari-
ety of languages, which is in line with our fourth design goal. 
This benefit accrues if an implementation of the SSA instru-
ments the POSIX socket functionality in the kernel through the 
system-call interface. Any language that uses the network must 
interface with network system calls, either directly or indirectly. 
Therefore, given an implementation in the kernel, it is trivial to 
add SSA support to other languages.

To illustrate this benefit, we have added SSA support to three 
additional languages beyond C/C++: Python, PHP, and Go. Sup-
porting these first two languages merely required making their 
corresponding interpreters aware of the additional constant val-
ues used in the SSA, such as IPPROTO_TLS. Since Go uses system 
calls directly and exports its own wrapper for these, we followed 
the same pattern by creating new wrappers for SSA functional-
ity, which required fewer than 50 lines of code.

Implementation
We have developed a loadable Linux kernel module that imple-
ments the Secure Socket API. Source code is available at https://
owntrust.org. A high-level view of a typical network application 
using a security library for TLS is shown in Figure 1. The appli-
cation links to the security library, such as OpenSSL or GnuTLS, 
and then uses the POSIX socket API to communicate with the 
network subsystem in the kernel, typically using a TCP socket.

A corresponding diagram, Figure 2, illustrates how our imple-
mentation of the SSA compares to this normal usage. We split 
our SSA implementation into two parts: a kernel component 
and a userspace encryption daemon. At a high-level, the kernel 
component is responsible for registering all IPPROTO_TLS func-
tionality with the kernel and maintaining state for each TLS 

socket. The kernel component offloads the tasks of encryption 
and decryption to the encryption daemon, which uses OpenSSL 
and obeys administrator preferences.

Note that our prototype implementation moves the use of a secu-
rity library to the encryption daemon. The application interacts 
only with the POSIX socket API, and the encryption daemon 
establishes TLS connections, encrypts and decrypts data, imple-
ments TLS extensions, and so forth. The daemon uses adminis-
trator configuration to choose which TLS versions, ciphersuites, 
and extensions to support.

Program LOC 
Modified

LOC 
Removed Time Taken

wget 15 1,020 5 hrs.

lighttpd 8 2,063 5 hrs.

ws-event 5 0 5 min.

netcat 5 0 10 min.

Table 1: Summary of code changes required to port a sample of applica-
tions to use the SSA. wget and lighttpd used existing TLS libraries, 
ws-event and netcat were not originally TLS-enabled. 

Figure 1: Data flow for traditional TLS library by network applications. The 
application shown is using TCP.

Figure 2: Data flow for SSA usage by network applications. The applica-
tion shown is using the TLS, which uses TCP internally for connection-
based SOCK_STREAM sockets.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 19

SECURITY
The Secure Socket API: TLS as an Operating System Service

Alternative Implementations
POSIX is a set of standards that defines an OS API—the imple-
mentation details are left to system designers. Accordingly, 
our presentation of the SSA with its extensions to the existing 
POSIX socket standard and related options is separate from the 
presented implementation. While our implementation leveraged 
a userspace encryption daemon, other architectures are possible. 
We outline two of these:

◆◆ Userspace only: The SSA could be implemented as a userspace 
library that is either statically or dynamically linked with an 
application, wrapping the native socket API. Under this model 
the library could request administrator configuration from 
default system locations to retain administrator control of 
TLS parameters. While such a system sacrifices the inherent 
privilege separation of the system-call boundary and language 
portability, it would not require that the OS kernel explicitly 
support the API.

◆◆ Kernel only: Alternatively, an implementation could build all 
TLS functionality directly into the kernel, resulting in a pure 
kernel solution. This idea has been proposed within the Linux 
community [6] and gained some traction in the form of patches 
that implement individual cryptographic components. Some 
performance gains in TLS are also possible in this space. Such 
an implementation would provide a back end for SSA function-
ality that required no userspace encryption daemon.

Discussion
Our work explores a TLS API conforming to the POSIX socket 
API. We reflect now on the general benefits of this approach and 
the specific benefits of our implementation.

By conforming to the POSIX API, using TLS becomes a matter 
of simply specifying TLS rather than TCP during socket creation 
and setting a small number of options. All other socket calls 
remain the same, allowing developers to work with a familiar 
API. Porting insecure applications to use the SSA takes minutes, 
and refactoring secure applications to use the SSA instead of 
OpenSSL takes a few hours and removes thousands of lines of 
code. This simplified TLS interface allows developers to focus 
on the application logic that makes their work unique rather than 
spending time implementing standard network security.

Because our SSA design moves TLS functionality to a central-
ized service, administrators gain the ability to configure TLS 
behavior on a system-wide level, and tailor settings of individual 
applications to their specific needs. Default configurations can 
be maintained and updated by OS vendors, similar to Fedora’s 
CryptoPolicy [7]. For example, administrators can set prefer-
ences for TLS versions, ciphersuites, and extensions, or auto-
matically upgrade applications to TLS 1.3 without developer 
patches.

By implementing the SSA with a kernel module, developers who 
wish to use it do not have to link with any additional userspace 
libraries. With small additions to libc headers, C/C++ appli-
cations can use IPPROTO_TLS. Other languages can be easily 
modified to use the SSA, as demonstrated with our efforts to add 
support to Go, Python, and PHP.

Adding TLS to the Linux kernel as an Internet protocol allows 
the SSA to leverage the existing separation of the system call 
boundary. Due to this, privilege separation in TLS usage can 
be naturally achieved. For example, administrators can store 
private keys in a secure location inaccessible to applications. 
When applications provide paths to these keys using setsock-

opt (or use them from the SSA configuration), the SSA can read 
these keys with its elevated privilege. If the application becomes 
compromised, the key data (and master secret) remain outside 
the address space of the application.

Conclusion
We feel that the POSIX socket API is a natural fit for a TLS API 
and hope to see it advanced through its use, new implementa-
tions, and standardization. We hope to encourage community 
involvement to further refine our implementation and help 
develop support in additional operating systems. For source code 
and documentation, please visit https://owntrust.org. For a more 
in-depth look at the SSA, see our paper presented at USENIX 
Security 2018 [5].

Acknowledgments
This work was supported in part by the National Sci-
ence Foundation under Grant No. CNS-1528022 and the 
Department of Homeland Security under contract number 
HHSP233201600046C.



20   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY
The Secure Socket API: TLS as an Operating System Service

References
[1] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. 
Shmatikov, “The Most Dangerous Code in the World: Validating 
SSL Certificates in Non-Browser Software,” in Proceedings of 
the ACM Conference on Computer and Communications Secu-
rity (CCS ’12), pp. 38–49: http://www.cs.utexas.edu/~shmat 
/shmat_ccs12.pdf.

[2] L. S. Amour and W. M. Petullo, “Improving Application 
Security through TLS-Library Redesign,” in Security, Privacy, 
and Applied Cryptography Engineering (SPACE), Springer, 
2015, pp. 75–94.

[3] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D. Tian, K. 
R. Butler, and A. Alkhelaifi, “Securing SSL Certificate Verifi-
cation through Dynamic Linking,” in Proceedings of the ACM 
Conference on Computer and Communications Security (CCS ’14), 
pp. 394–405.

[4] M. O’Neill, S. Heidbrink, S. Ruoti, J. Whitehead, D.  Bunker, 
L. Dickinson, T. Hendershot, J. Reynolds, K. Seamons, and D. 
Zappala, “TrustBase: An Architecture to Repair and Strengthen 
Certificate-Based Authentication,” in Proceedings of the 26th 
USENIX Security Symposium (USENIX Security ’17): https:// 
www.usenix.org/system/files/conference/usenixsecurity17 
/sec17-oneill.pdf.

[5] M. O’Neill, S. Heidbrink, J. Whitehead, T. Perdue, L. Dick-
inson, T. Collett, N. Bonner, K. Seamons, and D. Zappala, “The 
Secure Socket API: TLS as an Operating System Service,” in 
Proceedings of the 27th USENIX Security Symposium (USENIX 
Security ’18), pp. 799–816: https://www.usenix.org/system/files 
/conference/usenixsecurity18/sec18-o_neill.pdf.

[6] J. Edge, “TLS in the Kernel,” LWN.net: https://lwn.net 
/Articles/666509/; accessed: December 15, 2017.

[7] N. Mavrogiannopoulos, M. Trmac, and B. Preneel, “A Linux 
Kernel Cryptographic Framework: Decoupling Cryptographic 
Keys from Applications,” in Proceedings of the 27th ACM Sym-
posium on Applied Computing (SAC ’12), pp. 1435–1442: https:// 
core.ac.uk/download/pdf/34512267.pdf.

http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-oneill.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-oneill.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-oneill.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-o_neill.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-o_neill.pdf
https://lwn.net/Articles/666509/
https://lwn.net/Articles/666509/
https://core.ac.uk/download/pdf/34512267.pdf
https://core.ac.uk/download/pdf/34512267.pdf


www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 21

SECURITY

Strings Considered Harmful
E R I K  P O L L

Buggy parsers are an important source of security vulnerabilities 
in software: many attacks use malicious inputs designed to exploit 
parser bugs. Some security flaws in input handling do not exploit 

parser bugs, but exploit correct—albeit unexpected—parsing of inputs caused 
by the forwarding of inputs between systems or components. This article, 
based on an earlier workshop paper [11], discusses anti-patterns and rem-
edies for this type of flaw, including the anti-pattern mentioned in the title.

LangSec and Parsing Flaws
The LangSec paradigm [3, 8] gives good insights into the root causes behind the majority of 
security problems in software, which are problems in handling inputs. It recognizes that the 
input languages used play a central role. More particularly, it identifies the following root 
causes for security problems: the sheer number of input languages that a typical application 
handles; their complexity; their expressivity; the lack of clear, unambiguous specifications 
of these languages; and the handwritten parser code (which often mixes the parsing and 
subsequent processing, in so-called shotgun parsers, where input is parsed piecemeal and in 
various stages scattered throughout the code). All this leads to parser bugs, with buffer over-
flows in processing file formats such as Flash or network packets for protocols such as TLS 
as classic examples. It can also lead to differences between parsers that can be exploited, 
with, for example, variations in interpreting X509 certificates [6] as a result. In all cases, 
these bugs provide weird behavior—a so-called weird machine, in LangSec terminology—
that attackers can try to abuse.

Much of the LangSec research therefore concentrates on preventing parsing flaws: by having 
simpler input languages; by having clearer, formal specs for them; and by generating parser 
code to replace handwritten parsers, using tools such as Hammer (https://github.com 
/UpstandingHackers/hammer), Nail [2], or protocol buffers (https://developers.google.com 
/protocol-buffers). For a more thorough discussion of LangSec anti-patterns and remedies, 
see [8]. 

Forwarding Flaws
However, not all input-related security flaws are due to buggy parsing. A large class of flaws 
involves the careless forwarding of malicious input by some front-end application to some 
back-end service or component where the input is correctly—but unexpectedly and uninten-
tionally—parsed and processed (Figure 1). Classic examples are format string attacks, SQL 
injection, command injection, path traversal, and XSS.

In the case of a SQL injection attack, the web server is the front end and SQL database is 
the back end. In the case of a format string attack, the back end is not a separate system like 
a database but consists of the C system libraries. In an XSS attack, the web browser is the 
back end and the web server the front end; this can get more complex, e.g., in reflected XSS 
attacks, where malicious input is forwarded back and forth between browser and server 
before finally doing damage in the browser.

Erik Poll is Associate Professor 
at Radboud University Nijmegen. 
His research focuses on the use 
of formal methods to analyze 
the security of systems, espe-

cially of the software involved. Application 
areas that provided case studies for his re-
search include smart cards, security protocols, 
payment systems, and smart grids. 
erikpoll@cs.ru.nl

https://github.com
https://developers.google.com


22   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY
Strings Considered Harmful

Forwarding attacks do not (necessarily) exploit parser bugs: the 
back-end service, say the SQL database, may well parse and pro-
cess its inputs correctly. The problem is not that this SQL func-
tionality is buggy but rather that it can be triggered by attackers 
that feed malicious input to the front end. Unlike attacks that 
exploit parsing bugs, where attackers abuse weird behavior intro-
duced accidentally, attackers here abuse functionality that has 
been introduced deliberately but which is exposed accidentally.

Forwarding flaws are also called injection flaws, e.g., in the 
OWASP Top Ten, where they occupy the first spot. We prefer the 
term “forwarding flaws” because in some sense all input attacks 
are injection attacks; the forwarding aspect is what sets these 
input attacks apart from the others.

Input or Output Problem?
Forwarding flaws involve two systems—a front-end application 
and a back-end service—and both input and output, since the 
malicious input to the front end ultimately ends up as output 
from the front end to the back end. This not only introduces the 
question of how to tackle this problem but also the question of 
where to tackle it. Should the front end prevent untrusted input 
from ending up in the back end, and if so, should it sanitize data 
at the program point where the data is output to the back end, or 
should it do that earlier, at the program point where it received 
the original malicious input? Or should the back end simply 
not provide such a dangerously powerful interface to the front 
end? We can recognize anti-patterns that can lead to forward-
ing flaws, or to bad solutions in tackling them, as well as some 
remedies to address them in a structural way.

Anti-Pattern: Input Sanitization
There are very different ways to treat invalid or dangerous input. 
It can be completely rejected or it can be sanitized. Sanitiza-
tion can be done by escaping or encoding dangerous characters 
to make them harmless, typically by adding backslashes or 
quotes, or by stripping dangerous characters and keywords. A 

 complication here is that ideally one would like to validate input 
at the point where the input enters an application, because at 
that program point it is clear whether such input is untrusted or 
not. However, at that point we may not yet know in which context 
the input will be used, and different contexts may require differ-
ent forms of escaping. For example, the same input string could 
be used in a path name, a URL, an SQL query, and in HTML text, 
and these contexts may require different forms of escaping.

Because escaping is context-sensitive in this way, it is well 
known that using one generic operation to sanitize all input is 
highly suspect, as one generic operation is never going to provide 
the right escaping for a variety of back-end systems. This also 
means that input sanitization, i.e., sanitization at the point of 
input rather than at the point of output, is suspect since the con-
text typically is not known there.

The classic example here is the infamous PHP magic quotes 
setting, which caused all incoming data to be automatically 
escaped. It took a while to reach consensus that this was a bad 
idea: magic quotes were deprecated in PHP 5.3.0 and finally 
removed in PHP 5.4.0 in 2012.

Anti-Pattern: String Concatenation
A well-known anti-pattern in forwarding attacks is the use of 
string concatenation. Concatenating several pieces of data, some 
of which are user input, and feeding the result to an API call, as 
is done in dynamic SQL queries, is the classic recipe for disaster.

Given that the LangSec approach highlights the importance 
of parsing, it is interesting to note that string concatenation is 
a form of unparsing. Indeed, the whole problem in forwarding 
attacks is that the back-end service parses strings in a different 
way than the front end intended.

Anti-Pattern: Strings
We would argue that a more general anti-pattern than the use of 
string concatenation for dynamic queries is the use of strings at 
all. There are several reasons why heavy use of strings can spell 
trouble:

◆◆ Strings can be used for all sorts of data: usernames, email 
addresses, file names, URLs, fragments of HTML, pieces of 
JavaScript, etc. This makes it a very useful and ubiquitous data 
type, but it also causes confusion: from a generic string type, we 
cannot tell what the intended use of the data is or, for instance, 
whether it has been escaped or validated.

◆◆ Strings are by definition unparsed data. So if a program uses 
strings, it typically has to do parsing at runtime. Much of this 
parsing could be avoided if more structured forms of data were 
used instead. The extra parsing creates a lot of room for trouble, 
especially in combination with the point above, which tells us 
that the same string might end up in different parsers.

Figure 1: Processing vs. forwarding flaws



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 23

SECURITY
Strings Considered Harmful

The shotgun parsing that the LangSec literature warns against, 
where partial and piecemeal parsing is spread throughout an 
application, also inevitably involves the use of strings, namely for 
passing around unparsed fragments of input.

◆◆ String parameters often bring unwanted expressivity. Interfaces 
that take strings as a parameter often introduce a whole new 
language (e.g., HTML, SQL, the language of pathnames, OS 
shell commands, or format strings), with all sorts of expressive 
power that may not be necessary and which only provides a 
security risk.

In summary, the problem with strings is that it is one generic 
data type, for completely unstructured data, and for many kinds 
of data, obscuring the fact that there are many different lan-
guages involved, possibly very expressive ones, each with its own 
interpretation. Of course, others have warned about the use of 
strings before, e.g., [1].

The disadvantages above apply equally to char pointers in C, 
string objects in C++, or String objects in Java. Of course, for 
security it is better to use memory-safe, type-safe, or immutable 
and hence thread-safe data types rather than more error-prone 
versions.

Remedy: Reducing Expressive Power
An obvious way to prevent forwarding flaws, or at least mitigate 
the potential impact, is to reduce the expressive power exposed 
by the interface between the front end and the back end.

For SQL injections this can be done with parameterized queries 
(or with stored procedures, provided that these are safe). The use 
of parameterized queries reduces the expressive power of the 
interface to the back-end database, and it reduces the amount of 
runtime parsing. So clearly this mechanism involves key aspects 
highlighted in the LangSec approach, namely expressivity and 
parsing.

Remedy: Types to Distinguish Languages and 
Formats
Different types in the programming language can be used to 
distinguish the different languages or data formats that an appli-
cation handles. These types reduce ambiguity: ambiguity about 
the intended use of data and ambiguity about whether or not it 
has been parsed and validated. This then also reduces the scope 
for unintended interactions.

Note that standard security flaws such as double decoding bugs 
or problems with null terminator characters in strings also 
indicate confusion about data representations that use of a type 
system could—and should—prevent.

For example, an application could use different types for URLs, 
usernames, email addresses, file names, and fragments of 
HTML. The type checker can then complain when a username 
is included inside HTML and force the programmer to add an 
escaping function to turn a username into something that is safe 
to render as HTML.

For data that is really just a string, like a username, one might 
use a struct or object with a single string field. (Type annota-
tions, as exist in Java for example, could also be used to distin-
guish different kinds of strings [10].) However, for structured 
data, say a URL, the type would ideally not just be a wrapper for 
the unparsed string but, instead, an object or struct with fields 
and/or methods for the different components, such as the proto-
col, domain, path, etc., to reduce the amount of code that handles 
data in unparsed form.

When data is forwarded between components inside an applica-
tion or between applications written in the same programming 
language, data can be forwarded “as is,” with all type infor-
mation preserved and without the need for any (un)parsing. 
However, when data is exchanged with external systems, it may 
have to be serialized and deserialized. Here the risk of parsing 
bugs re-emerges, and the classic LangSec strategies to avoid 
these should be followed by, ideally, generating the code for (de)
serialization from a formal spec.

Remedy: Types to Distinguish Trust Levels
Types can also be used for different trust levels. This then allows 
information f lows from untrusted sources in the code to be 
traced and restricted. An example would be to use different 
types for trusted string constants hard coded in the application 
and for untrusted (aka tainted) strings that stem from user input 
to then only allow the former to be used as parameters to certain 
security-sensitive operations.

Efforts at Google to prevent XSS in web applications [7] use 
types in this way (https://github.com/google/safe-html-types 
/blob/master/doc/index.md). For instance, it uses different 
types to distinguish

◆◆ URLs that can be used in HTML documents or as arguments 
to DOM APIs, but not in contexts where this would lead to the 
referred resource being executed as code, and

◆◆ more trusted URLs that can also be used to fetch JavaScript 
code (e.g., by using them as scr of a script element).

A more recent proposal to combat XSS, called Trusted Types 
(https://github.com/WICG/trusted-types), extends Google’s 
approach to fighting XSS using types by replacing all string-
based APIs of the DOM with typed APIs. This approach tackles 
the root cause that makes it so hard to deal with the more com-
plicated forms of (DOM-based) XSS: the ubiquitous use of string 
parameters in the DOM APIs.

https://github.com/google/safe-html-types
https://github.com/WICG/trusted-types


24   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY
Strings Considered Harmful

The two ways to use types—to distinguish different kinds of 
data or different trust levels—are of course orthogonal and can 
be combined. Using trust levels for security goes back to work on 
information flow in the 1970s [4]. It has been used in many static 
and dynamic analyses over the years, including many security 
type systems and source code analyzers, and has given rise to a 
whole research field of language-based information-flow secu-
rity [12].

Clearly, the notion of information flow goes to the heart of what 
forwarding flaws are about. A type system for information flow 
is precisely what can solve the fundamental problem of keep-
ing track of whether data has been or should be validated or 
sanitized. Instead of just tracking untrusted data to prevent 
malicious input from being forwarded to places where it can do 
damage, type systems for information flow can also be used to 
track confidential information to prevent information leaks  
(see, e.g., [5]).

Beyond Types: Programming Language Support
Instead of using the type system of a programming language 
to distinguish the different languages and data formats that an 
application has to handle, one can go one step further and pro-
vide native support for them in the programming language. This 
approach is taken in Wyvern [9], called a type-specific program-
ming language by the designers.

An added advantage is that the programming language can 
provide more convenient syntax to tempt programmers away 
from convenient but insecure coding styles. For example, it can 
provide syntax for safe parameterized SQL queries that is just 
as convenient as the unsafe dynamic SQL queries, with the nice 
infix notation for string concatenation that programmers like. 
The idea is that a type-specific programming language allows 
any number of input and output languages to be embedded. 
In the original use case of web programming, the embedded 
languages would include SQL and HTML. These languages then 
show up as different types in the programming languages, with 
all the convenient syntax support.

Conclusion
Many of the remedies suggested by the LangSec paradigm focus 
on eradicating parser bugs: e.g., insisting on clear specifications 
of input languages, keeping these languages simple, generating 
parsers from formal specs instead of handrolling written parser 
code, and separating parsing and subsequent processing in an 
attempt to avoid shotgun parsers.

However, these remedies are not sufficient to root out forward-
ing flaws, which can exist even if our code does not contain any 
parser bugs. Fortunately, there are remedies to tackle forwarding 
flaws, as discussed above, which already appear in the literature 
and in practice:

◆◆ Using more structured forms of data than strings

◆◆ Using types, not only to distinguish different languages and 
formats that are manipulated (e.g., distinguishing HTML from 
SQL), but also to distinguish different trust assumptions about 
the data (e.g., distinguishing untrusted user input from sani-
tized values or constants)

The (anti-)patterns we discussed all center around the familiar 
LangSec themes of parsing and the expressive power of input 
languages; the remedies try to reduce expressive power, reduce 
the potential for confusion and mistakes in (un)parsing, or avoid 
(un)parsing altogether.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 25

SECURITY
Strings Considered Harmful

References
[1] I. Arce, K. Clark-Fisher, N. Daswani, J. DelGrosso, D. Dhil-
lon, C. Kern, T. Kohno, C. Landwehr, G. McGraw, B. Schoenfield, 
M. Seltzer, D. Spinellis, I. Tarandach, and J. West, “Avoiding 
the Top 10 Software Security Design Flaws,” Technical Report, 
IEEE Computer Society Center for Secure Design (CSD), 2014.

[2] J. Bangert and N. Zeldovich, “Nail: A Practical Tool for 
Parsing and Generating Data Formats,” ;login:, vol. 40, no. 1 
( USENIX, 2015), pp. 24–30: https://www.usenix.org/system 
/files/login/articles/login_feb15_06_bangert.pdf.

[3] S. Bratus, M. E. Locasto, M. L. Patterson, L. Sassaman, and 
A. Shubina, “Exploit Programming: From Buffer Overflows to 
Weird Machines and Theory of Computation,” ;login:, vol. 36, no. 
6 (USENIX, 2011), pp. 13–21: https://www.usenix.org/system 
/files/login/articles/105516-Bratus.pdf. 

[4] D. E. Denning and P. J. Denning, “Certification of Programs 
for Secure Information Flow,” Communications of the ACM, vol. 
20, no. 7, 1977, pp. 504–513: https://www.cs.utexas.edu/~shmat 
/courses/cs380s/denning.pdf.

[5] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. 
Roesner, K. Koscher, P. B. Barros, R. Bhoraskar, S. Han, P. Vines, 
and E. X. Wu, “Collaborative Verification of Information Flow 
for a High-Assurance App Store,” in Proceedings of the ACM 
Conference on Computer and Communications Security (CCS ’14), 
pp. 1092–1104: https://homes.cs.washington.edu/~mernst/pubs 
/infoflow-ccs2014.pdf.

[6] D. Kaminsky, M .L. Patterson, and L. Sassaman, “PKI Layer 
Cake: New Collision Attacks against the Global X.509 Infra-
structure,” in Financial Cryptography and Data Security, vol. 
6054 of LNCS (Springer, 2010), pp. 289–303: https://www.esat 
.kuleuven.be/cosic/publications/article-1432.pdf.

[7] C. Kern, “Securing the Tangled Web,” Communications of the 
ACM, vol. 57, no. 9, 2014, pp. 38–47.

[8] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, 
“The Seven Turrets of Babel: A Taxonomy of LangSec Errors 
and How to Expunge Them,” in Proceedings of the IEEE Confer-
ence on Cybersecurity Development (SecDev ’16), pp. 45–52: 
http://langsec.org/papers/langsec-cwes-secdev2016.pdf.

[9] C. Omar, D. Kurilova, L. Nistor, B. Chung, A. Potanin, and 
J. Aldrich, “Safely Composable Type-Specific Languages,” 
in ECOOP 2014—Object-Oriented Programming, vol. 8586 of 
LNCS (Springer, 2014), pp. 105–130: http://www.cs.cmu.edu/ 
~aldrich/papers/ecoop14-tsls.pdf.

[10] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. 
D. Ernst, “Practical Pluggable Types for Java,” in Proceed-
ings of the 2008 International Symposium on Software Test-
ing and Analysis (ISSTA ’08), pp. 201–212: https://homes.cs 
.washington.edu/~mernst/pubs/pluggable-checkers-issta2008 
.pdf.

[11] E. Poll, “LangSec Revisited: Input Security Flaws of the 
Second Kind,” in Proceedings of the IEEE Symposium on Secu-
rity and Privacy Workshops, 2018, pp. 329–334: http://spw18 
.langsec.org/papers/Poll-Flaws-of-second-kind.pdf.

[12] A. Sabelfeld and A. C. Myers, “Language-Based Informa-
tion-Flow Security,” IEEE Journal on Selected Areas in Commu-
nications, vol. 21, no. 1, 2003, pp. 5–19: https://www.cs.cornell 
.edu/andru/papers/jsac/sm-jsac03.pdf.

https://www.usenix.org/system/files/login/articles/login_feb15_06_bangert.pdf
https://www.usenix.org/system/files/login/articles/login_feb15_06_bangert.pdf
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
https://www.cs.utexas.edu/~shmat/courses/cs380s/denning.pdf
https://www.cs.utexas.edu/~shmat/courses/cs380s/denning.pdf
https://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
https://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
https://www.esat.kuleuven.be/cosic/publications/article-1432.pdf
https://www.esat.kuleuven.be/cosic/publications/article-1432.pdf
http://langsec.org/papers/langsec-cwes-secdev2016.pdf
http://www.cs.cmu.edu/~aldrich/papers/ecoop14-tsls.pdf
http://www.cs.cmu.edu/~aldrich/papers/ecoop14-tsls.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://spw18.langsec.org/papers/Poll-Flaws-of-second-kind.pdf
http://spw18.langsec.org/papers/Poll-Flaws-of-second-kind.pdf
https://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
https://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf


26   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY

CSET ’18
The 11th USENIX Workshop on Cyber Security Experimentation and Test

P E T E R  A .  H .  P E T E R S O N

The 11th USENIX Workshop on Cyber Security Experimentation and 
Test (CSET ’18) was held in Baltimore, Maryland, on Monday, August 
13th, 2018—one of the co-located workshops preceding the 27th 

USENIX Security Symposium. The CSET Call for Papers “invites submis-
sions on cyber security evaluation, experimentation, measurement, metrics, 
data, simulations, and testbeds.” In other words, CSET emphasizes tools and 
methods in the service of computer security testing and research, making 
it somewhat unique. This year, our program consisted of 10 papers in four 
themed sessions and a panel. As usual, discussion was friendly and lively.

Data and Guidance was our first session, chaired by Christian Collberg. Josiah Dykstra pre-
sented the methodology and design behind the Cyber Operations Stress Survey (COSS), an 
instrument for measuring the effects of tactical cyber operations on the stress of operators. 
Stress, in the context of the COSS, is represented in terms of an operator’s fatigue (measured 
using the Samn-Perelli Fatigue Scale, or SPFS), frustration, and cognitive workload (using 
the NASA Task Load Index, or TLX). Other contextual factors about an operation, such as 
team synergy and duration of the operation, are also captured. The COSS was used in four 
studies of tactical cyber operations with consistent results, demonstrating that the method 
was internally and externally reliable. The results of the project were presented in terms of 
lessons learned through the development and use of the COSS tool, including how low initial 
enthusiasm was mitigated by presenting initial results to operators to show their value, 
and how results led to policy changes. The paper also described how some of the contextual 
factors were chosen through pilot testing; one surprising result was that caffeine had no 
relationship to stress!

Next, Tyler Moore presented “Cybersecurity Research Datasets: Taxonomy and Empirical 
Analysis,” a work that analyzed 965 recent papers for information about how the authors 
used, created, or shared data sets, and how those choices correlated to other factors, such as 
whether new data sets were shared and the citation count of the papers. They also created 
a taxonomy based on their observations. While the community values sharing data sets as 
a service, researchers may be reluctant to do so for privacy, competitive advantage, or other 
reasons. The authors’ results suggest that there is a self-interested incentive to publish data 
sets—citation counts. The papers in their pool that created and released data sets received 
42% more citations than papers that did not use data sets or used only public data, and 53% 
more citations per year than papers that created data sets but did not release them. Thus, in 
addition to altruism, authors may want to consider whether they would benefit more from 
citations than they might suffer due to competition.

After this, Samuel Marchal from Aalto University in Finland discussed “On Designing and 
Evaluating Phishing Webpage Detection Techniques for the Real World,” which explores the 
state of phishing detection research, raising concerns about the effectiveness of detection 
strategies in terms of detection performance, temporal resilience, deployability, and usabil-
ity. Too much focus, they said, is placed on numerical accuracy in an artificial environment, 

Peter A. H. Peterson is 
an Assistant Professor of 
Computer Science at the 
University of Minnesota, 
Duluth, where he teaches and 

researches operating systems and security, 
with a focus on R&D to make security 
education more effective and accessible. 
He received his PhD from the University 
of California, Los Angeles, for work on 
“Adaptive Compression”—systems that make 
compression decisions dynamically to improve 
efficiency. He served as the Co-Chair of  
CSET ’18. pahp@d.umn.edu



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 27

SECURITY
CSET ’18: The 11th USENIX Workshop on Cyber Security Experimentation and Test

without enough consideration of realism, practicality, change in 
accuracy over time, or comparability between experiments. For 
non-phish ground-truth examples, they suggest incorporating 
low- and high-popularity sites and using the full URLs that a 
user would see. For phish ground-truth examples, they recom-
mend manual inspection to ensure that the data consists only 
of unique, legitimate phishes. For both, they recommend using a 
diverse set of current sites (not old data), languages, and types of 
sites. Older data should be used for training, while newer should 
be used for testing, and test input should have a realistic ratio 
of phishing to non-phishing samples. They also recommend 
longitudinal studies with updated data to evaluate accuracy 
over time, and that systems should be tested against adversarial 
machine-learning techniques. Their hope is that, by applying 
these guidelines to the evaluation of future phishing detection 
techniques, researchers might obtain meaningful and compara-
ble performance results as well as fostering technology transfer.

The New Approaches session, chaired by Sven Dietrich, focused 
on novel approaches to experimentation. “DEW: Distributed 
Experiment Workflows” was presented by Genevieve Bartlett. 
DEW is a high-level approach to experiment representation 
that separates the infrastructure of a testbed experiment—the 
testbed hardware, software, and experimental network—from 
the observable behavior of the experiment in operation. The goal 
of DEW is to allow researchers to describe what an experiment 
should do, allowing DEW and the underlying testbed infrastruc-
ture to instantiate that behavior in the manner appropriate for 
that testbed. Meant to be human-readable, a DEW “program” 
consists of a scenario describing the general behavior of the 
experiment in terms of its actions, bindings implementing those 
actions (e.g., scripts), and constraints defining the required prop-
erties of the experiment’s components (enforced by DEW), such 
as network links and computational nodes. The authors intend to 
produce translators that generate DEW based on an experiment 
setup, and generators that create an experiment setup from a 
DEW definition. The DEW paper includes a number of potential 
benefits, code samples, and a discussion of their NLP-enhanced 
GUI. The authors welcome communication and feedback from 
interested parties.

Xiyue Deng presented “Malware Analysis through High-Level 
Behavior,” a paper that describes the Fantasm framework and 
some results from its use. Fantasm identifies malware type by 
recognizing patterns in a given malware’s network behavior. 
After all, malware that is supposed to perform scans, exfiltrate 
keystrokes, or send spam needs to perform those activities, even 
if the binary is obfuscated. While malware can often detect and 
thwart monitoring performed through debuggers or virtualiza-
tion, Fantasm avoids detection by running the malware on real 
bare-metal systems on DeterLab. Fantasm controls the malware 
execution on one host and monitors the network using a separate 

remote host, labeling malware samples based on their observed 
behavior. As Fantasm monitors network behavior, it can auto-
matically decide whether to impersonate the receiver, forward 
the message to the original endpoint, or drop the traffic. Their 
paper details a number of challenges in addition to future work.

Next, Pravein Govindan Kannan told us about “BNV: Enabling 
Scalable Network Experimentation through Bare-metal Net-
work Virtualization.” BNV is a network hypervisor (based on 
OpenVirtex) that works in conjunction with specially configured 
switches to allow high-fidelity testing of a variety of large-scale 
network topologies while using a fraction of the hardware. BNV 
is a response to the desire to evaluate complex datacenter topolo-
gies with high accuracy, without having to physically construct 
those topologies. Existing approaches for topology testing are 
often either virtualized (e.g., Mininet or NS) or not f lexible 
enough for their purposes (e.g., CloudLab, DeterLab); for exam-
ple, BNV can change topologies within a few seconds. To provide 
for a large number of high-fidelity virtual switches, BNV “slices” 
physical switches into virtual switches and provides connectiv-
ity between these switches using physical loopback links. In this 
way, BNV can emulate 130 switches and 300 links with just five 
switches. BNV was evaluated by testing various topologies in 
both virtual and physical forms under a workload and comparing 
their performance, with good results. Currently, BNV is in use at 
the National Cybersecurity Lab (NCL) in Singapore.

After lunch, we held a round-table discussion on “Opportuni-
ties and Challenges in Experimentation and Test.” In a sense, 
CSET is a workshop for research that produces tools, data, or 
guidance that enhances security research. While important, 
research of this type sometimes doesn’t fit neatly into calls 
for papers or funding proposals. We thought it would be help-
ful to have experts in the field talk about their experiences 
and provide advice about doing work in this area. Our panel-
ists—Terry  Benzel (USC/ISI), Eric Eide (Utah), Jeremy Epstein 
(NSF),  Simson Garfinkel (US Census Bureau), and Laura S. 
Tinnel (SRI)—and several members of the audience had a lively 
discussion on that subject. A full summary of that discussion is 
not possible here, but a key observation supported by many was 
that research of this type can often be funded as part of a larger 
project, where the tool in question is necessary for the research. 
Similarly, interesting and useful CSET-style papers can often 
be created by taking a previously created research system and 
polishing it or extending it to make it useful for others. In any 
case, papers should not simply be whitepapers describing the 
system or its creation saga, but should include an evaluation of 
some kind; this can include new results produced by the system, 
user feedback, or a validation of the system.

Eric Eide chaired the session on Shiny New Testbeds. Vitaly 
Ford got things started by telling us about “AMIsim: Appli-
cation-Layer Advanced Metering Infrastructure Simulation 



28   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SECURITY
CSET ’18: The 11th USENIX Workshop on Cyber Security Experimentation and Test

Framework for Secure Communication Protocol Performance 
Evaluation.” Advanced Metering Infrastructure, or AMI, refers 
to “Smart Grid” infrastructure devices, such as smart meters, 
that allow for two-way communication using ZigBee or other 
methods. Because this wireless communication includes sensi-
tive information about power consumption, security and privacy 
are of utmost importance. At the same time, the Smart Grid has 
fairly rigid communication and computation constraints. Build-
ing your own mini Smart Grid for research is too expensive for 
most researchers. Several Smart Grid simulation frameworks 
exist, but these focus largely on modeling electricity flow and 
power distribution hardware, not on the communication and 
computation resources necessary to test security and privacy-
preserving Smart Grid protocols. AMIsim fills this gap. Based 
on OMNet++, AMIsim’s performance is timed on a modern 
PC and then scaled to represent the approximate time a smart 
meter would take to perform the same computation. In this way, 
AMIsim opens the door for researchers to design and evaluate 
security-focused Smart Grid communication protocols in a way 
that was not previously available. AMIsim is under continuing 
development.

Our next new testbed was described in the paper “Galaxy: A 
Network Emulation Framework for Cybersecurity.” Kevin 
Schoonover and Eric Michalak presented this work, which 
describes Galaxy, a new high-fidelity, emulation-based network 
testbed supporting quick, flexible, and parallel experimentation. 
Galaxy includes built-in logging to store results, and strongly 
isolates experiments so that state from one experiment does not 
affect another. While Galaxy could be useful for many purposes, 
it was specifically designed for evolutionary experiments requir-
ing many iterations in succession, something that would be 
very time-consuming on a reconfigurable physical testbed, like 
Emulab or DeterLab. Galaxy takes configuration files describ-
ing a topology, and instantiates the network using bridging and 
virtual nodes using vmbetter. The snapshot feature of libvirt is 
used to ensure that no state persists between experiments, and 
the Ansible automation tool is used to instantiate topologies 
in parallel on a set of distributed computers. With these tools, 
topologies can be reverted and restarted very quickly and have 
high fidelity to real network behavior (two properties essential 
for valid evolutionary algorithm use). Their paper includes a 
case study using Galaxy as part of the CEADS-LIN project for 
developing attacker enumeration strategies through evolution-
ary algorithms, in addition to various enhancements planned for 
the tool.

The final session of CSET ’18, Testbed Enhancements, was 
chaired by David Balenson. The first paper, “Supporting Docker 
in Emulab-Based Network Testbeds,” was presented by Eric 
Eide. Given the popularity of Docker, it makes sense for Emulab 
to support Docker containers as “first class” nodes; it means 
that popular Docker-based tools used in research and indus-
try can be easily integrated into Emulab experiments. A major 
challenge for this project was preserving both the Docker and 
Emulab experiences—testbed users should have the sense that 
their Docker containers and Emulab experiments “just work.” 
This includes being able to use containers without manual 
intervention, but with the traffic shaping capabilities, logging, 
and command-line access common to traditional Emulab nodes. 
Emulab supports these features by automatically modifying 
Docker containers (in real time if necessary) to support essential 
capabilities. This process works well; in their experiments, 52 of 
the 60 most popular Docker containers could be automatically 
modified for use with Emulab. These enhancements are avail-
able now on Emulab.

The final paper at CSET ’18, “High Performance Tor Experi-
mentation from the Magic of Dynamic ELFs,” was presented by 
Justin Tracey. For a variety of good reasons, experimentation on 
the live Tor network is discouraged. Instead, the recommended 
approach is to use a testbed of some kind, be it simulated, emu-
lated, or physical. Shadow is a popular discrete-event simulator 
used for Tor and other types of research. It is popular, in part, 
because it runs real application code rather than models of the 
application being tested, the latter of which can lead to mis-
takes due to user error or when the documentation of a system 
is inconsistent with the software artifact in actual use. Unfor-
tunately, discrete-event simulators often have the drawback of 
significant overhead. Tracey et al.’s work eliminated two major 
bottlenecks from Shadow by doing away with a global logging 
lock and by creating a new loader that enables more efficient use 
of CPU resources, in addition to removing restrictions on library 
and compiler use. In an evaluation simulating Tor networks, the 
enhancements reduced test time by about half. These enhance-
ments are already part of the current version of Shadow.

Special thanks to the incredible USENIX staff, our panelists, 
program and steering committee, and the presenters for review-
ing these summaries. The 12th CSET will again be co-located 
with USENIX Security 2019, with papers due in Spring 2019. 
Please consider submitting to or attending this unique and inter-
esting workshop.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 29

SYSTEMSThe Atlas Cluster Trace Repository
G E O R G E  A M V R O S I A D I S ,  M I C H A E L  K U C H N I K ,  J U N  W O O  P A R K ,  
C H U C K  C R A N O R ,  G R E G O R Y  R .  G A N G E R ,  E L I S A B E T H  M O O R E ,  
A N D  N A T H A N  D E B A R D E L E B E N

 George Amvrosiadis is a 
Professor of Electrical and 
Computer Engineering at 
Carnegie Mellon University 
and a member of the Parallel 

Data Lab. His current research focuses on 
scalable storage, distributed systems, and 
data analytics. He co-teaches courses on 
cloud computing and storage systems, 
and holds a PhD from the University of 
Toronto. gamvrosi@cmu.edu

Michael Kuchnik is a third-year 
PhD student in the Computer 
Science Department at 
Carnegie Mellon University 
and a member of the Parallel 

Data Lab. His research interests are in the 
design and analysis of computer systems, 
specifically projects incorporating elements 
of high performance computing or machine 
learning. Before coming to CMU, he earned his 
BS in computer engineering from the Georgia 
Institute of Technology.  
mkuchnik@andrew.cmu.edu

Jun Woo Park is a sixth-year 
PhD student in the Computer 
Science Department at 
Carnegie Mellon University 
and a member of the Parallel 

Data Lab. His research interests are in cluster 
scheduling and cloud computing, with a focus 
on leveraging the history of the jobs run in 
the past to make better scheduling decisions. 
Before coming back to CMU, he worked at 
Korea Asset Pricing and KulCloud.  
junwoop@andrew.cmu.edu

Many researchers evaluating cluster management designs today 
rely primarily on a trace released by Google [8] due to a scarcity of 
other sufficiently diverse data sources. We have gathered several 

longer and more varied traces and have shown that overreliance on the Google 
trace workload is leading researchers to overfit their results [1]. We have cre-
ated the Atlas cluster trace repository [7] to aid researchers in avoiding this 
problem. This article explains the value of using and contributing to Atlas.

As a community of researchers and practitioners, we value systems work evaluated against 
real workloads. However, anyone who has attempted to find data to perform such an evalua-
tion knows that there is a scarcity of publicly available workload traces. This scarcity is often 
due to legal and cultural obstacles associated with releasing data. Even when data sets get 
publicly released, they follow noncanonical formats, omit features useful to researchers, and 
get published individually on websites that eventually go offline. This has led to the creation 
of repositories such as SNIA IOTTA [9] for I/O traces, USENIX CFDR [10] for failure data, 
and the Parallel Workloads Archive [5] for HPC job logs. However, few of these repositories 
contain recent cluster traces, and their trace formats may vary considerably. More impor-
tantly, despite current research focusing on vertical optimizations spanning multiple hard-
ware and software layers, none of the traces cover more than one system layer.

We have shown that this scarcity of data can lead to research that overfits to existing work-
loads [1]. To keep future research universally relevant, it is time we come together as a com-
munity and address this issue. This requires organizations with workloads not represented 
in existing public data sets to come forward and researchers to accept the responsibility of 
evaluating their artifacts with a variety of workloads. By having both sides come together, we 
can combat overfitting in systems research.

We are attempting to make this process easier through Project Atlas [7], a partnership 
initiated by Carnegie Mellon University and the Los Alamos National Laboratory (LANL). 
LANL has a variety of science and data analytics clusters, and it daily collects terabytes of 
log data from the operating system, job scheduler, hardware sensors, and other sources. Our 
goal is to analyze, model, and publicly release such logs so other researchers may use them. 
Since traces vary across platforms, we have created a common format and will release a 
version of each data set in it. This lowers the effort required to work with multiple data sets. 
Our common format ensures all jobs have user information, scheduler events, node and task 
allocations, and job outcomes. To lower the cost of releasing a data set, we will help organiza-
tions evaluate, anonymize, and host data. By making traces public, organizations can ensure 
their workloads are represented in future research. Two Sigma, a private hedge fund with 
datacenters in New York and Pittsburgh, has recently joined this effort by contributing data. 
Analysis of our existing workloads shows that the LANL and Two Sigma traces differ signifi-
cantly from the Google cluster trace that is most often used in literature today [8], a result that 
emphasizes the need for data diversity we are trying to foster through Atlas.



30   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SYSTEMS
The Atlas Cluster Trace Repository

The Atlas Trace Repository
The Atlas cluster trace repository (http://www.project-atlas.org) hosts cluster traces from a 
variety of organizations, representing workloads from Internet services to high performance 
computing. Our immediate goal with Atlas is to help create a diverse corpus of real workload 
traces for researchers and practitioners. Long term, we plan to collect and host multi-layer 
cluster traces that combine data from several layers of systems (e.g., job scheduler and file 
system logs) to aid in the design of future, vertically optimized systems.

To start, we have released four sets of job scheduler logs to the Atlas trace repository. The 
logs are from a general-purpose LANL cluster, a cutting-edge LANL supercomputer, and 
from two of Two Sigma’s datacenters. The hardware configuration for each cluster is shown 
in Table 1, and the corresponding Google trace information is included for reference.

Users typically interact with the job scheduler in these clusters by submitting jobs as scripts 
that spawn and distribute multiple processes or tasks across cluster nodes to perform com-
putations. In the LANL HPC clusters, resources are allocated at the granularity of physical 
nodes, so tasks from different jobs are never scheduled on the same node. This is not neces-
sarily true in private clusters like Two Sigma.

LANL Mustang Cluster
Mustang was an HPC cluster used for capacity computing at LANL from 2011 to 2016. Capac-
ity clusters are architected as cost-effective, general-purpose resources for a large number 
of users. Mustang consisted of 1600 identical compute nodes, with a total of 38,400 AMD 
Opteron 6176 2.3 GHz cores and 102 TB RAM, and was mainly used by scientists, engineers, 
and software developers at LANL. Computing resources on Mustang were allocated to users 
at the granularity of physical nodes. 

Chuck Cranor is a Senior 
Systems Scientist in the 
Parallel Data Lab at Carnegie 
Mellon University working on 
high performance computing 

storage systems. His research interests 
include operating systems, storage systems, 
networking, and computer architecture. He 
is also a contributor to the *BSD open source 
operating systems projects. He has a DSc in 
computer science from Washington University 
at St. Louis. chuck@ece.cmu.edu

Greg Ganger is the Jatras 
Professor of ECE at Carnegie 
Mellon University and Director 
of the Parallel Data Lab (www 
.pdl.cmu.edu). He has broad 

research interests, with current projects 
exploring system support for large-scale 
ML (Big Learning), resource management in 
cloud computing, and software systems for 
heterogeneous storage clusters, HPC storage, 
and NVM. His PhD in CS&E is from the 
University of Michigan. ganger@ece.cmu.edu

Elisabeth Moore (Lissa) is 
a Research Scientist in the 
High Performance Computing 
Division at Los Alamos 
National Laboratory and at 

the Ultrascale Systems Research Center. Her 
research focuses on machine learning within 
the high performance computing space, as 
well as methods for explainable machine 
learning, and computational social science. 
Lissa has previously held positions in LANL’s 
Center for Nonlinear Studies and MIT Lincoln 
Laboratory’s Human Language Technology 
group. lissa@lanl.gov

Platform Nodes Node CPUs Node RAM Length

LANL Mustang 1600 24 64GB 5 years

LANL Trinity 9408 32 128GB 3 months

Two Sigma A 872 24 256GB
9 months

Two Sigma B 441 24 256GB

Google B 6732 0.50* 0.50*

29 days

Google B 3863 0.50* 0.25*

Google B 1001 0.50* 0.75*

Google C 795 1.00* 1.00*

Google A 126 0.25* 0.25*

Google B 52 0.50* 0.12*

Google B 5 0.50* 0.03*

Google B 5 0.50* 0.97*

Google C 3 1.00* 0.50*

Google B 1 0.50* 0.06*

Table 1: Hardware characteristics of the clusters with traces in the Atlas repository. This also includes the 
Google trace for reference [8]; (*) signifies resources normalized to the largest node, which is how that 
trace is constructed.

http://www.project-atlas.org
http://www.pdl.cmu.edu
http://www.pdl.cmu.edu


www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 31

SYSTEMS
The Atlas Cluster Trace Repository

Nathan DeBardeleben is a 
Senior Research Scientist 
at Los Alamos National 
Laboratory and is the 
Co-Executive Director for 

Technical Operations of the Ultrascale 
Systems Research Center. His research 
focuses on resilience and reliability of 
supercomputers, particularly from a hardware 
and systems perspective. Nathan joined LANL 
in 2004 after completing his PhD in computer 
engineering from Clemson University with a 
focus on parallel computing.  
ndebard@lanl.gov

Mustang was in operation from October 2011 to November 2016, and our Mustang data set 
covers the entire 61 months of the machine’s lifetime. This makes the Mustang data set the 
longest publicly available cluster trace to date. The data set consists of 2.1 million multi-node 
jobs submitted by 565 users. Collected data include: timestamps for job stages from submis-
sion to termination, job properties such as size and owner, the job’s exit status, and a time 
budget field per job that, if exceeded, causes the job to be killed.

LANL Trinity Supercomputer
Trinity is currently (in 2018) the largest supercomputer at LANL and is used for capability 
computing. Capability clusters are large-scale, high-demand resources that include novel 
hardware technologies that aid in achieving crucial computing milestones such as higher-
resolution climate and astrophysics models. Trinity’s hardware was deployed in two pre-
production phases before being put into full production. Our trace was collected before the 
second phase completed. At the time of data collection, Trinity consisted of 9408 identical 
compute nodes with a total of 301,056 Intel Xeon E5-2698v3 2.3 GHz cores and 1.2 PB RAM, 
making this the largest cluster with a publicly available trace by number of CPU cores.

Our Trinity data set covers three months, from February to April 2017. During that time, 
Trinity was in beta testing and operating in OpenScience mode and thus was available to a 
wider number of users than it is expected to have after it receives its final security classi-
fication. OpenScience workloads are representative of a capability supercomputer’s work-
load, as they occur roughly every 18 months when a new machine is introduced or before 
an older machine is decommissioned. We refer to Trinity’s OpenScience workload trace as 
 OpenTrinity. This data set consists of 25,237 multi-node jobs issued by 88 users. The infor-
mation available in the trace is a superset of those available in the Mustang trace; additional 
scheduler information such as hosts allocated and QoS is also exposed.

Two Sigma Clusters
Our Two Sigma traces originated from two of their datacenters. The workload consists 
of data analytics jobs processing financial data. A fraction of these jobs are handled by an 
Apache Spark installation, while the rest are serviced by home-grown data analytics frame-
works. The data set spans nine months of the two datacenters’ operation starting in January 
2016, covering a total of 1313 identical compute nodes with 31,512 CPU cores and 328 TB 
RAM. The logs contain 3.2 million jobs and 78.5 million tasks, collected by an internally 
developed job scheduler running on top of Mesos.

Unlike the LANL data sets, job runtime is not budgeted strictly in these clusters; users of the 
hedge fund clusters do not have to specify a time limit when submitting a job. Users can also 
allocate individual cores, as opposed to entire physical nodes allocated at LANL. Collected 
data include the same information as the LANL Mustang and Trinity traces, excluding the 
time budget field.

Overfitting to Existing Traces in Literature
Six years ago, Google released an invaluable set of scheduler logs, which currently have been 
used in more than 450 publications. Using traces we made available through Atlas, we found 
that the scarcity of other data sources is leading researchers to overfit their work to Google’s 
data-set characteristics [1]. For example, both the Google trace and the Two Sigma cluster 
workloads in Atlas consist of data analytics jobs, but the characteristics of the Two Sigma 
workload display more similarity to LANL’s HPC cluster workloads than to the Google 
workload. A summary of the results of our analysis is shown in Table 2 (the full analysis is in 
our recent USENIX ATC paper [1]). This observation suggests that additional traces should 
be considered when evaluating the generality of new research. An excerpt of our analysis that 



32   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SYSTEMS
The Atlas Cluster Trace Repository

focuses on job characteristics, workload heterogeneity, and trace 
length is presented below. We also further identify work in the lit-
erature that has overfitted to characteristics of the Google trace.

Google Cluster
In 2012 Google released a 29-day trace of long-running and 
batch service jobs that ran in one of their compute clusters in 
May 2011 [8]. The trace consists of 672,074 jobs with 48 million 
tasks running on 12,583 heterogeneous nodes. Google has not 
released the exact hardware specifications of the nodes. Instead, 
as shown in Table 1, nodes are presented through anonymized 
platform names representing machines with different combina-
tions of microarchitectures and chipsets. Note that the number 
of CPU cores and amount of RAM for each node in the trace 
has been normalized to the most powerful node in the cluster. 
Google’s most popular server node type in 2011 is believed to 
be a dual-socket quad-core system with AMD Barcelona CPUs. 
If this is accurate, we estimate the total number of cores in the 
Google cluster to be 106,544. Google allows jobs to allocate 
fractions of a CPU core, so more than one job can be running on 
a node.

Analysis of Job Characteristics
Many instances of prior work in the literature rely on the 
assumption of heavy-tailed distributions to describe the size and 
duration of individual jobs. In the LANL and Two Sigma work-
loads these tails appear significantly lighter.

On average, jobs in the Two Sigma and LANL traces request 
3–406 times more CPU cores than Google trace jobs.

Figure 1 shows the cumulative distribution functions (CDFs) of 
job requests for CPU cores across all traces, with the x-axis in 
logarithmic scale. We find that the 90% of smallest jobs in the 
Google trace request 16 CPU cores or fewer. The same fraction 
of Two Sigma and LANL jobs request 108 cores and 1–16K cores, 
respectively. Very large jobs are also more common outside 
Google. This is unsurprising for the LANL HPC clusters, where 
allocating thousands of CPU cores to a single job is common 
since the clusters’ primary use is to run massively parallel 
scientific applications. However, it is interesting to note that 
while the Two Sigma clusters contain fewer cores than the other 
clusters we examined (one-third of those in the Google cluster), 
its median job is more than an order of magnitude larger than 
jobs in the Google trace. An analysis of allocated memory yields 
similar trends.

The median job in the Google trace is 4–5 times shorter than in the 
LANL or Two Sigma traces.

Figure 2 shows the CDFs of job durations for all traces. We find 
that in the Google trace, 80% of jobs last less than 12 minutes 
each. In the LANL and Two Sigma traces, jobs are at least an 
order of magnitude longer. In Two Sigma, the same fraction of 
jobs lasts up to two hours, and in LANL they last up to three 
hours for Mustang and six hours for OpenTrinity. Surprisingly, 
the tail end of the distribution is slightly shorter for the LANL 
clusters than for the Google and Two Sigma clusters. The longest 
job is hours in the Atlas traces and is days in the Google traces. 
For LANL, this is due to hard job time limits. For Google, the dis-
tribution’s long tail is likely attributed to long-running services.

Section Characteristic Google Two Sigma Mustang OpenTrinity

Job Characteristics
Majority of jobs are small ✔ ✘ ✘ ✘

Majority of jobs are short ✔ ✘ ✘ ✘

Workload Heterogeneity
Diurnal patterns in job submissions ✘ ✔ ✔ ✔

High job submission rate ✔ ✔ ✘ ✘

Resource Utilization

Resource over-commitment ✔ ✘ ✘ ✘

Sub-second job interarrival periods ✔ ✔ ✔ ✔

User request variability ✘ ✔ ✔ ✔

Failure Analysis

High fraction of unsuccessful job outcomes ✔ ✔ ✘ ✔

Jobs with unsuccessful outcomes consume 
significant fraction of resources ✔ ✔ ✘ ✘

Longer/larger jobs often terminate 
unsuccessfully ✔ ✘ ✘ ✘

Table 2: Summary of the characteristics of each trace, derived from our analysis [1]. Note that the Google workload appears to be an outlier.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 33

SYSTEMS
The Atlas Cluster Trace Repository

Implications. These observations impact the applicability of job 
scheduling approaches whose efficiency relies on the assump-
tion that the vast majority of jobs’ durations are on the order of 
minutes, and job sizes are insignificant compared to the size of 
the cluster. For example, Ananthanarayanan et al. [2] propose to 
mitigate the effect of stragglers by duplicating tasks of smaller 
jobs. This is an effective approach for Internet service workloads 
because the vast majority of jobs can benefit from it without 
significantly increasing the overall cluster utilization. For the 
Google trace, 90% of jobs request fewer than 0.01% of the cluster 
each, so duplicating them only slightly increases cluster utiliza-
tion. On the other hand, 25–55% of jobs in the LANL and Two 
Sigma traces each request more than 0.1% of the cluster’s cores, 
suggesting that replication should be used judiciously. Also note 
that LANL tasks are tightly coupled, so entire jobs would have 
to be duplicated. Another example is the work by Delgado et al. 
[3], which improves the efficiency of distributed schedulers for 
short jobs by dedicating them to a fraction of the cluster. For 
the Two Sigma and LANL traces, we have shown that jobs are 
longer than for the Google trace (Figure 2), so larger partitions 
will likely be necessary to achieve similar efficiency. At the same 
time, jobs running in the Two Sigma and LANL clusters are also 
larger (Figure 1), so service times for long jobs are expected to 
increase unless the partition is shrunk.

Analysis of Workload Heterogeneity
Another common assumption about cloud workloads is that they 
run on heterogeneous compute nodes and have job interarrival 
times on the order of seconds. However, the LANL and Two 
Sigma clusters consist of homogeneous hardware (see Table 1) 
and have a scheduling rate that varies significantly across 
clusters.

Scheduling request rates differ by up to three orders of magnitude 
across clusters. Sub-second scheduling decisions seem necessary 
in order to keep up with the workload.

In Figure 3 we show the number of job scheduling requests for 
every hour of the day. Similar to prior work, diurnal patterns 
are evident in every trace, and user activity is concentrated in 
the daytime (7 a.m. to 7 p.m.). An exception to this is the Google 
trace, which is most active from midnight to 4 a.m., presumably 
due to batch jobs leveraging available resources. Figure 3 also 
shows that the rate of scheduling requests can differ signifi-
cantly across clusters. For the Google and Two Sigma traces, 
hundreds to thousands of jobs are submitted every hour. On the 
other hand, LANL schedulers never receive more than tens of 
requests on any given hour. This could be related to the workload 
or to the number of users in the system, as the private clusters 
serve 2–9 times as many user IDs as the LANL clusters.

Implications. As cluster sizes increase, so does the rate of 
scheduling requests, urging us to reexamine prior work. Quincy 
[6] represents scheduling as a Min-Cost Max-Flow (MCMF) 
optimization problem over a task-node graph and continu-
ously refines task placement. However, the complexity of this 
approach becomes a drawback for large-scale clusters. Gog et al. 
[4] find that Quincy requires 66 seconds (on average) to converge 
to a placement decision in a 10,000-node cluster. The Google 
and LANL clusters we study already operate on that scale. 
Note that when discussing scheduling so far we refer to jobs, 
since HPC jobs have a gang scheduling requirement. Placement 
algorithms such as Quincy, however, focus on task placement. An 
improvement to Quincy is Firmament [4], a centralized sched-
uler employing a generalized approach based on a combination 
of MCMF optimization techniques to achieve sub-second task 
placement latency on average. Sub-second latency is paramount, 
since the rate of task placement requests in the Google and Two 

Figure 1: CDF of job sizes based on allocated CPU cores. Jobs at Two 
Sigma and LANL use 3–406 times more CPU cores than Google trace 
jobs, which challenges existing work that relies on the assumption that 
small jobs are prevalent in a typical cluster.

Figure 2: CDF of the durations of individual jobs. The median job in 
the Google trace is 4–5 times shorter than in the LANL or Two Sigma 
traces, urging us to reevaluate the feasibility of scheduling approaches 
that have been designed with the Google trace workload in mind.



34   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

SYSTEMS
The Atlas Cluster Trace Repository

Sigma traces can be as high as 100K requests per hour, i.e., one 
task every 36 ms. However, Firmament’s placement latency 
increases to several seconds as cluster utilization increases. For 
the Two Sigma and Google traces this can be problematic.

The Importance of Trace Length
Working with traces often forces researchers to make key 
assumptions as they interpret the data in order to cope with 
missing information. A common (unwritten) assumption is that 
traces represent the workload of the environment where they 
were collected. While the Google trace spans only 29 days, our 
Atlas traces are 3–60 times longer and in the case of Mustang 
cover the entire cluster lifetime. Thus, we decided to examine 
how representative individual 29-day periods are of the overall 
workload.

Our experiment consisted of dividing our traces in 29-day peri-
ods. For each such month we then compared the distributions 
of individual metrics against the overall distribution for the full 
trace. The metrics we considered were: job sizes, durations, and 
interarrival periods. Overall, we found consecutive months’ dis-
tributions to vary wildly for all these metrics. More specifically, 
the average job interarrival of a given month can be 20–2400% 

the value of the overall average. Average job durations can fluc-
tuate 10–6900% of the average job duration.

Call for Traces
In order to guarantee that researchers and practitioners design 
and develop systems that will be truly universally relevant, 
we need to make a collective effort as a community to ensure 
that the workloads we care about are represented with publicly 
available traces. This way we will be able to both gain a better 
understanding of trends and pain points that span industries 
and create software and hardware that affect a wider population. 
Through Project Atlas, we urge and welcome members of this 
community to come forward with cluster traces collected at any 
layer of their systems: scheduler logs, file system logs, application 
profiling data, operating system logs, etc. We further look for-
ward to contributions of multi-layer traces that stitch together 
 multiple such data sources.

To aid in the process of releasing new data sets, we will be happy 
to help by sharing our experiences and software for data collec-
tion, analysis, and anonymization. We also offer to host new data 
sets in the Atlas repository, which is accessible through www 
.project-atlas.org. Please feel free to direct any communication 
to info@project-atlas.org.

Figure 3: Hourly job submission rates for a given day. Lines represent the 
median, while the shaded region for each line outlines the span from the 
25th (under) to the 75th percentile (over). LANL traces show lower rates 
of job submission, and the diurnal patterns for each trace appear at differ-
ent times.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 35

SYSTEMS
The Atlas Cluster Trace Repository

References
[1] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. 
Baseman, and N. DeBardeleben, “On the Diversity of Cluster 
Workloads and Its Impact on Research Results,” in Proceedings 
of the 2018 USENIX Annual Technical Conference (USENIX 
ATC ’18), pp. 533–546: https://www.usenix.org/system/files 
/conference/atc18/atc18-amvrosiadis.pdf.

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, 
“Effective Straggler Mitigation: Attack of the Clones,” in Pro-
ceedings of the 10th USENIX Symposium on Networked Systems 
Design and Implementation (NSDI ’13), pp. 185–198: https:// 
www.usenix.org/system/files/conference/nsdi13/nsdi13 
-final231.pdf.

[3] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, 
“Hawk: Hybrid Datacenter Scheduling,” in Proceedings of the 
2015 USENIX Annual Technical Conference (USENIX ATC ’15), 
pp. 499–510: https://www.usenix.org/system/files/conference 
/atc15/atc15-paper-delgado.pdf.

[4] I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and 
S. Hand, “Firmament: Fast, Centralized Cluster Scheduling 
at Scale,” in Proceedings of the 12th USENIX Symposium on 
Operating Systems Design and Implementation (OSDI ’16), 
pp. 99–115: https://www.usenix.org/system/files/conference 
/osdi16/osdi16-gog.pdf.

[5] Hebrew University of Jerusalem, Parallel Workloads 
Archive: http://www.cs.huji.ac.il/labs/parallel/workload/.

[6] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, 
and A. Goldberg, “Quincy: Fair Scheduling for Distributed Com-
puting Clusters,” in Proceedings of the 22nd ACM Symposium on 
Operating Systems Principles (SOSP ’09), pp. 261–276: http:// 
www.sigops.org/sosp/sosp09/papers/isard-sosp09.pdf.

[7] Parallel Data Laboratory, Carnegie Mellon University, Atlas 
Repository: Traces: http://www.project-atlas.org/.

[8] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. 
Kozuch, “Heterogeneity and Dynamicity of Clouds at Scale: 
Google Trace Analysis,” in Proceedings of the Third ACM 
Symposium on Cloud Computing (SoCC ’12), pp. 7:1–7:13: http:// 
www.pdl.cmu.edu/PDL-FTP/CloudComputing/googletrace 
-socc2012.pdf.

[9] Storage Networking Industry Association, I/O traces, tools, 
and analysis repository: http://iotta.snia.org/.

[10] USENIX Association, The Computer Failure Data Reposi-
tory (CFDR): https://www.usenix.org/cfdr.

https://www.usenix.org/system/files/conference/atc18/atc18-amvrosiadis.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-amvrosiadis.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final231.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final231.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final231.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-delgado.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-delgado.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-gog.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-gog.pdf
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.sigops.org/sosp/sosp09/papers/isard-sosp09.pdf
http://www.sigops.org/sosp/sosp09/papers/isard-sosp09.pdf
http://www.project-atlas.org/
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/googletrace-socc2012.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/googletrace-socc2012.pdf
http://www.pdl.cmu.edu/PDL-FTP/CloudComputing/googletrace-socc2012.pdf
http://iotta.snia.org/
https://www.usenix.org/cfdr


36   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

STORAGEThe Modern Data Architecture
The Deconstructed Database

A M A N D E E P  K H U R A N A  A N D  J U L I E N  L E  D E M

Amandeep Khurana is 
cofounder and CEO at Okera, 
a company focused on solving 
data management challenges 
in modern data platforms. 

Previously, he was a Principal Architect at 
Cloudera where he supported customer 
initiatives and oversaw some of the industry’s 
largest big data implementations. Prior to that, 
he was at AWS on the Elastic MapReduce 
engineering team. Amandeep is passionate 
about distributed systems, big data, and 
everything cloud. Amandeep is also the 
coauthor of HBase in Action, a book on building 
applications with HBase. Amandeep holds an 
MS in computer science from the University of 
California, Santa Cruz. amansk@gmail.com

Julien Le Dem is the coauthor of 
Apache Parquet and the PMC 
chair of the project. He is also 
a committer and PMC Member 
on Apache Pig, Apache Arrow, 

and a few others. Julien is a Principal Engineer 
at WeWork working on data platform, and was 
previously Architect at Dremio and Tech Lead 
for Twitter’s data processing tools, where he 
also obtained a two-character Twitter handle 
(@J_). Prior to Twitter, Julien was a Principal 
Engineer and Tech Lead working on content 
platforms at Yahoo, where he received his 
Hadoop initiation. His French accent makes his 
talks particularly attractive. julien@ledem.net

Mainframes evolved into the relational database in the 1970s with 
the core tenet of providing users with an easier-to-use abstrac-
tion, an expressive query language, and a vertically integrated 

system. With the explosion of data in the early 2000s, we created the big 
data stack and decoupled storage from compute. Since then the community 
has gone on to build the modern data platform that looks like a deconstructed 
database. We survey the different technologies that have been built to sup-
port big data and what a modern data platform looks like, especially in the  
era of the cloud.

Modern data platform architectures are spurring a wave of innovation and intelligence by 
enabling new workloads that weren’t possible before. We will review three main phases of 
technology evolution to highlight how the user experience of working with data has changed 
over time. The article concludes with a review of the current state of data architectures and 
how they are changing to better meet demand.

From Mainframe to Database—A Brief Review
Mainframes were among the early platforms for applications and analytics done in a pro-
grammatic way, using what we know as modern computing systems. In the world of main-
frames, users had to write code to interact with data structures as stored on disk. Users had 
to know the details of the data storage with which they were working, including its location 
and storage format. These details had to be coded as a part of the application. You could still 
write arbitrarily complex logic to work with the data, but the paradigm was not very accessi-
ble or easy to understand by mainstream users. The technical complexity was a hurdle users 
had to overcome, thus limiting the adoption of this paradigm.

Fortunately, in the 1970s, the relational database was born. It was created based on a few 
core tenets:

◆◆ Simplify the data abstraction for the end user and make it more intuitive.

◆◆ Provide a rich language to facilitate the expression of computational logic.

◆◆ Hide the complexity of the underlying systems from end users.

These goals are clearly articulated in the first paragraph of Codd’s 1970 paper on relational 
models [1], one of the first papers on relational databases. You don’t have to read much past 
the first three sentences of his paper:

Future users of large data banks must be protected from having to know how 
the data is organized in the machine (the internal representation). A prompting 
service which supplies such information is not a satisfactory solution. Activities 
of users at terminals and most application programs should remain unaffected 
when the internal representation of data is changed and even when some aspects of 
the external representation are changed. Changes in data representation will often be 
needed as a result of changes in query, update, and report traffic and natural growth 
in the types of stored information.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 37

STORAGE
The Modern Data Architecture: The Deconstructed Database

This means:

◆◆ Users of database systems should not have to worry about the 
underlying layouts, how and where data is stored, formats, etc.

◆◆ If changes need to be made to underlying files and structures, 
the applications should not be affected.

◆◆ Anything that provides more and better information about 
the underlying data structure doesn’t necessarily reduce the 
technical complexity.

One could argue that data analytics, as we know it today, was 
made possible by the relational database. For the first time, com-
panies could leverage their data and extract value from it. The 
relational database employed SQL (created in the early 1970s at 
IBM) as the language to express computation, and 1986 saw the 
first SQL standard, which has been updated several times since, 
eventually becoming a global standard. SQL has some excellent 
properties, including a strong separation of the query logic from 
the execution details. The table abstraction and how it is stored 
or indexed is opaque to the user, who can concentrate on the data 
logic rather than the storage implementation. An optimizer is 
charged with finding the best way to produce the requested data 
and exploit the properties of the underlying storage (column- 
oriented, indexed, sorted, partitioned). Additionally, ACID guar-
antees, integrity constraints, and transactions help to ensure 
certain properties of the data.

In addition to a standard language to express data-processing 
logic, Sun Microsystems released JDBC as a standard API, 
which further abstracted the underlying SQL implementation 
from the user (see Figure 1). An entire ecosystem of technologies 
and applications was created around the relational database. 

At the very core, it was ease of use, the accessibility and the 
simplicity of the database, that led to its broad adoption. You no 
longer needed to be an engineer to work with data.

The Birth of the Big Data Stack
In late 1990s and early 2000s, the relational database struggled 
to keep up with the explosion of data. Technologists who worked 
with large amounts of data re-evaluated data platform archi-
tectures. The reasons for this included scalability limitations, 
the increasingly heterogeneous nature of data, and the types of 
workloads people wanted to run. The database’s architecture 
constrained these capabilities. SQL, as a language, was not 
expressive enough, and the database wasn’t flexible and scalable 
enough to support different workloads.

This reconsideration of data storage and processing was the 
genesis of the big data stack and, later on, the concept of the 
 data-lake. The Apache Hadoop project was at the core of this. 
Hadoop started in 2006 as a spin-off from Apache Nutch, a web 
crawler that stemmed from Apache Lucene, the famous open 
source search engine. The inspiration for this project came  
from two Google papers describing the Google File System [2] 
and a distributed processing framework called MapReduce [3]. 
These two components combined the extreme flexibility and 
scalability necessary to develop distributed batch applications  
in a simple way.

The Hadoop Distributed File System (HDFS)
HDFS provides a file system abstraction over a cluster of 
mainstream servers. It also provides metadata on data place-
ment, which is exploited by MapReduce to process data where it 
is stored. Back when network I/O was much more constrained 
than disk I/O, this innovation was significant. HDFS files are 
free form; there are no constraints on the format or any kind 
of schema. We started to call this concept schema on read (as 
opposed to schema on write in the world of databases).

MapReduce
MapReduce provides a simple framework to build distributed 
batch applications on top of HDFS. Usually a job is defined by 
scanning a data set in parallel, applying a Map function to the 
content, and emitting key-value pairs. All values with the same 
key are sent to the same machine, independent of where they 
were produced, in a step called “the shuffle.” The key and its cor-
responding list of values are then passed to the Reduce function. 
This simple framework allows us to build powerful distributed 
algorithms. One example is the famous PageRank algorithm, 
originally used by Google to rank websites based on how many 
incoming links they get. 

MapReduce is a very flexible paradigm. MapReduce simply edits 
key-value pairs, and it is also composable, allowing its users to 

Figure 1: The evolution of the technology stack from the mainframe to the 
database



38   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

STORAGE
The Modern Data Architecture: The Deconstructed Database

realize complex algorithms by orchestrating  multiple  MapReduce 
steps. For example, PageRank converges to a result after a 
number of iterations. The inherent limitations of  MapReduce, 
however, come from the same attributes that make it strong. The 
flexibility in file formats and the code used to process them offer 
no support for optimizing data access. In that respect, the 
MapReduce paradigm returns us to the world of mainframes at a 
much larger scale. The MapReduce programmer must in fact know 
quite a bit about storage details to write a successful program.

“MapReduce, a Major Step Backwards”
The database community eventually became annoyed by this 
new wave of open source people re-inventing the wheel. Turing 
Award winner Michael Stonebraker, of PostgreSQL fame and 
recent co-founder of the distributed analytical database Vertica, 
famously declared in 2008 [4] that MapReduce was “a major step 
backwards.” Compared to the nice abstractions of the relational 
model, this new model was too low level and complex.

Evolution of the Big Data Stack
Ten years later, the entire Hadoop ecosystem is much larger than 
the two components it originally included. People argued about 
where the boundary of that ecosystem really stopped. In the 
cloud, you can even use a significant portion of the ecosystem 
without Hadoop itself. New functional categories beyond storage 
and compute have emerged: execution engines, streaming ingest, 
resource management, and, of course, a long list of SQL-on-
Hadoop distributed query engines: Impala, Hive, SparkSQL, 
Drill, Phoenix, Presto, Tajo, Kylin, etc. The ecosystem can be 
broken down into the following categories:

Storage Systems
HDFS, S3, and Google Cloud Storage are the distributed file 
 system/object stores where data of all kinds can be stored. 
Apache Parquet has become a standard file format for immu-
table columnar storage at rest.

Apache Kudu and Apache HBase provide mutable storage layers 
with similar abstractions, enabling projection and predicate 
pushdown to minimize I/O by retrieving only the data needed 
from disk. These projects require explicit schema, and getting 
that right is critical to efficient access.

Streaming Systems
Kafka is the most popular stream persistence system in the 
data platform world today. It’s open source and is widely used 
for streaming data at scale. Kinesis, an AWS service, is the 
most popular hosted and managed streaming framework but 
is not available outside the AWS environment. GCP provides a 
similar service called PubSub. Another noteworthy platform is 
Pulsar. Pulsar has interesting features for multi-tenancy and 
 performance of concurrent consumers on the same stream. 

The project is more of a challenger that has yet to reach wide 
adoption.

Query Engines
Since MapReduce, many other query engines have developed. 
Originally, they were often layered on top of MapReduce, which 
introduced a lot of latency; MapReduce is designed for web-scale 
indexing and is optimized for fault tolerance, not quick response. 
Its goal is to optimize for running very large, long-running jobs, 
during which a physical failure of at least one component is likely.

For example, Hive (an SQL implementation) and Pig (a func-
tional DSL with similar capabilities) both originally compiled to 
a sequence of MapReduce jobs.

As more people wanted interactive capability for data  analytics, 
Hadoop-compatible data-processing engines evolved and 
 MapReduce became less relevant. Spark has become a popular 
alternative, with its richer set of primitives that can be combined 
to form Data Availability Groups (DAGs) of operators. It includes 
an in-memory cache feature that allows fast iterations on a data 
set during a session of work. Tez is a lower level DAG of operator 
APIs aimed at optimizing similar types of work. SparkSQL is a 
SQL implementation on top of Spark. Hive and Pig both can now 
run on either MapReduce, Spark, or Tez. 

There are several SQL engines that provide their own runtime, 
all with the goal of minimizing query latency. Apache Drill and 
Apache Presto generate optimized Java bytecode for their opera-
tors, while Apache Impala uses LLVM to generate native code. 
Apache Phoenix supports a SQL interface to Apache HBase and 
takes advantage of HBase’s capabilities to reduce I/O by running 
code in the database.

Tools such as Python, with the help of libraries like NumPy and 
pandas and R, are also very popular for data processing and can 
cater to a large variety of use cases that don’t need the scale that 
MapReduce or Spark supports.

In addition to these, we’re seeing a variety of machine-learning 
frameworks being created, such as Tensorflow, DL4J, Spark 
MLLib, and H2O. Each of these is specialized for certain work-
loads, so we are going to see more of these emerge over the next 
few years.

Query Optimizer
There is a query parser and optimizer framework in the Calcite 
project, one of the lesser known but most important projects in 
the ecosystem. Calcite powers the query execution in projects 
such as Hive, Drill, Phoenix, and Kylin. Calcite is also used in 
several streaming SQL engines such as Apex, Flink, SamzaSQL, 
and StormSQL. It can be customized in multiple ways. Notably, 
one would provide an execution engine, schema, and connectors 
implementations as well as optimization rules either relevant to 



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 39

STORAGE
The Modern Data Architecture: The Deconstructed Database

the execution engine, the storage layer, or both. Spark, Impala, 
and Presto have their own query optimizers and don’t use an 
external engine.

Serialization
Apache Arrow is a standard in-memory columnar representa-
tion that combines efficient in-memory query evaluation, allow-
ing for zero-overhead serialization, with standard simplifying 
integration, removing unnecessary and costly conversion layers. 
It also allows fast in-memory processing by enabling vectorized 
execution.

Security
Access control policies can be put in policy stores like Apache 
Sentry and Apache Ranger. In addition, there are proprietary tools 
such as BlueTalon that enable access control on SQL engines.

Cataloging and Governance
There are a few offerings in this realm as well, but none that 
truly solve the problems of today. The Hive Metastore is the 
dominant schema registry. Apache Atlas is an open source 
framework that’s focused on governance. Proprietary tools 
such as AWS Glue, Cloudera Navigator, Alation, Waterline, and 
 Collibra are solving different aspects of the problem.

Towards a Modern Data Platform—The 
Deconstructed Database
In parallel to the evolution of the data-lake concept and the big-
data stack, the world of cloud computing continues to redefine 
technology architectures. Cloud computing normalizes variants 
of infrastructure, platform, and applications as a service. We are 
now seeing the emergence of Data-as-a-Service (DaaS). All these 
trends constitute a significant paradigm shift from the world of 
datacenters, in which enterprises had to either build their own 
datacenters or buy capacity from a provider. The kind of data plat-
form that people want to build today, especially in the cloud, looks 
very different from what we have seen so far. At the same time, 
the modern data platform borrows many of the core tenets we val-
ued in previous generations. The core tenets of the cloud include:

1. Allowing choice between multiple analytics frameworks for 
data consumers so they can pick the best tool for the workload.

2. Flexibility in the underlying data source systems but a consis-
tent means to enable and govern new workloads and users.

3. A self-service experience for the end user: no waiting on IT 
and engineering teams to catch up and deliver on all the asks 
from all the constituents they have to serve.

Agility and self-service require components to be loosely cou-
pled, easily available as a service or open source software, and 
usable in different contexts. Systems that are loosely coupled 
need to have common, standard abstractions in order to work 

together. Many of these are missing today, which makes build-
ing a true modern data platform with the core tenets articulated 
above challenging.

Given where the ecosystem is headed, new developments are 
enabling the capabilities that people want. Key areas that are 
experiencing significant innovation include:

1. Improved metadata repository and better table abstrac-
tions. There are many promising projects maturing in the 
open source ecosystem. For example, the Iceberg project 
from Netflix defines table abstractions to provide snapshot 
isolation and serialization semantics (at a high level, not row 
by row) to update data in a distributed file system. Iceberg 
abstracts away formats and file layouts while enabling 
 predicate and projection push downs. Marquez is also a proj-
ect that defines a metadata repository to take advantage of 
this work.

2. Access control and governance across different engines 
and storage systems. Current methodologies are fragmented 
and not fully featured. In the wake of GDPR and other privacy 
acts, security and privacy are important aspects of the data 
platform. Labeling private data appropriately to track its use 
across the entire platform, and enabling only approved use 
cases, has become a key requirement. The current ecosystem 
does not deliver on this, and there are new developments that 
will take place to fill this gap.

3. Unifying push-down logic. A great help toward more con-
sistent performance of query engines on top of Parquet and 
other columnar storage would be unifying push-down logic. 
Current implementations are very fragmented and duplicate 
effort. The same concepts apply to streaming.

4. Arrow project adoption to enable better interoperability 
between components. This would enable simpler and more 
general interoperability between systems but, more impor-
tantly, would do so without sacrificing performance as lowest 
common denominator type integrations often do. 

5. A common access layer. A unified access layer that allows 
push-downs (projection, predicate, aggregation) and retrieves 
the data in a standard format efficiently will advance modern 
data architectures. We need this capability whether or not 
data storage is mutable (HBase, Cassandra, Kudu), batch-
oriented (HDFS, S3), or streaming-oriented (Kafka, Kinesis). 
This unified access layer will improve interoperability and 
performance, reduce duplication, and support more consis-
tent behavior across engines. A lot of other data management 
problems can be solved at this layer. This is also in line with 
Codd’s core tenet of databases: users of large data banks 
should not have to deal with the internal semantics of data 
storage.



40   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

STORAGE
The Modern Data Architecture: The Deconstructed Database

Conclusion
Bringing it all together, a modern data platform will look similar 
to the stack shown in Figure 2. It will have a subset of these com-
ponents integrated as independent, specialized services. The 
figure shows a few examples of the technologies at various levels 
of the stack and is not an exhaustive list.

A typical deployment may not always consist of all the compo-
nents shown. Platform owners will be able to pick and choose 
the most appropriate ones and create their own stack, giving end 
users the flexibility and scale they need to run new workloads  
in the enterprise. This modular approach is a powerful para-
digm that will further enable new capabilities for enterprises. 
This will drive more innovation and disruption in the industry, 
making businesses data-driven by shortening time to market of 
applications that take advantage of the large volumes of data that 
are defining the modern enterprise.

References
[1] E. F. Codd, “A Relational Model of Data for Large Shared 
Data Banks,” Communications of the ACM, vol. 13, no. 6 (June 
1970), pp. 377–387: https://www.seas.upenn.edu/~zives/03f 
/cis550/codd.pdf.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google 
File System,” in Proceedings of the 19th ACM Symposium 
on  Operating Systems Principles (SOSP ’03): https://static 
.googleusercontent.com/media/research.google.com/en// 
archive/gfs-sosp2003.pdf.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data 
Processing on Large Clusters,” Communications of the 
ACM, vol. 51, no. 1 (January 2008), pp. 107–113: https://static 
.googleusercontent.com/media/research.google.com/en// 
archive/mapreduce-osdi04.pdf.

[4] D. J. DeWitt and M. Stonebraker, “MapReduce: A Major 
Step Backwards,” The Database Column, 2008: http://db.cs 
.berkeley.edu/cs286/papers/backwards-vertica2008.pdf.

Figure 2: The modern data platform stack

https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://db.cs.berkeley.edu/cs286/papers/backwards-vertica2008.pdf
http://db.cs.berkeley.edu/cs286/papers/backwards-vertica2008.pdf


www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 41

COLUMNSAnd Now for Something Completely Different
P E T E R  N O R T O N

I use Python in my day-to-day work, and I aspire to being able to write 
about things that I would want to know more about if I were reading 
this column instead of writing it. I use Python with Saltstack for writ-

ing internal APIs, for templating, for writing one-off tools, and for trying out 
ideas. It’s my first choice as a go-to tool for almost anything at this point. I’ve 
come to realize that it’s the lens that I view my computer and my job through.

Between writing my first column and this one, there was the announcement that Python 
is changing in a fundamental way. So I feel the need to take this opportunity to reflect on 
the extraordinary nature of this change: on July 12, 2018, Guido van Rossum elected to step 
down as the BDFL of the Python language [1].

A lot has been written about the circumstances, and I am not able to add useful commentary 
or knowledge about Guido’s decision to retire from his title and his position in the commu-
nity. I just want to add my own voice to those who have thanked him for shepherding the 
language for as long as he has done.

This is also a great chance to give props to all of Python’s maintainers who will be guiding 
the language to its next phase of governance and to discuss what that may mean for those of 
us who mainly use the language. So while this article will be non-technical, I hope it will at 
least be informative, interesting, and useful. 

Conway’s Law
Conway’s Law [2] is often invoked when asking how some piece of software developed into 
its current state. The version at Wikipedia attributed to Melvin Conway says, “organizations 
which design systems…are constrained to produce designs which are copies of the commu-
nication structures of these organizations.” If you’ve ever wondered why a system is written 
in a byzantine-seeming way including paths in and out of various modules and dependencies 
that don’t appear to make sense to you, it is often because of Conway’s Law: the software 
needed to be worked on is under the constraints imposed by the organization writing it, not 
just based on the needs of the software. 

However, the law also describes systems organized in a clear and sensible, easy-to-follow 
manner, which often doesn’t get noted in describing positive aspects of software.

Python 
So let’s take a step back and think about Python. The core of the model for changes to Python 
is most typical of a new programming language: someone wrote it, and that person is in 
charge. It makes intuitive sense on almost every level. When Python was new, it was mostly 
simple to defer all decisions to Guido, since he clearly cared and was willing to shoulder 
the burden. As it developed, in order to accommodate the wishes of its growing community, 
Python developed a PEP (Python Enhancements Proposal) process for proposing changes to 
the language, its core modules, the C API, and to make clear what was “standard” (e.g., what 
other implementations needed to do in order to be considered “an implementation of Python” 
that could use code written for other Python implementations and not merely be considered 
“like Python”) and what was specific to the C implementation.

Peter works on automating 
cloud environments. He loves 
using Python to solve problems. 
He has contributed to books 
on Linux and Python, helped 

with the New York Linux Users Group, and 
helped to organize past DevOpsDays NYC 
events. In addition to Python, Peter is slowly 
improving his knowledge of Rust, Clojure, and 
maybe other fun things. Even though he is a 
native New Yorker, he is currently living in and 
working from home in the northeast of Brazil. 
pcnorton@rbox.co.



42   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS
And Now for Something Completely Different

The PEP process was there to provide feedback to language 
maintainers, and Guido was given the jocular title of the BDFL, 
“Benevolent Dictator for Life.” This title has always been con-
ditioned on Guido actually wanting it, and the flexibility given 
to him and to the language by that nuance has meant that even 
though Python made that acronym popular, it has become a 
fairly common term to give to maintainers in programming com-
munities ever since it was coined.

Most of the languages I’ve seen other people enjoy using have 
been governed by an involved benevolent leader. Most of these 
have also been dynamic scripting languages: Ruby, Python, Tcl, 
and Perl are all somewhat similar as languages, and all follow a 
similar model: they each have a large audience, core developers, 
and a single leader whom they flourish/flourished under at some 
point. 

Outside of “scripting languages,” some other languages that have 
the same broad leadership model are Clojure and Scala. When I 
stopped to think about it, most of the hot languages of the past 
decade benefitted from having an undisputed leadership and 
support from the core group of users and maintainers.

In addition to these examples, there is evidence that the BDFL 
leadership model isn’t a critical part of the success of a lan-
guage—successful languages curated by a company or a commit-
tee include Java, C, C++, Haskell, and OCaml, among others. In 
addition, in a “similar to Python” vein, node.js, for one, is clearly 
successful, and its governance is managed quite differently. So 
even though there are many successful models, it’s not a stretch 
to think that the languages that have thrived under a leader have 
done well solely because of that leadership.

If you use Python as a nontrivial codebase, you’ve probably 
considered how Python’s organization around a minimal core 
with many modules matches what enables central language 
maintainers to do the best job they can. The fun and interesting 
question is how and whether it has affected the structure and the 
development of your software.

Going forward, the Python core maintainers and broader 
committer community have begun the difficult and admirable 
process of describing what they need in order to feel like they can 
make good decisions. This means that they are creating docu-
mentation on the process and also the context of the decisions 
that are being made. As you might expect, a new series of PEPs 
have been produced in order to describe the future of Python 
governance. Starting at PEP 8000 [3] a series of decisions will 
be made, and in the end PEP 13 [4] will get filled in with the deci-
sions that are reached.

A deliberate part of the outcome of this will be documentation 
and data about how other software projects and companies are 
managed. I understand that they are seeking a common under-

standing so that everyone participating can make an informed 
decision towards a common goal of helping Python thrive. This 
is being acted on as an opportunity to provide future maintain-
ers—themselves and others—with the guidelines and knowledge 
of how and why they made their decisions. If it’s ever necessary 
to change the governance model again, this will probably make 
the process easier.

PEP 8002 [5, 6] is absolutely fascinating—the Python commu-
nity is reaching out to other communities and is asking ques-
tions about their governance, which may not be documented 
clearly enough for outsiders to simply comprehend, and the 
resulting survey provides material for the Python community 
to understand where they—where we—fit in the broader com-
munity of software users. Looking at the Git log of the text of this 
PEP, I see more and more information being added to it weekly, 
and each addition is fascinating.

A notable point is that the communities in PEP 8002 are not 
just other languages. As of this writing, it does include Rust and 
Typescript, but it also includes Jupyter, Openstack, and Django, 
as well as Microsoft to add a significantly different and contrast-
ing perspective.

Speculation
I’m now going to put out some very unreliable and probably base-
less speculation about what will be done to the language in the 
future.

First, it is uncontroversial that there is an industry trend that 
CPU speeds have leveled off. Even though special purpose com-
pute units like GPUs are taking over some workloads, threading 
that isn’t bound to a single CPU is becoming more important, not 
less. I hope that something new could come to Python to improve 
its story here, even though it’s unlikely considering the current 
and past state of the language. 

In recent 3.x releases, however, the addition of async features 
and libraries emphasize how important it is to have some way 
of scaling that gets closer to true parallel multithreading. In the 
long term, could a change in the governance model prioritize 
multithreaded scheduling?

Another recent change in 3.6+ is type hints and their use for 
static type checks, even though one of the great things about 
Python is that the usage of types is very beginner-friendly: that 
is, flexible and forgiving (as they are in Ruby, Perl, and many 
other languages!). They are also very expert-friendly! If you 
know what you are doing, the thinking goes, the lack of compile-
time type checking lets you get through prototyping faster. 

However, in spite of how friendly Python and similar languages 
are, it’s clear that in many cases strict compile-time checks are 
a huge benefit. An example of this is the development of HHVM 



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 43

COLUMNS
And Now for Something Completely Different

(HipHop Virtual Machine). In case you’re not aware, PHP is also 
a very flexible dynamically typed language. It is the underpin-
ning of a huge enterprise, and that enterprise created a version 
of PHP for its own use where they added static type annotations. 
This feature then made its way to mainstream PHP 7 and above. 

I feel that the needs of the business fundamentally altered how 
they perceived the benefits and difficulties of the language they 
were using, to the degree that they changed fundamental aspects 
of that language, trading away some ease of use for what I under-
stand to be a huge benefit. They did this by creating a slightly dif-
ferent language, and while communicating with the maintainer 
of PHP, and the benefit became a part of mainstream PHP. 

If you view this progression as an extension of Conway’s Law, 
that could tell us something about some of the potential direc-
tions that Python could go in, and also could perhaps indicate 
some of the benefits along with the costs. A lot of the benefit of 
HHVM and PHP derive from the type hints being provided to 
a JIT, though, and that sounds like something that is closer to 
PyPy than to standard C-Python. But as long as I’m speculating 
wildly: there you have it.

Changes
I am not trying to predict anything here and now except the 
obvious: there is potential for huge changes in Python in the long 
term if the community of maintainers and users come together 
and agree on the inherent benefits. I am not hoping that anyone 
try to burn down the amazing system that we have and love! My 
message is that it will be important to have civil conversations as 
the maintainers peer into their crystal balls, predict the future, 
and try to guide the language—but there may be some things that 
were considered unstoppable, immovable, or invariant that could 
be called into question now! 

It simply seems more possible that there will be a chance to 
accommodate experiments that haven’t been getting done 
because the opinions of the BDFL were known and would make 
some suggestions dead on arrival. For the most part, it seems 
unlikely that the maintainers of Python will want to change the 
language drastically, but looking at the possibilities with an open 
mind will benefit everyone greatly.

To follow past, present, and future developments, go to the PEP 
index at https://www.python.org/dev/peps/, where you will find: 

◆◆ PEP 8002 describing the governance models of other software 
projects

◆◆ PEP 8010 describing the BDFL governance model

◆◆ PEP 8011 describing the council governance model

◆◆ PEP 8012 describing the community governance model

◆◆ PEP 8013 describing the external council governance model

Ongoing meta-discussion in the community is forming the 
PEPs above. It’s also important to pay attention to the python- 
committers mailing list (https://mail.python.org/pipermail 
/python-committers/). At this time there have been discussions 
about how to time box the discussion so that a decision can be 
made, though I’m not clear on whether there is an agreement 
about an actual date just yet.

Decisions are being made in large and small ways constantly, 
and they always have been. Python sprints (https://python 
-sprints.github.io/) are places where developers get together and 
discuss Python in addition to hacking on it. Obviously, Python’s 
past, present, and future are discussed at the sprints and will 
continue to be discussed there.

Conclusion
For anyone who is considering picking up or becoming involved 
with Python or a Python-based project, the change in leader-
ship shouldn’t discourage you—in fact, the process so far should 
encourage all of us to understand more about how this language 
has been governed and how it will be in the future.

This column is being written months before its publication, so 
when you finally read this, a lot more progress should have been 
made towards describing how Python’s future may be guided, 
but the process will still be alive and dynamic and in motion. So 
this is a great opportunity to alert those of you who may not be 
aware that this is happening, and to invite those of you who may 
have filed this under “look at how this is going later” to see how 
things are going now.

References
[1] Guido van Rossum, “Transfer of Power,” python-committers 
list: https://mail.python.org/pipermail/python-committers 
/2018-July/005664.html.

[2] Conway’s Law: https://en.wikipedia.org/wiki/Conway 
%27s_law.

[3] B. Warsaw, Python Language Governance Proposal Over-
view: https://www.python.org/dev/peps/pep-8000/. 

[4] B. Warsaw, Python Language Governance: https://www 
.python.org/dev/peps/pep-0013/.

[5] B. Warsaw, L. Langa, A. Pitrou, D. Hellmann, C. Willing, 
Open Source Governance Survey: https://www.python.org 
/dev/peps/pep-8002/.

[6] History for PEP 8002: https://github.com/python/peps 
/commits/master/pep-8002.rst.

https://www.python.org/dev/peps/
https://mail.python.org/pipermail
https://python
https://mail.python.org/pipermail/python-committers/2018-July/005664.html
https://mail.python.org/pipermail/python-committers/2018-July/005664.html
https://en.wikipedia.org/wiki/Conway%27s_law
https://en.wikipedia.org/wiki/Conway%27s_law
https://www.python.org/dev/peps/pep-8000/
https://www.python.org/dev/peps/pep-0013/
https://www.python.org/dev/peps/pep-0013/
https://www.python.org/dev/peps/pep-8002/
https://www.python.org/dev/peps/pep-8002/
https://github.com/python/peps/commits/master/pep-8002.rst
https://github.com/python/peps/commits/master/pep-8002.rst


44   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS

Custom Binaries to Ease Onboarding Using Go
C H R I S  “ M A C ”  M C E N I R Y

It recently came up that I needed to release a helper tool for our work 
environment. I was limited with regards to my distribution methods 
since much of the user base is BYOD based. Having Go in my toolbox, I 

knew that I could use Go to ease the distribution. One of Go’s selling points is 
its ability to package up all of its dependencies and runtime at compile time, 
so that you can avoid the runtime dependencies management issues that 
often arise.

In this case, the executable I built required a lot of configuration information—our list of 
compute clusters, the authentication endpoint, and an authentication client ID (OAuth 2 
based)—so I wrote up and released the documentation on how a user can configure the tool 
for our environment.

After several weeks with supporting users and the binary, I observed two key behaviors:

1. Every user eventually used the same configuration file, and

2. I needed to regularly update the configuration file as we built, deleted, or moved clusters.

Every time there was a change in the latter, I had to inform the users, publish a new set of 
documentation, and ask everyone to update. This had mixed success. The extra amount of 
work, the amount of internal works that were exposed to every user, and the limit of effec-
tiveness of the updates made me look for an easier way to accomplish this.

I started to compare it to another rising situation: mobile device application management. 
Mobile devices operate under similar circumstances. They tend to be dominated by BYOD. 
Applications are distributed as large single installs that similarly embed the runtime. The 
one big difference that I noticed is that with mobile devices, the users are limited with some 
configuration items. Most configuration items are either compiled into the binary or fetched 
and cached on the device. Some of those configuration items include secrets such as applica-
tion identifiers and client tokens.

In an attempt to make life easier, I decided to try moving the configuration around with my 
helper executable.

In this column, we’re going to explore moving the configuration for organizational applica-
tions out of configuration files. Along the way, we’re going to use this as an opportunity to 
pick up the AWS object storage, S3, to help us out. We’re going to store our basic configura-
tion in an S3 bucket, and we’re going to provide access to that bucket by hard coding the 
access values into the executable.

The code for this example can be found at https://github.com/cmceniry/login/ in the “hard-
code” directory. hardcode contains a customizer directory, which is our example application 
without any organizational-specific configuration.

For this example, you’ll need:

Chris “Mac” McEniry is a 
practicing sysadmin responsible 
for running a large e-commerce 
and gaming service. He’s been 
working and developing in 

an operational capacity for 15 years. In his 
free time, he builds tools and thinks about 
efficiency. cmceniry@mit.edu



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 45

COLUMNS
Custom Binaries to Ease Onboarding Using Go

1.  An AWS account.

2.  To create a bucket and upload a sample. If you are new to S3, 
use this guide: https://docs.aws.amazon.com/AmazonS3 
/latest/gsg/GetStartedWithS3.html.

3.  Set up an IAM user with access keys. This user should have 
the AmazonS3ReadOnlyAccess policy applied to it (or a more 
restrictive one if you are familiar with IAM). If you are new to 
AWS access management, see https://docs.aws.amazon.com 
/IAM/latest/UserGuide/id_users_create.html#id_users 
_create_console.

You can also choose to use a different, off-site storage technique, 
but a point of this article is to learn how to use the AWS Go 
interface for S3.

Storing Remote Configuration
The first part is to move the bulk of configuration into an exter-
nal store.

Amazon’s Simple Storage Service (S3) is a household name for 
many working in cloud environments. It provides an authenti-
cated and globally available storage location for static contents. 
We’re fetching our configuration from an S3 bucket. In this exam-
ple, that configuration is going to be a simple string message, but it 
could easily be a block of structured data to hold various values.

We’re dependent on the AWS Go SDK. You can obtain this with 
go get github.com/aws-sdk-go/... or using a Go dependency man-
agement tool.

Since we’re only accessing S3 in one place, we’re going to wrap 
all of that in a single function. It expects four inputs: the access 
key, its secret key, and the bucket name and path. Instead of 
returning a value, it will set a global configuration—we’ll return 
to this in the next section.

fetch.go: fetch.

    func fetch(ak, sk, bucket, path string) error {

Inside of fetch, we start by configuring an AWS session. This is 
used for all of the interactions with the AWS APIs. We’re going 
to give it our authentication keys and provide a region for the pro-
file to use. Outside of the static credentials, the AWS SDK does 
not operate directly on Go types, so we’ll need to wrap these with 
the AWS SDK types.

fetch.go: session.

    sess, err := session.NewSession(&aws.Config{

        Region: aws.String(“us-west-2”),

        Credentials: credentials.NewStaticCredentials(

            ak, sk, “”,

        ),

    })

Before we download, we need a place to download to. Since the 
application will be using this configuration, we want to keep 
this configuration in a memory buffer. Underneath the hood, S3 
may download across multiple streams and data segments. This 
means that an ordinary buffer, specifically one that expects just 
to append to the end, will not work. AWS provides a buffer—aws 
.WriteAtBuffer—that can be written to in multiple locations at 
the same time so we can use that.

fetch.go: writeatbuf.

    writeAtBuf := aws.NewWriteAtBuffer([]byte{})

Next we construct the downloader and run the download. The 
s3manager.Downloader is an intelligent transfer manager and 
capable of downloading many different objects in parallel. In 
this case, we’re just downloading the one object, but we still 
funnel everything through it. When creating it, we need to tell 
it our AWS API session so that it has the proper authentication 
information. Download requires a destination—our writeAtBuf 
buffer—and a source—the aws.String wrapped bucket name and 
path or key name.

One thing to note: the writeAtBuf parameter passed into down-
load is an io.WriteAt interface. This means anything that has a 
WriteAt member method can be used there. For instance, if you 
were downloading straight to a file, then os.File can be used 
directly since it has the WriteAt member method. This is an 
excellent example of using Go interfaces for flexibility.

fetch.go: download.

    downloader := s3manager.NewDownloader(sess)

    _, err = downloader.Download(

        writeAtBuf,

        &s3.GetObjectInput{

            Bucket: aws.String(bucket),

            Key:    aws.String(path),

        },

    )

Once we’re complete on the download, we then convert that into 
a string we can use in our configuration. For presentation pur-
poses, we strip leading and trailing whitespace from our value.

fetch.go: config.

    globalConfig = strings.TrimSpace(

        string(

            writeAtBuf.Bytes(),

        ),

    )

Again, we stored the configuration in a customizer-level variable 
instead of returning it from the function. As we’ll see next, that 
will help us with our custom application configuration.



46   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS
Custom Binaries to Ease Onboarding Using Go

Packaging the Configuration Access
Also inside of the customizer directory is a main.go containing 
a Main method. This is not a standard Go main—it is not in the 
main package, and it is exported. It is, however, meant to be the 
entry point for execution of our application. It lacks specific orga-
nizational customizations and only has variables to allow for this.

To simplify naming, it takes a customizer.Options type. In this 
example, we just mirror the four items we need to access our S3 
bucket. In other situations, this could also include authentica-
tion endpoint URLs, specific DNS names, or any other generally 
unchanging values.

main.go: options.

    type Options struct {

        AccessKeyID     string

        SecretAccessKey string

        BucketName      string

        BucketPath      string

    }

This is instantiated as a customizer-level variable so that any 
function inside of customizer has access to it. For this same 
reason, we put our globalConfig value from the S3 bucket at the 
same level. This mirrors how many Go command line tools oper-
ate—especially ones that use the Standard Library flag or Steve 
Francia’s pflag libraries.

main.go: vars.

    var opt Options

    var globalConfig string

Once the inputs and variables are established, we can define our 
pseudo-Main. It should be passed an Options parameter, which is 
what will be provided to make an organization-specific appli-
cation build. The customizer-level opt parameter is set to the 
provided Options parameter for these values to take effect.

main.go: mainopt.

    func Main(o Options) {

        opt = o

Beyond that, it behaves akin to any main, including parts such as 
command line argument parsing. Since we’re pulling additional 
configuration from S3, we also want to ensure that we perform 
that as part of this Main.

main.go: mainfetch.

        err := fetch(

            opt.AccessKeyID,

            opt.SecretAccessKey,

            opt.BucketName,

            opt.BucketPath,

        )

Since this is an example, it does not do anything other than print 
the value of the retrieved configuration file from S3.

main.go: mainprint.

        fmt.Printf(“Using Configuration: %s\n”, globalConfig)

Creating a Custom Binary
The customizer library can’t execute on its own. We need to call 
it from our own main.main method where we pass the specific 
organizational Options values to it.

    package main

    import “github.com/cmceniry/login/hardcode/customizer”

    func main() {

        customizer.Run(

            customizer.Options{

                AccessKeyID: “appspecific1”,

                SecretKeyID: “orgspecific2”,

                BucketName:  “orgspecific3”,

                BucketPath:  “orgspecific4”,

            },

        )

    }

Any number of these organization-specific builds can be done, 
and all end up being approximately the same number of lines of 
code (depends on the number of options). The marginal effort to 
create organization-specific builds is limited to ensuring that 
the configuration items are specified.

Considerations
While this approach certainly aids in the ease-of-use depart-
ment, there are several considerations and tradeoffs to at least 
look at. Many exist, but here are some of the more pressing ones.

All of the configuration items in the binary or remote storage 
should be limited to low-risk items. Low risk is relative, but the 
rule of thumb is that there is not anything more disclosed than 
could be available to anyone inside of the organization. Typically, 
this limits it to coarse-level information disclosures. Conversely, 
if this opens to arbitrary code execution—e.g., download a binary 
and run it—you should ensure that the code is signed or vali-
dated. It’s arguable that no secret should even be hard coded into 
a binary, especially one that is expected to be widely distributed 
in an organization. The worry is that this is a slippery slope and 
encourages bad practices. The balance of security and usability 
is a constant navigation of slippery slopes.

Any time you use hard-coded values in user applications, you 
need to account for the fact that you’ll have multiple applications 
in the wild at a time. This means that you’ll need to ensure that 
the use of these configuration items could exist at the same time. 



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 47

COLUMNS
Custom Binaries to Ease Onboarding Using Go

For instance, in this example, AWS supports two API keys per 
user. This allows you to rotate the key, and both the old and new 
values are valid while you rotate it.

This is not limited to the server side. If there are validation keys, 
your application will need to support an array of keys so that the 
old and new can exist at the same time.

    customizer.Options{

        VerifyKeys: []string{“abcd”, “efgh”},

    }

For remote configuration, your application will need to support 
the configuration format of the future. In practice, this means 
that your application will probably rely on non-strict validation 
of the configuration data and reasonable defaults when the con-
figuration is unspecified on the remote storage.

You have to decide what goes in the application and what is 
stored in remote configuration storage. This will largely come 
down to a question of flexibility. If you expect something to 
remain largely static or static over a longer period of time, you 
can put it into the binary. If you expect it to change on a regu-
lar basis—at least more often than you want to release binary 
updates—put it into the configuration repository.

Conclusion
I long held the belief that you should not hard code anything into 
your binary. If you did, it was a sign that your infrastructure 
lacked good distribution mechanisms. Best practice was to build 
and distribute them separately using strong central configura-
tion tools.

Those assumptions came from a specific perspective. That 
perspective was common, but, with the rise of decentralizing 
practices such as BYOD and remote work, it has become less so.

Sometimes you have to question your assumptions about best 
practices. When best practices are established, they are done 
so in a certain environment. If the environment of the nature of 
the problem has changed, then the practices need to adjust with 
them. We’re seeing more and more environments where control-
ling the end device is a very different prospect than it used to be.

Don’t be afraid to question the assumptions that you’ve held. 
Sometimes you’ll find that you’re not held to the same con-
straints that you used to be or that you’re not enabled by the 
same capabilities that you used to be. When this happens, you 
have to adjust and come up with new best practices.

USENIX Supporters

USENIX Patrons
Facebook • Google • Microsoft • NetApp • Private Internet Access

USENIX Benefactors
Amazon • Bloomberg • Oracle • Squarespace • VMware

USENIX Partners
BestVPN.com • Booking.com • CanStockPhoto • Cisco Meraki

Fotosearch • Teradactyl • thebestvpn.com

Open Access Publishing Partner
PeerJ



48   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS

iVoyeur
Flow, Part II

D A V E  J O S E P H S E N

Dave Josephsen is a book 
author, code developer, and 
monitoring expert who works 
for Sparkpost. His continuing 
mission: to help engineers 

worldwide close the feedback loop. 
dave-usenix@skeptech.org

The bells of Basilika Sankt Kastor clang—a nagging reminder behind 
me that I should be in Cochem right now, exploring castles like a 
proper tourist. But my imagination has been hijacked, and so I sit in 

Koblenz, having failed to switch trains when I realized—looking at the rail-
way map—that this was the city of Deutsches Eck, where the Mosel empties 
into the Rhine.

The Rhine is the second longest river in Europe (behind the Danube), and yesterday, 100 
miles north of here, I watched as a long, low jalopy-looking riverboat meandered up to its 
bank in Dusseldorf and launched, like a fanout-algorithm, a small flock of half-a-dozen 
bicycles—mother and children—toward the farmers market, their baskets full of empty shop-
ping bags. 

The wide flat deck of the boat was laden with the typical boat-crap-trappings that you would 
expect to see on the deck of a riverboat, but there were also things foreign to that environ-
ment, like a large wooden dining room table with seven chairs, an Iron Man Big Wheel, and 
lush green potted plants. Through the window of the wheelhouse I could see crayon art and 
action figures adorning every sill as if on the lookout for inclement weather.

It was love at first sight.

And so here I sit, watching the riverboats navigate the confluence of these two great rivers, 
most of them laden with cargo or tourists, but some—about one in twenty—serving as some-
one’s home afloat, headed who knows where. I imagine them unhurriedly drifting from town 
to town, suffering the world to move around them until they come spilling out into the North 
Sea, and maybe then turning right to explore Amsterdam’s maze of canals, or perhaps left, 
hugging the coastline as far as Le Havre and the mouth of the Seine. I can’t help but wonder 
how the 4G reception is along the great rivers of Europe.

In the US we don’t really have any rivers like the Rhine anymore—unencumbered by hydro-
electric necessity. Our closest analog is probably a thing called the “Great Loop” [1], which 
is more of a bucket-list, check-box-excursion sort of thing than a place to live. People who 
navigate it are called loopers, and they traverse a 6000-mile circular “system of waterways” 
(many of which are man-made) with soulless hyphenesque names like The Atlantic Intercos-
tal Waterway and the Tennessee-Tombigbee Canal. 

I will spare you my rant on the absurd irony of the pork-barrel excavation of navigable water-
ways in America, in the aftermath of our insane spree of pork-barrel river-damming, and 
confine myself to pointing out that despite, or maybe because of its lack of poetic romance, 
the American Great Loop, with its overabundance of locks, too-low bridges, VHF signaling, 
and flood control, is actually far better suited a metaphor to streaming data pipelines and 
data engineering than rivers like the Rhine. 



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 49

COLUMNS
iVoyeur: Flow, Part II

The Loop is a messy, complicated, and artificial route whose 
waters do not always flow smoothly, in the expected direction, 
or even at all. Indeed, if data engineering were as pleasant as the 
great rivers of Europe, STEM graduates would be starving in 
the streets. But as it is, few people outside of those demented few 
who yearn for nautical headaches have ever heard of the Great 
Loop, in just exactly the same way as you, my dear demented 
reader, are still working your way through this intro in anticipa-
tion of my getting to the juicy data engineering bits.

The Flow, Part Two
In my last column, I introduced you to our Internal Event Hose 
ingestion pipeline and Data Lake projects at Sparkpost, which 
together, provide an SQL-like query interface into various types 
of cherished log data. We covered how schema-at-read systems 
obviate the need for a proper database and enable us to query 
any at-rest data set, and we learned about columnar data stores, 
which make our SQL query engines practical and inexpensive to 
use (in both the computational and pocket-book sense). 

In this article we’ll look at what the Great Loop navigators 
would call the first leg, where our log data gets reaped from the 
instances and undergoes its first transformation into structured 
data. One of the many well-spring sources of critically important 
data-flow for us is that of our API servers, whose Nginx pro-
cesses are configured to send their access logs not to a text file or 
a syslog server but, rather, to a local UNIX socket like so: 

access_log syslog:server=unix:/var/run/msys-nginx.sock,facility 

=local0 api;

Listening to the other side of that FIFO is the local rsyslogd 
process, which is carefully configured to disable all limits, and 
forward all messages via syslog/TCP to an environment-specific 

logging cluster, which resides behind an Elastic Load Balancer at 
the split-horizon DNS name: log.sparkpost.

$SystemLogRateLimitInterval 0

$SystemLogRateLimitBurst 0

$IMUXSockRateLimitBurst 0

$IMUXSockRateLimitInterval 0

$ModLoad imuxsock

$ModLoad imklog

$AddUnixListenSocket /var/run/sys-nginx.sock

local0.* @@log:5140

& ~

The day we turned on IEH (Internal Event Hose) in production 
was (not at all coincidentally) the same day we learned the prac-
tical limitations of Nginx’s syslog outputter, rsyslogd, and the 
UDP syslog protocol itself. We service around 11,000 API calls 
per second in our production environment, a number too great 
for each of the aforementioned technologies in their original 
configurations. So Nginx was moved from syslog-direct logging 
to UNIX socket, rsyslogd had all of its annoying rate-limits 
disabled, and udp/syslog transport to the logging servers was 
replaced with tcp/syslog. 

Listening on port 5140/tcp on the logging cluster is a log-pro-
cessing framework called Fluentd. You may think of Fluentd 
as an event-router. You provide routing targets and addressing, 
and Fluentd routes incoming events accordingly. Our high-level 
architecture looks like the diagram in Figure 1.

In the configuration, a source block defines a listening port. 
Routing instructions in Fluentd-land are called tags, so the fol-
lowing source block listens for syslog protocol on tcp/5140 and 
tags everything that arrives as routable to firehose.

Figure 1: The IEH pipeline architecture

syslog:server=unix:/var/run/msys-nginx.sock,facility=local0
syslog:server=unix:/var/run/msys-nginx.sock,facility=local0
log:5140


50   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS
iVoyeur: Flow, Part II

<source>

  @type syslog

  port 5140

  protocol_type tcp

  bind 0.0.0.0

  tag firehose

</source>

The firehose tagged event’s first stop is to a built-in Fluentd plu-
gin called parser. The parser plugin’s job is, predictably, to parse 
each plaintext line into a JSON blob of named fields. To do this, 
it needs a Ruby-syntax regular expression with named fields. For 
our particular Nginx log format, the Fluentd config looks like this: 

<match firehose.**>

  type parser

  key_name message

  format /^(?<ts>.*?) “(?<remote_addr>.*?)” (?<response_code>\d+) 

     “(?<request>(?<method>.*?) (?<path>.*?) (?<version>.*?))”

     “(?<key>.*?)” (?<key_type>.*?) (?<customer>.*?)

     (?<username>.*?) (?<response_time>.*?) (?<bytes_sent>.*?)

     (?<length>.*?) (?<tenant_id>.*?) (?<subaccount_id>.*?)

     “(?<upstream>.*?)” “(?<user_agent>.*?)” (?<cache_status>.*?) 

     “(?<entity_id>.*?)”$/

  tag firehose_parsed

</match> 

Every plugin begins with a match or filter parameter that names 
tagged fluentd should route to it. At this point, given the big 
hairy regex, you might be wondering about the computational 
overhead of Fluentd, and my answer would be that the system 
is internally threaded, partially implemented in C, and surpris-
ingly resource-efficient. Although we initially had problems 
getting the traffic load stable across the network boundaries (as 
mentioned), we’ve had no problem running our workload on a set 
of three (one-per-AZ) modest instances.

Once a given log line has traversed the parser plugin, it exists 
in a parsed state to the rest of the plugins in the chain. In other 
words, we can now refer to the individual fields of our log lines 
using the names we assigned them in the regex we provided to 
the parser plugin. For example, I can see a given event’s response 
code by specifying event[‘response_code’]. 

You’ll notice the events are now tagged firehose_parsed. These 
get routed to the next filter in our config, which is a custom filter 
that we wrote ourselves in Ruby (all custom Fluentd filters are 
Ruby).

<filter firehose_parsed.**>

  @type sparkpost

</filter>

A simple enough configuration, since Fluentd doesn’t know any-
thing about it other than to import our Ruby script and provide it 
with events via the pre-ordained filter function, as described in 
the Fluentd documentation on writing custom plugins [2]. 

Our custom filter performs a slew of business-oriented tasks 
on the event flow. First, we use it to scrub the Nginx data, 
deriving new attributes from existing ones. For example, the 
event[‘path’] contains the entire path from Nginx, including 
things like CGI query parameters. In our custom Fluentd filter, 
we can split these out like so: 

fixed_path = String(message[‘path’].split(‘?’)[0]),

query_string = String(message[‘path’].split(‘?’)[1]),

Some events represent API calls that are special in a business-
sensitivity context, like new-user sign-ups or account deletions. 
Our custom plugin extracts these events, enriches them with 
data derived from follow-up API calls, and then forwards them to 
Salesforce and other internal tools by way of AWS SNS (Simple 
Notification Service). 

<match ieh_enriched.**>

  @type amazon_sns

  flush_interval 5

  num_threads 20

  buffer_type file

  buffer_path /tmp/td-agent/amazon_sns

  topic_name internal-event-firehose-prd

  aws_region us-west-2

  sns_message_attributes_keys {“enriched”:”enriched”, “event_

type”:”type”}

  add_time_key true

</match>

These special events are tagged ieh_enriched from within our 
custom plugin. You might notice that there is quite a bit of buffer 
configuration in this SNS output block. Although we haven’t 
had scalability problems with Fluentd itself, we have found that 
handoffs to external services like AWS SNS and Kinesis can 
be fragile. It’s taken some time to get the buffer settings locked 
in for our particular workload, and you should expect a similar 
experience.

You might be curious about the sns_message_attributes_keys 
parameter. This parameter implements AWS-side SNS filter-
ing [3]. I bring it up because there are two widely used third-
party Fluentd filters today. One of them is an unbuffered (read: 
dangerous) plugin that supports SNS filtering, and the other is a 
buffered plugin that does not support filtering. What the world in 
fact needs, is a single, buffered, SNS plugin that supports AWS-
side filtering. 



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 51

COLUMNS
iVoyeur: Flow, Part II

To that end, I’ve forked and extended the buffered plugin with 
filter support for our workload at Sparkpost and have PR’d the 
result back upstream [4]. Hopefully, by the time you actually care 
about this it’ll be merged in. 

Finally, every event, regardless of whether it is special or not, 
gets forwarded to the data-lake via AWS Kinesis Firehose. These 
events keep the firehose_parsed fluentd tag and are routed to 
this output config block:

<match firehose_parsed.**>

  @type kinesis_firehose

  region us-west-2

  delivery_stream_name internal-event-firehose-prd

  append_new_line true

  num_threads 64

  flush_interval 1

  buffer_type file

  buffer_path /tmp/td-agent/kinesis_firehose

  buffer_chunk 8388608

  buffer_queue_limit 512

</match>

This plugin is an AWS-supported plugin for Fluentd [5] and 
works very well. We still needed to carefully balance Fluentd’s 
buffer behavior to our workload. Some things to point out here 
are the append_new_line feature, which places a new line 
between each event rather than just firing a huge incomprehen-
sible JSON blob of 100 smushed-together events into Kinesis, 

which subsequent data tooling like Glue will not be able to parse. 
I point this out to you as someone who had to perform a manual 
retroactive data-reload on several weeks’ worth of incomprehen-
sible JSON data. 

A few words about Fluentd buffers: first, study the diagram in 
the Fluentd documentation [6]. There are buffers, and there is a 
queue, and they are different entities with unique behaviors, log-
errors, and configurations. In production you want to use file-
based buffers. They are fast enough for sub-second data flushes 
(remember, buffered output is threaded) and survive better in 
the event of an instance/server failure. Finally, consider your 
buffer chunk sizes carefully, especially how long it takes to fill 
a chunk, because internal buffering can be a source of massive 
time-delay for low-frequency events. 

I’m out of space for this issue, but we’ve gotten through pretty 
much all of the first leg save for our favorite subject: monitoring. 
The easiest means of introspecting Fluentd’s behavior is using 
the Prometheus plugin for Fluentd. You don’t need to be using 
Prometheus to use the plugin—in fact, I’m currently using Circo-
nus to visualize metrics from it as you can see in Figure 2.

Next time, I’ll walk through the (quite excellent) Prometheus 
plugin’s configuration and start you out on leg two of our journey, 
where we’ll stream our parsed event data into S3 and use Apache 
Spark to transform it into Parquet format. 

Take it easy.

Figure 2: IEH metrics, derived from the Fluentd-Prometheus plugin



52   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS
iVoyeur: Flow, Part II

References
[1] The Great Loop: https://en.wikipedia.org/wiki/Great_Loop.

[2] Fluentd plugin docs: https://docs.fluentd.org/v1.0/articles 
/api-plugin-filter. 

[3] AWS SNS filtering: https://docs.aws.amazon.com/sns/latest 
/dg/message-filtering.html. 

[4] Fully buffered SNS plugin: https://github.com/miyagawa 
/fluent-plugin-amazon_sns/pull/11.

[5] Fluent plugin for Amazon Kinesis: https://github.com 
/awslabs/aws-fluent-plugin-kinesis. 

[6] Fluent buffers: https://docs.fluentd.org/v0.12/articles 
/buffer-plugin-overview.

Statement of Ownership, Management, and Circulation, 10/01/2018

Title: ;login: Pub. No. 0008-334. Frequency: Quarterly. Number of issues published annually: 4. Subscription price: $90. 
Office of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710. 
Headquarters of General Business Office of Publisher: Same. Publisher: Same. 
Editor: Rik Farrow; Managing Editor: Michele Nelson, located at office of publication. 
Owner: USENIX Association. Mailing address: As above. 
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds, 
mortgages, or other securities: None.
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax purposes have 
not changed during the preceding 12 months.

Extent and Nature of Circulation Average No. Copies 
Each Issue During 
Preceding 12 Months

No. Copies of Single 
Issue (Fall 2018) 
Published Nearest  
to Filing Date

a. Total Number of Copies (Net press run) 2436 2775

b.  Paid Circulation (By 
Mail and Outside the 
Mail)

(1) Mailed Outside-County Paid Subscriptions 974 888

(2) Mailed In-County Paid Subscriptions 0 0

(3) Paid Distribution Outside the Mails 693 652

(4) Paid Distribution by Other Classes of Mail 0 0

c. Total Paid Distribution 1667 1540

d.  Free or Nominal Rate 
Distribution (By Mail 
and Outside the Mail)

(1) Free or Nominal Rate Outside-County Copies 77 77

(2) Free or Nominal Rate In-County Copies 0 0

(3) Free or Nominal Rate Copies Mailed at Other Classes 18 17

(4) Free or Nominal Rate Distribution Outside the Mail 374 330

e. Total Free or Nominal Rate Distribution 469 424

f. Total Distribution 2136 1964

g. Copies Not Distributed 300 811

h. Total 2436 2775

i. Percent Paid 78% 78%

Electronic Copy Circulation

a. Paid Electronic Copies 468 466

b. Total Paid Print Copies 2135 2006

c. Total Print Distribution 2604 2430

Percent Paid (Both Print and Electronic Copies) 82% 83%

I certify that the statements made by me above are correct and complete.
Michele Nelson, Managing Editor 9/28/18

https://en.wikipedia.org/wiki/Great_Loop
https://docs.fluentd.org/v1.0/articles/api-plugin-filter
https://docs.fluentd.org/v1.0/articles/api-plugin-filter
https://docs.aws.amazon.com/sns/latest/dg/message-filtering.html
https://docs.aws.amazon.com/sns/latest/dg/message-filtering.html
https://github.com/miyagawa/fluent-plugin-amazon_sns/pull/11
https://github.com/miyagawa/fluent-plugin-amazon_sns/pull/11
https://github.com/awslabs/aws-fluent-plugin-kinesis
https://github.com/awslabs/aws-fluent-plugin-kinesis
https://docs.fluentd.org/v0.12/articles/buffer-plugin-overview
https://docs.fluentd.org/v0.12/articles/buffer-plugin-overview


www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 53

COLUMNS

What’s in a name? That which we call a rose 
By any other word would smell as sweet;

Romeo and Juliet, Act 2, Scene 2

Each generation of global commerce and culture has to decide for 
itself what the Internet “means” to them. Some of that meaning will 
depend on how large the Internet is at that time. Delightfully, the unit 

of measure of that largeness will also change with every era.

There was a time when to be “on the Internet” meant that your host’s name was published in 
a central registry called HOSTS.TXT—and then the wheels came off. The original text-only 
terminals were replaced by graphical workstations, later by personal computers, then by vir-
tual servers, followed by smartphones, and, eventually, smart devices. But whereas the time-
shared minicomputers that once serviced text-only terminals had names, the workstations 
and personal computers that came later were given names mostly out of habit: we wanted to 
know where connections to our time-shared computers and servers were coming from, but 
we would rarely have any reason to try to connect back to those origins.

There was also a time when to be “on the Internet” meant that your IP address block was 
present in the global routing table. Those wheels also came off pretty early: network address 
translation (NAT), whether deployed as a security measure or due to a real or perceived 
shortage of address space, meant that only a small island of a university or enterprise 
network would use so-called “global addresses,” and these would act as gateways to private 
networks that serviced a much larger population of possible endpoints hidden behind such 
gateways.

In 2018 (“now”) the fashion is to measure the number of connected people and not the num-
ber of connected devices. We round this number to the nearest billion, as if we neither know 
nor require any further accuracy.

Because it’s hard to secure something we don’t understand, it’s necessary that we fathom the 
Internet in some way, so that we can account for and predict the risks it poses and the risks it 
experiences, and ultimately make some plan as to how to manage some risks and how to cope 
with others we cannot manage.

Scale
The Domain Survey, operated since 1987 by Network Wizards, Internet Systems Consor-
tium, and 3Way Labs, gives us a general baseline of one measure of Internet size: the popula-
tion of endpoints that have names. Notably, not all of these names are actually used—many 
are assigned by network operators from a pool of machine-generated and meaningless names 
with no expectation that any of these names will ever be used to initiate a connection. This 
is due to ancient prejudices whereby a service might reject as “low value” any connection 
from an endpoint lacking a name. Even though this prejudice is wrong, the optics generated 
by its adherents have helped chart the growth of the Internet to a population size just over 

For Good Measure
Nameless Dread

D A N  G E E R  A N D  P A U L  V I X I E

Dan Geer is the CISO for In-Q-
Tel and a security researcher 
with a quantitative bent. He has 
a long history with the USENIX 
Association, includi ng officer 

positions, program committees, etc.  
dan@geer.org

Dr. Paul Vixie is an Internet 
pioneer. Currently, he is the 
Chairman, CEO, and cofounder 
of Farsight Security, Inc. 
He was inducted into the 

Internet Hall of Fame in 2014 for his work 
related to DNS. Dr. Vixie began his career as 
a programmer (Cron, RTTY, BIND) before 
co-authoring Sendmail: Theory and Practice and 
more than a dozen RFCs, and contributing 
a chapter to Open Sources: Voices from the 
Open Source Revolution. More recently, he has 
become a serial entrepreneur (ISC, MAPS, 
PAIX, MIBH, DNS-OARC, Farsight). He was a 
member of the ARIN Board from 2004–2013. 
He completed his PhD in 2010 at Keio 
University. vixie@fsi.io



54   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS
For Good Measure: Nameless Dread

one billion “endpoints having names,” as seen in Figure 1. We 
highlight the logistic inflection point, 19-Mar-08, the point in 
time at which the rate of growth in advertised names changed 
from accelerating to decelerating. As of today, 66% of the total 
IPv4 space is advertised as compared to 0.0026% of the total 
IPv6 space.

Measurement of the Border Gateway Protocol (BGP) global 
routing table is another proxy for some measurement of the 
Internet’s size. A single entry in this table can contain as few as 
256 potential endpoint addresses or as many as 16 million. We 
can constrain our estimate of the average number of potential 
endpoint addresses in a routing table entry by noting that about 
three billion endpoint addresses are globally reachable, there is 
no new IP version 4 address space remaining in the free pool, 
and the global routing table contains about 750,000 entries. 
So a routing table entry represents, on average, perhaps 4000 
potential endpoints. In CIDR terms that’s a “/20.” Notably, many 
of the smallest routing table entries are just NAT gateways, and 
so each might represent a vast population of endpoints that could 
reach outward or accept inbound transactions (see Figure 2).

In 2018, mobile Internet devices such as smartphones began to 
reach a saturation point—most humans who want or need and 
can afford a mobile Internet device already have several of them, 
which means device sales are now principally for upgrades and 
replacements (see Figure 3). The market is still strong with 
vigorous competition between handset and platform makers, 
but the decade of Internet growth driven by new mobile Internet 
devices may be reaching a plateau. Notably, the vast majority of 
mobile Internet devices do not have resolvable names since they 
are only outbound traffic sources and not also inbound traf-
fic sinks. Most do not have fixed addresses and will make their 
outbound requests from a new address every few minutes due to 
mobility, roaming, or virtual network grooming.

The fastest source of Internet growth since 2015 is the Internet 
of Things (IoT), and this is expected to continue, more or less 
forever (see Figure 4). A “thing” in this context can be a home 
appliance, an embedded device, or a component in some system 
like home audio. These devices are cheap to build and cheap to 
buy, such that very little thought goes into life-cycle manage-
ment either by producers or consumers of these tiny and plentiful 
devices. Many such devices are shipped with known or discover-
able security vulnerabilities, and many will never be patched 
whether because of supply chain churn or because the resulting 
software engineering economics would drive unprofitability. 
Most importantly, precisely none of these devices have names.

Internet Protocol version 6 (IPv6) has come a long way in a short 
time, and now represents about a quarter of all inbound traffic 
seen by Google’s network [5]. This fraction is characteristic of 
other cloud, search, Application as a Service, and social net-
work providers. There is no confident estimate of the relative 
size of the IPv6 vs. IPv4 endpoint populations due to technical 
differences in the format and allocation of endpoint addresses 
between the v6 and v4 systems. Generally speaking, it’s easier 
to enable IPv6 in a new device or online system than to add 

Figure 1: Hosts advertised in the DNS, and its inflection point [1] Figure 2: Active BGP entries [2]

Figure 3: New smartphone shipments vs. year-to-year growth [3]



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 55

COLUMNS
For Good Measure: Nameless Dread

IPv6 to an existing IPv4-only system, which dovetails with the 
trend toward seamless automation without end-user configura-
tion or awareness. While many endpoints from the two largest 
populations (mobile Internet and IoT) are now using IPv6, most 
of their traffic is outbound-only, and these devices rarely have 
or require names. One hopeful difference between the IPv4 and 
IPv6 systems is that IPv4 addresses are dense enough to permit 
brute force automatic network scanning by an attacker, so even 
an endpoint that never advertises its presence and has no name 
might still be attacked. The sparse addressing of IPv6 makes 
this kind of attack far more expensive in terms of brute force 
than for dense IPv4. Of course, security regimes that walk the 
corporate address space to discover what addresses exist on 
“their” network are similarly disabled by IPv6’s sparseness.

Implications
Security risk is a function of defects and vulnerabilities, expo-
sure, opportunity, and motivation. Factors like the relative moti-
vations and skills of defenders vs. attackers can often be more 
decisive than the number of defects or the overall reachability of 
a victim endpoint. However, when other things are equal, as they 
tend to become in a maturing market with established equilib-
riums, the best predictors of risk are exposure and reachability. 
A device that never receives inbound messages from any other 
device can contribute very little risk. Of course, outbound-only 
means that it is infeasible to push messages to that device—an 
auto-update process has to be initiated by the remote device 
asking to be updated, for example, or a reserve channel has to be 
secretly designed-in.

We have placed special focus on names because, for security 
analysis, a name makes a device more reachable, thus increasing 
its exposure. If successfully attacked, a device will often become 
a beachhead by which other more private and less reachable 
devices can be probed and perhaps also successfully attacked, 

thus increasing the risk posed by the exposed device. Having a 
name is a risk factor, just as being reachable from outside the 
local network due to firewall weaknesses or misconfiguration is 
a risk factor.

Mobile devices can and do join botnets. But the initial vector 
for a successful attack on such devices will invariably be that 
it was induced to make an outbound transaction whose results 
were damaging in some way and against which the device had 
no working defense. The same will be true of IoT devices for the 
most part, although in this class of victim, inbound transac-
tions either from the local network or from selected parts of the 
outside world are part of the product design, and in that case a 
name, either in the domain name system (DNS) or some other 
less public naming scheme, will contribute to reachability and 
therefore to overall risk.

Defenders should consider a mostly closed reachability policy. 
Nothing should be externally reachable unless there is a hard 
requirement. This includes both giving an endpoint a globally 
resolvable DNS name and giving it any kind of reachability in 
the firewall configuration. But more than this, internal firewalls 
have to be deployed so that a successful attack on one part of 
the network does not necessarily create a beachhead for attacks 
on the rest of the network. This kind of internal segmentation 
is costly, but at least it’s an up-front cost that defenders can 
budget for—much cheaper than answering questions from the 
press, customers, shareholders, or regulators after a successful 
attack—plus whatever damage was actually caused.

There are far-reaching design questions here. One involves the 
resurrection of a 20-year-old debate: assuming that myriad, 
nameless devices will need to be able to cryptographically 
protect their messages, where is the key for that looked up? Will 
each device have one of its own? Will internal firewalls include a 
key-centric, rather than a name-centric, PKI of sorts [6]? Does a 
MAC address or UUID-in-ROM distinguish keys in a nameless 
world and thus imply an identity-based PKI? Either way, is the 
key-management job going to be harder or easier absent names? 
Will we not bother with keys at all and trust that the internal 
firewalls are resilient to lax operation? Perhaps especially 
interesting, what would a name mean when the end user has a 
half-dozen devices that mutually self-synchronize?

Evolution
Because small nameless devices tend to be cloud-associated but 
typically do not accept inbound transactions or connections, 
they will (by design) make long-running outbound connections 
to their maker’s command and control infrastructure and simply 
wait to be told over that connection what action or report they 
should make next. The identity of the device might be encoded 
as a client-side TLS certificate or some hardware serial number. 

Figure 4: IoT-connected devices installed base worldwide from 2015 to 
2025 [4]



56   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS
For Good Measure: Nameless Dread

The command and control service will associate the device’s 
identity with a subscriber, and when the subscriber also con-
nects in, this elbow-shaped pair of connections will allow the 
subscriber to apparently but indirectly control their device. This 
synchronization-design language is both the result and sup-
porter of the trend toward namelessness in modern Internet-
connected devices. Even where direct LAN-based connectivity 
is used to connect a subscriber to a device, it will as often be 
negotiated through the maker’s command and control network, 
as discovered locally by some broadcast or multicast proto-
col along the lines of mDNS or UPnP. Whatever the motive or 
method, the universal consensus among system designers is that 
using names to reach Internet-connected devices is considered a 
legacy. Services need names; servers who provide those services 
need names; devices which are not servers, will be reached in 
other ways.

We are at a fork in the road. The choices to be made will be 
expensive to later reverse in either dollars or clock-ticks. 
Momentum says that, soon, the majority of Internet endpoints 
will not be describable by name or discoverable by scanning. 
Another layer of indirection will, as ever, solve some problems 
and create others. Provenance and forensics will all but surely be 
affected. The CAP theorem [7] is licking at our heels.

References
[1] Internet Domain Survey, July 2018: ftp.isc.org/www 
/survey/reports/2018/07/index.html.

[2] Active BGP entries: http://bgp.potaroo.net/as2.0/bgp 
-active.txt.

[3] New smartphone shipments vs. growth: https://www 
.slideshare.net/kleinerperkins/internet-trends-report-2018 
-99574140, slide 6.

[4] IoT-connected devices: https://www.statista.com 
/statistics/471264/iot-number-of-connected-devices 
-worldwide/.

[5] Proportion of IPv6 traffic: https://www.internetsociety.org 
/wp-content/uploads/2018/06/IPv6-infographic.pdf; https:// 
www.google.com/intl/en/ipv6/statistics.html.

[6] Name-Centric PKI (Ellison & Metzger) vs. Key-Centric 
PKI (Ford & Kent): http://static.usenix.org/publications 
/library/proceedings/ec98/pki.html.

[7] Simon S. Y. Shim, “The CAP Theorem’s Growing 
Impact,” IEEE Computer, vol. 45, no. 2, February 2012, pp. 
21–22: https://www.computer.org/csdl/mags/co/2012/02 
/mco2012020021.pdf.

USENIX Board of Directors
Communicate directly with the  USENIX Board of Directors by writing to board@usenix.org.

P R E S I D E N T
Carolyn Rowland, National Institute of  
Standards and Technology 
carolyn@usenix.org
V I C E  P R E S I D E N T
Hakim Weatherspoon, Cornell University 
hakim@usenix.org
S E C R E T A R Y
Michael Bailey, University of Illinois at Urbana-
Champaign 
bailey@usenix.org
T R E A S U R E R
Kurt Opsahl, Electronic Frontier  Foundation 
kurt@usenix.org

D I R E C T O R S
Cat Allman, Google 
cat@usenix.org
Kurt Andersen, LinkedIn 
kurta@usenix.org
Angela Demke Brown, University of  Toronto 
angela@usenix.org
Amy Rich, Nuna Inc. 
arr@usenix.org
E X E C U T I V E  D I R E C T O R
Casey Henderson 
casey@usenix.org

ftp.isc.org/www/survey/reports/2018/07/index.html
ftp.isc.org/www/survey/reports/2018/07/index.html
http://bgp.potaroo.net/as2.0/bgp-active.txt
http://bgp.potaroo.net/as2.0/bgp-active.txt
https://www.slideshare.net/kleinerperkins/internet-trends-report-2018-99574140
https://www.slideshare.net/kleinerperkins/internet-trends-report-2018-99574140
https://www.slideshare.net/kleinerperkins/internet-trends-report-2018-99574140
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.internetsociety.org/wp-content/uploads/2018/06/IPv6-infographic.pdf
https://www.internetsociety.org/wp-content/uploads/2018/06/IPv6-infographic.pdf
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
http://static.usenix.org/publications/library/proceedings/ec98/pki.html
http://static.usenix.org/publications/library/proceedings/ec98/pki.html
https://www.computer.org/csdl/mags/co/2012/02/mco2012020021.pdf
https://www.computer.org/csdl/mags/co/2012/02/mco2012020021.pdf


www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 57

COLUMNS

/dev/random
Simulation Station

R O B E R T  G .  F E R R E L L

I was planning to discuss SRE this time, but as I was looking up that 
abbreviation I realized I don’t actually know anything about it. In my 
day, “site reliability engineering” meant you used four empty heavily 

caffeinated soda cans to support the particle board shelf with the server on it 
instead of the customary three. Fortunately for the admittedly tiny segment 
of my audience who labor under the misapprehension that I’m an authority on 
anything outside the realm of sarcastic goblin detectives, I stumbled across 
the Joe Rogan interview with the Muskmeister and fell headlong into his 
metaphysical rabbit hole of cosmological solipsism. 

The idea that we are all in a simulation is hardly novel. It was around long before the 
Wachowskis spun it into great glittering mounds of platinum. Descartes’ 1641 brain-in-a-vat 
idea, for example. Most science fiction writers worth their salt have taken a crack at it over 
the past five or six decades, William Gibson’s matrix in Neuromancer and Neal Stephenson’s 
metaverse from Snow Crash being perhaps the most famous examples, although techni-
cally neither of those were fully immersive worlds that constitute a separate reality. Since 
The Matrix, two of my favorites have been the Framework (Agents of SHIELD) and virtual 
Eureka (http://eureka.wikia.com/wiki/Season_5). There are no doubt others I have yet to 
discover because I’m about 10 to 15 years behind everyone else in my media consumption. I 
mean, I just recently finished my first time all the way through both Smallville and Buffy.

As a science fiction and fantasy author, I’ve noticed that the immersive simulation concept 
is one that carries my imagination along like Class 5 philosophical rapids. The versions I’ve 
seen in fiction assume that some higher life form is pulling the strings that keep some other 
life form(s) trapped in a simulated reality, but that reality is always limited in geographic 
scope to, at most, a single city. They also usually predicate their narratives on the idea that, 
given the right circumstances, the victims can break free and return to the “real” world.

In video gaming, there is a concept called “clipping.” It means that objects have no inherent 
persistence: the game’s engine only needs to render whatever is in the players’ current fields 
of vision. It tracks where they are looking and calculates what they can observe from a given 
perspective. Similarly, our own simulation engine only has to render what we can see right 
now. When we look away from something, it just disappears. In the “real world,” objects are 
effectively only photons bouncing off a surface and impinging on our optic nerve via the ret-
ina. Whether or not they have mass and occupy space when we aren’t looking is a moot point.

If the universe has been in existence for over 13 billion years, there’s been plenty of time for a 
civilization to arise and reach the point where it can create simulations powerful enough to 
be indistinguishable from reality. But it doesn’t have to create an entire objective universe, 
with all the pieces in place—not by a very long shot. It only needs to plant an illusion of this 
in our putatively sentient brains. The objective perception of this shared universe doesn’t 
even have to be truly identical: all that matters is that those brains believe the consensus 
exists. Solipsism is the ultimate restriction on external truth. So long as we perceive shared 

Robert G. Ferrell, author of The 
Toi Chronicles, spends most 
of his time writing humor, 
fantasy, and science fiction. 
rgferrell@gmail.com.



58   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

COLUMNS
/dev/random: Simulation Station

 consistency in the application of universal “constants,” we will 
believe ourselves to comprehend them, no matter how far from 
fact that belief may stray.

This consistency of perception is trivial for an extremely 
advanced civilization to engineer. The evidence we can see 
suggests that the universe is 13.8 billion years old, yes, but that 
evidence—or the perception thereof—might just be another part 
of the simulation. Perhaps after all this time there is only one 
sentient species left in the entire multiverse, and just for grins it 
controls a large number of simulations full of simulated people 
who only think they exist in objective reality. The motivation 
for this might be some far-reaching sinister purpose involving 
harvesting us or thriving on our triggered endocrine secretions, 
or it could be as simple as entertainment. I mean, once you’ve 
mastered fabricating then enslaving another entire species by 
manipulating their very perception, you might be tempted to 
allow others to tune in and watch the show, for a fee. This of 
course takes “reality programming” to an entirely new level.

Or we could just remove the overseer from the picture com-
pletely and envision a scenario where the species that designed 
and built the simulations has long since gone extinct, leaving the 
self-perpetuating virtual multiverse ticking away all on its own. 
The existential question then becomes, does it matter? If instead 
of being a collection of cells producing proteins, splitting ATP 
into ADP to generate energy, and transporting various ions back 
and forth across membranes, I am nothing more than a par-
ent process with a bunch of subroutines running on some vast 
CPU, does that really make any difference? I require petaflops; 
therefore, I am.

Whether a “red pill” could even exist depends, then, upon 
whether there is any existence outside the simulation to which 
to exit. If we’re all floating in some tank with electrodes taped to 
our foreheads that’s one thing, but if we’re merely computational 
avatars, that’s quite another. Maybe we already destroyed our 
planet utterly in a nuclear holocaust, or by abusing the environ-
ment to its breaking point, and an alien species came across our 
dead civilization. They analyzed our culture from the archives 
we left behind and reconstructed it as a simulation with vari-

ables they control in order to learn about our society in a labora-
tory setting. They’re watching to see where we went wrong so 
they can warn other similar civilizations, again perhaps for a fee. 
Maybe we keep getting reset to some point in the past to play out 
the same doomed self-destructive track as a cautionary tale for 
each new class that comes though an alien social psych course.

Being in a cosmic simulation also raises interesting questions 
about death. I mean, is the end just “kill -9,” or is our thread 
diverted to another core and we continue in a new program fork? 
Would we even be aware of this change? If every aspect of our 
existence is hard-coded, that means predestination is real. On 
the other hand, if our code is heuristic and adaptive, maybe we 
can determine our own destiny, at least within the greater pro-
gramming context. Are we closed loops or fractal sub-threads? 
Is our will truly free, or are we prisoners of our mallocs? If we 
could read our own header files, what would they tell us? Would 
they be like lines on a palm, laying out our futures? Is a massive 
heart attack merely a divide-by-zero error? Maybe in searching 
for the meaning of life, the universe, and everything, 101010 is 
just what you get when you de-reference the pointer to human 
existence.

Personally, I suspect that rather than some high and noble 
pragma, human society is nothing more than a streaming event 
for an interstellar entertainment network, like watching Civili-
zation VI on Twitch. Trillions of beings across the local cluster 
are laughing right now as I type this. “The monkey figured 
it out!” a viewer howls between bites of whatever snack food 
appeals to hyper-intelligent liquid methane-based squamoids.

“Hey,” interjects another, “this is boring. Change the channel to 
that white hole cluster cam. I love scoping the bizarre crap that 
slides out of those things.” Because, you know, that’s how hipster 
superior beings talk.

If I am just the result of compiled code running on some proces-
sor, all I ask is that there be decent garbage collection. Corrupted 
memory does not lead to sexy fun times.

Homo barada nikto, y’all.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 59

BOOKSBook Reviews
M A R K  L A M O U R I N E  A N D  R I K  F A R R O W

Groovy in Action, 2nd ed.
Dierk König and Paul King
Manning Publications, 2015, 912 pages
ISBN 978-1-93518-244-3

Reviewed by Mark Lamourine

I have been learning Groovy as part of some recent work using 
Jenkins pipelines for a build-and-test system. The Jenkins 
pipeline plugin implements a Domain Specific Language (DSL) 
for job control that extends (and, to some degree, limits) the 
Groovy language. I started off just reading examples and using 
search engines to answer my questions. When it became clear to 
me that this was going to be a regular part of my work, I decided I 
needed to do some proper reading. 

Groovy is a scripting language and execution environment based 
on Java that first appeared in 2003. The first edition of Groovy in 
Action was released three years later. The second edition  covers 
Groovy 2.4. The current version of Groovy, as of this writing, 
is 2.5, and a version 3 is in development. The Jenkins pipeline 
 plugin appears to be based on Groovy 2.4.

To be clear, Groovy in Action is strictly concerned with the Groovy 
language and does not treat Jenkins or the pipeline plugin at all. 
Understanding Groovy is required but not sufficient to write Jen-
kins pipeline jobs. There’s also a lot more to Groovy than Jenkins.

Groovy in Action feels smooth. The progression of topics is clear 
and logical. König and King know their audience and write well 
to them. There are no tutorial digressions into theory or founda-
tions. They do make note of things that might be unexpected or 
unfamiliar, like the concept of optional typing. Groovy is tightly 
coupled to Java, and the authors assume a level of comfort with 
Java and with modern programming practice and terminology.

The first section covers the Groovy language proper. I like the 
grouping of data types into Simple and Collective. Placing a com-
plete chapter on closures before the chapters on control struc-
tures and objects breaks the ordering I’d expect, but it makes 
sense when seen in this context. Closures are no longer an exotic 
idea, and they are a big part of idiomatic Groovy.

The language section closes with a couple of chapters on 
dynamic programming and static typing in Groovy. Groovy 
is an “optionally typed” language: you can specify the types of 
variables and functions, or you can let the compiler infer them. 
It is not a dynamically typed language. That is, once you or 
the compiler have determined the type of a variable, it cannot 
be changed. Specifying the type allows the compiler to flag 

 mismatches, but you’ll get a runtime error if you try to change 
the type of an inferred object.

In the second section the authors start making some real work 
possible. The chapters cover how to work with databases, 
structured data, and web services. Groovy includes something 
I haven’t seen before, called “builders,” which are used to  create 
hierarchical data structures without a lot of the boilerplate. 
Builders can create in-memory trees or structured data like XML 
or JSON or even HTML. I’m going to be giving this a closer look.

König and King finish up with a section of practicum. This 
includes chapters on unit-testing, and interacting with the 
underlying ecosystem. I group the appendices in this as well. 
These cover installation of Groovy and some great cheat sheets 
for language constructs. It also includes a small section on the 
operational steps of the Groovy compiler and a list of compiler 
annotations, which I find useful and unusual. I like knowing one 
layer beneath where I’m working.

Groovy in Action, 2nd ed. introduced me to a new way to interact 
with the Java environment that felt smooth, seamless, and com-
fortable. Groovy might prove useful for prototyping Java. I don’t 
know if it is a reasonable replacement for Java, but it’s certainly 
easier to use and debug. If you need to work with Jenkins pipe-
lines, I’d consider it invaluable and am using it daily.

Improving Agile Retrospectives: Helping Teams 
Become More Efficient
Marc Loeffler
Addison-Wesley Professional, 2018, 272 pages
ISBN 978-0-13-467834-4

Reviewed by Mark Lamourine

For most people the Agile retrospective is the least appealing 
part of the development process. The idea of re-hashing all the 
things that have gone wrong can lead people to find fault and lay 
blame. Few people are totally comfortable with having  others put 
their mistakes under a microscope. In Improving Agile Retro-
spectives, Loeff ler shows that there is another way (several 
others, in fact) to draw out experience and make use of it without 
resorting to finger pointing and personal judgment.

You might not think there’s that much to running a meeting that 
shouldn’t last more than an hour, but unlike most meetings, the 
retrospective has the potential to go very wrong. Loeffler devotes 
the first half of the book to describing and understanding the 
purpose of the retrospective and the role of the facilitator. The 



60   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

BOOKS

retrospective will often require some preparation and thought 
to create the right atmosphere for candid discussion. Most won’t 
need the full treatment Loeffler offers, but these chapters offer a 
good toolbox.

The purpose of a retrospective is to understand what happened 
in the recent past; how reality matched and differed from the 
plan. It should also be a time to recognize and celebrate what 
went well. There is always something that either didn’t go as 
planned, or was harder than expected. Chapter 1 sketches a 
skeleton for the meeting, creating an arc from opening to clos-
ing. Loeffler provides an agenda of five phases and a timeline 
for each. An hour isn’t very long, and it’s important to keep the 
process moving.

The next three chapters frame the job of the facilitator. Chap-
ter 2 covers preparation and planning. Chapter 3 walks through 
the first retrospective, touching on the process of guiding and 
moderating the meeting and the goals for each phase. Chapter 4, 
the longest in the book at 35 pages, details the role of the facilita-
tor in the process: how to prompt and guide the discussion while 
keeping the focus on the team and on constructive participa-
tion. A good facilitator is central to the process, but should never 
become the focus of the meeting. There are goals beyond the 
production of recommendations and action items. At the end of 
the ideal meeting, all of the participants should feel that they 
have been heard and that the results represent the consensus of 
the team. Items that can’t be resolved can be tabled but should 
not be dismissed. Nothing ever ends up ideal, but the result can 
still be satisfying.

The real surprise to me was the second half of the book. It turns 
out that there are quite a number of ways to frame the process 
of reflection. Retrospectives can have different scopes and 
goals, and these may require different techniques. A single-
team end-of-sprint meeting doesn’t compare with a project-
management-level post-release review. Some of the metaphors 
offered here may not work for all audiences. The props needed 
for the “kitchen retrospective “ might not set the right tone for 
a director-level quarterly meeting but could be just the thing to 
open a team session with a light, fun tone. It’s easy when running 
a retro every two to three weeks to fall into mental ruts, and a 
change-up of the format can freshen people’s engagement and 
interest. 

Whether you’ve been asked to moderate a retro meeting or are a 
participant, Improving Agile Retrospectives will give you a better 
handle on how to participate and get the most from the process. 
Hopefully, it will encourage both doubters and advocates for the 
benefits of the retrospective process to participate with an open 
mind. 

The Manga Guide to Cryptography
Masaaki Mitani, Shinichi Sato, Idero Minoki, and Vert Corp.
Omsha Ltd. and No Starch Press, 2018, 234 pages
ISBN: 978-1-59327-7

Reviewed by Mark Lamourine

You might be forgiven for assuming that TMGTC is aimed at 
middle schoolers or teen students. They might be drawn in by 
the cover and the artwork in the first few pages, but it’s not long 
before the real math and logic come out to play.

There are characters and a story line that interlace with the 
exposition, but they really just frame the real lessons. If the 
framing entices a reader to start and continue, then they’ve done 
their job, but they don’t add much to understanding the content.

The contents are actually a good treatment of the basics of 
modern encryption. The four sections cover foundational ideas, 
symmetric and public-key ciphers, and close with practical 
applications. These last should be familiar to most Internet 
users today: user identification and authentication, content 
encryption and validation, and e-commerce.

Another surprise is the breadth and depth of the coverage. The first 
chapter introduces the mandatory Caesar cipher and transposition 
ciphers with a page apiece, but doesn’t wait there at all. The rest 
of the section goes into fairly deep exposition of the construction 
(and deconstruction) of polyalphabetic ciphers like Enigma. The 
authors close with the introduction of Vernam ciphers and one-
time pads. They go on to show how these actually demonstrate 
the ultimate vulnerabilities of any polyalphabetic cipher system, 
and set up the next chapter, symmetric key systems.

The symmetric chapter is probably the best one: I’ve never seen 
a good explanation of the internals of a block cipher until now. 
The authors lay out the data flow of DES on a single page and 
explain triple DES. They show how these are now vulnerable to 
brute force attacks and have been replaced by AES. While they 
don’t detail the data flow of AES, they’ve left the reader with an 
understanding of how block ciphers, as a class, work.

The public-key section is just as complete. Mitani et al. explain 
in a matter of 75 pages the key exchange problem, trap-door 
functions, modulo arithmetic, Euler functions, and prime factor-
ing. They finish the chapter by demonstrating a walkthrough of 
RSA: key generation, encryption, and decryption.

The closing section touches on the ways most people today use 
encryption even if they don’t know it.

This book is one of a series of manga books from Omsha and 
No Starch. The series includes treatments of physics, relativity, 
statistics, and calculus. The originals are in Japanese, and No 
Starch is in the process of bringing them all to English-speaking 
audiences. Cryptography is the latest release.



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 61

BOOKS

The only problem with the translation is that in the opening sto-
ries, the authors use several jokes and puns that have to be called 
out and explained because they only make sense in Japanese. 
While these stood out, they only happen at the beginning of the 
book and none of them are critical to understanding.

While The Manga Guide to Cryptography is presented as a pop-
media book, it would be a disappointment to someone looking 
for a casual pop treatment of cryptography. There’s no code 
here, either. You won’t learn how to use crypto libraries in your 
app. This book is best suited to the self-learner who wants to be 
conversant with the underlying ideas and perhaps understand 
some of what’s going on behind-the-scenes every day when they 
use their web browser.

Millions, Billions, Zillions: Defending Yourself in a 
World of Too Many Numbers
Brian Kernighan
Princeton University Press, 2018, 174 pages
ISBN 978-0-691-18277-3

Reviewed by Rik Farrow

Kernighan begins his preface by quoting three geniuses, W. E. B. 
DuBois, John Nash, and Nate Silver, sharing their words about 
numbers. Of the three, Silver comes closest to the mark when I 
think about this book: “On average, people should be more skepti-
cal when they see numbers.” Kernighan wants us not just to be 
skeptical, but to use techniques, like estimation, to determine 
whether the numbers we see in print, from our friends, or in the 
news are actually correct.

Fortunately, Kernighan doesn’t expect the readers of this book 
to be geniuses. Instead, he starts out by writing that all you need 
are grade-school arithmetic skills to follow along and learn from 
this work. I found that was true when I started reading portions 
of the book to my wife, who had been math-averse ever since 
some teacher criticized her for not being quick with numbers.

Throughout Numbers, my nickname for this book, Kernighan 
focuses on the use of estimation and rounding. In every example, 
he starts by using these techniques, allowing him to quickly 

come up with a decision about some numbers taken from the 
press: instead of using 330 million for the population of the US, 
try 300 million as a starting point, for example.

There are 13 chapters in Numbers, each focusing on a different 
aspect of accidental, or occasionally malicious, innumeracy. He 
covers mistakes involving names for large numbers or units, 
mis-mixing units, dimensionality, milestones, specious preci-
sion, statistics, bias, and arithmetic.

Kernighan begins by explaining how to make large numbers 
easier to understand. Words like million, billion, and trillion 
have no intuitive meaning to most people, myself included, and 
thus we tend to treat them as synonyms for “big,” “really big,” and 
“really really big.” Kernighan suggests scaling down numbers: 
for example, if the US budget were $3.9 trillion, each person’s 
share of that would be about $13,000.

He also suggests more use of scientific notation. This is one of 
the parts of the book I read to my wife as she painted, and she 
told me she finally understood scientific notation. Kernighan’s 
explanations, and use of examples, really do make this book easy 
to understand.

Throughout Numbers, Kernighan provides shortcuts for quick 
calculations. Some were ones I already used, while others were 
new to me, like Little’s Law, an easy method for figuring approxi-
mately how long it will take for an amount to double with differ-
ent compound interest rates. Or the relationship of some powers 
of two to powers of ten that comes in very handy.

The only weak point in the book is the chapter on statistics. 
Numbers isn’t a statistics book, and Kernighan does explain with 
a very clear example the common failing of the usage of the mean 
when the median would be more appropriate. He also makes 
many references to Darrell Hull’s How to Lie with Statistics 
(1954), a book that he considers worth reading.

I liked reading Numbers. Kernighan’s style could be said to be 
didactic, but it’s never boring. I recommend Numbers to anyone 
who encounters potentially dubious numbers during their day—
that is, everyone.



USENIX NOTES

62   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

USENIX Member Benefits
For information regarding membership 
or benefits, please see www.usenix.org/
membership/, or contact us via email at 
membership@usenix.org, or telephone 
+1 510.528.8649.

Meet the Board: Kurt Andersen
Liz Markel, Community Engagement Manager

Kurt Andersen is one of two 
new board members elected 
in 2018 and was one of the 
first members of the USENIX 
community I met after joining 

the staff. He shared some details about 
his current professional activities, how he 
became involved with USENIX, as well as 
some interesting personal facts. Here are a 
few highlights: 

Liz Markel: Tell me about your professional 
role and what kinds of problems you’re 
working on solving now in that role.

Kurt Andersen: I’m currently a Senior Staff 
Site Reliability Engineer at LinkedIn work-
ing in the Product-SRE arm of our SRE 
organization (one arm of four—the others 
are data, infrastructure, and security). 
Currently, my primary focus is on enhanc-
ing the continuing education environment 
across the entire SRE and Security organi-
zations. I’ve also led the implementation of 
our annual organization-wide internal con-
ference for the last three years, and I work 
widely in reviewing projects and initiatives 
for reliability and scaling concerns.

 I also work with the Messaging,  Malware, 
Mobile Anti-Abuse Working Group 
(m3aawg.org) on their board and as a 
program co-chair, and I am active with the 
Internet Engineering Task Force (IETF) in 
the development and refinement of various 
standards related to messaging, security, 
and privacy.

LM: How were you first introduced to 
USENIX?

KA: I had occasionally encountered 
 USENIX earlier in my career mainly 
through its role in publishing interesting 
papers in areas that related to professional 
concerns in the moment. With my interest 
and concern around security and privacy, I 
think the first time I attended a USENIX-
associated event was SOUPS (Symposium 
on Usable Privacy and Security), which is 
now co-located with the USENIX Security 

Symposium. I missed the first SREcon 
(2014—Santa Clara) but have been an avid 
participant ever since. 

LM: Why did you decide to pursue a seat on 
the board?

KA: I think that there is a huge potential 
opportunity for USENIX to strengthen the 
academic/industry connections betwixt our 
participating communities to the advance-
ment of both. On the academic side, there is 
the potential for more relevant, interesting 
problems by interacting with professional 
practitioners. There is also the obvious ben-
efit to students in having both experience 
and connections with industry.

For the professionals, we can benefit by the 
unique time and resources which academic 
researchers can bring to bear on problems, 
and we can also contribute toward the 
successful “heritage” by having students 
who are better prepared to move from the 
academy to industry.

USENIX has had a long tradition of inclu-
siveness and diversity, and I’m delighted to 
contribute to helping overcome the systemic 
issues that have limited the diversity in the 
computing field.

LM: Why should someone consider becom-
ing involved in USENIX?

KA: I think that it goes very much to one of 
LinkedIn’s core values and one in which I 
have found increasing truth and depth over 
time: relationships matter. As a participant 
in any role, you will have opportunities to 
interact with people who have both com-
mon concerns and divergent approaches to 
address those concerns. The more you can 
learn, the better you will be as a practitioner.

LM: Do you have one unique fact about your-
self you can share with us?

KA: I’ve been an amateur radio (ham) op-
erator since 5th grade.

LM: What’s your favorite board game?

KA: Any one that I can win; so my family 
sticks to games for fun only. 

LM: Tell me a bit about the region of the 
country you live in.

KA: We live in a rural part of Northern 
Idaho, within 100 miles of the Canadian 
border. Being on the western slope of the 
Rockies, we avoid the arctic blast of Cana-
dian air that runs down into the Midwest, 
but we have a wonderful four-seasons 
climate and a Fall color show in the trees 
that is the equal of anything I’ve seen in 
the Northeast. The nearest towns of Coeur 
d’Alene and Sandpoint are wonderful 
tourist destinations, with tons of outdoor 
recreation activities from golf to hunting 
and fishing or skiing, hiking, and mountain 
biking; but too many people are moving 
here, and the infrastructure is experiencing 
significant congestion problems.

LM: Anything else you’d like to share?

KA: I’d say that I am an amateur (in the 
original Latin sense—one who loves) design 
aficionado, ranging from Donald Norman’s 
The Design of Everyday Things to Edward 
Tufte’s The Visual Display of Quantitative 
Information. Finding ways to communicate 
effectively and simply in spite of complex-
ity is the pervasive theme. I also appreciate 
good wine, whisk[e]y, and espresso.

There’s more to read! Visit the USENIX Blog 
at www.usenix.org/blog for Kurt’s full-length 
interview.

Kurt Andersen co-chaired the SREcon18 Americas 
conference with Betsy Beyer (Google).



www.usenix.org  WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4 63

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2017

USENIX ASSOCIATION

Statements of Activities
Years Ended December 31, 2017 and 2016

2017 2016

REVENUES
Conference and workshop revenue $ 5,064,417 $ 4,857,484
Membership dues 228,793 257,295
General sponsorship 129,000 60,000
Product sales 5,146 7,067
Event services and projects 4,000 4,750
LISA SIG dues and other - 7,946

Total revenues 5,431,356 5,194,542

EXPENSES
Program services

Conferences and workshops 4,554,459 4,537,398
Projects, programs and membership 307,626 377,969

Total program services 4,862,085 4,915,367

Management and general 445,114 621,006
Fundraising 50,849 84,715

Total expenses 5,358,048 5,621,088

CHANGE IN NET ASSETS FROM OPERATIONS 73,308 (426,546)

OTHER INCOME (EXPENSES)
Donations 24,470 23,660
Investment income 925,730 432,343
Investment fees (51,441) (45,897)
Other income - 150

Total other income (expenses) 898,759 410,256

Change in net assets 972,067 (16,290)

NET ASSETS - unrestricted

Beginning of year 5,408,595 5,424,885

End of year $ 6,380,662 $ 5,408,595

See notes to financial statements.

4

USENIX ASSOCIATION

Statements of Financial Position
December 31, 2017 and 2016

2017 2016
ASSETS

Current assets
Cash and equivalents $ 641,026 $ 742,910
Accounts receivable 118,733 94,535
Prepaid expenses 219,894 215,002
Investments 6,365,034 5,803,274

Total current assets 7,344,687 6,855,721

Property and equipment, net 85,137 137,795

Total assets $ 7,429,824 $ 6,993,516

LIABILITIES AND NET ASSETS

Current liabilities
Accounts payable and accrued expenses $ 49,859 $ 744,335
Accrued compensation 72,363 59,811
Deferred revenue 739,440 443,275

Total current liabilities 861,662 1,247,421

Deferred revenue, net of current portion 187,500 337,500

Total liabilities 1,049,162 1,584,921

Net assets
Undrestricted net assets 6,380,662 5,408,595

Total net assets 6,380,662 5,408,595

Total liabilities and net assets $ 7,429,824 $ 6,993,516

See notes to financial statements.

3

The following information is provided as the annual report of the 
USENIX Association’s finances. The accompanying statements 
have been prepared by BHLF LLP, CPAs, in accordance with 
Statements on Standards for Accounting and Review Services 
issued by the American Institute of Certified Public Accoun-
tants. The 2017 financial statements were also audited by BHLF 
LLP. Accompanying the statements are charts that illustrate 
the breakdown of the following: operating expenses, program 
expenses, and general and administrative expenses. The Asso-
ciation’s operating expenses consist of its program, management 
and general, and fundraising expenses, as illustrated in Chart 1. 

These operating expenses include the general and administra-
tive expenses allocated across all of the Association’s activities. 
Chart 2 shows USENIX’s program expenses, a subset of its op-
erating expenses.  The individual portions shown represent ex-
penses for conferences and workshops; membership (including 
;login: magazine); and project, program, and good works.  Chart 3 
shows the details of what makes up USENIX’s general, adminis-
trative, and management expenses. The Association’s complete 
financial statements for the fiscal year ended December 31, 2017, 
are available on request. 

Casey Henderson, Executive Director



64   WI N T ER 20 1 8  VO L .  4 3 ,  N O.  4  www.usenix.org

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2017

Chart 1: USENIX 2017 Operating Expenses

Management & 
General Expenses 8%

Bank & Online
Merchant Fees

5%

Board of Directors
Expenses 4%

Telephone & 
Connectivity

3%

Occupancy
17%

Depreciation & 
Amortization

15%
Accounting & Legal

10%

Other Operating
Expenses

10%

Insurance
7%

Office  
Expenses

7%

Membership 
(including ;login:) 

5%

Projects, Programs, 
Good Works 

1%

Program Expenses 
91%

System
Management &
Computer Exp.

22%

Conferences & 
Workshops 

94%

Fundraising  
Expenses 1%

Chart 2: USENIX 2017 Program Expenses

Chart 3: USENIX 2017 General &  
Administrative Expenses



Join us in Boston!

After a one-year hiatus, Vault returns in 2019, under the sponsorship and organiza-
tion of the USENIX Association, and will bring together practitioners, implementers, 
users, and researchers working on storage in open source and related projects.

2019 Linux Storage and Filesystems 
Conference
February 25–26, 2019
www.usenix.org/vault19

FAST brings together storage-system researchers and practitioners to explore 
new directions in the design, implementation, evaluation, and deployment of 
storage systems.

17th USENIX Conference on File and Storage 
Technologies
February 25–28, 2019
www.usenix.org/fast19

NSDI focuses on the design principles, implementation, and practical evaluation 
of networked and distributed systems. Our goal is to bring together researchers 
from across the networking and systems community to foster a broad approach 
to  addressing overlapping research challenges.

16th USENIX Symposium on Networked
Systems Design and Implementation
February 26–28, 2019
www.usenix.org/nsdi19



J A N  2 8 – 3 0 ,  2 0 1 9
BUR LING A ME,  C A ,  USA

enigma.usenix.org
The full program and registration are available now.

FEATURED SPEAKERS

Bob Lord
Democratic National 

Committee

Joe Kiniry
Galois and Free & Fair

Security and Privacy Ideas that Matter

Emily Stark
Google

Daniela Oliveira
University of Florida

Denelle Dixon 
Mozilla

Ashkan Soltani
Independent Researcher 

and Consultant

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES


	Musings
	The Five Stages of SRE
	Kernel Isolation: From an Academic Idea to an Efficient Patch for Every Computer
	From an Academic Idea to an Efficient Patch for Every Computer
	Daniel Gruss, Dave Hansen, and Brendan Gregg


	The Secure Socket API: TLS as an Operating System Service
	Strings Considered Harmful
	CSET ’18: The 11th USENIX Workshop on Cyber Security Experimentation and Test
	The Atlas Cluster Trace Repository
	The Modern Data Architecture: The Deconstructed Database
	And Now for Something Completely Different
	Custom Binaries to Ease Onboarding Using Go
	iVoyeur: Flow, Part II
	For Good Measure: Nameless Dread
	/dev/random: Simulation Station
	Book Reviews
	USENIX Notes



