
;login:
W I N T E R 2 0 1 6 V O L . 4 1 , N O . 4

Columns
Understanding Python Metaclasses
David Beazley

Monitoring Your Monitoring Systems
Dave Josephsen

Forecasting the Weather with Dark Sky
David N. Blank-Edelman

Extending Go Applications with Exec Plugins
Kelsey Hightower

Rising Tide of IoT Devices
Dan Geer

Idiot-Blockers for the Internet
Robert G. Ferrell

& Your Cores Are Slacking Off
Jean-Pierre Lozi, Baptiste Lepers, Justin
Funston, Fabien Gaud, Vivien Quéma, and
Alexandra Fedorova

& BeyondCorp Part III: The Access
Proxy
Luca Cittadini, Batz Spear, Betsy Beyer, and
Max Saltonstall

& OpenLambda for Microservices
Scott Hendrickson, Stephen Sturdevant,
Edward Oakes, Tyler Harter, Venkateshwaran
Venkataramani, Andrea Arpaci-Dusseau,
and Remzi Arpaci-Dusseau

& Tuning ZFS for Databases
Allan Jude and Michael W. Lucas

& Interview with Fyodor Vaskovich
Rik Farrow

U P C O M I N G E V E N T S

LISA16
December 4–9, 2016, Boston, MA, USA
www.usenix.org/lisa16

Co-located with LISA16
SESA ’16: 2016 USENIX Summit for Educators in System
Administration
December 6, 2016
www.usenix.org/sesa16

USENIX Journal of Education in System Administration
(JESA)
Published in conjunction with SESA
www.usenix.org/jesa

Enigma 2017
January 30–February 1, 2017, Oakland, CA, USA
enigma.usenix.org

FAST ’17: 15th USENIX Conference on File and
Storage Technologies

February 27–March 2, 2017, Santa Clara, CA, USA
www.usenix.org/fast17

SREcon17 Americas
March 13–14, 2017, San Francisco, CA, USA
www.usenix.org/srecon17americas

NSDI ’17: 14th USENIX Symposium on Networked
Systems Design and Implementation

March 27–29, 2017, Boston, MA, USA
www.usenix.org/nsdi17

SREcon17 Asia/Australia
May 22–24, 2017, Singapore
www.usenix.org/srecon17asia

USENIX ATC ’17: 2017 USENIX Annual Technical
Conference

July 12-14, 2017, Santa Clara, CA, USA
Submissions due February 7, 2017
www.usenix.org/atc17

Co-located with USENIX ATC ’17
HotCloud ’17: 9th USENIX Workshop on Hot Topics
in Cloud Computing
July 10-11, 2017, Santa Clara, CA, USA
Submissions due March 14, 2017
www.usenix.org/hotcloud17

HotStorage ’17: 9th USENIX Workshop on Hot Topics
in Storage and File Systems
July 10-11, 2017, Santa Clara, CA, USA
Submissions due March 16, 2017
www.usenix.org/hotstorage17

SOUPS 2017: Thirteenth Symposium on Usable Privacy
and Security
July 12-14, 2017, Santa Clara, CA, USA
Paper registrations due March 1, 2017
www.usenix.org/soups2017

USENIX Security ’17: 26th USENIX Security
Symposium

August 16-18, 2017, Vancouver, B.C., Canada
Submissions due February 16, 2017
www.usenix.org/sec17

SREcon17 Europe/Middle East/Africa
August 30–September 2, 2017, Dublin, Ireland
www.usenix.org/srecon17europe

Do you know about the USENIX open access policy?
USENIX is the fi rst computing association to off er free and open access to all of our conferences proceedings
and videos. We stand by our mission to foster excellence and innovation while supporting research with a
practical bias. Your membership fees play a major role in making this endeavor successful.

Please help us support open access. Renew your USENIX membership and ask your colleagues to join or
renew today!

www.usenix.org/membership

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/gplus

https://www.usenix.org/conference/enigma2017

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2016 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

W I N T E R 2 0 1 6 V O L . 4 1 , N O . 4

E D I T O R I A L
2 Musings Rik Farrow

S Y S T E M S
6 Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard

Problem Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud,
Vivien Quéma, and Alexandra Fedorova

14 Serverless Computation with OpenLambda Scott Hendrickson, Stephen
Sturdevant, Edward Oakes, Tyler Harter, Venkateshwaran Venkataramani,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

20 Standing on the Shoulders of Giants by Managing Scientific Experiments
Like Software Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos Maltzahn,
Jay Lofstead, Kathryn Mohror, Remzi Arpaci-Dusseau, and Andrea Arpaci-Dusseau

S E C U R I T Y
28 BeyondCorp Part III: The Access Proxy Luca Cittadini, Batz Spear,

Betsy Beyer, and Max Saltonstall
34 Excavating Web Trackers Using Web Archaeology Adam Lerner,

Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner
41 The Adblocking Tug-of-War Hamed Haddadi, Rishab Nithyanand, Sheharbano

Khattak, Mobin Javed, Narseo Vallina-Rodriguez, Marjan Falahrastegar,
Julia E. Powles, Emiliano De Cristofaro, and Steven J. Murdoch

44 Interview with Gordon Lyon Rik Farrow

S Y S A D M I N
48 Tuning OpenZFS Allan Jude and Michael W. Lucas
52 Lessons from Iraq for Building and Running SRE Teams:

From the Assembly Line to the Web Kurt Andersen
57 Interrupt Reduction Projects Betsy Beyer, John Tobin, and Liz Fong-Jones

C O L U M N S
64 In Praise of Metaclasses! David Beazley
70 Practical Perl Tools: The Whether Man David N. Blank-Edelman
75 iVoyeur: Dogfood and the Art of Self-Awareness Dave Josephsen
78 For Good Measure: Implications of the IoT Dan Geer
80 Extending Go Applications with Exec Plugins Kelsey Hightower
84 /dev/random Robert G. Ferrell

B O O K S
86 Book Reviews Mark Lamourine

U S E N I X N O T E S
89 USENIX: It’s Not What You Might Think Cat Allman
90 Impressive Results for Team USA at 2016 International Olympiad

in Informatics Brian C. Dean
91 Thanks to Our Volunteers Casey Henderson
93 USENIX Association Financial Statements for 2015

2  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org Four times a year, I sit down at my desk and try to come up with some-

thing different to write. I’ve been writing a column for ;login: since
1996, although back then it was about Java [1], and I was not the

 editor. To be honest, I wouldn’t still be editing ;login: if I didn’t love doing it.
I enjoy working with the members and people who attend conferences, and
the USENIX staff. Coming up with articles for each issue is always a chal-
lenge, one that I welcome you to help with.

Perhaps I should explain what I’ve been trying to do with ;login:, since I was first asked to edit
special issues on security in 1998. I actually had written a proposal to the USENIX Board of
Directors in 1996 about how I would go about editing ;login:, a proposal I found in 2006 when
I was tasked with creating an updated version.

Goals
I strive to collect articles about emerging research, new tools, and techniques that I believe
will benefit a broad cross-section of the USENIX membership. It’s a challenging goal, as the
membership ranges from industry to academic, from programmers to system administrators
and SREs. USENIX has conferences on systems, security, file systems and storage, dis-
tributed systems, system administration, cloud computing, and site reliability engineering
(SRE). Finding topics that may be useful to at least two of these categories, and hopefully
more, has always been my goal.

Like any Program Committee member, I don’t want to ever publish (or accept) bad research.
In the case of ;login:, I can often sidestep that issue because I ask the authors of accepted papers
to write about their research. But that only works for topics that have been covered by papers.

When the author or authors haven’t produced a paper, I look for other indications of compe-
tency in the topic at hand. I also check out references, by asking some of the many people
I’ve gotten to know in attending USENIX conferences over the years, about the authors I
have in mind.

And there’s also the quality detector: you probably have one of these as well [2], and I highly
recommend paying attention to any alerts it produces. For me, these alerts come when I
notice that the draft I am reading fails to tell me anything useful, or covers the same territory
as found online. Other times, the writer will contradict him or herself, or write things that
sound just plain wrong. Again, the Web can be your friend.

Finally, timeliness is an important goal. There is lag time inherent in print publications, and
I start searching for good topics six months before an issue comes out. That’s a very long time
when part of my goal is to cover emerging topics.

I plan on editing ;login: into the foreseeable future and welcome new ideas and input. If you’d
be interested in contributing to ;login:’s process, and if you have suggestions for topics that
should be covered, please do let us know by contacting us at login@usenix.org.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 3

EDITORIAL
Musings

The Lineup
We start out this issue with several articles with the theme of
systems. Lozi et al. had a paper at EuroSys 2016 that caught my
attention, as the authors did a wonderful job of explaining how
the Linux Completely Fair Scheduling system works. By adding
in instrumentation and creating heat maps, they also uncovered
ways in which it fails. (Those heat maps do look better in color,
so you might want to view the online version of their article, or
the paper it is based on.)

I ran into Tyler Harter during the 2016 USENIX Annual Techni-
cal Conference poster session. Tyler had presented a paper about
OpenLambda during the HotCloud ’16 workshop, and when I read
the paper (I had missed his presentation), I decided that Lambdas,
a way of supporting microservices, deserved a wider audience.
OpenLambda is a research platform for exploring Lambdas, but
Harter et al. also explain the AWS version of Lambdas and cur-
rent shortcomings with this new way of providing services.

Carlos Maltzhan approached me during USENIX Security ’16,
wanting me to talk with some students at UC Santa Cruz about
a new approach to creating papers that fosters reproducibility of
CS research. He and his colleagues, Jimenez et al., explain how
they have created a framework, named for Karl Popper [3], using
a toolset that anyone familiar with DevOps will know about.
Popper is a protocol that uses these tools, aiding in the research
and paper writing process, but also creating a trail that others
may follow later.

The December issue has traditionally covered security, and we
do have four security-related articles.

Cittadini et al. explain another aspect of Google’s BeyondCorp,
a technique that does away with considering any “internal”
network secure. Instead, BeyondCorp invests trust in managed
devices and user authentication, and it permits access to specific
services. This third article in a series on the topic explains
BeyondCorp’s Access Proxy, where access control lists (ACLs)
control what services are available to which users using specific
devices. The authors also detail the trickier aspects of making
the Access Proxy work with non-HTTP protocols.

Lerner et al. had a paper at USENIX Security ’16 about how Web
tracking has changed over time. Their methodology involves using
archive.org’s Wayback Machine and examining just how accurate
its record is. I was also interested in their results, but I can’t say
that I am surprised at just who is tracking our Web histories.

Haddadi et al. had a paper at FOCI ’16 on anti-adblockers. I first
thought this seemed a stretch for a workshop called Free and
Open Communications on the Internet, where topics include Tor
or the Great Firewall of China. If you’re using adblockers, I’m
sure you’ve encountered the manifestation of anti-adblockers;
the authors explain both how these scripts work and why they
are a privacy issue.

I interview Gordon Lyon, perhaps better known as Fyodor.
Fyodor started working on the Nmap scanner back in the mid-
’90s and has turned his passion into a successful open source
business—plus a really useful tool that you should know about.

Switching over to the areas of sysadmin and SRE, we start out
with an article that was adapted from a section of Allan Jude and
Michael Lucas’ book FreeBSD Mastery for inclusion in ;login:.
Jude and Lucas write about tuning ZFS for use with popular
databases. While this might at first appear to be a pretty narrow
topic, the authors cover the typical writing patterns used in
several databases, something you may want to know if you use
any of these databases, or wonder if you are using the right file
system and have properly configured it.

Kurt Andersen of LinkedIn had a popular talk at SREcon16
Europe, and I asked him to reprise his talk for ;login:. Kurt’s topic
is focused on how SRE teams are managed, but I think that the
concepts presented would be useful in any organization that
appreciates nimbleness.

Liz Fong-Jones also drew a large crowd at SREcon16 Europe
with her presentation on Interrupt Reduction Projects. Working
with Betsy Beyer and John Tobin, Liz created an article about
how the Bigtable SRE teams worked to reduce interrupts. There
are deep insights into how better to handle tickets and that may
even include ignoring them while you fix underlying issues that
aren’t big enough to register as projects.

Dave Beazley wants to talk meta. Python has long had meta-
classes, and Dave explains what metaclasses are and shows how
they can be used to write cleaner Python code. Very cool ideas
and mind-bending, as usual.

Dave Josephsen also goes meta, but in a different direction. Dave
asks, if you rely on your monitoring, what monitors your monitor-
ing system? Dave then describes how the people at the monitoring
company he works for created a second site, one they call “dog-
food,” that eats the input from their main monitoring systems.

David N. Blank-Edelman wonders whether there will be weather
and shows us how to use a RESTful service from Perl, not just for
the current weather but for past and future weather, too.

Kelsey Hightower shows us how to extend Go applications with
exec plugins. By creating Go programs that meet an interface,
you can extend an application without editing the source.

Dan Geer considers the implications of the growth in connected
devices. He projects that by 2020, there will be 6.5 IoT devices
for every human alive, and that the security implications are,
frankly, hard to imagine. For example, you might have heard
of attack surfaces, that is, the features that make a computer vul-
nerable to attack. We think of attack surfaces because the goal
is to reduce them. But with so many devices on the way, will this
even make sense?

4  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

EDITORIAL
Musings

Robert G. Ferrell wants us to consider a new class of Web plugin:
the idiocy blocker. Robert has found five main types of Internet
idiots, and postulates a method for making it possible to read the
comments associated with articles and other Web postings.

Mark Lamourine has written three reviews for this issue. The
first two cover Single Program Applications (SPA), something I
hadn’t heard of before, but also something we’ve all encountered
in the form of many online apps. Then he takes a look at a book
on providing examples of practical Go programs.

Finally, Cat Allman shares her views on why she became
a USENIX Board member. Cat had worked for USENIX in
the noughts, and came back to help keep USENIX going. Casey
 Henderson has also written her yearly summary, including
thank-yous to Program Chairs and the volunteers who make
USENIX conferences interesting.

[1] R. Farrow, “Using Java”: https://web.archive.org/web
/19970606052503/http://www.usenix.org/publications/java
/usingjava1.html.

[2] G. Pennycook, J. A. Cheyne, N. Barr, D. J. Koehler, J. A.
Fugelsang, “On the Reception and Detection of Pseudo-
Profound BS,” Judgment and Decision Making, vol. 10, no. 6
(November 2015), pp. 549–563: http://journal.sjdm.org
/15/15923a/jdm15923a.html.

[3] Wikipedia, “Karl Popper,” last modified on Sept. 26, 2016:
https://en.wikipedia.org/wiki/Karl_Popper.

USENIX ATC ’17: 2017 USENIX Annual Technical
Conference
July 12–14, 2017, Santa Clara, CA
Paper submissions due: February 7, 2017
www.usenix.org/atc17

USENIX ATC ‘17 will bring together leading systems researchers for
cutting-edge systems research and unlimited opportunities to gain
insight into a variety of must-know topics, including virtualization,
system administration, cloud computing, security, and networking.

Authors are invited to submit original and innovative papers to
the Refereed Papers Track of the 2017 USENIX Annual Technical
Conference. We seek high-quality submissions that further the
knowledge and under standing of modern computing systems
with an emphasis on implementations and experimental results.
We encourage papers that break new ground, present insightful
results based on practical experience with computer systems,
or are important, independent reproductions/refutations of the
experimental results of prior work.

SOUPS 2017: Thirteenth Symposium on Usable Privacy
and Security
July 12–14, 2017, Santa Clara, CA
Paper registrations due: March 1, 2017
www.usenix.org/soups2017

The 2017 Symposium on Usable Privacy and Security (SOUPS) will
bring together an interdisciplinary group of researchers and prac-
titioners in human computer interaction, security, and privacy. The
program will feature:

• technical papers, including replication papers
• workshops and tutorials
• a poster session
• lightning talks

We invite authors to submit previously unpublished papers
describing research or experience in all areas of usable privacy and
security. We welcome a variety of research methods, including both
qualitative and quantitative approaches.

Calls for posters, workshop proposals, tutorial proposals, and
proposals for lightning talks are also available.

Publish and Present Your Work
USENIX ATC ’17 and its co-located events are seeking submissions.

HotCloud ’17: 9th USENIX Workshop on Hot Topics
in Cloud Computing
July 10-11, 2017, Santa Clara, CA
Paper submissions due: March 14, 2017
www.usenix.org/hotcloud17

HotCloud brings together researchers and practitioners from
academia and industry working on cloud computing technologies
to share their perspectives, report on recent developments, discuss
research in progress, and identify new/emerging “hot” trends in this
important area. While cloud computing has gained traction over the
past few years, many challenges remain in the design, implementa-
tion, and deployment of cloud computing.

HotCloud is open to examining all models of cloud computing,
including the scalable management of in-house servers, remotely
hosted Infrastructure-as-a-Service (IaaS), infrastructure augmented
with tools and services that provide Platform-as-a-Service (PaaS),
and Software-as-a-Service (SaaS).

HotStorage ’17: 9th USENIX Workshop on Hot Topics
in Storage and File Systems
July 10-11, 2017, Santa Clara, CA
Paper Submissions due: March 16, 2017
www.usenix.org/hotstorage17

The purpose of the HotStorage workshop is to provide a forum
for the cutting edge in storage research, where researchers can
exchange ideas and engage in discussions with their colleagues. The
workshop seeks submissions that explore longer-term challenges
and opportunities for the storage research community. Submissions
should propose new research directions, advocate non-traditional
approaches, or report on noteworthy actual experience in an emerg-
ing area. We particularly value submissions that effectively advocate
fresh, unorthodox, unexpected, controversial, or counterintuitive
ideas for advancing the state of the art.

Submissions will be judged on their originality, technical merit,
topical relevance, and likelihood of leading to insightful discussions
that will influence future storage systems research. In keeping with
the goals of the HotStorage workshop, the review process will
heavily favor submissions that are forward looking and open
ended, as opposed to those that summarize mature work or are
intended as a stepping stone to a top-tier conference publication
in the short term.

6  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMSYour Cores Are Slacking Off—
Or Why OS Scheduling Is a Hard Problem
J E A N - P I E R R E L O Z I , B A P T I S T E L E P E R S , J U S T I N F U N S T O N , F A B I E N G A U D ,
V I V I E N Q U É M A , A N D A L E X A N D R A F E D O R O V A

Jean-Pierre Lozi is an Associate
Professor at the University
of Nice Sophia-Antipolis, in
the French Riviera. When
he’s not reading OS papers

on the beach, you can usually find him
around Château Valrose, teaching multicore
programming, big data, and other hot topics.
jplozi@unice.fr

Baptiste Lepers is a postdoc
at EPFL. His research
topics include performance
profiling, optimizations for
NUMA systems, multicore

programming, and proofs of concurrent
programs. baptiste.lepers@gmail.com

Justin Funston is a PhD student
at the University of British
Columbia and is advised by
Alexandra Fedorova. His
research interests include

contention management on multicore and
NUMA systems, parallel and high performance
computing, and operating systems in general.
jfunston@ece.ubc.ca

Fabien Gaud is a Senior
Software Engineer at Coho
Data, focusing on performance
and scalability. He received his
PhD in 2010 from Grenoble

University, and from 2011 to 2014 he was a
postdoctoral fellow at Simon Fraser University.
me@fabiengaud.net

A s a central component of resource management, the OS thread sched-
uler must make sure that ready threads are scheduled on available
cores. As surprising as it may seem, we found that this simple rule is

often broken in Linux. Cores may stay idle for seconds while ready threads
are waiting in run queues, delaying applications and wasting energy. This
phenomenon is not due to an intentional design but to performance bugs.
These bugs can slow down scientific applications many-fold and degrade
 performance of workloads like kernel compilation and OLAP on a widely
used commercial database by tens of percent, particularly on machines with
a large number of cores. The root cause of the bugs is the increasing sched-
uler complexity, linked to rapid evolution in modern hardware. In this article,
we describe the bugs and their effects and reflect on ways to combat them.

Our recent experience with the Linux scheduler revealed that the pressure to work around
the challenging properties of modern hardware, such as non-uniform memory access
(NUMA) latencies, high costs of cache coherency and synchronization, and diverging CPU
and memory latencies, resulted in a scheduler with an incredibly complex implementation.
As a result, the very basic function of the scheduler, which is to make sure that runnable
threads use idle cores, fell through the cracks. We have discovered four performance bugs
that cause the scheduler to leave cores idle while runnable threads are waiting for their
turn to run. Resulting performance degradations are in the range 13–24% for typical Linux
workloads, and reach many-fold slowdowns in some corner cases. In this article, we describe
three of the four bugs. For the complete description, please refer to our extended paper [7].

Detecting the aforementioned bugs is difficult. They do not cause the system to crash or
hang, but eat away at performance, often in ways that are difficult to notice with standard
performance monitoring tools. For instance, when executing the OLAP workload TPC-H
on a widely used commercial database, the symptom occurred many times throughout the
execution, but each time it lasted only a few hundreds of milliseconds—too short to detect
with tools like htop, sar, or perf. Yet, collectively, these occurrences did enough damage to
slow down the most affected query by 23%. Even in cases where the symptom was present
for a much longer duration, the root cause was difficult to discover because it was a result of
many asynchronous events in the scheduler.

In the rest of this article we provide relevant background on the Linux scheduler, describe
the bugs and their root causes, demonstrate their performance effects, and finally reflect on
ways to combat them, focusing especially on the tools that were crucial for the bug discovery.

The Linux Scheduler
Linux’s Completely Fair Scheduling (CFS) is an implementation of the weighted fair queue-
ing (WFQ) scheduling algorithm, wherein the available CPU cycles of each core are divided
among threads in proportion to their weights. To support this abstraction, CFS time-slices
the CPU cycles among the running threads.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 7

Vivien Quéma is a Professor at
Grenoble INP (ENSIMAG). His
research is about understand-
ing, designing, and building
(distributed) systems. He

works on Byzantine fault tolerance, multicore
systems, and P2P systems.
vivien.quema@grenoble-inp.fr

Alexandra Fedorova is an
Associate Professor at the
University of British Columbia.
In her day-to-day life, she
measures and hacks operating

systems, runtime libraries, and other system
software. In her spare time she consults for
MongoDB. sashs@ece.ucb.ca

The scheduler defines a fixed time interval during which each thread in the system must
run at least once. The interval is divided among threads proportionally to their weights. The
resulting interval (after division) is what we call the timeslice. A thread’s weight is essen-
tially its priority, or niceness in UNIX parlance. Threads with lower niceness have higher
weights and vice versa.

When a thread runs, it accumulates vruntime (the runtime of the thread divided by its
weight). Once a thread’s vruntime exceeds its assigned timeslice, the thread is preempted
from the CPU if there are other runnable threads available. A thread might also get pre-
empted if another thread with a smaller vruntime is awoken.

Threads are organized in run queues. As a matter of efficiency, there is one run queue per
core. When a core looks for a new thread to run, it picks the thread in its run queue that has
the smallest vruntime.

For the overall system to be efficient, run queues must be kept balanced. To this end, CFS
periodically runs a load-balancing algorithm that will keep the queues roughly balanced.

CFS balances run queues based on a metric called load, which is the combination of the
thread’s weight and its average CPU utilization. Intuitively, if a thread does not use much of a
CPU, its load will be decreased accordingly. Additionally, the load-tracking metric accounts
for varying levels of multithreading in different processes.

When a thread belongs to a group of threads (called a cgroup), its load is further divided by
the total number of threads in its cgroup. Cgroups are used to group threads or processes
that logically belong together, such as threads in the same application or processes launched
from the same terminal (tty). This is done for fairness purposes, such that the CPU is shared
among applications rather than individual instruction streams.

CFS implements a hierarchical load-balancing strategy. The cores are logically organized
in a hierarchy, at the bottom of which is a single core. How the cores are grouped at the
hierarchy’s next levels depends on how they share the machine’s physical resources. On the
example machine illustrated in Figure 1, pairs of cores share functional units, such as the

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

Figure 1: A machine with 32 cores, four NUMA nodes (eight cores per node sharing a last-level cache),
and pairs of cores sharing a floating point unit. The dashed lines outline the scheduling domains as
perceived by the left-topmost core. Level 3 of the hierarchy shows a group of three nodes: that is because
these nodes are reachable from the left-topmost core in a single hop. (See Figure 3 for a detailed overview
of node connectivity in our system.) At the fourth level, we have all the nodes of the machine, because
they can be reached from the left-topmost core in at most two hops.

8  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

f loating point unit, and groups of eight cores share a last-
level cache; these groups of eight also form a NUMA node. As a
result, at the second level of the hierarchy we have pairs of cores,
and at the third level we have NUMA nodes. NUMA nodes are
further grouped according to their level of connectivity. This
is where things become a bit tricky, because the hierarchy is
constructed from the point of view of a particular “designated”
core; in the load-balancing algorithm it is the core that performs
load balancing. In Figure 1 the hierarchy levels are shown as if
the left-topmost core were designated. Hence, the third level of
the hierarchy includes all nodes that can be reached from that
designated core in one hop. The fourth level includes the nodes
that can be reached from it in at most two hops, i.e., all nodes in
the system.

Each level of the hierarchy is called a scheduling domain. If a
scheduling domain includes sub-domains, such as the NUMA-
node domain including core-pair domains, those sub-domains
are referred to in Linux terminology as scheduling groups.

At the high level, the load-balancing algorithm works as follows.
Load balancing is run for each scheduling domain, starting
from the lowest level of the hierarchy that contains more than
a single core (the pair-of-cores level in our example) to the top.
At each level, the algorithm is run by the designated core. The
core is designated if it is either the first idle core of the domain
or, if none of the cores are idle, the core with the lowest ID in
the domain. The designated core computes the average load for
each scheduling group of the domain and picks the busiest group,
based on the load and on heuristics that favor overloaded and
imbalanced groups. If the load of the busiest group is higher than
the load of the designated core’s home group, the designated core
steals threads from the busiest group so as to balance the load.

The scheduler implements a set of optimizations to improve the
efficiency of the load-balancing mechanism, but as we will see
later they increase complexity and nurture bugs. For example,
in earlier versions of Linux, idle cores, which are typically
transitioned into a lower power state, were always awoken on
every clock tick; at this point they would run the load-balancing
algorithm. Since version 2.6.21, Linux included the option, now
enabled by default, to avoid periodically waking up sleeping
cores. It is the responsibility of overloaded cores to wake up the
sleeping cores when needed. Another set of optimizations has
to do with the placement of threads that become unblocked.
Normally when a thread wakes up, after sleeping or waiting for
a resource like a lock or I/O, the scheduler tries to place it on
the idlest core. However, when a thread is awoken by another
“waker” thread, the scheduler will favor cores sharing a cache
with the waker thread to improve cache reuse.

The Group Imbalance Bug
The first bug we encountered is illustrated in Figures 2a and 2b.
The figures show the state of the scheduler when we execute a
workload on an eight-node NUMA system summarized in Table
1. The x-axis shows the time and the y-axis shows the cores,
grouped by their node number. In the time period shown in the
figure, the machine was executing a compilation of the kernel
(make with 64 threads) and running two R processes (each with
one thread). The make and the two R processes were launched
from three different ssh connections (i.e., three different ttys).
Figure 2a is a heatmap showing the number of threads in each

Figure 2: The Group Imbalance bug. The y-axis shows CPU cores. Nodes
are numbered 0–7. Each node contains eight cores.

(a) # threads in each core’s run queue over time

(b) Load of each core’s run queue over time

(c) Same as (a), with fix applied

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 9

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

core’s run queue over time. The chart shows that there are two
nodes (zero and four) whose cores run either only one thread or
no threads at all, while the rest of the nodes are overloaded, with
many of the cores having two threads in their run queue.

After investigation, we found that the scheduler is not balancing
the load properly. Remember that a thread’s load is a combina-
tion of its weight and its CPU utilization. Threads launched from
the same tty belong to the same cgroup, and their load is thus
divided by the number of threads in their cgroup. As a result, a
thread in the 64-thread make process has a load roughly 64 times
smaller than a thread in a single-threaded R process.

Discrepancies between threads’ loads are illustrated in Figure
2b, which shows the combined load of threads in each core’s run
queue: a darker color corresponds to a higher load. Nodes 0 and 4,
the ones running the R processes, each have one core with a very
high load. These are the cores that run the R threads.

The Linux load balancer steals work from other run queues
based on load; obviously the underloaded cores in Nodes 0 and
4 should not steal from the overloaded core in their own node,
because that core runs only a single thread. However, they must
be able to steal from the more loaded cores in other nodes. This
is not happening for the following reason. Remember that to
limit algorithmic complexity, the load-balancing algorithm uses
a hierarchical design. When a core attempts to steal work from
another node or, in other words, from another scheduling group,
it does not examine the load of every core in that group, it only
looks at the group’s average load. If the average load of the victim
group is greater than that of its own, it will attempt to steal
threads from that group; otherwise it will not. In our case, the
idle core looking for work is in the same group as the high-load
R thread. So the average load for that group is actually the same
as the load of the group with many overloaded cores. As a result,
no stealing occurs, despite the victim group having overloaded
cores with waiting threads.

To fix this bug, we changed the part of the algorithm that com-
pares the load of scheduling groups. Instead of comparing the
average loads, we compare the minimum loads. The minimum
load is the load of the least loaded core in that group. Intuitively,
if the minimum load of one scheduling group is lower than the
minimum load of another scheduling group, it means that the
first scheduling group has a core that is less loaded than any core
in the other group, and thus a core in the first group must steal
from the second.

Figure 2c is a visualization of the same workload after we fixed
the bug (showing a heatmap of run queue sizes, in the same
fashion as Figure 2a). We observe that the imbalance disappears.
With the fix, the completion time of the make job, in the make/R
workload decreased by 13%. Performance impact could be much
higher in other circumstances. For example, in a workload run-
ning lu from the NPB (NASA Advanced Supercomputing Paral-
lel Benchmarks) suite with 60 threads, and four single-threaded
R processes, lu ran 13x faster after fixing the Group Imbalance
bug. lu experienced a super-linear speedup, because the bug
exacerbated lock contention when multiple lu threads ran on the
same core.

The Scheduling Group Construction Bug
Linux defines a command, called taskset, that enables pinning
applications to run on a subset of the available cores. The bug we
describe in this section occurs when an application is pinned on
nodes that are two hops apart. For example, in Figure 3, which
demonstrates the topology of our NUMA machine, Nodes 1 and
2 are two hops apart. The bug will prevent the load-balancing
algorithm from migrating threads between these two nodes.

The bug results from the way scheduling groups are constructed,
which is not adapted to modern NUMA machines such as the one
we use in our experiments. In brief, the groups are constructed
from the perspective of a specific core (Core 0), whereas they
should be constructed from the perspective of the core respon-
sible for load balancing on each node, the designated core. We
explain with an example.

Figure 3: Topology of our 8-node AMD Bulldozer machine

CPUs 4 × 16-core Opteron 6272 CPUs (64 threads
in total)

Clock rate 2.1 GHz

Caches 64 KB shared L1 i-cache

(Each core) 16 KB L1 d-cache

2 MB shared L2

8 MB shared L3

Memory 512 GB of 1.6 GHz DDR-3

Interconnect HyperTransport 3.0 (see Figure 3)

Table 1: Hardware of our AMD Bulldozer machine

10  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

Let us walk through the key steps of the load-balancing algo-
rithm when the balancing is performed at the top of the hierar-
chy, i.e., at the scheduling domain including all the machine’s
nodes. The algorithm will construct the scheduling groups (the
sub-domains) included within that scheduling domain. The first
scheduling group on the machine in Figure 3 will include Node
0 plus all the nodes that are one hop apart from Node 0, namely
Nodes 1, 2, 4, and 6. The second group will include the lowest-
numbered node that was not included in the first group: Node 3,
in this case, and all nodes that are one hop apart from Node 3:
Nodes 1, 2, 4, 5, 7. The two scheduling groups are thus: {0, 1, 2, 4,
6} and {1, 2, 3, 4, 5, 7}.

Suppose that an application is pinned on Nodes 1 and 2 and that
all of its threads are being created on Node 1. Eventually we
would like the load to be balanced between Nodes 1 and 2. How-
ever, when a core in Node 2 looks for work to steal, it will compare
the load between the two scheduling groups shown earlier. Since
each scheduling group contains both Nodes 1 and 2, the average
loads will be the same, so Node 2 will not steal any work!

The bug originates from an attempt to improve the performance
of Linux on large NUMA systems. Before the introduction of the
bug, Linux would balance the load inside NUMA nodes and then
across all NUMA nodes. New levels of hierarchy (nodes one hop
apart, nodes two hops apart, etc.) were introduced to increase
the likelihood for threads to remain close to their original
NUMA node.

To fix the bug, we modified the construction of scheduling
groups so that each core uses scheduling groups constructed
from its own perspective. After the fix, the cores were able to
detect the imbalance and to steal the work. Table 2 presents the
performance difference in NPB applications with and without the
Scheduling Group Construction bug. Applications are launched
on two nodes with as many threads as there are cores. The maxi-
mum slowdown of 27x is experienced by lu. The slowdown is a
lot more than the expected 2x because of locking effects.

The Overload-on-Wakeup Bug
The gist of this bug is that a thread that was asleep may wake up
on an overloaded core while other cores in the system are idle.
The bug was introduced by an optimization in the wakeup code
(select_task_rq_fair function). When a thread goes to sleep
on Node X and the thread that wakes it up later is running on
that same node, the scheduler only considers the cores of Node
X for scheduling the awakened thread. If all cores of Node X are
busy, the thread will wake up on an already busy core and miss
opportunities to use idle cores on other nodes. This can lead to a
significant under-utilization of the machine, especially on work-
loads where threads frequently wait.

The rationale behind this optimization is to maximize cache
reuse. Essentially, the scheduler attempts to place the woken up
thread physically close to the waker thread, e.g., so both run on
cores sharing a last-level cache, in consideration of producer-
consumer workloads where the woken up thread will consume

Figure 4: Several instances of the Overload-on-Wakeup bug

Application Time w/ bug Time w/o bug Speedup
(sec) (sec) factor (x)

bt 99 56 1.75

cg 42 15 2.73

ep 73 36 2

ft 96 50 1.92

is 271 202 1.33

lu 1040 38 27

mg 49 24 2.03

sp 31 14 2.23

ua 206 56 3.63

Table 2: Execution time of NPB applications with the Scheduling Group
Construction bug and without it

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 11

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

the data produced by the waker thread. This seems like a reason-
able idea, but for some workloads, waiting in the run queue for
the sake of better cache reuse does not pay off.

This bug was triggered by and affected the runtime of a widely
used commercial database configured with 64 worker threads
(one thread per core) and running an OLAP (TPC-H) workload.

Figure 4 illustrates several instances of the Overload-on-
Wakeup bug. During the first time period (1), one core is idle
while a thread that ideally should be scheduled on that core
keeps waking up on other cores, which are busy. During the
second time period (2), there is a triple instance of the bug:
three cores are idle for a long time, while three extra threads
that should be scheduled on those cores keep waking up on other
busy cores. The Overload-on-Wakeup bug is typically caused
when a transient thread is scheduled on a core that runs a data-
base thread. When this happens, the load balancer observes a
heavier load on the node that runs the transient thread (Node A)
and migrates one of the threads to another node (Node B). This
is not an issue if the transient thread is the one being migrated,
but if it is the database thread, then the Overload-on-Wakeup
bug will kick in. Node B now runs an extra database thread, and
threads of Node B, which often sleep and wake up, keep waking
up on that node, even if there are no idle cores on that node. This
occurs because the wakeup code only considers cores from the
local node for the sake of better cache reuse and results in a core
running multiple threads when some cores that are always idle
are present on other nodes.

To fix this bug, we alter the code that is executed when a thread
wakes up. We wake up the thread on the local core—i.e., the core
where the thread was scheduled last—if it is idle; otherwise, if
there are idle cores in the system, we wake up the thread on the
core that has been idle for the longest amount of time. If there are
no idle cores, we fall back to the original algorithm to find the
core where the thread will wake up.

Our bug fix improves performance by 22.6% on the 18th query of
TPC-H, and by 13.2% on the full TPC-H workload.

Discussions and Lessons Learned
The first question to ask is whether these bugs could be fixed
with a new, cleaner scheduler design that is less error-prone and
easier to debug, but still maintains the features we have today.
Historically, though, this does not seem like a long-term solu-
tion, in addition to the fact that the new design would need to be
implemented and tested from scratch. The Linux scheduler has
gone through a couple of major redesigns. The original scheduler
had high algorithmic complexity, which resulted in poor perfor-
mance when highly multithreaded workloads became common.
In 2001, it was replaced by a new scheduler with O(1) complexity
and better scalability on SMP systems. It was initially success-
ful but soon required modifications for new architectures like

NUMA and SMT (simultaneous multithreading). At the same
time, users wanted better support for desktop use cases such as
interactive and audio applications, which required more changes
to the scheduler. Despite numerous modifications and proposed
heuristics, the O(1) scheduler was not able to meet expectations
and was replaced by CFS in 2007. Interestingly, CFS sacrifices
O(1) complexity for O(log (# threads)), but it was deemed worth-
while to provide the desired features.

As the hardware and workloads became more complex, CFS,
too, succumbed to bugs. The addition of autogroups (i.e., the
automatic grouping of threads from the same tty into a cgroup)
coupled with hierarchical load balancing introduced the Group
Imbalance bug. Asymmetry in new, increasingly complex NUMA
systems triggered the Scheduling Group Construction bug.
Cache-coherency overheads on modern multi-node machines
motivated the cache locality optimization that caused the
Overload-on-Wakeup bug.

The takeaway is that new scheduler designs come and go. How-
ever, a new design, even if clean and purportedly bug-free
initially, is not a long-term solution. Linux is a large open-source
system developed by dozens of contributors. In this environment,
we will inevitably see new features and “hacks” retrofitted into
the source base to address evolving hardware and applications.

The recently released Linux 4.3 kernel features a new imple-
mentation of the load metric. This change is reported to be “done
in a way that significantly reduces complexity of the code” [1].
Simplifying the load metric could get rid of the Group Imbalance
bug, which is directly related to it. However, we confirmed, using
our tools (see [7] for a full description of our tools and the end of
this article for a link to the code), that the bug is still present.

Kernel developers rely on mutual code review and testing to pre-
vent the introduction of bugs. This could potentially be effective
for bugs, like the Scheduling Group Construction bug, that are
easier to spot in the code (of course, it still was not effective in
these cases), but it is unlikely to be reliable for the more arcane
types of bugs.

Catching these bugs with testing or conventional performance
monitoring tools is tricky. They do not cause the system to
crash or to run out of memory, but they do silently eat away at
performance. As we have seen with the Group Imbalance and
the Overload-on-Wakeup bugs, they introduce short-term idle
periods that “move around” between different cores. These
microscopic idle periods cannot be noticed with performance
monitoring tools like htop, sar, or perf. Standard performance
regression testing is also unlikely to catch these bugs, as they
occur in very specific situations (e.g., multiple applications
with different thread counts launched from distinct ttys). In
practice, performance testing on Linux is done with only one
application running at a time on a dedicated machine—this is the

12  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

standard way of limiting factors that could explain performance
differences.

One of the most important lessons we learned in the process of
finding and diagnosing these bugs is that it was crucially impor-
tant to have the tools that trace and visualize microscopic events
during the execution, such as the state of the kernel run queues
and the transitions of threads between the cores. The visualiza-
tions that we relied on for detection and diagnosis of the bugs are
shown in Figures 2 and 4. We built our own tools that perform
precise tracing of kernel events and plot them as the space/time
charts shown earlier.

Although we found it convenient to build our own tools, there
is also a variety of powerful third-party dynamic tracing tools,
such as DTrace, LTTNG, Event Tracing for Windows, Ftrace,
and SystemTap. Unfortunately, effective visual front-ends and
trace analysis tools that are necessary to make the traces useful
are lacking. Most of the user-friendly performance tools avail-
able today rely on sampling and display averages and aggregates,
which is not powerful enough for detecting performance anoma-
lies like those caused by the scheduler bugs. We strongly feel that
the software engineering community must embrace dynamic
tracing and visualization for efficient diagnosis of egregious
performance anomalies.

Reflection on the Future of OS Scheduling
The bugs we described resulted from increasingly more optimi-
zations in the scheduler, whose purpose was mostly to cater to
complexity of modern hardware. As a result, the scheduler, that
once used to be a simple isolated part of the kernel, grew into
a complex monster whose tentacles reached into many other
parts of the system, such as power and memory management.
The optimizations studied in this paper are part of the mainline
Linux, but even more scheduling optimizations were proposed in
the research community.

Since 2000, dozens of papers have described new scheduling
algorithms catering to resource contention, coherency bottle-
necks, and other idiosyncrasies of modern multicore systems.
There were algorithms that scheduled threads so as to minimize
contention for shared caches, memory controllers, and multi-
threaded CPU pipelines [2, 6, 8]. There were algorithms that
reduced communication distance among threads sharing data
[10]. There were algorithms that addressed scheduling on asym-
metric multicore CPUs [4, 9] and algorithms that integrated
scheduling with the management of power and temperature
[3]. Finally, there were algorithms that scheduled threads to
minimize communication latency on systems with an asym-
metric interconnect [5]. All of these algorithms showed positive
benefits, either in terms of performance or power, for some real
applications. However, few of them were adopted in mainstream

operating systems, mainly because it is not clear how to inte-
grate all these ideas in the scheduler safely.

If every good scheduling idea is slapped as an add-on to a single
monolithic scheduler, we risk more complexity and more bugs,
as we saw from the case studies in this paper. Rapid evolution of
hardware that we are witnessing today will motivate more and
more scheduler optimizations. Instead of producing yet another
monolithic scheduler design, what we may need is to switch to a
more modular architecture..

One possible avenue is to decouple time management from space
management. Historically, on single-core systems, the sched-
uler was tasked with managing time, that is, sharing the CPU
cycles among the threads. On multicore systems, the scheduler
evolved to also manage space, that is to decide where to place the
threads. Several researchers postulated that space management
need not be done at as fine a time granularity as time manage-
ment, and this idea becomes more and more feasible in the age
where machines are evolving to have more cores than most
applications need. Perhaps space management could be done at
coarse time intervals by placing groups of threads on subsets
of cores such that each thread always has a free core whenever
it needs one. Then time management would be largely out of
the picture, and the space manager would deal with issues like
NUMA locality and resource contention. It would adjust the
mapping of threads to cores somewhat infrequently to reflect the
changes in application behavior over time. Still, understanding
how to combine different, perhaps conflicting, space optimi-
zations and reason about how they interact remains an open
research problem.

Our bug fixes and tools are available at http://git.io/vaGOW.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 13

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

References
[1] Michael Larabel, “The Linux 4.3 Scheduler Change
‘ Potentially Affects Every SMP Workload in Existence,’”
 Phoronix, September 2015: https://www.phoronix.com/scan
.php?page=news_item&px=Linux-4.3-Scheduler-SMP.

[2] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A
Case for NUMA-Aware Contention Management on Multicore
Systems,” in Proceedings of the 2011 USENIX Annual Technical
Conference (USENIX ATC ’11): https://www.usenix.org/legacy
/events/atc11/tech/final_files/Blagodurov.pdf.

[3] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, “Heat-and-
Run: Leveraging SMT and CMP to Manage Power Density
Through the Operating System,” in Proceedings of the 11th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XI), 2004:
https://engineering.purdue.edu/~vijay/papers/2004/heat-and
-run.pdf.

[4] D. Koufaty, D. Reddy, and S. Hahn, “Bias Scheduling in
Heterogeneous Multi-Core Architectures,” in Proceedings of the
5th European Conference on Computer Systems (EuroSys ’10):
http://eurosys2010.sigops-france.fr/proceedings/docs/p125.pdf.

[5] B. Lepers, V. Quéma, and A. Fedorova, “Thread and Memory
Placement on NUMA Systems: Asymmetry Matters,” in
Proceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC ’15): https://www.usenix.org/system/files
/conference/atc15/atc15-paper-lepers.pdf.

[6] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient
Operating System Scheduling for Performance-Asymmetric
Multi-Core Architectures,” in Proceedings of the 2007 ACM
/IEEE Conference on Supercomputing (SC ’07): http://happyli
.org/Tong/papers/amps.pdf.

[7] J. P. Lozi, B. Lepers, J. R. Funston, F. Gaud, V. Quéma, and A.
Fedorova, “The Linux Scheduler: A Decade of Wasted Cores,” in
Proceedings of the 11th European Conference on Computer Sys-
tem (EuroSys 2016), pp. 1:1–1:16: http://www.ece.ubc.ca/~sasha
/papers/eurosys16-final29.pdf.

[8] K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kalogeraki,
“FACT: A Framework for Adaptive Contention-Aware Thread
Migrations,” in Proceedings of the 8th ACM International Con-
ference on Computing Frontiers (CF ’11): https://www.cs.sfu
.ca/~fedorova/papers/cf150-pusukuri.pdf.

[9] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, “A
Comprehensive Scheduler for Asymmetric Multicore Systems,”
in Proceedings of the 5th European Conference on Computer
 Systems (EuroSys ’10): https://www.cs.sfu.ca/~fedorova/papers
/eurosys163-saez.pdf.

[10] D. Tam, R. Azimi, and M. Stumm, “Thread Clustering:
Sharing-Aware Scheduling on SMP-CMP-SMT Multiproces-
sors,” in Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007 (EuroSys ’07): http://
www.cs.toronto.edu/~demke/2227/S.14/Papers/p47-tam.pdf.

14  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS

Serverless Computation with OpenLambda
S C O T T H E N D R I C K S O N , S T E P H E N S T U R D E V A N T , E D W A R D O A K E S ,
T Y L E R H A R T E R , V E N K A T E S H W A R A N V E N K A T A R A M A N I ,
A N D R E A C . A R P A C I - D U S S E A U , A N D R E M Z I H . A R P A C I - D U S S E A U

R apid innovation in the datacenter is once again set to transform how
we build, deploy, and manage Web applications. New applications are
often built as a composition of microservices, but, as we will show,

traditional containers are a poor fit for running these microservices. We
argue that new serverless compute platforms, such as AWS Lambda, provide
better elasticity. We also introduce OpenLambda, an open-source implemen-
tation of the Lambda model, and describe several new research challenges in
the area of serverless computing.

In the preconsolidated datacenter, each application often ran on its own physical machine.
The high costs of buying and maintaining large numbers of machines, and the fact that each
was often underutilized, led to a great leap forward: virtualization. Virtualization enables
tremendous consolidation of services onto servers, thus greatly reducing costs and improv-
ing manageability.

However, hardware-based virtualization is not a panacea, and lighter-weight technologies
have arisen to address its fundamental issues. One leading solution in this space is contain-
ers, a server-oriented repackaging of UNIX-style processes with additional namespace
virtualization. Combined with distribution tools such as Docker [8], containers enable devel-
opers to readily spin up new services without the slow provisioning and runtime overheads of
virtual machines.

Common to both hardware-based and container-based virtualization is the central notion of
a server. Servers have long been used to back online applications, but new cloud-computing
platforms foreshadow the end of the traditional backend server. Servers are notoriously dif-
ficult to configure and manage [3], and server startup time severely limits elasticity.

As a result, a new model called serverless computation is poised to transform the construc-
tion of modern scalable applications. Instead of thinking of applications as collections of
servers, developers define applications as a set of functions with access to a common datas-
tore. An excellent example of this microservice-based platform is found in Amazon’s Lambda
[1]; we thus generically refer to this style of service construction as the Lambda model.

The Lambda model has many benefits as compared to traditional server-based approaches.
Lambda handlers from different customers share common pools of servers managed by
the cloud provider, so developers need not worry about server management. Handlers are
typically written in languages such as JavaScript or Python; by sharing the runtime environ-
ment across functions, the code specific to a particular application will typically be small
and easily deployable on any worker in a Lambda cluster. Finally, applications can scale up
rapidly without needing to start new servers. The Lambda model represents the logical con-
clusion of the evolution of sharing between applications, from hardware to operating systems
to (finally) the runtime environments themselves (Figure 1).

Scott Hendrickson is a Software
Engineer at Google, working on
the future of wireless Internet
infrastructure. Formerly, he was
a student at the University of

Wisconsin-Madison where he participated in
the OpenLambda project while working on his
Bachelor of Science in computer engineering
and computer science.
research@shendrickson.com

Stephen Sturdevant is a student
at the University of Wisconsin-
Madison, where he has received
his bachelor’s degree and is
currently pursuing a computer

science PhD. Professors Andrea and Remzi
Arpaci-Dusseau are his advisers. Stephen has
recently participated in Google Summer of
Code and is a contributor to the OpenLambda
project. stephensturdevant@gmail.com

Edward Oakes is a student at
the University of Wisconsin-
Madison, where he is pursuing
an undergraduate degree
in computer science and

mathematics. He is advised by Professor
Remzi Arpaci-Dusseau. This fall, Edward will
be continuing his work on OpenLambda at the
Microsoft Gray Systems Lab in Madison, WI.
oakes@cs.wisc.edu

Tyler Harter is a recent PhD
graduate from the University
of Wisconsin-Madison, where
he was co-advised by Andrea
Arpaci-Dusseau and Remzi

Arpaci-Dusseau. He has published several
storage papers at FAST and SOSP, including an
SOSP ’11 Best Paper. He has joined the Microsoft
Gray Systems Lab, where he will continue
contributing to OpenLambda (https://github
.com/open-lambda). tylerharter@gmail.com

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 15

SYSTEMS
Serverless Computation with OpenLambda

There are many new research challenges in the context of serverless computing, with respect
to efficient sandboxing, cluster scheduling, storage, package management, and many other
areas. In order to explore these problems, we are currently building OpenLambda, a base
upon which researchers can evaluate new approaches to serverless computing. More details
can be found in Hendrickson et al. [5]. Furthermore, while research is a primary motiva-
tion for building OpenLambda, we plan to build a production-quality platform that could be
reasonably deployed by cloud providers.

AWS Lambda Background
AWS Lambda allows developers to specify functions that run in response to various events.
We focus on the case where the event is an RPC call from a Web application and the func-
tion is an RPC handler. A developer selects a runtime environment (for example, Python 2.7),
uploads the handler code, and associates the handler with a URL endpoint. Clients can issue
RPC calls by issuing requests to the URL.

Handlers can execute on any worker; in AWS, start-up time on a new worker is approxi-
mately one to two seconds. Upon a load burst, a load balancer can start a Lambda handler on
a new worker to service a queued RPC call without incurring excessive latencies. However,
calls to a particular Lambda are typically sent to the same worker(s) to avoid sandbox reini-
tialization costs [10]. Developers can specify resource limits on time and memory. In AWS,
the cost of an invocation is proportional to the memory cap multiplied by the actual execu-
tion time, as rounded up to the nearest 100 ms.

Lambda functions are essentially stateless; if the same handler is invoked on the same
worker, common state may be visible between invocations, but no guarantees are provided.
Thus, Lambda applications are often used alongside a cloud database.

Motivation for Serverless Compute
A primary advantage of the Lambda model is its ability to quickly and automatically scale
the number of workers when load suddenly increases. To demonstrate this, we compare AWS
Lambda to a container-based server platform, AWS Elastic Beanstalk (hereafter Elastic BS).
On both platforms we run the same benchmark for one minute: the workload maintains 100
outstanding RPC requests and each RPC handler spins for 200 ms.

Figure 2 shows the result: an RPC using AWS Lambda has a median response time of only
1.6 sec, whereas an RPC in Elastic BS often takes 20 sec. While AWS Lambda was able
to start 100 unique worker instances within 1.6 sec to serve the requests, all Elastic BS
requests were served by the same instance; as a result, each request in Elastic BS had to
wait behind 99 other 200 ms requests.

Venkat Venkataramani is
the CEO and co-founder of
Rockset, an infrastructure
startup based in Menlo Park
building a high performance

cloud-first data service. Prior to Rockset, he
was an Engineering Director in the Facebook
infrastructure team responsible for all online
data services that stored and served Facebook
user data. Before Facebook, he worked at
Oracle on the RDBMS for 5+ years after
receiving his master’s degree at UW-Madison.
venkat@rockset.io

Andrea Arpaci-Dusseau is a
Full Professor of Computer
Sciences at the University
of Wisconsin-Madison.
She is an expert in file and

storage systems, having published more
than 80 papers in this area, co-advised 19
PhD students, and received nine Best Paper
awards; for her research contributions, she was
recognized as a UW-Madison Vilas Associate.
She also created a service-learning course
in which UW-Madison students teach CS to
more than 200 elementary-school children
each semester. dusseau@cs.wisc.edu

Remzi Arpaci-Dusseau is a
Full Professor in the Computer
Sciences Department at the
University of Wisconsin-
Madison. He co-leads a

group with his wife, Professor Andrea
Arpaci-Dusseau. They have graduated 19
PhD students in their time at Wisconsin, won
nine Best Paper awards, and some of their
innovations now ship in commercial systems
and are used daily by millions of people. Remzi
has won the SACM Student Choice Professor
of the Year award four times, the Carolyn
Rosner “Excellent Educator” award, and the
UW-Madison Chancellor’s Distinguished
Teaching award. Chapters from a freely
available OS book he and Andrea co-wrote,
found at http://www.ostep.org, have been
downloaded millions of times in the past few
years. remzi@cs.wisc.edu

Figure 1: Evolution of sharing. Gray layers are shared.

16  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS
Serverless Computation with OpenLambda

AWS Lambda also has the advantage of not requiring configura-
tion for scaling. In contrast, Elastic BS configuration is complex,
involving 20 different settings for scaling alone. Even though we
tuned Elastic BS to scale as fast as possible (disregarding mone-
tary cost), it still failed to spin up new workers for several minutes.

OpenLambda Overview
We now introduce OpenLambda, our open-source implemen-
tation of the Lambda model. Figure 3 illustrates how various
servers and users interact in an OpenLambda cluster during the
upload of a Lambda function F and a first call to that function.
First, a developer uploads the Lambda code to the Lambda ser-
vice, which stores it in a code store. Second, a client may issue an
RPC to the service, via AJAX, gRPC, or some other protocol. A
load balancer must decide which worker machine should service
the request. In order to implement certain locality heuristics,
the balancer may need to request the RPC schema from the code
store in order to perform deep inspection on the RPC fields.

The OpenLambda worker that receives the request will then
fetch the RPC handling code from the code store if it is not
already cached locally. The worker will initialize a sandbox in
which to run the handler. The handler may issue queries to a dis-
tributed database; if the balancer and database are integrated,
this will hopefully involve I/O to a local shard.

There are different ways to implement worker sandboxes, but
OpenLambda, like AWS Lambda, currently uses containers.
 Figure 4 shows how the Lambda model avoids common over-
heads faced by standard container use cases. Normally, each
application runs inside a container, with its own server and
runtime environment. Thus, application startup often involves
deploying runtime engines to new machines and starting new
servers. In contrast, servers run outside the containers with the
Lambda model, so there is no server spinup overhead. Further-
more, many applications will share a small number of standard
runtime engines. Although multiple instances of those runtime
engines will run in each sandbox, the runtime engine code will
already be on every worker, typically in memory.

Tutorial: Running OpenLambda in development mode (with
only a worker and no load balancer or code store) is relatively
simple in our current pre-release:

build and run standalone OL worker

curl -L -O https://github.com/open-lambda/open-lambda/archive

/v0.1.1.tar.gz

tar -xf v0.1.1.tar.gz

cd open-lambda-0.1.1

./quickstart/deps.sh

make

./bin/worker quickstart/quickstart.json

from another shell, issue AJAX w/ curl

curl -X POST localhost:8080/runLambda/hello -d

‘{“name”:”alice”}’

Code for new handlers can be written in the ./quickstart

/handlers directory, but the worker must be restarted upon a
handler update. RPC calls can be issued via AJAX curl POSTs,
with the URL updated to reflect the handler name. Directions
for running a full OpenLambda cluster are available online:
https://www.open-lambda.org.

Research Agenda
We now explore a few of the new research problems in the
serverless-computing space.

Lambda Workloads
Characterizing typical Lambda workloads will be key to the
design of OpenLambda and other serverless compute platforms.
Unfortunately, the Lambda model is relatively new, so there are
not yet many applications to study. However, we can anticipate
how future workloads may stress Lambda services by analyzing
the RPC patterns of existing applications.

In this section, we take Google Gmail as an example and study
its RPC calls during inbox load. Gmail uses AJAX calls (an RPC
protocol based on HTTP requests that uses JSON to marshal
arguments) to fetch dynamic content.

Figure 5 shows Gmail’s network I/O over time, divided between
GETs and POSTs. Gmail mostly uses POSTs for RPC calls
and GETs for other requests; the RPC calls represent 32% of
all requests and tend to take longer (92 ms median) than other
requests (18 ms median).

Figure 2: Response time. This CDF shows measured response times from
a simulated load burst to an Elastic BS application and to an AWS Lambda
application.

Figure 3: OpenLambda architecture. A new Lambda handler is uploaded,
then called.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 17

SYSTEMS
Serverless Computation with OpenLambda

The average time for short RPCs (those under 100 ms) is only
27 ms. Since we only trace latency on the client side, we cannot
know how long the requests were queued at various stages; thus,
our measurements represent an upper bound on the actual time
for the RPC handler. On AWS Lambda, charges are in incre-
ments of 100 ms, so these requests will cost at least 3.7x more
than if charges were more fine-grained.

We also see a very long request that takes 231 seconds, cor-
responding to 93% of the cumulative time for all requests. Web
applications often issue such long-lived RPC calls as a part of a
long polling technique. When the server wishes to send a mes-
sage to the client, it simply returns from the long RPC [2]. Unless
Lambda services provide special support for these calls, idle
handlers will easily dominate monetary costs.

Execution Engine
In the motivation section, we saw that Lambdas are far more
elastic than containers. Unfortunately, under steady load,
containers tend to be faster. In our experiments [5], Elastic BS
request latencies are an order of magnitude shorter than AWS
Lambda latencies. If Lambdas are to compete with VM and
 container platforms, base execution time must be improved.

Optimizing sandbox initialization and management is key to
improving Lambda latencies. For example, AWS Lambda reuses
the same sandbox for different calls when possible to amortize
startup costs; between requests, containers are maintained in a
paused state [10].

Unfortunately, there are difficult tradeoffs regarding when
to garbage-collect paused containers. Resuming a paused con-
tainer is over 100x faster than starting a new container, but
keeping a container paused imposes the same memory overheads
as an active container [5]. Reducing the time cost of fresh starts
and reducing memory overheads of paused containers are both
interesting challenges.

Interpreted Languages
Most Lambdas are written in interpreted languages. For perfor-
mance, the runtimes corresponding to these languages typically
have just-in-time compilers. JIT compilers have been built for
Java, JavaScript, and Python that optimize compiled code based
on dynamic profiling or tracing.

Applying these techniques with Lambdas is challenging
because a single handler may run many times over a long period
in a Lambda cluster, but it may not run long enough on any
one machine to provide sufficient profiling feedback. Making
dynamic optimization effective for Lambdas may require shar-
ing profiling data between different Lambda workers.

Package Support
Lambdas can rapidly spin up because customers are encouraged
to use one of a few runtime environments; runtime binaries will
already be resident in memory before a handler starts. Of course,
this benefit disappears if users bundle large third-party libraries
inside their handlers, as the libraries need to be copied over the net-
work upon a handler invocation on a new Lambda worker. Lazily
copying packages could partially ameliorate this problem [4].

Alternatively, the Lambda platform could be package aware [7]
and provide special support for certain popular package reposi-
tories, such as npm for Node.js or pip for Python. Of course, it
would not be feasible to keep such large (and growing) reposito-
ries in memory on a single Lambda worker, so package aware-
ness would entail new code locality challenges for scheduling.

Cookies and Sessions
Lambdas are inherently short-lived and stateless, but users typi-
cally expect to have many different but related interactions with
a Web application. Thus, a Lambda platform should provide a
shared view of cookie state across calls originating from a com-
mon user.

Furthermore, during a single session, there is often a two-way
exchange of data between clients and servers; this exchange
is typically facilitated by WebSockets or by long polls. These
protocols are challenging for Lambdas because they are based on
long-lived TCP connections. If the TCP connections are main-
tained within a Lambda handler, and a handler is idle between
communication, charges to the customer should reflect the

Figure 4: Container usage. The dashed lines represent container boundaries.

Figure 5: Google Gmail. Black bars represent RPC messages; gray bars
represent other messages. The bar ends represent request and response
times. The bars are grouped as POSTs and GETs; vertical positioning is
otherwise arbitrary.

18  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS
Serverless Computation with OpenLambda

fact that the handler incurs a memory overhead, but consumes
no CPU. Alternatively, if the platform provides management of
TCP connections outside of the handlers, care must be taken to
provide a new Lambda invocation with the connections it needs
that were initiated by past invocations.

Databases
There are many opportunities for integrating Lambdas with
databases. Most databases support user-defined functions
(UDFs) for providing a custom view of the data. Lambdas that
transform data from a cloud database could be viewed as UDFs
that are used by client-side code. Current integration with S3
and DynamoDB also allows Lambdas to act as trigger handlers
upon inserts.

A new change feed abstraction is now supported by RethinkDB
and CouchDB; when an iterator reaches the end of a feed, it
blocks until there is more data, rather than returning. Sup-
porting change feeds with Lambdas entails many of the same
challenges that arise with long-lived sessions; a handler that
is blocked waiting for a database update should probably not
be charged the same as an active handler. Change-feed batch-
ing should also be integrated with Lambda state transitions;
it makes sense to batch changes for longer when a Lambda is
paused than when it is running.

Relaxed consistency models should also be re-evaluated in the
context of RPC handlers. The Lambda compute model intro-
duces new potential consistency boundaries, based not on what
data is accessed, but on which actor accesses the data. For
example, an application may require that all RPC calls from the
same client have a read-after-write guarantee, but weaker guar-
antees may be acceptable between different clients, even when
those clients read from the same entity group.

Data Aggregators
Many applications (search, news feeds, and analytics) involve
search queries over large datasets. Parallelism over different
data shards is key to efficiently supporting these applications.
For example, with search, one may want to scan many inverted
indexes in parallel and then gather and aggregate the results.

Building these search applications will likely require special
Lambda support. In particular, in order to support the scatter/
gather pattern, multiple Lambdas will need to coordinate in a
tree structure. Each leaf Lambda will filter and process data
locally, and a front-end Lambda will combine the results.

When Lambda leaves are filtering and transforming large
shards, it will be important to co-locate the Lambdas with the
data. One solution would be to build custom datastores that
coordinate with Lambdas. However, the diversity of aggregator

applications may drive developers to use a variety of platforms
for preprocessing the data (for example, MapReduce, Dryad, or
Pregel). Thus, defining general locality APIs for coordination
with a variety of backends may be necessary.

Load Balancers
Previous low-latency cluster schedulers (such as Sparrow [9])
target tasks in the 100 ms range. Lambda schedulers need to
schedule work that is an order of magnitude shorter, while
taking several types of locality into account. First, schedulers
must consider session locality: if a Lambda invocation is part
of a long-running session with open TCP connections, it will
be beneficial to run the handler on the machine where the TCP
connections are maintained so that traffic will not need to be
diverted through a proxy.

Second, code locality becomes more difficult. A scheduler that
is aware that two different handlers rely heavily on the same
packages can make better placement decisions. Furthermore,
a scheduler may wish to direct requests based on the varying
degrees of dynamic optimization achieved on various workers.

Third, data locality will be important for running Lambdas
alongside either databases or large datasets and indexes. The
scheduler will need to anticipate what queries a particular
Lambda invocation will issue or what data it will read. Even once
the scheduler knows what data a Lambda will access and where
the replicas of the data reside, further communication with the
database may be beneficial for choosing the best replica. Many
new databases (such as Cassandra or MongoDB) store replicas
as LSM trees. Read amplifications for range reads can range
from 1x to 50x [6] on different replicas; an integrated scheduler
could potentially coordinate with database shards to track these
varying costs.

Cost Debugging
Prior platforms cannot provide a cost-per-request for any
service. For example, applications that use virtual machine
instances are often billed on an hourly basis, and it is not obvi-
ous how to divide that cost across the individual requests over
an hour. In contrast, it is possible to tell exactly how much each
individual RPC call to a Lambda handler costs the cloud cus-
tomer. This knowledge will enable new types of debugging.

Currently, browser-based developer tools enable performance
debugging: tools measure page latency and identify problems by
breaking down time by resource. New Lambda-integrated tools
could similarly help developers debug monetary cost: the exact
cost of visiting a page could be reported, and breakdowns could
be provided detailing the cost of each RPC issued by the page as
well as the cost of each database operation performed by each
Lambda handler.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 19

SYSTEMS
Serverless Computation with OpenLambda

Legacy Decomposition
Breaking systems and applications into small, manageable sub-
components is a common approach to building robust, parallel
software. Decomposition has been applied to operating systems,
Web browsers, Web servers, and other applications. In order to
save developer effort, there have been many attempts to auto-
mate some or all of the modularization process.

Decomposing monolithic Web applications into Lambda-based
microservices presents similar challenges and opportunities.
There are, however, new opportunities for framework-aware
tools to automate the modularization process. Many Web-appli-
cation frameworks (for example, Flask and Django) use language
annotations to associate URLs with handler functions. Such
annotations would provide an excellent hint to automatic split-
ting tools that port legacy applications to the Lambda model.

Conclusion
We have seen that the Lambda model is far more elastic and
scalable than previous platforms, including container-based
 services that autoscale. We have also seen that this new para-
digm presents interesting challenges for execution engines,
databases, schedulers, and other systems. We believe Open-
Lambda will create new opportunities for exploring these areas.
Furthermore, we hope to make OpenLambda a platform that is
suitable for actual cloud developers to deploy their serverless
applications. The OpenLambda project is online at https://www
.open-lambda.org.

Acknowledgments
Feedback from anonymous reviewers has significantly improved
this work. We also thank the members of the ADSL research
group for their helpful suggestions and comments on this work at
various stages.

This material was supported by funding from NSF grants CNS-
1421033, CNS-1319405, CNS-1218405, CNS-1419199 as well
as generous donations from EMC, Facebook, Google, Huawei,
Microsoft, NetApp, Seagate, Samsung, Veritas, and VMware.
Tyler Harter is supported by an NSF Fellowship. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and may not reflect the views of
the NSF or other institutions.

References
[1] “AWS Lambda”: https://aws.amazon.com/lambda/, May 2016.

[2] A. Russell, Infrequently Noted, “Comet: Low Latency
Data for the Browser” (blog entry), March 2006: https://
infrequently.org/2006/03/comet-low-latency-data-for-the
-browser/.

[3] J. Gray, “Why Do Computers Stop and What Can We Do
About It?” in Proceedings of the 6th International Conference
on Reliability and Distributed Databases, June 1987: http://
www.hpl.hp.com/techreports/tandem/TR-85.7.pdf.

[4] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “Slacker: Fast Distribution with Lazy
Docker Containers,” in Proceedings of the 14th USENIX
 Conference on File and Storage Technologies (FAST 16),
pp. 181–195: https://www.usenix.org/system/files/conference
/fast16/fast16-papers-harter.pdf.

[5] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataram-
ani, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Server-
less Computation with OpenLambda,” in Proceedings of the
8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud ’16): https://www.usenix.org/system/files
/conference/hotcloud16/hotcloud16_hendrickson.pdf.

[6] L. Lu, T. Sankaranarayana Pillai, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “WiscKey: Separating Keys from
Values in SSD-Conscious Storage,” in Proceedings of the
14th USENIX Conference on File and Storage Technologies
(FAST ’16), pp. 133–148: https://www.usenix.org/system/files
/conference/fast16/fast16-papers-lu.pdf.

[7] M. Boyd, “Amazon Debuts Flourish, a Runtime Appliction
Model for Serverless Computing”: http://thenewstack.io
/amazon-debuts-flourish-runtime-application-model
-serverless-computing/, May 2016.

[8] D. Merkel, “Docker: Lightweight Linux Containers for
 Consistent Development and Deployment,” Linux Journal,
2014, no. 239: https://www.linuxjournal.com/content
/docker-lightweight-linux-containers-consistent-
development-and-deployment.

[9] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Spar-
row: Distributed, Low Latency Scheduling,” in Proceedings of
the 24th ACM Symposium on Operating Systems Principles
(ACM, 2013): https://people.csail.mit.edu/matei/papers/2013
/sosp_sparrow.pdf.

[10] T. Wagner, AWS Compute Blog, “Understanding Con-
tainer Reuse in AWS Lambda,” December 2014: https://aws
.amazon.com/blogs/compute/container-reuse-in-lambda/.

20  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS

Standing on the Shoulders of Giants by
Managing Scientific Experiments Like Software
I V O J I M E N E Z , M I C H A E L S E V I L L A , N O A H W A T K I N S , C A R L O S M A L T Z A H N , J A Y L O F S T E A D ,
K A T H R Y N M O H R O R , R E M Z I A R P A C I - D U S S E A U , A N D A N D R E A A R P A C I - D U S S E A U

Independently validating experimental results in the field of computer
systems research is a challenging task. Recreating an environment that
resembles the one where an experiment was originally executed is a

time-consuming endeavor. In this article, we present Popper [1], a convention
(or protocol) for conducting experiments following a DevOps [2] approach
that allows researchers to make all associated artifacts publicly available
with the goal of maximizing automation in the re-execution of an experiment
and validation of its results.

A basic expectation in the practice of the scientific method is to document, archive, and
share all data and the methodologies used so other scientists can reproduce and verify
scientific results and students can learn how they were derived. However, in the scientific
branches of computation and data exploration the lack of reproducibility has led to a cred-
ibility crisis. As more scientific disciplines are relying on computational methods and data-
intensive exploration, it has become urgent to develop software tools that help document
dependencies on data products, methodologies, and computational environments, that safely
archive data products and documentation, and that reliably share data products and docu-
mentations so that scientists can rely on their availability.

Over the last decade software engineering and systems administration communities (also
referred to as DevOps) have developed sophisticated techniques and strategies to ensure “soft-
ware reproducibility,” i.e., the reproducibility of software artifacts and their behavior using
versioning, dependency management, containerization, orchestration, monitoring, testing and
documentation. The key idea behind the Popper Convention is to manage every experiment
in computation and data exploration as a software project, using tools and services that are
readily available now and enjoy wide popularity. By doing so, scientific explorations become
reproducible with the same convenience, efficiency, and scalability as software reproducibility
while fully leveraging continuing improvements to these tools and services. Rather than man-
dating a particular set of tools, the Convention requires that the tool set as a whole implements
functionality necessary for software reproducibility. There are two main goals for Popper:

1. It should be usable in as many research projects as possible, regardless of domain.

2. It should abstract underlying technologies without requiring a strict set of tools, making it
possible to apply it on multiple toolchains.

Common Experimental Practices
Ad hoc personal workflows: A typical practice is the use of custom bash scripts to auto-
mate some of the tasks of executing experiments and analyzing results.

Sharing source code: Version-control systems give authors, reviewers, and readers access
to the same code base, but the availability of source code does not guarantee reproducibility [3];
code may not compile, and even if it does, results may differ due to differences from other com-
ponents in the software stack. While sharing source code is beneficial, it leaves readers with
the daunting task of recompiling, reconfiguring, deploying, and re-executing an experiment.

Ivo Jimenez is a PhD candidate
at the UC Santa Cruz Computer
Science Department and
a member of the Systems
Research Lab. His current

work focuses on the practical reproducible
generation and validation of systems research.
Ivo holds a BS in computer science from
University of Sonora and a MS from UCSC.
ivo@cs.ucsc.edu

Michael Sevilla is a computer
science PhD candidate at UC
Santa Cruz. As part the Systems
Research Lab, he evaluates
distributed file system metadata

management. At Hewlett Packard Enterprise,
he uses open-source tools to benchmark
storage solutions. He has a BS in computer
science and engineering from UC Irvine.
msevilla@soe.ucsc.edu

Noah Watkins is a PhD
candidate in the Computer
Science Department at UC
Santa Cruz and a member of
the Systems Research Lab. His

research interests include distributed storage
systems and data management, with a focus
on programmable storage abstractions. Noah
holds a BS in computer science from the
University of Kansas. jayhawk@cs.ucsc.edu

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 21

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

Experiment repositories: An alternative to sharing source code is experiment reposito-
ries [4]. These allow researchers to upload artifacts associated with a paper, such as input
datasets. Similar to code repositories, one of the main problems is the lack of automation and
structure for the artifacts.

Virtual machines: A Virtual Machine (VM) can be used to partially address the limita-
tions of only sharing source code. However, in the case of systems research where the perfor-
mance is the subject of study, the overheads in terms of performance (the hypervisor “tax”)
and management (creating, storing, and transferring) can be high and, in some cases, cannot
be accounted for easily [5].

Data analysis ad hoc approaches: A common approach to analyze data is to capture CSV
files and manually paste their contents into Excel or Google spreadsheets. This manual
manipulation and plotting lacks the ability to record important steps in the process of ana-
lyzing results, such as the series of steps that it took to go from a CSV to a figure.

Eyeball validation: Assuming the reader is able to recreate the environment of an experi-
ment, validating the outcome requires domain-specific expertise in order to determine the
differences between original and recreated environments that might be the root cause of any
discrepancies in the results.

Goals for a New Methodology
A diagram of a generic experimentation workflow is shown in Figure 1. The problem with
current practices is that each practice only partially covers the workflow. For example, shar-
ing source code only covers the first task (source code), experiment packing only covers the
second one (packaging), and so on. Based on this, we see the need for a new methodology that:

◆◆ Is reproducible without incurring any extra work for the researcher and requires the same
or less effort than current practices but does things systematically.

◆◆ Improves the personal workflows of scientists by having a common methodology that works
for as many projects as possible and that can be used as the basis of collaboration.

◆◆ Captures the end-to-end workflow in a modern way, including the history of changes that
are made to an article throughout its life cycle.

Carlos Maltzahn is an Adjunct
Professor of Computer Science
at UC Santa Cruz and the
Director of the Center for
Research in Open Source

Software (CROSS) and the Systems Research
Lab (SRL). Carlos graduated with a PhD in
computer science from the University of
Colorado at Boulder. carlosm@soe.ucsc.edu

Jay Lofstead works on issues
related to workflow, I/O,
storage abstractions and
the infrastructure necessary
to support these system

services. His other projects include the SIRIUS
storage system project and the Decaf generic
workflows project. Jay is a three-time graduate
of Georgia Tech in computer science.
gflofst@sandia.gov

Kathryn Mohror is a Computer
Scientist on the Scalability
Team at the Center for Applied
Scientific Computing at
Lawrence Livermore National

Laboratory. Her research focuses on scalable
fault-tolerant computing and I/O for extreme
scale systems. Kathryn holds a PhD, MS, and
BS from Portland State University (PSU) in
Portland, OR. kathryn@llnl.gov

Figure 1: A generic experimentation workflow typically followed by researchers in projects with a compu-
tational component. Some of the reasons to iterate (backwards-going arrows) are: fixing a bug in the code
of a system, changing a parameter of an experiment, or running the same experiment on a new workload
or compute platform. Although not usually done, in some cases researchers keep a chronological record of
how experiments evolve over time (the analogy of the lab notebook in experimental sciences).

22  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

◆◆ Makes use of existing tools (don’t reinvent the wheel!); the DevOps toolkit is already
 comprehensive and easy to use.

◆◆ Has the ability to handle large datasets and scale to an arbitrary number of machines.

◆◆ Captures validation criteria in an explicit manner so that subjective evaluation of results of
a re-execution is minimized.

◆◆ Results in experiments that are amenable to improvement and allows easy collaboration;
makes it easier to build upon existing work.

A DevOps Approach to Conducting Experiments
The core idea behind Popper is to borrow from the DevOps movement the idea of treating
every component as an immutable piece of information [6] and provide references to scripts
and components for the creation, execution, and validation of experiments (in a systematic
way) rather than leaving to the reader the daunting task of inferring how binaries and
experiments were generated or configured. Version control, package management, multi-
node orchestration, bare-metal-as-a-service, dataset management, data analysis and
visualization, performance monitoring, continuous integration, each of these categories of
the DevOps toolkit has a corresponding open source software (OSS) project that is mature,
well documented, and easy to use (see Figure 2 for examples). The goal for Popper is to give
researchers a common framework to systematically reason about how to structure all the
dependencies and generated artifacts associated with an experiment by making use of these
DevOps tools. The convention provides the following unique features:

1. Provides a methodology (or experiment protocol) for generating self-contained experiments.

2. Makes it easier for researchers to explicitly specify validation criteria.

3. Abstracts domain-specific experimentation workflows and toolchains.

4. Provides reusable templates of curated experiments commonly used by a research community.

Self-Containment
We say that an experiment is Popper-compliant (or that it has been “Popperized”) if all of the
following are available, either directly or by reference, in one single source code repository:
experiment code, experiment orchestration code, reference to data dependencies, parametri-
zation of experiment, validation criteria and results. In other words, a Popper repository con-
tains all the dependencies for one or more experiments, optionally including a manuscript
(article or tech report) that documents them.

Remzi Arpaci-Dusseau is a
Full Professor in the Computer
Sciences Department at the
University of Wisconsin-
Madison. He co-leads a

group with his wife, Professor Andrea
Arpaci-Dusseau. They have graduated 19
PhD students in their time at Wisconsin, won
nine Best Paper awards, and some of their
innovations now ship in commercial systems
and are used daily by millions of people. Remzi
has won the SACM Student Choice Professor
of the Year award four times, the Carolyn
Rosner “Excellent Educator” award, and the
UW-Madison Chancellor’s Distinguished
Teaching award. Chapters from a freely
available OS book he and Andrea co-wrote,
found at http://www.ostep.org, have been
downloaded millions of times in the past few
years. remzi@cs.wisc.edu

Andrea Arpaci-Dusseau is a
Full Professor of Computer
Sciences at the University
of Wisconsin-Madison.
She is an expert in file and

storage systems, having published more
than 80 papers in this area, co-advised 19
PhD students, and received nine Best Paper
awards; for her research contributions, she was
recognized as a UW-Madison Vilas Associate.
She also created a service-learning course
in which UW-Madison students teach CS to
more than 200 elementary-school children
each semester. dusseau@cs.wisc.edu

Figure 2: The same workflow as in Figure 1 viewed through a DevOps looking glass. The logos correspond to
commonly used tools from the “DevOps toolkit.” From left-to-right, top-to-bottom: git, mercurial, subversion
(code); docker, vagrant, spack, nix (packaging); git-lfs, datapackages, artifactory, archiva (input data); bash,
ansible, puppet, slurm (execution); git-lfs, datapackages, icinga, nagios (output data and runtime metrics);
jupyter, paraview, travis, jenkins (analysis, visualization and continuous integration); restructured text,
latex, asciidoctor and markdown (manuscript); gitlab, bitbucket and github (experiment changes).

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 23

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

An example paper project is shown in Listing 1. A paper reposi-
tory is composed primarily of the article text and experiment
orchestration logic. The actual code that gets executed by an
experiment and all input datasets are not part of the repository;
instead, they reside in their own repositories and are stored in
the experiments/ folder of the paper repository as references.

 paper-repo

 | README.md

 | .git/

 | .popper.yml

 | .travis.yml

 | experiments

 | |-- myexp

 | | |-- datasets/

 | | |-- input-data.csv

 | | |-- figure.png

 | | |-- process-result.py

 | | |-- setup.yml

 | | |-- results.csv

 | | |-- run.sh

 | | |-- validations.aver

 | | -- vars.yml

 | paper

 | |-- build.sh

 | |-- figures/

 | |-- paper.tex

 | -- references.bib

Listing 1: Sample contents of a Popper repository

With all these artifacts available, the reader can easily deploy
an experiment or rebuild the article’s PDF. Figure 3 shows our
vision for the reader/reviewer workflow when reading a Popper
for a Popperized article. The diagram uses tools we use in the
use-case presented later, like Ansible and Docker, but as men-
tioned earlier, these can be swapped by equivalent tools. Using
this workflow, the writer is completely transparent, and the
article consumer is free to explore results, rerun experiments,
and contradict assertions made in the paper.

A paper is written in any desired markup language (LaTeX in
our example), where a build.sh command generates the output
(e.g., PDF file). For the experiment execution logic, each experi-
ment folder contains the necessary information such as setup,
output post-processing (data analysis), and scripts for generat-
ing an image from the results. The execution of the experiment
will produce output that is either consumed by a post-processing
script, or directly by the scripts that generate an image.

The experiment output can be in any format (CSV, HDF,
NetCDF, etc.), as long as it is versioned and referenced. An
important component of the experiment logic is that it should

assert the original assumptions made about the environment
(setup.yml): for example, the operating system version (if the
experiment assumes one). Also, it is important to parametrize
the experiment explicitly (vars.yml) so that readers can quickly
get an idea of what is the parameter space and what can be modi-
fied in order to obtain different results. One common practice
we follow is to place in the caption of every figure a [source]
link that points to the URL of the corresponding post-processing
script in the version control Web interface (e.g., GitHub).

Automated Validation
Validation of experiments can be classified in two categories.
In the first one, the integrity of the experimentation logic is
checked using existing continuous-integration (CI) services
such as TravisCI, which expects a .travis.yml file in the root
folder specifying what tests to execute. These checks can verify
that the paper is always in a state that can be built; that the
 syntax of orchestration files is correct so that if changes occur
(e.g., addition of a new variable), it can be executed without any
issues; or that the post-processing routines can be executed
without problems.

The second category of validations is related to the integrity of the
experimental results. These domain-specific tests ensure that
the claims made in the paper are valid for every re- execution of
the experiment, analogous to performance regression tests done
in software projects. Alternatively, claims can also be corrobo-
rated as part of the analysis code. When experiments are not
sensitive to the effects of virtualized platforms, these asser-
tions can be executed on public/free CI platforms (e.g., TravisCI

Figure 3: A sample workflow a paper reviewer or reader would use to read
a Popperized article. (1) The PDF, Jupyter, or Binder are used to visualize
and interact with the results postmortem on the reader’s local machine.
(2) If needed the reader has the option of looking at the code and cloning
it locally (GitHub); for single-node experiments, they can be deployed
locally too (Docker). (3) For multi-node experiments, Ansible can then
be used to deploy the experiment on a public or private cloud (NSF’s
CloudLab in this case). (4) Lastly, experiments producing large datasets
can make use of cloud storage. Popper is tool agnostic, so GitHub can be
replaced with GitLab, Ansible with Puppet, Docker with VMs, etc.

24  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

runs tests in VMs). However, when results are sensitive to the
underlying hardware, it is preferable to leave this out of the CI
pipeline and make them part of the post-processing routines
of the experiment. In the example above, a validations.aver
file contains validations in the Aver [7] language that check the
integrity of runtime performance metrics. Examples of these
type of assertions are: “the runtime of our algorithm is 10x bet-
ter than the baseline when the level of parallelism exceeds four
concurrent threads”; or “for dataset A, our model predicts the
outcome with an error of 5%.”

Toolchain Agnosticism
We designed Popper as a general convention, applicable to a wide
variety of environments, from cloud to high-performance com-
puting. In general, Popper can be applied in any scenario where
a component (data, code, infrastructure, hardware, etc.) can be
referenced by an identifier, and where there is an underlying tool
that consumes these identifiers so that they can be acted upon
(install, run, store, visualize, etc.). We say that a tool is Popper-
compliant if it has the following two properties:

1. Assets (code, packages, configurations, data, results, etc.) can
all be associated with, and referenced using, unique identifiers.

2. The tool is scriptable (e.g., can be invoked from the command
line) and can act upon given asset IDs.

In general, tools that are hard to script—e.g., because they don’t
provide a command-line interface (can only interact via GUI)
or they only have a programmatic API for a non-interpreted
language—are beyond the scope of Popper.

Experiment Templates
Researchers that decide to follow Popper are faced with a steep
learning curve, especially if they have only used a couple of tools
from the DevOps toolkit. To lower the entry barrier, we have
developed a command-line interface (CLI) tool that provides
a list of experiment templates and helps to bootstrap a paper
repository that follows the Popper Convention (available at
https://github.com/systemslab/popper).

Use Case
We now illustrate how to follow the Popper Convention when
conducting an experiment. For detailed documentation, visit our
wiki at https://github.com/systemslab/popper/wiki.

Initializing a Popper repository: Our Popper-CLI tool
assumes a Git repository exists (Listing 2). Given a Git reposi-
tory, we invoke the Popper-CLI tool and initialize Popper by
issuing a popper init command in the root of the Git reposi-
tory. This creates a .popper.yml file that contains configuration
options for the CLI tool. This file is committed to the paper
(Git) repository. After the Popper repository has been initialized,

we can either create a new experiment from scratch or obtain an
existing one by pulling an experiment template.

 $ cd mypaper-repo

 $ popper init

 -- Initialized Popper repo

 $ popper experiment list

 -- available templates ---------------

 ceph-rados proteustm mpip

 spark-bench gassyfs zlog

 malacology torpor blis

 $ popper add gassyfs myexp

Listing 2: Initialization of a Popper repo

Adding a new experiment: Assume the code of the system
under study has already been packaged. In order to add an
experiment that evaluates a particular aspect of the system,
we first start by stating, in either a language such as Aver [7]
or in plaintext, the result validation criteria. We then proceed
with the implementation of the logic of the experiment, mainly
orchestration code: configuration, deployment, analysis and
visualization of performance metrics, and validation of results.
All these files are placed in the paper repository in order to make
the experiment Popper-compliant (self-contained).

Obtaining an existing experiment: As mentioned before, we
maintain a list of experiment templates that have been “Popper-
ized.” For this example, assume we select the gassyfs template
from the list. GassyFS [8] is a new prototype in-memory file
system that stores data in distributed remote memory. Although
GassyFS is simple in design, it is relatively complex to set up.
The combinatorial space of possible ways in which the system
can be compiled, packaged, and configured is large. Having all
this information in a Git repository simplifies the setup since
one doesn’t need to speculate on which things where done by
the original authors; all the information is available. In Figure 4
we show results of an experiment that validates the scalability
of GassyFS. We note that while the obtained performance is
relevant, it is not our main focus. Instead, we put more emphasis
on the goals of the experiment, how we can reproduce results
on multiple environments with minimal effort, and how we can
validate them. Re-executing this experiment on a new platform
only requires us to have host nodes to run Docker and to modify
the list of hosts given to Ansible (a list of hostnames); everything
else, including validation, is fully automated. The Aver [7] asser-
tion in Listing 3 is used to check the integrity of this result and
expresses our expectation of GassyFS performing sublinearly
with respect to the number of nodes. After the experiment runs,
Aver is invoked to test the above statement against the experi-
ment results obtained.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 25

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

 when

 workload=* and machine=*

 expect

 sublinear(nodes,time)

Listing 3: Assertion to check scalability behavior

Documenting the experiment: After we are done with an
experiment, we might want to document it by creating a report
or article. The Popper-CLI also provides us with manuscript
templates. We can use the generic article template or other
more domain-specific ones. To display the available templates
we do popper paper list. In our example we use the template
for USENIX articles by issuing a popper paper add usenix,
which creates a paper/ folder in the project’s root folder, with a
sample LaTeX file. We then can make reference to figures that
have been generated as part of an experiment and reference
them from the LaTeX file. We then generate the article (all paper
templates have a build.sh command inside the paper folder) and
see the new images added to the resulting PDF file.

The Case for Popper
We Did Well for 50 Years. Why Fix It?
Shared infrastructures “in the cloud” are becoming the norm
and enable new kinds of sharing, such as experiments, that were
not practical before. Thus, the opportunity of these services goes
beyond just economies of scale: by using conventions and tools to
enable reproducibility, we can dramatically increase the value of
scientific experiments for education and for research. The Pop-
per Convention makes available not only the result of a systems
experiment but the entire experiment as well, and it allows
researchers to study and reuse all aspects of it, making it practi-

cal to “stand on the shoulders of giants” by building upon the
work of the community to improve the state-of-the-art without
having to start from scratch every time.

The Power of “Crystallization Points”
Docker images, Ansible playbooks, CI unit tests, Git repositories,
and Jupyter notebooks are all examples of artifacts around which
broad-based efforts can be organized. Crystallization points are
pieces of technology and are intended to be easily shareable, have
the ability to grow and improve over time, and ensure buy-in from
researchers and students. Examples of very successful crystal-
lization points are the Linux kernel, Wikipedia, and the Apache
Project. Crystallization points encode community knowledge
and are therefore useful for leveraging past research efforts for
ongoing research as well as education and training. They help
people to form abstractions and common understanding that
enables them to more effectively communicate reproducible
science. By having popular tools such as Docker/Ansible as a
lingua franca for researchers, and Popper to guide them in how
to structure their paper repositories, we can expedite collabora-
tion and at the same time benefit from all the new advances done
in the DevOps world.

Perfect Is the Enemy of Good
No matter how hard we try, there will always be something that
goes wrong. The context of systems experiments is often very
complex, and that complexity is likely to increase in the future.
Perfect repeatability will be very difficult to achieve. Recent
empirical studies in computer systems [3, 9] have brought
attention to the main issues that permeate the current practice
of our research communities, where scenarios like the lack of
information on how a particular package was compiled, or which
statistical functions were used make it difficult to reproduce
or even interpret results. Rather than aiming at perfect repeat-
ability, we seek to minimize issues we currently face and to use a
common language while collaborating to fix all these reproduc-
ibility issues. Additionally, following Popper quickly pays off
at the individual level by improving productivity, e.g., when a
researcher goes back to experiments to consider new scenarios.

DevOps Skills Are Highly Valued by Industry
While the learning curve for the DevOps toolkit is steep, having
these as part of the skill set of students or researchers-in-train-
ing can only improve their curriculum. Since industry and many
industrial/national laboratories have embraced (or are in the
process of embracing) a DevOps approach, making use of these
tools improves the prospects of future employment. These are
skills that will hardly represent wasted time investments. On the
contrary, this might be motivation enough for students to learn
at least one tool from each of the stages of the experimentation
workflow.

Figure 4: Scalability of GassyFS as the number of nodes in the GASNet
cluster increases. The workload in question compiles Git. (source: https://
github.com/systemslab/popper-paper/blob/login/experiments/gassyfs
/visualize.ipynb)

26  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSTEMS
Standing on the Shoulders of Giants by Managing Scientific Experiments Like Software

Conclusion
We named the convention Popper as a reference to Karl Popper,
the philosopher of science who famously argued that falsifiability
should be used as the demarcation criterion when determining
whether a theory is scientific or pseudo-scientific. The OSS
development model and the DevOps practice have proven to be
an extraordinary way for people around the world to collaborate
on software projects. As the use case presented here shows,
by writing articles following the Popper Convention, authors
can improve their personal workflows while at the same time
generating research that is easier to validate and replicate. We
are currently working with researchers from distinct scientific
domains to help them “Popperize” their experiments and add
new templates to our repository.

References
[1] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, “Pop-
per: Making Reproducible Systems Performance Evaluation
Practical,” UC Santa Cruz School of Engineering, Technical
Report UCSC-SOE-16-10, 2016: https://www.soe.ucsc.edu
/research/technical-reports/UCSC-SOE-16-10.

[2] M. Httermann, DevOps for Developers (Apress, 2012).

[3] C. Collberg and T. A. Proebsting, “Repeatability in Com-
puter Systems Research,” Communications of the ACM, vol.
59, no. 3 (February 2016), pp. 62–69.

[4] V. Stodden, S. Miguez, and J. Seiler, “ResearchCompendia.
org: Cyberinfrastructure for Reproducibility and Collabo-
ration in Computational Science,” Computing in Science &
Engineering, vol. 17, no. 1 (January 2015), pp. 12–19.

[5] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,
J. Herne, and J. N. Matthews, “ Xen and the Art of Repeated
Research,” in Proceedings of the 2004 USENIX Annual
Technical Conference, 2004.

[6] A. Wiggins, “The Twelve-Factor App”: http://12factor.net.

[7] I. Jimenez, C. Maltzahn, J. Lofstead, A. Moody, K. Mohror,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “I Aver: Provid-
ing Declarative Experiment Specifications Facilitates the
Evaluation of Computer Systems Research,” TinyToCS, vol. 4
(2016): http://tinytocs.ece.utexas.edu/papers/tinytocs4
_paper_jimenez.pdf.

[8] N. Watkins, M. Sevilla, and C. Maltzahn, “GassyFS: An
In-Memory File System That Embraces Volatility,” UC
Santa Cruz School of Engineering, Technical Report UCSC-
SOE-16-08, 2016: https://www.soe.ucsc.edu/research
/technical-reports/UCSC-SOE-16-08.

[9] T. Hoefler and R. Belli, “Scientific Benchmarking of Paral-
lel Computing Systems: Twelve Ways to Tell the Masses
When Reporting Performance Results,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC15): http://htor.inf.ethz
.ch/publications/img/hoefler-scientific-benchmarking_wide
_HLRS.pdf.

https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-16-10
https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-16-10
http://tinytocs.ece.utexas.edu/papers/tinytocs4_paper_jimenez.pdf
http://tinytocs.ece.utexas.edu/papers/tinytocs4_paper_jimenez.pdf
https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-16-08
https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-16-08
http://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking_wide_HLRS.pdf
http://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking_wide_HLRS.pdf
http://htor.inf.ethz.ch/publications/img/hoefler-scientific-benchmarking_wide_HLRS.pdf

26TH
August 16-18, 2017 • Vancouver, BC, Canada

The USENIX Security Symposium brings together researchers, practitioners, system administrators, system
 programmers, and others interested in the latest advances in the security and privacy of computer systems
and networks.

All researchers are encouraged to submit papers covering novel and scientifically significant practical
works in computer security. Submissions are due on Thursday, February 16, 2017. The Symposium will span
three days, with a technical program including refereed papers, invited talks, posters, panel discussions, and
Birds-of-a-Feather sessions. Workshops will precede the Symposium on August 14 and 15.

Important Dates
• Paper submissions due: Thursday, February 16, 2017, 5:00 p.m. EST

• Invited talk and panel proposals due: Thursday, February 18, 2017

• Early-reject notification: March 21, 2017

• Notification to authors: May 12, 2017

• Final papers due: June 29, 2017

• Poster proposals due: July 6, 2017

• Notification to poster presenters: July 13, 2017

• Work-in-Progress submissions due: August 16, 2017, noon CDT

Program Co-Chairs
Engin Kirda, Northeastern University
Thomas Ristenpart, Cornell Tech

Submit Your Work

www.usenix.org/sec17

28  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITYBeyondCorp Part III
The Access Proxy

L U C A C I T T A D I N I , B A T Z S P E A R , B E T S Y B E Y E R , A N D M A X S A L T O N S T A L L

Luca Cittadini is a Site Reliability
Engineer at Google in Dublin.
He previously worked as a
Network Engineer at the Italian
Central Bank in Rome. He holds

a PhD in computer science from Roma Tre
University. lucacittadini@google.com

Batz Spear is a Software
Engineer at Google in Mountain
View. He holds a PhD in
computer science from UC
Davis. batz@google.com

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

Max Saltonstall is a Program
Manager for Google Corporate
Engineering in New York.
Since joining Google in 2011
he has worked on video

products, internal change management, IT
externalization, and coding puzzles. He has a
degree in computer science and psychology
from Yale. maxsaltonstall@google.com

This article details the implementation of BeyondCorp’s front-end
infrastructure. It focuses on the Access Proxy, the challenges we
encountered in its implementation and the lessons we learned in its

design and rollout. We also touch on some of the projects we’re currently
undertaking to improve the overall user experience for employees accessing
internal applications.

In migrating to the BeyondCorp model (previously discussed in “BeyondCorp: A New
Approach to Enterprise Security” [1] and “BeyondCorp: Design to Deployment at Google” [2]),
Google had to solve a number of problems. Figuring out how to enforce company policy
across all our internal-only services was one notable challenge. A conventional approach
might integrate each back end with the device Trust Inferer in order to evaluate applicable
policies; however, this approach would significantly slow the rate at which we’re able to
launch and change products.

To address this challenge, Google implemented a centralized policy enforcement front-end
Access Proxy (AP) to handle coarse-grained company policies. Our implementation of the
AP is generic enough to let us implement logically different gateways using the same AP
codebase. At the moment, the Access Proxy implements both the Web Proxy and the SSH
gateway components discussed in [2]. As the AP was the only mechanism that allowed
employees to access internal HTTP services, we required all internal services to migrate
behind the AP.

Unsurprisingly, initial attempts that dealt only with HTTP requests proved inadequate, so
we had to provide solutions for additional protocols, many of which required end-to-end
encryption (e.g., SSH). These additional protocols necessitated a number of client-side
changes to ensure that the device was properly identified to the AP.

The combination of the AP and an Access Control Engine (a shared ACL evaluator) for
all entry points provided two main benefits. By supplying a common logging point for all
requests, it allowed us to perform forensic analysis more effectively. We were also able to
make changes to enforcement policies much more quickly and consistently than before.

BeyondCorp’s Front-End Infrastructure
Any modern Web application deployed at scale employs front-end infrastructure, which is
typically a combination of load balancers and/or reverse HTTP proxies. Enterprise Web
applications are no exception, and the front-end infrastructure provides the ideal place to
deploy policy enforcement points. As such, Google’s front-end infrastructure occupies a
 critical position in BeyondCorp’s enforcement of access policies.

The main components of Google’s front-end infrastructure are a fleet of HTTP/HTTPS
reverse proxies called Google Front Ends (GFEs [3]). GFEs provide a number of benefits,
such as load balancing and TLS handling “as a service.” As a result, Web application back
ends can focus on serving requests and largely ignore the details of how requests are routed.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 29

SECURITY
BeyondCorp Part III: The Access Proxy

BeyondCorp leverages the GFE as a logically centralized point of
access policy enforcement. Funneling requests in this manner
led us to naturally extend the GFE to provide other features,
including self-service provisioning, authentication, authoriza-
tion, and centralized logging. The resulting extended GFE is
called the Access Proxy (AP). The following section details the
specifics of the services the Access Proxy offers.

Features of the Extended GFE: Product Requirements
The GFE provides some built-in benefits that weren’t designed
specifically for BeyondCorp: it both provides load balancing for
the back ends and addresses TLS handling by delegating TLS
management to the GFE. The AP extends the GFE by introduc-
ing authentication and authorization policies.

Authentication
In order to properly authorize a request, the AP needs to identify
the user and the device making the request. Authenticating
the device poses a number of challenges in a multi-platform
context, which we address in a later section, “Challenges with
Multi-Platform Authentication.” This section focuses on user
authentication.

The AP verifies user identities by integrating with Google’s
 Identity Provider (IdP). Because it isn’t scalable to require
back-end services to change their authentication mechanisms
in order to use the AP mechanism, the AP needs to support a
range of authentication options: OpenID Connect, OAuth, and
some custom protocols.

The AP also needs to handle requests made without user
credentials, e.g., a software management system attempting to
download the latest security updates. In these cases, the AP
can disable user authentication.

When the AP authenticates the user, it strips the credential
before sending the request to the back end. Doing so is essential
for two reasons:

◆◆ The back end can’t replay the request (or the credential)
through the Access Proxy.

◆◆ The proxy is transparent to the back ends. As a result, the back
ends can implement their own authentication flows on top of
the Access Proxy’s flow, and won’t observe any unexpected
cookies or credentials.

Authorization
Two design choices drove our implementation of the authoriza-
tion mechanism in a BeyondCorp world:

◆◆ A centralized Access Control List (ACL) Engine queryable via
Remote Procedure Calls (RPCs)

◆◆ A domain-specific language to express the ACLs that is both
readable and extensible

Providing ACL evaluation as a service enables us to guaran-
tee consistency across multiple front-end gateways (e.g., the
RADIUS network access control infrastructure, the AP, and
SSH proxies).

Providing centralized authorization has both benefits and
 drawbacks. On the one hand, an authorizing front end frees
back-end developers from dealing with the details of authoriza-
tion by promoting consistency and a centralized point of policy
enforcement. On the other hand, the proxy might not be able to
enforce fine-grained policies that are better handled at the back
end (e.g., “user A is authorized to modify resource B”).

In our experience, combining coarse-grained, centralized
authorization at the AP with fine-grained authorization at
the back end provides the best of both worlds. This approach
doesn’t result in much duplication of effort, since the applica-
tion-specific fine-grained policies tend to be largely orthogo-
nal to the enterprise-wide policies enforced by the front-end
infrastructure.

Mutual authentication between the proxy and the back end

Because the back end delegates access control to the front end,
it’s imperative that the back end can trust that the traffic it
receives has been authenticated and authorized by the front end.
This is especially important since the AP terminates the TLS
handshake, and the back end receives an HTTP request over an
encrypted channel.

Meeting this condition requires a mutual authentication scheme
capable of establishing encrypted channels—for example, you
might implement mutual TLS authentication and a corporate
public key infrastructure. Our solution is an internally developed
authentication and encryption framework called LOAS (Low
Overhead Authentication System) that bi-directionally authen-
ticates and encrypts all communication from the proxy to the
back ends.

One benefit of mutual authentication and encryption between
the front end and back end is that the back end can trust any
additional metadata inserted by the AP (usually in the form of
extra HTTP headers). While adding metadata and using a cus-
tom protocol between the reverse proxy and the back ends isn’t
a novel approach (for example, see Apache JServe Protocol [4]),
the mutual authentication scheme between the AP ensures that
the metadata is not spoofable.

As an added benefit, we can also incrementally deploy new
features at the AP, which means that consenting back ends can
opt in by simply parsing the corresponding headers. We use this
functionality to propagate the device trust level to the back ends,
which can then adjust the level of detail served in the response.

30  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITY
BeyondCorp Part III: The Access Proxy

the acl language

Implementing a domain-specific language for ACLs was key in
tackling challenges of centralized authorization. The language
both allows us to compile ACLs statically (which aids perfor-
mance and testability) and helps reduce the logical gap between
the policy and its implementation. This strategy promotes sepa-
ration of duties among the following parties:

◆◆ The team that owns the security policy: Responsible for the
abstract and statically compiled specification of access decisions

◆◆ The team that owns the inventory pipeline: Responsible for
the concrete instantiation of a decision about granting access
to a resource based on the specific device and user requesting
access (see [2] for more details about the inventory pipeline)

◆◆ The team that owns the Access Control Engine: Respon-
sible for evaluating and executing the security policy

The ACL language works using first-match semantics, which
is similar to traditional firewall rules. While this model creates
well-studied corner cases (for example, rules which shadow each
other), we’ve found that the security team can reason about this
model relatively easily. The structure of the ACLs we currently
enforce consists of two macro-sections:

◆◆ Global rules: Usually coarse-grained and affect all services
and resources. For example, “Devices at a low tier are not al-
lowed to submit source code.”

◆◆ Service-specific rules: Specific to each service or hostname;
usually involve assertions about the user. For example, “Ven-
dors in group G are allowed access to Web application A.”

The above assumes that service owners can identify the sections
of their URL space that need policies. Service owners should
almost always be able to identify these sections, except for some
cases in which the differentiation occurs in the request body
(although the AP could be modified to handle this scenario). The
portion of the ACL dealing with service-specific rules inevitably
grows in size as the Access Proxy accounts for more and more
services with a business need for a specialized ACL.

The set of global rules is very handy during security escala-
tions (e.g., employee exit) and incident response (e.g., browser
exploits or stolen devices). For example, these rules helped us
successfully mitigate a zero-day vulnerability in third-party
plugins shipped with our Chrome browser. We created a new
high-priority rule that redirected out-of-date Chrome versions
to a page with update instructions, which was deployed and
enforced across the entire company within 30 minutes. As a
result, the observed population of vulnerable browsers dropped
very quickly.

Centralized Logging
In order to conduct proper incident response and forensic
analysis, it’s essential that all requests are logged to persistent
storage. The AP provides an ideal logging point. We log a subset
of the request headers, the HTTP response code, and metadata
relevant to debugging or reconstructing the access decision and
the ACL evaluation process. This metadata includes the device
identifier and the user identity associated with the request.

Features of the Access Proxy: Operational Scalability

Self-Service Provisioning
Once the Access Proxy infrastructure is in place, developers and
owners of enterprise applications have an incentive to configure
their services to be accessible via the proxy.

When Google began gradually limiting users’ network-level
access into corporate resources, most internal application
owners looked to the Access Proxy as the fastest solution to
keep their service available as the migration proceeded. It was
immediately clear that a single team couldn’t scale to handle
all changes to the AP’s configuration, so we structured the AP’s
configuration to facilitate self-service additions. Users retain
ownership of their fragment of the configuration, while the team
that owns the AP owns the build system that collates, tests,
canaries, and rolls out configurations.

This setup has a few main benefits:

◆◆ Frees the AP owners from continuously modifying the configu-
ration per user requests

◆◆ Encourages service owners to own their configuration frag-
ment (and write tests for it)

◆◆ Ensures a reasonable compromise between development
 velocity and system stability

The time it takes to set up a service behind the AP has effectively
been reduced to minutes, while users are also able to iterate on
their configuration fragments without requesting support from
the team that owns the AP.

Challenges with Multi-Platform Authentication
Now that we’ve described the server side of BeyondCorp’s front
end—its implementation and the resulting challenges and com-
plications—we’ll take a similar view into the client side of this
model.

At minimum, performing proper device identification requires
two components:

◆◆ Some form of device identifier

◆◆ An inventory database tracking the latest known state of any
given device

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 31

SECURITY
BeyondCorp Part III: The Access Proxy

One goal of BeyondCorp is to replace trust in the network with
an appropriate level of trust in the device. Each device must have
a consistent, non-clonable identifier, while information about the
software, users, and location of the device must be integrated in
the inventory database. As discussed in the previous BeyondCorp
papers, building and maintaining a device inventory can be quite
challenging. The following subsections describe the challenges
and solutions related to device identification in more detail.

Desktops and Laptops
Desktops and laptops use an X.509 machine certificate and a
corresponding private key stored in the system certificate store.
Key storage, a standard feature of modern operating systems,
ensures that command-line tools (and daemons) that com-
municate with servers via the AP can be consistently matched
against the correct device identifier. Since TLS requires the
client to present a cryptographic proof of private key possession,
this implementation makes the identifier non-spoofable and
non-clonable, assuming it’s stored in secure hardware such as a
Trusted Platform Module (TPM).

This implementation has one main drawback: certificate
prompts tend to frustrate users. Thankfully, most browsers
support automatic certificate submission via policy or exten-
sion. Users might also be frustrated if the server rejects the TLS
handshake when the client presents an invalid certificate. A
failed TLS handshake results in a browser-specific error mes-
sage that can’t be customized. To mitigate this user experience
issue, the AP accepts TLS sessions that don’t have valid client
certificates, and presents an HTML deny page when required.

Mobile Devices
The policies to suppress certificate prompts discussed above
don’t exist on major mobile platforms. Instead of relying on cer-
tificates, we use a strong device identifier natively provided by
the mobile operating systems. For iOS devices, we use the identi-
fier ForVendor, while Android devices use the device ID reported
by the Enterprise Mobility Management application.

Special Cases and Exceptions
While we’ve been able to transition the vast majority of Web
applications to the Access Proxy over the past few years, some
special use cases either don’t naturally fit the model or need
some sort of special handling.

Non-HTTP Protocols
A number of enterprise applications at Google employ non-
HTTP protocols that require end-to-end encryption. In order to
serve these protocols through the AP, we wrap them in HTTP
requests.

Wrapping SSH traffic in HTTP over TLS is easy thanks to the
existing ProxyCommand facility. We developed a local proxy
which looks a lot like Corkscrew, except the bytes are wrapped
into WebSockets. While both WebSockets and HTTP CON-
NECT requests allow the AP to apply the ACLs, we opted to
use WebSockets over CONNECT because WebSockets natively
inherit user and device credentials from the browser.

In the cases of gRPC and TLS traffic, we wrapped the bytes
in an HTTP CONNECT request. Wrapping has the obvious
downside of imposing a (negligible) performance penalty on the
transported protocol. However, it has the important advantage of
separating device identification and user identification at differ-
ent layers of the protocol stack. Inventory-based access control
is a relatively new concept, so we frequently find that existing
protocols have native support for user authentication (e.g., both
LOAS and SSH provide this), but extending them with device
credentials is non-trivial.

Because we perform device identification on the TLS layer in the
wrapping CONNECT request, we don’t need to rewrite applica-
tions to make them aware of the device certificate. Consider the
SSH use case: the client and server can use SSH certificates to
perform user authentication, but SSH doesn’t natively support
device authentication. Furthermore, it would be impossible to
modify the SSH certificate to also convey device identification,
because SSH client certificates are portable by design: they
are expected to be used on multiple devices. Similar to how we
handle HTTP, the CONNECT wrapping ensures we properly
separate user and device authentication. While we use the TLS
client certificate to authenticate the device, we might use the
username and password to authenticate the user.

Remote Desktop
Chrome Remote Desktop, which is publicly available in the
Chrome code base [5], is the predominant remote desktop solu-
tion at Google. While wrapping protocols in HTTP works in
many cases, some protocols, like those powering remote desktop,
are especially sensitive to the additional latency imposed by
being routed through the AP.

In order to ensure that requests are properly authorized, Chrome
Remote Desktop introduces an HTTP-based authorization
server into the connection establishment flow. The server acts
as an authorizing third party between the Chromoting client and
the Chromoting host, while also helping the two entities share a
secret, operating similarly to Kerberos.

We implemented the authorization server as a simple back end
of the AP with a custom ACL. This solution has proven to work
very well: the extra latency of going through the AP is only paid
once per remote desktop session, and the Access Proxy can apply
the ACLs on each session creation request.

32  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITY
BeyondCorp Part III: The Access Proxy

Third-Party Software
Third-party software has frequently proved troublesome, as
sometimes it can’t present TLS certificates, and sometimes it
assumes direct connectivity. In order to support these tools, we
developed a solution to automatically establish encrypted point-
to-point tunnels (using a TUN device). The software is unaware
of the tunnel, and behaves as if it’s directly connected to the
server. The tunnel setup mechanism is conceptually similar to
the solution for remote desktop:

◆◆ The client runs a helper to set up the tunnel.

◆◆ The server also runs a helper that acts as a back end of the AP.

◆◆ The AP enforces access control policies and facilitates the
exchange of session information and encryption keys between
the client and server helpers.

Lessons Learned
ACLs Are Complicated
We recommend the following best practices to mitigate the dif-
ficulties associated with ACLs:

◆◆ Ensure the language is generic. The AP’s ACL has changed
numerous times, and we’ve had to add new feeds (e.g., user and
group sources). Expect that you’ll need to regularly change the
available features, and ensure that the language itself won’t
hamper these changes.

◆◆ Launch ACLs as early as possible. The reasons for doing so
are twofold:

◆○ Ensures that users become trained on the ACLs and poten-
tial reasons for denial sooner rather than later.

◆○ Ensures that developers begin to adjust their code to
meet the requirements of the AP. For example, we had to
implement a cURL replacement to handle user and device
authentication.

◆◆ Make modifications self-service. As previously mentioned, a
single team that manages service-specific configuration doesn’t
scale to support multiple teams.

◆◆ Create a mechanism to pass data from the AP to the back
ends. As mentioned above, the AP can securely pass additional
data to the back end to allow it to perform fine-grained access
controls. Plan for this required functionality early.

Emergencies Happen
Have well-tested plans in place to handle inevitable emergen-
cies. Be sure to consider two major categories of emergencies:

◆◆ Production emergencies: Caused by outages or malfunctions
of critical components in the request serving path

◆◆ Security emergencies: Caused by urgent needs to grant/
revoke access to specific users and/or resources

Production Emergencies
In order to ensure the AP survives most outages, design and
operate it according to SRE best practices [3]. To survive poten-
tial data source outages, all of our data is periodically snapshot-
ted and available locally. We also designed AP repair paths that
don’t depend on the AP.

Security Emergencies
Security emergencies are more subtle than production emer-
gencies, as they’re easy to overlook when designing the access
infrastructure. Be sure to factor ACL push frequency and TLS
issues into user/device/session revocation.

User revocation is relatively straightforward: revoked users are
automatically added to a special group as part of the revocation
process, and one of the early global rules (see “The ACL lan-
guage,” above) in the ACL guarantees that these users are denied
access to any resource. Similarly, session tokens (e.g., OAuth and
OpenID Connect tokens) and certificates are sometimes leaked
or lost and therefore need to be revoked.

As discussed in the first BeyondCorp article [1], device identi-
fiers are untrusted until the device inventory pipeline reports
otherwise. This means that even losing the certificate authority
(CA) key (which implies inability to revoke certificates) doesn’t
imply losing control, because new certificates aren’t trusted
until they are properly catalogued in the inventory pipeline.

Given this ability, we decided to ignore certificate revocation
altogether: instead of publishing a certificate revocation list
(CRL), we treat certificates as immutable and simply down-
grade the inventory trust tier if we suspect the corresponding
private key is lost or leaked. Essentially, the inventory acts as a
whitelist of the accepted device identifiers, and there is no live
dependency on the CRL. The major downside of this approach
is that it might introduce additional delay. However, this delay
is relatively easy to solve by engineering fast-track propagation
between the inventory and the Access Proxy.

You need a standard, rapid-push process for ACLs in order to
ensure timely policy enforcement. Beyond a certain scale, you
must delegate at least part of the ACL definition process to
service owners, which leads to inevitable mistakes. While unit
tests and smoke tests can usually catch obvious mistakes, logic
errors will trickle through safeguards and make their way to
production. It’s important that engineers can quickly roll back
ACL changes to restore lost access or to lock down unintended
broad access. To cite our earlier zero-day vulnerability plugin
example, our ability to push ACLs rapidly was key to our incident
response team, as we could quickly create a custom ACL to force
users to update.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 33

SECURITY
BeyondCorp Part III: The Access Proxy

Engineers Need Support
Transitioning to the BeyondCorp world does not happen over-
night and requires coordination and interaction among multiple
teams. At large enterprise scale, it’s impossible to delegate the
entire transition to a single team. The migration will likely
involve some backwards-incompatible changes that need suf-
ficient management support.

The success of the transition largely depends on how easy it is
for teams to successfully set up their service behind the Access
Proxy. Making the lives of developers easier should be a primary
goal, so keep the number of surprises to a minimum. Provide
sane defaults, create walkthrough guides for the most common
use cases, and invest in documentation. Provide sandboxes for
the more advanced and complicated changes—for example, you
can set up separate instances of the Access Proxy that the load
balancer intentionally ignores but that developers can reach (e.g.,
temporarily overriding their DNS configuration). Sandboxes
have proven extremely useful in numerous cases, like when we
needed to make sure that clients would be able to handle TLS
connections after major changes to the X.509 certificates or to
the underlying TLS library.

Looking Forward
While our front-end implementation of BeyondCorp has been
largely quite successful, we still have a few pain points. Perhaps
most obvious, desktops and laptops use certificates to authenti-
cate, while mobile devices use a different device identifier. Cer-
tificate rotations are still painful, as presenting a new certificate
requires a browser restart to ensure that existing sockets are
closed.

To address both of these issues, we’re planning to migrate
desktops and laptops to the mobile model, which will remove the
need for certificates. To carry out the migration, we plan to build
a desktop device manager, which will look quite similar to the
mobile device manager. It will provide a common identifier in the
form of a Device-User-Session-ID (DUSI) that’s shared across
all browsers and tools using a common OAuth token-granting
daemon. Once the migration is complete, we’ll no longer need to
authenticate desktops and laptops via a certificate, and all con-
trols can migrate to use the DUSI consistently across all OSes.

Conclusion
Google’s implementation of the Access Proxy as a core compo-
nent of BeyondCorp is specific to our infrastructure and use
cases. The design we ultimately implemented is well aligned
with common SRE best practices and has proven to be very
stable and scalable—the AP has grown by a number of orders of
magnitude over the course of its deployment.

Any organization seeking to implement a similar security model
can apply the same fundamental principles of creating and
deploying a solution similar to the AP. We hope that by sharing
our solutions to challenges like multi-platform authentication
and special cases and exceptions, and the lessons we learned
during this project, our experience can help other organizations
to undertake similar solutions with minimal pain.

References
[1] R. Ward and B. Beyer, “BeyondCorp: A New Approach to
Enterprise Security,” ;login:, vol. 39, no. 6 (December 2014):
https://www.usenix.org/system/files/login/articles/login
_dec14_02_ward.pdf.

[2] B. Osborn, J. McWilliams, B. Beyer, and M. Saltonstall,
“BeyondCorp: Design to Deployment at Google,” ;login:, vol. 41,
no. 1 (Spring 2016): https://www.usenix.org/system/files
/login/articles/login_spring16_06_osborn.pdf.

[3] B. Beyer, C. Jones, J. Petoff, and N. Murphy, eds., Site Reli-
ability Engineering (O’Reilly Media, 2016).

[4] Apache JServer Protocol: https://tomcat.apache.org
/connectors-doc/ajp/ajpv13ext.html.

[5] https://src.chromium.org/viewvc/chrome/trunk/src
/remoting/.

34  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITY

Excavating Web Trackers Using Web
Archaeology
A D A M L E R N E R , A N N A K O R N F E L D S I M P S O N , T A D A Y O S H I K O H N O ,
A N D F R A N Z I S K A R O E S N E R

Third-party Web tracking has recently become a frequent source of
privacy concerns among researchers, policymakers, and the pub-
lic. But how long has tracking been a part of the Web, and how has

it changed over the years? These questions led us to build a tool, Tracking
Excavator, which time travels using the Wayback Machine’s archive of the
Web. We were able to collect data on Web tracking over nearly the whole his-
tory of the Web, back to 1996, showing that archive-based measurements of
the history of the Web are not only possible but are a powerful technique for
examining Web tracking and other trends in the Web over its history.

A common problem we face as security and privacy researchers is our recurring need for
time travel. Since security is hard to retrofit, we want to know what technologies and threats
will be important in the future, so we can start studying and securing things now. This is
particularly true for the Web, which changes very rapidly. Time travel into the future would
be valuable, but at this time, the only technique we have is to wait.

We also sometimes wish to time travel backwards. Researchers like to measure the trends
of how a technology or attack rises to prominence, but by the time one is ubiquitous, rapid
changes in the Web have swept away the evidence, making it too late to measure how it
became so popular. In this article we’ll tell you about a paper we wrote when we found out
how to time travel into the past of the Web, and the measurements we made using this tech-
nique of third-party Web tracking over the past 20 years [1].

Why Web Tracking?
Third parties are domains that appear on multiple different Web sites in order to provide
valuable services, such as analytics, content delivery, social media integrations, and adver-
tising. Many third parties track Web site visitors across the sites they visit, building up a
profile of the Web sites they visit. This third-party Web tracking has become a major feature
of the Web’s economy: tracking underlies targeted advertising, making it a linchpin of Web
sites funded by advertising revenue and enabling many of the services we all use so often.
However, its importance and ubiquity has made some ask what privacy we’re giving up in
return, and news media, scientific researchers, policymakers, and the public as a whole
have taken interest. The earliest measurements of third party, cookie-based tracking we are
aware of came from the FTC in 2000 [2], while academics seem to have first begun to publish
on the topic in 2009 [3].

Diverse people use the Web in many sectors of their lives, personal and professional. Recre-
ation and commerce are common, but the Web also influences and enables sensitive activi-
ties, both intimate and public. On the intimate side, people explore their gender and sexuality,
study religious and spiritual beliefs, and research their physical and mental health. Mean-
while, on the public side, the Web is important to our society, our politics, and our democ-
racy, to the way people consume news, debate politics, and influence policymakers by public
discourse and public comment. Engaging with these topics on the Web can provide great

Adam (Ada) Lerner is a PhD
candidate in the Department
of Computer Science &
Engineering at the University
of Washington. They received

a BA from Amherst College. Their research is
broadly within computer security and privacy,
including the intersection of technical, social,
and legal concerns. lerner@cs.washington.edu

Anna Kornfeld Simpson is a
third-year PhD student at the
University of Washington. She
is an NSF Graduate Fellow
and earned a BSE in computer

science from Princeton University in 2014.
She is broadly interested in security, privacy,
and building secure systems informed by tech
policy. aksimpso@cs.washington.edu

Tadayoshi Kohno is the
Short-Dooley Professor in
the Department of Computer
Science & Engineering at the
University of Washington.

He received his PhD from the University of
California San Diego and his BS from the
University of Colorado. His research focuses
on computer security, broadly defined.
yoshi@cs.washington.edu

Franziska Roesner is an
Assistant Professor in the
Department of Computer
Science & Engineering at the
University of Washington.

She received her PhD from the University of
Washington and her BS from The University of
Texas at Austin. Her research focuses broadly
on topics in computer security and privacy,
with a particular interest in understanding and
improving security and privacy for end users of
existing and emerging technologies.
franzi@cs.washington.edu

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 35

SECURITY
Excavating Web Trackers Using Web Archaeology

benefits to individuals and society, but tracking people while
they do so creates the possibility for privacy violations, chilling
effects, and harm to those among us who may be most vulner-
able. To balance these concerns, we need to understand how
tracking happens so we can make informed choices.

Thinking of these issues, privacy researchers have been study-
ing Web tracking for some time. Unfortunately, these measure-
ments often use different methodologies, making them hard
to compare or aggregate longitudinally. We wanted a longitu-
dinal study of tracking in order to understand its trends and
how it has responded to changes in the Web, such as in the
way browsers are designed and in the technologies commonly
used. To build this longitudinal picture, we needed a way to
go back in time. Fortunately, the Wayback Machine (https://
archive.org/web/) exists. It is a publicly available Web archive,
an extensive collection of Web-page snapshots from the past
20 years, reaching back to 1996. The Wayback Machine serves
the archived pages just like live Web sites; as an example, check
out the ;login: home page from 1997 at https://web.archive.org/
web/19970606050039/http://www.usenix.org/publications/
login/index.html.

The Wayback Machine contains both the contents and format-
ting of Web pages, as well as the JavaScript code and HTTP
headers that were sent along with the page. This means that
we can study not only the content of pages—the words and
images—but also how pages were constructed technically and
how they behaved dynamically, including the ways they may
have used cookies and tracked visitors. Seeing this, we built a
tool, Tracking Excavator, that uses the Wayback Machine to
travel back in time and show us how Web tracking has evolved
since its early days.

How Tracking Works
We measured third-party Web tracking over the past 20 years,
focusing on cookie-based tracking. Cookie-based tracking occurs
when a third party on the Web, such as an advertiser or social
network provider, labels your browser with a unique identifier by
asking your browser to store that identifier in a cookie. The third
party then uses the identifier to recognize you in future, allow-
ing it to build up a list of the places you go on the Web. We refer
to this list of places you go as the browsing profile that a tracker
learns about the people it tracks.

How does cookie-based tracking work technically? The follow-
ing process is depicted in Figure 1. When you go to a Web site by
typing its name (e.g., example.com) or clicking a link, we call that
Web site a first party. First parties are the Web sites you visit
intentionally, and you often have some direct relationship with
them: you may purchase products there or sign up for an account.
However, most first-party sites today also include one or more
third parties. These third parties host some of the Web site’s
parts, such as scripts, images, style information (.css files), social
media integrations, and advertisements. Your browser automati-
cally contacts these third parties as part of its normal process
of loading the first-party Web site. For example, when you visit
example.com, your browser may load an advertisement from
advertisements.com. Third parties can appear on many different
first-party Web sites, so advertisements.com may also pro-
vide advertisements on other domains, like example2.com and
example3.com. By appearing in these separate contexts, a third
party may be able to track you across those sites, building up a
browsing profile that describes where you’ve been on the Web.

When your browser makes requests to a particular third-party
tracker for the first time, the tracker sends your browser a
cookie that contains a unique identifier, to label your browser.
Your browser stores cookies in a file and recalls these cookies,

Figure 1 depicts a hypothetical tracker, tracker.com, which appears as a third party on both theonion.com and cnn.com. A cookie set by tracker.com when you
visit The Onion is later sent to tracker.com when you visit CNN, allowing tracker.com to know which sites you visit.

https://archive.org/web/
https://web.archive.org/web/19970606050039/http://www.usenix.org/publications/login/index.html

36  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITY
Excavating Web Trackers Using Web Archaeology

sending them whenever it makes future requests to that same
third party, allowing the third party to recognize you when it
serves your browser again. Since these requests to Web servers
typically include information about the first-party site you’re
visiting, the third party learns about the sites you visit, and can
associate that browsing profile with the unique identifier in
your cookie. It’s important to remember that they associate the
browsing profile only with a unique identifier—often trackers
don’t know your name or who you are in real life, and are limited
only to a (sometimes quite detailed!) picture of your interests
and activities.

Tracking in All Its Glory
Some trackers are more complex or sophisticated than the sim-
ple description above. That said, when someone mentions “Web
tracking,” you should probably think of what we’ve described
here. Our study shows that “vanilla” tracking—our name for the
simple form described above—has been and still remains the
most common type of cookie-based tracking. We studied more
complicated types of tracking as well. For example, referred
trackers are those trackers that share and exchange identifiers
with one another, expanding their power to follow you to sites
with different third parties. And we call trackers that you also
sometimes visit as a first party, such as social network sites,
social trackers, since your first-party relationship with them
might allow them to link your browsing profile to your real
life identity.

We classified the trackers we studied using a taxonomy we
developed in earlier work [4]. That taxonomy classifies track-
ers by the way they behave and how those behaviors allow them
to track people. The taxonomy we use also separates trackers
according to the amount of extra information they have about
the users they track (e.g., social trackers with whom users may
have an account, such as facebook.com or google.com) and
according to whether they share information with other trackers
(referred trackers).

How to Time Travel (for Science!)
In this work, we developed archive-based, time-travel-capable
measurement tools and used them to study the prevalence of
Web tracking over the past 20 years. Our tool—Tracking Excava-
tor—automatically browses the Wayback Machine’s archive of
the Web, collecting data about how the Web and its trackers used
to behave. We analyzed this time-travel data to draw a picture
of the history of tracking. In the future, our tool and our analysis
techniques will allow us and other researchers to ask many other
questions about topics, from security and privacy to software
engineering and performance across the whole history of the
Web. For example, recent work in 2014 and 2016 has provided
two datapoints showing a downward trend of browser finger-

printing—how does that trend look over the entire lifespan of
browser fingerprinting [5, 6]?

Getting here wasn’t easy. We analyzed and quantified the limita-
tions of the Wayback Machine and developed techniques for
performing retrospective measurements in the presence of these
limitations so that our measurements accurately reflected the
Web of the past. The Wayback Machine is extensive, contain-
ing over 10 petabytes of Web site snapshots, but the world isn’t
perfect, and archives are no exception. The Wayback Machine
is sometimes incomplete (as in Figure 2), with missing Web site
data and cookies. Other times, the Wayback Machine makes
mistakes that cause Web site snapshots to be inconsistent.
Rather than reflecting the way a page looked at a single point in
the past, it sometimes mashes up anachronistic resources from
different points in time.

Other studies have relied on the Wayback Machine (for example,
to predict whether Web sites will become malicious [7] and to
study JavaScript inclusion [8]) and noted similar limitations.
One of our goals was to systematically evaluate and develop
mitigations for these limitations to enable future studies.

Given that our archival data is sometimes incomplete and
 sometimes anachronistic, we put a lot of work into ensuring that
our results accurately reflected tracking that really happened in
the past.

We crawled many archival Web pages to learn how and when
these types of errors occur to ensure that our results accu-
rately reflected the way tracking happened in the past. First,
we measured the ways the Wayback Machine can have missing
or anachronistic data, quantified them, and reasoned through
the effects those errors would have on our analysis. Then we
incorporated that understanding into Tracking Excavator and
into our data analysis to winnow our observations to only what
really existed. Finally, we think about the limitations of our data
whenever we share or interpret our results. For example, since
we must ignore many anachronistic requests, our measurements

Figure 2 shows an example of missing resources in the archive. Here im-
ages are missing from a 2003 snapshot of the University of Washington’s
CSE homepage (https://web.archive.org/web/20031001160742/http://
www.cs.washington.edu/).

https://web.archive.org/web/20031001160742/http://www.cs.washington.edu/

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 37

SECURITY
Excavating Web Trackers Using Web Archaeology

generally underestimate the amount of tracking that really
happened.

We knew that our results undercounted the number and power
of trackers, but by how much? Fortunately, we have been study-
ing Web tracking for a few years, and we have data from the past
five years. We used the same methods and taxonomy on live Web
pages to measure Web tracking in 2011, 2013, 2015, and 2016. By
comparing these past, ground-truth measurements to our archi-
val results for the same periods, we were able to understand how
our archival trends reflected real ones. The relationship between
archival trackers and real trackers turns out to be quite consis-
tent—see our paper for details of this validation.

Digging through the limitations of the Wayback Machine didn’t
just allow us to understand Web tracking. We hope that under-
standing and mitigating these limitations will allow other
researchers to use these techniques in the future. We think that
archive-based retrospective measurements are a powerful tool,
and we hope our work will aid and inspire others to try measur-
ing all sorts of aspects of security and privacy and other techni-
cal topics on the Web.

Our Results
Many people would believe intuitively that “Web tracking has
increased over time” based on their experience of browsing the
Web and reading the news. We shared this intuition too, but
we found it valuable and informative to confirm this intuition
scientifically. Quantifying this increase is a contribution to
our understanding and debate over tracking. Using Tracking
Excavator, we unveiled trends in the number of trackers, the
extent of their coverage, and the prevalence and evolution of
different tracking techniques. We discovered that the number of
tracker domains present on the 500 most popular sites of each
year has been increasing, that these domains are demonstrating

 increasingly complex tracking behaviors, and that the most
prevalent domains are achieving greater coverage of popular
Web sites and so can build a greater profile of users’ browsing
activity. We used a separate set of 500 popular sites for each year
we studied, and those input datasets and our analysis code are
available at our Web site, trackingexcavator.cs.washington.edu.

Thinking back to our challenges, we recall that the numbers
which follow are generally undercounts, due to missing and
inconsistent data in the archive. Additionally, we point out that
our method measures only client-side, cookie-based behaviors
that would enable tracking, but we cannot tell whether domains
actually track users based on their cookies. We also don’t look for
alternative methods tracking, such as browser fingerprinting [9].

Quantifying Overall Tracking Behavior
The gray bars in Figure 3 show the overall number of tracker
domains we saw for each year, while the different lines break
those trackers down into the types of our taxonomy. Recall that
these numbers were measured on the 500 Web sites that were
most popular in that year. A single tracking domain can display
multiple behaviors. The steadily increasing trend demonstrates
that new players have continued to enter the game of tracking,
developing profiles of users’ browsing. Additionally, tracking
domains are starting to use more complex techniques, such as
sharing their data with additional third parties (as “referred” or
“referred analytics” trackers) that allow further collection and
dissemination of users’ browsing histories. Refer to our paper [1]
for more details about these types of trackers.

Figure 3 also shows an increase in personal trackers. These are
tracking domains that users browse in their own right, as first
parties, and that may have collected additional profiling infor-
mation about a user. Some of the most popular sites on the Web,
such as Facebook and Twitter, are included in this category.
Personal trackers often appear today as social media buttons,
such as the Facebook “Like” button or the Twitter “Tweet” but-
ton. Social trackers are particularly powerful because in addition
to the browsing profile they build of you, they may also know a
great deal about you through the profile, posts, and friendships you
maintain on their social media site. By connecting their pseudon-
ymous profile of browsing history to a social media profile, poten-
tially across multiple machines, social trackers may be able to
build deeper, longer lived, and more personal profiles of people.

The increase in the number of tracking domains corresponds
with a general increase in the inclusion of third-party content
over time. Figure 4 shows the distribution of the number of third
parties on Web sites. Each line represents the data from one
year, and the farther out from the axes the line lies, the larger the
fraction of sites (y-axis) that had a larger number of third parties
(x-axis). Although this distribution includes third parties such
as content delivery networks (CDNs) that do not necessarily

Figure 3: Number of tracking domains (gray bars) present on the 500
most popular sites of each year. The various line-styles represent differ-
ent cookie-based tracking behaviors in our taxonomy; a single tracking
domain may have multiple behaviors.

trackingexcavator.cs.washington.edu

38  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITY
Excavating Web Trackers Using Web Archaeology

include any tracking behavior, it does capture sites whose cook-
ies were not properly archived by the Wayback Machine that are
missing from Figure 3. Of the 500 most popular sites in 1996,
less than 5% of them included content from one or more third
parties. By 2006, more than 50% included content from at least
one third party, but few included content from more than five
third parties. In archival data from 2016, 90% of the most popu-
lar sites include content from at least one third party, 50% of
sites include content from at least four third parties, and 15% of
sites include content from 10 or more third-party domains! Much
as we found it valuable to confirm and quantify our intuitions
about tracking, we also find it useful to quantify the increasing
complexity of Web sites and the number of third parties that
have the opportunity to observe people’s browsing.

Quantifying the Most Powerful Trackers
While the number of trackers has grown over time, the above
results don’t tell us how large of a browsing profile each of those
trackers can build. A third-party tracker can only track people
who visit the sites where it appears, so we may be less concerned
about the privacy implications of a large number of trackers, each
of which appear on a small number of sites, and more concerned
with a single tracker that appears on many sites. Therefore, we
also examined the most prevalent trackers: the ones that show
up on the greatest number of sites in the top 500. Figure 5 shows
the most and second-most prevalent third parties each year. In
the first decade of tracking that we measure, no tracker could
directly track a person across more than 10% of the most popular
sites. However, their reach increases in the second decade of our
measurements: individual companies now have the ability to
build significantly larger profiles of our browsing history.

One domain stands out in Figure 5: google-analytics.com (rep-
resented by the line at the top with stars through it) appears on

nearly 200 of the top 500 most popular sites in 2011, and
approximately a third of the sites in the years following.

We note that Google Analytics is designed as an on-site
analytics script rather than a cross-site tracker, which
means that its primary purpose is to provide analytics
for a single domain rather than build cross-site browsing
profiles. However, we observe that its high prevalence on
popular sites gives it a large amount of power: its choices—
and its transparency about its tracking policies and data
sharing—can have a large effect on user privacy.

Changing Tracking Behavior
One encouraging anecdote comes from the mid-2000s. The
archives of the early 2000s featured a number of pop-up
advertisements, which we captured since our browser running
Tracking Excavator allowed pop-ups. Pop-ups have a place in
the Web tracking discussion because the browser treats the
popped-up site as a first party (a site the user chose to go to)
rather than a third party for the purposes of setting cookies.
Therefore, tracking defenses that block third-party cookies are
not effective against third-party pop-ups. From 2000–2004, we
saw a significant increase in third-party pop-ups, but in 2005
the number of third-party pop-ups dropped dramatically. Some
digging revealed that this change coincided with the decision by
the developers of the Internet Explorer browser in 2004 (soon
followed by other browsers) to block pop-ups by default. While
it is likely that the browser manufacturers made this decision
to improve user experience on the Web rather than for reasons
related to tracking, it nevertheless also had positive effects for
defending against tracking, because sites could not so easily
evade third-party cookie blocking. As a result, the trackers were
forced to implement other, more complex, techniques that we see
later in the 2000s and 2010s.

Conclusion
In this study, we showed that it’s possible to gather longitudinal
data from the Wayback Machine in order to measure third-party
Web tracking over nearly the whole history of the Web. In order
to do so, we quantified and evaluated the challenges of using
archival data in measurements, and developed techniques for
mitigating those challenges, incorporating those techniques into
our tool for retrospective measurements, Tracking Excavator.
These techniques and this tool are not specific to Web tracking,
and we hope that we’ve made a new type of measurement possible
for others, enabling and inspiring them to go out and measure all
kinds of properties of the Web retrospectively. If we’re lucky, our
minor form of Web-based time travel can support us in gathering
the data we need as technologists, policymakers, and the public to
make decisions about the way we can best make our technologies
work for us while preserving our security and privacy.

Figure 4: Distribution of included third parties for the top 500 most popu-
lar sites of each year. In 1996, less than 5% of sites included content from
one or more third parties, while in 2016, 90% of sites included content
from at least one third party, and 50% of sites included content from at
least four third parties.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 39

SECURITY
Excavating Web Trackers Using Web Archaeology

References
[1] A. Lerner, A. Kornfeld Simpson, T. Kohno, and F. Roesner,
“Internet Jones and the Raiders of the Lost Trackers: An
Archaeological Study of Web Tracking from 1996 to 2016,” in
Proceedings of the 25th USENIX Security Symposium (USENIX
Security ’16): https://trackingexcavator.cs.washington.edu
/InternetJonesAndTheRaidersOfTheLostTrackers.pdf.

[2] Federal Trade Commission, “Privacy Online: Fair Informa-
tion Practices in the Electronic Marketplace: A Report to Con-
gress,” May 2000: http://www.ftc.gov/reports/privacy2000
/privacy2000.pdf.

[3] B. Krishnamurthy and C. Wills, “Privacy Diffusion on the
Web: A Longitudinal Perspective,” in Proceedings of the 18th
International Conference on World Wide Web (WWW ’09):
http://web.cs.wpi.edu/~cew/papers/www09.pdf.

[4] F. Roesner, T. Kohno, and D. Wetheral, “Detecting and Defend-
ing Against Third-Party Tracking on the Web,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI ’12): http://www.franziroesner.com
/pdf/webtracking-NSDI2012.pdf.

[5] S. Englehardt and A. Narayanan, “Online Tracking:
A 1-Million-Site Measurement and Analysis,” in Proceedings of
the 23rd ACM Conference on Computer and Communications
Security (ACM CCS 2016): http://randomwalker.info/publications
/OpenWPM_1_million_site_tracking_measurement.pdf.

[6] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan,
and C. Diaz, “The Web Never Forgets: Persistent Tracking
Mechanisms in the Wild,” in Proceedings of the 21st ACM Con-
ference on Computer and Communications Security (ACM CCS
2014): https://securehomes.esat.kuleuven.be/~gacar/persistent
/the_web_never_forgets.pdf.

[7] K. Soska and N. Christin, “Automatically Detecting Vulnerable
Websites Before They Turn Malicious,” in Proceedings of the 23rd
USENIX Security Symposium (USENIX Security ’14): https://
www.usenix.org/system/files/conference/usenixsecurity14
/sec14-paper-soska.pdf.

[8] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker,
W. Joosen, C. Kruegel, F. Piessens, and G. Vigna. “You Are What
You Include: Large-Scale Evaluation of Remote JavaScript
Inclusions,” in Proceedings of the 19th ACM Conference on Com-
puter and Communications Security (ACM CCS 2012): https://
seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf.

[9] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Pies-
sens, and G. Vigna, “Cookieless Monster: Exploring the Ecosys-
tem of Web-Based Device Fingerprinting,” in Proceedings of the
IEEE Symposium on Security and Privacy (2013): https://seclab
.cs.ucsb.edu/media/uploads/papers/sp2013_cookieless.pdf.

Figure 5: The third parties with the greatest or second-greatest presence on the top 500 most popular sites of each year. We refer to the number of sites a
tracker appears on as its “coverage.” Before 2007, we measured no domain on more than 10% of popular sites; now, several third parties appear on nearly
20% of sites.

https://trackingexcavator.cs.washington.edu/InternetJonesAndTheRaidersOfTheLostTrackers.pdf
http://www.ftc.gov/reports/privacy2000/privacy2000.pdf
http://www.franziroesner.com/pdf/webtracking-NSDI2012.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
https://securehomes.esat.kuleuven.be/~gacar/persistent/the_web_never_forgets.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-soska.pdf
https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf
https://seclab.cs.ucsb.edu/media/uploads/papers/sp2013_cookieless.pdf

FAST ’17 brings together storage-system researchers and practitioners to explore new directions in the

design, implementation, evaluation, and deployment of storage systems. The conference will consist

of technical presentations, including refereed papers, Work-in-Progress (WiP) reports, poster sessions,

and tutorials.

The full program and registration will be available in December 2016.

www.usenix.org/fast17

SAVE THE DATE!

February 27–March 2, 2017 • Santa Clara, CA

15th USENIX Conference on
File and Storage Technologies
Sponsored by USENIX in cooperation with ACM SIGOPS17

NSDI ’17 focuses on the design principles, implementation, and practical evaluation of networked and

distributed systems. Our goal is to bring together researchers from across the networking and systems

community to foster a broad approach to addressing overlapping research challenges.

The full program and registration will be available in January 2017.

www.usenix.org/nsdi17

SAVE THE DATE!

March 27–29, 2017 • Boston, MA

14th USENIX Symposium on Networked Systems
Design and Implementation

Sponsored by USENIX in cooperation with ACM SIGCOMM and ACM SIGOPS17

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 41

SECURITY

The Adblocking Tug-of-War
H A M E D H A D D A D I , R I S H A B N I T H Y A N A N D , S H E H A R B A N O K H A T T A K ,
M O B I N J A V E D , N A R S E O V A L L I N A - R O D R I G U E Z , M A R J A N F A L A H R A S T E G A R ,
J U L I A E . P O W L E S , E M I L I A N O D E C R I S T O F A R O , A N D S T E V E N J . M U R D O C H

Online advertising subsidizes a majority of the “free” services on the
Web. Yet many find this approach intrusive and annoying, resort-
ing to adblockers to get rid of ads chasing them all over the Web. A

majority of those using an adblocker tool are familiar with messages ask-
ing them to either disable their adblocker or to consider supporting the host
Web site via a donation or subscription. This is a recent development in the
ongoing adblocking arms race which we have explored in our recent report,
“Adblocking and Counter Blocking: A Slice of the Arms Race” [1]. For our
study, we used popular adblockers, trawled the Web and analyzed some
of the most popular sites to uncover how many are using anti-adblockers.
Our preliminary analysis found that anti-adblockers come from a small
number of providers, are widely used, and that adblockers also often block
anti-adblockers.

The Perils of Targeted Advertising
The Internet economy today is largely driven by targeted advertising. Most “free” apps and
Web services are bundled with third-party Web tracking [2] scripts and at times malicious
code running at the user end, collecting and transmitting browsing history and personal
data. Consumers often have no negotiating power in this ecosystem, despite clear evi-
dence that such aggressive tracking and advertising often jeopardizes individuals’ privacy,
security, energy, and bandwidth [3]. This is particularly the case in the mobile advertising
domain, where earnings are usually paid on ad impressions by the thousand, so ad brokers
aim to maximize the number of ads and the frequency with which they get clicked on.

Adblockers vs. Anti-Adblockers—The Arms Race
Adblockers represent one of the ways in which consumers have retaliated against the tar-
geted advertising industry. The main task of an adblocking software is to remove ads from
users’ Web pages, but some may even curb online tracking (also referred to as anti-trackers).
The reasons for the rising popularity of adblockers include improved browsing experience,
better privacy, and protection against malvertising. As a result, online advertising revenue
is gravely threatened by adblockers, prompting publishers to actively detect adblock users,
and subsequently block them or otherwise coerce the user to disable the adblocker—practices
referred to as anti-adblocking (see Figure 1).

Example of Anti-Adblocking
An anti-adblocker detects adblockers by one of the following two approaches:

1. The anti-adblocker injects a bait advertisement container element (e.g., DIV), and then
compares the values of properties representing dimensions (height and width) and/or visual
status (display) of the container element with the expected values when properly loaded.

Hamed Haddadi is a Senior
Lecturer in Digital Media at the
School of Electronic Engineering
and Computer Science, Queen
Mary University of London.

hamed.haddadi@qmul.ac.uk

Rishab Nithyanand is a
PhD student at Stony Brook
University. He is currently
an OTF Senior Emerging
Technology Fellow and a visitor

at the International Computer Science Institute
at Berkeley. rnithyanand@cs.stonybrook.edu

Sheharbano Khattak is a PhD
student and Research Assistant
in the Security and Networks
and Operating Systems Groups
at Computer Laboratory,

University of Cambridge.
Sheharbano.Khattak@cl.cam.ac.uk

Mobin Javed is a final year PhD
student in computer science
at UC Berkeley. Her research
interests are in the areas of
network security, privacy, and

Internet measurement. mobin@cs.berkeley.edu

Narseo Vallina-Rodriguez
is an Assistant Professor at
IMDEA Networks, Madrid, and
a Principal Investigator at the
International Computer Science

Institute in Berkeley, CA.
narseo@icsi.berkeley.edu

42  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITY
The Adblocking Tug-of-War

Marjan Falahrastegar is a PhD
student at Computer Networks
Group of Queen Mary
University of London.
marjan.falahrastegar@qmul.ac.uk

Julia Powles is a Postdoctoral
Researcher in the Faculty of
Law and Computer Laboratory
at the University of Cambridge.
jep50@cam.ac.uk

Emiliano De Cristofaro is
a Senior Lecturer in the
Information Security Group
at University College London.
e.decristofaro@ucl.ac.uk

 Steven Murdoch is a Royal
Society University Research
Fellow in the Computer Science
Department of University
College London.
s.murdoch@ucl.ac.uk

2. The anti-adblocker loads a bait script that modifies the value of a variable, and then checks
the value of this variable in the main anti-adblocking script to verify that the bait script was
properly loaded. If the bait object is determined to be absent, the anti-adblocking script
concludes that an adblocker is present.

To track whether the user has turned off the adblocker after being prompted to do so, the
anti-adblocker periodically runs the adblock check and stores the last recorded status in the
user’s browser using a cookie or local storage.

While incidents of anti-adblocking, and the legality of such practices, have received increas-
ing attention, our current understanding is limited to online forums and user-generated
reports. As a result, we lack quantifiable insights into the scale, mechanism, and dynamics
of anti-adblocking. We have started to address these issues in our current research study,
presented recently at USENIX FOCI ’16 [1]. We did so by leveraging a novel approach for
identifying third-party services shared across multiple Web sites to present a first charac-
terization of anti-adblocking across the Alexa Top-5000 Web sites. Using a Web crawler to
capture screenshots, HTML source code, and responses to all requests generated, we uncov-
ered how anti-adblocking operates and mapped Web sites that perform anti-adblocking as
well as the entities that provide anti-adblocking scripts.

Research Findings
Overall, we found that at least around 7% of Alexa Top-5000 Web sites employ anti-
adblocking, with the practices finding adoption across a diverse mix of publishers, particu-
larly publishers in the categories “general news,” “blogs/wiki,” and “entertainment.” It turns
out that these Web sites owe their anti-adblocking capabilities to 14 unique scripts pulled
from 12 different domains. Surprisingly, anti-adblockers operate on a simple premise: if
a bait object (i.e., an object that is expected to be blocked by adblockers—e.g., a JavaScript
or DIV element named ads) on the publisher’s Web site is missing when the page loads, the
script concludes that the user has an adblocker installed. Figure 2 shows a summary of the
types of Web sites deploying an anti-adblocking strategy.

Unsurprisingly, the most popular domains are those that have skin in the game—Google,
Taboola, Outbrain, Ensighten, and Pagefair—the latter being a company that specializes
in anti-adblocking services. Then there are in-house anti-adblocking solutions that are
distributed by a domain to client Web sites belonging to the same organization: TripAdvi-
sor distributes an anti-adblocking script to its eight Web sites with different country code
top-level domains, while adult Web sites (all hosted by MindGeek) turn to DoublePimp. As a
further element of the research, we visited a sample Web site for each anti-adblocking script

Figure 1: An example of an anti-adblocking message. You very likely have seen pages like this from popular
new sites. These are served to users when an anti-adblocking script has determined that the user has an
adblocker installed.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 43

SECURITY
The Adblocking Tug-of-War

via AdBlock Plus, Ghostery, and Privacy Badger, and discovered
that half of the 12 anti-adblocking suppliers are counter-blocked
by at least one adblocker—suggesting that the arms race has
already entered the next level.

Implications, Legality, and Ethics
The implications of the findings are manifold and complicated
due to the involvement of a plethora of players: publishers,
consumers, and a jostling array of intermediaries that compete
to deliver ads, mostly supported by business models that involve
taking a cut of the resultant advertising revenue. Advertising
creates overhead for the users and telcos. In an extreme example,
a mobile operator recently started to block mobile ads altogether.
If such steps were to be widely adopted, they would severely limit
the degree to which app developers could continue to innovate
and create while maintaining the illusion of “free” apps and
content for users. Arguably, handing control of the Web eco-
system to telecom companies or small yet powerful adblocking
businesses that allow advertisers to whitelist their ads so that
they are still seen by users is also an undesirable outcome for the
freedom of the Web and Net Neutrality, and their effectiveness is
debatable as this merely shifts control of which ads are displayed
to users from one entity to another. Alternatively, efforts such as
Brave (blog.brave.com) allow individuals to directly pay for the
content of their favorite Web sites without being tracked.

The legality of adblocking is also potentially contestable under
laws about anti-competitive business conduct and copyright
infringement. To date, only Germany has tested these argu-
ments in court, with adblockers winning most but not all of
the cases. By contrast, anti-adblocking in the EU might in turn
breach Article 5(3) of the Privacy and Electronic Communica-
tions Directive 2002/58/EC, as it involves interrogating an end-
user’s terminal equipment without consent.

Conclusion
Many consider adblocking to be an ethical choice for consumers
and publishers to consider from both an individual and societal
perspective. In reality, however, both sides have resorted to radi-
cal measures to achieve their goals. The Web has empowered
publishers and advertisers to track, profile, and target users in
a way that is unprecedented in the physical realm. In addition,
publishers are inadvertently and increasingly serving up mali-
cious ads. This has resulted in the rise of adblocking, which in
turn has led publishers to employ anti-adblocking. The core issue
is to get the balance right between ads and information: publish-
ers turn to anti-adblocking to force consumers to reconsider the
default blocking of ads for earnest publishers. But defaults are
difficult to shift at scale. And, in any event, even worthy ad-sup-
ported publishers will fail if they do not redress in a fundamental
way the reasons that brought consumers to adblockers in the
first place. Regulation and proposals such as privacy-friendly
advertising or mechanisms to give users more control over ads
and trackers may provide a compromise in this space.

References
[1] R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez,
M. Falahrastegar, J. E. Powles, E. De Cristofaro, H. Haddadi,
and S. J. Murdoch, “Adblocking and Counter Blocking: A Slice
of the Arms Race,” 6th USENIX Workshop on Free and Open
Communications on the Internet (FOCI ’16), 2016: https://
www.usenix.org/conference/foci16/workshop-program
/presentation/nithyanand.

[2] M. Falahrastegar, H. Haddadi, S. Uhlig, R. Mortier, “Track-
ing Personal Identifiers Across the Web,” Passive and Active
Measurement Conference (PAM 2016), in Lecture Notes in
Computer Science, vol. 9631, pp. 30–41: http://link.springer
.com/chapter/10.1007%2F978-3-319-30505-9_3.

[3] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunen-
berger, K. Papagiannaki, H. Haddadi, J. Crowcroft, “Breaking
for Commercials: Characterizing Mobile Advertising,” in Pro-
ceedings of the 2012 ACM Internet Measurement Conference,
pp. 343–356: http://dl.acm.org/citation.cfm?id=2398812.

[4] I. Thomson, “Ad-Blocker Blocking Web Sites Face Legal
Peril at Hands of Privacy Bods”: http://www.theregister.co
.uk/2016/04/23/anti_ad_blockers_face_legal_challenges/.

Figure 2: Distribution of anti-adblocking Web sites by category according
to McAfee’s URL categorization

https://www.usenix.org/conference/foci16/workshop-program/presentation/nithyanand

44  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITY

Interview with Gordon Lyon
R I K F A R R O W

I’ve known Gordon Lyon, as Fyodor Vaskovich, for over 15 years. Most of
our meetings have been online, but we’ve also attended some meetups in
between BlackHat and DefCon.

Fyodor’s claim to fame is that he has been working on a network scanning tool, Nmap (nmap.
org) longer than I’ve known him. What began as improvements on the handful of scanning
tools available in the ’90s has become an open source project as well as a successfully funded
business. If you’ve never used Nmap, it is both a security tool and one useful to network and
system admins: Nmap quickly scans networks in a long list of different ways.

There really isn’t much on the Web about Fyodor, and we are fortunate that he has taken the
time to tell us a bit more about his background and how various parts of Nmap came to be.

Rik Farrow: Can you tell us when you began programming?

Fyodor Vaskovich: I was lucky enough to grow up in a household with computers, since my
father had previously worked at IBM. We had systems like the Commodore VIC-20 and the
Apple IIe around 1980. And then later we upgraded to an IBM XT clone. In many ways these
systems were all less powerful than what we now use in thermostats and watches. But inter-
acting with them and exploring how they worked really taught me a lot.

Eventually I bought my own computer, a 286 running at a whopping 12 MHz! But the best
part was the 2400 bps modem! It opened a whole new world of communicating with other
computer users on BBSes. Not all over the world, unfortunately, since I couldn’t afford long
distance telephone calls. But all over the Phoenix metro area, where I lived in those days, was
a good start!

Interacting with BBS software was interesting and fun, but I was blown away when I was
introduced to my first UNIX shell. It was just so powerful, and the system running this shell
had such a fast connection to the fledgling Internet! My high school friend had an account
there, too, and raiding each other’s accounts taught us a lot about UNIX permissions and
security.

I started college studying molecular and cellular biology, but it didn’t take me long to decide
that computers (especially networking and security) were my real passions, and I switched to
computer science. So the tl;dr answer to your question is that I was a self-taught programmer
at first, but my university CS education took me to a much higher level.

RF: Until Nmap came out, there were three scanners that I know of: SATAN, very limited
and more of a vuln scanner; the one written by Prof (better known as Julian Assange); and
part of Hobbit’s Netcat (nc). Were any of these early, primitive programs an influence on the
first version of Nmap?

FV: Good memory! Yes, I had a full directory of port scanners at that time including the ones
you mentioned, plus a very simple one named reflscan. Assange’s strobe was definitely the
fastest and most advanced at the time, and I learned a lot from it about nonblocking sockets,
rate limiting, and congestion control. But it didn’t support options such as the more stealthy

Fyodor Vaskovich (known to
his family as Gordon Lyon)
authored the open source
Nmap Security Scanner in 1997
and continues to coordinate its

development. He also maintains the seclists.
org, insecure.org, sectools.org, secwiki.org,
and nmap.org security resource sites and has
authored seminal papers on remote operating
system detection and stealth port scanning. He
is a founding member of the Honeynet Project,
former President of Computer Professionals
for Social Responsibility (CPSR), and Technical
Advisory Board member for Qualys and
AlienVault. He also authored or co-authored
the books Nmap Network Scanning, Know Your
Enemy: Honeynets, and Stealing the Network:
How to Own a Continent. fyodor@nmap.org

Rik Farrow is the editor of ;login:.
rik@usenix.org

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 45

SECURITY
Interview with Gordon Lyon

SYN scan or UDP protocol scanning. So I ended up hacking most
of these scanners to add new options and features, but in the end
I decided it was better to just write my own scanner containing
everything I wanted in one program.

I wrote Nmap for my own network discovery use, but then
decided to publish it in Phrack just in case anyone else found
it useful. Apparently they did, and I was inundated with bug
reports, fixes, and ideas. So I decided to release one more version.
It continued to snowball, but I never could have imagined that I’d
still be at it 19 years later as my full-time job!

RF: OS identification is an even earlier feature of Nmap than
scripting. I’d become vaguely aware of some obvious differences
between operating systems: for example, time-to-live (TTL)
values falling into three well-defined buckets. But Nmap looks
at a lot more when asked to identify an operating system. Can
you tell us how OS identification got started and a bit about the
features measured?

FV: Great question! I released Nmap in 1997 as a relatively
simple tool for host discovery and port scanning, but then I
became increasingly fascinated by the use of TCP/IP stack fin-
gerprinting for the purposes of detecting the operating system
running on a remote host. The idea is to send a series of probes
to the host’s IP address and study the results very carefully for
patterns that indicate a certain OS. A tool named Queso really
inspired me in this regard, and I tried to take it to the next level
with Nmap. I first released Nmap IPv4 OS detection in 1998
and since then it has grown to test dozens of characteristics,
from the way initial sequence numbers are generated to the TCP
flags used in responses to unexpected packets. TCP options also
disclose a wealth of information. Not just whether the remote
system supports an option, but also what values it selects for
options such as window scale or maximum segment size and the
order in which it chooses to list the options in the TCP header.

Our traditional IPv4 OS detection system requires experts to
generate signatures of system behaviors based on thousands of
fingerprint submissions by Nmap users. This manual system
has served us well, but I’m particularly excited about our new
IPv6 OS detection system, which uses a very different tech-
nique. Instead of requiring experts to write signatures based
on specific tests, our new system just feeds all the header data
to machine learning systems and lets the computer do the hard
work of finding patterns and characteristics of different operat-
ing systems in order to match a test subject system with our
reference database of known OS responses. Right now we use a
machine-learning classification technique called linear regres-
sion, but we had an intern this summer named Prabhjyot Singh
who worked with a couple of great mentors in the Nmap Project
to convert that to a random forest classifier. The results have so
far been quite promising, and he continues to improve and test

the system even though his Google-sponsored internship is over.
We’re hoping to integrate it into an Nmap release this year.

I tried to describe this as well as I could in two paragraphs, but
folks wanting the full details can refer to our extensive online
documentation (https://nmap.org/book/osdetect.html).

RF: Can you tell us about adding scripting capabilities to Nmap?

FV: Sometimes it seems like every program grows and grows
until it has its own scripting language and maybe its own text
editor. Well, we have no plans to integrate Emacs into Nmap, but
we decided that a scripting engine was essential. As Nmap grew,
there were more and more neat ideas that we couldn’t imple-
ment because adding them all would bloat the core of Nmap too
much. Also, as Nmap became larger and more complex, it became
harder for casual contributors to make improvements because
they had to learn so many subsystems. And it was difficult to
review all their patches because any mistake in the code could
crash all of Nmap. With the scripting engine, people write to
a relatively simple API and don’t have to know anything about
Nmap internals. Their code stays separate rather than bloat-
ing Nmap itself, and mistakes should only cause that particular
script to fail.

We decided to use the Lua scripting language (https://www.lua
.org/) because it is simple and small and easy to embed in a way
that enables extremely fast network performance. It’s mostly
known in the gaming world, but some versions of other network-
ing tools like Wireshark and Snort use it as well.

The scripting engine has been a great success! We now have
more than 500 scripts, all documented at https://nmap.org/
nsedoc/.

RF: From reading the Nmap 7.2 announcement, it sounds like
there is an actual community involved with Nmap. Some open
source project authors say “we” when really they are the only
person writing code. Can you tell us about your code community?

FV: Yes, we are fortunate to have a community which helps in
myriad ways. Not everyone is a programmer, but we also receive
contributions in the form of people submitting unknown operat-
ing system or version fingerprinting results, helping to translate
our documentation, creating art, or just answering questions on
the mailing list. A good bug report is a gift, too.

Contributing code has become harder as Nmap has grown more
complex. NSE scripts, as discussed above, are a happy exception
to that rule. We currently have more than 20 core code com-
mitters (https://svn.nmap.org/nmap/docs/committers.txt),
although only a fraction are active at a given time. Every summer
for the last 12 years Google has helped us fund many full-time
interns (college or grad students) from all over the world. We’ve
had 78 of them so far, and the program has been hugely suc-

46  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SECURITY
Interview with Gordon Lyon

cessful both in developing new features and in mentoring new
contributors who sometimes help out for years afterward. Many
of our former interns have actually become mentors for their
own Nmap interns years later!

RF: I am guessing that you are an independent consultant and
that the licensing of Nmap and pen-testing are how you support
yourself. Is that true?

FV: That used to be the case, but Nmap grew so much and its
development became so complex that I quit consulting and
devoted myself to Nmap in 2002. I’m really happy with our
dual-license program. It allows open source use of Nmap for free,
but companies who want to distribute it with their commercial
software have to pay a license fee. The fee also includes support,

indemnification, and warranties that companies expect anyway.
Not only does this fund the project, but it means that Nmap has
many more users who may not realize it is even being used to
perform network discovery under the covers of their propri-
etary software. We have roughly 100 licensees, from some of the
largest companies in the world to tiny new startups. I’m always
excited to see what innovative uses they can find for Nmap
results. For example, exploitation frameworks can use Nmap to
determine the remote OS so that they send the right shellcode for
exploiting a vulnerability. They may only get one chance because
the wrong payload could crash the service. Another neat usage
is enterprise software installers that use Nmap to find all the
systems compatible with their agent or management software.

XKCD

xkcd.com

Statement of Ownership, Management, and Circulation, 9/30/16

Title: ;login: Pub. No. 0008-334. Frequency: Quarterly. Number of issues published annually: 4. Subscription price $90.

Office of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710.

Headquarters of General Business Office of Publisher: Same. Publisher: Same.

Editor: Rik Farrow; Managing Editor: Michele Nelson, located at office of publication.

Owner: USENIX Association. Mailing address: As above.

Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds,
mortgages, or other securities: None.

The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax purposes have
not changed during the preceding 12 months.

Extent and Nature of Circulation Average No. Copies
Each Issue During
Preceding 12 Months

No. Copies of Single
Issue (Fall 2016)
Published Nearest
to Filing Date

a. Total Number of Copies
2935 2800

b. Paid Circulation

(1) Outside-County Mail Subscriptions 1278 1261

(2) In-County Subscriptions 0 0

(3) Other Non-USPS Paid Distribution 882 868

(4) Other Classes 0 0

c. Total Paid Distribution 2160 2129

d. Free Distribution By Mail

(1) Outside-County 77 76

(2) In-County 0 0

(3) Other Classes Mailed Through the USPS 19 23

(4) Free Distribution Outside the Mail 512 288

e. Total Free Distribution 608 387

f. Total Distribution 2768 2516

g. Copies Not Distributed 167 284

h. Total 2935 2800

i. Percent Paid 78% 85%

Paid Electronic Copies 401 440

Total Paid Print Copies 2561 2569

Total Print Distribution 3169 2956

Percent Paid (Both Print and Electronic Copies) 81% 87%

48  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSADMINTuning OpenZFS
A L L A N J U D E A N D M I C H A E L W . L U C A S

Allan Jude is VP of Operations
at ScaleEngine Inc., a global
HTTP and Video Streaming
CDN, where he makes extensive
use of ZFS on FreeBSD. He is

also the host of the video podcasts BSDNow.
tv (with Kris Moore) and TechSNAP.tv. He is
a FreeBSD src and doc committer, and was
elected to the FreeBSD Core team in the
summer of 2016. allanjude@freebsd.org

Michael W. Lucas has used
UNIX since the late ’80s and
started his sysadmin career in
1995. He’s the author of over
20 technology books, including

Absolute OpenBSD, PAM Mastery, and SSH
Mastery. Lucas lives with his wife in Detroit,
Michigan, has pet rats, and practices martial
arts. mwlucas@michaelwlucas.com

OpenZFS is such a powerful file system that it has found its way into
illumos, Linux, FreeBSD, and other operating systems. Its flexibility
requires whole new ways of thinking, however. If you’re using Open-

ZFS for a special purpose, such as database storage or retaining particular
sizes of files, you’ll want to tune the file system for those purposes.

This article uses FreeBSD as a reference platform, as it’s one of the biggest OpenZFS con-
sumers. You will need to change paths and such for other operating systems, but all the ZFS
information is consistent across platforms.

Recordsize
While many ZFS properties impact performance, start with recordsize.

The recordsize property gives the maximum size of a logical block in a ZFS dataset. The
default recordsize is 128 KB, which comes to 32 sectors on a disk with 4 KB sectors, or 256
sectors on a disk with 512-byte sectors. The maximum recordsize was increased to 1 MB
with the introduction of the large_blocks feature flag in 2015. Many database engines prefer
smaller blocks, such as 4 KB or 8 KB. It makes sense to change the recordsize on datasets
dedicated to such files. Even if you don’t change the recordsize, ZFS automatically sizes
records as needed. Writing a 16 KB file should take up only 16 KB of space (plus metadata
and redundancy space), not waste an entire 128 KB record.

The most important tuning you can perform for an application is the dataset block size. If an
application consistently writes blocks of a certain size, recordsize should match the block
size used by the application. This becomes really important with databases.

Databases and ZFS
Many ZFS features are highly advantageous for databases. Every DBA wants fast, easy, and
efficient replication, snapshots, clones, tunable caches, and pooled storage. While ZFS is
designed as a general-purpose file system, you can tune it to make your databases fly.

Databases usually consist of more than one type of file, and since each has different char-
acteristics and usage patterns, each requires different tuning. We’ll discuss MySQL and
PostgreSQL in particular, but the principles apply to any database software.

Tuning the block size avoids write amplification. Write amplification happens when chang-
ing a small amount of data requires writing a large amount of data. Suppose you must change
8 KB in the middle of a 128 KB block. ZFS must read the 128 KB, modify 8 KB somewhere
in it, calculate a new checksum, and write the new 128 KB block. ZFS is a copy-on-write
file system, so it would wind up writing a whole new 128 KB block just to change that 8 KB.
You don’t want that. Now multiply this by the number of writes your database makes. Write
amplification eviscerates performance.

Low-load databases might not need this sort of optimization, but on a high-performance
system it is invaluable. Write amplification reduces the life of SSDs and other flash-based
storage that can handle a limited volume of writes over their lifetime.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 49

SYSADMIN
Tuning OpenZFS

The different database engines don’t make recordsize tuning
easy. Each database server has different needs. Journals, binary
replication logs, error and query logs, and other miscellaneous
files also require different tuning.

Before creating a dataset with a small recordsize, be sure you
understand the interaction between VDEV type and space utili-
zation. In some situations, disks with the smaller 512-byte sector
size can provide better storage efficiency. It is entirely possible
you may be better off with a separate pool specifically for your
database, with the main pool for your other files.

For high-performance systems, use mirrors rather than any type
of RAID-Z. Yes, for resiliency you probably want RAID-Z. Hard
choices are what makes system administration fun!

All Databases
Enabling lz4 compression on a database can, unintuitively,
decrease latency. Compressed data can be read more quickly
from the physical media, as there is less to read, which can result
in shorter transfer times. With lz4’s early abort feature, the
worst case is only a few milliseconds slower than opting out of
compression, but the benefits are usually quite significant. This
is why ZFS uses lz4 compression for all of its own metadata and
for the L2ARC (level 2 adaptive replacement cache).

The Compressed ARC feature recently landed in OpenZFS and
is slowly trickling out to OpenZFS consumers. Enabling cache
compression on the dataset allows more data to be kept in the
ARC, the fastest ZFS cache. In a production case study done by
Delphix, a database server with 768 GB of RAM went from using
more than 90 percent of its memory to cache a database to using
only 446 GB to cache 1.2 TB of compressed data. Compress-
ing the in-memory cache resulted in a significant performance
improvement. As the machine could not support any more RAM,
compression was the only way to improve. When your operating
system gets compressed ARC, definitely check it out.

ZFS metadata can also affect databases. When a database is
rapidly changing, writing out two or three copies of the metadata
for each change can take up a significant number of the available
IOPS of the backing storage. Normally, the quantity of metadata
is relatively small compared to the default 128 KB record size.
Databases work better with small record sizes, though. Keeping
three copies of the metadata can cause as much disk activity, or
more, than writing actual data to the pool.

Newer versions of OpenZFS also contain a redundant_meta-

data property, which defaults to all. This is the original behavior
from previous versions of ZFS. However, this property can also
be set to most, which causes ZFS to reduce the number of copies
of some types of metadata that it keeps.

Depending on your needs and workload, allowing the database
engine to manage caching might be better. ZFS defaults to cach-
ing much or all of the data from your database in the ARC, while
the database engine keeps its own cache, resulting in wasteful
double caching. Setting the primarycache property to metadata
rather than the default all tells ZFS to avoid caching actual data
in the ARC. The secondarycache property similarly controls the
L2ARC.

Depending on the access pattern and the database engine, ZFS
may already be more efficient. Use a tool like zfsmon from the
zfs-tools package to monitor the ARC cache hit ratio, and com-
pare it to that of the database’s internal cache.

Once the Compressed ARC feature is available, it might be wise
to consider reducing the size of the database’s internal cache and
let ZFS handle the caching instead. The ARC might be able to fit
significantly more data in the same amount of RAM than your
database can.

Now let’s talk about some specific databases.

MySQL—InnoDB/XtraDB
InnoDB became the default storage engine in MySQL 5.5 and has
significantly different characteristics than the previously used
MyISAM engine. Percona’s XtraDB, also used by MariaDB, is
similar to InnoDB. Both InnoDB and XtraDB use a 16 KB block
size, so the ZFS dataset that contains the actual data files should
have its recordsize property set to match. We also recommend
using MySQL’s innodb_one_file_per_table setting to keep the
InnoDB data for each table in a separate file, rather than group-
ing it all into a single ibdata file. This makes snapshots more
useful and allows more selective restoration or rollback.

Store different types of files on different datasets. The data files
need 16 KB block size, lz4 compression, and reduced metadata.
You might see performance gains from caching only metadata,
but this also disables prefetch. Experiment and see how your
environment behaves.

zfs create -o recordsize=16k -o compress=lz4 -o redundant_

metadata=most -o primarycache=metadata mypool/var/db/mysql

The primary MySQL logs compress best with gzip, and don’t
need caching in memory.

zfs create -o compress=gzip1 -o primarycache=none mysql/var/

log/mysql

The replication log works best with lz4 compression.

zfs create -o compress=lz4 mypool/var/log/mysql/replication

50  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSADMIN
Tuning OpenZFS

Tell MySQL to use these datasets with these my.cnf settings.

data_path=/var/db/mysql

log_path=/var/log/mysql

binlog_path=/var/log/mysql/replication

You can now initialize your database and start loading data.

MySQL—MyISAM
Many MySQL applications still use the older MyISAM storage
engine, either because of its simplicity or just because they have
not been converted to using InnoDB.

MyISAM uses an 8 KB block size. The dataset record size should
be set to match. The dataset layout should otherwise be the same
as for InnoDB.

PostgreSQL
ZFS can support very large and fast PostgreSQL systems, if
tuned properly. Don’t initialize your database until you’ve cre-
ated the needed datasets.

PostgreSQL defaults to using 8 KB storage blocks for everything.
If you change PostgreSQL’s block size, you must change the data-
set size to match.

The examples here use FreeBSD. Other operating systems will
use different paths and have their own database initialization
scripts. Substitute your preferred operating system commands
and paths as needed.

PostgreSQL data goes in /usr/local/pgsql/data. For a big
install, you probably have a separate pool for that data. Here I’m
using the pool pgsql for PostgreSQL.

zfs set mountpoint=/usr/local/pgsql pgsql

zfs create pgsql/data

Now we have a chicken-and-egg problem. PostgreSQL’s database
initialization routine expects to create its own directory tree, but
we want particular subdirectories to have their own datasets.
The easiest way to do this is to let PostgreSQL initialize, and
then create datasets and move the files. Here’s how FreeBSD
initializes a PostgreSQL database.

/usr/local/etc/rc.d/postgresql oneinitdb

The initialization routine creates databases, views, schemas,
configuration files, and all the other components of a high-end
database. Now you can create datasets for the special parts.

Our test system’s PostgreSQL install stores databases in
/usr/local/pgsql/data/base. The Write Ahead Log, or WAL, lives
in /usr/local/pgsql/data/pg_xlog. Move both of these out of
the way.

cd /usr/local/pgsql/data

mv base base-old

mv pg_xlog pg_xlog-old

Both of these parts of PostgreSQL use an 8 KB block size, and
you would want to snapshot them separately, so create a dataset
for each. As with MySQL, tell the ARC to cache only the meta-
data. Also tell these datasets to bias throughput over latency
with the logbias property.

zfs create -o recordsize=8k -o redundant_metadata=most -o

primarycache=metadata logbias=throughput pgsql/data/pg_xlog

zfs create -o recordsize=8k -o redundant_metadata=most -o

primarycache=metadata logbias=throughput pgsql/data/base

Copy the contents of the original directories into the new datasets.

cp -Rp base-old/* base

cp -Rp pg_xlog-old/* pg_xlog

You can now start PostgreSQL.

Tuning for File Size
ZFS is designed to be a good general-purpose file system. If you
have a ZFS system serving as file server for a typical office,
you don’t really have to tune for file size. If you know what size
of files you’re going to have, though, you can make changes to
improve performance.

Small Files
When creating many small files at high speed in a system with-
out a SLOG (Separate (ZFS-Intent) Log), ZFS spends a signifi-
cant amount of time waiting for the files and metadata to finish
flushing to stable storage.

If you are willing to risk the loss of any new files created in the
last five seconds (or more if your vfs.zfs.txg.timeout is higher),
setting the sync property to disabled tells ZFS to treat all writes
as asynchronous. Even if an application asks that it not be told
that the write is complete until the file is safe, ZFS returns
immediately and writes the file along with the next regularly
scheduled txg.

A high-speed SLOG lets you store those tiny files both synchro-
nously and quickly.

Big Files
ZFS recently added support for blocks larger than 128 KB via the
large_block feature. If you’re storing many large files, certainly
consider this. The default maximum block size is 1 MB.

Theoretically, you can use block sizes larger than 1 MB. Very few
systems have extensively tested this, however, and the interac-
tion with the kernel memory allocation subsystem has not been
tested under prolonged use. You can try really large record sizes,
but be sure to file a bug report when everything goes sideways.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 51

SYSADMIN
Tuning OpenZFS

On FreeBSD, the sysctl vfs.zfs.max_recordsize controls the
maximum block size. On Linux, zfs_max_recordsize is a mod-
ule parameter.

Once you activate large_blocks (or any other feature), the pool
can no longer be used by hosts that do not support the feature.
Deactivate the feature by destroying any datasets that have ever
had their recordsize set to larger than 128 KB.

Storage systems struggle to balance latency and throughput.
ZFS uses the logbias property to decide which way it should
lean. ZFS uses a logbias of latency by default, so that data is

quickly synched to disk, allowing databases and other applica-
tions to continue working. When dealing with large files, chang-
ing the logbias property to throughput might result in better
performance. You must do your own testing and decide which
setting is right for your workload.

With a few adjustments, you can make your database’s file sys-
tem fly…leaving you capacity to cope with your next headache.

This article was adapted from Allan Jude and Michael W Lucas,
FreeBSD Mastery: Advanced ZFS (Tilted Windmill Press, 2016).

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX
is always looking for academics to participate. The program is designed for faculty or staff who directly interact with stu-
dents. We fund one representative from a campus at a time.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for student use

■ Distributing calls for papers and upcoming event
 brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas
of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus Representative),
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty
have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four-year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

■ Providing students who wish to join USENIX with
 information and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions on
how the organization can better serve students

For more information about our Student Programs, please contact office@usenix.org

www.usenix.org/students

Do you have a USENIX Representative
on your university or college campus?

If not, USENIX is interested in having one!

52  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSADMIN

Lessons from Iraq for Building and Running
SRE Teams
From the Assembly Line to the Web

K U R T A N D E R S E N

G eneral Stanley McChrystal led the Joint Special Operations Task
Force in Iraq in the mid to late 2000s. While in command of the
Task Force, he was responsible for transforming an organization

that was dominated by Taylorist reductionism into an agile, responsive
network that could dynamically adapt and win in the threat landscape
around them. In his book Team of Teams: New Rules of Engagement for a
Complex World [1], McChrystal outlines the key lessons that emerged from
that process. The same issues and challenges face Site Reliability Engineers
and managers for SRE teams as we cope with the complexity of our own and
partner ecosystems.

The Challenges of Growth in a Complex Environment
As one of the Senior Individual Contributors in the SRE (Site Reliability Engineering) group
at LinkedIn, I and the other leaders in the organization are always looking to improve the
capabilities and effectiveness of our SRE teams. As our membership, service offerings, and
engineering teams have grown over the last few years, we have had to confront new chal-
lenges. Figure 1 shows the nearly seven-fold growth in the SRE organization over the last
three years. The number of internal services that we support has grown even faster. This rate
of growth makes it difficult to keep up with the influx of new personnel, which in turn makes
it important to become even more conscious about communication, but some of our key dif-
ficulties have arisen because of changes in our physical presence.

In 2013, we were located on a single campus where one could walk from one end to the other
in a few minutes. Our SRE organization initially expanded to include a team in Bangalore,
India, operating almost completely opposite to Pacific Coast daytime hours, but that was less
of a challenge than having our single campus fragmented with the opening of new offices 40
miles away in San Francisco, 10 miles away in Sunnyvale, as well as 3000 miles away in New
York City. Suddenly, simple chats with colleagues on other teams required new logistical
coordination which, in many cases, ended up choking off the conversations.

Matching the growth in individual engineers, what had been a very simple, limited manage-
ment framework in 2013 had burgeoned by 2016 into multiple layers that matched the physi-
cal separation of the different embedded SRE teams. (LinkedIn’s SRE teams are co-located
with the development teams that they support, hence the term “embedded.”) The separation
and fragmentation between the different teams was leading to duplicated effort as well as
reduced cohesion of the overall SRE organization.

In this context, and seeking strategies to address these challenges, I ran across McChrystal’s
book. The approach that he employed in transforming the bureaucratic environment of the
US Armed Forces Joint Special Operations Command (JSOC) into an adaptable, agile fight-
ing system mirrored many of the challenges that we were facing with the SRE organization,
although on a fairly different scale—for instance, his version of the daily “standup” meeting
involved up to 7000 people from around the globe and took two hours, six days a week!

Kurt Andersen has been
active in the anti-abuse
community for over 15 years
and is currently the Senior IC
for the Consumer Services SRE

team at LinkedIn. He also works as one of the
Program Committee Chairs for the Messaging,
Malware, and Mobile Anti-Abuse Working
Group (M3AAWG.org). He has spoken at
M3AAWG, Velocity, SREcon, and SANOG on
various aspects of reliability, authentication,
and security. He is one of the co-chairs for
SREcon17 Americas, to be held in March 2017.
kurta@linkedin.com

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 53

SYSADMIN
Lessons from Iraq for Building and Running SRE Teams: From the Assembly Line to the Web

Be Careful What You Optimize For
Dating back to the midpoint of the last millennium, people
became fixated on the idea of the “clockwork universe.” This
principle arose from a mechanical concept related to Newtonian
physics and posits that if one knows all of the inputs to a particu-
lar system, it should be possible to exactly predict the outputs
from that system. Fantastically complex mechanical clocks can
be found in town squares across Europe as a testament to this
perspective and the importance that it achieved as an organizing
principle. Mechanical calculation led to the difference engines
of Charles Babbage (circa 1822), which were intended to create
the logarithm tables that were used for calculations of many
different phenomena. While Babbage’s difference engine was not
actually constructed during his lifetime, the plans he drew up
served as the basis for a project to build the engine, using metal-
lurgy and capabilities that would have been feasible during his
lifetime, which was completed in 2008. The Jacquard “program-
mable” loom for pattern weaving (1801) was another instance of
similar thought toward automating repetitious tasks.

Around the early 1900s, Frederick Winslow Taylor extended the
idea of a “clockwork universe” to create the principles of “scientific
management.” The key principles of this school of thought are:

◆◆ That absolute, inflexible standards be maintained throughout
your establishment.

◆◆ That each employee of your establishment should receive every
day clear-cut, definite instructions as to just what he is to do
and how he is to do it, and these instructions should be exactly
carried out, whether they are right or wrong.

Taylor strictly separated the roles of worker and manager. The
manager had five functions: planning, organizing, commanding,
coordinating, and controlling. The ultimate incentive for the
manager was to gather and centralize more information in order
to push more and more efficient directives to the organization,

while the Taylorist worker’s role was two-fold: provide informa-
tion and await commands. All effort was to be expended in the
pursuit of maximum efficiency, and all individuals were to be
treated as fungible resources, no different from a bolt or a nail.

“Scientific management’s” rigidly hierarchical and extremely
siloed model of operations took the repetition of Babbage’s differ-
ence engine and applied it to people. Sadly, the effects of treating
people as expendable parts can be seen in the inhumane condi-
tions that characterized the trench warfare of World War I. The
scars of that warfare can still be seen across the landscape of
Europe today, and the scars of inhumane management practices
still plague many companies and individuals.

In the field of computers, the traditional sysadmin role was
siloed, often undervalued, and only noticed when something
went wrong. It led to the caricature of the BOFH (bastard opera-
tor from hell [6]).

From Complicated to Complex
The problems and limitations of the clockwork universe became
more evident within the scientific community even as Taylor
was making his mark on the management world. Relativity,
quantum mechanics, and eventually the atomic bomb revolu-
tionized physics, and the development of chaos theory in the
1970s showed that there is a phase-change difference between
the complicated, mechanistic “clockwork” to the turbulent
chaos of the modern world, where critical differences arise from
imperceptible origins or interactions.

In his book, McChrystal points out that complicated systems can
be made “robust,” meaning less prone to failure, by building them
up with more of what is already there: for instance, the Pyramids
of Giza have survived millennia by being made of masses of
stone. To make them stronger, you would just add more stone.

Complex environments, on the other hand, are “resilient” by the
nature of the interconnections between their constituent parts.
A coral reef is an example of a complex, resilient ecosystem that
thrives based on the variety of organisms which share the space.
Another example of complex interactions would be the way that
a successful soccer team works together. If every team member
is only aware of what is happening within their own local area
of the field, and, even worse, if “their area of the field” is rigidly
defined, then the team has little or no chance of being success-
ful. Whether you are the goalie or a forward, you should have one
“job” on the team: to win.

McChrystal pointed out that “to each unit [within the military
bureaucracy that made up JSOC], the piece of the war that really
mattered was the piece inside their box on the org chart.” To
succeed in their mission in Iraq, they needed to overcome the
silos. They already had a model of highly effective small squads
of operators in the elite military units such as the SEALS and

Figure 1: Growth in headcount in the SRE teams at LinkedIn

54  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSADMIN
Lessons from Iraq for Building and Running SRE Teams: From the Assembly Line to the Web

Rangers. The challenge was how to take that “small team effec-
tiveness” and extend it across the organization of JSOC, moving
from a “command of teams” to a “team of teams,” and bringing in
the adaptability and resilience of a network dynamic at all levels
of the organization (see Figure 2).

McChrystal worked to build relationships and trust between
disparate services by intentionally seeding key operators into
other teams.

At LinkedIn, as our SRE organization rapidly grew, we have had
to work on ensuring that we did not end up in silos. The division
of our teams across multiple locations has made it somewhat
natural for people to focus on those who are physically nearby,
so we have instituted a number of initiatives, many organically
driven, to break down the barriers that could otherwise occur.

The first strategy that we have found helpful, particularly for
bootstrapping new technologies and driving adoption across our
constantly growing engineering group, is what we call “virtual
teams.” There is a whole life cycle to the process for virtual
teams, but generally they consist of like-minded folks from mul-
tiple management teams who share a particular interest or pas-
sion. As an example, our ELK (elasticsearch-logstash-kibana)
environment at LinkedIn is run in a highly distributed manner,
but the virtual team helps to guide by staying up to date on new
versions and features while also adapting new versions to our
internal deployment frameworks.

Another strategy that we use is based on our cultural value of
transformation. As part of transformation, we think that learn-
ing is a never-ending aspect of work and life. Besides multiple

tech talks that are provided by different teams and indivi-
duals every week, within the SRE organization we organize
a full day every month of deep dive sessions into different
technologies that SREs use. While not everyone in the
organization is able to participate every month, this provides
a common forum for people across the organization to meet
together and improve their skills.

We have grown to the point where there are enough post-
mortems every week that we need to start drawing out higher
level patterns, so a weekly “postmortem roll-up” provides this
opportunity. We are also starting a program of inter-team
rotations, where an engineer will spend half a quarter (six
weeks) working on a different team. These different pieces
are all helping us to avoid becoming a “command of teams”
and maintain a “team of teams” dynamic.

Shared Awareness
Traditionally, and especially in the formulations of “scientific
management,” only particular people “need to know” informa-
tion. Compartmentalizing information is a very effective way to
create divisions and separations within an organization based
on the simple difference of who is “in” and who is “out.” Predict-
ing exactly who needs to know a particular piece of information
turns out to be a huge problem. In the war in Iraq, McChrystal
found that opening up the flow of information was critical to the
effectiveness of the teams of intelligence analysts and operators
on the ground. He cites the problems that GM faced in dealing
with their famous ignition switch recall because of compart-
mentalized information within the company. Simply no one
had enough of the picture to recognize and take action quickly
enough to avoid the deaths and subsequent public outcry leading
to Congressional hearings that finally shone light on the under-
lying problem.

Most practitioners of DevOps and Site Reliability Engineering
have recognized that measuring and monitoring is critical, but
making the data available to everyone who can benefit from it is
equally critical. It’s important to take as broad a view of “every-
one who can benefit” as possible because you never know how
two seemingly independent issues may have a common contrib-
uting cause.

In Social Physics [2], Alex Pentland points out, “It is the idea flow
within a community that builds the intelligence that makes it
successful.” Pentland expands upon that to identify both explo-
ration of new ideas as well as engagement with concepts as criti-
cal determinants for effective idea flow. Engagement with the
community, both learning from and giving back to, is one of our
(LinkedIn SRE) keys to a robust organization. The company’s
strong tradition and culture of transparency at all levels also
reinforces the practice of sharing information widely and freely.

Figure 2: This diagram from Team of Teams illustrates various ways of
organizing a command arrangement.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 55

SYSADMIN
Lessons from Iraq for Building and Running SRE Teams: From the Assembly Line to the Web

Empowered Execution
Teams of teams who have the shared understanding of the chal-
lenges and opportunities that face them are like a soccer team
whose members are all paying attention and reacting to the
situation across the entire field. But that team can still fail to
be successful if the players have to check with the coach before
they ever kick the ball. The example is a bit ludicrous, but many
companies operate that way. Teams must be empowered to take
action and make decisions on their own. It is critical to push
decision-making as close to the action as possible.

A great example of a team responding on their own without the
need for external guidance is illustrated in the Site Reliability
Engineering chapter on incident response [3]. In the positive
portrayal of effective incident response (“A Managed Incident”),
the team of people know how and when to engage, have a good
understanding of the different roles that need to be covered, and
carry out the incident response empowered by that scaffolding.

Sidney Dekker, who is one of the foremost authorities on accident
causation and human error, points out: “When we find that
things go right under difficult circumstances, it’s mostly because
of people’s adaptive capacity; their ability to recognize, adapt to,
and absorb changes and disruptions, some of which might fall
outside of what the system is designed or trained to handle.” It
is key, when considering automation and process design, to keep
in mind the importance of people’s adaptive capabilities. This
applies to SRE teams building automation as well as to software
developers building externally facing products.

In the example of the JSOC in Iraq, McChrystal cites the demon-
strated value of these principles, which he terms “eyes on, hands
off,” as leading to an increase in both quality and speed of execution.
When they had previously attempted via a “robustness” strategy to
just “work harder,” the team was able to raise their raids per month
from 10 to 18, but by changing to an empowered team of teams, they
increased the number of raids by a factor of 17, accomplishing 300
raids per month with only minor increases in personnel.

Peter Seibel, in his gigamonkeys blog [4], makes the case for
investing in engineering effectiveness in proportion to the size
of an engineering organization by modeling the multiplying
effect of the right investments. We have found that SRE teams
can catalyze improvements in site benefits that outstrip the
investment of talent in the SRE teams themselves.

Leadership
The last major theme that McChrystal covers in his book has
to do with what he learned about leading an organization which
was made up of teams of teams. The metaphor that he adopted
was to “lead like a gardener,” which means that each touchpoint
is an opportunity to encourage, guide, and strengthen the culture
of the teams. The role of leaders became focused on providing
the appropriate “good ground” for the groups.

At LinkedIn we have the benefit of having the core cultural
tenets consistently reinforced throughout the organization. They
provide touchpoints when making decisions. In proposing any
new initiative, people are expected to go through what we call a
“vision to values” framework, illustrated by Figure 3.

Figure 3: LinkedIn vision-to-values framework

56  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSADMIN
Lessons from Iraq for Building and Running SRE Teams: From the Assembly Line to the Web

Every initiative is evaluated through the lens of the organiza-
tion’s values and culture, and tested against the priorities. This
applies to external, member-facing services and features, and
also to every internal initiative.

Another part of leadership is planning for the future. Phil Libin,
founder of Evernote, points out the “lesson of 3 and 10” [5] that
he learned applies to technology companies, especially when
growth is prolific: roughly every time something triples, the
systems need to be refactored in order to continue working well.
In our case, the SRE organization has grown by a factor of seven
over three years, and many pieces have had to be adjusted. We
have had to become much more intentional about collabora-
tion and maintaining relationships that used to be organic.
Our site traffic and membership have increased significantly.
Our deployment velocity has gone from deploying 500 services
once a month (each) to over 5000 deployments per month. We’ve
expanded the number of locations with engineering presence and
the number of datacenters that we actively serve traffic from.

As leaders, whether in the management ranks or among individ-
ual contributors, it is still critical to be inspiring people to work
together to accomplish a shared vision. As a reader of ;login:,
just like the attendees at SREcon16 Europe where this talk was
initially given, you are a leader in your profession. Accept the
challenge and consider what effect you have among the people
you interact with: What are you inspiring others toward?

This article is derived from a talk given at SREcon16 Europe in
July 2016.

References
[1] S. McChrystal (with T. Collins, D. Silverman, C. Fussell),
Team of Teams: New Rules of Engagement for a Complex World
(Portfolio / Penguin, 2015).

[2] A. Pentland, Social Physics: How Social Networks Can Make
Us Smarter (Penguin, 2015).

[3] B. Beyer, C. Jones, J. Petoff, and N. Murphy, “Managing
Incidents,” in Site Reliability Engineering (O’Reilly Media,
2016).

[4] Peter Seibel’s blog: gigamonkeys.com.

[5] Rule of 3 & 10: https://www.sequoiacap.com/article/the
-rule-of-3-and-10/.

[6] Wikipedia, “Bastard Operator from Hell,” last modified
on Aug. 22, 2016: https://en.wikipedia.org/wiki/Bastard
_Operator_From_Hell.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 57

SYSADMIN

Interrupt Reduction Projects
B E T S Y B E Y E R , J O H N T O B I N , A N D L I Z F O N G - J O N E S

Interrupts are a fact of life for any team that’s responsible for maintain-
ing a service or software. However, this type of work doesn’t have to be a
constant drain on your team’s bandwidth or resources.

This article begins by describing the landscape of work faced by Site Reliability Engineer-
ing (SRE) teams at Google: the types of work we undertake, the logistics of how SRE teams
are organized across sites, and the inevitable toil we incur. Within this discussion, we focus
on interrupts: how teams initially approached tickets, and why and how we implemented a
better strategy. After providing a case study of how the ticket funnel was one such successful
initiative, we offer practical advice about mapping what we learned to other organizations.

Cognitive Flow State and Interrupts
Types of Work
Teams that write and maintain software must decide how to allocate people’s time between
the main types of work they undertake: planned development, immediate response to
 outages, and customer requests or lower-urgency production issues.

This article classifies work using the following conventions:

◆◆ On-call/pager response: Immediate response to outages

◆◆ Tickets and interrupts: Medium-urgency production issues and customer issues

◆◆ Project work: Proactive development and systems/network engineering work

In order of most to least urgent, we can make generalizations about how to handle each kind
of work.

On-call/pager response is critical to the immediate health of the service, and requires a
response with an urgency of minutes. Resolving each on-call incident takes between minutes
and hours, and our response requires two components: time-sensitive mitigation followed by
in-depth investigation and changes to prevent recurrence.

Tickets and other interrupts typically have an urgency of days to weeks and usually
take between minutes and hours to resolve. These issues frequently prevent the team from
achieving reliability goals or are blocking to either internal or external customers. Most
teams at Google use a bug or ticket-tracking tool to manage tickets. For simplicity’s sake, this
article focuses specifically on tickets, the most common form of interrupts handled by our
SRE teams.

Project work has an urgency ranging from weeks to the long backlog of wishlist ideas every
team maintains. This type of work requires multiple days of sustained concentration in order
to facilitate cognitive flow state [3]; co-scheduling interrupts or pages with project work will
disrupt even the most diligent engineer’s focus and prevent them from making meaningful
progress.

Betsy Beyer is a Technical
Writer for Google Site
Reliability Engineering in NYC.
She has previously provided
documentation for Google

Data Center and Hardware Operations
teams. Before moving to New York, Betsy
was a Lecturer in technical writing at Stanford
University. She holds degrees from Stanford
and Tulane. bbeyer@google.com

John Tobin is a Site Reliability
Engineering Manager at Google
Dublin. He manages Bigtable,
Cloud Bigtable, and a cross-
storage SRE automation project,

and has worked on several of Google’s storage
systems. He holds an MSc from Trinity College
Dublin, where he also worked before joining
Google in 2010. johntobin@google.com

Liz Fong-Jones is a Senior Site
Reliability Engineering Manager
at Google and manages a team
of SREs responsible for Google’s
storage systems. She lives with

her wife, metamour, and two Samoyeds in
Brooklyn. In her spare time, she plays classical
piano, leads an EVE Online alliance, and
advocates for transgender rights.
lizf@google.com

58  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSADMIN
Interrupt Reduction Projects

Toil and Operational Load
Google categorizes pager response and tickets/interrupts as
toil, or reactive work. For a more in-depth discussion of toil,
and why and how we seek to minimize it, see Chapter 5 of Site
Reliability Engineering, “Eliminating Toil” [1], and the follow-up
article in the Fall 2016 issue of ;login:, “Invent More, Toil Less”
[2]. Although dealing with toil can provide insight into which
properties of the system ought to be improved in the long term,
toil itself does not directly provide long-lasting value to a team
or service. In a best-case scenario, toil merely allows a team to
run in place; in a worst-case scenario, toil consumes enough
engineering effort that a service eventually deteriorates. We cap
toil at a maximum of 50% of a team’s total engineering time, with
the expectation that most teams will instead spend 60–70% of
their time on project work.

In order to improve a service and reduce the human effort
required in maintenance over time, teams must actively work
on projects to reduce operational load. As toil decreases, teams
can expand their scope to scalably support more services and
undertake more interesting project work. Here we focus on
one specific category of toil—tickets—and how we successfully
reduced their drain on more meaningful project work.

Context: Google’s SRE Team Setup
Most Google SRE teams are spread across two continents, with
six to eight people in each of two sites, which together form one
team responsible for a given set of services. We assign a primary
and secondary on-call in each site, with each site handling
12 hours per day. The primary on-call typically handles most
pages. Although your context will be different from ours, the
principles we articulate in this article should translate to your
organization.

Initial Approaches to Tickets
The Naïve Approach
Originally, many teams at Google approached tickets by assign-
ing a primary on-call to handle pager duty, while round-robin
assigning tickets across the team. This setup frequently led to
undesirable outcomes, as engineers couldn’t successfully under-
take project work and ticket duty simultaneously. Handling
random interruptions from tickets prevented engineers from
entering a cognitive flow state, so they were unable to achieve
meaningful traction on project work. On the other hand, engi-
neers working heads-down on a project missed ticket response
expectations because they weren’t actively checking for tickets.

Some teams moved in the direction of centralization by assign-
ing tickets to the expert with specialized knowledge or recent
experience with a given component. However, this strategy
resulted in uneven load and still disrupted people’s attention,

making project delivery unpredictable. Delegating the less intel-
lectually interesting work to a team’s newest, least experienced
team members served only to burn out those team members.
We clearly needed a way to dig out of this detrimentally ticket-
driven workflow.

Centralizing Tickets
As discussed in the chapter “Dealing with Interrupts” in Site
Reliability Engineering [1], spreading ticket load across an entire
team causes context switches that impact valuable flow time.
Once we articulated the need to preserve cognitive flow state [3],
a better strategy became clear: we needed to staff a dedicated
ticket rotation.

Most SRE teams naïvely implemented this strategy by tasking
the secondary on-caller at each site with a somewhat vague and
meandering directive:

◆◆ Work on tickets until the queue is empty, filing bugs for small
improvements as you see ways to improve how specific tickets
are handled, or to eliminate them entirely.

◆◆ See if you can find commonalities in the tickets you just solved,
and do some proactive project-like work to prevent future
tickets.

This strategy did at least acknowledge that proactive work is
essential to keeping toil manageable as a service increases in
size. However, it proved suboptimal: we were resolving tickets
but not making small improvements.

In large part, inefficiencies resulted because overall ticket
load doesn’t necessarily come in whole-person increments. For
instance, if your team fields enough tickets to occupy 1.2 people
globally per week, you might decide to split the load between two
people. While this split would ideally result in the work distri-
bution shown in Figure 1, in actuality, the scenario shown in
Figure 2 is much more likely.

Figure 1: Splitting tickets between two people: the optimistic/naïve
scenario

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 59

SYSADMIN
Interrupt Reduction Projects

This setup is far from optimal in terms of cognitive flow, and
time zone differences can lead team members to “cheat” on tick-
ets—all too often, engineers at a site only start to work on tickets
when coworkers at their partner site go home. At this point, it’s
tempting to leave frustrating tickets to SREs at your partner site,
because you feel less personally connected to those teammates.

For the reasons described above, the ticket handling approach
taken by Bigtable SRE (the team John and Liz manage) wasn’t
working well for a number of years.

A Better Alternative
We realized that while we initially focused on centralization and
fairness/symmetry as a goal, we instead should have focused
on maximizing cognitive flow state as a goal in and of itself.
Accordingly, we readjusted our goal. We still tasked team mem-
bers with identifying and solving commonalities in reactive/
interrupt-driven work. However, we now explicitly allocated this
job, which we’ll refer to as “interrupt reduction project on duty,”
as a separate role from ticket work.

Why is this approach more effective? It hits the sweet spot of
undertaking small to medium-sized projects to reduce opera-
tional load—projects that require more than 30 minutes of atten-
tion, but are too small to account for on a quarterly planning
cycle. In our experience, we’ve identified many such projects
that can be completed in less than a week. Assigning one person
to work on interrupt reduction projects gives them enough
uninterrupted cognitive flow time to complete those projects.
Furthermore, assigning one dedicated person to ticket duty at a
time ensures accountability for tickets: because that person is
singly responsible for tickets, they can’t divert responsibility for
unresolved tickets onto the other site, or cherry-pick all the easy
tickets.

Since instituting these changes, Bigtable SRE is meeting our
ticket response expectations more often, and our incoming ticket
volume has decreased, as shown in the graphs in Figure 4 (fur-
ther explained in the case study).

Our division of ticket duty and interrupt reduction project work
now looks like Figure 3.

In this new model, we rotate the ticket duty and interrupt
reduction project roles between sites once per quarter. In order
to ensure fairness, we rotate people into the ticketeer or inter-
rupt reduction rotation according to on-call rotations (e.g., on a
weekly basis).

The cost of handing off this new category of small to medium-
sized interrupt reduction projects from shift to shift means
that our new approach isn’t a substitute for undertaking more
substantial projects to reduce operational load. Substantive
projects are still important—not only for reducing toil in the long
term, but for career growth, as well. As such, they should still be
accounted for using existing planning and project management
processes. We also don’t recommend tasking a single person
with 12 one-week projects, as doing so would harvest low-hang-
ing fruit, but at an unfair cost to that person’s career growth.

Implementation Details
As we refine the details of our approach to interrupt reduction
projects, we’ve found that the following tactics work well for us.

Project Ideas
Project ideas for the interrupt reduction project on duty come
from two main sources:

◆◆ Current/past ticket handlers who file annoyances into a bug
hotlist as they resolve tickets

◆◆ Technical Leads (TLs) who have a high-level view of the service

Project Assignment and Handoff
There are generally many more project ideas than engineering
time to implement them, so the TL or someone with an overall
view of the service should sort the project list by impact. In the
interest of preserving autonomy among team members, we don’t
suggest assigning projects. Instead, let people choose from the

Figure 2: Splitting tickets between two people: the actual scenario Figure 3: Work division through smarter interrupt handling

60  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSADMIN
Interrupt Reduction Projects

top 10 projects in the list. If there is any bleed over from last
week’s project, the interrupt reduction project on duty should
finish that project first.

Handling Excess Ticket Load
If your team has more tickets than one person can handle, you
have two options for dealing with the excess load:

◆◆ Task the interrupt reduction project on duty with tickets for
one day per week.

◆◆ Decide to relax ticket response expectations for a period of
time, until the work pays off.

Overall Effects
Measurable Effects
We’ve found that most of the time, one dedicated ticket han-
dler can resolve all tickets, which frees up one person’s time for
interrupt reduction projects. This is one of the most significant
results of our process change, as it proves that some people
weren’t properly focused on tickets during their ticket duty
shifts.

We’ve reduced overall ticket volume, as shown in the case study
that follows (see Figure 4). As a result, we’re able to resolve the
smaller number of incoming tickets more quickly, although
velocity gains are somewhat countered by the increasing diffi-
culty of the tickets we receive—by providing our customers with
a better service, we’ve increased demand for help with complex
problems like improving performance.

We complete approximately three of these small strategic inter-
rupt reduction projects every four weeks.

Nooglers (new Googlers) training on the service spend less time
on boring or repetitive tickets and more time on interesting tick-
ets that actually create learning opportunities.

Less Measurable Effects
People complain less when they’re doing tickets. It feels like
we’re spending more time on difficult and rewarding tickets and
less time on simple or repetitive tickets.

Customers are happier about our ticket handling. Faster ticket
resolution helps build goodwill with our customers.

The tension between sites about the effort put into tickets
has disappeared, which has led to better overall cross-site
relationships.

Example Case Study: Ticket Funnel
In mid-2015, the Bigtable SRE Team was dealing with a high
load of customer tickets. The number of tickets opened per week
had increased by roughly 50% over the previous year, from 20+
to 30+ (see Figure 4), and we frequently complained that many
tickets could easily be handled by redirecting customers to auto-
mation or documentation. Building a simple ticket funnel system
to guide customers to appropriate automation or documentation
was a natural choice for our first interrupt reduction project.

Instead of directly creating a ticket, customers now work through
a simple Web interface where they traverse a decision tree. Non-
leaf nodes in the tree are represented as a list of questions linking
to child nodes, and leaf nodes do one of the following:

◆◆ Link to the relevant self-service automation or documentation.

◆◆ Provide a form that generates a customer ticket.

Figure 4: Tickets created per week

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 61

SYSADMIN
Interrupt Reduction Projects

By immediately pointing customers to relevant automation or
documentation, we both reduced the number of incoming tickets
and improved the quality of service for customers, who no longer
have to wait for a human to answer easily resolvable questions.
By asking for specific information based on the type of problem,
we eliminated an unnecessary round trip of requesting infor-
mation that could have been supplied up front. Now that this
infrastructure is in place, it’s easy to update the decision tree
with more questions and leaf nodes as we identify more common
requests and issues.

Although we’d been talking about undertaking this project for
two years, it ended up only taking about two weeks of work. As
such, the ticket funnel is a successful example of work that’s
enabled by the interrupt reduction projects approach: the project
was too large to complete on the spur of the moment, but not
large enough or important enough to be a standalone project
tracked on a longer timescale.

Once our solution was in place, it took a bit of time to reeducate
customers, who fully embraced the ticket funnel once they dis-
covered its utility. While measuring tickets that never got filed is
difficult, we do have some data that speaks to the ticket funnel’s
success:

◆◆ Figure 4 shows that the ticket creation rate dropped by roughly
half after we implemented the ticket funnel, from 30+ to 15+
per week. While we’ll never completely eliminate tickets, the
overall trend has most definitely reversed.

◆◆ Quarterly customer satisfaction surveys reveal an overall hap-
pier customer base.

◆◆ Anecdotally, we see far fewer tickets that can be resolved by
pointing customers at automation or documentation.

Applying This Strategy in Your Organization
Figuring Out a Strategy
In order to determine how to best apply a similar strategy at your
organization, consider the following series of questions.

How much time does your team have to work on interrupt
reduction projects?

◆◆ How much time do you allocate to tickets each week? e.g.,
1 person? 4 people?

◆◆ How much time do you actually spend working on tickets each
week? e.g., 1 person? 2.5 people?

Subtract bullet two from bullet one. If you’re left with signifi-
cantly less than 100% of one person’s time, you probably won’t
be able to make meaningful progress on interrupt reduction
projects using the slack from ticket duty. If this is the case, you
have two possible solutions:

◆◆ Spend less time on large projects.

◆◆ Spend less time on tickets.

If you choose the second option, you need to think about
implementation:

◆◆ Will you stop working on tickets entirely? Or will you postpone
working on a class of tickets until the automation to deal with
them is in place? How will this course of action affect your
customers?

◆◆ Do you have an expected service level for ticket response time
or resolution speed?

The nature of your customers (e.g., internal vs. external) greatly
affects not only the answers to these questions, but the expected
timeline and impact of the projects. The level of disruption that
customers will accept is proportional to the benefit they can
expect, so make sure to clearly communicate the motivations
for your actions, expected disruptions, timeline, and expected
benefits. Market realities will greatly constrain your tactics
when it comes to externally visible products, so work with prod-
uct management and marketing and sales to determine how to
accomplish your goals without severely impacting business.

Who will work on the interrupt reduction projects?

Make interrupt reduction projects part of the normal ticket duty
rotation, which we assume is fairly scheduled and distributed.
If that’s not the case, think carefully about who will work on
these projects. It’s important that the work be seen as valuable
by the team. Choose people who are enthusiastic or particularly
productive in order to create a good initial impression.

How will you convince your team to adopt this approach?

Here are some selling points you may be able to use or adapt:

◆◆ Each team member will spend 50% less time on tickets.

◆◆ Completing a small interrupt reduction project quickly and
seeing immediate impact creates a good deal of satisfaction.

◆◆ Interrupt reduction projects will improve the systems your
team uses on a daily basis.

◆◆ Eventually, your ticket load will decrease. The remaining
tickets will be issues that actually merit investigation, and
improvements to tooling will make some tickets easier to deal
with than they were previously.

How will you safeguard the time allocated for interrupt
reduction projects?

It’s tempting for people to ignore interrupt reduction projects
in favor of large projects, especially if those large projects
have external commitments or interest. Therefore, creating
accountability around interrupt reduction projects is important.
You might accomplish this by publishing objectives around
these projects, reporting on them regularly, tracking them,
or announcing interrupt reduction project velocity in regular
reports.

62  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

SYSADMIN
Interrupt Reduction Projects

Suggested Interrupt Reduction Projects
The following generic suggestions for interrupt reduction projects
should provide a substantial return on the time invested in them.

Identify the Sources of Your Toil
It may seem obvious, but before you can effectively reduce toil,
you need to understand the sources of your toil. Consider adding
metadata (e.g., cause, impact, time to fix) to tickets to help deter-
mine recurring issues and your biggest time sinks.

Improve Your Documentation
Many engineers are allergic to writing documentation, but docu-
mentation is a very low cost way to address customer needs and
improve ticket handling. It’s much easier to handle a ticket if the
process is documented, and documentation is a good first step
towards automating a process. If customers can find and use
good documentation, they won’t need to open a ticket.

Often, the blank page effect is the biggest impediment to writing
documentation: someone doesn’t know where to start, so they
don’t start. Provide a standard template for each type of docu-
mentation (customer facing, internal procedures, <your type
here>) to make getting started easier.

Pick the 10 Most Annoying Small Bugs and Fix Them
Your team should be creating lists of bugs for the rough edges,
shortcomings, and difficulties encountered in the course of
everyday work—otherwise those problems will never be fixed.
Pick the ten most annoying small bugs and fix them. Prefer-
ably, choose commonly encountered bugs, as people will notice
when they’re fixed. Consider choosing bugs related to one or
two systems, rather than scattered small improvements, so that
progress is significant and noticeable. Seeing improvements
encourages team members to file bugs, providing a ready source
of interrupt reduction projects.

Takeaways
If tickets/interrupts are an inevitable part of your team’s work-
load, be thoughtful in formulating a strategy to handle them. If
you don’t implement some type of strategy to proactively reduce
tickets, their volume is likely to spiral out of control and become
unsustainable in the medium and long term. It’s also important
to ensure that handling tickets doesn’t constantly disrupt the
cognitive flow state of your engineers.

Our recommendations for approaching tickets/interrupts, which
have been implemented by multiple storage-related services at
Google, include four concrete components:

◆◆ Centralize your ticket load, either onto engineers who are
already expecting interruptions (e.g., primary or secondary on-
call) or to a dedicated ticket duty rotation.

◆◆ Track ideas for small interrupt reduction projects that will
reduce toil.

◆◆ Put a framework in place that reserves time for small (20–30
hours) proactive projects.

◆◆ Treat tickets and small proactive interrupt reduction projects
as separate rotations, distributed among team members and
sites on a regular basis.

Acknowledgments
Many thanks to Vladimir Rusinov, who invested heroic effort in
analyzing and fixing the root causes of customer tickets, and to
Todd Underwood and Dave O’Connor for their input in writing
this article.

References
[1] B. Beyer, C. Jones, J. Petoff, and N. Murphy, Site Reliability
Engineering: How Google Runs Production Systems (O’Reilly
Media, 2016).

[2] B. Beyer, B. Gleason, D. O’Connor, and V. Rau, “Invent
More, Toil Less,” ;login:, vol. 41, no. 3 (Fall 2016): https://
www.usenix.org/publications/login/fall2016/beyer.

[3] Flow: https://en.wikipedia.org/wiki/Flow_(psychology).

SRECON17 AMERICAS
MARCH 13–14 , 20 1 7 • SAN FRANCISCO, CA , USA
w w w.usenix .org/srecon1 7amer icas
The full program and registration will be available in January 2017.

SRECON17 EUROPE /MIDDL E E AS T/AFRICA
AUGUST 30–SEPTEMBER 2 , 20 1 7 • DUBL IN , IREL AND
w w w.usenix .org/srecon1 7europe

SRECON17 ASIA /AUS T R ALIA
MAY 22–24 , 20 1 7 • SINGAPORE
w w w.usenix .org/srecon1 7asia

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering,
and working with complex distributed systems at scale. It strives to challenge both those new
to the pro fession as well as those who have been involved in it for decades. The conference has
a culture of critical thought, deep technical insights, continuous improvement, and innovation.

64  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS
Much maligned and misunderstood, metaclasses might be one

of Python’s most useful features. On the surface, it might not be
clear why this would be the case. Just the name “metaclass” alone

is enough to conjure up an image of swooping manta rays and stinging bats
attacking your coworkers in a code review. I’m sure that there are also some
downsides, but metaclasses really are a pretty useful thing to know about
for all sorts of problems of practical interest to systems programmers. This
includes simplifying the specification of network protocols, parsers, and
more. In this installment, we’ll explore the practical side of metaclasses and
making Python do some things you never thought possible. Note: This article
assumes the use of Python 3.

When I was first learning Python 20 years ago, I remember taking a trip to attend the Python
conference. At that time, it was a small affair with just 50 or 60 enthusiastic programmers.
I also remember one presentation in particular—the one that proposed the so-called “meta-
class hack” for Python. There were a lot of frightened stares during that presentation and to
be honest, it didn’t make a whole lot of sense to me at the time. Some short time later, meta-
classes became known as Python’s “killer joke” in reference to a particular Monty Python
sketch. Nobody was able to understand them without dying apparently.

Flash forward to the present and I find myself at home writing some Python code to interact
with the game Minecraft. I’m buried in a sea of annoying low-level network protocol details.
The solution? Metaclasses. In an unrelated project, I find myself modernizing some parsing
tools I wrote about 15 years ago. Once again, I’m faced with a problem of managing lots of fid-
dly details. The solution? Metaclasses again. Needless to say, I’m thinking that metaclasses
are actually kind of cool—maybe even awesome.

That said, metaclasses have never really been able to shake their “killer joke” quality in the
Python community. They involve defining objects with the “class” statement, and inheri-
tance is involved. Combine that with the word “meta” and surely it’s just going to be some
kind of icky object-oriented monstrosity birthed from the bowels of a Java framework or
something. This is really too bad and misses the point.

In this article, I’m going to take a stab at rectifying that situation. We’ll take a brief look at
what happens when you define a class in Python, show what a metaclass is, and describe how
you can use this newfound knowledge to practical advantage with an example.

Defining Classes
Most Python programmers are familiar with the idea of defining and using a class. One use
of classes is to help you organize code by bundling data and functions together. For example,
instead of having separate data structures and functions like this:

p = { ‘x’: 2, ‘y’: 3 }

def move(p, dx, dy):

 p[‘x’] += dx

 p[‘y’] += dy

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

In Praise of Metaclasses!
D A V I D B E A Z L E Y

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 65

COLUMNS
In Praise of Metaclasses!

a class lets you glue them together in a more coherent way:

class Point(object):

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def move(self, dx, dy):

 self.x += dx

 self.y += dy

Another use of classes is as a code-reuse tool. This is common
in libraries and frameworks. For example, a library will provide
a base set of code for you to use and then you extend it with your
own functionality via inheritance. For example, here is some
code using the socketserver module in the standard library:

from socketserver import TCPServer, BaseRequestHandler

class EchoHandler(BaseRequestHandler):

 def handle(self):

 while True:

 data = self.request.recv(1024)

 if not data:

 break

 self.request.sendall(data)

serv = TCPServer((‘’, 25000), EchoHandler)

serv.serve_forever()

There is a third use of classes, however, that is a bit more inter-
esting. Step back for a moment and think about what’s happen-
ing when you define a class. Essentially, a class serves as an
enclosing environment for the statements that appear inside.
Within this environment, you actually have a lot of control over
how Python behaves—you can bend the rules and make Python
do things that are not normally possible. For example, altering
definitions, validating code, or building little domain-specific
languages. A good example can be found in defining an enum in
the standard library [1]. Here is an example:

from enum import Enum

class State(Enum):

 OPEN = 1

 CLOSED = 2

If you start using this class and start thinking about it, you’ll
find that it has some unusual behavior. For example, the class
variables OPEN and CLOSED that were defined as integers no
 longer possess those types:

>>> State.OPEN

<State.OPEN: 1>

>>> type(State.OPEN)

<enum ‘State’>

>>> isinstance(State.OPEN, int)

False

>>>

Something has implicitly altered the class body in some way.
You’ll also find that Enum classes don’t allow duplicate defini-
tions. For example, this produces an error:

class State(Enum):

 OPEN = 1

 CLOSED = 2

 OPEN = 3

Traceback (most recent call last):

...

TypeError: Attempted to reuse key: ‘OPEN’

If you give different names to the same value, you get an alias.

class State(Enum):

 OPEN = 1

 CLOSED = 2

 SHUTDOWN = 2

>>> State.CLOSED

<State.CLOSED: 2>

>>> State.SHUTDOWN

<State.CLOSED: 2>

>>> State.CLOSED is State.SHUTDOWN

True

>>>

If you try to inherit from an enumeration, you’ll find that it’s not
allowed:

class NewState(State):

 PENDING = 3

Traceback (most recent call last):

...

TypeError: Cannot extend enumerations

Finally, attempting to create instances of an Enum results in a
kind of type-cast rather than the creation of a new object. For
example:

>>> s = State(2)

>>> s

<State.CLOSED>

>>> s is State.CLOSED

True

>>>

So something is not only changing the body of the class, it’s
monitoring the definition process itself. It’s bending the normal
rules of assignment. It’s looking for errors and enforcing rules.
Even the rules of instance creation and memory allocation have
apparently changed.

These unusual features of Enum are an example of a metaclass in
action—metaclasses are about changing the very meaning of a
class definition itself. A metaclass can make a class do interest-
ing things all while hiding in the background.

66  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS
In Praise of Metaclasses!

Metaclasses
Now that we’ve seen an example of a metaclass in action, how do
you plug into this machinery yourself? The key insight is that a
class definition is itself an instance of an object called type. For
example:

class Spam(object):

 def yow(self):

 print(‘Yow!’)

>>> type(Spam)

<class ‘type’>

>>>

The type of a class is its metaclass. So type is the metaclass of
Spam. This means that type is responsible for everything associ-
ated with the definition of the Spam class.

Now suppose you wanted to alter what happens in class cre-
ation? Here are the neat, head-exploding tricks that you can use
to hook into it. This is going to look rather frightening at first,
but it will make much more sense once you try it afterwards.
Official documentation on the process can be found at [2].

class mytype(type):

 @classmethod

 def __prepare__(meta, clsname, bases):

 print(‘Preparing class dictionary:’, clsname, bases)

 return super().__prepare__(clsname, bases)

 @staticmethod

 def __new__(meta, clsname, bases, attrs):

 print(‘Creating class:’, clsname)

 print(‘Bases:’, bases)

 print(‘Attributes:’, list(attrs))

 return super().__new__(meta, clsname, bases, attrs)

 def __init__(cls, clsname, bases, attrs):

 print(‘Initializing class:’, cls)

 super().__init__(clsname, bases, attrs)

 def __call__(cls, *args, **kwargs):

 print(‘Creating an instance of’, cls)

 return super().__call__(*args, **kwargs)

In this code, we’ve subclassed type and installed hooks onto a
few important methods that will be described shortly. To use
this new type as a metaclass, you need to define a new top-level
object like this:

Top-level class

class myobject(metaclass=mytype):

 pass

After you’ve done that, using this new metaclass requires you to
inherit from myobject like this:

class Spam(myobject):

 print(‘—Starting:’, locals())

 def yow(self):

 print(‘Yow!’)

 print(‘—Ending:’, locals())

When you do this, you’re going to see output from the various
methods:

Preparing class dictionary: Spam (<class ‘__main__.myobject’>,)

—Starting: {‘__qualname__’: ‘Spam’, ‘__module__’: ‘__main__’}

—Ending: {‘__qualname__’: ‘Spam’, ‘__module__’: ‘__main__’,

‘yow’: <function Spam.yow at 0x10e6cc9d8>}

Creating class: Spam

Bases: (<class ‘__main__.myobject’>,)

Attributes: [‘__qualname__’, ‘__module__’, ‘yow’]

Initializing class: <class ‘__main__.Spam’>

Keep in mind, you have not created an instance of Spam. All of
this is triggered automatically merely by the definition of the
Spam class. An end user will see that the class Spam is using
inheritance, but the use of a metaclass is not apparent in the
specification. Let’s talk about the specifics.

Before anything happens at all, you will see the __prepare__()
method fire. The purpose of this method is to create and prepare
the dictionary that’s going to hold class members. This is the
same dictionary that locals() returns in the class body. But
how does Python know to use the __prepare__() method of
our custom type? This is determined by looking at the type of
the parent of Spam. In this case myobject is the parent, so this is
what happens:

>>> ty = type(myobject)

>>> ty

<class ‘meta.mytype’>

>>> d = ty.__prepare__(‘Spam’, (myobject,))

Preparing class dictionary: Spam (<class ‘__main__.myobject’>,)

>>> d

{}

>>>

Once the class dictionary has been created, it’s populated with
a few bits of name information, including the class name and
enclosing module.

>>> d[‘__qualname__’] = ‘Spam’

>>> d[‘__module__’] == __name__

>>>

Afterwards, the body of the Spam class executes in this diction-
ary. You will see new definitions being added. Upon conclusion,
the dictionary is fully populated with definitions. The print
statements in the top and bottom of the class are meant to show
the state of the dictionary and how it changes.

After the class body has executed, the __new__() method of
the metaclass is triggered. This method receives information
about the class, including the name, bases, and populated class
dictionary. If you wanted to write code that did anything with
this data prior to creating the class, this is the place to do it.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 67

COLUMNS
In Praise of Metaclasses!

After __new__() is complete, the __init__() method fires. This
method is given the newly created class as an argument. Again,
this is an opportunity to change parts of the class. The main dif-
ference between __new__() and __init__() is that __new__()
executes prior to class creation, __init__() executes after class
creation.

The __call__() method of a metaclass concerns instance cre-
ation. For example:

>>> s = Spam()

Creating an instance of <class ‘__main__.Spam’>

>>> s.yow()

Yow!

>>>

“Yow” is right! You have just entered a whole new realm of magic.
The key idea is that you can put your fingers on the knobs of class
definition and instance creation—and you can start turning the
knobs. Let’s do it.

Example: Building a Text Tokenizer
Let’s say you were building a text parser or compiler. One of the
first steps of parsing is to tokenize input. For example, suppose
you had an input string like this:

text = ‘a = 3 + 4 * 5’

And you wanted to tokenize it in a sequence of tuples like this:

[(‘NAME’, ‘a’), (‘ASSIGN’, ‘=’), (‘NUM’, 3),

 (‘PLUS’, ‘+’), (‘NUM’, 4), (‘TIMES’, ‘*’), (‘NUM’, 5)]

One way to do this is write low-level code using regular expres-
sions and the re module. For example:

tok.py

import re

Patterns for the different tokens

NAME = r’(?P<NAME>[a-zA-Z_][a-zA-Z0-9_]*)’

NUM = r’(?P<NUM>\d+)’

ASSIGN = r’(?P<ASSIGN>=)’

PLUS = r’(?P<PLUS>\+)’

TIMES = r’(?P<TIMES>*)’

ignore = r’(?P<ignore>\s+)’

Master re pattern

pat = re.compile(‘|’.join([NAME, NUM, ASSIGN, PLUS, TIMES,

ignore]))

Tokenization function

def tokenize(text):

 index = 0

 while index < len(text):

 m = pat.match(text, index)

 if m:

 tokname = m.lastgroup

 toktext = m.group()

 if tokname != ‘ignore’:

 yield (tokname, toktext)

 index = m.end()

 else:

 raise SyntaxError(‘Bad character %r’ % text[index])

if __name__ == ‘__main__’:

 text = ‘a = 3 + 4 * 5’

 for tok in tokenize(text):

 print(tok)

Although there’s not a lot of code, it’s kind of low-level and nasty
looking. For example, having to use named regex groups, form-
ing the master pattern, and so forth. Let’s look at a completely
different formulation using metaclasses. Define the following
metaclass:

from collections import OrderedDict

import re

class tokenizemeta(type):

 @classmethod

 def __prepare__(meta, name, bases):

 return OrderedDict()

 @staticmethod

 def __new__(meta, clsname, bases, attrs):

 # Make named regex groups for all strings in the class body

 patterns = [‘(?P<%s>%s)’ % (key, val) for key, val in attrs

.items()

 if isinstance(val, str)]

 # Make the master regex pattern

 attrs[‘_pattern’] = re.compile(‘|’.join(patterns))

 return super().__new__(meta, clsname, bases, attrs)

This metaclass inspects the class body for strings, makes named
regex groups out of them, and forms a master regular expression.
The use of an OrderedDict is to capture definition order—some-
thing that matters for proper regular expression matching.

Now, define a base class with the general tokenize() method:

class Tokenizer(metaclass=tokenizemeta):

 def tokenize(self, text):

 index = 0

 while index < len(text):

 m = self._pattern.match(text, index)

 if m:

 tokname = m.lastgroup

 toktext = m.group()

 if not tokname.startswith(‘ignore’):

 yield (tokname, toktext)

 index = m.end()

 else:

 raise SyntaxError(‘Bad character %r’ % text[index])

Now why did we go through all of this trouble? It makes the
specification of a tokenizer easy. Try this:

68  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS
In Praise of Metaclasses!

class Simple(Tokenizer):

 NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’

 NUM = r’\d+’

 ASSIGN = r’=’

 PLUS = r’\+’

 TIMES = r’*’

 ignore = r’\s+’

Use the tokenizer

text = ‘a = 3 + 4 * 5’

tokenizer = Simple()

for tok in tokenizer.tokenize(text):

 print(tok)

That’s pretty cool. Using metaclasses, you were able to make a little
specification language for tokenizing. The user of the Tokenizer
class just gives the token names and regular expressions. The meta-
class machinery behind the scenes takes care of the rest.

Adding Class Dictionary Magic
You can do even more with your tokenizer class if you’re willing
to stretch the definition of a dictionary. Let’s subclass Ordered-

Dict and change assignment slightly so that it detects duplicates:

class TokDict(OrderedDict):

 def __setitem__(self, key, value):

 if key in self and isinstance(key, str):

 raise KeyError(‘Token %s already defined’ % key)

 else:

 super().__setitem__(key, value)

class tokenizemeta(type):

 @classmethod

 def __prepare__(meta, name, bases):

 return TokDict()

 ...

In this new version, a specification with a duplicate pattern
name creates an error:

class Simple(Tokenizer):

 NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’

 NUM = r’\d+’

 ASSIGN = r’=’

 PLUS = r’\+’

 TIMES = r’*’

 NUM = r’\d+’

 ignore = r’\s+’

Traceback (most recent call last):

 ...

KeyError: ‘Token NUM already defined’

You could stretch it a bit further, though. This version allows
optional action methods to be defined for any of the tokens:

from collections import OrderedDict

import re

class TokDict(OrderedDict):

 def __init__(self):

 super().__init__()

 self.actions = {}

 def __setitem__(self, key, value):

 if key in self and isinstance(key, str):

 if callable(value):

 self.actions[key] = value

 else:

 raise KeyError(‘Token %s already defined’ % key)

 else:

 super().__setitem__(key, value)

class tokenizemeta(type):

 @classmethod

 def __prepare__(meta, name, bases):

 return TokDict()

 @staticmethod

 def __new__(meta, clsname, bases, attrs):

 # Make named regex groups for all strings in the class body

 patterns = [‘(?P<%s>%s)’ % (key, val) for key, val in

attrs.items() if isinstance(val, str)]

 # Make the master regex pattern

 attrs[‘_pattern’] = re.compile(‘|’.join(patterns))

 # Record action functions (if any)

 attrs[‘_actions’] = attrs.actions

 return super().__new__(meta, clsname, bases, attrs)

class Tokenizer(metaclass=tokenizemeta):

 def tokenize(self, text):

 index = 0

 while index < len(text):

 m = self._pattern.match(text, index)

 if m:

 tokname = m.lastgroup

 toktext = m.group()

 if not tokname.startswith(‘ignore’):

 if tokname in self._actions:

 yield (tokname, self._actions[tokname](self,

toktext))

 else:

 yield (tokname, toktext)

 index = m.end()

 else:

 raise SyntaxError(‘Bad character %r’ % text[index])

This last one might require a bit of study, but it allows you to
write a tokenizer like this:

class Simple(Tokenizer):

 NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’

 NUM = r’\d+’

 ASSIGN = r’=’

 PLUS = r’\+’

 TIMES = r’*’

 ignore = r’\s+’

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 69

COLUMNS
In Praise of Metaclasses!

 # Convert NUM tokens to ints

 def NUM(self, text):

 return int(text)

 # Uppercase all names (case-insensitivity)

 def NAME(self, text):

 return text.upper()

Example

text = ‘a = 3 + 4 * 5’

tokenizer = Simple()

for tok in tokenizer.tokenize(text):

 print(tok)

If it’s working, the final output should appear like this:

(‘NAME’, ‘A’)

(‘ASSIGN’, ‘=’)

(‘NUM’, 3)

(‘PLUS’, ‘+’)

(‘NUM’, 4)

(‘TIMES’, ‘*’)

(‘NUM’, 5)

Notice how the names have been uppercased and numbers con-
verted to integers.

The Big Picture
By now, you’re either staring at amazement or in horror at what
we’ve done. In the big picture, one of the great powers of meta-
classes is that you can use them to turn class definitions into
a kind of small domain-specific language (DSL). By doing this,
you can often simplify the specification of complex problems.
Tokenization is just one such example. However, it’s moti-
vated by a long history of DSLs being used for various facets of
software development (e.g., lex, yacc, RPC, interface definition
languages, database models, etc.).

If you’ve used more advanced libraries or frameworks, chances
are you’ve encountered metaclasses without even knowing it.
For example, if you’ve ever used the Django Web framework, you
describe database models using classes like this [3]:

from django.db import models

class Musician(models.Model):

 first_name = models.CharField(max_length=50)

 last_name = models.CharField(max_length=50)

 instrument = models.CharField(max_length=100)

class Album(models.Model):

 artist = models.ForeignKey(Musician, on_delete=models

.CASCADE)

 name = models.CharField(max_length=100)

 release_date = models.DateField()

 num_stars = models.IntegerField()

This involves metaclasses. It might not be obvious, but there is a
whole set of code sitting behind the models.Model base class that
is watching definitions and using that information to carry out
various magic behind the scenes. A benefit of using a metaclass
is that it can make it much easier for an end user to write speci-
fications. They can write simple definitions and not worry so
much about what’s happening behind the scenes.

A Contrarian View
A common complaint lodged against metaclasses is that they
introduce too much implicit magic into your program—violating
the “Explicit is better than implicit” rule from the Zen of Python.
To be sure, you don’t actually need to use a metaclass to solve
the problem presented here. For example, we possibly could have
written a Tokenizer with more explicit data structures using a
class definition like this:

class Simple(Tokenizer):

 tokens = [

 (‘NAME’, r’[a-zA-Z_][a-zA-Z0-9_]*’),

 (‘NUM’, r’\d+’),

 (‘ASSIGN’, r’=’),

 (‘PLUS’, r’\+’),

 (‘TIMES’, ‘*’),

 (‘ignore’, r’\s+’)

]

 actions = {

 ‘NAME’: lambda text: text.upper(),

 ‘NUM’: lambda text: int(text)

 }

It’s not much more code than the metaclass version, but it
frankly forces me to squint my eyes more than usual. Of course,
they also say that beauty is in the eye of the beholder. So your
mileage might vary.

Final Words
In parting, be on the lookout for metaclass magic the next time
you use an interesting library or framework—they’re often out
there hiding in plain sight. If you’re writing your own code and
faced with problems involving complex or domain-specific
specifications, metaclasses can be a useful tool for simplifying it.

References
[1] enum module: https://docs.python.org/3/library/enum
.html.

[2] Customizing class creation (official documentation):
https://docs.python.org/3/reference/datamodel.html
#customizing-class-creation.

[3] Django models: https://docs.djangoproject.com/en/1.10
/topics/db/models/.

70  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS

Practical Perl Tools
The Whether Man

D A V I D N . B L A N K - E D E L M A N

There’s a character in The Phantom Tollbooth by Norton Juster (one of
my favorite books) called the Whether Man. He introduces himself
like this:

“I’m the Whether Man, not the Weather Man, for after all it’s more important to know
whether there will be weather than what the weather will be.”

In this column we’re going to see if we can indeed bring weather to our programs. To do so,
we’re going to make use of the API provided by The Dark Sky Company, the people behind the
popular app of the same name (and also the people who provided the API service forecast.io,
renamed as of this week to the Dark Sky API). The API service they provide is a commercial
one, so if you plan to build something that will hit their API more than a thousand times a
day, you will need to pay. But for the experiments in this column, we should be pretty safe
from the $0.0001 per forecast fee.

Two Flavors of API
The Dark Sky service offers two kinds of API, Forecast and the Time Machine (really). The
first kind provides just a single forecast for next week’s weather, the second will give us the
opportunity to query for the conditions at an arbitrary time in the past or the future.

For both of these APIs, the actual method of querying and working with the data will be the
same. Before we do anything, we’ll need to sign up for a secret key. This key has to be sent
along with every request we make. It’s “secret” in that it shouldn’t be distributed with your
code. It’s the thing that ties usage of the API back to your account (so you can pay for the
service as needed). I’ll be X’ing it out in all of the same code in this column.

Once we have a key, we can make an HTTPS request to the Dark Sky API endpoint. It is going
to respond with a blob of (well-formed) JSON that we’ll have to parse. Nothing special com-
pared to our previous columns. Though there’s an existing module for the previous name of
the API (Forecast::IO), the tasks are so easy we’ll just use more generic modules for what we
need. Let’s do some sample querying with both API types.

Whoops, one small complication that is worth mentioning: when you query either API, you
will need to be specific about where you want to know about the weather. Whether there is
weather is key but so is where is that weather. The Dark Sky API needs you to specify the
latitude and longitude of the place before it can tell you the weather information for that
place. The API will not geocode for you (i.e., translate an address to a latitude/longitude pair).
There are a number of Web sites that will do small amounts of geocoding for you, but if you
require more than a handful of translations, you will want to use a separate service for this
part. We’ve talked about geocoding using Perl in this column before so some past columns in
the archives are likely to be helpful. For this column I’m just going to use the coordinates of
Boston (42.3600825, -71.0588801).

David Blank-Edelman is the
Technical Evangelist at David
Blank-Edelman is the Technical
Evangelist at Apcera (the
comments/views here are

David’s alone and do not represent Apcera
/Ericsson). He has spent close to 30 years
in the system administration/DevOps/SRE
field in large multiplatform environments
including Brandeis University, Cambridge
Technology Group, MIT Media Laboratory,
and Northeastern University. He is the author
of the O’Reilly Otter book Automating System
Administration with Perl and is a frequent invited
speaker/organizer for conferences in the field.
David is honored to serve on the USENIX
Board of Directors. He prefers to pronounce
Evangelist with a hard ‘g’.
dnblankedelman@gmail.com

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 71

COLUMNS
Practical Perl Tools: The Whether Man

Give Me a Forecast
According to the Dark Sky docs, the format of the Forecast API
is just:

https://api.darksky.net/forecast/[key]/[latitude],[longitude]

Let’s query that URL and dump the data we get back. For
fun I’m using the client that ships with Mojolicious and
Data::TreeDumper which has purdy data structure dumps:

note IO::Socket::SSL has to be installed for

Mojo::UserAgent TLS support. It will fail silently

if you don’t

use Mojo::UserAgent;

use Data::TreeDumper;

my $API_KEY = ‘XXXXXXXXXXXXXXXXXXXX’;

my $location = ‘42.3600825,-71.0588801’;

my $endpoint = ‘https://api.darksky.net/forecast’;

my $ua = Mojo::UserAgent->new;

my $forecast =

 $ua->get($endpoint . ‘/’ . $API_KEY . ‘/’ . $location)->

 res->json;

print “Powered by Dark Sky (https://darksky.net/poweredby/)\n”;

print DumpTree($forecast, ‘forecast’, DISPLAY_ADDRESS => 0);

The Mojo::UserAgent call performs the GET (as long as we have
IO::Socket::SSL installed; see the comment). We then take the
result (->res) and parse the JSON we get back (->json). The end
result is we get back a Perl data structure we can then access or
manipulate to our heart’s content.

Here’s a dump of that data structure. This is an excerpt of the
dump where I have removed all but the first instance of each kind
of info (for example, just the first hour, not all of them). We get
back lots of data (though if we didn’t want all of this, there is an
optional “exclude” flag we could pass, but where’s the fun in that?):

Powered by Dark Sky (https://darksky.net/poweredby/)

forecast

|- currently

| |- apparentTemperature = 72.96

| |- cloudCover = 0.18

| |- dewPoint = 56.87

| |- humidity = 0.57

| |- icon = clear-day

| |- nearestStormBearing = 229

| |- nearestStormDistance = 99

| |- ozone = 261.5

| |- precipIntensity = 0

| |- precipProbability = 0

| |- pressure = 1018.92

| |- summary = Clear

| |- temperature = 72.96

| |- time = 1474582497

| |- visibility = 10

| |- windBearing = 116

| -̀ windSpeed = 4.8

|- daily

| |- data

| | |- 0

| | | |- apparentTemperatureMax = 77.14

| | | |- apparentTemperatureMaxTime = 1474560000

| | | |- apparentTemperatureMin = 61.63

| | | |- apparentTemperatureMinTime = 1474542000

| | | |- cloudCover = 0.13

| | | |- dewPoint = 56.15

| | | |- humidity = 0.64

| | | |- icon = partly-cloudy-night

| | | |- moonPhase = 0.72

| | | |- ozone = 262.42

| | | |- precipIntensity = 0

| | | |- precipIntensityMax = 0

| | | |- precipProbability = 0

| | | |- pressure = 1020.31

| | | |- summary = Partly cloudy in the evening.

| | | |- sunriseTime = 1474540400

| | | |- sunsetTime = 1474584172

| | | |- temperatureMax = 77.14

| | | |- temperatureMaxTime = 1474560000

| | | |- temperatureMin = 61.63

| | | |- temperatureMinTime = 1474542000

| | | |- time = 1474516800

| | | |- visibility = 9.9

| | | |- windBearing = 127

| | | -̀ windSpeed = 1.27

| |- icon = rain

| -̀ summary = Light rain tomorrow and Saturday, with

temperatures

falling to 63°F on Monday.

|- flags

| |- darksky-stations

| | -̀ 0 = KBOX

| |- isd-stations

| | |- 0 = 725090-14739

| |- lamp-stations

| | |- 0 = KASH

| |- madis-stations

| | |- 0 = AV085

| |- sources

| | |- 0 = darksky

| -̀ units = us

|- hourly

72  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS
Practical Perl Tools: The Whether Man

| |- data

| | |- 0

| | | |- apparentTemperature = 73.52

| | | |- cloudCover = 0.16

| | | |- dewPoint = 56.82

| | | |- humidity = 0.56

| | | |- icon = clear-day

| | | |- ozone = 261.61

| | | |- precipIntensity = 0

| | | |- precipProbability = 0

| | | |- pressure = 1018.98

| | | |- summary = Clear

| | | |- temperature = 73.52

| | | |- time = 1474581600

| | | |- visibility = 10

| | | |- windBearing = 109

| | | -̀ windSpeed = 4.54

| |- icon = rain

| -̀ summary = Drizzle tomorrow evening.

|- latitude = 42.3600825

|- longitude = -71.0588801

|- minutely

| |- data

| | |- 0

| | | |- precipIntensity = 0

| | | |- precipProbability = 0

| | | -̀ time = 1474582440

| |- icon = clear-day

| -̀ summary = Clear for the hour.

|- offset = -4

-̀ timezone = America/New_York

The initial “Powered by” header is just my attempt
to keep to the letter of the terms of service at
https://darksky.net/dev/docs/terms#attribution.

There are a few important details that might not be obvious
just looking at the dump above. First, the values we are getting
back are in US-standard notation (e.g., Fahrenheit). This is the
default, although we can send in a query parameter request-
ing the response be in metric units (or even automatically in
the units of the place). There’s a similar choice available for
the human-readable summary fields above. Second, the time
information we get back is in UNIX-standard time (i.e., seconds
from the epoch). To translate that to local time, we could “scalar
localtime $value.”

The docs at https://darksky.net/dev/docs have the full details
of the data we dumped. To access just parts of it, we could use
simple code like this:

print “On “ . scalar localtime(

 $forecast->{currently}->{time}) . “ it was:\n”;

print $forecast->{currently}->{temperature} . “ degrees F\n”;

print(($forecast->{currently}->{humidity} * 100)

 . “% relative humidity\n”);

Hop into My Time Machine
Let’s move on to the second API, the “Time Machine” (cue the
theremin). This API’s request format is very similar to the last
one (same endpoint and everything), it just adds the field you’d
expect:

https://api.darksky.net/forecast/[key]/

[latitude],[longitude],[time]

The time field is either in the UNIX-standard time format we
mentioned before or you can use this format:

[YYYY]-[MM]-[DD]T[HH]:[MM]:[SS][timezone]

(where time zone is optional).

Our code looks very similar:

use Mojo::UserAgent;

use Data::TreeDumper;

my $API_KEY = ‘XXXXXXXXX’;

my $location = ‘42.3600825,-71.0588801’;

my $endpoint = ‘https://api.darksky.net/forecast’;

my $exclude = ‘currently,minutely,hourly,alerts,flags’;

tomorrow

my $time = time + (24 * 60 * 60);

my $ua = Mojo::UserAgent->new;

my $forecast =

 $ua->get($endpoint . ‘/’

 . $API_KEY

 . ‘/’

 . $location

 . ‘,’ . $time

 . ‘?exclude=’ . $exclude)->res->json;

print “Powered by Dark Sky (https://darksky.net/poweredby/)\n”;

print DumpTree($forecast, ‘forecast’, DISPLAY_ADDRESS => 0);

This code shows the daily info for tomorrow’s forecast (because
we’ve excluded the other portions we didn’t want to see):

Powered by Dark Sky (https://darksky.net/poweredby/)

forecast

|- daily

| -̀ data

| -̀ 0

| |- apparentTemperatureMax = 67.33

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 73

COLUMNS
Practical Perl Tools: The Whether Man

| |- apparentTemperatureMaxTime = 1474747200

| |- apparentTemperatureMin = 55.72

| |- apparentTemperatureMinTime = 1474772400

| |- cloudCover = 0.33

| |- dewPoint = 46.6

| |- humidity = 0.6

| |- icon = partly-cloudy-night

| |- moonPhase = 0.79

| |- ozone = 302.59

| |- precipIntensity = 0.0074

| |- precipIntensityMax = 0.0965

| |- precipIntensityMaxTime = 1474693200

| |- precipProbability = 0.64

| |- precipType = rain

| |- pressure = 1017.92

| |- summary = Mostly cloudy in the morning.

| |- sunriseTime = 1474713327

| |- sunsetTime = 1474756758

| |- temperatureMax = 67.33

| |- temperatureMaxTime = 1474747200

| |- temperatureMin = 55.72

| |- temperatureMinTime = 1474772400

| |- time = 1474689600

| |- visibility = 9.76

| |- windBearing = 335

| -̀ windSpeed = 8.82

|- latitude = 42.3600825

|- longitude = -71.0588801

|- offset = -4

-̀ timezone = America/New_York

To wrap this up, let’s do something fun with the time machine
API. There’s a character in the Flintstones cartoon that always
had a cloud following him around. If you ever wondered if the
same thing happened to you, we could query the API to find out
if the weather has been consistent for each of your birthdays.
Here’s some code that does this:

use Mojo::UserAgent;

use Text::Graph;

my $API_KEY = ‘XXXXXXXXXXXXX’;

my $location = ‘42.3600825,-71.0588801’;

my $endpoint = ‘https://api.darksky.net/forecast’;

my $exclude = ‘currently,minutely,hourly,alerts,flags’;

my $birth_year = 1970;

my $birth_date = “08-08”;

my $current_year = 1900 + (localtime)[5];

my $collection;

my $ua = Mojo::UserAgent->new;

print “Powered by Dark Sky (https://darksky.net/poweredby/)\n”;

for my $year ($birth_year .. $current_year) {

 my $forecast =

 $ua->get($endpoint . ‘/’

 . $API_KEY . ‘/’

 . $location . ‘,’

 . “$year-${birth_date}T12:01:01”

 . ‘?exclude=’

 . $exclude)->res->json;

 print “$year:

 $forecast->{daily}->{data}->[0]->{summary}\n”;

 $collection{ $forecast->{daily}->{data}->[0]->{icon} }++;

}

my $graph = Text::Graph->new(‘Bar’);

print “\n”,$graph->to_string(\%collection);

In case you are curious, that’s not actually my birthday. And
yes, this isn’t quite accurate because I haven’t been at those
coordinates my entire life. But if you can suspend disbelief for a
moment, check out the output:

Powered by Dark Sky (https://darksky.net/poweredby/)

1970: Partly cloudy throughout the day.

1971: Mostly cloudy throughout the day.

1972: Partly cloudy until evening.

1973: Mostly cloudy throughout the day.

1974: Mostly cloudy throughout the day.

1975: Rain until afternoon, starting again in the evening.

1976: Heavy rain until evening, starting again overnight.

1977: Mostly cloudy throughout the day.

1978: Mostly cloudy throughout the day.

1979: Breezy in the morning and mostly cloudy throughout the

day.

1980: Mostly cloudy starting in the afternoon.

1981: Rain overnight.

1982: Mostly cloudy throughout the day.

1983: Mostly cloudy in the morning.

1984: Mostly cloudy throughout the day.

1985: Rain until afternoon.

1986: Mostly cloudy throughout the day.

1987: Light rain starting in the afternoon, continuing until

evening.

1988: Partly cloudy throughout the day.

1989: Partly cloudy until evening.

1990: Heavy rain until afternoon.

1991: Mostly cloudy throughout the day.

1992: Mostly cloudy throughout the day.

1993: Partly cloudy throughout the day.

1994: Partly cloudy until evening.

1995: Partly cloudy overnight.

74  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS
Practical Perl Tools: The Whether Man

1996: Foggy in the morning.

1997: Rain overnight.

1998: Partly cloudy until evening.

1999: Mostly cloudy throughout the day.

2000: Mostly cloudy starting in the afternoon, continuing until

evening.

2001: Partly cloudy until afternoon.

2002: Partly cloudy starting in the afternoon.

2003: Rain in the morning and afternoon.

2004: Mostly cloudy starting in the afternoon.

2005: Partly cloudy in the morning.

2006: Partly cloudy throughout the day.

2007: Rain in the morning.

2008: Heavy rain in the evening.

2009: Partly cloudy starting in the afternoon, continuing until

evening.

2010: Partly cloudy throughout the day.

2011: Rain starting in the afternoon, continuing until evening.

2012: Partly cloudy throughout the day.

2013: Light rain in the morning.

2014: Partly cloudy starting in the afternoon, continuing until

evening.

2015: Partly cloudy in the afternoon.

2016: Partly cloudy until evening.

fog :

partly-cloudy-day :*****************************

partly-cloudy-night :**

rain :***********

wind :

I threw in the last part for fun. It is a graph of the icons a weather
program might show (another kind of summary, really) for the
day. Looks like I’ve lived a pretty “partly cloudy” life. I’m curious
to see what sort of fun things you can do with this API, so have
at it.

Take care, and I’ll see you next time.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp VMware

USENIX Benefactors
ADMIN magazine Linux Pro Magazine

USENIX Partners
Booking.com CanStockPhoto

Open Access Publishing Partner
PeerJ

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 75

COLUMNS

iVoyeur
Dogfood and the Art of Self-Awareness

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
Developer Evangelist at Librato.
com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

Y esterday, I ate lunch in a bar in Northwest Montana. I munched on
their fish-and-chips plate (which was way better than it had any
business being) and tried to ignore the Bones re-run playing in 4k

clarity while the old-timers drank and argued behind me.

The argument concerned a certain very old copper mine with a long and storied history of
screwing over everyone but their board of directors. I won’t get into the politics of it with you,
or bore you with my opinions, but suffice to say I could tell who was in the right, and I think
you could too if you were there.

It wasn’t so much the logic of the arguments, nor the passion with which they were delivered
by either side. It was the tone used by those in the wrong—a certain manner of speaking that
belies a particular mode of thought; I’m sure you would recognize it. I did. It was that same
tone we used in the Marine Corps in those tiny moments of uncertainty that always accom-
panied our preparations to do a bad thing in the name of some supposed greater good. Even
before that, though, I recognized it from the days of my youth, when I knew I’d done a bad
thing but I was trying to convince myself, or someone else (or both), that I had a good reason.

It was that guilty-as-sin yeah…but tone. We can all recognize it in others as long as we’ve
recognized it in ourselves; and we all have.

“Know thyself” was one of the Delphic maxims, did you know that? Literally carved in stone
into the temple of Apollo at Delphi. It’s one of our oldest and best thoughts; one of those
things we’ve been thinking since we’ve been capable of thinking about good and bad.

Sorry if I’m being a bit of a downer, but I actually find that a really comforting thought, that
our self-awareness carries with it a certain, well, inescapable self-awareness. All we have to
do is pay attention to ourselves.

Speaking of self-awareness, here’s an interesting but not often answered question from my
current day job:

What’s monitoring the monitoring system?

I know, that’s the kind of question asked by people who want to sell you something, but it’s
also one of those questions that triggers a certain degree of guilt within those of us who don’t
have a good answer for it. That’s why the pre-sales engineers love asking it. They intuit our
guilt because they’ve recognized it in themselves.

But how important a question is it really? I suppose it depends. There’s something of a
continuum of monitoring aptitude. The shops at the baseline competency level don’t really
distinguish between monitoring and alerting. Monitoring is the system that sends alerts, so
for them, a monitoring outage is an alerting outage. Those stakes aren’t very high honestly.
They may not be alerted to a problem, but once they do find out, they’ll SSH into that system
and poke around manually. That kind of sucks but it’s not the end of the world.

76  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS
iVoyeur: Dogfood and the Art of Self-Awareness

Moving up the continuum, however, you begin to encounter
shops that use monitoring as a means of understanding system
behavior. By that I mean, when an operations person wants to
know if the app slowness they’re experiencing is isolated to
them or a widespread issue, they turn to the monitoring system
to find the 95th percentile latency on HTTP requests. Then
maybe they’ll break out that data by node to find a misbehav-
ing instance, and tell the chatbot to destroy that instance and
replace it with a new one. In those sorts of shops, a monitoring
outage directly affects our ability to reason about and fix prob-
lems with our systems.

Losing visibility at that level in the continuum sucks even more,
but at Librato, we’re in an even worse pickle. The monitoring sys-
tem is not only our primary means of understanding the behav-
ior of our systems; it is our systems. We are a SaaS monitoring
shop, so a monitoring outage here equates to a catastrophic
business interruption. I know, weird, right? So in this issue I
thought it might be fun to explore the question of what monitors
the monitoring system at Librato.

The tl;dr is, of course: Librato, but the story of how is pretty inter-
esting and, I think, worth telling. In fact, Librato is the result of a
pivot [1] from a product called Silverline. Silverline was designed
to dynamically adjust the performance characteristics of a
machine image in order to save money on hosting costs (nerf-
your-CPU-so-you-spend-less-as-a-service). The engineers who
built Silverline obviously needed a scalable means of measuring
granular system performance, and so, like so many shops before
them, they built a custom metrics solution. However, unlike
so many shops before them, they did a really good job of it, and
Librato was born.

When metrics became the operational focus of the company, the
engineers were already quite accustomed to having unfettered
access to an essentially free, high-quality metrics and monitor-
ing tool. For them, building a thing and measuring its perfor-
mance were the same undertaking, so they naturally relied on
Librato to build and maintain everything. Put more succinctly:
they used Librato to monitor the operational characteristics of
Librato, thereby becoming their own biggest customer.

I cannot recommend this strategy for your monitoring endeav-
ors, but it worked out pretty well for us in practice. In many ways
it was even quite beneficial. It certainly brought us closer to our
customers, since literally every employee at Librato could pro-
vide customer support because everyone was using the tool every
day. It also gave us a far more solid baseline understanding of
the technical limitations of the system than most startups have,
since we were the ones who were stressing it the hardest.

It wasn’t long, however, before a few very large engineering shops
signed up, and UID1 (as we affectionately refer to ourselves) was
no longer even close to the most voluminous metrics source. And

as anyone who maintains an API will attest, along with more
and larger customers comes a certain amount of API abuse. So
it was with us. It really is remarkable that after 20 years in the
field, you can still be surprised by end-user behavior. Humbling,
but remarkable.

Unexpected patterns of end-user behavior are an inevitability
for which no Chaos-Monkey can prepare you. We saw custom-
ers doing things that we’d never imagined, because honestly,
they’re kind of unimaginable. Can you imagine a scenario where
you’d need to insert an epoch timestamp into the source name of
a metric when you were going to plot in a line graph where x is
time/day anyway? I mean why would you ever need to create a
new, unique metric and source object for every single measure-
ment you take?

That’s just one of the many, many real-life things that we’ve seen
real-life customers do in real life.

With time-series [2] datastores you make certain assump-
tions about the cardinality of measurement sources. We can
handle high-cardinality measurements as long as we can make
assumptions like those. I won’t bore you with the details, but
the accidental generation of high-cardinality sources can really
wreak havoc on an optimized datastore like ours. Really any sort
of behavior that causes us to create rows on the order of millions
of unique IDs (or anything else that isn’t proper time-series data)
per minute or second is basically guaranteed to trigger pager
duty to wake me up in the pre-dawn.

When problems like that happen, we need to be able to get to our
own metrics to diagnose the issue, and we can’t do that if the
system is being effectively DOS’d by another end user.

Enter Dogfood
Our solution to this problem is an environment we named Dog-
food (in reference to that somewhat gross Microsoft colloquial-
ism [3], eating your own dog food).

Dogfood is pretty much a mini-Librato—a miniature re-creation
of our production environment just for our use. It resides on AWS
in US-West, on the opposite coast of the US from our Production
and Staging environments. It is fed data by way of our production
stream-processing tier, which is a custom-built stream process-
ing system we’ve talked publicly about in the past [4].

Well-implemented stream processing is a lovely thing, and at
Librato we rely very heavily on the combination of SuperChief
(our own beloved Storm replacement) and Kafka [5], which we
use as a cache between our various stream-processing entities.
These components make it possible for us to quickly persist
raw-resolution measurements as they arrive to our API while
simultaneously processing them for alerting and copying them
over to the Dogfood environment.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 77

COLUMNS
iVoyeur: Dogfood and the Art of Self-Awareness

The pattern is simple. Worker threads from one service take
measurements off the wire and write them to Kafka queues (top-
ics in Kafka parlance). Workers from other services read them
out of queue and process them in parallel. A single measurement,
for example, that hits our API is immediately copied to several
places by our ingestion pipeline:

◆◆ Directly to a fast-path service designed to persist it in Cassandra

◆◆ To a Kafka topic read by the Alerting service (for alert detection)

◆◆ To a Kafka topic for the service that processes 60-second roll-ups

◆◆ To a Kafka topic read by Dogfood workers

◆◆ Kafka topics for other stuff I can’t talk about yet

The Dogfood path is triggered for every measurement that’s
submitted by user: UID1. We implemented Dogfood duplication
as a stream-processing job like this so that any metrics we create
in our day-to-day work will automatically be picked up and sent
to Dogfood. Monitoring systems succeed when they’re easy to
use, so I feel pretty strongly that this is a critical component to
Dogfood’s success. It just wouldn’t work if, as an engineer, you
had to remember to create every metric twice: once in produc-
tion and once in Dogfood.

But What About Ingestion Pipeline Problems?
The downside of using production streaming infrastructure to
tee off metrics to Dogfood is the possibility that we will have a
critical blocking outage in the production stream processing tier
that will affect Dogfood metrics. Problems like this are actually
relatively rare given both the simplicity of Dogfood process-
ing (it’s just a single write operation) and the parallel nature of
stream processing with Kafka. In fact the most wonderful thing
about our stream processing is how well it isolates workloads
from each other. Given separate Kafka topics and dedicated
services behind each, it’s very rare in practice for us to experi-
ence an issue that crosses multiple topics, much less unrelated
ones. Those sorts of issues are pretty much always going to be
upstream of us at AWS (where Dogfood won’t help us anyway).

Another downside is the possibility of a problem in the API
ingestion pipeline upstream of the stream-processing tier. If
the metrics can’t make it into the stream-processing tier, then
they won’t make it to Dogfood either. This is a more likely failure
mode, and one that we’ve experienced in the past. In practice,
however, because of the nature of our architecture, the absence
of Dogfood metrics is a pretty damning indicator of an ingestion
problem, so when this happens we already know exactly where
to look.

Most of us prefer to use live data from production day-to-day
because it’s the same system our customers use, but if we ever
experience a service degradation, we can switch to Dogfood
seamlessly to diagnose the problem and work toward a fix. Dog-
food might be the most elaborate answer ever to the question of
What’s monitoring the monitoring system, but then who can put a
price on self-awareness?

Take it easy.

References
[1] Wikipedia, “Pivot,” last modified on Sept. 13, 2016: https://
en.wikipedia.org/wiki/Lean_startup#Pivot.

[2] Dave Josephsen, “Sensical Summarization of Time-Series”
(blog entry), August 11, 2014: http://blog.librato.com/posts
/time-series-data.

[3] Wikipedia, “Eating your own dog food,” last modified
on Sept. 3, 2016: https://en.wikipedia.org/wiki/
Eating_your_own_dog_food.

[4] SuperChief: http://www.heavybit.com/library/blog
/streamlining-distributed-stream-processing-with-superchief/.

[5] J. Shekhar and A. Khurana, “Streaming Systems and
Architectures,” ;login:, vol. 41, no. 1 (Spring 2016): https://www
.usenix.org/system/files/login/articles/login_spring16_03
_shekhar.pdf.

https://en.wikipedia.org/wiki/Lean_startup#Pivot
https://en.wikipedia.org/wiki/Lean_startup#Pivot

78  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS

Everybody is predicting great things, within varying interpretations of
the word “great,” for the Internet of Things. You are doubtless tired of
hearing that. As good an answer as any to the question “When was the

IoT born?” is when the number of connected devices exceeded the number of
humans, while as good an answer as any to the question “What is a thing?” is
any data-handling entity that cannot be found in contempt of court.

To remind ourselves of the basic numbers, Figure 1 is IoT size, Figure 2 is how many
humans, and Figure 3 is thus the number of things per person.

 The counts of human population are probably pretty close to correct. The counts for the IoT
are surely arguable. The smooth curve in Figure 1 is simply Cisco’s calculated exponential
from their 1992 figure of one million devices to their estimate of 50.1 billion in 2020. In each
of Figures 1, 2, and 3, the values for 2015 and for 2020 are highlighted. Last year might well
have been the real birthdate of the IoT, in other words. Or maybe you don’t want to compare
all humans to the number of connected devices, only humans who are connected. Globally
for 2015, 46% of humans were connected, and the year when there were more connected
devices than connected humans was accordingly earlier, perhaps 2010. Regardless, the IoT is
between infant and toddler.

There are two aspects to oncoming growth like this that are directly relevant to public policy,
one germane to “For Good Measure” and one not. The “not” is the lifetime resource cost,
including energy cost of manufacture, operation, and disposal, that an exponentially increas-
ing number of powered devices necessarily represents. Regulators are looking at this with
whatever passes for glee in such places—IT, broadly defined, already accounts for 5–10% of
the developed world’s energy use.

The other (and germane) aspect is that of attack surface. We obviously don’t know what the
attack surface of the IoT is—we can scarcely imagine what “attack surface” means in context
or even if it means something unitary and evaluable, but whatever that attack surface is,
given (genuinely) exponential growth in counts of devices, it is hard to imagine that there
is no risk being added to the connected parts of the globe. Just to keep aggregate risk static
requires that the risk per device not only fall faster than the curve of deployment rises, but
faster still if it is to drown out the legacy risk of devices previously installed. That is a tall
order. Ergo, we should doubtless assume for planning purposes that we will see a significant,
ongoing increase in the aggregate attack surface.

Or not. Does the attack surface construct even make sense when we are contemplating 1010
devices? Clearly, redundancy can contribute real survivability value for a sensor deploy-
ment—one broken sensor just doesn’t matter if there are others doing the same data capture.
One is reminded that network layout can deliver resistance to random faults or resistance to
targeted faults but not both. Could not the same be said of sensor data and its roll-up to deci-
sion support, that one’s threat model has to make some tradeoffs between being invulnerable
to random sensor failure and being invulnerable to targeted (intentional) sensor failure?

For Good Measure
Implications of the IoT

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 79

COLUMNS
For Good Measure: Implications of the IoT

That said, the real question is what should we measure either
for the numerator (risk) or the denominator (normalization
to something)? Hourly data traffic today exceeds annual data
traffic of only 10 years ago, and IoT devices are nothing if not
traffickers in information. So is data volume the base propor-
tionality constant for an “IoT attack surface”? Or is the attack
surface proportional to the percentage of small devices that
have Turing-complete remote management interfaces? Or is the
attack surface proportional to the minimum practical latency
between problem discovery and effective problem repair (think-
ing now of 1000 million devices with a common mode vulner-
ability just discovered).

As you know, there is much focus today in the security product
market on behavioral security, on accumulating an idea of what
routine operation looks like the better to detect badness early,
but is anyone actually proposing watching 1010 data sources for
actionable anomalies? Presumably not, but does that tell us of
a latent need or does it tell us something else again? Something
about redundancy or about minimizing dependence on singleton
devices? Something about trading off the risks of single points of
failure against the risks of common mode failure?

It is likely that there are no best answers, and that all answers
will be context dependent—a threat model to rationalize attack
surface measurement for, say, medical care will be something
entirely different than for, say, shopping mall inventory control.
Any context that actually matters will have to have an attack
surface metric (or something like it) that scales well; Qual-
comm’s Swarm Lab at UC Berkeley has notably predicted 1000
radios per human by 2025, while Pete Diamandis’ Abundance
calls for 45x1012 networked sensors by 2035. These kinds of scale
cannot be supervised, they can only be deployed and left to free-
run. If any of this free-running is self-modifying, the concept of
attack surface is just plain over. So, too, is the concept of trust-
worthy computing, at least as presently understood.

In any case, we are past the point of no return here. The IoT and
its scale make most of our gross measures (like attack surface,
say) into historical curiosities. The present author has long
thought that the pinnacle goal of security engineering to be “No

Silent Failure,” and with the IoT at its predicted scale, perhaps
that goal will now meet its most formidable challenge. It may be
that for the IoT we security metricians will have to start over. It
may be that our metrics for the IoT will be less observational and
more analytic, such as “How much silent failure is tolerable?”
Surely adding 1010 devices to the connected world increases its
complexity, and more complexity means less system predictabil-
ity, which conflicts with security goals. Distributions of events
that we can detect and count today are looking more and more
like power laws. If that is an emergent truth and not our confu-
sion, then it is Nassim Taleb’s prediction that matters most:
“[We are] undergoing a switch between [continuous low grade
volatility] to…the process moving by jumps, with less and less
variations outside of jumps.”

Yes, predictions around the IoT are a dime-a-dozen, many of
them are non-falsifiable, and no forecaster ever got fired for add-
ing an extra zero to some rosy daydream. What’s your wager?

Figure 1: Billions of devices Figure 2: Billions of humans Figure 3: Devices per human

80  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS

Extending Go Applications with Exec Plugins
K E L S E Y H I G H T O W E R

G o has found a sweet spot among developers for building system tools
ranging from Web services and distributed databases to command
line tools. Most system tools of this nature tend to support multiple

backends for providing application-specific functionality. For example, think
about a command line tool that manages DNS records. Given the number of
DNS providers available today, it would be nearly impossible to build support
for every DNS API a user would want to interact with. This is where a plugin
system can help. Plugin systems provide a common interface for extending
applications with new functionality without major changes to the primary
application.

In the Go ecosystem, the two most common ways of extending an application are by adopt-
ing an RPC plugin mechanism or by adding new code to a project that implements a plugin
interface. Writing plugins using an RPC interface has the benefit of supporting plugins that
live outside the core code base. This way, users can add and remove plugins without recompil-
ing the main application. The major drawback to RPC plugins is the increased complexity that
comes with running each plugin as a daemon and interacting with them over a network socket.

The practice of using RPC plugins is a bit of a hack; however, the method has become wide-
spread because there is no other way to extend a Go application without adding new code and
recompiling the main application. Go lacks the ability to load and execute external code at
runtime, a feature that is common in languages like C or Java.

In the case of source plugins, each plugin lives in the main code base and typically imple-
ments a well-defined interface. Each plugin is only responsible for implementing the meth-
ods defined in the interface, which can greatly streamline plugin development.

Let’s dive deeper into this topic and write some code that implements a source plugin mecha-
nism. The application we are going to build is called translate, so named because it can
translate a message from English to another language. It works like this:

$ translate -m “hello” -t spanish

hola

The translate application supports multiple languages through a simple plugin system. For
each language we want to support we must add a new Go package for that language and
implement the following interface:

type Translator interface {

 Translate(message string) (string, error)

}

Each translation plugin must provide a method named Translate that takes a message argu-
ment and returns the translated message and an error if the translation fails. The translate
application allows users to select the translation plugin to use via the -t flag.

Kelsey Hightower has worn
every hat possible throughout
his career in tech, and enjoys
leadership roles focused on
making things happen and

shipping software. Kelsey is a strong open
source advocate focused on building simple
tools that make people smile. When he is not
slinging Go code, you can catch him giving
technical workshops covering everything from
programming to system administration and
distributed systems.
kelsey.hightower@gmail.com

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 81

COLUMNS
Extending Go Applications with Exec Plugins

Create the following directories to hold the translate app source
code:

$ mkdir -p $GOPATH/src/translate/plugins/spanish

Change into the translate source directory:

$ cd $GOPATH/src/translate

Save the following source code to a file named main.go:

package main

import (

 “flag”

 “fmt”

 “log”

 “translate/plugins”

 “translate/plugins/spanish”

)

func main() {

 var translator string

 var message string

 flag.StringVar(&translator, “t”, “english”, “Which translator

plugin to use”)

 flag.StringVar(&message, “m”, “”, “The message to translate”)

 flag.Parse()

 var t plugins.Translator

 switch translator {

 case “spanish”:

 t = spanish.New()

 default:

 fmt.Printf(“Plugin %s not found.”, translator)

 }

 response, err := t.Translate(message)

 if err != nil {

 log.Fatal(err)

 }

 fmt.Println(response)

}

Save the following source code to a file named plugins/
translator.go:

package plugins

type Translator interface {

 Translate(message string) (string, error)

}

Save the following source code to a file named plugins/spanish/

translator.go

package spanish

import (

 “errors”

)

type Translator struct{}

func New() Translator {

 return Translator{}

}

func (t Translator) Translate(message string) (string, error) {

 if message == “hello” {

 return “hola”, nil

 }

 return “”, errors.New(“Translation error.”)

}

At this point you can build and execute the translator
application:

$ go build .

$./translate -t spanish -m “hello”

hola

As you can see, the -t flag allows us to select the language
translator to use, and the -m flag sets the message to translate.
The translate program will select the right plugin to process the
translation based on the value of the -t flag. Let’s review the code
that makes this happens:

switch translator {

 case “spanish”:

 t = spanish.New()

 default:

 fmt.Printf(“Plugin %s not found.”, translator)

}

Notice the problem here? We must know and implement every
translator plugin before compiling the application. To extend
the translate application, you’ll have to modify its source tree,
recompile, and reinstall the translate application. For many
end users, source plugins set a barrier too high for contribution,
which results in more work for project maintainers, who must
either build or review every plugin users want to implement or
use. A better solution to this problem would be to allow users
to extend the translate application without modifying the code
base. That’s where exec plugins come in.

Exec Plugins
Exec plugins allow you to leverage external binaries as a plugin
framework for extending applications. It’s easy to think of exec
plugins as similar to talking to an RPC endpoint. For each
action, an executable can be invoked with a specific set of flags

82  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS
Extending Go Applications with Exec Plugins

or environment variables to complete a task. Exec plugins can
be written in any language (avoiding one drawback of source
plugins) and have simple interface requirements.

Let’s explore how an exec plugin system can improve the exten-
sibility of our translate application. The goal is to keep the same
top-level interface but make it possible to add new translation
plugins without recompiling the translate application.

In the next part of this tutorial, you’ll rewrite the translate
application to provide extensibility through exec plugins. Start
by deleting the current translate code base:

$ rm -rf $GOPATH/src/translate/*

Change to the translate source directory:

$ cd $GOPATH/src/translate

Save the following source code to a file named main.go:

package main

import (

 “bytes”

 “flag”

 “fmt”

 “log”

 “os”

 “os/exec”

 “path”

)

var (

 pluginsDir string

)

func main() {

 var translator string

 var message string

 flag.StringVar(&translator, “t”, “english”, “Which translator

plugin to use”)

 flag.StringVar(&message, “m”, “”, “The message to translate”)

 flag.StringVar(&pluginsDir, “p”, “/tmp”, “The plugin

directory”)

 flag.Parse()

 t := path.Join(pluginsDir, translator)

 if _, err := os.Stat(t); os.IsNotExist(err) {

 fmt.Printf(“Plugin %s not found.\n”, translator)

 os.Exit(1)

 }

 cmd := exec.Command(t, “-m”, message)

 var response bytes.Buffer

 cmd.Stdout = &response

 err := cmd.Run()

 if err != nil {

 log.Fatal(err)

 }

 fmt.Println(response.String())

}

The main difference from the original translate application
is that we no longer need to know and implement each plugin
before compile time. Instead, the translator plugin (identified
by the -t flag with the path to an executable) will be called to
translate the message:

t := path.Join(pluginsDir, translator)

if _, err := os.Stat(t); os.IsNotExist(err) {

 fmt.Printf(“Plugin %s not found.”, translator)

 os.Exit(1)

}

If the executable is not found on the file system, the translate
application will print an error message and exit non-zero. This
is a big improvement over the source plugin model, where the
search for plugins is done only at runtime. Now plugins can be
added by simply creating a binary and placing it in the translate
plugins directory. If our app were a daemon, this would mean no
restarts!

At this point you can build and execute the translate application:

$ go build .

$./translate -t spanish -m “hello”

Plugin spanish not found.

The updated translate application throws an error here because
we have not written or installed any exec plugins. Let’s write our
first translator plugin and add support for a new translation; how
about Japanese?

But just like the source plugin we need an interface to con-
form too. In the case of the exec plugin, we define the following
interface:

◆◆ Translator plugins MUST accept a message to translate via an
“-m” flag.

◆◆ Translator plugins MUST print the translation to standard out
if the translation is successful.

◆◆ Translator plugins MUST exit non-zero if the translation fails.

With our interface defined, let’s create a plugin.

First, create the the following directory to hold the Japanese
translate plugin source code:

$ mkdir -p $GOPATH/src/japanese-translate-plugin/

Change into the Japanese translate plugin source directory:

$ cd $GOPATH/src/japanese-translate-plugin/

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 83

COLUMNS
Extending Go Applications with Exec Plugins

Save the following source code to a file named main.go:

package main

import (

 “flag”

 “fmt”

 “log”

 “os”

)

func main() {

 var message string

 flag.StringVar(&message, “m”, “”, “The message to translate”)

 flag.Parse()

 if message == “hello” {

 fmt.Printf(“こんにちは”)

 os.Exit(0)

 }

 log.Fatal(“Translation error.”)

}

Compile the Japanese translator plugin:

$ go build -o japanese .

Before we copy the Japanese translator plugin to the translate
application’s plugin directory, we should test that it works. This
is a clear benefit of exec plugins—we can test them outside of the
main application:

$./japanese -m “hello”

こんにちは

Everything seems to be working. Now you need to copy the Japa-
nese translator plugin to the translate plugin directory:

$ cp japanese /tmp/japanese

With the Japanese translator plugin in place, we can now rerun
the translate application and use the Japanese plugin to handle
the translation:

$ cd $GOPATH/src/translate

$./translate -m “hello” -t japanese

こんにちは

Following this pattern, adding support for new translations is
easy:

$ cp norwegian /tmp/norwegian

$./translate -m “goodbye” -t norwegian

ha det

Exec plugins provide a simple mechanism for extending applica-
tions in a way that empowers end users and reduces mainte-
nance overhead for project owners, and is a testament to the
longevity of UNIX semantics and philosophy.

84  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

COLUMNS

/dev/random
R O B E R T G . F E R R E L L

The other day I ran across an online tribute to the late Dan Blocker,
“Hoss” Cartwright from the television series Bonanza. Even though
that show played a significant role in my childhood during its origi-

nal run, the modern age has had its insidious effect on my imagination, and
I immediately began visualizing not the sprawling Ponderosa and Virginia
City, but rather browser plugins that block posts from people named “Dan.”

We have ad blockers, spam blockers, pornography blockers, opposing philosophy blockers,
verbosity blockers like Twitter, and intelligence blockers (also known as the comments sec-
tion of any news story or blog). Something about the anonymity and physical separation of
the Web brings out the very, very worst in people. While it appears that a large segment of the
population is responsible, maybe the same small group of malcontents is actually generating
all of the commentary under different pseudonyms. Whatever the case, I wish they would
take up some other hobby, like BASE jumping or free soloing.

If it’s this bad on Earth, imagine what the Interplanetary or Interstellar Internets connect-
ing human colonies scattered across the galaxy would look like. You imagine it, because I’m
going to pass on that one. As this is an election year here in the US, my overall opinion of
humanity’s claim to sentience is already in the toilet.

Getting back to blockers, the one I want to see would be an idiocy blocker. While I already
have a fairly effective version on my computer, known by the technical term “power button,”
it has the considerable drawback of also blocking the (admittedly increasingly rare) con-
tent I actually want to see. I suppose I could simply stop reading the news, since any given
day can be summed up by mixing and matching from the following headlines: Ceasefire
Violated, Terrorist Bombing, Trade Union Strikes, Politician Bumbles, Climate Changes,
Vehicle Crashes, Species Faces Extinction, and Media-Manufactured Personality Engages
in Behavior that Would not Make the News if Anyone Else Did It.

How would an idiocy blocker work? Probably not very well, since blocking idiocy would be
tantamount to blocking online contributions in toto, but presuming idiocy could indeed be
distinguished with any reliability from non-idiotic commentary, the ideal blocker would
either blank idiocy out entirely or replace it with something the developers or end user
have deemed non-idiotic. That substituted text—the First Amendment, perhaps—is likely
to be wholly irrelevant to the topic at hand, but in this it differs little from most idiotic
commentary.

Filtering out idiocy will require some robust algorithms, naturally, because while idiocy is
seldom subtle, it can be somewhat cryptic. As an aid to coders who might be considering such
an app, I have grouped some of the more common and egregious idiots into broad categories.

Robert G. Ferrell is an award
winning author of humor,
fantasy, and science fiction,
most recently The Tol Chronicles
(www.thetolchronicles.com).

rgferrell@gmail.com

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 85

COLUMNS
/dev/random

1. Focus-Pocus: This person has one or a small number of
pet topics, commentary concerning which they will place
following absolutely any online post, from major disaster to
slapstick comic. Often they don’t even attempt to tie it into
the subject matter of the original item, spewing their idiotic
irrelevancies with no segue whatever. Popular topics for these
sorts include political candidates, climate change, puzzling
interpretations of the US Constitution, misanthropy, and
conspiracy theories. (I do not, incidentally, favor that last
term because it degrades the noble noun theory.) The worst
examples of this species of idiot can work all of the above into
one mind-numbing run-on sentence that can, if viewed without
proper safety precautions, lead to debilitating neural trauma.

2. The Clever Dan: This idiot has some form of self-induced
brain damage that convinces him of his own wholly illusion-
ary sparkling wit. Moreover, it convinces him that it is his
solemn duty to share said wit in any and all conceivable fora,
especially those where crass humor is antithetical to the
situation. Look for CDs below testimonials to the deceased,
reports of horrific tragedies, heartwarming accounts of nice
things done for those with terminal illnesses, and any piece
that reminds us all of the capricious nature of fate.

3. The Nonsequiturian: The issue here is not so much the logic
or nature of the commentary itself, but the choice of venue.
These particular idiots simply drop their mission statements
in wherever opportunity presents, as a form of philosophical
spam. They in no way pass the Turing Test and are probably
merely bots that take vaguely human form while putting the
“artificial” in Artificial Intelligence.

4. The Recycler: This is really a subcategory of Type 1, but
instead of simply launching into idiot spew right away, recy-
clers will pretend to be engaged in debate with some other
commenter(s) over points at least marginally relevant to the
subject matter before inevitably working the rhetoric around
to their pet topic. The most talented of these idiots can keep
up the illusion of relevancy for several posts before it becomes
obvious that they’re really only here to push some totally dif-
ferent agenda.

5. The Angler: While the other four types of idiots are mostly
harmless, albeit annoying, anglers are quite simply evil. They
want to steal your identity and thus your money. They accom-
plish this by posting some seriously spammy content you
would think absolutely no one would fall for—and yet people
regularly do. Let’s be clear about something: if you could
really make $3,000 a week for 10 hours surfing the Internet,
we’d all be doing it. Of course, they’re probably telling the
truth about how much they make, and that the Internet is
involved. They just fib a little about the actual mechanism.

There are, of course, myriad other species and subspecies of idiot
to be found on the Interwebs, but to filter them all out would be a
Herculean task that would leave us with no one at all to talk to. If
you truly wish to filter out idiots completely, I have found it quite
effective to set one’s firewall to disallow comments or email
from any IP address that starts with “1” or “2.”

86  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

SPA Design and Architecture
Emmit A. Scott, Jr.
Manning Publications, 2016, 288 pages
ISBN 978-1-61729-243-1

It’s been a long time since I worked on the front end of a Web
service. I’m passing familiar with JavaScript and completely
comfortable with HTML and the DOM. The ideas of AJAX and
REST services are clear. I thought I had a reasonable handle on
how the client side of Web applications were built.

The “SPA” in the title stands for “Single Page Application,” and
you’ve almost certainly used one. If you’ve used almost any of
Google’s applications or searched for local movies you’ve seen an
SPA.

SPAs have become prevalent in the last five years with the adop-
tion of the HTML5 standard and a set of JavaScript frameworks
which take care of much of the boilerplate and common behav-
iors. They are designed to move much of the application logic
to the client side (your browser) and to minimize the delays
involved in repeated page loads that characterized early Web
applications.

Scott’s goal in this book is to show you the internals of an SPA
and then how to assemble them into an application.

After the mandatory chapter introducing SPAs in general, I was
a little surprised that the next two didn’t seem to speak directly
to SPAs at all. In Chapter 2 Scott gives a survey of the MVC
(model view controller) pattern and its derivatives. All of the
JavaScript frameworks for SPAs are based on one of these mod-
els. Scott cites a number of the most popular ones as examples
and notes some of the benefits, costs, and quirks of each one
without picking a favorite.

Chapter 3 is a tutorial on modules in JavaScript. I would have
thought the module construct was a well-known idiom, but I
admit I learned a lot from Scott’s description.

My confusion resolved as I continued to read.

It turns out that this kind of book is hard to write and not easy to
read and understand at the first pass. Developing modern Web
applications requires fluency in at least three “languages” as
well as the behaviors and quirks of all of the major Web browser
rendering systems (even when using a framework to abstract
them). Designing and implementing the client side of an applica-
tion requires the developer to have an intricate understanding of

how the data flows from a server through the client application
and how that is, in turn, presented by the browser. Scott guides
the reader through these interactions from the browser back to
the server as well as touching on testing and debugging. That it
took me a couple of times through to digest it is a reflection of my
own meager background in this area.

Scott starts with application “routing” and the idea that in an
SPA there is only a single “Web page” but there are multiple
views of the service. The view is selected through the “router,”
which takes advantage of the browser URL history and the
ability of the browser to decompose a URL and respond as
instructed by some loaded JavaScript.

In the next chapter, Scott reveals how to control the layout and pre-
sentation of the views using HTML, CSS, and various templating
frameworks. This is where the application is given both a structure
and a style that (it is hoped) presents the user with the information
and behaviors they need to complete their tasks efficiently.

The JavaScript module pattern comes back to the fore now. Scott
shows how this pattern can be used to map logic to each view in
a clean, coherent manner. He also discusses how the data will
be represented in the client-side model of the application. This
leads nicely into the final active part of the SPA: communicating
with the server.

In this chapter Scott examines how to generate and respond to
asynchronous requests to the server both with several of the
major SPA framework mechanisms and using the XMLHttpRe-
quest method directly. He details asynchronous data exchange in
both directions and shows how to build the service interactions
into the modules that make up the client-side data model.

The final sections cover unit testing and client-side tasks. The
latter are actions that the client may take which are not directly
associated with any particular model or view. He presents them
as a means to run repetitive tasks during development such as
code CI and testing.

Scott doesn’t try to create a single application in his narrative.
Because he is reflecting on a number of different frameworks,
using their contrasts to highlight behaviors and features, no
single sample application would fit. He does include a short
application example using Angular.js and Backbone.js in the
appendices, but his presentation in the main body of the book is
fairly agnostic to any framework selection.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 87

BOOKS

Each chapter concludes with a set of questions and exercises that
are meant to help the reader set the main concepts in memory
and to give some active practice. These “challenges” are indeed
a challenge, not something you can merely cut-and-paste from
the text. A reader who follows through will get much more than a
casual reader.

In the end I liked Scott’s focus on concepts and options rather
than advocating for one framework or another. I think I was
not as prepared as I should have been to take this book on. My
knowledge of JavaScript and DOM is rusty, and I have not kept
up on current practice and idiom. This required me to go outside
and brush up to be sure I’d understood and absorbed what was
presented. This is a good book for someone who has gotten their
hands dirty with browser programming and is ready to start
learning how to design a fast modern Web service.

Single Page Applications: JavaScript End-to-End
Michael S. Mikowski and Josh C. Powell
Manning Publications, 2014, 408 pages
ISBN 978-1-617290-75-0

“You can do it all in JavaScript. Here’s how” is the message that
the authors offer in Single Page Applications: JavaScript End-
to-End. Their aim is to build an SPA demonstrator, client, and
server side completely in JavaScript. They go so far as to avoid
even the popular SPA JavaScript frameworks, choosing instead
to build the core functionality, the routing and view selection
logic, even the HTML template resolution directly in JavaScript.

I’m not sure most people would be willing to take on the extra
work that the SPA frameworks offload for you, but there’s cer-
tainly a lot to be learned by looking at how one would do it.

Mikowski and Powell follow the tried-and-true narrative of
building a simple demo app and enhancing it chapter by chapter.
In their case it actually shows a good Agile style progression,
although I’m not sure if that was their intent. Because they are
building both the client and the server in JavaScript, and you
don’t get to the server part until more than half way through, you
also learn a lot about mocking data and services in JavaScript.

They begin by building a skeleton for the application, which they
call the “Shell.” This is a kind of root module for the application.
Features will be hung off this module and will add functional-
ity as the development process progresses. From here they show
how to add logic and presentation to each new feature in a clean,
incremental way. They develop the data models and views in
conjunction so the reader can see how the back and front are
related and how data flows in and out.

On the server side, Mikowski and Powell use Node.js and Mon-
goDB. They promote the idea that using a single language for
both the client and server makes development easier. While in
general I agree, I wouldn’t normally have picked JavaScript as
my one language, but since the browsers have chosen for us it
will have to do. Certainly the use of JSON for data transfer and
storage does remove lots of the hassle of encoding and decoding
data both for communications and database storage.

The authors are very conscious of the development environment
and developer tasks. While developing the components, they also
lay out best practices for directory structure and file naming for
consistency and maintainability. These seem to mirror other
recommendations I’ve seen. They have an appendix devoted to a
set of JavaScript coding styles. For someone overwhelmed with
the actual design and implementation of a service, these nicely
structured guidelines are actually a time-saver when learned
and applied. There’s no need to spend time rediscovering what
others have already done (and likely as not having to refactor the
mess to conform when you find out what they already knew).

The final area Mikowski and Powell talk about in the main sec-
tion is actually something I hadn’t considered part of the normal
development process: design and adaptation to search engine
and analytics services that crawl your site, and third-party cach-
ing services. This section was an eye opener for someone who’s
never worked with these except as a user or out of intellectual
curiosity. In this section you learn some about how these ser-
vices work and how to make your application friendly to them.

I don’t think I’ll be adopting this approach to application design,
but what I learned here will certainly inform how I look at the
systems I work on and how I build new ones.

Go in Practice
Matt Butcher and Matt Farina
Manning Publications, 2016, 288 pages
ISBN 978-1-63343-007-6

I’m familiar with Manning’s “in Action” series and have actually
reviewed Go in Action here. I was curious what would be differ-
ent about Go in Practice. The cover notes that the book “includes
70 techniques.” It turns out that “in practice” means this is a Go
cookbook.

Most cookbooks I’ve read have spent most of the time on the
shelf gathering dust. Either the recipes are for things that are
either obvious or rare and obscure. I was pleasantly surprised
by Go in Practice. Butcher and Farina have managed to create a
reference for Go idiom and good practice. Given how quirky Go
can be, especially for someone coming from a scripting language
(I had some nostalgic flashbacks to my days coding C), a manual
of good practice is a welcome find.

88  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

BOOKS

I think Butcher and Farina may have the same impression of the
cookbook metaphor as I do. They avoid the term throughout the
book, substituting “task” and “technique.” The word “cookbook”
is only used once, in what I suspect is an editorial description on
the back cover. I’ll use their terminology because I think what
they present is better than a set of recipes.

Go in Practice is not a language reference. The authors do
 highlight some of the significant language features in the first
section: multiple return values, dummy return values, goroutines,
and channels. They also discuss package management, revision
control, and Go’s relationship to other popular languages.

The next section is one I particularly liked and will use often: a
complete section on managing inputs and configuration for CLI
programs. This has always seemed to me to be an overlooked
part of most language teaching.

The full set of techniques covers things you’d expect—e.g., testing
and debugging, Web service communications—but it also includes
some things that I haven’t seen in other places, such as aspects
of coding for the cloud. This includes writing API interactions
with cloud services which avoid lock in and how cloud-hosted
programs can get VM information from the providers.

They close out the set of techniques with a section on code
reflection and automatic code generation in Go. These are
advanced techniques and probably shouldn’t be used lightly.
Most people will end up using annotations and tags for tasks like
JSON or XML processing. However unlikely it is, they also show
how to create new ones and then process them.

Each technique opens with a paragraph or two on the problem to
be solved, then a brief description of the solution. The meat is in
the discussion and code fragments that follow. The layout of the
code is clean and contains clear annotations. I often try to read
both the paper and ebook forms of the books I review. As much
as I love to have bound paper on a shelf, the ebook has an edge
in this case. The diagrams and code samples in the ebook have
color graphics and highlighting which add an appeal that the
black and white on paper can’t match.

The ebook format is also well suited to handy access on tablets
or browsers. For as long as I’m coding Go, I expect I’ll keep Go in
Practice close.

NOTES

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 89

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring techni-
cal articles, system administration articles,
tips and techniques, practical columns on
such topics as security, Perl, networks and
operating systems, and book reviews

Access to ;login: online from December
1997 to the current issue: www.usenix.org/
publications/login/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org.
Phone: 510-528-8649.

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman, Apcera
dnb@usenix.org

Angela Demke Brown, University
of Toronto
demke@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

USENIX: It’s Not What
You Might Think
Cat Allman, USENIX Board

When Casey Henderson,
 USENIX Executive Direc-

tor, asked me to run for the board, I was
surprised. (Wildly flattered because I think
of board members as elite technologists,
which I am not, but surprised.) I don’t code.
There—I said it. I don’t write code. So what
the heck am I doing here on the Board?
Every one knows that USENIX is an aca-
demic organization for CS professors and
their students, right? Well, no.

I first got involved with USENIX back in the
1980s while setting up a computer service
bureau for a design firm. I’d known about
USENIX through my brother for some time
and felt their resources for system adminis-
trators would be useful to me, both techni-
cally and for justifying my costs to my com-
puter illiterate bosses. This last part turned
out to be the most important reason for me.
The most challenging part of building and
running what turned into a decent-sized
production IT department / profit center for
management who thought “high-tech” was
a style of interior design was getting them
to understand the costs involved, managing
their expectations, and getting them to pay
me what I was worth. USENIX publications
and community helped me with all that and
gave me people to talk with who understood
what I was doing.

After what seemed like a heck of a long time,
I found myself working at Sendmail, Inc.,
sponsoring USENIX events to drive usage of
Sendmail’s products and services. USENIX
events were the best source of high qual-
ity sales leads for us, plus the people were a
pleasure. Booth duty—I actually enjoyed it
at USENIX events, where the attendees are

90  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

NOTES

I agreed to run for the Board (and thank you
everyone who voted for me!) to give back
to an organization that has done so much
for me, and to encourage USENIX to more
fully embrace creating content for and by
working practitioners. The Enigma confer-
ence this past January was a great example
of USENIX’s proud history of surfacing
research that furthers advanced practice.
I’m looking forward to more of these kinds
of conferences in the future and hope to see
you all there!

Impressive Results for Team
USA at 2016 International
 Olympiad in Informatics
Brian C. Dean, Director, USA Computing
Olympiad

I am thrilled to be able to report to the
 USENIX community another highly
successful year for the USA Computing
Olympiad and its participation in the Inter-
national Olympiad in Informatics!

Those who follow the “sport” of competi-
tive programming know the International
Olympiad in Informatics (IOI) as the most
prestigious algorithmic computer science
competition at the high school level. The IOI
is held in a different country each year, and
the 28th annual IOI took place in August
2016 in Kazan, one of the largest cities
in Russia and the capital of its Tatarstan
Republic. Delegations from 80 countries
attended, each bringing a team of their top
four high-school computing students. It is
a phenomenal opportunity for the students
not only to be able to compete at such a high
level, but also to meet and interact with
peers from around the world with similar
interests and talent.

The IOI takes place over an entire week,
offering competitors a chance to experience
local culture, food, and customs. Excur-
sions from our home base at Kazan Federal
University included a trip to the Kazan
Kremlin, a tour of the picturesque island of
Sviyazhsk, and a visit to Innopolis, an entire
futuristic tech-centric city created from the
ground up in just the past four years. I am
told that incriminating video footage even

exists of the USA delegation taking part
in an exercise to learn traditional Russian
styles of dance.

However, the main event is the competition.
Two five-hour contests held on separate
days each feature three challenging prob-
lems which the students, working individu-
ally, have to solve, most of them using C++.
The problems are algorithmic in nature, so
the key to getting high scores is to imple-
ment algorithms that are fast enough to
solve the largest test cases within a certain
time limit. Top students at the IOI are given
gold, silver, and bronze medals.

Out of 308 contestants at the event, only
26 received the highly coveted gold medals.
Team USA struggled on the first competi-
tion day but turned in stellar results on the
second day to complete a dramatic come-
back, yielding the following results:

• Daniel Chiu (gold medal), Catlin Gabel
School, OR

• Lawrence Li (gold medal), The Harker
School, CA

• Dhruv Rohatgi (gold medal), The David-
son Academy of Nevada, NV

• Calvin Lee (silver medal), Home-
schooled, NY

Accompanying these students to Kazan
were team leader Brian Dean (a computer
science professor at Clemson University
who has trained the USA IOI team now for
20 years) and deputy leader Travis Hance, a
recent MIT graduate now working at Drop-
box, who competed for team USA in 2009.

No team at IOI 2016 earned four gold med-
als, and the only others earning three gold
medals were Russia and China, tying the
USA for top country by medal count. Of
the 25 years the USA has now competed
in this event, it has only won three or more
golds seven times, six of these happening
in the past seven years, demonstrating how
we have now reached a level of consistent
excellence as one of the top competitors at
the IOI.

High-school computing education in the
USA is not known for its support of ad-
vanced programming and problem-solving

smart and—wait for it—engineers. Honest,
practical, problem-solving engineers.

Next step in my USENIX evolution was
joining the staff. In 2002 I jumped to the
other side of the desk and spent 4.5 years
working 80% time in the Berkeley office
marketing the org to potential commercial
sponsors. Cold-calling is not my favorite
thing, but you develop a taste for the hunt,
you get to talk with some terrific people,
and helping USENIX, the organization that
had done so much for me, support itself was
deeply satisfying.

But I couldn’t say no to Google’s Open
Source Programs Office. My time with
Sendmail had drawn me deeply into the
world of free and open source software, and
once you’ve found your tribe it’s hard to stay
away. USENIX had roots in open source but
at the time was increasingly focused on aca-
demic publishing, a worthy thing, but not
“my thing” and not what drew me to USE-
NIX all along. The chance to work full time
promoting open source was way too good to
pass up. An added benefit was being back
on the buyer’s side of the desk where I could
sponsor USENIX again. (Most recently,
Google sponsored USENIX Open Access!)

Speaking of Open Access; this effort is
hugely important to the spread of CS educa-
tion and technical innovation, and I am
deeply proud to be associated with USENIX
around this issue in particular.

Fast forward to three years ago when Casey
approached me about running for the Board.
I was initially reluctant since, as I said, me
and academic publishing—not so much—but
as we talked I came to see that the USENIX
community is in a great position to serve the
latest generation of SRE/DevOps through
our continuing blend of cutting edge re-
search and advanced professional practice.
Call it “embracing our roots” or simply rec-
ognizing our strengths; we have so much to
offer, and I want to be a part of this effort.

So there you have it: a USENIX Board mem-
ber who was never an academic, can’t code,
and has worked in or with “industry” for the
30+ years she’s been involved with USENIX.

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 91

NOTES

concepts, so how has team USA reached
this impressive level of performance?
Fortunately, advanced students can find
the resources they need to excel through
the USA Computing Olympiad, a national
nonprofit program that provides free online
training and programming contests for
students at all levels. Our contests were
recently extended to four divisions—rang-
ing from a bronze division that is accessible
to students just learning to program, up to
a platinum division that challenges the best
students in the world—with problems that
are IOI-level or even harder. Tens of thou-
sands of students have participated in our
online training site, and thousands compete
in our online contests each year. This year
we again set new records for participation,
roughly double where we were five years ago.

Top students across the USA from the
online USACO contests—roughly two
dozen—are invited to a rigorous summer
training camp in early June, where they
learn advanced algorithmic techniques
from our dedicated volunteer staff (many
of them former IOI team members them-
selves). At the end of training camp, the top
four students are named to the USA team to
attend the IOI.

The USACO plays a vital role in computing
education in the USA, helping to ensure a
steady stream of highly talented computa-
tional problem-solvers moving through the
pipeline from high school to university. The
program has now been around long enough
to see the amazing impact of our alums,
from becoming superstar professors in
academia to innovators in the tech startup
arena. Many wonderful programs exist for
helping with computing education and out-
reach, but very few address the needs of our
most advanced students or the increasingly
important topic of algorithmic problem
solving. The USACO fills a vital niche in
this respect, and I am constantly thanked by
students from many countries at the IOI for
the free resources we have made available
for all to use (many other countries utilize
these resources, and our contests routinely
have participation from 70+ countries).

Our program would not exist if it were not
for USENIX and our other dedicated spon-
sors, and high-school computing owes all
of these generous organizations a debt of
gratitude for their wide-reaching contribu-
tions. USENIX, in particular, has contrib-
uted hundreds of thousands of dollars over a
span of 16 years! Directing the USACO has
been one of the most fulfilling activities of
my professional career, and I look forward
with great enthusiasm to continuing our
momentum into next season as we train for
IOI 2017 in Tehran, Iran.

If you are interested in more information
on USACO or wish to participate in any of
our activities (they are free and open to all),
please visit our Web site, usaco.org.

Thanks to Our Volunteers
by Casey Henderson, USENIX Executive Director

As many of our members know, USENIX’s
success is attributable to a large number of
volunteers who lend their expertise and sup-
port for our conferences, publications, good
works, and member services. They work
closely with our staff in bringing you the
best in the fields of systems research and
system administration. Many of you have
participated on program committees, steer-
ing committees, and subcommittees, as well
as contributing to this magazine. The entire
USENIX staff and I are most grateful to you
all. Below, I would like to make special men-
tion of some people who made particularly
significant contributions in 2016.

Program Chairs
Enigma 2016
David Brumley and Parisa Tabriz

14th USENIX Conference on File and
Storage Technologies (FAST ’16)
Angela Demke Brown and Florentina
Popovici

2016 USENIX Research in Linux File and
Storage Technologies Summit (Linux
FAST Summit ’16)
Christoph Hellwig and Ric Wheeler

13th USENIX Symposium on Networked
Systems Design and Implementation
(NSDI ’16)
Katerina Argyraki and Rebecca Isaacs

2016 USENIX Workshop on Cool Topics in
Sustainable Data Centers (CoolDC ’16)
Weisong Shi and Thomas F. Wenisch

SREcon16
Liz Fong-Jones, Melita Mihaljevic, and
Coburn Watson

2016 USENIX Annual Technical
Conference (USENIX ATC ’16)
Ajay Gulati and Hakim Weatherspoon

Twelfth Symposium on Usable Privacy and
Security (SOUPS 2016)
Sunny Consolvo and Matthew Smith

8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage ’16)
Nitin Agrawal and Sam H. Noh

8th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud ’16)
Austin Clements and Tyson Condie

SREcon16 Europe
Narayan Desai and John Looney

25th USENIX Security Symposium
(USENIX Security ’16)
Thorsten Holz and Stefan Savage

2016 USENIX Summit on Hot Topics in
Security (HotSec ’16)
Damon McCoy and Franziska Roesner

2016 USENIX Workshop on Advances in
Security Education (ASE ’16)
Mark Gondree and Zachary N J Peterson

6th USENIX Workshop on Free and Open
Communications on the Internet
(FOCI ’16)
Amir Houmansadr and Prateek Mittal

9th USENIX Workshop on Cyber Security
Experimentation and Test (CSET ’16)
Eric Eide and Mathias Payer

10th USENIX Workshop on Offensive
Technologies (WOOT ’16)
Natalie Silvanovich and Patrick Traynor

12th USENIX Symposium on Operating
Systems Design and Implementation
(OSDI ’16)
Kimberly Keeton and Timothy Roscoe

4th Workshop on Interactions of NVM/
Flash with Operating Systems and
Workloads (INFLOW ’16)
Peter Desnoyers and Kaoutar El Maghraoui

30th Large Installation System
Administration Conference (LISA16)
John Arrasjid and Matt Simmons

2016 Summit for Educators in Systems
Administration (SESA ’16)
Kyrre Begnum and Charles Border

92  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

NOTES

Other Chairs and Major
 Contributors
FAST ’16
Work-in-Progress/Posters Co-Chairs:
Haryadi Gunawi and Daniel Peek
Tutorial Coordinator: John Strunk

NSDI ’16
Poster Session Co-Chairs: Aruna
Balasubramanian and Laurent Vanbever

SOUPS 2016
General Chair: Mary Ellen Zurko
Invited Talks Chair: Yang Wang
Lightning Talks and Demos Chair: Elizabeth
Stobert
Panels Chair: Tim McKay
Posters Co-Chairs: Michelle Mazurek and
Florian Schaub
Tutorials and Workshops Co-Chairs: Adam
Aviv and Mohammad Khan
Publicity Chair: Patrick Gage Kelley

USENIX Security ’16
Invited Talks Chair: Adrienne Porter Felt
Invited Talks Committee: Tyrone Grandison,
Alex Halderman, Franziska Roesner, and
Elaine Shi
Poster Session Chair: Raluca Popa
Poster Session Committee Members: Nikita
Borisov and Mathias Payer
Work-in-Progress Reports (WiPs)
Coordinator: Patrick Traynor

FOCI ’16
Publicity Chair: Sandy Ordonez

OSDI ’16
Poster Session Co-Chairs: George Porter and
Chris Rossbach
Luncheon on Supporting Diversity in
Systems Research Organizer: Dilma Da Silva

LISA16
Invited Talks Co-Chairs: Pat Cable and Ben
Cotton
Tutorial Co-Chairs: Mike Ciavarella and
Chris St. Pierre
Workshops Chair: Lee Damon
LISA Lab Coordinators: Christopher
DeMarco and Andrew Mundy
LISA Build Coordinators: Branson
Matheson and Brett Thorson
Storage Pavilion and Data Storage Day at
LISA16
Organizer: Jacob Farmer of Cambridge
Computer

2016 USENIX Journal of Education in
System Administration (JESA)
Editors-in-Chief: Kyrre Begnum and
Charles Border

USENIX Board of Directors
Cat Allman, John Arrasjid, Michael Bailey,
David Blank-Edelman, Angela Demke
Brown, Daniel V. Klein, Brian Noble, Kurt
Opsahl, Carolyn Rowland, and Hakim
Weatherspoon

Audit Committee
Eric Allman, John Arrasjid, and Niels
Provos

HotCRP Submissions and Reviewing
System
Eddie Kohler

USA Computing Olympiad (co-sponsored
by USENIX)
Team Leader: Brian Dean
Deputy Team Leader: Travis Hance

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 93

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2015

USENIX ASSOCIATION

Statements of Financial Position
December 31, 2015 and 2014

2015 2014
ASSETS

Current assets
Cash and equivalents $ 431,293 $ 252,948
Accounts receivable, net 355,919 83,740
Prepaid expenses 130,826 91,704
Investments 5,416,766 5,096,241

Total current assets 6,334,804 5,524,633

Property and equipment, net 234,343 362,930

Total assets $ 6,569,147 $ 5,887,563

LIABILITIES AND NET ASSETS

Current liabilities
Accounts payable and accrued expenses $ 77,703 $ 44,473
Accrued compensation 62,459 56,222
Deferred revenue 516,600 91,080

Total current liabilities 656,762 191,775

Deferred revenue, net of current portion 487,500 -

Total liabilities 1,144,262 191,775

Net assets - unrestricted
Undesignated 8,119 599,548
Board designated 5,416,766 5,096,240

Total net assets 5,424,885 5,695,788

Total liabilities and net assets $ 6,569,147 $ 5,887,563

See notes to financial statements.

3

USENIX ASSOCIATION

Statements of Activities
Years Ended December 31, 2015 and 2014

2015 2014

REVENUES
Conference & workshop revenue $ 3,679,420 $ 3,598,142
Membership dues 262,877 281,847
Event services & projects 618,774 111,088
Product sales 6,215 7,361
LISA SIG dues & other 40,482 44,046
General sponsorship 90,000 85,500

Total revenues 4,697,768 4,127,984

EXPENSES
Conferences and workshops 3,366,015 3,268,065
Projects, programs and membership 763,900 448,589
LISA SIG 3,889 3,586

Total program services 4,133,804 3,720,240
Management and general 595,237 420,976
Fundraising 188,236 97,276

Total expenses 4,917,277 4,238,492

CHANGE IN NET ASSETS FROM OPERATIONS (219,509) (110,508)

OTHER INCOME (EXPENSES)
Donations 26,754 23,197
Investment income (loss) (30,042) 164,316
Investment fees (49,532) (59,895)
Other income 1,426 332

Total other income (expenses) (51,394) 127,950

Change in net assets (270,903) 17,442

NET ASSETS - unrestricted

Beginning of year 5,695,788 5,678,346

End of year $ 5,424,885 $ 5,695,788

See notes to financial statements.

4

The following information is provided as the annual report of the USENIX Association’s finances. The accompanying statements have
been reviewed by Michelle Suski, CPA, in accordance with Statements on Standards for Accounting and Review Services issued by the
American Institute of Certified Public Accountants. The 2015 financial statements were also audited by Bong, Hillberg Lewis Fischesser
LLP, CPAs. Accompanying the statements are charts that illustrate the breakdown of the following: operating expenses, program expenses,
and general and administrative expenses. The operating expenses for the Association consist of the following: program expenses, manage-
ment and general expenses, and fundraising expenses, as illustrated in Chart 1. The operating expenses include the general and administra-
tive expenses allocated across the Association’s activities. Chart 2 shows the breakdown of USENIX’s general and administrative expenses.
The program expenses, which are a subset of the operating expenses, consist of conferences and workshops; membership (including ;login:
magazine); projects, programs, and good works projects; their individual portions are illustrated in Chart 3. The Association’s complete
financial statements for the fiscal year ended December 31, 2015, are available on request.

Casey Henderson, Executive Director

Continued on page 94

94  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

USENIX ASSOCIATION FINANCIAL STATEMENTS FOR 2015

Office
Expenses

3%
Bank & Internet

Merchant Fees 3%

Insurance 4%

Other
Operating Expenses 6%

Image Marketing
& Public Relations

4%

Telephone &
Connectivity

3%

Board of Directors
Expenses

6%

Depreciation &
Amortization

24%

Occupancy
14%

System Management &
Computer Exp.

12%

Accounting & Legal
20%

Fundraising
Expenses 4%

Program
Expenses 84%

Management &
General Expenses 12%

Projects, Programs,
Good Works

12%

Membership
(including ;login:)

7%

Conferences & Workshops
81%

Chart 1: USENIX 2015 Operating Expenses

Chart 2: USENIX 2015
General & Administrative Expenses

Chart 3: USENIX 2015 Program Expenses

www.usenix.org WI N T ER 20 16 VO L . 41 , N O. 4 95

Announcement and Preliminary Call for Papers www.usenix.org/atc17/cfp

July 12–14, 2017 • Santa Clara, CA, USA

2017 USENIX Annual Technical
Conference

Important Dates
• Paper submissions due: Tuesday, February 7, 2017, 11:59 p.m. GMT

• Notification to authors: Monday, April 24, 2017

• Final papers due: Wednesday, May 31, 2017

Conference Organizers
Program Co-Chairs
Dilma Da Silva, Texas A&M University
Bryan Ford, École Polytechnique Fédérale de Lausanne (EPFL)

Program Committee
To be announced

Overview
Authors are invited to submit original and innovative papers to the
 Refereed Papers Track of the 2017 USENIX Annual Technical Conference.
We seek high-quality submissions that further the knowledge and under-
standing of modern computing systems with an emphasis on imple-
mentations and experimental results. We encourage papers that break
new ground, present insightful results based on practical experience
with computer systems, or are important, independent reproductions/
refutations of the experimental results of prior work. USENIX ATC ’17 has
a broad scope, and specific topics of interest include (but are not
limited to):

• Architectural interaction

• Big data infrastructure

• Cloud computing

• Datacenter networking

• Deployment experience

• Distributed and parallel systems

• Embedded systems

• Energy/power management

• File and storage systems

• Mobile and wireless

• Networking and network services

• Operating systems

• Reliability, availability, and scalability

• Security, privacy, and trust

• System and network management and troubleshooting

• Usage studies and workload characterization

• Virtualization

USENIX ATC ’17 is especially interested in papers broadly focusing on
practical techniques for building better software systems: ideas or
 approaches that provide practical solutions to significant issues facing
practitioners. This includes all aspects of system development:
techniques for developing systems software; analyzing programs and
finding bugs; making systems more efficient, secure, and reliable; and
deploying systems and auditing their security.

Experience reports and operations-oriented studies, as well as
other work that studies software artifacts, introduces new data sets of
practical interest, or impacts the implementation of software compo-
nents in areas of active interest to the community are well-suited for
the conference.

The conference seeks both long-format papers consisting of 11 pages
and short-format papers of 5 pages, including footnotes, appendices,
figures, and tables, but not including references. Short papers will be
included in the proceedings and will be presented as normal but in ses-
sions with slightly shorter time limits. For industrial practitioners, if you
are interested in the Practitioner Talks Track, which accepts proposals for
20-minute or 40-minute talks, please refer to the USENIX ATC ‘17 Call for
Talks Web page, which will be available soon.

Best Paper Awards
Cash prizes will be awarded to the best papers at the conference. Please
see the USENIX proceedings library for Best Paper winners from previ-
ous years.

Best of the Rest Track
The USENIX Annual Technical Conference is the senior USENIX forum
covering the full range of technical research in systems software. Over
the past two decades, USENIX has added a range of more specialized
conferences. ATC is proud of the content being published by its sibling
USENIX conferences and will be bringing a track of encore presentations
to ATC ’17. This “Best of the Rest” track will allow attendees to sample
the full range of systems software research in one forum, offering both
novel ATC presentations and encore presentations from recent offerings
of ATC’s sibling conferences.

Sponsored by USENIX, the Advanced Computing Systems Association

http://static.usenix.org/

96  WI N T ER 20 16 VO L . 41 , N O. 4 www.usenix.org

What to Submit
Authors are required to submit full papers by the paper submission
deadline. It is a hard deadline; no extensions will be given. All submissions
for USENIX ATC ’17 will be electronic, in PDF format, via the Web submis-
sion form on the Call for Papers Web site, www.usenix.org/atc17/cfp.

USENIX ATC ’17 will accept two types of papers:
Full papers: Submitted papers must be no longer than 11 single-
spaced 8.5” x 11” pages, including figures and tables, but not including
references. You may include any number of pages for references. Papers
should be formatted in 2 columns, using 10-point type on 12-point
leading, in a 6.5” x 9” text block. Figures and tables must be large
enough to be legible when printed on 8.5” x 11” paper. Color may be
used, but the paper should remain readable when printed in mono-
chrome. The first page of the paper should include the paper title and
author name(s); reviewing is single blind. Papers longer than 11 pages
including appendices, but excluding references, or violating formatting
specifications will not be reviewed. In a good paper, the authors will
have:

• Addressed a significant problem

• Devised an interesting and practical solution or provided an im-
portant, independent, and experimental reproduction/refutation
of prior solutions

• Clearly described what they have and have not implemented

• Demonstrated the benefits of their solution

• Articulated the advances beyond previous work

• Drawn appropriate conclusions

Short papers: Authors with a contribution for which a full paper is not
appropriate may submit short papers of at most 5 pages, not including
references, with the same formatting guidelines as full papers. You may
include any number of pages for references. Examples of short paper
contributions include:

• Original or unconventional ideas at a preliminary stage of
development

• The presentation of interesting results that do not require a full-
length paper, such as negative results or experimental validation

• Advocacy of a controversial position or fresh approach

For more details on the submission process and for templates to use
with LaTeX and Word, authors should consult the detailed submission
requirements linked from the Call for Papers Web site, www.usenix.org/
atc17/cfp. Specific questions about submissions may be sent to
atc17chairs@usenix.org.

By default, all papers will be made available online to registered
attendees before the conference. If your accepted paper should not be
published prior to the event, please notify production@usenix.org. In
any case, the papers will be available online to everyone beginning on
the first day of the conference, July 12, 2017.

Papers accompanied by nondisclosure agreement forms will not be
considered. Accepted submissions will be treated as confidential prior
to publication on the USENIX ATC ’17 Web site; rejected submissions will
be permanently treated as confidential.

Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishon-
esty or fraud. USENIX, like other scientific and technical con ferences and
journals, prohibits these practices and may take action against authors
who have committed them. See the USENIX Conference Submissions
Policy at www.usenix.org/conferences/submissions-policy for details.

Note that the above does not preclude the submission of a regular
full paper that overlaps with a previous short paper or workshop paper.
However, any submission that derives from an earlier paper must pro-
vide a significant new contribution (for example, by providing a more
complete evaluation), and must explicitly mention the contributions
of the submission over the earlier paper. If you have questions, contact
your program co-chairs, atc17chairs@usenix.org, or the USENIX office,
submissionspolicy@usenix.org.

Authors will be notified of paper acceptance or rejection by April 24,
2017. Acceptance will typically be conditional, subject to shepherding
by a program committee member.

Poster Session
The poster session is an excellent forum to discuss ideas and get use-
ful feedback from the community. Posters and demos for the poster
 session will be selected from all the full paper and short paper submis-
sions by the poster session chair. If you do not want your submissions
to be considered for the poster session, please specify on the submission
Web site.

Program and Registration Information
Complete program and registration information will be available in
April 2017 on the conference Web site.

Rev. 10/27/16

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

REAL SOLUTIONS
FOR REAL NETWORKS

FREE
CD or DVD
in Every Issue!

ORDER ONLINE AT: shop.linuxnewmedia.com

ORDER ONLINE AT: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 2/8/16 9:20 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

Join a diverse mix of experts and enthusiasts from industry, academia, and
government for three days of presentations and open sharing of ideas.

Our focus is on current and emerging threats and defenses in the growing intersection of society
and technology. Our goal is to foster an intelligent and informed conversation with the community

and with the world, including a wide variety of perspectives, backgrounds, and experiences.

JAN 30–FEB 1 2017
OA K L A ND, C A LIF OR NI A , US A

ENIGMA.USENIX.ORG

The full program and registration are available now.

SECURIT Y AND PRIVAC Y IN CONTEX T

A U S E N I X C O N F E R E N C E

	_GoBack
	_GoBack

