
;login:
S U M M E R 2 0 1 6 V O L . 4 1 , N O . 2

Columns
Cutting Memory Usage in Python
David Beazley

Using the Spotify API
David N. Blank-Edelman

Vendoring in Go
Kelsey Hightower

Intrumenting a Go Service
Dave Josephsen

Security Trends
Dan Geer

Fuzzy Thinking
Robert G. Ferrell

& Causal Profiling
Charlie Curtsinger and Emery D. Berger

& Fuzzing with AFL and ASAN
Peter Gutmann

& HPC and Storage
John Bent, Brad Settlemyer, and Gary Grider

& Adding Privacy Back to Android
Apps
Michael Backes, Sven Bugiel, Oliver Schranz,
and Philipp von Styp-Rekowsky

& Policy-based Routing with iproute2
Jonathon Anderson

& Linux FAST ’16 Summary
Rik Farrow

U P C O M I N G E V E N T S

USENIX ATC ’16: 2016 USENIX Annual Technical
Conference

June 22–24, 2016, Denver, CO, USA
www.usenix.org/atc16

Co-located with USENIX ATC ’16:

SOUPS 2016: Twelfth Symposium on Usable Privacy
and Security
June 22–24, 2016
www.usenix.org/soups2016

HotCloud ’16: 8th USENIX Workshop on Hot Topics in
Cloud Computing
June 20–21, 2016
www.usenix.org/hotcloud16

HotStorage ’16: 8th USENIX Workshop on Hot Topics in
Storage and File Systems
June 20–21, 2016
www.usenix.org/hotstorage16

SREcon16 Europe
July 11–13, 2016, Dublin, Ireland
www.usenix.org/srecon16europe

USENIX Security ’16: 25th USENIX Security Symposium
August 10–12, 2016, Austin, TX, USA
www.usenix.org/sec16

Co-located with USENIX Security ’16
WOOT ’16: 10th USENIX Workshop on Offensive
Technologies
August 8–9, 2016
www.usenix.org/woot16

CSET ’16: 9th Workshop on Cyber Security
Experimentation and Test
August 8, 2016
www.usenix.org/cset16

FOCI ’16: 6th USENIX Workshop on Free and Open
Communications on the Internet
August 8, 2016
www.usenix.org/foci16

ASE ’16: 2016 USENIX Workshop on Advances
in Security Education
August 9, 2016
www.usenix.org/ase16

HotSec ’16: 2016 USENIX Summit on Hot Topics
in Security
August 9, 2016
www.usenix.org/hotsec16

OSDI ’16: 12th USENIX Symposium on Operating
Systems Design and Implementation

November 2–4, 2016, Savannah, GA, USA
www.usenix.org/osdi16

Co-located with OSDI ’16
INFLOW ’16: 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads
November 1, 2016
Submissions due August 5, 2016
www.usenix.org/inflow16

Diversity ’16: 2016 Workshop on Supporting Diversity in
Systems Research
November 1, 2016

LISA16
December 4–9, 2016, Boston, MA, USA
www.usenix.org/lisa16

Co-located with LISA16
SESA ’16: 2016 USENIX Summit for Educators in System
Administration
December 6, 2016
Submissions due September 19, 2016
www.usenix.org/sesa16

USENIX Journal of Education in System Administration (JESA)
Published in conjunction with SESA
Submissions due August 26, 2016
www.usenix.org/jesa

Enigma 2017
January 30–February 1, 2017, Oakland, CA, USA
enigma.usenix.org

FAST ’17
February 27–March 2, 2017, Santa Clara, CA, USA
Submissions due September 27, 2016
www.usenix.org/fast17

SREcon17
March 13–14, 2017, San Francisco, CA, USA

NSDI ’17
March 27–29, 2017, Boston, MA, USA
Paper titles and abstracts due September 14, 2016
www.usenix.org/nsdi17

SREcon17 Asia
May 22–24, 2017, Singapore

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/gplus

http://www.usenix.org/atc16
http://www.usenix.org/soups2016
http://www.usenix.org/hotcloud16
http://www.usenix.org/hotstorage16
http://www.usenix.org/srecon16europe
http://www.usenix.org/sec16
http://www.usenix.org/woot16
http://www.usenix.org/cset16
http://www.usenix.org/foci16
http://www.usenix.org/ase16
http://www.usenix.org/hotsec16
http://www.usenix.org/osdi16
http://www.usenix.org/inflow16
http://www.usenix.org/lisa16
http://www.usenix.org/sesa16
http://www.usenix.org/jesa
http://www.usenix.org/fast17
http://www.usenix.org/nsdi17
http://www.usenix.org/facebook
http://www.usenix.org/youtube
http://www.usenix.org/linkedin

S U M M E R 2 0 1 6 V O L . 4 1 , N O . 2 E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2016 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

E D I T O R I A L
2 Musings Rik Farrow

P R O G R A M M I N G
6 coz: This Is the Profiler You’re Looking For

Charlie Curtsinger and Emery D. Berger
11 Fuzzing Code with AFL Peter Gutmann

S E C U R I T Y
16 Boxify: Bringing Full-Fledged App Sandboxing to Stock Android

Michael Backes, Sven Bugiel, Oliver Schranz, and
Philipp von Styp-Rekowsky

22 Using OpenSCAP Martin Preisler
27 Interview with Nick Weaver Rik Farrow
29 Interview with Peter Gutmann Rik Farrow

S T O R A G E
34 Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

John Bent, Brad Settlemyer, and Gary Grider
40 Linux FAST Summit ’16 Summary Rik Farrow

S Y S A D M I N
44 Improve Your Multi-Homed Servers with Policy Routing

Jonathon Anderson
48 MongoDB Database Administration Mihalis Tsoukalos

H I S T O R Y
56 Linux at 25 Peter H. Salus

C O L U M N S
60 Precious Memory David Beazley
67 iVoyeur: Go Instrument Some Stuff Dave Josephsen
71 Practical Perl Tools: Perl to the Music David N. Blank-Edelman
76 What’s New in Go 1.6—Vendoring Kelsey Hightower
80 For Good Measure: Five Years of Listening to Security Operations

Dan Geer
87 /dev/random Robert G. Ferrell

B O O K S
89 Book Reviews Mark Lamourine, Peter Gutmann, and Rik Farrow

U S E N I X N O T E S
92 Results of the Election for the USENIX Board of Directors,

2016–2018
93 What USENIX Means to Me John Yani Arrasjid

mailto:rik@usenix.org
mailto:michele@usenix.org
mailto:startype@comcast.net
http://www.usenix.org

2  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org A fter having worked in one area for so many years, I decided that it is

time to choose that area as a topic for musing. That area is writing
and writing’s relationship to programming.

Stephen King wrote that writing is telepathy [1]. Although King often writes about the meta-
physical, in this case he is writing metaphorically. By telepathy, King means that the success-
ful writer takes the ideas in his head and transfers them into someone else’s head. There is no
magic involved. What is involved is a lot of time, work, and careful consideration.

Technical Writing
I imagine that anyone reading this essay routinely does technical writing of one sort or
another: emails, bug reports, proposals, articles, and especially papers. And this is where the
telepathy had better happen. If you fail to pierce the fog between you and your readers, your
thoughts will not be transmitted or will, at best, be misunderstood.

I ran across a wonderful example of just how technical writing can fail when done poorly and
succeed when carefully crafted. I was reading a paper to be presented at a USENIX workshop
and was amazed at just how clearly the authors presented their ideas. They explained each
concept, which then flowed into the explanation of the following concept, until they had built
both a description and an argument about the validity of the research in their paper. Their
writing was crystal clear.

That paper received a Best Paper award. At this point you might be wondering why I am not
citing that paper, but I have a reason. The first time these authors submitted their paper to
the same conference, the paper was rejected because the program committee members didn’t
understand it. The authors were convinced that their work was good, but they had failed to
truly communicate their ideas. The concepts were stuck in the authors’ heads.

So they rewrote their paper, then edited it to within an inch of its life. I found this out after
I met the authors during the conference, commended them on their wonderful writing, and
asked them to reprise their paper for ;login:. That’s when I learned of their tale of failure and
redemption.

I often run into very similar problems when editing articles for ;login:. The authors clearly
understand their topic, but leave out so much of what is familiar to them that the result is
incomprehensible to everyone else. They have failed at telepathy, not because they are not
psychic, but because they have not managed to communicate what other people who didn’t
work on their project couldn’t possibly know.

When I run into this I try to coax people into explaining the missing parts. But I often fail
for two reasons. There are people who just can’t make the leap between ideas being in their
heads, perhaps in wondrously beautiful constructs, and the very lack of the foundations nec-
essary for these constructs to appear in the heads of their readers.

The second failing is my own. Once I have read an article many times I begin to understand
the authors’ points. Sometimes, instead of editing the article, the authors will attempt to
explain the subtleties in email communications. So I learn what the authors have been trying

http://www.usenix.org
mailto:rik@usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 3

EDITORIAL
Musings

to communicate—I become contaminated with the very ideas
that they failed to include in their article. At that point, I can no
longer discern that the article has failed to communicate, except
to those who already understand the topic and won’t be reading
the article anyway.

Writing and Programming
At one point I had given up on computing in general when a
friend did two things that changed my life. First he asked me to
store a box of materials for him while he traveled. The Zilog Z80
CPU manual was at the top of this box, and I realized that the
world of computing was about to change: everyone would be able
to have their own computer.

The second thing was what that friend, Madison Jones, told me.
He said that if I could write, I could program.

I had programmed in college and had even written tools that my
advisor used, but I had little faith in my ability to program. In
retrospect, I believe that’s because I spent a lot of time around
people who were incredibly good programmers, and my skills
had faded into inconsequence by comparison. Jones’ words did
serve to inspire me, and I went back to college to refresh my
skills and restarted my career.

Dan Kaminsky, in a posting to the langsec-discuss mailing list
[2], reminded me of the words of my friend when he wrote:

Programming languages are about getting intent from
human to machine. The human is an inherent part of
this equation.

Programming is how we communicate human intent to comput-
ers. If you can write text in an organized and understandable
way, you should be able to translate that text into a programming
language. The translation itself is often faulty, as our mother
tongue is not Go or JavaScript. But more often the problem lies
in the programmer’s inability to have clearly spelled out his ideas
first, before attempting the difficult translation into a program-
ming language. Having failed at description, the telepathy, the
human-to-machine transmission, fails as well.

There is another way in which this failure to communicate
appears in programming that is related to this very same failing.
When very smart people write programs, they often begin by
writing for themselves. If these people are part of a culture of
very smart programmers (think Google, Facebook, LinkedIn,
Apple, Microsoft, Red Hat, IBM, and many other organizations),
they will also write for the people in their own cultures.

But those people are very poor at representing the rest of human-
ity. Most humans don’t live and breathe advanced algorithms,
although where I most often see these problems manifesting is
in human-computer interfaces. When you are an insider, the
intent of a few pixels in an interface is crystal clear, while out-

siders have to guess that right-clicking or swiping over those
pixels will produce a desired result and, hopefully, not be the icon
for resetting the app to factory defaults, including wiping all the
app’s data.

Again, the program’s authors have failed at their telepathy, keep-
ing in mind that telepathy is not magic. Telepathy in practice is
the art of communicating the ideas in your head to someone who
doesn’t share your head space.

The Lineup
We start off this issue with two articles about programming.
While profiling can tell you about areas where your code is run-
ning often, causal profiling instead instruments code and tells
you where improving the running time of a section of code will
improve the overall performance of your code and by how much.
Charlie Curtsinger and Emery D. Berger explain their technique,
coz, and tell you where you can get the coz code and run your
own causal profiling.

Peter Gutmann, a cyberpunk from New Zealand, is the hero
of this issue. He has written an article about using AFL, an
automated fuzzing toolkit, as well as a book review. Fuzzing your
code has been an art form, but AFL along with a compiler like
clang or a very recent version of gcc with ASAN support turns
fuzzing into something you can do as part of routine testing. I
also interviewed Peter because he’s well established in several
areas I wanted to explore: cryptography libraries, supporting
open source software, and the safety of programming languages.
I asked him about all of these topics and more.

I approached Michael Backes about his Boxify paper (USENIX
Security ’15), and he and his coauthors have taken the time to
explain how they have expanded on that work to build a privacy-
enhancing application for Android. Far too many Android
apps want access to everything your smartphone has to offer,
including sensitive information like your texts and contacts.
With a newer version of Android (4.2+) and Boxify, you can limit
the ability of apps to have access to anything the app developers
or advertising included by the app might want to suck off your
Android device.

Martin Preisler works on OSCAP, software that uses vulnerabil-
ity information to audit Linux systems. OSCAP only works for
some distros, but it doesn’t just work on mounted file systems:
OSCAP can scan VM images and containers too; OSCAP can
also perform remediations, such as fixing permissions or cor-
recting configurations.

I interviewed Nick Weaver, asking him to explain the path that
led from designing FPGAs to writing about the first Warhol
worm and becoming an informal expert on bulk data collection.
Nick spoke on data collection at the first Enigma conference and
explained how to de-anonymize Internet traffic.

http://www.usenix.org

4  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

EDITORIAL
Musings

John Bent, Brad Settlemyer, and Gary Grider share their
perspective on how HPC (high performance computing) has
changed, and will change, the way distributed storage systems
work. HPC has very unusual storage requirements, but these
relatively rare installations can teach us a lot about how distrib-
uted storage systems will work in the future.

I attended the Linux FAST Summit ’16 and took a huge amount
of notes. Instead of attempting to transcribe those notes, I have
written a summary of the event this time. I also have a note
about the FreeBSD Storage Summit that occurred the day before
FAST ’16 began.

Jonathon Anderson tells us how he is using policy-based routing
at the University of Colorado Boulder Research Computing. With
iproute2, you can go beyond traditional routing tables by adding
policies that override default routes, techniques that really
improve performance and latency for services on dual-homed
servers.

Mihalis Tsoukalos provides an introduction to MongoDB admin-
istration. Like many other NoSQL databases, MongoDB has
quirks that you’ll want to know about before you start using it.

Peter Salus has collected many of his observations about the
history of Linux into an article. The Linux system turned 25 this
spring, and Peter tells us about the beginning of Linux and how
various distros were born and how various distros died.

David Beazley demonstrates how to improve memory usage in
Python. While creating a dict might be the easiest way to import
a large amount of data, David demonstrates how using a dict
is the least efficient method when it comes to minimizing the
memory footprint.

David Blank-Edelman investigates the Spotify API while using
Perl. David shows us techniques for exploring the RESTful inter-
face used by Spotify and how to delve into the results returned
for a richer understanding of the interface.

Kelsey Hightower explains the vendor directories that are now
part of Go. Previously, dealing with external libraries required
using an additional tool. The vendor directory allows you to
include and manage external libraries within your Go project.

Dave Josephsen covers Go in his column too. Dave treats us
to some neat tricks for instrumenting a service with a view to
expanding that monitoring to cover new services with the addi-
tion of just a few lines of code.

Dan Geer explains how sometimes your metrics work better
when you examine the trajectory of your data rather than their
absolute values. Dan focuses on the data he has been collecting
monthly about security trends for the past five years.

Robert G. Ferrell takes a deep look into Fuzzy Thinking as
applied to cats, politicians, consumers, and fuzzing programs.

We have five book reviews this time, with three by Mark Lamou-
rine, one by Peter Gutmann, and one by me.

Finally, John Yani Arrasjid writes about why he has donated so
much of his time and energy to USENIX over the past 30 years.

Coding and Algebra
Like many of my contemporaries, I learned a lot of math before I
ever had a chance to program a computer. My high school algebra
prepared me for inorganic chemistry and classical physics,
classes which I aced because they so nicely correlated to simple
algebraic equations. And that appeared to lead me right into col-
lege programming classes.

I also tutored fellow classmates in chemistry during high school.
While I found the relationship between algebra and chemistry
crystal clear, the people I was tutoring did not. These folks were
in the same college prep school I was in, equally smart, but my
brain and their brains were not wired the same way. What I
found simple, algebra, they had great difficulty comprehending.

When I heard of people suggesting that high school students
not study algebra, I wondered if you could teach coding with-
out algebra. After a few minutes searching, I ran across Andy
Skelton’s essay about coding and algebra [3]. Getting to the gist
of Skelton’s point, first put yourself into the mindset of algebra
instead of programming. What do these three statements mean
in algebra?

a = 2

b = 3

a = b

As a programmer, you might optimize this without even thinking
about it to:

b = a = 3

But in algebra, the third statement, a = b, is nonsense because
a does not equal b. What the heck! So algebra, even though it is
where students learn about abstraction and how to solve word
problems, doesn’t map very neatly into coding. Not at all.

I also ran across a completely different approach, teaching alge-
bra through coding. Bootstrap [4] provides class materials for
teaching students about coding through programming a game.
Instead of struggling to learn the abstractions of algebra, Boot-
strap uses the design of a simple game to teach both program-
ming and math through concrete examples.

I want to end this little essay by encouraging all of you to take
the time not just to write, but to polish what you write. Stephen
King is famous for his writing, but do you think that he just sits

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 5

EDITORIAL
Musings

Resources
[1] S. King, On Writing: A Memoir of the Craft, Scribner, 2000.

[2] Lang-sec discuss: https://mail.langsec.org/cgi-bin/mailman
/listinfo/langsec-discuss.

[3] A. Skelton, “Programming Is not Algebra”: https://andy
.wordpress.com/2012/05/30/programming-is-not-algebra/.

[4] Bootstrap: http://www.bootstrapworld.org.

down and knocks out best-selling novels? No way! King writes
a first draft, perhaps 1000 words at a time, then puts that draft
away for a month without showing it to anyone. Then he pulls
out his draft and begins reworking it until he gets it into a shape
where he is willing to show the early stages of a novel to some
close friends.

Writing is not something that springs into existence as if a god
had struck a rock and, miraculously, clear water pours forth. Just
like programming, good writing is something that results from
planning, careful work, debugging/editing, and, finally, testing.
If you have to explain what you have written to your test audi-
ence, you have failed at telepathy. Go back and rework what you
have written until a fresh test audience can understand it.

Remember the paper authors? One year their paper gets rejected
in the first round, and the next year that same paper, carefully
rewritten, wins a Best Paper award. The research was the same,
but the exposition of that research wasn’t.

Do you have a USENIX Representative on your university or college campus?
If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX
is always looking for academics to participate. The program is designed for faculty or staff who directly interact with stu-
dents. We fund one representative from a campus at a time.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for student use

■ Distributing calls for papers and upcoming event
 brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas
of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus Representative),
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty
have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four-year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

■ Providing students who wish to join USENIX with
 information and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions on
how the organization can better serve students

For more information about our Student Programs, please contact office@usenix.org

http://www.usenix.org
https://mail.langsec.org/cgi-bin/mailman/listinfo/langsec-discuss
https://andy.wordpress.com/2012/05/30/programming-is-not-algebra/
http://www.bootstrapworld.org
mailto:office@usenix.org
https://mail.langsec.org/cgi-bin/mailman/listinfo/langsec-discuss
https://andy.wordpress.com/2012/05/30/programming-is-not-algebra/

6  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

PROGRAMMINGcoz
This Is the Profiler You’re Looking For

C H A R L I E C U R T S I N G E R A N D E M E R Y D . B E R G E R

Charlie Curtsinger is a new
faculty member in the Com-
puter Science Department at
Grinnell College. His research
interests include software

performance, security, and reliability with
an emphasis on probabilistic and statistical
techniques. curtsinger@grinnell.edu

Emery Berger is a Professor
in the College of Information
and Computer Sciences at the
University of Massachusetts
Amherst, where he co-directs

the PLASMA lab (Programming Languages and
Systems at Massachusetts) and is a regular
visiting researcher at Microsoft Research.
He is the creator of a number of influential
software systems including Hoard, DieHard,
and DieHarder, a secure memory manager that
was an inspiration for hardening changes made
to the Windows 8 heap. He is currently serving
as Program Chair for PLDI 2016.
emery@cs.umass.edu

Causal profiling is a new approach to software profiling that tells
developers which code is important for performance. Conventional
profilers report where programs spend their time running, but opti-

mizing long-running code may not improve program performance. Instead of
simply observing a program, a causal profiler conducts performance experi-
ments to predict the effect of speeding up many different parts of a program.
During each experiment, a causal profiler uses virtual speedup to create the
effect of optimizing part of the program, and progress points to measure any
change in program performance as a result of the virtual speedup. A causal
profile summarizes the results of many performance experiments, telling
developers exactly where performance tuning would be worthwhile. Using
COZ, a prototype causal profiler for Linux, we improve the performance of
Memcached by 9%, SQLite by 25%, and several PARSEC applications by as
much as 68%.

“Try running it with a profiler.” This suggestion inevitably comes up once all reasonable ideas
for improving a program’s performance are exhausted. The authors of thousands of lines of
code have been unable to come up with any explanation for the system’s poor performance,
so why do we expect a tool from 1982 to fare better [3]? Deep down, we’ve always known this
was true. Take the historically accurate space adventure game you were playing too late
last Tuesday as an example; how would a profiler know that the thread that plays lightsaber
crackling sounds was less important than the thread that controls the stormtrooper you were
battling? It wouldn’t. When we look at a software profile we aren’t looking for guidance, we’re
looking for surprises. And with parallel programs, practically everything is surprising. That’s
not to say that profilers aren’t informative. Any good software profiler can tell you, with great
accuracy, where a program spends its execution time. Unfortunately, this isn’t the informa-
tion we’re looking for.

Code that runs for a long time is not necessarily a good choice for performance tuning. Devel-
opers need to know which code is important—where successful performance tuning would
improve the program’s end-to-end performance. Consider a function that draws a “loading …”
animation while you wait for the next level of your game to load. The animation runs just as
long as the loading code, but we would never expect to speed up the program by making the
animation faster.

This problem is not limited to programs that perform I/O. Figure 1 shows a simple parallel
program with a similar issue. This program creates two threads, one to run the function a()
and another to run the function b(). The program exits once both threads have finished. A
conventional profiler like gprof, whose output for this program is shown in Figure 2, reports
that the program spends roughly equal time running a() and b(). While accurate, this
information is misleading; optimizing a() alone will speed the program up by just 4.5%, and
optimizing b() will have no effect on performance.

http://www.usenix.org
mailto:curtsinger@grinnell.edu
mailto:emery@cs.umass.edu

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 7

PROGRAMMING
coz: This Is the Profiler You’re Looking For

example.cpp

void a() { // ˜6.7 seconds

 for(volatile size_t x=0; x<2000000000; x++) {}

}

void b() { // ˜6.4 seconds

 for(volatile size_t y=0; y<1900000000; y++) {}

}

int main() {

 // Spawn both threads and wait for them.

 thread a_thread(a), b_thread(b);

 a_thread.join(); b_thread.join();

}

Figure 1: A simple multithreaded program that illustrates the shortcomings
of existing profilers. Optimizing a() will improve performance by no more
than 4.5%, while optimizing b() would have no effect on performance.

The key issue with conventional profilers is that they only
observe a program’s execution. Through observation alone, they
cannot tell you which code to optimize, because long-running
code is not necessarily important to program performance.
Speeding up a line of code might shorten an important path
through the program, or it may speed up a thread that does back-
ground work, increasing contention on a critical data structure,
which in turn hurts overall program performance.

 % time cumulative self self total

 seconds seconds calls Ts/call Ts/call name

 55.20 7.20 7.20 1 a()

 45.19 13.09 5.89 1 b()

 % time self children called name

 <spontaneous>

 55.0 7.20 0.00 a()

 <spontaneous>

 45.0 5.89 0.00 b()

Figure 2: A conventional profile for example.cpp collected with gprof

Causal Profiling
Causal profiling is a novel approach to profiling that identifies
code where optimizations will have the largest impact [2]. A
causal profiler is fundamentally different from a conventional
profiler; rather than simply observing program execution, a
causal profiler intentionally perturbs program performance to
conduct performance experiments. During a performance experi-
ment, a causal profiler creates the effect of speeding up some
piece of a program using virtual speedup (more on this later).
While virtually speeding up one piece of a program, a causal
profiler then measures program performance to determine the
effect of this speedup. Given enough performance experiments

with varying locations and sizes of virtual speedup, we can con-
struct a causal profile, which tells you both where optimizations
would have an effect and how large that effect would be.

Figure 3 shows a real causal profile for the program in Figure 1
collected with COZ, a prototype causal profiler for Linux. This
causal profile suggests that speeding up a() alone could improve
program performance by up to 5.0%, very close to the actual
4.5%. Beyond this point, the thread running b() becomes the
program’s critical path. The causal profile correctly indicates
that speeding up b() alone would have a negligible effect on
performance.

Producing a causal profile requires three key pieces: we need
a way to create the effect of an optimization, the profiler must
apply a virtual speedup for the duration of a performance experi-
ment, and we need a way to measure a program’s performance at
the end of each experiment.

Virtual Speedup
A causal profiler cannot magically speed up a part of a program
and measure the effect of that speedup; if this were possible,
we would just magically speed up the entire program. Instead,
a causal profiler creates the effect of speeding up one part of
a program by slowing everything else down. The amount that
other threads are slowed down determines the size of the virtual
speedup. The size of the virtual speedup can range from 0% (the
code’s runtime is unchanged) to 100% (the code’s runtime is
reduced to zero).

Figure 4 illustrates a virtual speedup in a simple parallel program.
Part (a) shows the original execution of two threads running
functions f() and g(), and part (b) shows the effect of actually
speeding up f() by 40%; the size of this speedup was chosen arbi-
trarily and could be any value from 0% to 100%. Finally, part (c)
shows the effect of virtually speeding up f() by 40%.

Each time f() runs in one thread, all other threads pause for 40%
of f’s original execution time. While virtual speedup does not
actually shorten the program’s runtime, the difference between
the program’s original runtime and its runtime with a virtual
speedup is known: it is just the number of times f() ran multi-
plied by the delay size. Given that we know both quantities, we

Figure 3: Causal profile for example.cpp

http://www.usenix.org

8  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

PROGRAMMING
coz: This Is the Profiler You’re Looking For

can adjust the baseline runtime by this extra time to predict the
effect of an actual speedup.

Instrumenting a program to track visits to f() and signaling
other threads to pause them every time it runs would be prohibi-
tively expensive. Instead, COZ uses sampling to approximate
this approach. Instead of pausing other threads each time f()
runs, COZ would delay other threads every time it sees a sample
in f(). The size of the delay is proportional to the sampling inter-
val rather than the execution time of a single call to f().

Performance Experiments
A causal profiler can use virtual speedup to test the effect of
a potential optimization, but how does it decide which code to
virtually speed up, and by how much? Coverage is particularly
important: given a large code base, we would like to find the one
line of code with the largest possible payoff from optimizations.
COZ applies virtual speedup at the granularity of source lines,
which means there are potentially tens of thousands of program
fragments that could be virtually sped up. Rather than choosing
uniformly from all source lines, COZ selects from the distribu-
tion of where a program spends its time running. While long-
running code may not be the best place for performance tuning,
code that never runs is certainly a bad place to focus our limited
energy. Once a COZ selects a line to virtually speed up, it selects
a speedup size between 0% and 100% in increments of 5%.

During a performance experiment, COZ applies the same fixed
virtual speedup to the selected line. All that is required to speed
up a specific line is to map program execution samples, which
are memory addresses of code, to source information. This is
a relatively straightforward process using DWARF debugging
information. While COZ currently uses source lines as the unit
of virtual speedup, any fragment of code that can be mapped to
addresses could be virtually sped up.

At the end of a performance experiment, COZ measures the pro-
gram’s performance with the virtual speedup in place. But how
can we measure performance in the middle of an execution or for
programs that run indefinitely? For the simple example in Fig-
ure 3, COZ runs a single performance experiment for the entire
execution of the program. While this approach works for small
programs, it does not scale well; large programs would require,
at minimum, thousands of runs to get reasonable coverage with
performance experiments. COZ solves this problem by allowing
developers to specify progress points.

Progress Points
A progress point is some point in a program that should happen
as frequently as possible, completing a user request, for example,
or processing a block of data. Developers mark one or more
progress points in their application by adding the COZ_PROGRESS
macro, which keeps a count of the visits to this point in the code.
COZ measures the rate of visits to a progress point as a proxy for
performance. This allows COZ to conduct many performance
experiments in a single run of a program or in programs where
end-to-end runtime is not meaningful such as servers and inter-
active applications.

This basic notion of progress points allows us to measure
throughput at some point in the code, but COZ can also use prog-
ress points to measure the latency between two points. Instead
of specifying a single point, developers mark the beginning and
end of a transaction using two macros, COZ_BEGIN and COZ_END.
COZ does not track individual transactions as they flow through
the system, but by measuring the rate of arrivals at the begin-
ning point and the number of outstanding requests, COZ can
use Little’s Law to compute the average latency between the two
points [4].

Using COZ
Running a program with COZ requires just three steps: (1) find
one or more places to add progress points that allow COZ to
measure the program’s performance; (2) run the program with
the command-line driver: coz run --- <program> <args>; and
(3) use COZ’s Web-based profile interface to plot the results and
rank lines by potential impact. Our SOSP 2015 paper on causal
profiling includes case studies where we use COZ to optimize
eight different applications, three of which are included below
[2]. These case studies include the compression program dedup,
where COZ led us to a degenerate hash function; the embedded
database SQLite, where COZ guided us to an inefficient coding
practice that prevented function inlining; and the in-memory
key-value store Memcached, where COZ identified unnecessary
contention on a shared lock. Fixing these issues led to whole-
program performance improvements of 9% for dedup, 25% for
SQLite, and 9% for Memcached.

Figure 4: An illustration of a program’s (a) original execution, (b) a real
speedup of function f() by 40%, and (c) a virtual speedup of f() by 40%

f

gt₂

t₁

t₂

t₁

t₂

t₁ f

f

f

g

g

g

f

f

fg

gg

f

f

g

g

g

f

(a) Original Program

(b) Actual Speedup

(c) Virtual Speedup

original runtime
+

nf · d

time

original runtime

… g

…

…

effect of optimizing by df

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 9

PROGRAMMING
coz: This Is the Profiler You’re Looking For

Case Study: dedup
The dedup application, part of the PARSEC suite, performs par-
allel file compression via deduplication [1]. We added a progress
point to dedup’s code just after a single block of data is com-
pressed (encoder.c:189).

COZ identifies the source line hashtable.c:217 as an opportu-
nity for optimization; Figure 5 shows the causal profile results
for this line. This plot shows that improving the performance of
the code that runs this line will result in a nearly one-to-one per-
formance improvement in program performance up to 20%, with
modest additional gains for performance improvements over
20%. This code is the top of the while loop in hashtable search
that traverses the linked list of entries that have been assigned
to the same hash bucket. This suggests that dedup’s shared hash
table has a significant number of collisions. Hash collisions
could be caused by two things: a hash table that is too small or a
hash function that does not evenly distribute elements through-
out the hash table. Increasing the hash table size had no effect on
performance, so the only remaining culprit is the hash function. It
turns out dedup’s hash function was mapping keys to just 2.3% of
the available hash table buckets; over 97% of hash buckets were
never used during the entire execution, and the 2.3% of buckets
that were used at all contained an average of 76.7 entries.

The original hash function adds characters of the hash table
key, which leads to virtually no high-order bits being set. The
resulting hash output is then passed to a bit-shifting procedure
intended to compensate for poor hash functions. Removing the
bit-shifting step increased hash table utilization to 54.4%, and
changing the hash function to use bitwise XOR on 32-bit chunks
of the key increased hash bucket utilization to 82.0%. This three-
line change resulted in an 8.95% ± 0.27% performance improve-
ment. Figure 6 shows the rate of bucket collisions of the original
hash function, the same hash function without the bit shifting
“improvement,” and our final hash function. The entire opti-
mization required changing just three lines of code. This entire
process, from profiling to a completed patch, took just two hours.

Case Study: SQLite
The SQLite database, which can be included as a single large C
file, is used for many applications—including Firefox, Chrome,
Safari, Opera, Skype, iTunes—and is a standard component
of Android, iOS, Blackberry 10 OS, and Windows Phone 8. We
evaluated SQLite’s performance using a simple write-intensive
parallel workload, where each thread rapidly inserts rows to its
own private table. While this benchmark is synthetic, it exposes
any scalability bottlenecks in the database engine itself because
all threads should theoretically operate independently. This
benchmark executes a progress point each time an insert to the
database is completed.

COZ identified three important optimization opportunities,
shown in Figure 7. Interestingly, the profile suggests that a small
improvement to these lines’ performance would speed up the
program, but large performance improvements could actually be
detrimental; this is evidence of contention elsewhere in the pro-
gram. While resolving contention did not play a role in optimiz-
ing SQLite, contention is a factor in the next case study, which
examines Memcached.

At startup, SQLite populates a large number of structs with
function pointers to implementation-specific functions, but
most of these functions are only ever given a default value deter-
mined by compile-time options. The three functions COZ identi-
fied unlock a standard pthread mutex, retrieve the next item
from a shared page cache, and get the size of an allocated object.
These simple functions do very little work, so the overhead of
the indirect function call is relatively high, particularly because

Figure 5: The causal profile for the source line hashtable.c:217 in
dedup shows the potential performance improvement of fixing a hash
bucket traversal bottleneck.

Figure 6: Hash collision rate before, during, and after performance tuning
for a subset of dedup’s hash buckets. Dashed black lines show the aver-
age number of items per utilized bucket. Note the different y-axes. Fixing
dedup’s hash function improved performance by 9%.

0

100

200

300

0
50

100
150
200

0.0

2.5

5.0

7.5

O
riginal

M
idpoint

O
ptim

ized

0 1000 2000 3000 4000
Bucket Index

K
ey

s A
ss

ig
ne

d
to

 B
uc

ke
t

http://www.usenix.org

10  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

PROGRAMMING
coz: This Is the Profiler You’re Looking For

these functions are all likely candidates for inlining. Replac-
ing these indirect calls with direct calls—which only required
changes to seven lines of SQLite code—resulted in a 25.60% ±
1.00% speedup.

Case Study: Memcached
Memcached is a widely used in-memory key-value store, typi-
cally used as a cache in front of a database server. To evaluate
Memcached’s performance, we ran a version of the Redis perfor-
mance benchmark ported to Memcached (available at https://
github.com/antirez/mc-benchmark). This program spawns
50 parallel clients that collectively issue 100,000 SET and GET
requests for a variety of keys. We added a progress point at the
end of the process_command function in Memcached, which
will execute after each client request is completed.

The vast majority of the source lines COZ profiles have virtually
no potential for performance impact; this is hardly surprising
given the level of performance tuning attention Memcached has
received [5]. Excluding lines with little or no potential perfor-
mance impact—which have a flat causal profile—most of the
lines COZ identifies are cases of contention with a characteristic
downward-sloping causal profile plot. This downward slope
shows that optimizing this particular line of code would hurt
rather than help program performance. If speeding up a line of
code would hurt program performance, then some action that
follows this line must contend with the program’s critical path.
One such line is at the start of the item_remove function, which
locks an item in the cache, decrements its reference count, and
frees the item if its reference count is zero.

To reduce lock-initialization overhead, Memcached uses a static
array of locks to protect items, where each item selects a lock
using a hash of its key. Consequently, locking any one item can
potentially contend with independent accesses to other items
whose keys happen to hash to the same lock index. However,
Memcached uses atomic increment and decrement operations
for reference counts; locking at this point is completely unneces-
sary. Resolving this issue along with two similar fixes required
changing just six lines of code and resulted in a 9.39% ± 0.95%
performance improvement.

Conclusion
Causal profiling is a radical departure from previous approaches
to software profiling. Conventional profilers simply observe a
program’s execution, leaving developers to apply some intuition
or a performance model to decide which parts of the program are
important for performance. With a causal profiler, the program
is the performance model. Instead of simply observing a pro-
gram while attempting to minimize changes to that program’s
performance, a causal profiler intentionally alters program
performance to conduct performance experiments. By care-
fully coordinating delays across a program’s execution, a causal
profiler can create the effect of optimizing a specific code frag-
ment. By directly measuring the effect of a performance change,
a causal profiler can tell developers exactly where optimizations
will make a difference.

COZ is available at http://coz-profiler.org.

References
[1] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,
and Kai Li, “The PARSEC Benchmark Suite: Characteriza-
tion and Architectural Implications,” in Proceedings of the 17th
International Conference on Parallel Architecture and Compu-
tation Techniques (PACT 2008), pp. 72–81: http://parsec.cs
.princeton.edu/doc/parsec-report.pdf.

[2] Charlie Curtsinger and Emery D. Berger, “COZ: Finding
Code that Counts with Causal Profiling,” in Proceedings of the
25th Symposium on Operating Systems Principles (SOSP 2015),
pp. 184–197: http://dx.doi.org/10.1145/2815400.2815409.

[3] Susan L. Graham, Peter B. Kessler, and Marshall K. McKu-
sick, “gprof: a Call Graph Execution Profiler,” in Proceedings
of the SIGPLAN ’82 Symposium on Compiler Construction,
SIGPLAN Notices, vol. 17, no. 6, pp. 120–126: http://dx.doi.org
/10.1145/989393.989401.

[4] John D. C. Little, “A Proof for the Queueing Formula:
L = λW,” Operations Research, vol. 9, no. 3 (1961), pp. 383–387.

[5] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiat kowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike
Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,
and Venkateshwaran Venkataramani, “Scaling Memcache at
Facebook,” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’13),
pp. 385–398: https://www.usenix.org/system/files
/conference/nsdi13/nsdi13-final170_update.pdf.

Figure 7: COZ’s output for SQLite before optimizations

http://www.usenix.org
https://github.com/antirez/mc-benchmark
https://github.com/antirez/mc-benchmark
http://coz-profiler.org
http://parsec.cs.princeton.edu/doc/parsec-report.pdf
http://dx.doi.org/10.1145/2815400.2815409
http://dx.doi.org/10.1145/989393.989401
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf
http://parsec.cs.princeton.edu/doc/parsec-report.pdf
http://dl.acm.org/citation.cfm?doid=989393.989401
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_update.pdf

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 11

PROGRAMMING

Fuzzing Code with AFL
P E T E R G U T M A N N

Most programs are only ever used in fairly stereotyped ways on ste-
reotyped input and will often crash in the presence of unexpected
input. Test suites designed by humans, assuming there even is a

test suite, are only as good as the people creating them and often only exer-
cise the common code paths. This problem is where fuzzing comes in, the
creation of input that exercises as many different code paths as possible in
order to show up problems in the code. Until recently fuzzing has been a com-
plex and tedious process, but with the appearance of instrumentation-guided
fuzzers like AFL the task has become much easier. This article looks at how
you can apply AFL to your code.

Fuzzing Software with AFL
Most software is pretty buggy. The reason why it works a lot of the time is that we use it in
ways that don’t trigger the bugs, either because the bugs are in obscure parts of the code that
never get exercised or because they’re in commonly used parts of the code but we know about
them and avoid triggering them. Since most programs are used in stereotyped ways that
exercise only a tiny portion of the total number of code paths, removing obvious problems
from these areas will be enough to keep the majority of users happy. This was shown up in
one study of software faults which found that one-third of all faults resulted in a mean time
to failure (MTTF) of more than 5,000 years, with somewhat less than another third having a
MTTF of more than 1,500 years [1].

On the other hand, when you feed unexpected input to these programs, meaning you exer-
cise all the code paths that are normally left alone, you reduce the MTTF to zero. A study [2]
that looked at the reliability of UNIX utilities in the presence of unexpected input, and later
became famous for creating the field of fuzz-testing or fuzzing, found that one-quarter to
one-third of all utilities on every UNIX system that the evaluators could get their hands on
would crash in the presence of random input.

Unfortunately, when the study was repeated five years later [3] the same general level of
faults was still evident.

Windows was no better. A study that looked at 30 different Windows applications [4]—
including Acrobat Reader, Calculator, Ghostscript, Internet Explorer, MS Office, Netscape,
Notepad, Paintshop, Solitaire, Visual Studio, and Wordpad, coming from a mix of commer-
cial and non-commercial vendors—found that 21% of programs crashed and 24% hung when
sent random mouse and keyboard input, and every single application crashed or hung when
sent random Windows event messages.

Before the Apple fans get too smug about these results, OS X applications, including Acrobat
Reader, Apple Mail, Firefox, iChat, iTunes, MS Office, Opera, and Xcode, were even worse
than the Windows ones [5].

So what can we do about this?

Peter Gutmann is a Researcher
in the Department of Computer
Science at the University of
Auckland working on design
and analysis of cryptographic

security architectures and security usability.
He helped write the popular PGP encryption
package, has authored a number of papers
and RFCs on security and encryption, and is
the author of the open source cryptlib security
toolkit Cryptographic Security Architecture:
Design and Verification (Springer, 2003) and an
upcoming book on security engineering. In his
spare time he pokes holes in whatever security
systems and mechanisms catch his attention
and grumbles about the lack of consideration
of human factors in designing security
systems. pgut001@cs.auckland.ac.nz

http://www.usenix.org
mailto:pgut001@cs.auckland.ac.nz

12  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

PROGRAMMING
Fuzzing Code with AFL

Fuzz Testing
The answer to the question posed in the previous section is to
test your app with random input through fuzz testing before
someone else, possibly with less than good intentions, does it for
you. Until now this has been quite a pain to deal with since the
tools were under-documented and required a large amount of
manual intervention to do their job. The process would typically
involve downloading a fuzzer, staring at the extensive half-page-
long manual for a while, and then settling down to trying to
figure out whatever arcane scripting language the fuzzer used to
get it to generate input for your app.

Even if you got that far, it was often a case of trial and error with
a code profiler to determine whether you were getting any useful
code coverage from the fuzzing or just wasting CPU cycles.

Eventually, with a large amount of effort and more than a little
luck, you could start fuzzing your code.

All of this changed a few years ago with the introduction of
instrumentation-guided fuzzers. These compile the code being
fuzzed with a custom build tool that instruments the code being
compiled and tries to ensure that the fuzzer generates input
that exercises all of the different code paths. As a result, the
fuzzer doesn’t spend forever randomly generating test cases that
exercise the same paths over and over, but generates cases that
exercise as many different paths as possible. In addition it can
prune the test cases to eliminate ones that are covered by other
cases, minimizing the amount of effort expended in trying to
find problems.

This strategy produces some truly impressive results. The fuzzer
I’ll be talking about here, American Fuzzy Lop (named after a
breed of rabbit), or AFL, managed to produce valid JPEG files
recognized by djpeg starting from a text file containing the
string “hello” [6]. The files didn’t necessarily decode to produce a
photo of the Eiffel Tower but did produce valid if rather abstract-
looking JPEG images.

When I ran it on my code, I was somewhat surprised to find
myself stepping through PGP keyring code when I’d started with
a PKCS #15 key file, which has a completely different format.
The input file sample for fuzzing that AFL had started with was:

00000000 30 82 04 BA 06 0A 2A 86 48 86 F7 0D 01 0F 03 01

00000010 A0 82 04 AA 30 82 04 A6 02 01 00 30 82 04 9F A0

00000020 82 01 96 A0 82 01 92 A0 82 01 8E 30 18 0C 16 54

00000030 65 73 74 20 45 43 44 53 41 20 73 69 67 6E 69 6E

What AFL mutated this into over time was:

00000000 99 01 A2 04 37 38 F7 27 11 04 00 97 AB 53 62 04

00000010 7F 8C BB 1A 25 0A 58 CA 63 20 9D 43 D4 8D 50 15

00000020 70 68 E3 76 3D 7B C2 76 78 28 23 B6 9A 40 BC CF

00000030 14 88 A3 80 47 3B 5F 17 5F 73 72 5A 60 1F D3 1B

Like the JPEGs that started as the text string “hello,” it was
a syntactically valid PGP keyring, although semantically
meaningless.

Building AFL
Using AFL requires AFL itself [7], a compiler, and a compiler tool
called Address Sanitizer [8], or ASAN, that’s used to detect code
excursions. ASAN requires a fairly recent compiler, quite possibly
a more recent one than whatever crusty old version your OS ships
with, so don’t use the version you find in some repository but
build it yourself so that you know it’ll be done right. You can use
either gcc or clang; if you value your sanity I’d recommend clang.

Start by getting the various pieces of the compiler suite that
you’ll need (clang is part of the LLVM toolset):

svn co https://llvm.org/svn/llvm-project/llvm/trunk LLVM

svn co https://llvm.org/svn/llvm-project/cfe/trunk LLVM/tools

 /clang

svn co https://llvm.org/svn/llvm-project/compiler-rt/trunk

 LLVM/projects/compiler-rt

Then build clang and the related tools:

cd LLVM

mkdir build

cd build

export MAKEFLAGS=”-j`getconf _NPROCESSORS_ONLN`”

cmake -DCMAKE_BUILD_TYPE=RELEASE ~/LLVM

cmake --build .

If you don’t have CMake installed, then either get it from your
favorite repository or build it from source [9].

The clang build process will take an awfully long time even
spread across multiple CPUs (which is what the MAKEFLAGS line
does), so you can go away and find something else to do for a
while. If you run out of virtual memory during the build process,
decrease the -j argument, which spreads the load across fewer
processors and uses less resources.

Eventually, the whole thing will be built and you’ll have the nec-
essary binaries present in the LLVM/build directory tree.

Now that you’ve got the tools that you need to build AFL, you can
build AFL itself:

wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

tar xvfz afl-latest.tgz

rm afl-latest.tgz

cd `find . -maxdepth 1 -type d -print | sort -r | head -1`

export PATH=~/LLVM/build/bin:~/LLVM/tools/clang/tools

 /scan-build:$PATH

make

cd llvm_mode

make

After all that, you’ve finally got the AFL tools ready to go.

http://www.usenix.org
https://llvm.org/svn/llvm-project/llvm/trunk
https://llvm.org/svn/llvm-project/cfe/trunk
https://llvm.org/svn/llvm-project/compiler-rt/trunk
http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 13

PROGRAMMING
Fuzzing Code with AFL

Building Your App
Now you need to build your app. First, you need to modify it to
take as input the data generated by AFL. If your app is something
that takes a filename on the command line, as the djpeg example
mentioned earlier does, this is pretty straightforward. If the
app is a bit more complex than that, for example a GUI app, then
you’ll need to modify your code to allow the test data to be fed in.
In my code I use a custom build that no-ops out a lot of the code
that isn’t relevant to the fuzzing and allows the test data to be
injected directly into the data-processing code.

If you’re fuzzing a network app then things get a bit more compli-
cated. There’s ongoing work to add support for fuzzing programs
that take input over network sockets, one example being [10],
but since it’s work-in-progress it could well be superseded by the
time you read this. A much easier option is to modify your code
to take input from a file instead of a network socket, which also
avoids the overhead of dealing with a pile of networking opera-
tions just to get the test data into your app.

Finally, if your app has a relatively high startup overhead, then
AFL provides additional support for dealing with this, which I’ll
describe later in the section on optimizing AFL use.

Once you’ve got your code set up to take input from AFL, you can
build it as you normally would, specifying the use of the AFL
tools instead of the usual ones. For example, if you build your app
using a makefile, you’d use:

export AFL_HARDEN=1 ; export AFL_USE_ASAN=1 ;

make CC=afl-clang-fast CFLAGS=-fsanitize=address

which builds the code with instrumentation and ASAN support.
afl-clang-fast is the AFL-customized version of clang that adds
the necessary instrumentation needed by the fuzzing. As the
code is built, you’ll see status reports about the instrumentation
that’s being applied.

One thing that you need to make sure of is that your app actu-
ally crashes on invalid input, either explicitly by calling abort()
(typically via an assertion) or implicitly with an out-of-bounds
memory access or something similar that ASAN can detect.
ASAN inserts guard areas around variables and can detect out-
of-bounds and other normally undetectable errors. But if your
program simply continues on its way with invalid input, then
AFL can’t detect a problem. The easiest way to ensure an AFL-
detectable exit is to sprinkle as many sanity-check assertions as
possible throughout your code, which means that if any pre- or
post-condition or invariant is violated by the input that AFL
generates, it can be detected.

Fuzzing Your App
Now you’re finally ready to fuzz your app. To do this, run the
fuzzer as afl-fuzz, giving it an input directory to take sample
files from and an output directory telling it where to store statis-
tics and copies of files that produce crashes. If your app was built
as a.out, you’d use:

afl-fuzz -i in -o out ./a.out @@

The @@ is a placeholder that afl-fuzz replaces with the path to
the fuzzed data files that it generates.

When the fuzzer is running, the results will be displayed on an
annoying screen-hogging live status page that prevents you from
running more than one copy on multicore systems. To deal with
this, use nohup to get rid of the full-screen output. The AFL tools
have built-in support for running across multiple cores or serv-
ers but the details are a bit too complex to go into here and have
evolved over time; see the AFL Web pages for more information.

Alongside the status screen, stats are written to a file fuzzer_

stats in the fuzzer output directory. The important values are
execs_per_sec, which indicate how fast you’re going; execs_

done, how far you’ve got; unique_crashes and unique_hangs,
which are pretty self-explanatory (although the hangs aren’t
terribly useful unless you set the threshold fairly high; they’ll be
mostly false positives due to timing glitches like page faults and
I/O); and finally cycles_done, the number of full sets of muta-
tions exercised. Depending on the complexity of your input data,
it can take days or even weeks to complete a cycle. There’s a tool
afl-tmin that tries to help you minimize the size of the test cases;
again, see the AFL Web page for details.

For each crash or hang, AFL will write the input that caused it to
the crashes or hangs subdirectories in the output directory. You
can then take the files and feed them to your app running under
your debugger of choice to see what’s going on.

If you’re running AFL on someone else’s machine, you’re going to
make yourself somewhat unpopular with it. It uses 100% of the
CPU per AFL task, and if you maximize the overall utilization
with one task per ‘getconf _NPROCESSORS_ONLN’ you’re going to
also have a load average of ‘getconf _NPROCESSORS_ONLN’.

In addition, ASAN uses quite a bit of virtual memory, around
20 terabytes on x64. Yes, that’s 20,000,000 megabytes, which
it uses as shadow memory to detect out-of-bounds accesses.
While this may seem like a gratuitous stress test of your server’s
VM subsystem, when I ran it on someone else’s Linux box it ran
without any problems. Just be aware that you’re going to really
hammer anything that you run this on.

http://www.usenix.org

14  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

PROGRAMMING
Fuzzing Code with AFL

the input processing before the AFL fork-server call, then you’ll
be reusing a copy of the same input on each fuzzing run rather
than reading new input each time.

Beyond that there are various other tweaks that you can apply,
which you can also find on the AFL Web page.

So that’s how you can test your code’s behavior on unexpected
input. Using fuzzing may seem like a lot of work to set up ini-
tially, but once it’s done you can roll it into an automated test
system that both identifies existing problems in your code and
later checks that you haven’t introduced new ones in any updates
you make.

Optimizing the Fuzzing
Many applications have a high startup overhead. As part of its
operation AFL uses a fork server in which it preloads the app
once rather than reloading it on each run [11], but this still trig-
gers the startup overhead. The way to avoid this is to defer the
forking until the startup has completed and tell AFL to fork after
that point. So if your app has a code flow that’s a bit like:

 init_app();

 process_input();

then you’d insert a call to the function __afl_manual_init()
between the two:

 init_app();

 __afl_manual_init();

 process_input();

which defers the forking until that point. This means the startup
code is run once and then the initialized in-memory image is
cloned on each fuzzing run, which can greatly speed up the
fuzzing process. If you use this optimization, make sure that you
insert the call at the right place. If, for example, you do some of

References
[1] Edward Adams, “Optimizing Preventive Service of Software
Products,” IBM Journal of Research and Development, vol. 28,
no. 1 (January 1984), pp. 2–14.

[2] Barton Miller, Lars Fredriksen, and Bryan So, “An Empiri-
cal Study of the Reliability of UNIX Utilities,” Communications
of the ACM, vol. 33, no. 12 (December 1990), pp. 32–44: http://
ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf.

[3] Barton Miller, David Koski, Cjin Pheow Lee, Vivekananda
Maganty, Ravi Murthy, Ajitkumar Natarajan and Jeff Steidl,
“Fuzz Revisited: A Re-examination of the Reliability of UNIX
Utilities and Services,” University of Wisconsin—Madison
 Computer Sciences Technical Report, #1268, April 1995: ftp://
ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf.

[4] Justin Forrester and Barton Miller, “An Empirical Study of
the Robustness of Windows NT Applications Using Random
Testing,” Proceedings of the 4th USENIX Windows Systems
Symposium (WinSys ‘00), August 2000, p. 59: https://www
.usenix.org/legacy/events/usenix-win2000/full_papers
/forrester/forrester.pdf.

[5] Barton Miller, Gregory Cooksey, and Fredrick Moore, “An
Empirical Study of the Robustness of MacOS Applications
Using Random Testing,” SIGOPS Operating Systems Review,
vol. 41, no. 1 (January 2007), pp. 78–86: ftp://ftp.cs.wisc.edu
/paradyn/technical_papers/fuzz-nt.pdf.

[6] Michal Zalewski, “Pulling JPEGs Out of Thin Air,” Novem-
ber 7, 2014: http://lcamtuf.blogspot.co.nz/2014/11/pulling-
jpegs-out-of-thin-air.html.

[7] Michal Zalewski, “American Fuzzy Lop”: http://lcamtuf
.coredump.cx/afl/.

[8] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov, “AddressSanitizer: A Fast
Address Sanity Checker,” in Proceedings of the 2012 USENIX
Annual Technical Conference, June 2012, p. 309: https://www
.usenix.org/system/files/conference/atc12/atc12-final39.pdf.

[9] “CMake”: http://www.cmake.org/.

[10] Hanno Böck, “Network Fuzzing with American Fuzzy
Lop,” October 27, 2015: https://blog.fuzzing-project.org
/27-Network-fuzzing-with-american-fuzzy-lop.html.

[11] Michal Zalewski, “Fuzzing Random Programs without
execve(),” October 14, 2014: http://lcamtuf.blogspot.co.nz
/2014/10/fuzzing-binaries-without-execve.html.

http://www.usenix.org
http://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
http://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-revisited.pdf
https://www.usenix.org/legacy/events/usenix-win2000/full_papers/forrester/forrester.pdf
ftp://ftp.cs.wisc.edu
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
http://www.cmake.org/
https://blog.fuzzing-project.org/27-Network-fuzzing-with-american-fuzzy-lop.html
https://lcamtuf.blogspot.co.nz/2014/10/fuzzing-binaries-without-execve.html
ftp://ftp.cs.wisc.edu/paradyn/technical_papers/fuzz-nt.pdf
https://lcamtuf.blogspot.co.nz/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.co.nz/2014/11/pulling-jpegs-out-of-thin-air.html
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://blog.fuzzing-project.org/27-Network-fuzzing-with-american-fuzzy-lop.html
https://lcamtuf.blogspot.co.nz/2014/10/fuzzing-binaries-without-execve.html
https://www.usenix.org/legacy/events/usenix-win2000/full_papers/forrester/forrester.pdf
https://www.usenix.org/legacy/events/usenix-win2000/full_papers/forrester/forrester.pdf

It’s time for the security community to take a step back and get a fresh perspective on threat

assessment and attacks. This is why in 2016 the USENIX Association launched Enigma,

a new security conference geared towards those working in both industry and research.

Enigma will return in 2017 to keep pushing the community forward.

Expect three full days of high-quality speakers, content, and engagement

for which USENIX events are known.

JAN 30–FEB 1 2017
OA K L A ND, C A LIF OR NI A , USA

enigma.usenix.org
The Call for Participation will be available soon.

MORE TO DECIPHER

enigma.usenix.org

16  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SECURITYBoxify
Bringing Full-Fledged App Sandboxing to Stock Android

M I C H A E L B A C K E S , S V E N B U G I E L , O L I V E R S C H R A N Z ,
A N D P H I L I P P V O N S T Y P - R E K O W S K Y

Michael Backes is a full
Professor at the Computer
Science Department of Saarland
University and has the chair
for Information Security and

Cryptography. He is the Director of the Center
for IT-Security, Privacy, and Accountability
(CISPA) and is a Max Planck Fellow of the
Max Planck Institute for Software Systems.
backes@mpi-sws.org

Sven Bugiel is a Postdoctoral
Researcher at the Center
for IT-Security, Privacy, and
Accountability (CISPA)/
Saarland University. His

research interests lie in (mobile) systems
security and trusted computing, with a strong
focus on Android. bugiel@cs.uni-saarland.de

Oliver Schranz is a first year
PhD student in the Information
Security and Cryptography
Group at CISPA/Saarland
University. His research focuses

on compiler-assisted security solutions on
Android that are deployable at the application
layer. schranz@cs.uni-saarland.de

Philipp von Styp-Rekowsky is a
PhD student at CISPA/Saarland
University. His research focuses
on mobile systems security
with a strong emphasis on

application layer solutions for Android.
styp-rekowsky@cs.uni-saarland.de

Boxify is the first concept for full-fledged app sandboxing on stock
Android. Building on app virtualization and process-based privilege
separation, Boxify eliminates the necessity to modify the code of

monitored apps or the device’s firmware and thereby overcomes the existing
legal concerns and deployment problems of prior approaches. As such, Boxify
is a powerful tool for realizing privacy-protecting solutions on Android. In
this article, we explain the Boxify concept and illustrate how it can benefit
users in protecting their privacy on Android.

Background
Smart devices, like smartphones and tablets, in conjunction with the plethora of available
apps, are very convenient companions in our daily tasks; they are our social hub to stay in
touch with our friends and colleagues, help us organize our day, have replaced our digital
cameras, and are our online banking portal or navigation system, among many more uses.
From a privacy perspective, however, the data protection mechanisms in place on those
platforms do not do justice to the rich functionality and data wealth that those platforms
offer to apps. Although all popular platforms (like Apple’s iOS and Google’s Android) support
permissions—that is user-granted privileges an app must hold to access user data and sys-
tem resources [5]—permissions have been shown to be futile in creating more transparency
of app behavior for users and in effectively protecting the users’ privacy [3, 8, 9, 10, 13].

First, permissions do not communicate how apps are actually (ab)using their granted
privileges but only what apps could potentially do. For instance, let’s consider an on-demand
transportation app that requests access to the user’s SMS—access also commonly requested
by banking trojans to intercept TAN (transaction authentication number) messages—how
can the user distinguish whether this access has benign or malicious intent?

Second, permissions are too coarsely defined, are not conditional, and hence cause apps
to be overprivileged—a direct contradiction of the principle of least privilege that permis-
sions were originally intended to realize. Picking up the example of the transportation app,
it is reasonable why such an app would need access to some of the user’s address book data
(e.g., a contact’s address to quickly choose a destination) but not all data (e.g., why share the
contact’s email addresses and phone numbers?). And why should the app be able to always
access those data and not only in the context of selecting a transportation destination?

Third, permissions apply to application sandboxes as a whole, including all third party libs
included in the application, such as analytics and advertisement libraries. Currently, it is
opaque to the user which security principal (app or lib) is levering the app’s privileges. This
entangled trust relationship between user, app developer, and included libs can be abused
by third party code. In fact, ad libs on Android have demonstrated dubious behavior [4, 6]
that actively exploits their host app’s privileges to violate the user’s privacy by, for example,
 exfiltrating private information or even dynamically loading untrusted code.

http://www.usenix.org
mailto:backes@mpi-sws.org
mailto:bugiel@cs.uni-saarland.de
mailto:schranz@cs.uni-saarland.de
mailto:styp-rekowsky@cs.uni-saarland.de

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 17

SECURITY
Boxify: Bringing Full-Fledged App Sandboxing to Stock Android

Lastly, even when the user is well informed about the apps’
behavior (e.g., through app descriptions, reviews, or developer
Web sites), she has very limited means to adjust the permis-
sions to her own privacy preferences. Only very few selected
permissions can be dynamically revoked by the user—on several
platform versions of iOS and on Android 6—but many other
privacy-critical permissions cannot be revoked or fine-grained
data filtering enabled.

Full-Fledged App Sandboxing on Stock Android
What is required to improve on this situation and to shift the
balance of power in favor of the users is an application sandbox
controlled by the user and capable of enforcing user-defined
privacy policies by reliably monitoring any interaction between
apps and the Android system. The sandbox solution, addition-
ally, must be easy to install on stock Android (e.g., as an app) and
must refrain from modifying the underlying platform, that is,
no jailbreak/rooting or reinstallation of the operating system,
which entails unlocking the device and, usually, data loss and
which forms a technical barrier for most end users.

With Boxify [1] we present a novel concept for Android app
sandboxing that fills this gap. Boxify is based on app virtualiza-
tion that provides full-fledged app sandboxing on stock Android
devices. Boxify provides secure access control on apps without
the need for firmware alterations, root privileges, or modifica-
tions of confined apps. The key idea of our approach is to encap-
sulate untrusted apps in a restricted execution environment
within the context of another, trusted sandbox application. By
introducing a novel app virtualization environment that inter-
cepts all interactions between the app and the system, Boxify is
able to enforce established and new privacy-protecting policies
on third party apps.

Additionally, the virtualization environment is carefully crafted
to be transparent to the encapsulated app in order to keep the
app agnostic about the sandbox and retain compatibility to the
regular Android execution environment. By leveraging on-board
security features of stock Android, we ensure that the kernel
securely and automatically isolates at process-level the sandbox
app from the untrusted processes to prevent compromise of the
policy enforcement code.

Boxify is realized as a regular app that can be deployed on stock
Android versions higher than v4.1 and causes only a negligible
performance penalty for confined apps (1.6–4.8% in benchmark
apps). To the best of our knowledge, Boxify is the first solution to
introduce application virtualization to stock Android.

In the remainder of this article, we outline the Boxify concept and
how it can benefit users to efficiently and securely protect their
privacy. For a full technical description of our solution, we refer the
interested reader to our USENIX Security ’15 conference paper [1].

Boxify Architecture
Boxify sandboxes Android apps by dynamically loading and
executing untrusted apps in one of its own processes. Thus, the
untrusted application is not executed by the Android system
itself but runs completely encapsulated within the runtime
environment that Boxify provides (see Figure 1). This approach
eliminates the need to modify the code of the untrusted appli-
cation and works without altering the underlying OS, hence
facilitating easy deployment by end users.

Boxify leverages the security provided by an on-board security
feature of stock Android, called isolated processes, in order to
isolate the untrusted code running within the context of Boxify
by executing such code in a completely de-privileged process
that has no permissions, very limited file system access, and
highly constrained inter-application communication. However,
Android apps are tightly integrated within the Android applica-
tion framework (e.g., for application lifecycle management). With
the restrictions of an isolated process in place, encapsulated
apps are rendered dysfunctional.

Thus, the key challenge for Boxify essentially shifts from con-
straining the capabilities of the untrusted app to now gradually
permitting I/O operations in a controlled manner in order to
securely reintegrate the isolated app into the software stack.
This reintegration is subject to privacy policies that govern very
precisely to which functionality and data the untrusted app
regains access (e.g., privacy-relevant services like location or
filtering of data—like address book entries). To this end, Boxify
creates two primary entities that run at different levels of privi-
lege: a privileged controller process known as the Broker and
one or more isolated processes called the Target(s).

Target
The Target hosts all untrusted code that will run inside the
sandbox (see Figure 2). Each Target consists of a shim (Sand-
boxService) that is able to dynamically load other Android

Isolated App A
(Target)

SyscallBinder IPC

Isolated App B
(Target)

Process
boundaries Broker (Reference Monitor)

Shim Shim

Linux Kernel

Binder Module Syscall API
(DAC + MAC)

App Framework

Boxify

Service / System App
(Platform Permissions)

Process
boundaries

Figure 1: Architecture overview of Boxify

http://www.usenix.org

18  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SECURITY
Boxify: Bringing Full-Fledged App Sandboxing to Stock Android

applications and execute them inside the isolated process. For
the encapsulated app to interact with the system, the shim sets
up interceptors that interpose system and middleware API calls.

All interaction between the app and the Android application
framework occurs via IPC, and the Binder IPC Interceptor
redirects all calls from the app to the application framework
and other apps to the Broker. The IPC Interceptor does so quite
efficiently by replacing all references to a central IPC service
registry (ServiceManager) in the memory of the Target pro-
cess with references to the IPC interface of the Broker process.
Consequently, all calls directed to the ServiceManager are
redirected to the Broker process instead, which acts as a proxy
to the application framework and ensures that all subsequent
interactions by the untrusted app with requested Android ser-
vices are redirected to the Broker as well.

For system call interception, we rely on a technique called libc
hooking. Android is a Linux-based software stack and ships with
a custom C library, called Bionic, that acts as a wrapper around
the underlying Linux kernel’s system call interface. Bionic is
used by default by Android user-space processes, including
application processes, to issue system calls to the kernel. By
hooking Bionic’s libc, Boxify can efficiently intercept calls to
libc functions and redirect these calls to a service client running
in the Target process. This client forwards the function calls via
IPC to a custom service component running in the Broker.

It is important to notice that both interceptors, IPC and system
calls, do not form a security boundary but establish a compat-
ibility layer when the code inside the sandbox needs to perform
otherwise restricted I/O by forwarding the calls to the Broker.

Broker
The Broker is the main Boxify application process and acts as
a mandatory, bi-directional proxy for all interactions between
a Target and the system. On the one hand, the Broker relays
all I/O operations of the Target that require privileges beyond
the ones of the isolated process. Thus, if the encapsulated app

bypasses the Broker, the app is limited to the extremely con-
fined privilege set of its isolated process environment (fail-safe
defaults). As a consequence, the Broker is an ideal control-flow
location in our Boxify design to implement a policy enforcement
point (reference monitor). To protect the Broker (and hence
reference monitor) from malicious app code, the Broker runs in
a separate process under a different UID than the isolated pro-
cesses. This establishes a strong security boundary between the
reference monitor and the untrusted code. On the other hand,
the Broker dispatches IPC calls initiated by the system (e.g.,
basic lifecycle operations) to the correct Target.

The Broker is organized into three layers (see Figure 3): the
API Layer abstracts from the concrete characteristics of the
Android service IPC interfaces to provide compatibility across
different Android versions. To this end, the API Layer bridges
the semantic gap between the raw IPC transactions forwarded
by the Target and the application framework semantics of the
other layers in the Broker by transforming the raw Binder IPC
parcels back into their high-level Java objects representation.
This also facilitates the definition of more convenient and mean-
ingful privacy policies.

The Core Logic Layer replicates a small subset of the function-
ality that Android’s core system services provide. Further, this
layer decides whether an Android API call is emulated using a
replicated service (e.g., a mock location service) or forwarded
to the pristine Android service (through the Virtualization
Layer). The Core Logic Layer is therefore responsible for man-
aging the IPC communication between different sandboxed apps
(abstractly like an “IPC switch”). Furthermore, this layer imple-
ments the policy enforcement points for Binder IPC services
and syscalls. We emulate the integration of enforcement points
into pristine Android services by integrating these points into
our mandatory service proxies in the Core Logic Layer. This
allows us to instantiate security and privacy solutions (including
the default Android permissions) from the area of OS security
extensions, but at the application layer. Similarly, syscall policy
enforcement points enforce system call policies on network and
file-system operations.

The Virtualization Layer is responsible for translating the
bi-directional communication between the Android application
framework and the Target. This technique can be abstractly
best described as an IPC Network Address Translator. Thus,
the sandbox is transparent to the Target, and all interaction
with the application framework from the Target’s perspective
appears as in any regular, non-virtualized app. At the same time,
the sandbox is completely opaque to the application framework,
and sandboxed apps are hidden from the framework and other
regular installed apps, which can only detect the presence of the
Boxify app.

Target (Isolated Process)

Untrusted App Code

Sa
nd

bo
x

Se
rv

ic
e

Binder IPC Interceptor Syscall Interceptor

SyscallBinder IPCC
on

tr
ol

 C
ha

nn
el

Shim code

Broker

Figure 2: Components of a Target process

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 19

SECURITY
Boxify: Bringing Full-Fledged App Sandboxing to Stock Android

Use Cases
Boxify allows the instantiation of different security models
from the literature on Android security extensions. In the fol-
lowing, we present three selected use cases on fine-grained per-
mission control, separation of ad libraries, and domain isolation
that have received attention before in the security community.

Fine-Grained Permission Control
The TISSA [14] OS security extension empowers users to flex-
ibly control in a fine-grained manner which personal informa-
tion will be accessible to applications. We reimplemented the
TISSA functionality as an extension to the Core Logic Layer
of the Boxify Broker. This brings TISSA’s enforcement strat-
egy to Android as an application layer-only solution that does
not require the user to exchange or alter her device’s firmware.
To this end, we instrumented the mandatory proxies for core
system services (e.g., location or telephony service) so that they
can return a filtered or mock data set based on the user’s privacy
settings. Users can dynamically adjust their privacy prefer-
ences through a management UI added to Boxify. For instance,
the transportation app from our motivating example could be
restricted to the user’s contacts’ street addresses and barred
from accessing their email addresses, phone numbers, etc.
Similarly, access to the SMS data can be completely removed
by returning only empty data sets to queries or be fine-grained,
restricted to only SMS from whitelisted phone numbers (e.g., the
transportation company’s service numbers).

Separation of Advertisements
For monetarization of apps, app developers frequently bundle
their apps with advertisement libraries. However, those librar-
ies have been shown to exhibit very dubious and even danger-
ous behavior for the user’s privacy [6]. To better protect the
user from those unsafe practices, technical solutions [7, 11] for
privilege separation have been brought forward that retrofit the
Android middleware to isolate advertising libraries from their
host apps and then subjugate them to a separate privacy policy.

In this spirit, we instantiate a similar solution on Boxify at
application layer that extracts advertising libraries from apps,
executes them in a separate Target, and reintegrates them with
their host app through IPC-based inter-app communication via
the Boxify Core Logic Layer. This is possible, since advertis-
ing libraries are by default only loosely coupled with their host
application code. As a result, separate privacy policies can be
applied to the ad lib sandbox on Boxify (e.g., preventing the ad
lib from exfiltrating private information). The same technique
for extracting advertising libraries from their host apps can
even be applied to remove the advertising libraries in their
entirety from apps (i.e., ad blocking).

Domain Isolation
Particularly for enterprise deployments, container solutions
have been brought forward to separate business apps from other
(untrusted) apps [2, 12]. We implemented a domain isolation
solution based on Boxify by installing business apps into the
sandbox environment. The Core Logic Layer of Boxify enables
a controlled collaboration between enterprise apps, while at the
same time isolating and hiding them from non-enterprise apps
outside of Boxify.

To separate the enterprise data from the user’s private data, we
take advantage of the Broker’s ability to run separate instances of
system services (e.g., address book, calendar) within the sandbox.
Our Core Logic Layer selectively and transparently redirects
data accesses by enterprise apps to the sandboxed counterparts of
those providers, thus ensuring that the data is not written to pub-
licly available resources that can be accessed by non-enterprise
apps (e.g., the default address book or calendar of Android).

Alternatively, the above described domain isolation concept
can be used to implement a privacy mode for end users, where
untrusted apps are installed into a Boxify environment with
system services that return empty (or fake) data sets, such as
location, address book, etc. Thus, users can test untrusted apps
in a safe environment without risking harm to their private data.

Security Discussion
Lastly, we identify different security shortcomings of Boxify
and discuss potential future security primitives of stock Android
that would benefit Boxify and defensively programmed apps in
general.

Privilege Escalation
A malicious app could bypass the syscall and IPC interceptors,
for instance, by statically linking libc. For IPC, this does not lead
to a privilege escalation, since the application framework apps
and services will refuse to cooperate with an isolated process.
However, for syscalls, a malicious process has the entire kernel
API as an attack vector and might escalate its privileges through
a root or kernel exploit.

Target A

SyscallBinder IPC

Target B

B
R
O
K
E
R

API
Layer

Core Logic
Layer

Virtualization
Layer

Process boundaries

IPC Receiver

Policy
Module

Srv Stub
(AMS)

Syscall Recv

Srv Stub
(Location)...

Service
PEP

Service
PEP

Syscall
PEP

Core
Services

Component Broker

...

Figure 3: Architecture of the Broker

http://www.usenix.org

20  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SECURITY
Boxify: Bringing Full-Fledged App Sandboxing to Stock Android

To remedy this situation, additional layers of security could be
provided by the underlying kernel to further restrict untrusted
processes, e.g., program tracing or seccomp(). This is common
practice on other operating systems, and we expect such facili-
ties to become available on future Android versions with newer
kernels.

Violating Least-Privilege Principle
The Broker must hold the union set of all permissions required
by the apps hosted by Boxify in order to successfully proxy calls
to the Android API. Because it is hard to predict a reasonable set
of permissions beforehand, the Broker usually holds all avail-
able permissions. This makes the Broker an attractive target
for attacks. A very elegant solution to this problem would be a
Broker that drops all unnecessary permissions. Unfortunately,
Android does not (yet) provide a way to selectively drop permis-
sions at runtime.

Red Pill
Even though Boxify is designed to be invisible to the sandboxed
app, it cannot exclude the untrusted app from gathering infor-
mation about its execution environment that allows the app to
deduce that it is being sandboxed. A malicious app can use this
knowledge to change its runtime behavior when being sandboxed
and thus hide its true intentions, or it can refuse to run in a sand-
boxed environment. While this might lead to refused functional-
ity, it cannot be used to escalate the app’s privileges.

Conclusion
We presented the first application virtualization solution for the
stock Android OS. By building on isolated processes to restrict
privileges of untrusted apps and by introducing a novel app
virtualization environment, we combine the strong security
guarantees of OS security extensions with the deployability of
application layer solutions. We implemented our solution as a
regular Android app called Boxify and demonstrated its capabil-
ity to enforce established security and privacy policies without
incurring significant runtime performance overhead. To make
Boxify more accessible to security engineers, future work will
investigate programmable security APIs that allow instantia-
tion of various use cases in the form of code modules rather than
patches to Boxify.

Availability
The IP and the corresponding patent of the Boxify technology
are owned by the company Backes SRT, which plans to make a
noncommercial version of Boxify for academic research avail-
able on their Web site (www.backes-srt.com).

Acknowledgments
This work was supported by the German Ministry for Education
and Research (BMBF) through funding for the Center for IT-
Security, Privacy, and Accountability (CISPA).

XKCD

xkcd.com

http://www.usenix.org
http://www.backes-srt.com

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 21

SECURITY
Boxify: Bringing Full-Fledged App Sandboxing to Stock Android

References
[1] M. Backes, S. Bugiel, C. Hammer, O. Schranz, P. von Styp-
Rekowsky, “Boxify: Full-Fledged App Sandboxing for Stock
Android,” in Proceedings of the 24th USENIX Security Sympo-
sium (SEC ’15), 2015: https://www.usenix.org/system/files
/conference/usenixsecurity15/sec15-paper-backes.pdf.

[2] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi,
and B. Shastry, “Practical and Lightweight Domain Isolation on
Android,” in Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM ’11),
2011, pp. 51–62.

[3] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDan-
iel, and A. N. Sheth, “Taintdroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones,” in
Proceedings of the 9th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI ’10), 2010: https://www
.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf.

[4] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study
of Android Application Security,” in Proceedings of the 20th
USENIX Security Symposium (SEC ’11), 2011: http://www
.enck.org/pubs/enck-sec11.pdf.

[5] W. Enck, M. Ongtang, and P. McDaniel, “Understanding
Android Security,” in IEEE Security and Privacy, vol. 7, no. 1,
2009, pp. 50–57: http://css.csail.mit.edu/6.858/2015/readings
/android.pdf.

[6] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe
Exposure Analysis of Mobile In-App Advertisements,” in Pro-
ceedings of the 5th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WISEC), 2012: http://www4
.ncsu.edu/~mcgrace/WISEC12_ADRISK.pdf.

[7] P. Pearce, A. Porter Felt, G. Nunez, and D. Wagner, “AdDroid:
Privilege Separation for Applications and Advertisers in
Android,” in Proceedings of the 7th ACM Symposium on Infor-
mation, Computer and Communication Security (ASIACCS),
2012: https://www.eecs.berkeley.edu/~daw/papers/addroid
-asiaccs12.pdf.

[8] A. Porter Felt, S. Egelman, and D. Wagner, “I’ve Got 99 Prob-
lems, but Vibration Ain’t One: A Survey of Smartphone Users’
Concerns,” in Proceedings of the 2nd ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM), 2012:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS
-2012-70.pdf.

[9] A. Porter Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D.
Wagner, “Android Permissions: User Attention, Comprehen-
sion, and Behavior,” in Proceedings of the 8th Symposium on
Usable Privacy and Security (SOUPS 2012), 2012: https://blues
.cs.berkeley.edu/wp-content/uploads/2014/07/a3-felt.pdf.

[10] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen,
“Autocog: Measuring the Description-to-Permission Fidelity in
Android Applications,” in Proceedings of the 21st ACM Confer-
ence on Computer and Communication Security (CCS ’14), 2014:
http://pages.cs.wisc.edu/~vrastogi/static/papers/qrzczc14.pdf.

[11] S. Shekhar, M. Dietz, and D. Wallach, “Adsplit: Separating
Smartphone Advertising from Applications,” in Proceedings of
the 21st USENIX Security Symposium (SEC ’12), 2012: https://
www.usenix.org/system/files/conference/usenixsecurity12
/sec12-final101.pdf.

[12] X. Wang, K. Sun, and Y. Wang, J. Jing, “DeepDroid: Dynam-
ically Enforcing Enterprise Policy on Android Devices,” in
Proceedings of the 22nd Annual Network and Distributed System
Security Symposium (NDSS ’15), 2015: https://www.internet
society.org/sites/default/files/02_5_1.pdf.

[13] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner,
and K. Beznosov, “Android Permissions Remystified: A Field
Study on Contextual Integrity,” in Proceedings of the 24th
 USENIX Security Symposium (SEC ’15), 2015: https://www
.usenix.org/system/files/conference/usenixsecurity15
/sec15-paper-wijesekera.pdf.

[14] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh, “Taming Infor-
mation-Stealing Smartphone Applications (on Android),” in
Pro ceed ings of the 4th International Conference on Trust and
Trustworthy Computing (TRUST ’11), 2011: https://pdfs
.semanticscholar.org/75d7/0671eee7ead26c5636fe5d1e00
fef5d993b3.pdf.

http://www.usenix.org
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
http://www.enck.org/pubs/enck-sec11.pdf
http://css.csail.mit.edu/6.858/2015/readings/android.pdf
http://www4.ncsu.edu/~mcgrace/WISEC12_ADRISK.pdf
https://www.eecs.berkeley.edu/~daw/papers/addroid-asiaccs12.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-70.pdf
https://blues.cs.berkeley.edu/wp-content/uploads/2014/07/a3-felt.pdf
http://pages.cs.wisc.edu/~vrastogi/static/papers/qrzczc14.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final101.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final101.pdf
https://www.internetsociety.org/sites/default/files/02_5_1.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-wijesekera.pdf
https://pdfs.semanticscholar.org/75d7/0671eee7ead26c5636fe5d1e00fef5d993b3.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-backes.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Enck.pdf
http://www.enck.org/pubs/enck-sec11.pdf
http://css.csail.mit.edu/6.858/2015/readings/android.pdf
http://www4.ncsu.edu/~mcgrace/WISEC12_ADRISK.pdf
https://www.eecs.berkeley.edu/~daw/papers/addroid-asiaccs12.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-70.pdf
https://blues.cs.berkeley.edu/wp-content/uploads/2014/07/a3-felt.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final101.pdf
https://www.internetsociety.org/sites/default/files/02_5_1.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-wijesekera.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-wijesekera.pdf
https://pdfs.semanticscholar.org/75d7/0671eee7ead26c5636fe5d1e00fef5d993b3.pdf
https://pdfs.semanticscholar.org/75d7/0671eee7ead26c5636fe5d1e00fef5d993b3.pdf

22  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SECURITY

Using OpenSCAP
M A R T I N P R E I S L E R

Security best practices dictate that we do not run any software with
known and exploitable vulnerabilities, but achieving this is difficult.
While vulnerability databases do exist, they are not in formats useful

for scanning file systems, much less for examining VM images and contain-
ers. I work on OpenSCAP, a tool that uses information extracted from the
National Vulnerability Database [1] and security policies, and checks for
vulnerabilities. oscap can also remediate, or suggest remediations, for con-
figurations that don’t meet established policies. In this article, I explain how
OpenSCAP works, how to use both its GUI and command-line versions, and
how you can use oscap to improve your site’s security.

Ensuring proper configuration and no vulnerabilities in your production environment has
become an essential part of proactive security. In the past it used to be possible to manually
go over a single golden image and then deploy it en masse, but that has changed radically.
Typical business deployments are now much larger than they used to be and are no longer
run just using physical machines. Modern deployments are using virtual machines and
containers and tend to deploy many different images. This brings new challenges to both vul-
nerability assessment and configuration management.

Finding Vulnerabilities
Let us say we have a deployed installation. How do we figure out whether it has any vulner-
abilities? We could look at the National Vulnerability Database [1] and go over the vulnerabil-
ities one by one, comparing affected versions with the versions of software we have installed.
Unfortunately, there are two major issues with this approach. First of all, we would go crazy
very soon, as this approach does not scale to even one machine let alone an infrastructure.
Secondly, we would not get accurate results on most enterprise Linux operating systems
such as Red Hat Enterprise Linux or SUSE Enterprise Linux. The vendors of those operat-
ing systems backport fixes for vulnerabilities into older versions of the software. This way
they minimize the differences between consecutive versions of the operating systems, which
is something their users really appreciate. On the other hand, this makes checking version
ranges for CVEs more complex because the versions no longer match the upstream original
versions.

So how do we deal with this? We need to get a vulnerability database with these backports
recorded. Fortunately, vendors of enterprise operating systems are increasingly supplying a
so-called “CVE feed” with corrected affected versions for each vulnerability. Still, going over
them manually is a lost battle; we need an automated approach.

OpenSCAP can load the CVE feed and go over all vulnerabilities for you, detecting which
vulnerabilities are in your systems.

Martin Preisler works as a
Software Engineer at Red Hat,
Inc. He works in the Identity
Management and Platform
Security team, focusing on

security compliance using Security Content
Automation Protocol. He is the principal author
of SCAP Workbench, a frequent contributor
to OpenSCAP and SCAP Security Guide,
and a contributor to the SCAP standard
specifications. Outside of Red Hat, he likes to
work on open source projects related to real-
time 3D rendering and game development.
mpreisle@redhat.com

http://www.usenix.org
mailto:mpreisle@redhat.com

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 23

SECURITY
Using OpenSCAP

Scanning a Physical Machine for Vulnerabilities
So how does OpenSCAP perform the scanning? First, Open-
SCAP loads the given CVE database which has information
about security advisories from the vendor. Then it goes over
every CVE item in that database, checking the package and
affected version ranges to see whether we have a version in that
range and thus are affected. This works very well for official,
signed packages from the vendors. The vulnerability check itself
does not check checksums of the RPMs; instead most security
policies check checksums of every package installed from an
official source. The reasoning is that we need to check all the
checksums anyway because attackers might have injected into
any package with any vulnerability. To save time this is done in
one go as part of the “verify RPM signatures” rule in security
policies. The rule does something very similar to “rpm -Va”—it
verifies that properties of installed files match package meta-
data. We will touch on security policies later. The criteria for
determining whether we are vulnerable usually look like this:

<criteria operator=”AND”>

 <criterion comment=”openssl is earlier than 0:1.0.1e-30

.el6_6.2” test_ref=”oval:com.redhat.rhsa:tst:20141652019”/>

 <criterion comment=”openssl is signed with Red Hat

redhatrelease2 key” test_ref=”oval:com.redhat.rhsa:tst

:20140679006”/>

</criteria>

In the example above we are checking whether openssl is
installed, and if it is, whether it is the Red Hat signed version and
also whether it’s an earlier version than the one that contains the
fix for the specific vulnerability. In some cases the criteria get
more complex because sometimes a vulnerability gets intro-
duced in some version and then gets fixed in another. In this case
we are checking that a package is installed, is signed by Red Hat,
and is either greater than some version or earlier than another
version.

Let us first show how to do a vulnerability scan on a physical
machine. We will assume Red Hat Enterprise Linux 6 in our
example. Each vendor publishes their CVE feed at a different
location; in the case of Red Hat it is https://www.redhat.com
/security/data/oval/. For Red Hat Enterprise Linux 6 specifi-
cally, we need to choose Red_Hat_Enterprise_Linux_6.xml in
that directory.

yum install openscap-utils

wget

https://www.redhat.com/security/data/oval/Red_Hat

 _Enterprise_Linux_6.xml

oscap oval eval --results results.xml --report report.html

 Red_Hat_Enterprise_Linux_6.xml

As oscap is executed we will see lines of each of the vulnerabili-
ties being scanned. If the line says “false”, that means we are not
vulnerable. The output will look like the following:

Definition oval:com.redhat.rhsa:def:20160286: false

Definition oval:com.redhat.rhsa:def:20160258: false

…

After the scan finishes we can either look at results.xml, the
machine readable results, or report.html, the human-readable
HTML report. Covering the machine-readable results is outside
the scope of this article. Let us instead discuss the HTML
report. The report will contain several rows, one for each Red
Hat Security Advisory that is being checked. The green rows
are the rows we do not need to be concerned about; we are not
vulnerable to the CVEs in them. The rows that are highlighted
orange are the ones that our infrastructure is vulnerable to. It is
important to realize that each RHSA can fix one or more CVEs,
that there is no direct 1:1 mapping.

Suppose we have a vulnerability in the kernel in our infrastruc-
ture. What can we do about that? To fix the situation, we should
get all the latest updates installed with yum update. Then we
need to remove the vulnerable kernels to prevent them from
being booted by accident. As long as there is at least one vulner-
able kernel installed, OpenSCAP will report the vulnerability
being in the infrastructure.

Scanning a Container for Vulnerabilities with
oscap-docker
We could scan a container by installing the tools and security
policies inside it and then running oscap. But that is impractical
and goes against best practices of container deployment. Instead
we want to scan containers from the host without affecting them.

There are two ways of scanning a container with OpenSCAP. Let
us start with oscap-docker, which is a command-line tool wrap-
ping the functionality of oscap. It has the same command-line
arguments as oscap with the exception of the first two argu-
ments—the mode of operation and the container or image ID.
Before we can use it we need to install it; on Red Hat Enterprise
Linux 7.2 it is part of the openscap-utils package.

After it is installed we can use it if we have root privileges. There
are two subcommands: container-cve scans a running con-
tainer, while image-cve scans a container image.

oscap-docker container-cve $TARGET_ID

oscap-docker image-cve $TARGET_ID

To start, we can scan a single container image: for example, the
rhel7 base image.

https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml
http://www.usenix.org
https://www.redhat.com/security/data/oval/
https://www.redhat.com/security/data/oval/
https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml

24  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SECURITY
Using OpenSCAP

docker pull rhel7

oscap-docker image-cve rhel7

2016-02-25 12:07:58

URL:http://www.redhat.com/security/data/oval/com.redhat.rhsa

-all.xml.bz2 [1863765/1863765] -> “docker.6xTkgY/cve-oval.xml

.bz2” [1]

Definition oval:com.redhat.rhsa:def:20160286: false

Definition oval:com.redhat.rhsa:def:20160258: false

…

The lines ending with “false” are telling us that we are not
vulnerable to CVEs listed in the respective Red Hat Security
Advisories. If any of the lines end with “true” we are in trouble
and need to update our image.

Scanning a Container for Vulnerabilities with
Atomic
In case you are using Atomic for container management, you
can use the atomic scan functionality instead. The advantage is
that it is easier to use since it automatically manages the CVE
feeds for the user. The tool makes sure you are using the right
CVE feed and that it is up-to-date. If you are running Red Hat
Enterprise Linux 7 and do not have the atomic command-line
tool installed you need to run:

yum install atomic

If you are on Atomic Host, the atomic command should already
be available. After the atomic command is installed, you need
the OpenSCAP-daemon to perform the scans. You can install it
directly on the host and run it or you can download a super-privi-
leged container (SPC) image that provides it. We will go with the
SPC image in this section because it is a little bit simpler to set
up. For the SPC image, we will be using the Fedora 23 Open-
SCAP-daemon container image. There may be other images
available in the future.

atomic install openscap/openscap-daemon-f23

atomic run openscap/openscap-daemon-f23

When the SPC is in place and running we can issue atomic scan
commands.

Let us now look at an example of atomic scan. This time we will
use a custom Red Hat Enterprise Linux 7.2 image that I created
that actually has vulnerabilities. It will help us demonstrate
features of the atomic scan.

atomic scan 6c3a84d798dc

Container/Image Cri Imp Med Low

-------------------- --- --- --- ---

6c3a84d798dc 0 0 2 0

As we can see, container image 6c3a84d798dc has two medium-
severity vulnerabilities. How do we list them? We need to use the
--detail argument.

atomic scan --detail 6c3a84d798dc

6c3a84d798dc

 OS : Red Hat Enterprise Linux Server release 7.2 (Maipo)

 Moderate : 2

 CVE : RHSA-2016:0008: openssl security update (Moderate)

 CVE URL : https://access.redhat.com/security/cve/CVE-2015-7575

 RHSA ID : RHSA-2016:0008-00

 RHSA URL : https://rhn.redhat.com/errata/RHSA-2016-0008.html

 CVE : RHSA-2916:0007: nss security update (Moderate)

 CVE URL : https://access.redhat.com/security/cve/CVE-2015-7575

 RHSA ID : RHSA-2016:0007-00

 RHSA URL : https://rhn.redhat.com/errata/RHSA-2016-0007.html

If we need to scan a container instead of an image, we just need
to replace the ID with an ID of the container. Atomic scan also
allows scanning all images, all containers, or both with a single
command—--images, --containers, and --all, respectively.

Vulnerability Scanning for Virtual Machines
Scanning for vulnerabilities on virtual machines is technically
very similar to scanning containers, but the commands are dif-
ferent. Instead of using oscap-docker, we can use oscap-vm to
scan virtual machines. Keep in mind that the oscap-vm com-
mand is fairly new. It is available on Fedora but still not available
on Red Hat Enterprise Linux 7 at the time of this writing. It is
part of the openscap-utils package we have installed previously.

oscap-vm allows us to scan running or shut down virtual
machines, or raw storage images. Let us look at an example:

wget https://www.redhat.com/security/data/oval/Red_Hat

 _Enterprise_Linux_6.xml

oscap-vm domain rhel6vm oval eval --results results.xml

--report report.html Red_Hat_Enterprise_Linux_6.xml

Here, we are testing a Red Hat Enterprise Linux 6 virtual
machine called “rhel6vm” running on the host.

Checking Configuration with OpenSCAP
So far we have only talked about vulnerabilities. We also need to
make sure our infrastructure is set up in a secure way, that we
have hardening in place. To do that we first need to choose a set
of rules—a so-called security policy. A security policy is usually
a list of rules in PDF or even printed out. Each rule usually has
a description, rationale, identifiers, and some steps to check and
fix the machines. The workflow with these security policies is
that the auditors carry them in big binders and manually check
the machines for compliance. This may be fine for small infra-
structures, but it does not scale and is not cost effective.

Let us explore how to use OpenSCAP for fully automated secu-
rity compliance. OpenSCAP is what has searched vulnerabili-
ties in the first section of this article, but it was hidden under a
few layers of abstraction. Now we need to interact with it more

https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml
http://www.usenix.org
https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml
https://access.redhat.com/security/cve/CVE-2015-7575
https://rhn.redhat.com/errata/RHSA-2016-0008.html
https://access.redhat.com/security/cve/CVE-2015-7575
https://rhn.redhat.com/errata/RHSA-2016-0007.html
https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml
https://www.redhat.com/security/data/oval/Red_Hat_Enterprise_Linux_6.xml

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 25

SECURITY
Using OpenSCAP

directly so it makes sense to introduce it. OpenSCAP is an open-
source implementation of SCAP 1.2, the standard for automated
security compliance. You can read more about OpenSCAP at
https://www.open-scap.org/. We will start by choosing a suitable
security policy and profile. For the purposes of this article let
us use PCI-DSS profile from SCAP Security Guide for Red Hat
Enterprise Linux 7. SCAP Security Guide, or SSG, is another
open-source project we will be using. SSG provides SCAP secu-
rity policies for various products like Red Hat Enterprise Linux
6, 7, Fedora, CentOS, Firefox, and others. We will again start by
scanning a physical machine before moving to containers. Let us
log into the machine and install the necessary packages—scap-
workbench and scap-security-guide. You might think that using
such tools as SCAP Workbench, a graphical user interface, feels
out of place in system administration. Keep in mind that SCAP
Workbench lets you prepare the customized policies for a fully
automated deployment in the future.

After installation has finished, we can start SCAP Workbench
by clicking its icon in Applications → System Tools.

SCAP Workbench will start and ask us which content to select.
Since we installed SCAP Security Guide in the previous step, we
have the option to select ssg-rhel7-ds.xml in /usr/share/xml

/scap/ssg/content. We will discuss how to scan using the com-
mand line only later in the article.

Once the content is loaded we will be presented with the main
window of SCAP Workbench, which lists the rules that will be
applied to the system. Let us select the PCI-DSS profile from the
profile combo box.

After selecting the PCI-DSS profile we are all set to perform the
initial scan. The only thing we need to do is click Scan, elevate
privileges by typing the password, and wait a few minutes. On a
default Red Hat Enterprise Linux 7.2 installation at the time of
writing, the results were 31 passes and 43 fails. If we click Show
Report we can see more details about our system.

At this point we can make customizations to the security policy
by clicking “Customize.” For example, we may want our infra-
structure to be set up more strictly than PCI-DSS requires.
In that case we can select additional rules to check and even
increase minimum password length or other values. After we
are done with the customization, we can choose File → Save as
RPM, which gives us a package with our customized security
policy ready-made to be deployed using Satellite 6.

What we have achieved above can be done using the command
line only, with the exception of the customization.

oscap xccdf eval --profile xccdf_org.ssgproject.content

 profile_pci-dss --results /tmp/results.xml --report

 /tmp/report.html /usr/share/xml/scap/ssg/content/

 ssg-rhel7-ds.xml

The snippet above will scan the local machine for compliance
with PCI-DSS and will store results and report in /tmp/results.

xml and /tmp/report.html, respectively.

Changing the Configuration to Be Compliant with
OpenSCAP
If we want to change configuration of the machine to make more
rules pass, we need to check the Remediate checkbox in SCAP
Workbench and click Scan again. If remediation is enabled,
SCAP Workbench will go over the rules figuring out which are
passing and which are failing.

Then for each failing rule it will run a so-called remediation—
code that automatically fixes the configuration—and then check
the rule again. In case the rule is now passing, SCAP Workbench
will declare the rule as fixed. If everything worked smoothly, our
Red Hat Enterprise Linux 7 installation should report no failed
rules.

If we cannot use the GUI, we can do the above using the com-
mand line only:

oscap xccdf eval --profile xccdf_org.ssgproject.content

 _profile_pci-dss --remediate --results /tmp/results.xml

 --report /tmp/report.html /usr/share/xml/scap/ssg/content

 /ssg-rhel7-ds.xml

The important difference from scanning is the --remediate
option. This instructs oscap to run remediation scripts on every
failed check.

Keep in mind that automated remediations can be dangerous
and cannot be undone! They can break some of the functionality
of deployed infrastructure! We recommend testing remediations
on nonproduction machines before deployment.

Very likely you are running a configuration management system,
such as Puppet, Chef, or Ansible. In this case the remediations
will still work but the configuration management systems may
override them, putting your systems out of compliance! Instead
of running the remediations, it may be more valuable to see their
code and adapt the settings of the configuration systems accord-
ingly. To generate a list of fixes instead of running them, run the
following:

$ oscap xccdf generate fix --result-id xccdf_org.open-scap

 _testresult_xccdf_org.ssgproject.content_profile_pci

 _dss /tmp/results.xml

The result-id will be correct if you ran the PCI-DSS evaluation
we have just discussed. In case you used a different profile, look
into the /tmp/results.xml file, find the <TestResult> element,
and use its id attribute.

http://www.usenix.org
https://www.open-scap.org/

26  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SECURITY
Using OpenSCAP

The above will output a shell script into stdout with all the
changes OpenSCAP would make to your system if you ran the
remediation.

Container Security Compliance
Now we can scan the configuration of local and remote
machines, but how do we deal with containers? We could scan
them as a remote machine but that would require installing SSH
and openscap-scanner inside, which is impractical. Instead, let
us look at how to scan containers from the host. We will need the
oscap-docker tool, which is part of the openscap-utils package.

We recommend running oscap-docker --help to explore its
capabilities. It can operate in four different modes. We have
already seen how it can scan containers for vulnerabilities, so
we will skip over the image-cve and container-cve modes in
this section. Instead we will scan a container image for security
compliance.

oscap-docker image $IMAGE_ID xccdf eval --profile

 xccdf_org.ssgproject.content_profile_common

 --results /tmp/results.xml --report /tmp/report.html

 /usr/share/xml/scap/ssg/content/ssg-rhel7-ds.xml

These command-line arguments should look familiar. Apart
from the first two, we are using the same command-line argu-
ments as with the oscap tool. Instead of using the PCI-DSS pro-
file in this section, we will use a new profile called the common
profile. It is less focused on the financial industry and contains
rules checking common security practices instead.

With the command-line snippet above we are doing roughly the
same thing as with SCAP Workbench and oscap earlier in this
article; we have scanned a container image with the common
profile with content coming from the SCAP Security Guide
project for Red Hat Enterprise Linux 7. The results are stored
in /tmp/results.xml, and the HTML report is stored in /tmp/

report.html.

Virtual Machine Security Compliance
As is the case with vulnerability assessment, scanning for secu-
rity compliance is very similar between containers and virtual
machines. Instead of using the oscap-docker command, we need
to use oscap-vm.

oscap-vm domain rhel7vm xccdf eval --profile

 xccdf_org.ssgproject.content_profile_common --results

 /tmp/results.xml --report /tmp/report.html

 /usr/share/xml/scap/ssg/content/ssg-rhel7-ds.xml

The semantics are the same between oscap-vm and oscap-

docker. The key difference is under the hood. oscap-vm uses
guestmount to inspect virtual machines instead of the atomic
mount mechanism inside oscap-docker.

Offline Evaluation Advantages and Limitations
What we have used in the previous two sections is called
offline SCAP evaluation. When we are scanning local or remote
machines, we are using the normal online evaluation. When
scanning containers and virtual machines from the host, we
are using the offline evaluation. The difference between offline
and online evaluation is that the latter has access to all run-
ning processes and can do runtime checks. That means that it
can, for example, ask systemd about information about a unit.
Offline scanning does not have access to the running system;
it is exploring the file system mounted somewhere in read-only
mode.

This has advantages and disadvantages. One advantage of
offline scanning is that we can scan a running container or
virtual machine without any risk of affecting them. On the other
hand, we cannot perform some of the runtime checks like check-
ing which processes are running. We also cannot fix systems in
the offline evaluation mode since the file systems are mounted
read-only. That is not a limitation of the offline mode but rather
its implementation in OpenSCAP. There is an outstanding fea-
ture request to fix this [2].

Conclusion
Using OpenSCAP helps businesses prevent vulnerabilities and
insecure configuration settings in their infrastructure. In this
article we have explored how to use OpenSCAP for physical
machines as well as for virtual machines and containers. Mixing
automated SCAP remediations with configuration management
systems proved difficult but can be handled by going through the
remediation steps and adapting configuration systems accord-
ingly. Using SCAP for containers and virtual machines requires
a new approach called offline evaluation. While limited and
fairly new, it is proving useful for practical container and virtual
machine evaluation.

Acknowledgments
I would like to thank Jan Černý, Rik Farrow, Yoana Ruseva, and
anonymous reviewers for helping me with this article.

References
[1] National Vulnerability Database: https://nvd.nist.gov/.

[2] Feature request to add offline mode repair: https://
fedorahosted.org/openscap/ticket/467.

http://www.usenix.org
https://nvd.nist.gov/
https://fedorahosted.org/openscap/ticket/467
https://fedorahosted.org/openscap/ticket/467

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 27

SECURITY

Interview with Nick Weaver
R I K F A R R O W

I attended the first Enigma conference in January 2016 and was pleased
by the quality of the talks as well as by the depth managed by speakers,
who had just 20 minutes to make their points. While I had lots of favor-

ite talks, such as those by Stefan Savage and Ron Rivest [1], I found myself
wanting to dig a bit deeper into Nick Weaver’s talk.

Nick talked about “The Golden Age of Bulk Surveillance,” but in my mind his talk was really
about what can be done with captured data. Nick walked the audience through the process of
de-anonymization and just how easy it is when you have most traffic, particularly the meta-
data for the traffic [2].

Rik: Your PhD dissertation involved FPGAs, but somehow you got interested in TCP/IP and
security at the network layer. Can you explain how that happened?

Nick: Well, during my dissertation I participated in the NIST Advanced Encryption Stan-
dard (AES) process, evaluating how easy the various five final candidates would map to high
performance hardware.

But overall it was Code Red. When Code Red hit, the worldwide reaction was “13 hours, god
that’s fast.” A friend of mine, Michael Constant, and I were sucking down sodas and going “13
hours, god that’s slow. We’re computer people, we should be able to do it faster than that.”

So we started sketching out concepts that became the “Warhol Worm” concept: how to
efficiently infect all the vulnerable machines in 15 minutes [3]. Once that happened, then you
have to think about various automated defenses. So I came into security during the dawn of
the “Worm Era,” where high speed, broad malcode became a thing.

Rik: There really was something like the Warhol Worm, a worm that abused some Windows
RPC over UDP, wasn’t there?

Nick: SQL Slammer which targeted MS-SQL. This was how the UCSD/ICSI collaboration
formed: Slammer hit, spread worldwide in ~10 minutes, and it was a rush analysis between
Vern Paxson, Stuart Staniford, myself, Stefan Savage, Colleen Shannon, and David Moore at
CAIDA to figure out just Whisky Tango Foxtrot happened [4].

It actually used a much simpler scheme than the one I proposed; it just sent infectious UDP
packets at line rate. We’ve since seen a similar one with the “Witty” worm [5].

Rik: In your Enigma talk, you mentioned Bro [6]. Is that something you use in your work at
ICSI?

Nick: I’m mostly just a Bro user. I’ve had a part in some high level and researchy stuff with
it (e.g., hardware acceleration and parallelization), but for the most part I’m just a user who
happens to work down the hall from the developers.

Nick Weaver received a BA
in astrophysics and computer
science in 1995, and his PhD
in computer science in 2003
from the University of California

at Berkeley. Although his dissertation was
on novel FPGA architectures, he was also
highly interested in computer security,
including postulating the possibility of very
fast computer worms in 2001. In 2003, Nick
joined ICSI, first as a postdoc and then as a
staff researcher. His primary research focus is
network security—notably, worms, botnets,
and other Internet-scale attacks—and network
measurement. Other interest areas have
included both hardware acceleration and
software parallelization of network intrusion
detection, defenses for DNS resolvers,
and tools for detecting ISP-introduced
manipulations of a user’s network connection.
nweaver@icsi.berkeley.edu

Rik is the editor of ;login: 
rik@usenix.org

mailto:nweaver@icsi.berkeley.edu
http://www.usenix.org
mailto:rik@usenix.org

28  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SECURITY
Interview with Nick Weaver

In looking at the Snowden documentation, the big difference
between what the NSA does on the network is focus on users, not
just machines. Thus they have some specific metadata they want
to extract to identify “who” rather than “what” is on the network,
and most of the work in the lunchbox was focusing on adding
these analyses and creating a snazzy Web interface: it was more
work for me to figure out enough Bootstrap to make it look good
than it was to figure out how, through passive analysis, to iden-
tify people in the network traffic.

Rik: Give us a paragraph about the hardware in your lunchbox.

Nick: The hardware is simply an Intel NUC (now two genera-
tions old) combined with a really nice DualComm Ethernet Tap/
Switch. I admit I gilded the NUC (16 GB RAM and a 120 GB
SSD), and you can buy cheaper taps (e.g., SharkTap) that could
substantially reduce the cost.

Everything else is simply stuff needed to create an access point
for people to connect to since I don’t want to tap people who don’t
consent to be monitored.

My primary focus at ICSI is a catch-all of network measurement
and network security, including, in the past, malcode, packet
injection, network monitoring, and network mapping. Addition-
ally, “security@ICSI” is composed of not just system administra-
tors but myself and other researchers, so we end up having to do
our own incident response.

When the Snowden slides came out, I looked at them and went
“Well, they pretty much do what we do.”

Rik: So your Enigma presentation really comes out of a combina-
tion of the work you do and the Snowden slides?

Nick: Yep. I looked at the slides and saw basically what I do with
more money.

If you discount my civil liberties streak, my abysmal manage-
ment skills, and my blanket refusal to get a security clearance, I
would make a great technical director for the NSA. If anything,
what often frustrates me the most is where the NSA is ineffi-
cient or inelegant. If the NSA is going to try to spy on the rest of
the world and annoy everyone else in the process, at least they
should do a good (and less expensive) job!

Rik: It sounds like the way you work at ICSI has taught you how
to put together metadata. You also put together a monitoring
device that collects data but fits inside a lunchbox. Tell us about
that.

Nick: I don’t personally work at LBNL (Lawrence Berkeley, not
Lawrence Livermore), but Vern does, and I’m fairly familiar with
how they operate; I’ve been involved in multiple studies where
I or someone else have some analysis that should be performed,
and Vern then takes the analysis and runs it on LBNL’s data.

Thus, for example, in “The Matter of Heartbleed,” the LBNL bulk
recording was used to verify that Heartbleed wasn’t exploited by
someone against LBNL before public disclosure.

The lunchbox is largely taking advantage of the IDS flow’s scal-
ability not just up (to 100 Gbps+ installations) but down: you can
run on slower links with cheaper hardware. So the bulk of the
work in making the lunchbox was simply deciding what addi-
tional analyses to run. One of my minor to-dos is to see how well
I can get things to run on the latest Raspberry Pi 3.

References
[1] Enigma YouTube channel: https://www.youtube.com
/channel/UCIdV7bE97mSPTH1mOi_yUrw.

[2] Nicholas Weaver, “The Golden Age of Bulk Surveillance”:
https://www.youtube.com/watch?v=zqnKdGnzoh0.

[3] Stuart Staniford, Vern Paxson, and Nicholas Weaver, “How
to 0wn the Internet in Your Spare Time,” in Proceedings of the
11th USENIX Security Symposium (USENIX Security ’02),
2002: http://www.icir.org/vern/papers/cdc-usenix-sec02/.

[4] Inside the Slammer Worm: http://www.icsi.berkeley.edu
/pubs/networking/insidetheslammerworm03.pdf.

[5] Abhishek Kumar, Vern Paxson, and Nicholas Weaver,
“Exploiting Underlying Structure for Detailed Reconstruc-
tion of an Internet-Scale Event,” in Proceedings of the Internet
Measurement Conference 2005 (IMC 2005): http://www
.icir.org/vern/papers/witty-imc05.pdf.

[6] The Bro Network Security Monitor: https://www.bro.org/.

http://www.usenix.org
https://www.youtube.com/channel/UCIdV7bE97mSPTH1mOi_yUrw
https://www.youtube.com/watch?v=zqnKdGnzoh0
http://www.icir.org/vern/papers/cdc-usenix-sec02/
http://www.icsi.berkeley.edu/pubs/networking/insidetheslammerworm03.pdf
http://www.icir.org/vern/papers/witty-imc05.pdf
https://www.bro.org/
https://www.youtube.com/channel/UCIdV7bE97mSPTH1mOi_yUrw
http://www.icsi.berkeley.edu/pubs/networking/insidetheslammerworm03.pdf
http://www.icir.org/vern/papers/witty-imc05.pdf

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 29

SECURITY

Interview with Peter Gutmann
R I K F A R R O W

I probably first met Peter Gutmann at a USENIX Security conference.
I really don’t remember which one, but Peter was also a friend of an
acquaintance, which led to the usual social lunches during conferences.

Peter seemed like an “odd bird,” and he’s actually a Kiwi, a person from New Zealand, making
that part true enough. But I always enjoyed talking with him.

I recently had read some of his postings about the failure of a very prominent crypto library
(think Heartbleed) and thought now would be a good time for an interview, one that would
allow me to ask some questions about programming and cryptography, and get answers that I
felt most people would understand.

During the interview with Peter, conducted over email, the person I had asked to write about
the AFL fuzzing tool dropped out, and Peter mentioned that he had given a talk about AFL at
a Kiwi-con and was willing to write about AFL as well. As if this wasn’t enough, I had asked
Peter to review a book about iOS security well before any of this started (it takes months
to get publishers to ship books to New Zealand), so Peter has almost as many pieces in this
issue as I do.

Rik: Your first USENIX paper [1] had to do with remanence: that data written to hard drives
and later erased or overwritten could often still be recovered. I think you were working for
IBM at the time, and I imagine you had access to some unusual/sophisticated hardware in
order to image partial tracks on disk drive platters.

Peter: Actually that was written some years before I was at IBM. I communicated via email
with a few people who had worked in the area for general details on what was involved in
reading disk tracks with MFMs and stories about deletion (and lack thereof) and heard a few
interesting stories, but that sort of thing would have required access to pretty specialized
hardware to do. By “specialized” I mean “not in your standard lab” but readily available to
hard-drive manufacturers. That’s how the sampling-scope drive read that I mention in the
paper was done, something that was revived in 2011 to recover data off an old Cray-1 disk
pack [2].

Rik: Did you work in New York for IBM? What did you do there?

Peter: I was at Watson Labs in Hawthorne (OK, “the IBM Thomas J. Watson Research
Center,” an offshoot of the main one in Yorktown Heights) as a visiting scientist working on
my thesis. The idea is that IBM gets people in from all over to work there for a while with the
hope that eventually they decide to stay. It was a fantastic place to work; if you ever had a
question about something, there was a good chance that an expert on the topic was just a few
doors down the hallway. Not to mention access to their extensive library, and people who had
been in the industry for years (or decades). This was mostly before archives of paper journals
and conference proceedings were scanned and put online (and some were never put online),
so a lot of the background material in the thesis was gathered from there.

Rik: In other work, you programmed a library called cryptlib [3]. Why did you decide to create
your own cryptographic library when others were available at the time?

Peter Gutmann is a researcher
in the Department of Computer
Science at the University of
Auckland working on design
and analysis of cryptographic

security architectures and security usability.
He helped write the popular PGP encryption
package, has authored a number of papers
and RFCs on security and encryption, and is
the author of the open source cryptlib security
toolkit, Cryptographic Security Architecture:
Design and Verification (Springer, 2003), and an
upcoming book on security engineering. In his
spare time he pokes holes in whatever security
systems and mechanisms catch his attention
and grumbles about the lack of consideration
of human factors in designing security
systems. pgut001@cs.auckland.ac.nz

Rik is the editor of ;login:.
rik@usenix.org

http://www.usenix.org
mailto:pgut001@cs.auckland.ac.nz
mailto:rik@usenix.org

30  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SECURITY
Interview with Peter Gutmann

Peter: cryptlib was from 1995, when what was around was
mostly Eric Young’s libdes. The underlying code goes back even
further, to about 1992 or 1993 in the HP ACK archiver (I should
have trademarked that name, given its reuse in HTTP 2), which
offered digital signatures and public-key encryption of archives
and assorted other things, and that was based on work on PGP 2
from even earlier.

Initially it was just something I did for fun, but then in about
1997 I was persuaded to license it commercially. Before that I’d
refused to take money for it, which caused problems with some
users because they needed a commercially supported product
and not just open-source throw-it-over-the-wall. So it’s dual-
licensed under the Sleepycat license: you can use it as open
source or commercially supported if you need that.

Rik: So you have firsthand experience with supporting a software
package that has a dual open source/commercial license. Not
many people do that on their own. What are the pros and cons?

Peter: There are pros and cons to being OSS and being com-
mercial. OSS is obviously free, but it’s also often throw-it-over-
a-wall stuff; if you have a problem with it then you google Stack
Overflow or post to a mailing list and hope that at some point
someone volunteers to help you. Lots of commercial organi-
zations can’t work that way; for starters, since their work is
security-related you need an NDA. Then you need commercial
support with a guaranteed response time. If [the organization]
has a problem, they want to get someone on the phone or on-site
who can walk them through dealing with it; they want a stan-
dard commercial license (which often boils down to them know-
ing that there’s someone they can sue if things go wrong); and so
on. In broader terms, they need to deal with risk management: is
there a commercial entity behind this? will they still be around
in a year’s time? will it be supported in 10 years’ time? and again,
in general, what do we do when things go wrong?

Having a commercial option has been really useful. With open
source you do essentially just throw the code over the wall and
sometimes you get feedback, but mostly you don’t, so there’s little
opportunity to enhance the code based on users’ needs because if
someone has a problem you rarely hear about it; they either patch
in a “fix” themselves or go elsewhere. Commercial users, since
they have a guarantee of support, will come to you with issues,
and so you can then use that to improve the code and work with
them to solve the problem. Virtually all commercial users have
agreed to having specific fixes put into the main, supported code
base, because the last thing they want is to have to deal with
a custom version for the rest of eternity. That’s kind of weird
really; in the OSS world, everyone seems to be happy to fork off
their own special-snowflake version with their own code in it,
while the commercial users want a single, stable, supported code
base and are OK with sharing the code changes.

The much longer answer can be found at [4].

Rik: The Internet of Things, IoT, looks like it will include
anything with a computer that is not a personal computer or
device, or a server, and that is connected to the Internet. To my
mind, that poses certain very real threats: to the security of the
device itself and to the security of the data the device collects
and transmits. You have been working with cryptography for
over 20 years. Do you think that people can develop reasonable
ways to handle cryptography on these low-powered devices? We
still haven’t solved key management on the larger devices we are
already using.

Peter: We haven’t even solved basic crypto on these devices.
This is a bit of a pet peeve of mine. It’s scary the number of
times I’ve seen people on security mailing lists announce that
in the future we’ll all have infinite CPU and RAM and therefore
can design arbitrarily baroque and complicated protocols and
don’t have to worry about resource constraints. Only last week
someone pointed out that the just-appeared Raspberry Pi 3 has
X resources and so we don’t have to worry about resource-con-
strained embedded anymore. A Raspberry Pi of any kind, includ-
ing the Pi Zero, isn’t an embedded device, it’s a PC. So is any
smartphone, tablet, router, WiFi access point, and a long list of
other items. Citing Moore’s Law won’t help because a significant
portion of the market uses it to make things cheaper rather than
faster, so that performance stays constant while cost goes down
rather than the usual PC equilibrium of cost staying constant
while performance goes up.

An embedded device is something like a Cortex M3, or more
recently the M0, a 32-bit CPU perhaps clocked at a blazing 40
or even 70 MHz, with something like 256-kB flash and 32-kB
RAM. Ten years ago the state of the art was a Cortex M3, while
today it’s a cheaper Cortex M3, and in 10 years’ time it’ll still
be a cheaper M3 (or possibly an M0+++ by then). No standard
security protocol will run on that. A week ago I got to review two
proposed ISO standards for IoT in which a bunch of network-
ing engineers tried to invent some sort of crypto mechanism
that makes WEP look like a model of good design, because the
obvious candidates TLS and SSH are far too bloated to work
for them. It’s not their fault; they’re networking engineers and
shouldn’t be expected to have to do this, but the crypto com-
munity just assumes infinite resources and goes from there. So
we’ve got a desperate need to secure IoT but no widely accepted
standardized protocol that works for it.

This is already a problem with smart meters because regulators
imposed requirements for certificate-based signed messaging
and updates onto CPUs like TI MSP430s, Motorola ColdFires,
and ARM Cortex-Ms, and some clocked as high as 16 MHz and
with as much as 32 kB of RAM (for everything, not just the
crypto). The solution with smart meters was to cut corners as
much as possible in order to make things fit, skipping certificate

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 31

SECURITY
Interview with Peter Gutmann

verification, assuming hardcoded public keys, and various other
measures that are destined to become entertaining Black Hat or
DEFCON presentations in the future.

That’s a really short version of what could turn into a really long
answer. I haven’t even touched on the problem of dealing with the
fact that these devices will need to work in rough environments
where the hardware will experience faults, while the fashion
seems to be to move towards extremely fault-prone algorithms
like ECC crypto (where almost any kind of fault tends to result in
the private key being leaked) and GCM-mode encryption, where
a single fault, failing to increment the counter value or change
the IV, results in a total, catastrophic loss of security. So that’s
been another ongoing project: since embedded devices are going
to experience faults, how resistant can you make your crypto to
random (or perhaps deliberate, maliciously induced) faults?

Rik: I noticed that cryptlib is written in C. Why not use a “safe”
language, one with built-in safeguards against exploitation?

Peter: Whether C is safe or not depends on what you mean by “safe.”
In many high-assurance/safety-critical applications, C is regarded
as safe, and languages like C++ and Java are unsafe, because with
C you can establish pretty clear correspondence between the C
code and the resulting binary, while with higher-level languages
you can never really be sure what’s going to happen.

The FAA, for example, one organization that really cares about
safety, has spent about 10 years trying to develop guidelines for
the safe use of OO languages (typically C++ as a follow-on from
C), but is still having problems dealing with dynamic dispatch,
multiple inheritance, polymorphism, overloading and method
resolution, and other aspects of OO programming (see the
DO-332 supplement to the DO-178C avionics software standard
for more on this).

When you’re operating in environments where you can’t have
recursion (you could run out of stack), you can’t have dynamic
memory allocation (it leads to nondeterministic behavior in the
program), and you need to perform worst-case execution time
(WCET) analysis on every routine to make sure it doesn’t block,
or stall, time-critical code; the less fancy high-level stuff your
language has, the better.

Another thing about C is that the language is simple enough to
have a huge amount of tool support available. I was recently re-
reading Les Hatton’s Safer C, a seminal book [5] from the mid-’90s,
and even then he was comparing criticisms of C that were mostly
based on K&R with the then-current analysis tools that went way
beyond what the standard said in terms of code checking.

Things haven’t stood still since then. You’ve now got incred-
ibly sophisticated tools like Microsoft’s PREfast that can treat
C almost like Pascal or Ada. For example, they’ll tell you that a
variable that you’ve said has the range 0...1000 has been assigned

a value of 1001 (or whatever). That’s something that looks like C
on reading, but which can be analyzed by the dev tools as if it had
Pascal or Ada’s type-checking.

The reasoning that some of these tools can apply is phenomenal.
The clang analyzer, part of the LLVM compiler suite, can do
things like tell you that if you enter this loop and take these code
branches, then after going through five iterations this unexpected
result (e.g., a pointer value being null) will occur (commercial
tools like Coverity do this too, but in even greater detail). That’s
something that no human would be able to detect, and that test-
ing probably wouldn’t ever turn up either because you may need to
go through 20 or 30 distinct steps to get to that point.

So a programming language is more than just something to
translate into object code, it’s the sum of the tools available that
support it. Consider, for example, the use of the AFL fuzzer that
I talk about in the AFL article on page 11 in this issue. That uses
compiler-based instrumentation to detect memory issues with
the address sanitizer ASAN, not just out-of-bounds accesses but
other problems, like use of uninitialized memory and so on, and
more instrumentation to do execution-path analysis to maxi-
mize code coverage by the fuzzer. Now imagine trying to do that
with a JVM, where something outside your control (the virtual
machine) is dealing with most of the stuff that’s exposed in C.
How would you fuzz that? You end up either missing a lot of the
stuff that needs to be fuzzed, or fuzzing the JVM itself rather
than the program you want to check.

References
[1] Peter Gutmann, “Secure Deletion of Data from Magnetic
and Solid-State Memory,” in Proceedings of the Sixth USENIX
Security Symposium, 1996: https://www.cs.auckland.ac.nz
/~pgut001/pubs/secure_del.html.

[2] Recovering data from an ancient disk pack: http://www
.chrisfenton.com/cray-1-digital-archeology/.

[3] Cryptlib: https://www.cs.auckland.ac.nz/~pgut001/cryptlib/.

[4] “Self-Sustaining Open Source Software Development,”
Conference for Unix, Linux and Open Source Professionals
(AUUG2005), slide deck: https://www.cs.auckland.ac.nz
/~pgut001/pubs/oss_development.pdf.

[5] Les Hatton, Safer C: Developing Software for High-Integrity
and Safety-Critical Systems (McGraw-Hill International
Series in Software Engineering, 1995).

[6] Peter Gutmann’s home page, with lots more pointers to
slide decks and other materials: https://www.cs.auckland
.ac.nz/~pgut001/.

http://classic.auug.org.au/events/2005/auug2005/
http://www.usenix.org
https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.chrisfenton.com/cray-1-digital-archeology/
https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://www.cs.auckland.ac.nz/~pgut001/pubs/oss_development.pdf
https://www.cs.auckland.ac.nz/~pgut001/
https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://www.chrisfenton.com/cray-1-digital-archeology/
http://classic.auug.org.au/events/2005/auug2005/
https://www.cs.auckland.ac.nz/~pgut001/pubs/oss_development.pdf
https://www.cs.auckland.ac.nz/~pgut001/

Announcement and Preliminary Call for Papers www.usenix.org/fast17/cfp

February 27–March 2, 2017 • Santa Clara, CA

FAST ’17: 15th USENIX Conference on
File and Storage Technologies

Important Dates
• Paper submissions due: Tuesday, September 27, 2016, 9:00 p.m. PDT
• Tutorial submissions due: Tuesday, September 27, 2016, 9:00 p.m. PDT
• Notification to authors: Monday, December 12, 2016
• Final paper files due: Tuesday, January 31, 2017

Conference Organizers
Program Co-Chairs
Geoff Kuenning, Harvey Mudd College
Carl Waldspurger, CloudPhysics

Program Committee
TBA

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—Madison
William J. Bolosky, Microsoft Research
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Garth Gibson, Carnegie Mellon University and Panasas, Inc.
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs
Florentina Popovici, Google
Erik Riedel, EMC
Jiri Schindler, SimpliVity
Bianca Schroeder, University of Toronto
Margo Seltzer, Harvard University and Oracle
Keith A. Smith, NetApp
Eno Thereska, Confluent and Imperial College London
Ric Wheeler, Red Hat
Erez Zadok, Stony Brook University
Yuanyuan Zhou, University of California, San Diego

Overview
The 15th USENIX Conference on File and Storage Technologies (FAST ’17)
brings together storage-system researchers and practitioners to explore
new directions in the design, implementation, evaluation, and deployment
of storage systems. The program committee will interpret “storage systems”
broadly; everything from low-level storage devices to information manage-
ment is of interest. The conference will consist of technical presentations
including refereed papers, Work-in-Progress (WiP) reports, poster sessions,
and tutorials.

FAST accepts both full-length and short papers. Both types of submis-
sions are reviewed to the same standards and differ primarily in the scope of
the ideas expressed. Short papers are limited to half the space of full-length
papers. The program committee will not accept a full paper on the condi-
tion that it is cut down to fit in the short paper page limit, nor will it invite
short papers to be extended to full length. Submissions will be considered
only in the category in which they are submitted.

Topics
Topics of interest include but are not limited to:
• Archival storage systems
• Auditing and provenance
• Caching, replication, and consistency
• Cloud storage
• Data deduplication
• Database storage
• Distributed storage (wide-area, grid, peer-to-peer)
• Empirical evaluation of storage systems
• Experience with deployed systems
• File system design
• High-performance file systems
• Key-value and NoSQL storage
• Memory-only storage systems
• Mobile, personal, and home storage
• Parallel I/O and storage systems
• Power-aware storage architectures
• RAID and erasure coding
• Reliability, availability, and disaster tolerance
• Search and data retrieval
• Solid state storage technologies and uses (e.g., flash, byte-

addressable NVM)
• Storage management
• Storage networking
• Storage performance and QoS
• Storage security
• The challenges of big data and data sciences

New in 2017! Deployed Systems
In addition to papers that describe original research, FAST ’17 also solicits
papers that describe large-scale, operational systems. Such papers should
address experience with the practical design, implementation, analysis,
or deployment of such systems. We encourage submission of papers that
disprove or strengthen existing assumptions, deepen the understanding of
existing problems, and validate known techniques at scales or in environ-
ments in which they were never before used or tested. Deployed-system
papers need not present new ideas or results to be accepted, but should
offer useful guidance to practitioners.

Authors should indicate on the title page of the paper and in the
submission form that they are submitting a deployed-system paper.

Sponsored by USENIX, the Advanced Computing Systems Association

http://www.usenix.org/fast17/cfp

Rev. 2/21/16

Submission Instructions
Please submit full and short paper submissions (no extended abstracts) by
9:00 p.m. PDT on September 27, 2016, in PDF format via the Web submission
form on the FAST ’17 Web site, www.usenix.org/fast17/cfp. Do not email
submissions.
• The complete submission must be no longer than 12 pages for full

papers and 6 pages for short papers, excluding references. The program
committee will value conciseness, so if an idea can be expressed in
fewer pages than the limit, please do so. Supplemental material may be
appended to the paper without limit; however the reviewers are not
required to read such material or consider it in making their decision.
Any material that should be considered to properly judge the paper for
acceptance or rejection is not supplemental and will apply to the page
limit. Papers should be typeset on U.S. letter-sized pages in two-column
format in 10-point Times Roman type on 12-point leading (single-spaced),
with the text block being no more than 6.5” wide by 9” deep. Labels,
captions, and other text in figures, graphs, and tables must use reasonable
font sizes that, as printed, do not require extra magnification to be legible.
Because references do not count against the page limit, they should not be
set in a smaller font. Submissions that violate any of these restrictions
will not be reviewed. The limits will be interpreted strictly. No extensions
will be given for reformatting.

• Templates and sample first pages (two-column format) for Microsoft Word
and LaTeX are available on the USENIX templates page, www.usenix.org/
templates-conference-papers.

• Authors must not be identified in the submissions, either explicitly or
by implication. When it is necessary to cite your own work, cite it as if
it were written by a third party. Do not say “reference removed for blind
review.” Any supplemental material must also be anonymized.

• Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishonesty
or fraud. USENIX, like other scientific and technical conferences and
journals, prohibits these practices and may take action against authors
who have committed them. See the USENIX Conference Submissions
Policy at www.usenix.org/conferences/submissions-policy for details.

• If you are uncertain whether your submission meets USENIX’s guidelines,
please contact the program co-chairs, fast17chairs@usenix.org, or the
USENIX office, submissionspolicy@usenix.org.

• Papers accompanied by nondisclosure agreement forms will not be
considered.

Short papers present a complete and evaluated idea that does not need 12
pages to be appreciated. Short papers are not workshop papers or work-in-
progress papers. The idea in a short paper needs to be formulated concisely
and evaluated, and conclusions need to be drawn from it, just like in a full-
length paper.

The program committee and external reviewers will judge papers on
technical merit, significance, relevance, and presentation. A good research
paper will demonstrate that the authors:
• are attacking a significant problem,
• have devised an interesting, compelling solution,
• have demonstrated the practicality and benefits of the solution,
• have drawn appropriate conclusions using sound experimental methods,
• have clearly described what they have done, and
• have clearly articulated the advances beyond previous work.

A good deployed-system paper will demonstrate that the authors:
• are describing an operational system that is of wide interest,
• have addressed the practicality of the system in more than one real-world

environment, especially at large scale,
• have clearly explained the implementation of the system,
• have discussed practical problems encountered in production, and
• have carefully evaluated the system with good statistical techniques.

Moreover, program committee members, USENIX, and the reading commu-
nity generally value a paper more highly if it clearly defines and is accom-
panied by assets not previously available. These assets may include traces,
original data, source code, or tools developed as part of the submitted work.

Blind reviewing of all papers will be done by the program committee,
assisted by outside referees when necessary. Each accepted paper will
be shepherded through an editorial review process by a member of the
program committee.

Authors will be notified of paper acceptance or rejection no later than
Monday, December 12, 2016. If your paper is accepted and you need an
invitation letter to apply for a visa to attend the conference, please contact
conference@usenix.org as soon as possible. (Visa applications can take at
least 30 working days to process.) Please identify yourself as a presenter and
include your mailing address in your email.

All papers will be available online to registered attendees no earlier than
Tuesday, January 31, 2017. If your accepted paper should not be published
prior to the event, please notify production@usenix.org. The papers will be
available online to everyone beginning on the first day of the main confer-
ence, February 28, 2017. Accepted submissions will be treated as confidential
prior to publication on the USENIX FAST ’17 Web site; rejected submissions
will be permanently treated as confidential.

By submitting a paper, you agree that at least one of the authors will
 attend the conference to present it. If the conference registration fee will
pose a hardship for the presenter of the accepted paper, please contact
conference@usenix.org.

If you need a bigger testbed for the work that you will submit to FAST ’17,
see PRObE at www.nmc-probe.org.

Best Paper Awards
Awards will be given for the best paper(s) at the conference. A small,
 selected set of papers will be forwarded for publication in ACM Transactions
on Storage (TOS) via a fast-path editorial process. Both full and short papers
will be considered.

Test of Time Award
We will award a FAST paper from a conference at least 10 years earlier with
the “Test of Time” award in recognition of its lasting impact on the field.

Work-in-Progress Reports and Poster Sessions
The FAST technical sessions will include a slot for short Work-in-Progress
(WiP) reports presenting preliminary results and opinion statements. We are
particularly interested in presentations of student work and topics that will
provoke informative debate. While WiP proposals will be evaluated for ap-
propriateness, they are not peer reviewed in the same sense that papers are.
We will also hold poster sessions each evening. WiP submissions will au-
tomatically be considered for a poster slot, and authors of all accepted full
papers will be asked to present a poster on their paper. Other poster submis-
sions are very welcome. Please see the Call for Posters and WiPs, which will
be available soon, for submission information.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gatherings held in the eve-
nings and organized by attendees interested in a particular topic. BoFs
may be scheduled in advance by emailing the Conference Department at
bofs@usenix.org. BoFs may also be scheduled at the conference.

Tutorial Sessions
Tutorial sessions will be held on February 27, 2017. Please submit tutorial pro-
posals to fasttutorials@usenix.org by 9:00 p.m. PDT on September 27, 2016.

Registration Materials
Complete program and registration information will be available in Decem-
ber 2016 on the conference Web site.

http://www.usenix.org/fast17/cfp
http://www.usenix.org/templates-conference-papers
http://www.usenix.org/templates-conference-papers
http://www.usenix.org/conferences/submissions-policy
mailto:fast17chairs@usenix.org
mailto:submissionspolicy@usenix.org
mailto:conference@usenix.org
mailto:production@usenix.org
mailto:conference@usenix.org
http://www.nmc-probe.org
mailto:bofs@usenix.org
mailto:fasttutorials@usenix.org

34  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

STORAGEServing Data to the Lunatic Fringe
The Evolution of HPC Storage

J O H N B E N T , B R A D S E T T L E M Y E R , A N D G A R Y G R I D E R

John Bent. Making super-
computers superer for over a
decade. At Seagate Government
Solutions.
john.bent@seagategov.com.

John Bent.

Brad Settlemyer is a Storage
Systems Researcher and
Systems Programmer
specializing in high performance
computing. He works as a

research scientist in Los Alamos National
Laboratory’s Systems Integration group. He
has published papers on emerging storage
systems, long distance data movement,
network modeling, and storage system
algorithms. bws@lanl.gov

As Division Leader of the High
Performance Computing (HPC)
Division at Los Alamos National
Laboratory, Gary Grider is
responsible for all aspects of

high performance computing technologies
and deployment at Los Alamos. Gary is
also the US Department of Energy Exascale
Storage, I/O, and Data Management National
Co-Coordinator. Gary has 30 active patents/
applications in the data storage area and has
been working in HPC and HPC-related storage
since 1984. ggrider@lanl.gov

Before the advent of Big Data, the largest storage systems in the world
were found almost exclusively within high performance computing
centers such as those found at US Department of Energy national lab-

oratories. However, these systems are now dwarfed by large datacenters such
as those run by Google and Amazon. Although HPC storage systems are no
longer the largest in terms of total capacity, they do exhibit the largest degree
of concurrent write access to shared data. In this article, we will explain why
HPC applications must necessarily exhibit this degree of concurrency and
the unique HPC storage architectures required to support them.

Computing for Scientific Discovery
High performance computing (HPC) has radically altered how the scientific method is used
to aid in scientific discovery and has enabled the development of scientific theories that
were previously unimaginable. Difficult to observe phenomena, such as galaxy collisions and
quantum particle interactions, are now routinely simulated on the world’s largest supercom-
puters, and large-scale scientific simulation has dramatically decreased the time between
hypothesis and experimental analysis. As scientists increasingly use simulation for discov-
ery in emerging fields such as climatology and nuclear fusion, demand is driving the growth
of HPC platforms capable of supporting ever-increasing levels of fidelity and accuracy.
Extreme-scale HPC platforms (i.e., supercomputers), such as Oak Ridge National Labora-
tory’s Titan or Los Alamos National Laboratory’s Trinity, incorporate tens of thousands
of processors, memory modules, and storage devices into a single system to better support
simulation science. Researchers at universities and national laboratories are continuously
striving to develop algorithms to fully utilize these increasingly powerful and complex
supercomputers.

Figure 1: Adaptive Mesh Refinement. An example of adaptive mesh refinement for a two-dimensional grid
in which the most turbulent areas of the mesh have been highly refined (from https://convergecfd.com
/applications/gas-turbines/).

http://www.usenix.org
mailto:john.bent@seagategov.com
mailto:bws@lanl.gov
mailto:ggrider@lanl.gov
https://convergecfd.com/applications/gas-turbines/
https://convergecfd.com/applications/gas-turbines/

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 35

STORAGE
Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

A simulation is typically performed by decomposing a physical
region of interest into a collection of cells called a mesh and then
calculating how the properties of the elements within each cell
change over time. The mesh cells are distributed across a set of
processes running across the many compute nodes within the
supercomputer. Contiguous regions of cells are assigned to each
process, and processes must frequently communicate to exchange
boundary conditions between neighboring cells split across pro-
cesses. Although replicated cells, called ghost cells, are sometimes
used to reduce the frequency of communication, processes still
typically exchange messages dozens of times per second.

Additional communication occurs during a load-leveling phase.
Complex areas of the mesh that contain a large number of dif-
ferent types of elements are more difficult to simulate with high
fidelity. Accordingly, simulations will often subdivide these
areas into smaller cells as shown in Figure 1. This process of
adaptive mesh refinement causes work imbalance as some pro-
cesses within the parallel application will suddenly be responsi-
ble for a larger number of cells than their siblings. Therefore the
simulation will rebalance the assignment of cells to processes
following these refinements.

Due to the frequency of communication, the processes must run
in parallel and avoid performance deviations to minimize the
time spent waiting on messages. This method, tightly coupled
bulk synchronous computation, is a primary differentiator
between HPC and Big Data analytics.

Another primary differentiator is that the memory of each pro-
cess is constantly overwritten as the properties of the mesh are
updated. The total amount of this distributed memory has grown
rapidly. For example, an astrophysics simulation on LANL’s
Trinity system may require up to 1.5 PB of RAM to represent
regions of space with sufficient detail. Memory is one of the most
precious resources in a supercomputer; most large-scale simula-
tions expand to use all available memory. The large memory
requirements coupled with the large amount of time required to
simulate complex physical interactions leads to a problem for the
users of large-scale computing systems.

The Need for Checkpointing
How can one ensure the successful completion of a simulation that
takes days of calculation using tens of thousands of tightly coupled
computers with petabytes of constantly overwritten memory?

The answer to that question has been checkpoint-restart. Stor-
ing the program state into a reliable storage system allows a
failed simulation to restart from the most recently stored state.

Seemingly a trivial problem in the abstract, checkpoint-restart
in practice is highly challenging because the actual writes in a
checkpoint are extremely chaotic. One, the amount of data stored
by each process is unlikely to match any meaningful block size

in the storage system and is thus unaligned. Two, the writes are
to shared data sets and thus incur either metadata or data bottle-
necks [3, 8]. Three, the writes are bursty in that they all occur
concurrently during the application checkpoint phase following
a large period of storage idleness during the application compute
phase. Four, the required bandwidth is very high; supercomputer
designers face pressure to ensure 90% efficiency such that the
checkpoint-restart of massive amounts of memory must com-
plete quickly enough that no more than 10% of supercomputer
lifetime is used.

Although many techniques have been developed to reduce this
chaos [4], they are typically not available in practice. Incremen-
tal checkpointing reduces the size of the checkpoint but does
not help when the memories are constantly overwritten. Uncoor-
dinated checkpointing reduces burstiness but is not amenable to
bulk synchronous computation. Two-phase I/O improves perfor-
mance by reorganizing chaotic writes into larger aligned writes.
Checkpointing into neighbor memory improves performance by
eliminating media latencies. However, neither of these latter two
is possible when all of available memory is used by the application.

Thus, HPC storage workloads, lacking common ground with
read-intensive cloud workloads or IOPS-intensive enterprise
workloads, have led to the creation of parallel file systems,
such as BeeGFS, Ceph, GPFS, Lustre, OrangeFS, and PanFS,
designed to handle bursty and chaotic checkpointing.

Storage for Scientific Discovery
From the teraflop to the petaflop era, the basic supercomputer
architecture was remarkably consistent, and parallel file sys-
tems were the primary building block of its storage architecture.
Successive supercomputers were largely copied from the same
blueprint because the speed of processors and the capacities of
memory and disk all grew proportionally to each other following
Moore’s Law. Horizontal arrows in Table 1 show how these basic

FLOPS / RAM ()

RAM / core +

MTTF per component ()

MTTI per application +

Impact of performance deviations *

Drive spindles for capacity ()

Drive spindles for bandwidth *

Tape cassettes for capacity ()

Tape drives for bandwidth *

Storage clients / servers *

Table 1: Supercomputer Trends Affecting Storage. Horizontal lines do not
necessarily indicate no growth in absolute numbers but rather that the
trend follows the relative overall growth in the machine.

http://www.usenix.org

36  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

STORAGE
Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

architectural elements scaled proportionally. However, recent
inflection points, shown with the vertical arrows, require a rede-
sign of both the supercomputer and its storage architecture.

Era: 2002–2015. The storage architecture for the teraflop
and petaflop eras is shown in Figure 2a. Large tightly coupled
applications ran on large clusters of mostly homogeneous
components. Forward progress, despite inevitable application
interruptions, was ensured via checkpoint-restart. Tape-based
archives stored cold data permanently, and disk-based parallel
file systems satisfied the storage requirements for hot data.

These storage requirements are easily quantifiable for each
supercomputer. An optimal checkpoint frequency is derived
from the MTTI. The checkpoint size is typically no larger than
80% of the memory of the system, and HPC sites typically desire
an efficiency of at least 90%. Given a checkpoint frequency and
a checkpoint size, the required checkpoint bandwidth must be
sufficient such that the total time spent checkpointing (and
restarting and recomputing any lost work) is less than 10% of a
system’s operational time. The storage system also includes a
capacity requirement derived from the needs of the system users
and typically results in a capacity requirement between 30 and
40 times the size of the system memory.

As an example, imagine an exascale computer with 32 PB of
memory and a checkpoint frequency of one hour. Ignoring restart
and recompute, a checkpoint can take no more than six minutes,
and therefore the required storage bandwidth must be at least 72
TB/s. The required storage capacity must be at least 960 PB.

An important characteristic of supercomputers within this
era was that the minimum number of disks required for capac-
ity was larger than the minimum number of disks required for
bandwidth. This ensured that the simple model of a storage tier
for performance and a second tier for capacity was economically
optimal throughout this era.

During this era, total transistor counts continued to double
approximately every 24 months. However, in the second half of
this era, they did so horizontally by adding more compute nodes
with larger core counts as opposed to merely increasing transis-
tors within cores. This has had important implications which
affect the storage stack: (1) although component reliability is
little changed, large-scale systems built with increasing num-
bers of components are experiencing much shorter mean times
to failure; (2) the amount of private memory available to each
process is decreasing; (3) the number of processes participating
in checkpoint-restart is growing; and (4) since larger supercom-
puters are more sensitive to performance deviations across their
components, programming models which rely on bulk synchro-
nous computing are less efficient.

Although petascale systems such as LANL’s Roadrunner and
ORNL’s Jaguar began to stress the existing storage model in
2008, it survived until 2015.

Era: 2015–2016. In this era the inflection point in Table 1 not-
ing the growth in the number of disk spindles required to meet
checkpoint bandwidth requirements becomes a limitation. Until
2013, the system capacity requirement ensured sufficient disks
to simultaneously satisfy the performance requirement. How-
ever, as disks have gotten relatively slower (as compared to their
growth in capacity), a larger number of spindles is required to
meet the bandwidth demand. A flash-only storage system could
easily satisfy performance but would be prohibitively expensive
for capacity: thus the introduction of a small performance tier
situated between the application and the disk-based parallel file
system as shown in Figure 2b. This tier is commonly referred
to as a burst buffer [1, 7] because it is provisioned with enough
bandwidth to meet the temporary bandwidth requirement but
not sufficient capacity to meet the overall system demands.
The bursty nature of the checkpoint-restart workload allows
sufficient time to drain the data to a larger-capacity disk-based
system. Initial burst buffer systems have been built on TACC’s
Wrangler, NERSC’s Cori, and LANL’s Trinity supercomputers.

Figure 2: From 2 to 4 and back again. Static for over a decade, the HPC storage stack has now entered a period of rapid change.

(a) 2002–2015 (b) 2015–2016 (c) 2016–2020 (d) 2020–

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 37

STORAGE
Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

Era: 2016–2020. A similar shift to that which motivated burst
buffers now has occurred in the economic ratio between tape
and disk. Although tape’s primary requirement is to satisfy long-
term capacity, it also has a performance requirement which is
becoming increasingly expensive due to unique characteristics
of tape. Specifically, tape capacity and performance are pur-
chased separately, whereas, for disk and flash, they are pur-
chased together; for example, a typical disk might provide a TB of
capacity, 100 MBs of bandwidth, and 100 IOPS. Conversely, tape
capacity is purchased in inexpensive cassettes, bandwidth in
expensive drives, and IOPS in very expensive robots to connect
the two. Analysis has shown that a hybrid disk-tape system was
the correct economic choice for archival HPC storage as early as
2015 [6], as shown in Figure 2c. The emergence of efficient era-
sure coded object storage software has enabled the development
of MarFS [5], the first instance of a disk-based archival storage
system for HPC data that can provide the minimal bandwidth
and extreme levels of data protection required for long-term data
retention. For reference, the four storage tiers of LANL’s 2016
Trinity supercomputer are shown in Table 2.

For future supercomputers of this era, we also expect that the
physical location of the flash memory burst buffers will change.
Instead of being in dedicated external nodes accessible to all of
the compute nodes, flash memory will begin appearing within
the supercomputer (e.g., node-local storage). Despite this change,
this era will continue to be defined by the presence of a parallel
file system.

Era: 2020 Onward. The four storage tiers shown in Figure 2c
are an unnecessary burden on system integrators, administra-
tors, and users. Therefore, as shown in Figure 2d, we predict a
return to two-tier storage architectures for HPC systems. Also

in this era, we predict the emergence of new storage interfaces to
better utilize node-local storage.

Return to Two Tiers. Parallel file systems were created to
handle chaotic, complex, and unpredictable streams of I/O as
shown in Figure 2a. Figure 2b shows that burst buffers now
absorb that chaos, leaving parallel file systems serving only
orderly streams of I/O issued by system utilities. When burst
buffers were first introduced, the possibility that these orderly
streams might go directly to the tape archive was discussed. And
while this was feasible for writes, reads would have experienced
unacceptable latency. However, the move to disk-based object
stores as shown in Figure 2c does provide sufficient perfor-
mance for both reads and writes issued from the burst buffer.
Thus, a separate parallel file system is no longer needed. The top
two storage tiers in Figure 2c will combine, and the burst buffer
will subsume the parallel file system.

Similarly, the bottom two tiers will merge. The erasure codes
used in object storage present a much richer approach to reliabil-
ity and data durability than modern tape archives. As the costs
of an object store fall below those of a tape archive [6], the role of
tape will increasingly be filled by the disk-based object store.

Early prototypes of a return to a two-tier HPC storage system
are EMC’s eponymous 2 Tiers™ and CMU’s BatchFS [9]. Both
expose a file system interface to the application, store hot data in
a burst buffer, and can store cold data in an object store.

New Storage Interfaces. Although the burst buffer will
subsume the parallel file system, over time it will decreasingly
resemble current systems. Many bottlenecks within parallel file
systems are due to the legacy POSIX semantics that are typically
unnecessary for HPC applications. That vendors have provided
POSIX is not surprising given that parallel file systems are also
used by enterprise (i.e., non-HPC) customers who require more
rigorous semantics.

However, as burst buffers will begin appearing as local stor-
age within each compute node, these bottlenecks will finally
become intractable. Maintaining POSIX semantics for a global

Figure 3: HPC Storage System Costs. This graph shows the media costs
required to satisfy the checkpoint bandwidth and capacity requirement
for 90% forward progression. We can see that in 2013, storage systems
composed of one media type (disks or flash) are not as economical as a
storage system that uses flash to meet bandwidth requirements and disks
to meet capacity requirements.

Size Bandwidth Lifetime

Memory 2.1 PB 1–2 PB/s milliseconds

Burst Buffer 3.7 PB 4–6 TB/s hours

Parallel FS 78 PB 1–2 TB/s weeks

Object Store 30 PB 100–300 GB/s months

Tape Archive 50+ PB 10 GB/s forever

Table 2: The Four Tiers of Trinity Storage. LANL’s Trinity supercomputer
uses Cray’s DataWarp as a burst buffer, Lustre as a parallel file system,
MarFS as a file system interface over an object store, and HPSS for the
tape archive. The sizes above reflect the sizes at installation; the object
store and the tape archive will grow over the lifetime of the machine.

http://www.usenix.org

38  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

STORAGE
Serving Data to the Lunatic Fringe: The Evolution of HPC Storage

namespace across distributed local burst buffers destroys the
low latency of node-local storage since data access requires
higher latency communications with a remote centralized
metadata service. Thus, emerging systems like DeltaFS [10] and
Intel’s DAOS-M employ relaxed semantics to allow HPC applica-
tions with less rigorous storage requirements to achieve higher
performance. We expect that these, or similar storage services,
will increasingly appear as user-space libraries utilizing OS-
bypass for low-latency access to local storage with eventual
namespace reconciliation as first developed in Coda.

Further, the increased sensitivity to system noise is diminishing
the efficiency of bulk synchronous computing models. Accord-
ingly, programming models such as Stanford’s Legion and asyn-
chronous MPI will become attractive alternatives, but they will
require asynchronous checkpointing models, such as uncoordi-
nated checkpointing using message logging [4] or asynchronous
transactions [2] with relaxed consistency semantics.

Conclusion
Unique properties of scientific simulations require unique stor-
age architectures. Static for over a decade, HPC storage systems
have now entered a period of rapid development. The opportunity
for innovation in HPC storage is currently immense. We urge
interested readers to join us in building new storage technolo-
gies for exascale computing.

Acknowledgments
A portion of this work was performed at the Ultrascale Systems
Research Center (USRC) at Los Alamos National Laboratory,
supported by the US Department of Energy contract DE-FC02-
06ER25750 and a CRADA between LANL and EMC. The pub-
lication has been assigned the LANL identifier LA-UR-16-21697.

References
[1] J. Bent, S. Faibish, J. Ahrens, G. Grider, J. Patchett, P. Tzelnic,
and J. Woodring, “Jitter-Free Co-Processing on a Prototype
Exascale Storage Stack,” in Proceedings of the IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST),
April 2012, pp. 1–5.

[2] J. Bent, B. Settlemyer, H. Bao, S. Faibish, J. Sauer, and
J. Zhang, “BAD Check: Bulk Asynchronous Distributed Check-
pointing and IO,” in Proceedings of the Petascale Data Storage
Workshop at SC15 (PDSW15), Nov. 2015, pp. 19–24.

[3] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and
T. Ludwig, “Small-File Access in Parallel File Systems,” in
Proceedings of the IEEE International Symposium on Parallel
Distributed Processing (IPDPS 2009), May 2009, pp. 1–11.

[4] K. B. Ferreira, “Keeping Checkpointing Viable for Exascale
Systems,” PhD dissertation, University of New Mexico, Albu-
querque, 2011, ISBN: 978-1-267-28351-1.

[5] G. Grider et al., “MarFS—A Scalable Near-Posix Metadata
File System with Cloud Based Object Backend,” in Proceed-
ings of the 10th Parallel Data Storage Workshop (PDSW ’15),
Abstract—Work-in-Progress, 2015: http://www.pdsw.org
/pdsw15/wips/wip-lamb.pdf.

[6] J. Inman, G. Grider, and H. B. Chen, “Cost of Tape Versus
Disk for Archival Storage,” in Proceedings of the IEEE 7th Inter-
national Conference on Cloud Computing (CLOUD), June 2014,
pp. 208–215.

[7] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the Role of Burst Buffers in
Leadership-Class Storage Systems,” in Proceedings of the 2012
IEEE Conference on Massive Data Storage, 2012: https://www
.mcs.anl.gov/papers/P2070-0312.pdf.

[8] P. Nowoczynski, N. Stone, J. Yanovich, and J. Sommerfield,
“Zest: Checkpoint Storage System for Large Supercomputers,”
in Proceedings of the 3rd Parallel Data Storage Workshop (PDSW
’08), Nov. 2008, pp. 1–5.

[9] Q. Zheng, K. Ren, and G. Gibson, “BatchFS: Scaling the File
System Control Plane with Client-Funded Metadata Servers,”
in Proceedings of the 9th Parallel Data Storage Workshop (PDSW
’14), 2014, pp. 1–6: http://dx.doi.org/10.1109/PDSW.2014.7.

[10] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G.
Grider, “DeltaFS: Exascale File Systems Scale Better without
Dedicated Servers,” in Proceedings of the 10th Parallel Data
Storage Workshop (PDSW ’15), ACM, 2015, pp. 1–6: http://
doi.acm.org/10.1145/2834976.2834984.

http://www.usenix.org
http://www.pdsw.org/pdsw15/wips/wip-lamb.pdf
https://www.mcs.anl.gov/papers/P2070-0312.pdf
http://dx.doi.org/10.1109/PDSW.2014.7
http://doi.acm.org/10.1145/2834976.2834984
http://doi.acm.org/10.1145/2834976.2834984
http://www.pdsw.org/pdsw15/wips/wip-lamb.pdf
https://www.mcs.anl.gov/papers/P2070-0312.pdf

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/facebook

www.usenix.org/linkedin

www.usenix.org/gplus

REGISTER TODAY!
2016 USENIX
Annual Technical Conference
JUNE 22–24, 2016 • DENVER, CO
www.usenix.org/atc16

USENIX ATC ’16 brings leading systems researchers together for cutting-
edge systems research and unlimited opportunities to gain insight into a
variety of must-know topics, including virtualization, system administration,
cloud computing, security, and networking.

SOUPS 2016
Twelfth Symposium on Usable Privacy and Security

JUNE 22–24, 2016
www.usenix.org/soups2016

SOUPS 2016 will bring together an interdisciplinary group of researchers
and practitioners in human computer interaction, security, and privacy.
The program will feature technical papers, workshops and tutorials, a
poster session, panels and invited talks, and lightning talks.

HotCloud ’16
8th USENIX Workshop on Hot Topics in Cloud Computing

JUNE 20–21, 2016
Researchers and practitioners at HotCloud ’16 share their perspectives,
report on recent developments, discuss research in progress, and
identify new/emerging “hot” trends in cloud computing technologies.

HotStorage ’16
8th USENIX Workshop on Hot Topics in Storage and File Systems

JUNE 20–21, 2016
HotStorage ‘16 is an ideal forum for leading storage systems
researchers to exchange ideas and discuss the design, implementation,
management, and evaluation of these systems.

Co-located with USENIX ATC ’16:

http://www.usenix.org/youtube
http://www.usenix.org/facebook
http://www.usenix.org/linkedin
http://www.usenix.org/gplus
http://www.usenix.org/atc16
http://www.usenix.org/soups2016
https://twitter.com/usenix

40  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

STORAGE

Linux FAST Summit ’16 Summary
R I K F A R R O W

Following FAST ’16, 26 people met for the 2016 USENIX Research in
Linux File and Storage Technologies Summit (Linux FAST ’16) to
discuss file systems, storage, and the Linux kernel. I’ve learned that

the reason behind these discussions is to help people get their changes into
the kernel, or at least to help people understand what the process is like. Ted
Ts’o (Google) has pointed out at past Linux FAST workshops that there are
already over 120 file systems in Linux, and getting new ones added is not
going to be easy.

We began the workshop by going around the room and sharing our names, affiliations, and
our reason for attending this year. Often, people attend because they just presented a file
system, or code that extends an existing one, at the FAST workshop and want to understand
how to get their code added to the Linux kernel. Others attend because they are working on
new devices or need support for doing things in file systems that haven’t been done before.
We had all these interests this year. But let’s start with the perennial issue: getting your code
accepted into the Linux kernel.

Advice on how to do this was sprinkled throughout the workshop, and rather than mimic that
distribution, I thought I would try to condense it into something more coherent.

Also, before going any further, I want to mention there was also a BSD File System work-
shop on the same day as FAST ’16 tutorials. I couldn’t attend because of the tutorials, but
Kirk McKusick shared a link to the agenda, which also includes some notes [1] about what
was covered. I did drop by and counted 31 people in attendance, seated lecture style. When I
visited later, the meeting had broken up into working groups.

Going Upstream
Getting your code added to the Linux kernel, maintained by Linus, means having your code
accepted upstream. All distros start with the upstream code and then add what distinguishes
their distro from others. Also, getting new code into the kernel is definitely trying to swim
upstream—it’s not easy.

Ted Ts’o, the first US contributor to the Linux kernel, and someone who has attended every
Linux FAST I’ve been to, always starts by suggesting you join, not the kernel mailing list,
but a storage-specific mailing list appropriate to the type of code you’ve developed. There
are lists (http://vger.kernel.org/vger-lists.html) for the block devices, SCSI, block caches,
btrfs, and even Ceph, and all of them much more focused than the generic kernel mailing list.
There is also a device mapper mailing list on a separate server (dm-devel@redhat.com).

This time, Ted Ts’o also suggested posting early code to the appropriate list. Ted’s rationale
for doing this is to quickly learn whether your approach is workable or not and whether there
are problems before you have spent a lot of time working on a solution.

There was also some discussion about which kernel version to use. Erez Zadok (Stony Brook
University) pointed out that it sometimes takes years for a graduate student to complete a

Rik is the editor of ;login:.
rik@usenix.org

http://www.usenix.org
http://vger.kernel.org/vger-lists.html
mailto:dm-devel@redhat.com
mailto:rik@usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 41

STORAGE
Linux FAST Summit ’16 Summary

project, but Ric Wheeler (Red Hat) explained that there is one
stable kernel per year (approximately), and working with a stable
kernel is best.

Another big issue with getting a new file system accepted
upstream is having someone to support the code in the future.
You can’t just toss your code over the wall—someone must con-
tinue to fix bugs and adapt the code as other kernel code changes.
That someone should have industry support: in other words,
work for a company that wants the code maintained. While you
might wonder how common that is, Linux FAST always has a
number of people who work for companies doing this. Linux
FAST ’16 had kernel developers working for Facebook, Google,
Intel, HP Enterprise, Huawei, Micron, Red Hat, and Seagate, and
four of those companies had multiple coders present. Industry-
supported kernel hackers outnumbered students and faculty at
this year’s Linux FAST.

Ric Wheeler noted that there is another Linux file system and
storage workshop that is more appropriate for industry users,
rather than academics and developers, called Vault [2]. Unlike
Linux FAST, where the goal is discussion, Vault has keynotes
and talks.

I was sitting next to Jian Xu, a PhD student from the University
of California, San Diego, who had presented a paper about a new
file system for NVRAM (NOVA [3]). While NOVA is much faster
than F2FS, the currently used flash file system for Linux-based
devices, Ted pointed out that ext2 is actually faster on f lash
than F2FS for key-value stores but that F2FS does better in
SQLite benchmarks. I suggested that Xu try to find industry
 backing—some company with a device that would benefit from
using NOVA over F2FS. Ted had also suggested finding some
“economic actor” that would support his project.

Shingled Magnetic Recording
SMR was a big topic in the past and continued to be this year.
Ted Ts’o announced that he had been working with someone at
CMU on host-aware SMR drive management, leading to some
discussions throughout the afternoon. SMR disk drives get
added capacity by eliminating the space between most tracks on
a platter. Adrian Palmer (Seagate) pointed out that a single zone,
or writeable area, on a typical SMR drive is 256 MB, whereas in
conventional drives, the write unit is a sector, or 4 kB. In ext4,
the largest block size is 128 MB, half the zone size in SMR.

Current SMR drives are device managed, which means that the
SMR drives you can buy today hide the fact that they are SMR:
they behave like drives with small sectors by handling all writes
as sequential writes to a zone. That implies that SMR drives
perform block mapping behind the scenes, and must also per-
form garbage collection, dealing with the holes created in zones
when files are deleted or truncated. These activities are hidden

from users (and the operating system), except when they cause
unexpected latency. I overheard someone say that, when using
an SMR drive, they could finish a benchmark in 30 seconds or 12
minutes, depending on the internal state of the drive. Revealing
the internal state of drives was discussed to some extent during
Linux FAST and was the topic of Eric Brewer’s (Google) keynote
at FAST ’16 [4].

Ted Ts’o and people at Carnegie Mellon University have been
working with Seagate on host-aware SMR drives, which are still
self-managed but accept input from the host operating system to
optimize performance. Peter Desnoyers (Northeastern Univer-
sity) and an associate have been working with Western Digital
on the same problem but are using WD drives. Shaun Tancheff
is a software engineer, consulting for Seagate, working on the
problem from the manufacturer’s side. Shaun asked for flags that
can be included with requests to host-aware and host-managed
SMR drives. Jens Axboe (Facebook) said that it is possible to
add modifier flags to SCSI requests. Andreas Dilger (Intel)
mentioned that he has been using some bits in the stream ID, but
Jens Axboe said that he was not opposed to adding flags to the
file struct for doing this.

There is another type of SMR drive, host-managed. The people
at Linux FAST who I’ve suggested were working on host-aware
drives may actually have been working on host-managed drives.
They probably can’t confirm that, however, because of the condi-
tions they work under (NDAs). Host-managed drives take control
of the SMR drive, the exact opposite of a device-managed drive.
Host-managed drives must always write at the write-pointer, the
furthest point in an SMR zone that has recently been written.
Having the file system or deeper kernel layers manage an SMR
drive means more than having to be aware of the 256 MB zones:
the OS must also handle block mapping, copying blocks to better
locations, as well as handling garbage collection. In some ways,
SMR requires software very like the Flash Translation Layer
(FTL) found in SSDs.

Adrian Palmer brought up the issue of out-of-order writes being
a problem when working with SMR drives. Drive manufacturers
have been making the assumption that the write-queue will be
ordered (logical block addresses in either monotonically increas-
ing or decreasing order). In practice, they had seen non-ordered
writes. John Grove (Micron) also shared interest in having a
mode where block I/O ordering is guaranteed through the block
stack. Jens Axboe took the concerns seriously and suggested that
people propose solutions. Jens also pointed out that in a multi-
queue environment, ordering would practically require that all
order-dependent I/Os go through one queue.

Trim
The trim command was created as a method of telling SSDs that
certain logical blocks were no longer in use—the file system had

http://www.usenix.org

42  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

STORAGE
Linux FAST Summit ’16 Summary

deleted the files containing those blocks, or truncated a file, also
releasing blocks. Trim means an SSD can change the mappings of
blocks to unused, and in theory this could help SSD performance
by helping to reduce garbage collection overhead.

Initially, the trim command could not be queued: any commands
in a queue for a drive would have to complete before the trim
command could be issued. Later versions of the standard (ATA
3.1) allowed trim commands to queue.

Ted Ts’o pointed out that there are a number of SSDs that have
been blacklisted by kernel developers because of data corruption
issues when the trim command was used in Linux. See [5] for a
list of blacklisted drives.

Trim also affects file systems and drivers for SMR drives, as
SMR drives also need to perform garbage collection, dealing
with freed space, and trim offers a method of communicating
to a drive which logical blocks have designated as unused.

Tim Feldman (Seagate) opened the discussion of trim by men-
tioning that Seagate works with T10 and T13 standards bodies,
which affect both stream IDs and trim for both flash and disk
drives. Tim also suggested that some internal states of drives,
which are actually intelligent devices, could be communicated
back to the kernel: for example, the failure of a single head or
other health characteristics. Ric Wheeler said that it would
be useful to know when a drive has a non-volatile (NV) cache
enabled, and Tim answered that this is well-defined in stan-
dards, but in practice, results may not be correct. Andreas Dilger
said the standards consider this optional, and Tim agreed that
NV cache state should be exposed.

Trim for a drive-managed SMR drive could change the write point-
ers, but Shaun pointed out that the problem is how to share this
information with block device drivers. Hannes Reinecke (SUSE)
had posted some code for supporting host-managed SMR drives [6],
and his post was mentioned in the context of trim for SMR.

Jens Axboe mentioned that he is working on patches that sup-
port sharing information about timing/delays, write-stream IDs
for flash devices, to reduce write amplification and some latency
improvement. A lot of this work has been on the standards side
so they can support it in the kernel. At this point, they can push a
million-plus I/Os through the kernel.

Non-Volatile Memory
The Intel Micron 3D XPoint NVRAM was on lots of people’s minds.
About 1000 times faster than flash, and very likely arranged in
cache-line-sized blocks (64–128 bytes) instead of kilobyte- or
megabyte-addressable blocks, 3D XPoint will first appear on the
memory or PCIe busses. And unlike flash, which could conveniently
be treated as if it were a disk device, 3D XPoint needs to be treated
more like a persistent form of DRAM. While not as fast as DRAM,

NVRAM-like 3D XPoint will be much denser than DRAM, alleg-
edly allowing a server to have as much as 6 TB of fast persistence
storage. For HPC, this means that burst buffers (see Bent et al.’s
HPC storage article in this issue) would go away, to be replaced with
CPU-board storage for checkpointing.

Suparna Bhattacharya (HP Enterprise) asked whether 3D
XPoint would appear as a storage device or be more like memory.
Dan Williams (Intel) replied that today it appears that 3D XPoint
will first appear as memory. When you read from 3D XPoint,
lines get loaded into the appropriate CPU cache, and when you
flush, lines should be flushed back. The current way of mapping
a file into memory using mmap() will likely be extended to work
with 3D XPoint and similar devices. Dan said that while some
people want more control over cache behavior, he doesn’t believe
that they should be able to do this: the CPU is in the best position
to make decisions about the cache. But fsyncing an mmapped file
should result in the portions of the file in cache being copied to non-
volatile storage, as happens with fsyncing data back to a disk. Dan
says that the decisions on how to handle this have not completed,
and perhaps fsyncing the device should force a cache flush.

Dan also introduced DAX/DMA into persistent memory, the big-
gest ticket item for persistent memory. DAX was developed for
NVRAM, like 3D XPoint, but looks to have other applications as
well. While mmap() memory maps files, DAX provides a pointer
right into memory, and will be useful not just for NVRAM, but
also in file systems like Jens Axboe’s and ext4 (but not btrfs),
where being able to overwrite a section of a file is useful. With
DAX, you write, then commit, and once you commit the pro-
cess blocks until the cache has been successfully flushed. DAX
sounds like it will solve some of the problems people have with
reworking mmap() to work with NVRAM.

BetrFS
Several people from Stony Brook University, including some of
the authors of the Best Paper Award-winning “Optimizing Every
Operation in a Write-Optimized File System” [8] were present.
Rob Johnson (Stony Brook University) said that the primary rea-
son for staying for Linux FAST was to learn more about getting
their file system into the kernel. Rob said that the core of their
optimizations (B-epsilon trees [9]) was part of a commercial
product, and it was likely that someone from their crew would be
hired to work on that product. That would mean that someone
would be paid to maintain any changes to the kernel to support
BetrFS.

Ceph
There were also several people present from Ceph, a distributed
file storage product. While Ceph is a user-level overlay, currently
used for block and object store, there appeared to be things that
the Ceph folks would like to see in the kernel, such as a having

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 43

STORAGE
Linux FAST Summit ’16 Summary

a key-value store there. Greg Farnum (Red Hat) seemed more
interested in having access to unwritten file extents in user
space. fallocate() won’t expose unwritten blocks, because that’s
a security issue, but in the case of Ceph, being able to have more
control over where Ceph writes its data and metadata would
help them improve performance [10]. The key-value store is less
interesting, as a transactional store would be more useful. The
BetrFS crew also expressed some interest in transactional stor-
age, leading to objections from Ted Ts’o.

Ted had two concerns: first, that an application would crash
during a transaction, leaving the transaction orphaned, and

References
[1] FreeBSD NewStorage Technologies Summit 2016: https://
wiki.freebsd.org/201602StorageSummit/NewStorage
Technologies#Agenda.

[2] Vault: http://www.linuxfoundation.org/news-media
/announcements/2014/08/linux-foundation-launches-new
-conference-vault-address-growing.

[3] Jian Xu and Steven Swanson, “NOVA: A Log-Structured File
System for Hybrid Volatile/Non-Volatile Main Memories,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), 2016: https://www.usenix.org/conference
/fast16/technical-sessions/presentation/xu.

[4] Eric Brewer, “Spinning Disks and Their Cloudy Future,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), slides and audio: https://www.usenix
.org/conference/fast16/technical-sessions/presentation/brewer.

[5] Trim Shortcomings: https://en.wikipedia.org/wiki/Trim
_(computing)#SCSI.

[6] ZBC host-managed device support, SCSI mailing list: https://
lwn.net/Articles/653187/.

[7] DAX: https://lwn.net/Articles/618064/.

[8] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo, Zardosht
Kasheff, Leif Walsh, Michael Bender, Martin Farach-Colton,
Rob Johnson, Bradley C. Kuszmaul, and Donald E. Porter,
“Optimizing Every Operation in a Write-Optimized File Sys-
tem, in Proceedings of the 14th USENIX Conference on File and
Storage Technologies (FAST ’16), 2016: https://www.usenix.org
/conference/fast16/technical-sessions/presentation/yuan.

[9] Michael A. Bender, Martin Farach-Colton, William Jannen,
Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter, Jun
Yuan, and Yang Zhan, “An Introduction to Bε-trees and Write-
Optimization.” ;login:, vol. 40, no. 5, October 2015: https://www
.usenix.org/publications/login/oct15/bender.

[10] See Ts’o’s comment on fallocate() after Linux Fast: http://
marc.info/?l=linux-api&m=145704481128395&w=2.

second, that an application might be greedy and spool up so much
data into one transaction that the transaction would dominate
the log (and work that could currently be done). Rob Johnson
said they would be happy to have limits on the log, and time-
outs could handle the crashing during a transaction issue. Greg
Farnum wrote that Ceph doesn’t really need a POSIX file system
but wants a transactional key-value store that runs in kernel
space. Listening to this discussion, I thought such changes seem
currently unlikely. But big changes have occurred, such as the
discontinuation of ext3 in recent kernels and some distros now
making btrfs the default file system.

http://www.usenix.org
https://wiki.freebsd.org/201602StorageSummit/NewStorageTechnologies#Agenda
https://wiki.freebsd.org/201602StorageSummit/NewStorageTechnologies#Agenda
http://www.linuxfoundation.org/news-media/announcements/2014/08/linux-foundation-launches-new-conference-vault-address-growing
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix
https://en.wikipedia.org/wiki/Trim_(computing)#SCSI
https://lwn.net/Articles/653187/
https://lwn.net/Articles/653187/
https://lwn.net/Articles/618064/
https://www.usenix.org/conference/fast16/technical-sessions/presentation/yuan
https://www.usenix.org/publications/login/oct15/bender
http://marc.info/?l=linux-api&m=145704481128395&w=2
http://marc.info/?l=linux-api&m=145704481128395&w=2
https://wiki.freebsd.org/201602StorageSummit/NewStorageTechnologies#Agenda
http://www.linuxfoundation.org/news-media/announcements/2014/08/linux-foundation-launches-new-conference-vault-address-growing
http://www.linuxfoundation.org/news-media/announcements/2014/08/linux-foundation-launches-new-conference-vault-address-growing
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://en.wikipedia.org/wiki/Trim_(computing)#SCSI
https://www.usenix.org/conference/fast16/technical-sessions/presentation/yuan
https://www.usenix.org/publications/login/oct15/bender
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

44  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SYSADMINImprove Your Multi-Homed Servers with
Policy Routing
J O N A T H O N A N D E R S O N

Jonathon Anderson has been
an HPC Sysadmin since 2006
and believes that everything
would be a lot easier if we just
spent more time figuring out the

correct way to do things. He’s currently serving
as HPC Engineer at the University of Colorado
and hopes to stick around Boulder for a long
time to come.
jonathon.anderson@colorado.edu

Traditional IP routing systems route packets by comparing the des-
tination address against a predefined list of routes to each available
subnet; but when multiple potential routes exist between two hosts

on a network, the preferred route may be dependent on context that cannot
be inferred from the destination alone. The Linux kernel, together with the
iproute2 suite [1], supports the definition of multiple routing tables [2] and a
routing policy database [3] to select the preferred routing table dynamically.
This additional expressiveness can be used to avoid multiple routing pitfalls,
including asymmetric routes and performance bottlenecks from suboptimal
route selection.

Background
The CU-Boulder Research Computing environment spans three datacenters, each with
its own set of special-purpose networks. A traditionally routed host simultaneously con-
nected to two or more of these networks compounds network complexity by making only one
interface (the default gateway) generally available across network routes. Some cases can be
addressed by defining static routes, but even this leads to asymmetric routing that is at best
confusing and at worst a performance bottleneck.

Over the past few months we’ve been transitioning our hosts from a single-table routing
configuration to a policy-driven, multi-table routing configuration. The end result is full
bi-directional connectivity between any two interfaces in the network, irrespective of
underlying topology or a host’s default route. This has reduced the apparent complexity in
our network by allowing the host and network to Do the Right Thing™ automatically, uncon-
strained by an otherwise static route map.

Linux policy routing has become an essential addition to host configuration in the University
of Colorado Boulder “Science Network.” It’s so useful, in fact, that I’m surprised a basic rout-
ing policy isn’t provided by default for multi-homed servers.

The Problem with Traditional Routing
The simplest Linux host routing scenario is a system with a single network interface.

ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

2: ens192: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

 pfifo_fast state UP qlen 1000

 link/ether 00:50:56:88:56:1f brd ff:ff:ff:ff:ff:ff

 inet 10.225.160.38/24 brd 10.225.160.255 scope global dynamic ens192

 valid_lft 60184sec preferred_lft 60184sec

http://www.usenix.org
mailto:jonathon.anderson@colorado.edu

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 45

SYSADMIN
Improve Your Multi-Homed Servers with Policy Routing

Such a typically configured network with a single uplink has a
single default route in addition to its link-local route.

ip route list

default via 10.225.160.1 dev ens192

10.225.160.0/24 dev ens192 proto kernel scope link src

10.225.160.38

Traffic to hosts on 10.225.160.0/24 is delivered directly, while
traffic to any other network is forwarded to 10.225.160.1.

A dual-homed host adds a second network interface and a second
link-local route, but the original default route remains (see
Figure 1).

ip addr show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

2: ens192: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

 pfifo_fast state UP qlen 1000

 link/ether 00:50:56:88:56:1f brd ff:ff:ff:ff:ff:ff

 inet 10.225.160.38/24 brd 10.225.160.255 scope global

dynamic ens192

 valid_lft 86174sec preferred_lft 86174sec

3: ens224: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

 pfifo_fast state UP qlen 1000

 link/ether 00:50:56:88:44:18 brd ff:ff:ff:ff:ff:ff

 inet 10.225.176.38/24 brd 10.225.176.255 scope global dynamic

ens224

 valid_lft 69193sec preferred_lft 69193sec

ip route list

default via 10.225.160.1 dev ens192

10.225.160.0/24 dev ens192 proto kernel scope link src

10.225.160.38

10.225.176.0/24 dev ens224 proto kernel scope link src

10.225.176.38

The new link-local route provides access to hosts on
10.225.176.0/24 and is sufficient for a private network con-
necting a small cluster of hosts. In fact, this is the configuration
that we started with in our Research Computing environment:
.160.0/24 is a low-performance “management” network, while
.176.0/24 is a high-performance “data” network.

In a more complex network, however, link-local routes quickly
become insufficient. In the CU Science Network, for example,
each datacenter is considered a discrete network zone with its
own set of “management” and “data” networks. For hosts in
different network zones to communicate, a static route must be
defined in each direction to direct performance-sensitive traffic
across the high-performance network route (see Figure 2).

server # ip route add 10.225.144.0/24 via 10.225.176.1

client # ip route add 10.225.176.0/24 via 10.225.144.0

Although managing these static routes can be tedious, they do
sufficiently define connectivity between the relevant network
pairs: “data” interfaces route traffic to each other via high-per-
formance networks, while “management” interfaces route traf-
fic to each other via low-performance networks. Other networks
(e.g., the Internet) can only communicate with the hosts on their
default routes; but this limitation may be acceptable for some
scenarios.

Even this approach is insufficient, however, to allow traffic
between “management” and “data” interfaces. This is par-
ticularly problematic when a client host is not equipped with
a symmetric set of network interfaces (see Figure 3). Such a
client may only have a “management” interface but should still

Figure 1: A simple dual-homed server with a traditional default route Figure 2: A server and a client, with static routes between their data
interfaces

http://www.usenix.org

46  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SYSADMIN
Improve Your Multi-Homed Servers with Policy Routing

communicate with the server’s high-performance interface for
certain types of traffic. (For example, a dual-homed NFS server
should direct all NFS traffic over its high-performance “data”
network, even when being accessed by a client that itself only
has a low-performance “management” interface.) By default, the
Linux rp_filter [4] blocks this traffic, as the server’s response
to the client targets a different route than the incoming request;
but even if rp_filter is disabled, this asymmetric route limits
the server’s aggregate network bandwidth to that of its lower-
performing interface.

The server’s default route could be moved to the “data” inter-
face—in some scenarios, this may even be preferable—but this
only displaces the issue: clients may then be unable to communi-
cate with the server on its “management” interface, which may
be preferred for certain types of traffic. In Research Computing,
for example, we prefer that administrative access and monitor-
ing not compete with IPC and file system traffic.

Routing Policy Rules
Traditional IP routing systems route incoming packets based
solely on the the intended destination; but the Linux iproute2
stack supports route selection based on additional packet
metadata, including the packet source. Multiple discrete routing
tables, similar to the virtual routing and forwarding (VRF) sup-
port found in dedicated routing appliances [5], define contextual
routes, and a routing policy selects the appropriate routing table
dynamically based on a list of rules.

In the following example, there are three different routing
contexts to consider. The first of these—the “main” rout-
ing table—defines the routes to use when the server initiates
communication.

server # ip route list table main

10.225.144.0/24 via 10.225.176.1 dev ens224

default via 10.225.160.1 dev ens192

10.225.160.0/24 dev ens192 proto kernel scope link src

10.225.160.38

10.225.176.0/24 dev ens224 proto kernel scope link src

10.225.176.38

A separate routing table defines routes to use when respond-
ing to traffic on the “management” interface. Since this table is
concerned only with the default route’s interface in isolation, it
simply reiterates the default route.

server # ip route add default via 10.225.160.1 table 1

server # ip route list table 1

default via 10.225.160.1 dev ens192

Similarly, the last routing table defines routes to use when
responding to traffic on the “data” interface. This table defines a
different default route: all such traffic should route via the “data”
interface.

server # ip route add default via 10.225.176.1 table 2

server # ip route list table 2

default via 10.225.176.1 dev ens224

With these three routing tables defined, the last step is to define
routing policy to select the correct routing table based on the
packet to be routed. Responses from the “management” address
should use table 1, and responses from the “data” address should
use table 2. All other traffic, including server-initiated traffic
that has no outbound address assigned yet, uses the “main” table
automatically.

Figure 3: In a traditional routing configuration, the server would try to
respond to the client via its default route, even if the request arrived on its
data interface.

Figure 4: Routing policy allows the server to respond using its data
interface for any request that arrives on its data interface, even if it has a
different default route.

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 47

SYSADMIN
Improve Your Multi-Homed Servers with Policy Routing

support the aforementioned rule- configuration files. Red Hat
Enterprise Linux 6 introduced NetworkManager, a persistent
daemon with additional functionality; however, NetworkMan-
ager did not support rule- files until version 1.0, released as part
of RHEL 7.1 [6]. If you’re currently using NetworkManager, but
wish to define routing policy in rule- files, you’ll need to either
disable NetworkManager entirely or exempt specific interfaces
from NetworkManager by specifying NM_CONTROLLED=no in the
relevant ifcfg- files.

In a Debian-based distribution, these routes and rules can be
persisted using post-up directives in /etc/network/interfaces.

Further Improvements
We’re still in the process of deploying this policy-based routing
configuration in our Research Computing environment, and,
as we do, we discover more cases where previously complex
network requirements and special-cases are abstracted away
by this relatively uniform configuration. We’re simultaneously
evaluating other potential changes, including the possibility
of running a dynamic routing protocol (such as OSPF) on our
multi-homed hosts, or of configuring every network connec-
tion as a simultaneous default route for failover. In any case,
this experience has encouraged us to take a second look at our
network configuration to reevaluate what we had previously
thought were inherent limitations of the stack itself.

server # ip rule add from 10.225.160.38 table 1

server # ip rule add from 10.225.176.38 table 2

server # ip rule list

0: from all lookup local

32764: from 10.225.176.38 lookup 2

32765: from 10.225.160.38 lookup 1

32766: from all lookup main

32767: from all lookup default

With this routing policy in place, a single-homed client (or, in
fact, any client on the network) may communicate with both the
server’s “data” and “management” interfaces independently and
successfully and the bi-directional traffic routes consistently via
the appropriate network (see Figure 4).

Persisting the Configuration
This custom routing policy can be persisted in the Red Hat
“ifcfg” network configuration system by creating interface-
specific route- and rule- files.

cat /etc/sysconfig/network-scripts/route-ens192

default via 10.225.160.1 dev ens192

default via 10.225.160.1 dev ens192 table mgt

cat /etc/sysconfig/network-scripts/route-ens224

10.225.144.0/24 via 10.225.176.1 dev ens224

default via 10.225.176.1 dev ens224 table data

cat /etc/sysconfig/network-scripts/rule-ens192

from 10.225.160.38 table mgt

cat /etc/sysconfig/network-scripts/rule-ens224

from 10.225.176.38 table data

The symbolic names mgt and data used in these examples are
translated to routing table numbers as defined in the /etc/

iproute2/rt_tables file.

echo “1 mgt” >>/etc/iproute2/rt_tables

echo “2 data” >>/etc/iproute2/rt_tables

Once the configuration is in place, activate it by restarting the
network service (e.g., systemctl restart network). You may
also be able to achieve the same effect using ifdown and ifup on
individual interfaces.

Red Hat’s support for routing rule configuration has a confusing
regression that merits specific mention. Red Hat (and its deriva-
tives) has historically used a network init script and subscripts
to configure and manage network interfaces, and these scripts

References
[1] Iproute2: http://www.linuxfoundation.org/collaborate
/workgroups/networking/iproute2.

[2] Routing tables: http://linux-ip.net/html/routing-tables
.html.

[3] Policy-based routing: http://linux-ip.net/html/routing
-rpdb.html.

[4] rp-filter How To: http://tldp.org/HOWTO/Adv-Routing
-HOWTO/lartc.kernel.rpf.html.

[5] Virtual routing and forwarding: http://www.cisco.com/c
/en/us/td/docs/net_mgmt/active_network_abstraction/3-7
/reference/guide/ANARefGuide37/vrf.html.

[6] Red Hat on policy-based routing persistence: https://
access.redhat.com/solutions/288823.

http://www.usenix.org
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://linux-ip.net/html/routing-tables.html
http://linux-ip.net/html/routing-rpdb.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.kernel.rpf.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7/reference/guide/ANARefGuide37/vrf.html
https://access.redhat.com/solutions/288823
https://access.redhat.com/solutions/288823
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://linux-ip.net/html/routing-tables.html
http://linux-ip.net/html/routing-rpdb.html
http://tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.kernel.rpf.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7/reference/guide/ANARefGuide37/vrf.html
http://www.cisco.com/c/en/us/td/docs/net_mgmt/active_network_abstraction/3-7/reference/guide/ANARefGuide37/vrf.html

48  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SYSADMIN

MongoDB Database Administration
M I H A L I S T S O U K A L O S

MongoDB [1, 2] is a document-oriented NoSQL database that has
become quite popular. In this article, I will show you how to
 perform various administrative tasks, after setting up a dummy

collection that will be used as an example. You will learn how to create and
drop collections, use indexes, and convert a MongoDB database from using
the MMAPv1 storage engine to using WiredTiger. I will also talk about
mtools, which is a convenient set of Python scripts for processing MongoDB
log files.

Table 1 introduces you to the MongoDB terminology compared to the well-known Relational
Database terminology.

SQL Term MongoDB Term
Database Database

Table Collection

Index Index

Row BSON document

Column BSON field

Primary key _id field

Group Aggregation

Join Embedding and linking

For this article, I used MongoDB version 3.2.1 [3] running on Mac OS X; however, most of
the presented commands will also work on the older 2.6 version. MongoDB was installed on
Mac OS X using the Homebrew [5] package. You will most certainly find a ready-to-install
package for your operating system, but you can also get precompiled MongoDB binaries
from [4].

A bit of warning before continuing with the rest of the article. MongoDB neither monitors
disk space nor displays any warning messages related to disk space, so it is up to the system
administrator to deal with such issues. The only occasion where you will hear MongoDB
complaining about disk space is when there is no disk space left!

Basic DBA Commands
Most of the tasks presented in this article will be performed from the Mongo shell, which
starts by executing the mongo command. The name of the MongoDB server process is
 mongod. First, you should run the following JavaScript code from the MongoDB shell in order
to add some data on your database and have something to experiment with:

Mihalis Tsoukalos is a UNIX
System Administrator, a
programmer (UNIX and iOS),
a DBA, a mathematician, and a
technical writer. You can reach

him at http://www.mtsoukalos.eu/ and
@mactsouk. mactsouk@gmail.com

Table 1: MongoDB and RDBMS terminology

http://www.usenix.org
http://www.mtsoukalos.eu/
mailto:mactsouk@gmail.com

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 49

SYSADMIN
MongoDB Database Administration

> use login

switched to db login

> for (var i=3D0; i<100000; i++)

{ db.myData.insert({x:i, y:2*i}); }

WriteResult({ “nInserted” : 1 })

> db.myData.count();

100000

The first command switches to the “login” database—if the data-
base does not exist, it will be automatically created. It then uses
a JavaScript for loop so that it can insert 100,000 documents to
the myData collection, which will also be created if needed. The
last command shows how you can find out the total number of
records that exist in a collection.

As you can see, you do not have to specifically create a collection
or its fields (keys). If you try to insert a document to a collection
that does not exist, MongoDB will automatically create the
collection. Additionally, if you try to insert a document that has
a different set of keys to an existing collection, MongoDB will
create it without any complaints. This means that small typo-
graphical errors cannot be detected very easily.

If you wish to delete the entire “myData” collection and start with
an empty one, you should use the drop() method:

> db.myData.drop();

true

As saving data on a database takes disk space, it is good to know
how to delete an entire database. The following command deletes
the entire “login” database, including its data files:

> use login

switched to db login

> db.runCommand({ dropDatabase: 1 })

{ “dropped” : “login”, “ok” : 1 }

Should you wish to view the list of the available databases on the
MongoDB server you are connected to, you can execute the fol-
lowing command from the MongoDB shell:

> show databases

LXF 0.031GB

local 0.078GB

login 0.063GB

test 0.031GB

After you select a database, you can see its available collections
as follows:

> show tables

myData

system.indexes

The system.indexes collection contains information about
the indexes of a database. However, it should not be accessed
directly as if it was a regular collection but with the help of the
getIndexes() function.

You can manually start a MongoDB server process from the
 command line as follows:

$ mongod --fork --logpath a.log --smallfiles --oplogSize 50 --port

 27101 --dbpath w1 --replSet w --logappend

The --port parameter defines the port number that the MongoDB
server will listen to, the --dbpath value defines the folder that
will contain the database files, the value of the --logpath param-
eter shows the file that will hold the log messages, and the --fork
parameter tells the operating system that the process will run
in the background without a terminal. The --replset parameter
defines the name of the replica set and should only be included
when you want to define a replica set. The --logappend param-
eter tells the MongoDB process to append to the log file instead
of overwriting it.

By default, MongoDB does not require users to log in to connect
from the local machine, which means that anyone who has
access to a machine can do whatever she wants with the entire
 MongoDB server. In order to enable authorization you must use the
--auth when running mongod or use the security.authorization
setting in the configuration file of MongoDB.

Converting a Database from MMAPv1 to
WiredTiger
MongoDB currently supports two Storage Engines: MMAPv1
and WiredTiger [6]; the good thing is that all commands related
to database administration are the same regardless of the stor-
age engine used.

WiredTiger is an open source project that was built separately
from MongoDB and is also used by other databases. Apart from
the performance gains, its main advantage is that it supports
document-level locking, allowing you to lock only the document
you are currently processing instead of locking the entire collec-
tion your document belongs to. Starting with MongoDB version
3.2, WiredTiger is the default storage engine whereas previous
MongoDB versions used MMAPv1. This section will show you
how to convert a MongoDB database from the MMAPv1 to the
WiredTiger storage engine.

The data directory of a MongoDB database that uses WiredTiger
looks like the following:

http://www.usenix.org

50  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SYSADMIN
MongoDB Database Administration

$ ll data/

total 272

-rw-r--r-- 1 mtsouk staff 49 Feb 13 14:12 WiredTiger

-rw-r--r-- 1 mtsouk staff 21 Feb 13 14:12 WiredTiger.lock

-rw-r--r-- 1 mtsouk staff 918 Feb 13 14:14 WiredTiger.turtle

-rw-r--r-- 1 mtsouk staff 40960 Feb 13 14:14 WiredTiger.wt

-rw-r--r-- 1 mtsouk staff 4096 Feb 13 14:12 WiredTigerLAS.wt

-rw-r--r-- 1 mtsouk staff 16384 Feb 13 14:13 _mdb_catalog.wt

-rw-r--r-- 1 mtsouk staff 16384 Feb 13 14:13

 collection-0-7818407182795123090.wt

-rw-r--r-- 1 mtsouk staff 4096 Feb 13 14:21

 collection-2-7818407182795123090.wt

drwxr-xr-x 4 mtsouk staff 136 Feb 13 14:21 diagnostic.data

-rw-r--r-- 1 mtsouk staff 16384 Feb 13 14:13 index-1

-7818407182795123090.wt

-rw-r--r-- 1 mtsouk staff 4096 Feb 13 14:21 index-3

-7818407182795123090.wt

drwxr-xr-x 5 mtsouk staff 170 Feb 13 14:12 journal

-rw-r--r-- 1 mtsouk staff 5 Feb 13 14:12 mongod.lock

-rw-r--r-- 1 mtsouk staff 16384 Feb 13 14:14 sizeStorer.wt

-rw-r--r-- 1 mtsouk staff 95 Feb 13 14:12 storage.bson

The filenames in the data directory show whether you are using
WiredTiger or not. However, you can find the storage engine of
your MongoDB server from the shell by executing the following
command:

> db.serverStatus().storageEngine

{ “name” : “mmapv1”, “supportsCommittedReads” : false }

Alternatively, you can execute the following command, which
gives the same information in a different format:

> db.serverStatus().storageEngine.name

mmapv1

So the previous database uses MMAPv1. Using the same com-
mands on a database that uses WiredTiger produces the follow-
ing output:

> db.serverStatus().storageEngine

{ “name” : “wiredTiger”, “supportsCommittedReads” : true }

> db.serverStatus().storageEngine.name

wiredTiger

Executing the “db.serverStatus().wiredTiger” command on a
database that uses WiredTiger produces a large amount of out-
put with information about various WiredTiger parameters and
useful statistics, including buffer sizes, number of update, insert,
remove, search calls, cache data, connection data, etc.

Converting a MongoDB 3.0.x or newer database that uses
MMAPv1 to one using WiredTiger is a relatively easy process.
You will first need to back up your data, delete existing data files,
change the configuration file of MongoDB in order to make it

use WiredTiger, and then import your backup data to MongoDB.
Starting MongoDB with an empty data directory makes MongoDB
generate all necessary files, which makes our job much easier.
For Mac OS X, the required steps and commands are the following:

$ mongo

MongoDB shell version: 3.2.1

connecting to: test

> db.serverStatus().storageEngine.name

mmapv1

> use login

switched to db login

> db.myData.count()

100000

<Control-C>

$ mongodump -d login -c myData

2016-02-13T18:40:00.114+0200 writing login.myData to

2016-02-13T18:40:00.367+0200 done dumping login.myData

(100000 documents)

$ launchctl unload ~/Library/LaunchAgents/homebrew.mxcl.

 mongodb.plist

$ rm -rf /usr/local/var/mongodb

$ mkdir /usr/local/var/mongodb

$ cp /usr/local/etc/mongod.conf{,.old}

$ vi /usr/local/etc/mongod.conf

$ diff /usr/local/etc/mongod.conf /usr/local/etc/mongod.conf.old

7d6

< engine: “wiredTiger”

$ launchctl load ~/Library/LaunchAgents/homebrew.mxcl.

 mongodb.plist

$ mongorestore

$ mongo

MongoDB shell version: 3.2.1

connecting to: test

> db.serverStatus().storageEngine.name

wiredTiger

> use login

switched to db login

> db.myData.count()

100000

The two count() commands verify that all documents have
been successfully imported. As you can understand from the
output of the diff command, you just need to add a single
line in the MongoDB configuration file to make MongoDB
use WiredTiger. The mongodump command creates a direc-
tory named “dump” inside the current directory. If you execute
the mongorestore command from the same directory you ran
 mongodump, then mongorestore will automatically find and use
the “dump” directory.

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 51

SYSADMIN
MongoDB Database Administration

About Log Files
The default location of the log files of a HomeBrew [5] MongoDB
installation on a Mac OS X system as defined in the /usr/local

/etc/mongod.conf file is /usr/local/var/log/mongodb/mongo.

log. Data files are kept inside /usr/local/var/mongodb. If
you choose not to use mongod.conf, you will have to define
all required parameters from the command line. On a usual
Linux installation, you can find mongodb.conf inside /etc, and
mongodb.log inside /var/log/mongodb, whereas the data direc-
tory is usually located at /var/lib/mongodb/.

If you try to start a MongoDB server without a proper log file
directory, you are going to get the following error message:

2015-11-29T12:01:54.349+0200 F CONTROL Failed global

initialization:

FileNotOpen Failed to open “/Users/mtsouk/Downloads/./aPath

/a.log”

You are also going to a get a similar error message if the data
directory is missing:

2015-11-29T12:02:42.547+0200 I STORAGE [initandlisten]

exception in

initAndListen: 29 Data directory ./myData not found.,

terminating

2015-11-29T12:02:42.548+0200 I CONTROL [initandlisten]

dbexit: rc: 100

Dropping an entire database and deleting its data files produces
the following kind of log messages:

2016-02-13T11:04:29.593+0200 I COMMAND [conn25]

dropDatabase

green starting

2016-02-13T11:04:29.714+0200 I JOURNAL [conn25]

journalCleanup...

2016-02-13T11:04:29.714+0200 I JOURNAL [conn25]

removeJournalFiles

2016-02-13T11:04:29.718+0200 I JOURNAL [conn25]

journalCleanup...

2016-02-13T11:04:29.718+0200 I JOURNAL [conn25]

removeJournalFiles

2016-02-13T11:04:29.720+0200 I COMMAND [conn25]

dropDatabase

green finished

2016-02-13T11:04:29.720+0200 I COMMAND [conn25] command

green

command: dropDatabase { dropDatabase: 1.0 } keyUpdates:0

writeConflicts:0 numYields:0 reslen:41 locks:{ Global:

{ acquireCount:

{ r: 2, w: 1, W: 1 } }, MMAPV1Journal: { acquireCount: { w: 4 } },

Database: { acquireCount: { W: 1 } } } protocol:op_command 126ms

Therefore, a command like the following would show the data-
bases that were dropped from your MongoDB installation:

$ grep -w dropDatabase /usr/local/var/log/mongodb/mongo.log |

grep -w finished | awk {‘print $6’}

Looking at log files is an important task of a DBA, so the next
section presents mtools, a set of Python scripts that deal with
MongoDB log files.

The mtools Set of Scripts
mtools [7] is a set of Python scripts that can help you parse,
filter, and visualize MongoDB log files. The mtools set includes
 mloginfo, mlogfilter, mplotqueries, mlogvis, mgenerate, and
mlaunch. Please note that at the moment, mtools is not compat-
ible with Python 3. The mloginfo script displays information
about the data of a log file in a format similar to the following:

$ mloginfo /usr/local/var/log/mongodb/mongo.log

source: /usr/local/var/log/mongodb/mongo.log

host: iMac.local:27017

start: 2015 Sep 12 19:21:04.358

end: 2016 Feb 14 23:10:16.192

 date format: iso8601-local

length: 5118

binary: mongod

version: 3.0.6 -> 3.0.7 -> 3.2.0 -> 3.2.1

storage: wiredTiger

As you can see, mloginfo shows the MongoDB versions that
generated the log messages as well as the storage engine and the
time period of the log entries.

The mlogfilter script is a log file parser that can be used for
extracting information out of busy MongoDB log files. Think
of it as an advanced grep utility for MongoDB log files. The
mlaunch script lets you create MongoDB test environments on
your local machine quickly. The mplotqueries script is used for
visualizing MongoDB log files. The mlogvis script is similar to
the mplot queries script, but instead of creating a graphics file, its
output is an interactive HTML page on a Web browser. Last, the
mgenerate script produces pseudo-random data for populating
 MongoDB databases with sample data.

The first thing you should learn is about the installation of the
mtools package, which can be done as follows:

$ pip install mtools

...

Successfully built mtools psutil

Installing collected packages: psutil, mtools

Successfully installed mtools-1.1.9 psutil-3.4.2

http://www.usenix.org

52  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SYSADMIN
MongoDB Database Administration

For ease of installation, it is recommended that you use the pip
utility to install mtools when possible; otherwise visit the mtools
installation page [8] for more information.

Now that you have installed mtools, it is time to use mplotqueries
to get information from a MongoDB log file and plot it on screen.
All you have to do is execute the following command:

$ mplotqueries /usr/local/var/log/mongodb/mongo.log

 --output-file login.png

The mplotqueries tool reads the specified log file and summa-
rizes the information based on the name of the collection used. It
then prints the duration of each operation on a timeline. Figure
1 shows the output mplotqueries produced using the MongoDB
log file found on my Mac. As you can see, most operations ran
almost instantly. This is a very handy way of overseeing your
MongoDB data that can also run as a cron job. If you do not use
the --output-file option, an interactive output is automatically
going to be displayed on your screen.

Figure 2 shows the interactive output generated by mlogvis on
the same log file as before.

Generally speaking, both mlogvis and mplotqueries are very
handy for detecting outliers. If you think certain operations
on a collection are running slow for some reason, you can use
 mlogfilter to look into them:

$ mlogfilter /usr/local/var/log/mongodb/mongo.log --word login

The previous command returns log entries that contain the
“login” keyword. One of them is the following:

015-11-29T15:33:11.226+0200 I COMMAND [conn46] command

login.$cmd

command: insert { insert: “myData”, documents: [{ _id:

ObjectId(‘565afe9781f59f422de5bd05’), x: 0.0, y: 0.0 }], ordered:

true } keyUpdates:0 writeConflicts:0 numYields:0 reslen:40 locks:{

Global: { acquireCount: { r: 2, w: 2 } }, MMAPV1Journal: {

Figure 1: The output of the mplotqueries Python script on a log file from my local MongoDB server

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 53

SYSADMIN
MongoDB Database Administration

acquireCount: { w: 8 }, acquireWaitCount: { w: 1 },

timeAcquiringMicros: { w: 2058 } },

Database: { acquireCount:

{ w: 1, W: 1 } }, Collection: { acquireCount:

{ W: 1 } },

Metadata: { acquireCount: { W: 4 } } }

199ms

What the previous log entry says is that it took MongoDB 199 ms
to execute an insert operation in the “myData” collection of the
“login” database. If you want to speed up an insert operation, you
might need to upgrade your hardware; however, if such opera-
tions do not happen very often, you should not be concerned.

If you want to find out all possible options for each tool, you can
execute it with the --help option. I think that the mtools set of
Python scripts is a useful tool to add to your arsenal.

Indexes
Analyzing a query is a very good way to find out why a query runs
slow as well as how your query is executed. This can happen with
the help of the explain() method. The interesting part from the
explain(“executionStats”) command that displays how a query
is executed is the following:

> db.myData.find({ “x”: { $gt: 99990}

}).explain(“executionStats”)

...

“executionStats” : {

“executionSuccess” : true,

“nReturned” : 9,

“executionTimeMillis” : 46,

“totalKeysExamined” : 0,

“totalDocsExamined” : 100000,

“executionStages” : {

“stage” : “COLLSCAN”,

“filter” : {

“x” : {

“$gt” : 99990

}

},

“nReturned” : 9,

“executionTimeMillisEstimate” : 0,

...

“docsExamined” : 100000

...

Figure 2: The output of the mlogvis Python script on a log file from my local MongoDB server

http://www.usenix.org

54  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

SYSADMIN
MongoDB Database Administration

The explain command shows that the execution plan chosen
does a full collection scan (COLLSCAN)—in other words, it
searches all documents in the requested collection, which
is not very efficient. As you can see from the values of both
 “totalDocsExamined” and “docsExamined,” 100,000 documents
were accessed in order to return nine documents, as indicated by
the value of “nReturned”.

This time I will define an index and then execute the previous
query and show a part of its execution plan. Please note that as of
MongoDB 3.0, the ensureIndex() command that used to create
an index is deprecated; you should use createIndex() instead.
The index for the “x” key will be created as follows:

> db.myData.createIndex({“x”:1})

{

“createdCollectionAutomatically” : false,

“numIndexesBefore” : 1,

“numIndexesAfter” : 2,

“ok” : 1

}

You can verify that the index you just created is there with the
help of the getIndexes() function that reads the system.indexes
collection:

> db.myData.getIndexes()

[

{

“v” : 1,

“key” : {

“_id” : 1

},

“name” : “_id_”,

“ns” : “login.myData”

},

{

“v” : 1,

“key” : {

“x” : 1

},

“name” : “x_1”,

“ns” : “login.myData”

}

]

As you can see, the index for the “x” key is named “x_1”. Please
note that MongoDB automatically creates an index for the _id
field for every collection.

By executing exactly the same explain() command, you can
verify the usefulness of the index. The interesting part of the
output is the following:

...

“executionStats” : {

“executionSuccess” : true,

“nReturned” : 9,

“executionTimeMillis” : 1,

“totalKeysExamined” : 9,

“totalDocsExamined” : 9,

...

“inputStage” : {

“stage” : “IXSCAN”,

“nReturned” : 9,

“executionTimeMillisEstimate” : 0,

...

This query returned the results by scanning the index keys
(IXSCAN); therefore, it is significantly faster than the previous
query. As you can also see, the select query accessed only nine
documents this time, as indicated by the value of “totalDocs

Examined” in order to return nine documents, which is perfect!

Summary
This article is far from complete as no single article can cover all
aspects of MongoDB administration. For example, Replication
and Sharding were not covered at all. However, the commands and
knowledge presented will help you start working effectively with a
MongoDB database and perform many administrative tasks.

References
[1] MongoDB site: https://www.mongodb.org/.

[2] Kristina Chodorow, MongoDB: The Definitive Guide, 2nd
edition (O’Reilly Media, 2013).

[3] Kyle Banker, Peter Bakkum, Shaun Verch, Douglas Garrett
and Tim Hawkins, MongoDB in Action, 2nd edition (Manning
Publications, 2016).

[4] Download MongoDB: https://www.mongodb.org
/downloads.

[5] HomeBrew: http://brew.sh/.

[6] WiredTiger: http://www.wiredtiger.com/.

[7] mtools: https://github.com/rueckstiess/mtools.

[8] mtools installation: https://github.com/rueckstiess/mtools
/blob/master/INSTALL.md.

http://www.usenix.org
https://www.mongodb.org/
https://www.mongodb.org/downloads
http://brew.sh/
http://www.wiredtiger.com/
https://github.com/rueckstiess/mtools
https://github.com/rueckstiess/mtools/blob/master/INSTALL.md
https://www.mongodb.org/downloads
https://github.com/rueckstiess/mtools/blob/master/INSTALL.md

16 12th USENIX Symposium
on Operating Systems Design
and Implementation

November 2–4, 2016 • Savannah, GA

Join us in Savannah, GA, November 2–4, 2016, for the 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI ’16). The Symposium brings together professionals

from academic and industrial backgrounds in what has become a premier forum for discussing

the design, implementation, and implications of systems software.

Co-located with OSDI ’16 on Tuesday, November 1:

• Diversity ’16: 2016 Workshop on Supporting Diversity in Systems Research

• INFLOW ’16: 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads

Save the Date!

www.usenix.org/osdi16

The full program and registration will be available in August.

http://www.usenix.org/osdi16

56  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

HISTORYLinux at 25
P E T E R H . S A L U S

Peter H. Salus is the author of A
Quarter Century of UNIX (1994),
Casting the Net (1995), and The
Daemon, the Gnu and the Penguin
(2008). peter@pedant.com

In June 1991, at the USENIX conference in Nashville, BSD NET-2 was
announced. Two months later, on August 25, Linus Torvalds announced
his new operating system on comp.os.minix. Today, Android, Google’s

version of Linux, is used on over two billion smartphones and other appli-
ances. In this article, I provide some history about the early years of Linux.

Linus was born into the Swedish minority of Finland (about 5% of the five million Finns).
He was a “math guy” throughout his schooling. Early on, he “inherited” a Commodore VIC-
20 (released in June 1980) from his grandfather; in 1987 he spent his savings on a Sinclair
QL (released in January 1984, the “Quantum Leap,” with a Motorola 68008 running at 7.5
MHz and 128 kB of RAM, was intended for small businesses and the serious hobbyist). It ran
Q-DOS, and it was what got Linus involved:

One of the things I hated about the QL was that it had a read-only operating system.
You couldn’t change things ...

I bought a new assembler ... and an editor.... Both ... worked fine, but they were on
the microdrives and couldn’t be put on the EEPROM. So I wrote my own editor and
assembler and used them for all my programming. Both were written in assembly
language, which is incredibly stupid by today’s standards. [1]

But look for a moment at Linus’ posting of August 25, 1991: comp.os.minix:

I’m doing a (free) operating system (just a hobby, won’t be big and professional like
gnu) for 386(486) AT clones. This has been brewing since april, and is starting
to get ready. I’d like any feedback on things people like/dislike in minix, as my OS
resembles it somewhat (same physical layout of the file-system (due to practical
reasons) among other things).

Linus had ported bash (1.08) and gcc (1.40). More would come. In the fall of 1990, the Uni-
versity of Helsinki had installed its first UNIX machine, a MicroVAX running Ultrix. But
Linus was “eager to work with Unix by experimenting with what I was learning in Andrew
Tanenbaum’s book” ([1], p. 53) and read all 700-odd pages of Operating Systems [Prentice-
Hall, 1987]. The book “lived on my bed.” Operating Systems came with the code for Minix,
Tanenbaum’s UNIX clone.

One of the things that struck Linus about UNIX was its openness. Another was its simplic-
ity. And then came a bolt from the blue: in early 1991, Lars Wirzenius dragged Linus to the
Polytechnic University of Helsinki to hear Richard Stallman. “I don’t remember much about
the talk,” Linus says. “But I guess something from his speech must have sunk in. After all, I
later ended up using the GPL for Linux.”

On January 5, 1991, Linus got his father to drive to a “mom and pop” computer store, where
he had ordered a no-name 4-Meg, 33 MHz, 386 box. He was 21. The box came with DOS, but
Linus wanted Minix and ordered it. It took a month for the parcel to find its way to Finland,
but it arrived and Linus fed the 16 diskettes to the machine. And then he began “playing”
with it. The first thing he wrote was a terminal emulator: “That’s how Linux got started.
With my test programs turning into a terminal emulator.”

http://www.usenix.org
mailto:peter@pedant.com

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 57

HISTORY
Linux at 25

Because Linus was truly dependent upon the Internet and (spe-
cifically) the comp.os.minix newsgroup, we can date events far
more accurately than in earlier decades.

We know that Linus’ first posting to comp.os.minix, asking
about the POSIX standard, was July 3, 1991. And we can see
his posting about “doing a (free) operating system (just a hobby,
won’t be big and professional like gnu) ... This has been brewing
since april ...” of August 25, 1991.

There was a reasonable expression of interest. We thus know
that Linus put what we would now call Linux 0.01 up on the Uni-
versity of Helsinki ftp site on September 17, 1991. “No more than
one or two people ever checked it out,” he said.

The following January there was discernible growth in the
Linux community, leading (I think) to the online debate about
kernels begun by Andy Tanenbaum on January 29, 1992.
Although I don’t want to go into detail, the debate began with
Andy stating that microkernels were better than monolithic
kernels, and that Linux was therefore already obsolete.

It is more important, in my opinion, that in the spring of 1992,
Orest Zborowski ported X-windows to Linux and that, thanks
to the Internet and to Usenet, the work of a hobbyist in Finland
could be picked up elsewhere in Europe, in Australia, and in the
US.

Also in 1992, Rémy Card wrote the extended file system for
Linux, the first to use the virtual file system, modeled after the
one in BSD. Later, Card went on to write ext2, which moved fur-
ther away from the limitations of the Minix file system and was
more like the BSD fast file system.

The number of Linux users continued to grow, as did the versions
of the software: Linux .01 was 63 KB compressed. Only a few
weeks later, on October 5, Linus posted .02; on December 19, v.11
was posted; and on January 5, 1992, v.12—108 KB compressed—
appeared. On March 7, there was v.95 and on May 25, 1992, v.96
showed up, with support for X and taking up 174 KB compressed.

Ted Ts’o was the first North American Linux user. “There was
fairly strong social cohesion,” he told me. “Linux was the first big
project to succeed in a distributed fashion.”

The Birth of Distros
Following Linus’ postings of 1991, there soon were what we have
come to call “distributions.” And, rather than utilizing ftp, they
came on CD-ROM.

The first of these was Adam Richter’s Yggdrasil. In the Old
Norse Edda, Yggdrasil is the “world ash,” from a branch of which
Odin/Wotan made his spear. Yggdrasil alpha was released on
December 8, 1992, and was called LGX: Linux/GNU/X—the
three components of the system.

John Gilmore, Michael Tiemann, and David Henkel-Wallace
formed Cygnus in 1989. Richter spoke to Michael Tiemann about
setting up a business but was “definitely uninterested in joining
forces with Cygnus.”

Yggdrasil beta was released the next year. Richter’s press release
read:

The Yggdrasil beta release is the first UNIX(R)
clone to include multimedia facilities as part of its
base configuration. The beta release also includes
X-windows, networking ... an easy installation
mechanism, and the ability to run directly from the
CD-ROM.

The beta was priced at $50; the production release was $99.

SuSE was also formed in 1992 as a consulting group. SuSE was
originally S.u.S.E.—”Software-und-System-Entwicklung,” or
Software and System Development—but did not release a Linux
distribution for several years. The next distribution—and the
oldest still in existence—was Patrick Volkerding’s Slackware,
released July 16, 1993, soon after he graduated from Minne-
sota State University Moorhead. Slackware, in turn, was the
basis for SuSE’s release “Linux 1.0” of SLS/Slackware in 1994.
SLS was “Softlanding Linux System,” Peter MacDonald’s 1992
distribution, on which parts of Slackware were based. SuSE later
integrated Florian La Roche’s Jurix distribution, resulting in a
unique distribution: SuSE 4.2 (1996).

The next year, Mark Bolzern was trying to sell a UNIX database
from Multisoft, a German company. He encountered difficulties
because it was relatively expensive to set up the UNIX system.
Then he came across Gnu/Linux and realized that he now had
a real solution. He convinced Multisoft to port Flagship (the db)
to Linux, and “that was the first commercial product released on
Linux,” Bolzern said.

“People were always having trouble installing Linux,” he contin-
ued, “and then Flagship wouldn’t run right because something
had changed.” Bolzern decided that what was needed was a
release that wouldn’t change for a year, so he “picked a specific
distribution of Slackware” and “the name Linux Pro.” Soon he
was selling more Linux than Flagship: “we’re talking hundreds
per month.”

And when Red Hat came out, Bolzern picked that up.

Marc Ewing had set up Red Hat in 1993. He said: “I started Red
Hat to produce a development tool I thought the world needed.
Linux was just becoming available and I used [it] as my develop-
ment platform. However, I soon found that I was spending more
time managing my Linux box than I was developing my software,
and I concluded that what the world really needed was a good
Linux distribution.”

http://www.usenix.org

58  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

HISTORY
Linux at 25

In 1993, Bob Young was working for Vernon Computer Rentals.
He told me: “I knew the writing was on the wall for my future
with that company [VCR].” He continued:

Red Hat the company was legally incorporated in
March of 1993 in Connecticut under the name ACC
Corp., Inc. It changed its name to Red Hat Software,
Inc. in early 1996, and changed its name a last time to
simply Red Hat, Inc. just before going public in June of
1999.

ACC Corp., Inc. bought the assets, including all
copyrights and trademarks (none were registered at
the time) relating to Marc Ewing’s sole proprietorship
business venture, in January 1993. Marc’s Red Hat
project was not incorporated but was run out of Marc’s
personal checking account. Marc received shares in ACC
Corp, Inc. in return for the Red Hat name and assets.

In 1995 Red Hat packaged Linux, some utilities, and initial sup-
port for $50. Also in 1995, Bryan Sparks (with funding from Ray
Noorda, former CEO of Novell) founded Caldera, and the Apache
Software Foundation released Apache, which would become the
most widespread Web server. But Red Hat soon became the most
popular Linux release. This was unexpected: Linus had said that
he expected Caldera to be the top supplier, because it was “kind
of a step beyond” in that it was targeting the office market. “I
think what’s interesting about Caldera is they based their stuff
on Red Hat and then they added a commercial kind of approach.”

When Red Hat became a “success,” Bob Young and family moved
from Connecticut to North Carolina (Ewing lived in Durham).

ACC, Young’s company, had sold Linux/UNIX software and
books. Young had been introduced to the UNIX world in 1988,
when he was with Vernon Leasing and Rentals, and began pub-
lishing New York UNIX as well as catalog sales. This led to his
being the founding editor of Linux Journal, a post he held for two
issues in 1994, before “splitting the losses” with Phil Hughes, the
publisher of LJ.

On November 5, 1993, Linus spoke at the NLUUG (Netherlands
UNIX Users’ Group).

On March 12, 1994, Linus released Linux 1.0, basically v0.99,
patch level 157. It was the first stable kernel distribution.

I don’t want to go into extensive detail here, but I think that there
are a number of important points to be made:

1. The birth, growth, and development of Linux were totally
unorganized.

2. It was geographically well-distributed.

3. It was conducted via the Internet.

In the summer of 1995, I was approached by Lisa Bloch, then
the Executive Director of the Free Software Foundation (FSF),
as to the feasibility of a conference on “Freely Redistributable
Software.” I was enthusiastic but had my qualms about profit-
ability. Richard Stallman, at our meeting, was quite understand-
ing: FSF would bankroll the affair, but he hoped we could turn a
small profit.

Lisa and I put together a committee (Bob Chassell, Chris Deme-
triou, John Gilmore, Kirk McKusick, Rich Morin, Eric Raymond,
and Vernor Vinge) and we posted a Call for Papers on several
newsgroups.

Thanks to “Maddog” (Jon Hall), Linus agreed to be a keynote
speaker, and Stallman was the other. We had a day of tutorials
and two days of papers (February 3–5, 1996, at the Cambridge
Center Marriott). Half a dozen distributions were represented,
and everything ran smoothly. By the end, I was a nervous wreck,
and the FSF ended up making a tiny profit.

Debian Linux was created by Ian Murdock (Debian = Debbie +
Ian), who officially founded the “Project” on August 16, 1993.
From November 1994 to November 1995, the Debian Project was
sponsored by the FSF.

In November 1995, Infomagic released an experimental version
of Debian which was only partially in ELF format as “Debian
1.0.” On December 11, Debian and Infomagic jointly announced
that this release “was screwed.” Bruce Perens, who had suc-
ceeded Murdock as “leader,” said that the data placed on the
5-CD set would most likely not even boot.

The real result was that the “real” release, Buzz, was 1.1 (June
17, 1996), with 474 packages. Bruce was employed by Pixar and
so all Debian releases are named after characters in Toy Story
(1995):

◆◆ 1.2 Rex, December 12, 1996 (848 packages)

◆◆ 1.3 Bo, June 5, 1997 (974 packages)

◆◆ 2.0 Hamm, July 24, 1998 (“over 1500 packages”)

◆◆ 2.1 Slink, March 9, 1999 (“about 2250 packages”)

◆◆ 2.2 Potato, August 15, 2000 (“more than 3900 binary packages”)

◆◆ 3.0 Woody, July 19, 2002 (8500 binary packages)

◆◆ 3.1 Sarge, June 6, 2005 (15,400 packages)

◆◆ 4.0 Etch (obsolete)

◆◆ 5.0 Lenny (obsolete)

◆◆ 6.0 Squeeze (obsolete)

◆◆ 7 Wheezy (obsolete)

◆◆ 8 Jessie (current stable release)

◆◆ 9 Stretch

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 59

HISTORY
Linux at 25

Buzz fit on one CD, Slink went to two, and Sarge is on 14 CDs
in the official set. It was released fully translated into over 30
languages and contains a new debian-installer. Slink had also
introduced ports to the Alpha and Sparc. In 1999, Debian also
began a Hurd port.

Although Debian carried the burden of being tough to install for
several years, Sarge changed that. The new installer with auto-
matic hardware detection was quite remarkable. That’s why I’ve
reduced the detail over the next decade.

At this point, I’d like to introduce Mandrake, a Linux distribu-
tion based on Red Hat 5.1 and KDE. KDE was a joke on CDE
(Common Desktop Environment), begun by Matthias Estrich
in Tuebingen in 1996. Mandrake was created by Gael Duval, a
graduate of Caen University, in July 1998. From 1998 to early
2004, Mandrake was reasonably successful, notable for its high
degree of internationalization as well as for the variety of chips
it would run on. However, in February 2004 Mandrakesoft lost
a suit filed by the Hearst Syndicate, which claimed invasion of
their trademarked “Mandrake the Magician.” Starting with 10.0,
there was a minor name change. Then, in April 2005, Mandrake-
soft announced that there was a merger with Conectiva and that
the new name would be Mandriva.

Joseph Cheek founded Redmond Linux in 2000. In 2001 it
merged with DeepLinux. In January 2002, the company was
renamed Lycoris, and its Desktop/LX was based on Cal-
dera’s Workstation 3.1. In June 2005, Lycoris was acquired by
Mandriva.

It might be a full-time job to track all the distributions and their
origins. For instance, Kanotix is a Debian derivative. It is also a
Knoppix derivative, as it is a live CD, and it is solid as a rock.

Knoppix was created by Klaus Knopper, a freelance IT/Linux
consultant. It has achieved popularity because it is easily run
from the CD, without installation, and because it can be readily
employed to fix corrupted file systems, etc. It was the first Linux
on a live CD.

The last time I attempted a tally of Linux distributions, about ten
years ago, there were well over 100; over a dozen might be consid-
ered popular. But then the world changed. Android lurched onto
the scene. Initially developed by Android, Inc., which Google
bought in 2005, Android was unveiled in 2007.

Just look how far that (free) operating system has come:

◆◆ 2013: Android claims 75% of the smartphone market share, in
terms of the number of phones shipped (a total of 1.859 billion
in 2015).

◆◆ 2014: Ubuntu claims 22 million users.

◆◆ 2015: Version 4.0 of the Linux kernel is released.

Statista projects 2.8 billion smartphone users worldwide in 2016.
Over 2 billion of them employ Android.

Happy 25th birthday, Linux, and thank you, Linus!

Further details of the birth and development of Linux may be
found in my book The Daemon, the Gnu, and the Penguin (Reed
Media Services, 2008).

Reference
[1] L. Torvalds, Just for Fun (HarperCollins, 2001), pp. 45, 53.

;login: 2016
Publishing Schedule

Issue Article Drafts Due Final Articles Due Columns Due Proofs to Authors Issue Mailing Date

Fall June 6 June 13 June 27 August 1 September 1

Winter September 6 September 13 September 20 October 24 November 26

 ;login: has changed from a bimonthly to a quarterly schedule, with
four issues per year. Below is the publishing schedule for the rest of 2016.

http://www.usenix.org

60  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Most of the Python code that I write isn’t part of an exotic frame-

work or huge application. Instead, it’s usually related to a mun-
dane data analysis task involving a CSV file. It isn’t glamorous,

but Python is an effective tool at getting the job done without too much
fuss. When working on such problems, I prefer to not worry too much about
low-level details (I just want the final answer). However, if you use Python
for manipulating a lot of data, you may find that your scripts use a large
amount of memory. In this article, I’m going to peek under the covers of how
memory gets used in a Python program and explore options for using it more
efficiently. I’ll also look at some techniques for exploring and measuring the
memory use of your programs. Disclosure: Python 3 is assumed for all of the
examples, but the underlying principles apply equally to Python 2.

Reading a Large CSV File
My Chicago office is located along a major bus route, the trusty #22 that will take me down
the road to Wrigley Field if I want to avoid work during the summer. It tends to be a pretty
busy route, but just how busy? Chicago, being a data-friendly city, has historical bus ridership
data posted online [1]. You can download it as a CSV file. If you do, you’ll get a 13.8 MB file
with 676,476 lines of data that give you the ridership of every bus route in the city on every
day of the year going back to the year 2001. It looks like this:

route,date,daytype,rides

3,01/01/2001,U,7354

4,01/01/2001,U,9288

6,01/01/2001,U,6048

8,01/01/2001,U,6309

9,01/01/2001,U,11207

...

By modern standards, a 13.8 MB CSV file isn’t so large. Thus, I’m inclined to grab it using
Python’s csv module. Problem solved:

>>> import csv

>>> with open(‘cta.csv’) as f:

... rows = list(csv.DictReader(f))

...

>>> len(rows)

676476

>>> rows[0]

{‘date’: ‘01/01/2001’, ‘route’: ‘3’, ‘rides’: ‘7354’, ‘daytype’: ‘U’}

>>>

Now let’s tabulate the ridership totals across all of the bus routes using the collections
module:

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com /
ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Precious Memory
D A V I D B E A Z L E Y

http://www.usenix.org
http://www.swig.org
http://www.dabeaz.com/ply/
http://www.dabeaz.com/ply/
mailto:dave@dabeaz.com

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 61

COLUMNS
Precious Memory

>>> from collections import Counter

>>> ride_counts = Counter()

>>> for row in rows:

... ride_counts[row[‘route’]] += int(row[‘rides’])

...

>>> ride_counts[‘22’]

104039097

>>>

While we’re at it, why don’t we find out the five most common
bus routes.

>>> ride_counts.most_common(5)

[(‘79’, 153736884), (‘9’, 138645554), (‘49’, 113908939),

 (‘4’, 111154851), (‘66’, 110746972)]

>>>

Great. Before you quit, however, go look at the memory use of the
Python interpreter in your system process viewer—you’ll find
that it’s using nearly 300 MB of RAM (maybe more). Yikes! For a
13.8 MB input file, that sure seems like a lot—almost as much as
some of the minimally useful apps on my phone. The horror.

Measuring Memory Use
Measuring the memory use of a Python program in a portable
way was not an entirely easy task until somewhat recently. Yes,
you could always go view the Python process in the system task
viewer, but there were no standard library modules to help you
out. This changed somewhat in Python 2.6 with the addition of
the sys.getsizeof() function. It lets you determine the size in
bytes of individual objects. For example:

>>> import sys

>>> a = 42

>>> sys.getsizeof(a)

28

>>> b = ‘hello world’

>>> sys.getsizeof(b)

60

>>>

Unfortunately, the usefulness of sys.getsizeof() is a bit limited.
For containers such as lists and dicts, it only reports the size of
the container itself, not the cumulative sizes of the items con-
tained inside. It’s subtle, but you can see this yourself if you look
carefully at this example where the combined size of two items
in a list is smaller than the reported size of the list itself:

>>> a = ‘hello’

>>> b = ‘world’

>>> items = [a, b]

>>> sys.getsizeof(a)

54

>>> sys.getsizeof(b)

54

>>> sys.getsizeof(items) # Notice size is less than combined

 # a, b size

80

>>>

Containers also present complications in determining an
accurate use. For example, the same object might appear more
than once such as in a list of [a, a, b, b]. Also, Python tends to
aggressively share immutable values under the covers. So it’s
not a simple case where you can just add up the byte totals for all
of the items in a container and get an accurate figure. Instead
you’d need to gather information on all unique objects using their
object IDs like this:

>>> items = [a, a, b, b]

>>> unique_items = { id(item): sys.getsizeof(item) for item

 in items }

>>> total_size = sys.getsizeof(items) + sum(unique_items.

 values())

204

>>>

If you had deeply nested data structures, you’d have to take
further steps to recursively traverse the entire data structure.
Needless to say, it gets ugly. Just to illustrate, here’s how you
would measure the memory usage of the list holding all of that
bus data.

>>> unique_objects = { id(rows): rows }

>>> unique_objects.update((id(row), row) for row in rows)

>>> unique_objects.update((id(val), val) for row in rows for

 val in row.values())

>>> sum(sys.getsizeof(val) for val in unique_objects.values())

308977196

>>>

Starting in Python 3.4, you can obtain global memory statistics
using the tracemalloc module [2]. This module allows you to
selectively monitor the memory use of Python and have it record
memory allocations. It’s not so useful for small measurements,
but you can use it in a script:

import tracemalloc

import csv

def read_data(filename):

 with open(filename) as f:

 return list(csv.DictReader(f))

tracemalloc.start()

rows = read_data(‘cta.csv’)

print(len(rows), ‘Rows’)

print(‘Current: %d, Peak %d’ % tracemalloc.get_traced_memory())

http://www.usenix.org

62  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Precious Memory

If I run this on my machine with Python 3.5, I get the following
output:

676476 Rows

Current: 308979047, Peak 309009543

The reported memory use is ever so slightly higher than what
was calculated directly with sys.getsizeof(), but basically the
two figures agree.

Exploring Common Data Structure Choices
Given the large memory footprint associated with reading this
file, you might consider other choices for representing a simple
record, such as a list, tuple, or class instance. Here are several
different functions that read the data in different forms:

import csv

def read_data_as_dicts(filename):

 with open(filename) as f:

 return list(csv.DictReader(f))

def read_data_as_lists(filename):

 with open(filename) as f:

 rows = csv.reader(f)

 headers = next(rows)

 return list(rows)

def read_data_as_tuples(filename):

 with open(filename) as f:

 rows = csv.reader(f)

 headers = next(rows)

 return [tuple(row) for row in rows]

class RideData(object):

 def __init__(self, route, date, daytype, rides):

 self.route = route

 self.date = date

 self.daytype = daytype

 self.rides = rides

def read_data_as_instances(filename):

 with open(filename) as f:

 rows = csv.reader(f)

 headers = next(rows)

 return [RideData(*row) for row in rows]

If you run and measure these different functions using
 tracemalloc, you will get memory use as follows:

Record Type Memory Use (MB)
Dict 294.7
List 170.8
Tuple 160.1
Instance 268.5

In these results, you find that tuples provide the most efficient
storage. This shouldn’t be a surprise, but there are still some
subtle aspects to the results. For example, what explains the 10
MB gap between tuples and lists? On the surface it doesn’t seem
like there would be much difference between the two structures
given that they’re both “list like.” We can investigate with
sys.getsizeof():

>>> a = (‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> b = [‘3’, ‘01/01/2001’, ‘U’, ‘7354’]

>>> import sys

>>> sys.getsizeof(a)

80

>>> sys.getsizeof(b)

96

>>>

Here, we find that there is a 16-byte difference in storage
between a list and tuple. Added up across the 676,476 rows of
data, that amounts to about 10 MB of storage. The 16-byte dif-
ference is due to the fact that lists are a little more complicated
than they might first seem. For one, since lists are mutable, their
size can change as elements are added or removed. To manage
this, lists internally contain a memory pointer to a resizable
memory buffer where items are stored. Tuples, being immutable,
don’t have to handle resizing. Thus, the items in a tuple can be
stored directly at the end of the underlying tuple structure. Lists
also overallocate their internal storage so as to make repeated
append() operations faster (this is to minimize a potentially
expensive memory reallocation each time a new element is
added). For example, a list containing only five items might
actually have room to store eight items without asking for more
space. To manage this, lists maintain an extra counter of how
much total space is available in addition to a counter that records
the actual number of elements used. Here is a diagram that illus-
trates the difference in the memory layout of a tuple versus a list:

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 63

COLUMNS
Precious Memory

The header portion contains some bookkeeping informa-
tion, including the object’s type and the reference count used
in memory management. This is the same for all objects. The
16-byte difference in tuple/list storage is explained by the pres-
ence of an extra memory pointer (buffer) and counter (navail) on
lists. Depending on the amount of unused space, lists might even
be a bit larger.

Another surprising result is the efficiency of instances over dic-
tionaries—especially if you happen to know that instances are
actually built using dictionaries. For example:

>>> r = RideData(‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> r.__dict__

{ ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’, ‘rides’: ‘7354’

}

>>>

Thus, what explains the 26 MB advantage of using instances
over dictionaries? As it turns out, this is also another memory
optimization. When creating a lot of instances, Python makes
an assumption that the dictionaries for all of the instances will
probably contain the exact same set of keys. It makes sense—all
objects are initialized in __init__() and are likely to have an
identical underlying structure. Python exploits this and creates
what’s known as a key-sharing dictionary as described in PEP
412 [3]. In a nutshell, the keys for the instance data are split off
from the normal dictionary and stored in a shared structure.
It makes for a slightly smaller dictionary structure. You can
investigate:

>>> c = { ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’,

‘rides’: ‘7354’ }

>>> sys.getsizeof(c)

288

>>> d = RideData(‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> d

<__main__.RideData object at 0x101ad4f60>

>>> d.__dict__

{ ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’, ‘rides’: ‘7354’

}

>>> sys.getsizeof(d.__dict__) # Size of instance dict

192

>>>

Here, you see that the instance dictionary is quite a bit smaller
than a normal dictionary. However, you can’t forget that
instances also contain some state, including the class and refer-
ence count:

>>> sys.getsizeof(d) # Size of the instance structure

56

>>>

So, in this example, you’ll find that an instance requires 56 bytes
of storage plus the storage required for the instance dictionary.
Added together, you find that an instance requires 248 bytes
vs. 288 bytes for a normal dictionary. Multiplied by the 676,476
records, you get a savings of about 26 MB.

Named Tuples
Tuples are efficient, but one downside is that they often lead to
code where you do a lot of ugly indexing. For example:

>>> rows = read_data_as_tuples(‘cta.csv’)

>>> from collections import Counter

>>> ride_counts = Counter()

>>> for row in rows:

... ride_counts[row[0]] += int(row[3])

...

>>>

You can clean this up using the namedtuple() function to define
a class. For example:

from collections import namedtuple

RideTuple = namedtuple(‘RideTuple’, [‘route’,’date’,’daytype’,

‘rides’])

The namedtuple() function performs a neat trick using proper-
ties that produces a class roughly equivalent to this:

class RideTuple(tuple):

 __slots__ = () # Explained in next section

 @property

 def route(self):

 return self[0]

 @property

 def date(self):

 return self[1]

 @property

 def daytype(self):

 return self[2]

 @property

 def rides(self):

 return self[3]

In this class, properties have been added to pull attributes from
a specific tuple index. This gives you nice access to those values
via the dot (.) operator. For example:

>>> r = RideTuple(‘3’,’01/01/2001’,’U’,’7354’)

>>> r.route

‘3’

>>> r.date

‘01/01/2001’

>>> r[0]

‘3’

http://www.usenix.org

64  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Precious Memory

>>> r[1]

‘01/01/2001’

>>>

Named tuples also offer a cautionary tale of measuring Python’s
memory use—namely, that you can’t always trust it to tell you the
truth! For example, suppose you measure the memory of a single
named tuple versus a tuple:

>>> a = (‘3’, ‘01/01/2001’, ‘U’, 7354’)

>>> b = RideTuple(‘3’,’01/01/2001’,’U’,’7354’)

>>> sys.getsizeof(a)

80

>>> sys.getsizeof(b)

80

>>>

Here, you will find that the memory is identical. That looks good.
However, if you run two versions of code under tracemalloc,
you’ll find that they have different behavior.

Record Type Memory Use (MB)
Tuple 160.1

Named tuple 165.3

For reasons unknown, named tuples allocate an extra machine
word (8 bytes on a 64-bit machine) for each instance. Added up
over the 676,476 rows of our data set, that amounts to an extra
5 MB. If there’s any takeaway, the results of sys.getsizeof() are
not always to be trusted. If you must know, objects self-report
their size using a special method __sizeof__() which could be
implemented incorrectly. If you really care about accuracy, it’s a
good idea to measure memory use a few different ways.

Slots
A somewhat lesser known technique for saving memory is to
define a class with a __slots__ specifier like this:

class RideData(object):

 __slots__ = (‘route’, ‘date’, ‘daytype’, ‘rides’)

 def __init__(self, route, date, daytype, rides):

 self.route = route

 self.date = date

 self.daytype = daytype

 self.rides = rides

Normally, instances are represented by a dictionary. However, if
you use slots, you’re giving a hint about how many attributes will
be stored. Python uses this to eliminate the instance dictionary
and rearrange the storage of attributes into something that looks
a lot like a tuple. Here is a diagram showing how instances are
stored with and without slots:

Remarkably, a class that uses slots is even slightly more efficient
than one using a tuple. For example, if you run a test under trace-

malloc, you’ll get these results:

Record Type Memory Use (MB)
Tuple 160.1

Instance with slots 155.0

The savings is due to the fact that unlike a tuple, instances don’t
support indexing of attributes (e.g., r[n]). Thus, it is not neces-
sary for a size to be stored on a per-instance basis. The attributes
are merely loaded and stored from a hardwired position known
in advance. The exact mechanism is almost exactly the same as
the attribute properties defined on a named tuple.

Using the Appropriate Datatypes
In our example, we were being lazy and storing the numeric
ride data as a string (e.g., ‘7354’) instead of as an integer (7354).
However, strings are not the most efficient representation. Let’s
explore:

>>> a = ‘7354’

>>> b = 7354

>>> c = 7354.0

>>> sys.getsizeof(a)

53

>>> sys.getsizeof(b)

28

>>> sys.getsizeof(c)

24

>>>

As you can see, storing the number as an integer saves 25 bytes.
However, storing the value as a floating point number saves a bit
more. Integers require more space because they are allowed to
grow to arbitrary magnitude. To handle this, they must not only
store the integer value, but some additional sizing information.
Floats don’t need this.

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 65

COLUMNS
Precious Memory

By changing just one column of the data to a float, we save about
18 MB of memory. So being smart about what you store makes a
difference.

Value Sharing
Under the covers, Python memory management is based on
memory pointers. For example, suppose you make a list and
“copy” it to another variable:

>>> a = [1,2,3]

>>> b = a

>>>

This didn’t actually make a copy of the list. Instead, the names
“a” and “b” both refer to the same object. If you change the list,
it’s reflected in both variables.

>>> a.append(4)

>>> a

[1, 2, 3, 4]

>>> b

[1, 2, 3, 4]

>>>

The id() function will give you the object identity, a unique
integer value. You can use this to see that a and b in the above
example are the same object.

>>> id(a)

56623488

>>> id(b)

56623488

>>>

Now, how to use this? When reading certain kinds of data sets,
you might encounter a lot of repetition. To illustrate, let’s grab
the bus data again.

>>> f = open(‘cta.csv’)

>>> rows = list(csv.DictReader(f))

>>> unique_routes = set(row[‘route’] for row in rows)

>>> len(unique_routes)

182

>>> route_ids = set(id(row[‘route’]) for row in rows)

>>> len(route_ids)

634285

>>>

What you’re seeing here is that the data contains only 182 unique
values for the “route” field, yet those values are stored in 634,285
unique objects. It’s a bit odd that there aren’t 676,476 unique
values corresponding to the length of the entire data set. As it
turns out, Python caches objects representing all single-letter
ASCII strings. Thus routes 1–9 get special treatment. You can
verify this:

>>> route_ids = set(id(row[‘route’]) for row in rows if

len(row[‘route’])==1)

>>> len(route_ids)

9

>>>

Perhaps you can take a similar caching strategy for reusing the
rest of the values. Here is a simple function that caches strings:

def cache(value, _values = {}):

 if value not in _values:

 _values[value] = value

 return _values[value]

Next, you can apply the cache function to selected values during
instance creation. For example:

class RideData(object):

 __slots__ = [‘route’,’date’,’daytype’,’rides’]

 def __init__(self, route, date, daytype, rides):

 self.route = cache(route)

 self.date = cache(date)

 self.daytype = daytype

 self.rides = float(rides)

Making this change, the storage required for our example data is
reduced down to about 68 MB—not too bad considering it started
out at over 300 MB.

Changing Your Orientation
So far, we have worked to represent the data as a list of records—
varying the representation of each record. However, another
approach is to turn everything sideways and represent the data
as a collection of columns. For example, suppose you read the
data using this function:

def read_data_as_columns(filename):

 route = []

 date = []

 daytype = []

 rides = []

 with open(filename) as f:

 for row in csv.DictReader(f):

 route.append(cache(row[‘route’]))

 date.append(cache(row[‘date’]))

 daytype.append(row[‘daytype’])

 rides.append(float(row[‘rides’]))

 return {

 ‘route’: route,

 ‘date’: date,

 ‘daytype’: daytype,

 ‘rides’: rides

 }

http://www.usenix.org

66  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Precious Memory

Making this change reduces the memory use to about 38 MB.
However, it also shatters your head as working with the resulting
data is wacky. Instead of getting a single list of records, you get
four lists representing each column. For example:

>>> columns = read_data_as_columns(‘cta.csv’)

>>> len(columns)

4

>>> columns[‘route’][0]

‘3’

>>> columns[‘date’][0]

‘01/01/2001’

>>>

Yes, you can work with the data like this, but doing so might
require a bit of ingenuity and increase your job security. You
would probably be better off using a third party library such as
Pandas, which also stores its data in a column form [4]. This
brings us to the last important point about memory. Third party
libraries often rely on C extensions and code outside of Python
that can’t be measured accurately using the tools described here.
For example, you can try this experiment with Pandas:

>>> import pandas

>>> import tracemalloc

>>> tracemalloc.start()

>>> data = pandas.read_csv(‘cta.csv’)

>>> tracemalloc.get_traced_memory()

(433375, 471219)

>>> import sys

>>> sys.getsizeof(data)

135868754

>>>

Pandas is efficient, but it’s not so efficient that it’s storing all
of the data in only 430 KB. Nor is the reported size of the data
variable 135 MB. A look in the task viewer shows Python actu-
ally using about 56 MB of memory. Bottom line: if you’re using
certain kinds of Python extensions, the memory profiling tools
described here might not work.

If You Liked It, You Should Have Put a Generator
on It
In the end, maybe it’s best to ask yourself if you actually need to
read all of the data at once. Perhaps a generator function can do
the trick:

import csv

from collections import Counter

def read_data(filename):

 with open(filename) as f:

 rows = csv.DictReader(f)

 for row in rows:

 yield { **row, ‘rides’:int(row[‘rides’]) }

ride_counts = Counter()

for row in read_data(‘cta.csv’):

 ride_counts[row[‘route’]] += row[‘rides’]

If you run this version under tracemalloc, you’ll find that it tabu-
lates all of the data and uses only 36K of memory. Yes, generators
are your friend.

Final Thoughts
This article has looked at a variety of issues surrounding Python
memory use. There are probably a few important takeaways.
First, there are some built-in tools such as sys.getsizeof() and
the tracemalloc that you can use to investigate the memory use
of your program. They’re not always reliable, but when used in
combination, you can often get a pretty good idea of what’s hap-
pening. Second, there are a variety of ways in which you can rep-
resent data to reduce the memory footprint. For example, using
__slots__ in a class definition. Small details, such as your
choice of low-level data representation and value sharing with
caching, can also make a big impact. Last but not least, different
data organizations (e.g., rows vs. columns) can be important.

References
[1] CTA-Ridership Data: https://data.cityofchicago.org
/Transportation/CTA-Ridership-Bus-Routes-Daily-Totals-
by-Route/jyb9-n7fm.

[2] tracemalloc module: https://docs.python.org/3/library
/tracemalloc.

[3] PEP 0412 -- Key-Sharing Dictionary: https://www.python
.org/dev/peps/pep-0412/.

[4] Pandas: pandas.pydata.org.

http://www.usenix.org
https://data.cityofchicago.org/Transportation/CTA-Ridership-Bus-Routes-Daily-Totals-by-Route/jyb9-n7fm
https://docs.python.org/3/library/tracemalloc.html
https://www.python.org/dev/peps/pep-0412/
https://data.cityofchicago.org/Transportation/CTA-Ridership-Bus-Routes-Daily-Totals-by-Route/jyb9-n7fm
https://data.cityofchicago.org/Transportation/CTA-Ridership-Bus-Routes-Daily-Totals-by-Route/jyb9-n7fm
https://docs.python.org/3/library/tracemalloc.html
https://www.python.org/dev/peps/pep-0412/
http://pandas.pydata.org/

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 67

COLUMNS

iVoyeur
Go Instrument Some Stuff

D A V E J O S E P H S E N

Dave Josephsen is the some-
time book-authoring developer
evangelist at Librato.com. His
continuing mission: to help
engineers worldwide close the

feedback loop. dave-usenix@skeptech.org

I hate talking about programming languages. Have you heard of Alcibi-
ades? He was, well, I guess you could say he was the frat boy of ancient
Greece. The original Bro. There’s this pretty funny story about him where

he was wrestling this other guy (I forget his name), and Alcibiades, feeling
that he was about to lose, bit him on the ear. Yes, exactly like Mike Tyson.

Now biting your wrestling partner was, in ancient Greece, every bit as frowned upon as it
is today. It is not, suffice to say, a statutorily valid attack in wrestling among gentlepersons.
And Alcibiades’ opponent didn’t have any qualms about letting him know; his quote (accord-
ing to Plutarch, who wasn’t there) was:

“Alcibiades! You bite! Like a woman!”

Setting aside for the moment the Grecian misogyny—for which I apologize on their behalf
(as a male, not as a Grecian)—I think Alcibiades’ opponent was expressing a few overlap-
ping emotions here. There was, of course, the outrage at having been bitten (especially in the
course of, no doubt, well-executed by-the-book wrestling on his part). And then there was
the surprise at having been bitten by Alcibiades, who was (despite ample evidence to the
contrary) always assumed to be a stand-up bro by those who hung out with him. And, finally,
there was the shaming component of the accusation, the part where he called Alcibiades out
by comparing him to the so-called “weaker sex.”

I’m sure everyone in attendance thought this was a pretty slick burn. I can almost hear the
room explode with the ancient Grecian analog of “Oh snap!” And I mean he deserved it, right?
Surely everyone could agree that biting was not only illegal, but also un-bro-like, which put
Alcibiades clearly in violation of not only the wrestling rule book, but also, and probably more
importantly, bro-code—or whatever you want to call that unwritten collection of etiquette
particular to those people in that place. The former violation merely lost him the match, but it
was the latter that made him worthy of disdain. But then Alcibiades replies:

“Nay. I bite like a lion!”

He did this sort of thing all the time; just running roughshod over the rules and undermining
anyone who called him on it. It was basically his thing, and he did it so confoundingly well
that he always got away with it. He just didn’t consider defying convention something to be
ashamed of and was therefore immune to this sort of politesse-rooted shaming.

Programming Languages
When I talk about programming languages, I always wind up feeling just exactly like the
guy Alcibiades bit must have felt, which is to say: pretty sure what I just said was technically
correct, but no longer convinced that it matters, and therefore confused about my place in the
universe.

I’m not possessed of a Herculean-strength intellect, and I struggle to learn these languages
just like the guy Alcibiades bit no doubt worked hard to master wrestling. Everyone assured
us both it was the right and proper thing to do (it says so right there in the introduction sec-

http://www.usenix.org
mailto:dave-usenix@skeptech.org

68  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
iVoyeur: Go Instrument Some Stuff

tion of the O’Reilly book you wrote about the awesome new lan-
guage you designed). And like the guy Alcibiades bit, I maintain
this assumption that we, the community of people who struggled
to learn Ruby or Python or Java or wrestling or whatever, have
an understanding about what it means to be “good” or “bad”
when we go about it. About the merits of this or that program-
ming philosophy. About what constitutes an acceptable degree of
inefficiency. About what is and is not secure.

But really, we don’t have anything like that understanding. And
bite by bite, I’m slowly beginning to realize that I will never
have whatever equates to moral high-ground with respect to
programming languages. That in fact maybe there never was
such a thing, it just looked that way because my world was so
small. There will never be that language that everyone who uses
programming languages can finally maintain at least a begrudg-
ing respect for. Maybe that’s a good thing, but it also means I am
forever doomed to happily enter into excited conversation about
this or that thing we’re building only to be bitten on the ear over
the language we chose to build it in.

I tire of this—this stupefied grasping at my bloody ear—and it’s
making me gun-shy. I’ve wanted to write this article for months,
but I keep on balking because I know we’re going to have to talk
about languages. Well, at least one language, and worse, I’m
going to have to pick it. I’m going to have to, once again, admit to
liking a programming language, or at least admit to using one.
My ear hurts just thinking about it.

Instrumenting Golang
Oh well. Let’s get this show on the road. I want to talk about
instrumenting the programs you create. And I’m going to do it in
Golang, so deal with it.

When I say instrument, I’m talking about actually placing code
inside the things you write that is designed to either time an
interaction or quantify how often something occurs. It’s easier if
I just show you.

To that end I’ve written a Web service. It’s pretty typical of the
sort of thing I do when I wear my Ops hat these days: a simple
program that listens for HTTP GET requests on port 80 and
exposes some bit of operational knowledge to whatever happens
to be asking. This one responds with an “answer.” Here’s what an
answer looks like:

 type Answer struct {

 Type string

 Desc string

 Get func(index int) string

 Rand func() string

 DB []string

 }

Even if you don’t speak Go, this should be pretty obvious: an
answer is a data structure that consists of a type; a description;
two functions, one for getting specific answers and another for
getting random answers; and an array of strings where we keep
all of our responses.

I won’t have space to paste all of the code for this project here,
but you can clone it from GitHub (https://github.com/djosephsen
/answers), which means you can also go get it with go get

github.com/djosephsen/answers. You’ll find the source under
the src directory in your GOPATH.

Since one likes to be modular about these things, the code is
designed so that we can come along later and add new types of
“answer” and register them into a global index of answers we
can give. If you look in the root directory, you’ll see that it comes
with two types of answer modules, one that provides answers to
the question “Why did the chicken cross the road?” and one that
provides answers to the question “Knock-knock. Who’s there?”

In main.go, you’ll see that after we go about registering the
available modules into the global index of answers with initAn-

swers(), we use the net/http module to register two Handler
functions with net/http and then start listening on port 8080.

 func main() {

 initAnswers()

 metrics.Connect()

 http.HandleFunc(“/”, helpHandler)

 http.HandleFunc(“/get/”, getHandler)

 http.ListenAndServe(“:8080”, nil)

 }

Now, ignoring metrics.Connect() for a moment, I think you can
kind of see where this is going. If a user gets ‘/’, we respond with
a help menu, but if you ask for something that begins with ‘/get/’,
we launch getHandler().

The help handler traverses all the answers we know about and
prints back a list of URLs of the form /get/answer.Type followed
by the answer.Desc that corresponds to the Type. We can see
what it looks like when we use curl to ask for ‘/’.

(osapi) [dave@otokami][librato-vagrant] [master|+ 1]

-> curl localhost:8080

Welcome to the answer service:

Valid answers:

/get/chicken :: Answers to why did the chicken cross the road?

/get/knocknock :: Knock Knock jokes1

Then when we ask for “/get/chicken” the getHandler function
fires, and we get a random answer from the chicken module via
that module’s Rand() function. We can see what it looks like from
curl:

http://www.usenix.org
https://github.com/djosephsen/answers
https://github.com/djosephsen/answers

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 69

COLUMNS
iVoyeur: Go Instrument Some Stuff

(osapi) [dave@otokami][librato-vagrant] [master↓.2+ 1]

-> curl localhost:8080/get/chicken

because the road crossed him

If you write Go, this code should be pretty familiar. It’s a classic
pattern for using net/http to write Web services in Go. In fact it
began life as a copy/paste straight out of the net/http documen-
tation. I’m not going to delve into the answer modules, because to
instrument this application we don’t need to leave main.go.

What we want to do is time and quantify our calls to the various
handlers this program has now, as well as any that we might add
in the future. In other words, we want to know how often get/

chicken is called, and we want to know how long get/chicken
takes to do what it does. And we don’t just want that for get/

chicken, we also want it for the help handler, get/knocknock, and
any other answer modules we might add in the future. And we’re
lazy so we don’t want to add new instrumentation every time we
add another answer module.

And there’s one more problem that you’ll already be aware of if
you’re in the habit of timing function calls. Sometimes, aber-
rant measurements occur, such as calls to get/chicken that take
three seconds because of bogons (possibly in the monitoring
code) that we’ll never be able to effectively track down. So we’re
going to want to generate percentiles for our timing measure-
ments. We want to put extremely aberrant measurements in per-
spective. Is it one time in a million, or is it one time in a hundred?

What I’m very intentionally describing here is the use-case for
which StatsD [1] was invented. We use it all over the place at
Librato, and if you write services like these you probably should
too unless you have something better. Specifically, we run
Statsite [2] (a StatsD clone written in C (because native StatsD
is a NodeJS daemon (lol programming languages))) on every
instance we bring up. That way we can emit metrics directly
from each instance to our metrics backend rather than risk-
ing packet-loss over the wire to a centralized StatsD instance
(StatsD is a UDP protocol).

In this project, I’m using Etsy’s statsd client, which is imported
by my code in metrics/metrics.go. It provides a decent set of
primitives but doesn’t really give us what I’d call a Go-idiomatic
means (lol programming languages) of implementing what we
want here, so I have a few functions in metrics.go to help the cli-
ent out. Let’s take a look at my Time():

func Time(name string, start time.Time) {

 if client == nil {

 return

 }

 now := time.Now()

 duration := now.Sub(start)

 if duration > 5000*time.Millisecond {

 fmt.Printf(“Latent measurement for %q: %s”, name, duration)

 }

 milliseconds := int64(duration / time.Millisecond)

 toStatsd(func() {

 // record the duration

 client.Timing(name, milliseconds)

 // also record a count

 client.UpdateStats([]string{fmt.Sprintf(“%s.count”, name)},

 1, 1)

 })

}

You’ll find this function in several of our Go projects at Librato,
and it’s pretty clever. It takes a start-time and the name of the
metric we want to show up in the metrics backend. It then com-
putes the difference between the given start time and now and
sends that duration into statsd. But wait, you’re wondering,
how does that time the actual function invocation? Stand by,
that’s the clever part. But before I get to that, you’ll notice that it
sends the timing to StatsD by way of a local toStatsd() function,
which in turn takes a function with no arguments as its argu-
ment. Let’s look at toStatsd():

func toStatsd(fn func()) {

 start := time.Now()

 fn()

 duration := time.Now().Sub(start)

 if duration > 250*time.Millisecond {

 fmt.Printf(“Statsd time took %s”, duration)

 }

}

This was probably more along the lines of what you expected
to see in Time(). This function captures the before time, runs
the given function, and then captures the after time. If you look
back up at Time(), you’ll notice that we’re passing toStatsd()
an anonymous function that sends in the actual timing metric
and increments a counter. So really toStatsd() is just a wrapper
to time how long it takes the statsd client itself to do its thing.
We’re actually measuring how much latency statsd itself incurs.

Now let’s bring this full circle by taking a look at getHandler() in
main.go to see how we use metrics.Time():

func getHandler(w http.ResponseWriter, r *http.Request) {

 answerType := r.URL.Path[len(“/get/”):]

 defer metrics.Time(“answer.handler.”+answerType, time.Now())

 fmt.Fprintf(w, “%s\n”,a.Answers[answerType].Rand())

}

Ah hah, the plot thickens. We’re calling metrics.Time in a defer
statement. If you don’t program in Go, the defer statement is
used to postpone the execution of a given function until just
before the parent function returns. The interesting part about

http://www.usenix.org

70  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
iVoyeur: Go Instrument Some Stuff

this is that defer evaluates our functions arguments imme-
diately, so when we pass time.Now() as the second argument
to metrics.Time, that’s evaluated immediately. That’s how we
capture our “before” time. Then defer takes care of executing
metrics.Time() just before the function returns (after our answer
module has done its thing), and as we’ve already seen metrics.

Time captures its own after-time.

This gives us a single line of code we can inject at the beginning
of any function in Go to get timing data as well as a count and
rate of that function’s invocation. The percentiles come auto-
matically from StatsD as you can see in Figure 1.

So aside from metrics/metrics.go, which is completely reusable
and modular/importable if desired, I’ve only added three lines of
code to fully instrument every handler invocation this applica-
tion has and any that might be added in the future, and one of
those three lines was metrics.Connect(), which opens a socket to
the local StatsD daemon.

I don’t care how much you hate Golang, that’s pretty cool, right?
And, I mean, look at the graphs, everybody likes graphs … right?

Ow. My ear!

Figure 1: Look at all the lovely data!

References
[1] StatsD: https://github.com/etsy/statsd.

[2] Statsite: https://github.com/armon/statsite.

http://www.usenix.org
https://github.com/etsy/statsd
https://github.com/armon/statsite

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 71

COLUMNS

Practical Perl Tools
Perl to the Music

D A V I D N . B L A N K - E D E L M A N

G iven all of the APIs and their Perl interactions we’ve discussed in
this column, it is a little surprising it has taken me this long to get
around to one of my favorite subjects: music. I started to pay closer

attention to the APIs of the streaming music services right around the time
one of my favorites (Rdio) was shuttered. I had amassed a pretty large collec-
tion of artists and albums I wanted to replicate on another service and was
concerned about extracting the info from their service before it closed down.
Luckily, the engineers at Rdio were equally concerned for their users and
did a superb job of providing each user with an export of their data. But that
started me down the path of wondering just what I could do in Perl to interact
with my music data.

Several of the major streaming services have a decent API. Here’s the rundown as of this
writing:

◆◆ Spotify: https://developer.spotify.com
◆◆ Rhapsody: https://developer.rhapsody.com
◆◆ Deezer: http://developers.deezer.com/api
◆◆ Pandora: (only official partners can use it)
◆◆ Tidal: none
◆◆ Guevara: none
◆◆ Apple Music: none
◆◆ Google Play Music: none (really, Google? No API?)

Some of the services above have “unofficial APIs” where a random developer has reverse-
engineered how the service works and published code that uses that information. We’re
not going to touch any of those APIs with a very large pole for any number of reasons, most
of which I bet you can guess. Instead, in this column we’ll pick the top one of the list above,
 Spotify, and dive into it. Spotify has a particularly mature API. Note: for some of these
examples, you will need a Spotify account (and indeed, may need to be a subscriber).

Do I Know Who You Are?
The Spotify API distinguishes between authorized requests and public, non-authorized
requests. The former is less rate-limited than the latter and (depending on the kind of autho-
rization) also allows for querying of more sensitive data. But we can still get some good stuff
from the API using public requests, so let’s start there before we get into the auth game.

Given all of the past columns on APIs, I expect no gasps of astonishment when I say that the
API is REST-based and that the results returned are in JSON format. The one Spotify API-
specific piece we haven’t really seen before (but is actually pretty common) is that Spotify
has a unique resource identifier and ID for pointing to a specific object in their system. So,
for example, here in their docs list:

David Blank-Edelman is the
Technical Evangelist at Apcera
(the comments/views here
are David’s alone and do not
represent Apcera/Ericsson) .

He has spent close to 30 years in the systems
administration/DevOps/SRE field in large
multiplatform environments including Brandeis
University, Cambridge Technology Group,
MIT Media Laboratory, and Northeastern
University. He is the author of the O’Reilly
Otter book Automating System Administration
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David
is honored to serve on the USENIX Board of
Directors. He prefers to pronounce Evangelist
with a hard ‘g’.  
dnblankedelman@gmail.com

http://www.usenix.org
https://developer.spotify.com
https://developer.rhapsody.com
http://developers.deezer.com/api
mailto:dnblankedelman@gmail.com

72  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Practical Perl Tools: Perl to the Music

spotify:track:6rqhFgbbKwnb9MLmUQDhG6

is a Spotify URI and

6rqhFgbbKwnb9MLmUQDhG6

is a Spotify ID. The URI includes what kind of thing is being
referenced, the ID just simply provides which specific thing (i.e.,
that track) is being referenced. And in case you were curious,
that URI in their doc points to the first track of an iconic album.
I’ll let you paste it in to the Spotify client to see just which one.

Dither, Dither, Dither
Right about now in the column the hero has a small crisis where
he frets about which Perl module/approach he should use. Should
he build something up using the minimalist but elegant modules
that only do one basic thing really well (like performing an HTTP
request or parsing JSON)? Should he instead use the all-singing,
all-dancing REST request module that does both of these things
and four other things besides? Perhaps he should use the module
specifically made for this Web service. Or maybe show all three?
Decisions, decisions.

It may shorten this column, but let’s go right for the purpose-
built module this time: WebService::Spotify. I’ll explain this
decision in more depth (complete with a dash of dithering)
when we come back to authenticated/authorized requests. This
module appears to be the most up-to-date (there is a module
available called WWW::Spotify, but it calls the deprecated
Spotify API). The difference between WebService::Spotify and
something more lightweight becomes apparent when you install
it. Because it is using Mouse (the smaller version of the modern
object-oriented framework called Moose), it requires a whole
slew of dependencies. cpanminus or CPANPLUS (discussed in
a previous column) will handle this for you, but it can still be a
bit disconcerting to watch the module names scroll by when you
install it.

Once installed, using the module for non-authorized API calls is
super simple:

use WebService::Spotify;

my $s = WebService::Spotify->new;

my $r = $s->search(‘chloe’, type => ‘artist’);

foreach my $artist (@{ $r->{artists}->{items} }) {

 print “$artist->{name} ($artist->{uri})\n”;

}

print “total=$r->{artists}->{total}\n”;

print “previous=$r->{artists}->{previous}\n”;

print “next=$r->{artists}->{next}”;

print “\nlimit=$r->{artists}->{limit}\n”;

print “offset=$r->{artists}->{offset}\n”;

Here’s the output when I run it (which we will explain in a
moment):

Chloe Angelides (spotify:artist:79A4RmgwxYGIDkqQDUHLXK)

Chloe (spotify:artist:71POUphzXd95FKPipXjtE0)

Chloë (spotify:artist:2pCYsqZMqjA345dkjNXEct)

Chloe Martini (spotify:artist:6vhgsnZ2dLDaLDog3pqP2d)

Chloe Agnew (spotify:artist:34sL9HIOU50t8u0IQMZeze)

Chløë Black (spotify:artist:0IfnpflOVEmRGxCKaCYPX4)

Chloe (spotify:artist:2hg0g48H7GvAlTzkt3z5Vo)

Chloe Kaul (spotify:artist:35BBadnzA39iYkbQWLOr3p)

Chlöe Howl (spotify:artist:1hvPdvTeY6McdTvN4DyKGe)

Chloe Dolandis (spotify:artist:2SfamMWWSDbMcGpSua06o4)

total=340

previous=

next=https://api.spotify.com/v1/search?query=chloe&offset

=10&limit=10&type=artist

limit=10

offset=0

The code creates a new object, executes a search, and then prints
key parts of the response. The response comes back in JSON
form that is then parsed into Perl data structures. Here are some
excerpts from a dump of that data structure:

0 HASH(0x7fe70ca94dc8)

 ‘artists’ => HASH(0x7fe70ca94b88)

 ‘href’ => ‘https://api.spotify.com/v1/search?

query=chloe&offset=0&limit=10&type=artist’

 ‘items’ => ARRAY(0x7fe70b003718)

...

1 HASH(0x7fe70e129500)

‘external_urls’ => HASH(0x7fe70e1157c8)

‘spotify’ => ‘https://open.spotify.com/artist/

71POUphzXd95FKPipXjtE0’

‘followers’ => HASH(0x7fe70e115138)

‘href’ => undef

‘total’ => 38

‘genres’ => ARRAY(0x7fe70e129a40)

empty array

‘href’ => ‘https://api.spotify.com/v1/artists/

71POUphzXd95FKPipXjtE0’

‘id’ => ‘71POUphzXd95FKPipXjtE0’

‘images’ => ARRAY(0x7fe70e0d6780)

0 HASH(0x7fe70e0d67c8)

‘height’ => 640

‘url’ => ‘https://i.scdn.co/image/20620033bdf1

c86e83cb3f18f97172aa89ee6eca’

‘width’ => 640

1 HASH(0x7fe70e42e388)

‘height’ => 300

‘url’ => ‘https://i.scdn.co/image/5c0a9f8cb3bb

f55e15c305720d6033090c04c136’

‘width’ => 300

2 HASH(0x7fe70a7646e0)

‘height’ => 64

‘url’ => ‘https://i.scdn.co/image/767603633a02

http://www.usenix.org
https://api.spotify.com/v1/search?query=chloe&offset=10&limit=10&type=artist
https://api.spotify.com/v1/search?query=chloe&offset=0&limit=10&type=artist
https://open.spotify.com/artist/71POUphzXd95FKPipXjtE0
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0
https://i.scdn.co/image/20620033bdf1c86e83cb3f18f97172aa89ee6eca
https://i.scdn.co/image/5c0a9f8cb3bbf55e15c305720d6033090c04c136
https://i.scdn.co/image/767603633a026e73551c6c98d366b8cf08a1adec
https://api.spotify.com/v1/search?query=chloe&offset=10&limit=10&type=artist
https://api.spotify.com/v1/search?query=chloe&offset=0&limit=10&type=artist
https://open.spotify.com/artist/71POUphzXd95FKPipXjtE0
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0
https://i.scdn.co/image/20620033bdf1c86e83cb3f18f97172aa89ee6eca
https://i.scdn.co/image/5c0a9f8cb3bbf55e15c305720d6033090c04c136

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 73

COLUMNS
Practical Perl Tools: Perl to the Music

6e73551c6c98d366b8cf08a1adec’

‘width’ => 64

‘name’ => ‘Chloe’

‘popularity’ => 39

‘type’ => ‘artist’

‘uri’ => ‘spotify:artist:71POUphzXd95FKPipXjtE0’

...

‘limit’ => 10

 ‘next’ => ‘https://api.spotify.com/v1/search?query=chloe

&offset=10&limit=10&type=artist’

 ‘offset’ => 0

 ‘previous’ => undef

 ‘total’ => 331

We get back a list of artists, each with their own sub-data struc-
ture (a list of hashes). Each artist that is returned has a number
of fields. Our script prints out just the name and the URL, but
you can see there’s lots of interesting stuff here, including point-
ers to images for the artist. Already we are having some fun.

In addition to the list of artists, we also get back some data about
the query itself, which I thought was so important to discuss,
I print it explicitly in the script. This data helps us paginate
through the large quantity of info in Spotify’s database as
needed. The “total” field tells us there are actually 331 artists
with this name, but by default the module asks the API to limit
the output to sending back 10 records at a time. This query
started at the beginning of the data set (an offset of 0), and there
is nothing before it (previous is “undef”). There is, however, the
URI we should be querying to get the next 10 records (which
includes an offset of 10, and an explicit limit of 10).

If we weren’t using the WebService::Spotify module, we would
call that URI to get the next set of 10. To do this explicitly with
the module, we could add an “offset” parameter to the search()
method like this:

my $r = $s->search(‘chloe’, type => ‘artist’, offset => 10);

but WebService::Spotify makes it even easier by providing a
next() method that consumes a results object and “does the right
thing,” as in:

my $s = WebService::Spotify->new;

my $r = $s->search(‘chloe’, type => ‘artist’);

while (defined $r->{artists}->{next}) {

 print_artists($r);

 $r = $s->next($r->{artists});

}

sub print_artists {

 my $r = shift;

 foreach my $artist (@{ $r->{artists}->{items} }) {

 print “$artist->{name} ($artist->{uri})\n”;

 }

}

This code pages through the data using next() to pull the next
result set if there is any.

So now that we’ve seen how to query for artists with a particular
name, what can we do with that artist’s info? As a start, with the
artist ID, we can look up that artist’s albums and her or his top
tracks in a particular country:

same search as before, let’s pick the second result

my $artist = $r->{artists}->{items}->[1];

my $albums = $s->artist_albums($artist->{id});

my $top_tracks = $s->artist_top_tracks($artist->{id},

‘country’ => ‘US’);

Here’s a small excerpt from the $albums data structure:

0 HASH(0x7fea614a86a8)

 ‘href’ => ‘https://api.spotify.com/v1/artists/

 71POUphzXd95FKPipXjtE0/albums?

 offset=0&limit=20&album_type=single,album,compilation

,appears_on,ep’

 ‘items’ => ARRAY(0x7fea614a8780)

 0 HASH(0x7fea613279d8)

‘album_type’ => ‘album’

‘available_markets’ => ARRAY(0x7fea61268880)

0 ‘AR’

1 ‘AU’

2 ‘AT’

3 ‘BE’

4 ‘BO’

5 ‘BR’

6 ‘BG’

7 ‘CA’

8 ‘CL’

9 ‘CO’

10 ‘CR’

...

58 ‘ID’

‘external_urls’ => HASH(0x7fea614a94c8)

‘spotify’ => ‘https://open.spotify.com/album

/3nVaq2gmNw8Z7k7rgVB961’

‘href’ => ‘https://api.spotify.com/v1/albums/3nVaq

2gmNw8Z7k7rgVB961’

‘id’ => ‘3nVaq2gmNw8Z7k7rgVB961’

‘images’ => ARRAY(0x7fea61bd6768)

0 HASH(0x7fea614a9438)

‘height’ => 640

‘url’ => ‘https://i.scdn.co/image/d64f75bc4f

b474478b904b7e4058bf369d2373e1’

‘width’ => 640

1 HASH(0x7fea61bd68a0)

‘height’ => 300

‘url’ => ‘https://i.scdn.co/image/d2e5b264f4

87ac3bf1e3c32d48b1296247e99455’

‘width’ => 300

2 HASH(0x7fea61bd6f00)

‘height’ => 64

http://www.usenix.org
https://api.spotify.com/v1/search?query=chloe&offset=10&limit=10&type=artist
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0/albums?offset=0&limit=20&album_type=single,album,compilation,appears_on,ep
https://open.spotify.com/album/3nVaq2gmNw8Z7k7rgVB961
https://api.spotify.com/v1/albums/3nVaq2gmNw8Z7k7rgVB961
https://api.spotify.com/v1/albums/3nVaq2gmNw8Z7k7rgVB961
https://i.scdn.co/image/d2e5b264f487ac3bf1e3c32d48b1296247e99455
https://i.scdn.co/image/767603633a026e73551c6c98d366b8cf08a1adec
https://api.spotify.com/v1/search?query=chloe&offset=10&limit=10&type=artist
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0/albums?offset=0&limit=20&album_type=single,album,compilation,appears_on,ep
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0/albums?offset=0&limit=20&album_type=single,album,compilation,appears_on,ep
https://api.spotify.com/v1/artists/71POUphzXd95FKPipXjtE0/albums?offset=0&limit=20&album_type=single,album,compilation,appears_on,ep
https://open.spotify.com/album/3nVaq2gmNw8Z7k7rgVB961
https://api.spotify.com/v1/albums/3nVaq2gmNw8Z7k7rgVB961
https://i.scdn.co/image/d2e5b264f487ac3bf1e3c32d48b1296247e99455
https://api.spotify.com/v1/albums/3nVaq2gmNw8Z7k7rgVB961

74  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Practical Perl Tools: Perl to the Music

 ‘url’ => ‘https://i.scdn.co/image/c20d9975b9

 253255d879c9a10d8f3a8deab077e5’

 ‘width’ => 64

 ‘name’ => ‘Only Everyone’

 ‘type’ => ‘album’

 ‘uri’ => ‘spotify:album:3nVaq2gmNw8Z7k7rgVB961’

We’ve received info about an album called “Only Everyone.”
The response tells us it is available in 58 markets. Album covers
are available at the specified URLs. Another interesting field
is “album_type.” If we had wanted to, we could have narrowed
down the type of album we were seeking (for example, if we
wanted to see all of the singles available from this artist). To do
that, we’d add an extra parameter to the query, as in:

my $albums = $s->artist_albums($artist->{id},

 ‘album_type’ => ‘single’);

The result of our artist_top_tracks() method call is equally fun.
In our code, we’ve asked what the top tracks are for that artist
in the US market (remember the list of markets in the previous
output?). Here’s an excerpt from what we get back:

 ‘tracks’ => ARRAY(0x7f841614be30)

 0 HASH(0x7f841486e0c0)

 ‘album’ => HASH(0x7f84131f7978)

 ‘album_type’ => ‘album’

 ‘available_markets’ => ARRAY(0x7f841227ea98)

‘AR’

...

 58 ‘ID’

 ‘id’ => ‘5mwk4GspWSXQHIkZGGdnhm’

 ‘name’ => ‘Boys and Girls Soundtrack’

 ‘type’ => ‘album’

 ‘uri’ => ‘spotify:album:5mwk4GspWSXQHIkZGGdnhm’

 ‘artists’ => ARRAY(0x7f841250d5a8)

 0 HASH(0x7f841347d2e0)

 ‘id’ => ‘71POUphzXd95FKPipXjtE0’

 ‘name’ => ‘Chloe’

 ‘type’ => ‘artist’

 ‘uri’ => ‘spotify:artist:71POUphzXd95FKPipXjtE0’

 ‘available_markets’ => ARRAY(0x7f841347d5b0)

 0 ‘AR’

...

 58 ‘ID’

 ‘disc_number’ => 1

 ‘duration_ms’ => 203800

 ‘explicit’ => JSON::PP::Boolean=SCALAR(0x7f8412196d08)

 -> 0

 ‘external_ids’ => HASH(0x7f841347c8a8)

 ‘isrc’ => ‘USAK10000397’

 ‘id’ => ‘600tF3aqxRjwJOtdjxEwzY’

 ‘name’ => ‘Get You Off my Mind’

 ‘popularity’ => 15

 ‘preview_url’ => ‘https://p.scdn.co/mp3-preview/4d99d5

 6fad8d2b31eb9fb7fa5c9a603fa23adb16’

 ‘track_number’ => 14

 ‘type’ => ‘track’

 ‘uri’ => ‘spotify:track:600tF3aqxRjwJOtdjxEwzY’

I’ve chopped a bunch of the fields of the data structure just to save
space but left enough so that you can see that for each track, you
get its name, the album it was on (and full info on that album),
markets available, the artist info for that track, what disc it is (for
multi-disc sets), what track it is on that disk, how long the actual
track is, and even a URL to a 30-second MP3 preview of the track.
Feel free to check out the preview, although I wish to insert a
caveat that this example wasn’t picked for its artistic merit.

There are a few more API calls we can make without authoriza-
tion listed in the WebService::Spotify doc (for example, to return
the tracks found on an album). I hope you have a sense of how you
might build a more sophisticated script to do things like search
for all of the albums and tracks by an artist.

What We Do in Private
There’s a lot of fun that can be had using non-authorized API
calls. I could probably end the column right here and you would
have enough to play with for a long time. But one important part
of these streaming music services is the ability to manipulate
the service’s music in various ways. Spotify is all about the playl-
ist, so as the last item in this column, we’re going to take a brief
look at how to work with them from the API. In particular, we are
going to look at how we retrieve our users’ private playlists.

The very mention of users and ownership should perk up your
ears because it means we get to get back into the authentica-
tion and authorization business. Spotify uses a method we
discussed in detail a few columns back, namely OAuth2, to
allow a user to delegate the privileges to a script/app to per-
form operations on your behalf. And this brings us back to the
reason why using WebService::Spotify had such appeal. Yes,
we certainly could have used LWP::Authen::OAuth2 as we did
in that previous column, and I suspect it would work, but I was
also perfectly pleased to use the OAuth2 support built into
WebService::Spotify instead. There are good arguments for
going either route, so I would say you should follow your own best
judgment on this call.

Let’s take a look at some code that uses OAuth2 behind the scenes
to extract the contents of one of my private playlists. In order to
use this code, I first had to register for an application at https://
developer.spotify.com/my-applications/#!/applications. I gave
the application a name, a description, and a redirect URI (I used
“http://localhost:8888/callback”; more on that in a moment).
Upon creation, the application was assigned a client ID and a cli-
ent secret. Let’s see the code and then we’ll take it apart:

use WebService::Spotify;

use WebService::Spotify::Util;

http://www.usenix.org
https://i.scdn.co/image/c20d9975b9253255d879c9a10d8f3a8deab077e5
https://p.scdn.co/mp3-preview/4d99d56fad8d2b31eb9fb7fa5c9a603fa23adb16
https://developer.spotify.com/my-applications/#!/applications
https://developer.spotify.com/my-applications/#!/applications
http://localhost:8888/callback
https://i.scdn.co/image/c20d9975b9253255d879c9a10d8f3a8deab077e5
https://p.scdn.co/mp3-preview/4d99d56fad8d2b31eb9fb7fa5c9a603fa23adb16

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 75

COLUMNS
Practical Perl Tools: Perl to the Music

my $username = “yourusername”;

$ENV{SPOTIFY_CLIENT_ID} = ‘YOUR_CLIENT_ID_HERE’;

$ENV{SPOTIFY_CLIENT_SECRET} = ‘YOUR_CLIENT_SECRET_HERE’;

$ENV{SPOTIFY_REDIRECT_URI} = ‘http://localhost:8888/

callback’;

my $token = WebService::Spotify::Util::prompt_for_user_

 token($username);

my $s = WebService::Spotify->new(auth => $token);

my $playlist = $s->user_playlists($username)->{items}->[2];

note, as of this writing, the module had a bug that

causes the use of ‘fields’ to fail. It may be fixed

by the time you read this.

#

If not, line 133 of lib/WebService/Spotify.pm should read:

return $self->get(“users/$user_id/$method”, fields =>

$fields);

my $tracks = $s->user_playlist(

 $username,

 ‘playlist_id’ => $playlist->{id},

 ‘fields’ => ‘tracks.items(track(name,album(name),

 artists(name)))’,

);

print “Playlist: $playlist->{name}\n”;

foreach my $t (@{ $tracks->{tracks}->{items} }) {

 print “Track: $t->{track}->{name}\n”;

 print “Album: $t->{track}->{album}->{name}\n”;

 print “Artists: $t->{track}->{artists}->[0]->{name}\n”;

 print “\n”;

}

The first interesting part of the code is the “prompt_for_user_
token” call. Here we are asking the module to do the necessary
OAuth2 dance to get us a token that can be presented to the
service by WebService::Spotify to show we have authorization.

When this line of the code runs, it spits out a URL that you need
to paste into a browser and then prompts for the URL that will
be returned to us. Spotify shows you a standard OAuth2 autho-
rization request screen. If you authorize the request, the service
attempts to redirect to the redirect URI we supplied during the
application creation stage but adds on a few parameters. These
parameters include a representation of a token we will need later.

Here’s where I have taken a less than elegant shortcut. Unless
you are doing something interesting on the machine running the
browser (localhost), chances are you don’t have a server running
on port 8888 to handle this redirect. As a result, the browser
displays a “Sorry, I can’t go to that URL” error page. That’s just
fine, we don’t actually need to complete the redirect, we just
need the URL being used for that redirect. We can just copy the
URL it attempted from the browser’s URL field and paste it to
the prompt from our running script so it can continue. I suppose

if we wanted to be cooler we could indeed spin up a tiny server
(e.g., using something like Mojolicious) to catch the redirect and
print out the URL, but that level of coolness is not required for
this particular application.

Now that we’ve done the OAuth2 auth dance, the code in
this example uses the appropriate token when creating the
WebService::Spotify object. WebService::Spotify will make sure
to handle getting the right token to Spotify during the rest of the
transactions with the service. It is also smart enough to cache
the token (and ask for renewals if necessary), so we won’t have to
go through that initial authorization step again.

The first thing we do with our newfound authorization is request
one of the playlist records from the list of playlists our user owns.
I’m picking the third playlist in my account just because I know
it is short and hence useful for this example. You could easily
write code that iterates through all of them.

Now to get the tracks for this playlist—we ask for the contents of
my user’s playlist with the ID retrieved from the playlist record.
To be fancy, we’re adding an additional parameter to our request
that limits the fields returned from our query. That field says
“tracks.items(track(name,album(name),artists(name)))”, which
means “given all of the items in a playlist record, pull out the
tracks, and from within the tracks pull out the track name, the
name of the album that track comes from, and the artists’ name.”
We could have left this parameter off and just grabbed the fields
from the large response we get back, but this is a bit more effi-
cient, and the returned object is easier to look at in a debugger.
We iterate through the tracks in the playlist, printing out these
items. Here’s what the output looks like for my shortest playlist:

Playlist: Pre-class

Track: I Zimbra - 2005 Remastered Version

Album: Fear Of Music (Deluxe Version)

Artists: Talking Heads

Track: Default

Album: Default

Artists: Django Django

Working with all of this data is done just the way we saw in the
previous sections. Creating (user_playlist_create) and manipu-
lating playlists (user_playlist_add_tracks) is supported by
WebService::Spotify as well. Both are straightforward given
what we already know about playlist IDs and track URIs.

I hope you have fun experimenting with this API. Take care, and
I’ll see you next time.

http://www.usenix.org
http://localhost:8888/callback
http://localhost:8888/callback

76  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS

What’s New in Go 1.6—Vendoring
K E L S E Y H I G H T O W E R

G o 1.6 was released in Q1 of 2016 and introduced support for Linux
on MIPS and Android, HTTP2 support in the standard library, and
some amazing improvements to the garbage collector (GC), which

reduced latency and improved performance for the most demanding applica-
tions written in the language. Improvements to the standard library and run-
time normally get the most attention leading up to a new release. However,
with the release of Go 1.6 it’s all about dependency management, which takes
on one of the biggest pain points in the Go community.

Before you can really appreciate the impact of the Go 1.6 release, and the work around
improving dependency management, we need to review how we got here.

Manual Dependency Management
Until recently, managing dependencies in Go required pulling external libraries into your
GOPATH and attempting to build your application. To make things easy, Go ships with the
go tool, which automates fetching dependencies and putting things in the right place. In the
early days one could argue this was enough to get by. There was no real pressure to focus on
tracking versions of your dependencies, largely because everything was relatively new and
had a single version.

Let’s take a look at managing dependencies for a simple application called hashpass—which
prints a bcrypt hash for a given password.

First we need to create a directory to hold the hashpass source code:

$ mkdir -p $GOPATH/src/github.com/kelseyhightower/hashpass

$ cd $GOPATH/src/github.com/kelseyhightower/hashpass

Now save the hashpass source code to a file named main.go:

package main

import (

 “fmt”

 “log”

 “syscall”

 “golang.org/x/crypto/bcrypt”

 “golang.org/x/crypto/ssh/terminal”

)

func main() {

 fmt.Println(“Password:”)

 password, err := terminal.ReadPassword(syscall.Stdin)

 if err != nil {

 log.Fatal(err)

Kelsey Hightower has worn
every hat possible throughout
his career in tech, and enjoys
leadership roles focused on
making things happen and

shipping software. Kelsey is a strong open
source advocate focused on building simple
tools that make people smile. When he is not
slinging Go code, you can catch him giving
technical workshops covering everything from
programming to system administration and
distributed systems.
kelsey.hightower@gmail.com

http://www.usenix.org
mailto:kelsey.hightower@gmail.com

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 77

COLUMNS
What’s New in Go 1.6—Vendoring

 }

 passwordHash, err := bcrypt.GenerateFromPassword

(password, 12)

 if err != nil {

 log.Fatal(err)

 }

 fmt.Println(string(passwordHash))

}

With the hashpass source code in place it’s time to compile a
binary:

$ go build .

main.go:8:5: cannot find package “golang.org/x/crypto

/bcrypt” in any of:

 /usr/local/go/src/golang.org/x/crypto/bcrypt (from $GOROOT)

 /Users/khightower/go/src/golang.org/x/crypto/bcrypt

(from $GOPATH)

main.go:9:5: cannot find package “golang.org/x/crypto/ssh

/terminal” in any of:

 /usr/local/go/src/golang.org/x/crypto/ssh/terminal

(from $GOROOT)

 /Users/khightower/go/src/golang.org/x/crypto/ssh/terminal

(from $GOPATH)

Fail.

The build did not work, but what happened? The error message
is telling us that we are missing a few dependencies required to
build hashpass. Recall the import block at the top of the main.go
source file.

import (

 “fmt”

 “log”

 “syscall”

 “golang.org/x/crypto/bcrypt”

 “golang.org/x/crypto/ssh/terminal”

)

The first three imports—fmt, log, and syscall—can be found in
the standard library installed as part of the Go distribution.
The next two libraries are external dependencies that must be
fetched and installed into our GOPATH before we can use them.

Use the go tool to fetch both external dependencies:

$ go get golang.org/x/crypto/bcrypt

$ go get golang.org/x/crypto/ssh/terminal

Notice we are not fetching a specific version of our external
dependencies. Yeah, you can see where this is going; stay with
me. With our external dependencies in place, try building
hashpass again, but this time use the -v flag to print each of the
dependencies as they are being compiled:

$ go -v build .

golang.org/x/crypto/blowfish

golang.org/x/crypto/ssh/terminal

golang.org/x/crypto/bcrypt

github.com/kelseyhightower/hashpass

Success! We now have the hashpass binary in our current direc-
tory. Run the hashpass binary and enter a (fake) password to get
a bcrypt hash:

$./hashpass

Password:

$2a$12$bD51ZjG//

NWrbo5dYWSFeeppvJwZazRBWqLBh4afnP0pUQSg3yAMy...

Managing dependencies this way works for simple projects with
few external dependencies, but there are many hidden gotchas
here. We are not tracking each version of our dependencies,
which means other people will have a hard time reproducing
our build. The version of our dependencies is based on when we
fetched them, not specific versions we declared ahead of time.
This is the problem the Go community has been trying to solve
for nearly five years.

Third Party Dependency Management Tools
Given the challenge of manually managing dependencies,
many third party tools started to appear, Godep being the most
popular. Godep helps track which version of a dependency your
project is using and optionally includes those dependency source
trees in the same repository as your code through a process
called vendoring.

Let’s see Godep in action. Install Godep using the go get command:

$ go get github.com/tools/godep

Remove the existing hashpass external dependencies from your
GOPATH:

$ rm -rf $GOPATH/src/golang.org/x/

Now we are ready to use Godep to manage the hashpass exter-
nal dependencies. Let’s start from the hashpass source code
directory:

$ cd $GOPATH/src/github.com/kelseyhightower/hashpass

Use the godep get command to fetch the hashpass external
dependencies.

$ godep get .

Fetching https://golang.org/x/crypto/bcrypt?go-get=1

Fetching https://golang.org/x/crypto?go-get=1

Fetching https://golang.org/x/crypto/ssh/terminal?go-get=1

...

http://www.usenix.org
https://golang.org/x/crypto/bcrypt?go-get=1
https://golang.org/x/crypto?go-get=1
https://golang.org/x/crypto/ssh/terminal?go-get=1

78  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
What’s New in Go 1.6—Vendoring

Use the godep save command to record the version of each
dependency in use and copy their source code into your
repository:

$ godep save

The godep save command creates a working directory named
Godeps. Take a moment to explore it.

$ ls Godeps/

Godeps.json Readme _workspace

The Godeps.json file is used to record the versions of our
dependencies:

$ cat Godeps/Godeps.json

{

 “ImportPath”: “github.com/kelseyhightower/hashpass”,

 “GoVersion”: “go1.5”,

 “GodepVersion”: “v62”,

 “Deps”: [

 {

 “ImportPath”: “golang.org/x/crypto/bcrypt”,

 “Rev”: “b8a0f4bb4040f8d884435cff35b9691e362cf00c”

 },

 {

 “ImportPath”: “golang.org/x/crypto/blowfish”,

 “Rev”: “b8a0f4bb4040f8d884435cff35b9691e362cf00c”

 },

 {

 “ImportPath”: “golang.org/x/crypto/ssh/terminal”,

 “Rev”: “b8a0f4bb4040f8d884435cff35b9691e362cf00c”

 }

]

}

Not what you are accustomed to seeing, right? The Godeps.json
file is not tracking semantic version numbers like 1.0.0 or 2.2.1.
This is where the Go community differs from many others.
In the Go community we track the entire source tree that we
depend on and do not rely on version numbers—version numbers
can be reused and can point to later versions of a source tree, a
security nightmare waiting to happen.

Another thing that’s not so obvious at first glance, Godeps copies
all of our dependencies into our source tree under the Godeps
/_workspace directory:

$ tree -d Godeps/_workspace/

Godeps/_workspace/

└── src

 └── golang.org

 └── x

 └── crypto

 ├── bcrypt

 ├── blowfish

 └── ssh

 └── terminal

8 directories

The Godeps/_workspace directory mirrors part of the GOPATH
we depend on for building our application. The idea here is to
check in the entire Godeps directory and ensure our dependen-
cies live next to our code. The Godeps/_workspace directory is
ignored by the go build tool because it starts with an underscore
and will require the godep command as a wrapper around the go
build command.

$ godep go build -v .

The godep command ensures the Godeps/_workspace directory
is included at the front of the GOPATH, which causes our ven-
dored dependencies to take priority during the build process.

The main drawback to using Godep to manage dependencies
was that Godep was non-standard and incompatible with the
go tool—go get will ignore the Godeps/_workspace directory
and force users to check out your entire project to build your
application.

Vendoring
Vendoring makes it easier to deliver reproducible builds and
reduces reliance on remote code repositories hosting your
dependencies—it also prevents your development team from
scrambling when GitHub goes down in the middle of a release:
fun times!

Godep proved that managing dependencies can be done with the
right tools, but required help from the core Go project to reach
its full potential. That help arrived in Go 1.6; a snippet from the
release notes:

◆◆ Go 1.6 includes support for using local copies of external depen-
dencies to satisfy imports of those dependencies, often referred
to as vendoring.

◆◆ Code below a directory named “vendor” is importable only
by code in the directory tree rooted at the parent of “vendor,”
and only using an import path that omits the prefix up to and
including the vendor element.

In a nutshell Go 1.6 will search a vendor directory for external
dependencies, but you’ll still need tools to copy them there.

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 79

COLUMNS
What’s New in Go 1.6—Vendoring

Newer versions of Godeps will detect that you’re using Go 1.6
and copy your dependencies into the vendor directory.

$ cd $GOPATH/src/github.com/kelseyhightower/hashpass

$ rm -rf Godep

$ godep save

Godep creates a vendor directory and copies the hashpass exter-
nal dependences into it:

$ tree -d vendor/

vendor/

└── golang.org

└── x

└── crypto

├── bcrypt

├── blowfish

└── ssh

└── terminal

7 directories

As an added bonus, Godeps continues to write the Godeps
/Godeps.json file, so you can track exactly where your dependen-
cies came from. At this point we can rebuild hashpass without
any wrapper tools thanks to support for the vendor directory.

$ go build -v

github.com/kelseyhightower/hashpass/vendor/golang.org/x

/crypto/blowfish

github.com/kelseyhightower/hashpass/vendor/golang.org/x

/crypto/ssh/terminal

github.com/kelseyhightower/hashpass/vendor/golang.org/x

/crypto/bcrypt

github.com/kelseyhightower/hashpass

Notice all the hashpass dependencies are being pulled in from
the local vendor directory. Feel free to take the rest of the day off,
you’ve earned it!

Summary
Since the release of Go 1.0, the Go community has been on a long
journey to get a handle on dependency management. Over the
years the community has stepped in to help define what the right
dependency management solution looks like for Go and, as a
result, gave way to the idea of vendoring and reproducible builds.
Now, with the release of Go 1.6, the community has a standard
we can rely on for many years to come.

http://www.usenix.org

80  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS

Mukul Pareek, a colleague at a market maker bank, and I have run the Index of Cyber Secu-
rity for five years [1]. This article is a kind of compendium of what the Index has shown over
those five years, but before I get to that I will discuss how we got to where we are.

The only purpose that makes security metrics worthy of pursuit is that of decision support,
where the question being studied is more one of trajectory than exactly measured position.
None of the indices I’ll discuss are attempts at science, although those that are in science (or
philosophy) will also want measurement of some sort to backstop their theorizing. We are in
this because the scale of the task compared to the scale of our tools demands force multipli-
cation—no game play improves without a way to keep score.

Early in the present author’s career, a meeting was held inside a major bank. The CISO, a
recent unwilling promotion from Internal Audit, was caustic even by the standards of NYC
finance. He began his comments precisely thus:

Are you security people so #$%&* stupid that you can’t tell me:

◆◆ How secure am I?
◆◆ Am I better off than I was this time last year?
◆◆ Am I spending the right amount of money?
◆◆ How do I compare to my peers?
◆◆ What risk transfer options do I have?

Twenty-five years later, those questions remain germane. The first, “How secure am I?” is
unanswerable; the second, “Am I better off than I was this time last year?” is straightforward
given diligence and stable definitions of terms; the third, “Am I spending the right amount of
money?” is evaluable in a cost-effectiveness regime, although not in a cost-benefit regime; the
fourth, “How do I compare to my peers?” can only be known directly via open information or
indirectly via consultants; and the fifth, “What risk transfer options do I have?” is about to get
very interesting as clouds take on more risk and re-insurers begin pricing exercises in earnest.

The argument for an index is that when measurement is hard, process consistency is your
friend. If we can find one or a few measures that can be tracked over time, those measures,
those base numbers do not have to be guaranteed correct—so long as any one series is wrong
with some sort of consistency, its wrongness doesn’t change the inferences drawn from it. In
our kind of work, it is the shape of the trendline that matters. Decisions are supported when
we know what direction something is going.

As an example, for some years the National Vulnerability Database has published a daily
number called the “Workload Index” [2], which is a weighted sum of current vulnerabilities
in the NVD. To quote from NIST:

[The Workload Index] calculates the number of important vulnerabilities that
information technology security operations staff are required to address each day.
The higher the number, the greater the workload and the greater the general risk
represented by the vulnerabilities. The NVD workload index is calculated using the
following equation:

For Good Measure
Five Years of Listening to Security Operations

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

http://www.usenix.org
mailto:dan@geer.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 81

COLUMNS
For Good Measure: Five Years of Listening to Security Operations

{
(number of high severity vulnerabilities published
within the last 30 days)

+
(number of medium severity vulnerabilities published
within the last 30 days)/5

+
(number of low severity vulnerabilities published
within the last 30 days)/20

}

/ 30

[In other words, t]he index equation counts five medium
severity vulnerabilities as being equal in weight with
1 high severity vulnerability. It also counts 20 low
severity vulnerabilities as being equal in weight with 1
high severity vulnerability.

Ten years of the NVD Workload Index is shown in Figure 1.

Figure 1: Ten years of the NVD Workload Index

The NVD Workload Index encourages a particular inference:
that the arrival rate of new vulnerabilities approximates a ran-
dom process. Graphing the Workload Index in the aggregate and
comparing that to a Gaussian bell curve shows a fair congruence
with some right-skew and a bit of kurtosis, as seen in Figure 2.

Figure 2: Daily workload number by prevalence

Looking at other methods of binning the Index values, Figure 3
shows some strong variation year over year,

Figure 3: NVD workload year by year

Figure 4 shows seeming seasonality,

Figure 4: NVD workload month by month

and Figure 5 shows a pretty clear implication of work week.

Figure 5: NVD workload day by day

In short, the NVD workload is a straightforward example of
an index. I would argue that to be a useful index there has to be
something to measure that, once measured, might help one to
make some decisions. I would also argue that to be believable,
there has to be some transparency as to methods—especially
regarding the parameters of sampling—and a believable will-
ingness to carry out a relatively unexciting routine indefinitely.
Thank you, NIST, for your long-term diligence in this and so
many other things.

Security Pressure Index
Before Pareek and I began the Index of Cyber Security, I had
tried various indices before. A different colleague, Dan Conway,
and I put together what we called the “Security Pressure Index,”
meaning an estimate of the time rate of change in the pressure
on security professionals. With indices, seeking generality
usually means that you want more than one input. We settled
on four: we got a measure of phishing from the Anti-Phishing

http://www.usenix.org

82  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
For Good Measure: Five Years of Listening to Security Operations

 Working Group, a measure of spam from Commtouch, a measure
of data loss from the Dataloss Database, and that measure of
workload from NIST. Together, these four yielded the Security
Pressure Index as shown in Figure 6.

Figure 6: Five years of the Security Pressure Index

To be clear, in each case we were mooching off other people’s
work, which is rarely polite and leaves you no recourse should,
say, one of those sources change its numbering scheme, change
its publication schedule, or change anything at all without telling
you. We thanked all four sources in print every month, but what
we were doing was, in so many words, predictably unsustainable.
After five years, we called it quits for the SPI. Close, perhaps, but
no cigar.

0/ wned Price Index
So what next to try? With the aphorism “Good artists copy, great
artists steal” in mind, Conway and I ripped off PNC Financial’s
long-running “Christmas Price Index” [3]. The XPI, as it is
called, calculates the price of buying all the gifts described in the
song “The Twelve Days of Christmas” such that you might know
what your true love’s affection is going to cost you. In our case,
we put together a price index for stolen data and similar illicit
digital goods. To get a little attention, we called it the
“0/ wned Price Index,” and after nailing down a variety of stolen
goods for which market price information paralleled the XPI, we
amalgamated them in a way that could, after a fashion, actually

be sung to the tune of “The Twelve Days of Christmas” [4]. We
published this for three years (see Figure 7).

And then we stopped. The reason we stopped was a kind of
progress. The market price data we relied upon came from eaves-
dropping on so-called carder forums and the like—places where
stolen data was sold at auction. But those sources of information
dried up once law enforcement infiltrated them and began mak-
ing arrests. After that, to get auction pricing you had to be a mar-
ket participant, but Conway and I were not ready to be market
participants. Repeating myself, if you rely on data sources you do
not control, then what you are doing is inherently temporary.

Index of Cyber Security
Which leads me to the main event for this column. Based on the
experience(s) described above and just general knowledge of
the field, Pareek and I put together the Index of Cyber Security,
which turned five years old in April 2016. The first lesson, that it
is better to source your own data if you expect to be in the game
for the long haul, means we have to ask our own questions, not
just graze in other people’s pastures during their growing season.

Another lesson is that, even yet and perhaps forever, as a field
we will not be able to agree on precise terminology. Yes, we can
all agree that “vulnerability,” say, is a term in general use, but as
to a fully precise definition, universally held—that’s not coming.
That, in turn, means that if you ask, “How many vulnerabilities
are there?” the answers you get will be biased by the definitions
of the individuals answering. This is not completely serious, but
terminological confusion substantially interferes with reproduc-
ibility of survey results.

As a central point, survey research is vulnerable to idiot respon-
dents. If you are looking for generalizability, you administer your
survey to as large a population as you can afford and you pick the
people replying either by randomization or by selection. If you
randomize, you gain some immunity to idiot respondents. The
well known Consumer Confidence Index [5] (CCI) is based on
5000 random phone calls a month, thus washing out the idiot
fraction, at least so long as that fraction is not growing. The CCI
is run consistently, and many financial instruments factor in
the new value of it as soon as it is issued. It is a forward-looking
indicator.

If generalizability to the public at large is not a goal, then you
administer your survey to a vetted population where there is no
idiot fraction. But by selecting your respondents, your results
are conditional on the methodology of your selection process.
The well-known Purchasing Managers’ Index (PMI) [6] picks its
respondents carefully and has many fewer of them, but because
the PMI respondents are selected for what they know, this is a
feature not a bug. The PMI is a weighted sum of five variables,
in this case production level, new orders, supplier deliveries,

Figure 7: 0wned Price Index for Christmas 2009

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 83

COLUMNS
For Good Measure: Five Years of Listening to Security Operations

inventories, and employment level. Like the CCI, the PMI is run
consistently, and many financial instruments factor in the new
value of it as soon as it is issued. It is a forward-looking indicator.

So Pareek and I looked at both the Consumer Confidence Index
and the Purchasing Managers’ Index for inspiration. Both of
them ask subjective questions about the opinion of the respon-
dent. The CCI wants opinions that are representative of the
population at large, so they take the randomization route. The
PMI wants opinion to be knowledge-based, so they take the vet-
ted respondents route. Pareek and I decided that we would follow
the PMI approach, that is, to have as respondents people who
actually know something.

But what is it they are supposed to know? We decided that if the
Index of Cyber Security was to be a forward-looking indicator,
then we had to have as respondents people who are on the front
lines, people with operational responsibility for cybersecurity.
We do not want people whose knowledge of current cybersecu-
rity is academic, or based on police power, or the result of having
memoranda passed up the management chain to them. We
wanted people who were doing cybersecurity, not people who had
knowledge that didn’t come from actual daily practice.

This means that we rely on a certain kind of expert, and the
Index of Cyber Security is an amalgamated subjective opinion on
the state of play as understood by people who are actually in the
game, per se. When I say “subjective” it is because we do not have
solid, unarguable measures of security. In fact, that we don’t is
precisely why we are doing the Index—when you don’t have unar-
guable measures, the next best thing is the collected wisdom
of experts. And note that I said “experts”—we neither know nor
care what a respondent’s official position is in some organiza-
tional entity; we care about experts wherever we find them. So it
may be that some handful of experts work for the same employer,
and some employers will have no experts present at all. So be it;
we are not collecting insights into the Fortune 500—we are col-
lecting experts.

Because every term we might use has, as I mentioned before,
some degree of ambiguity as a term, we cannot just ask, “How
bad is malware?” Asking “How bad is malware?” requires a pre-
cise, shared definition of “malware” and a malware thermometer
that reads “78” or the like. So what then do you do?

What we do is ask a series of 25 questions, and the questions are
the same every month. All of the questions read like this:

Since a month ago, the threat of insider attack has

◆◆ Gotten Better
◆◆ Gotten Worse
◆◆ Gotten a Lot Better
◆◆ Gotten a Lot Worse
◆◆ Remained Unchanged

We ask 25 questions like that.

There are two things to note at this point: one, you may recog-
nize the response set as a Likert scale. Likert scales are standard
practice in survey-based research. They are always symmetric
with an odd number of options so that the central option is con-
sidered neutral. The score for a question is a weight assigned to
each of the alternatives.

The main point here is that each question is of the form “Since
a month ago,” meaning that what we are looking for is change,
not valuation. That is far easier to estimate reproducibly than
estimating a number in an absolute range. The rest of the ques-
tion, “the threat of insider attack has gotten,” does not require
everyone to agree on what insider or attack means. We do not
have to train our respondents to use this or that word precisely
in one way that might differ from how they usually use it. All we
need is for the individual respondent to have a mental definition
of the word or phrase that is reasonably stable. If your definition
of, say, “malware” and mine are subtly different, we can still say
whether the pressure from it has gotten better or worse.

In other words, the Likert scale’s symmetry avoids biasing the
respondent in one direction or the other. Additionally, by asking
about the trend of a characteristic rather than the value of some
measurement of that characteristic, the respondent is relieved of
having to conform to either some official definition or to a scal-
ing mechanism they did not invent. Instead, they can use their
own definition and don’t need numbers.

Because each question is of the same form, the Index of Cyber
Security is then calculated by counting how many “Gotten
Better” answers, how many “Gotten Worse” answers, etc.,—one
count for each Likert category. Those counts are combined in a
weighted sum:

Much
Better

Better Unchanged Worse Much
Worse

-20% -7.50% 0 7.50% 20%

Being a measure of risk, the ICS is bounded on the low side but
not on the high side, hence the directionality of the weightings.
In other words, the ICS rises as perceived risk rises. An example:

Much
Better

Better Unchanged Worse Much
Worse

6 58 614 150 15
-20% -7.50% 0 7.50% 20%

Multiplying it out and dividing by the sum of the above, we get
0.010235. Exponentiating that gets a multiplier to apply to last
month’s ICS to get this month’s, i.e., 1.010287, or an increase in
the ICS of a tiny bit over 1%.

We do this calculation not only in the aggregate so as to derive
the Index of Cyber Security value, but also on a question-by-

http://www.usenix.org

84  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
For Good Measure: Five Years of Listening to Security Operations

question basis so as to watch trends in specific risks. These
trendlines by question we refer to as sub-indices, and they are
part of a detailed monthly report that only respondents get.

And, yes, we occasionally replace one question with a new one.
To maintain continuity of the ICS as a whole, we apply a cor-
rection factor done in precisely the same way that any financial
index such as the Dow Jones Industrial Average does when it
replaces one stock with another.

Perhaps you did not need to know all that, but our point is that
the way the ICS is calculated is 100% conventional and entirely
boring. We want “boring” because whatever our results, we want
them to never be thought of as an artifact of some new method
we cooked up on the spot. Much as amateurs should rarely create
their own crypto algorithms, amateurs should rarely create their
own analytic regimes.

So this is the scheme—a largely fixed set of Likert-valued ques-
tions, a vetted respondent base, a trade of data for data, and a
commitment to a long run. This is information sharing at its best.

What we have learned so far: our respondents believe that risk
in the aggregate is and has been rising almost inexorably, but
which of the 25 components of the ICS is changing the most each
month varies over time—a lot—as seen in Figure 8,

Figure 8: Rank order % change across sub-indices month by month

which can also be seen looking at the trailing four-month volatil-
ity of the sub-indices in Figure 9.

Figure 9: Trailing four-month volatility up versus down

Another way of looking at dispersion of risk across questions is
that for 14 of the 58 months seen in Figure 10, at least one ques-
tion reached its lowest value, and in 14 of those months at least
one question reached its highest value.

Figure 10: Trailing four-month volatility up versus down, highest and low-
est values

In five of those months, both one question’s highest and another
question’s lowest values were set, and in 32 of those months,
no question reached its most extreme value. In April 2014, 20%
of the questions returned their highest values ever for rate of
change. In September 2015, 25% of the questions returned their
lowest values ever for rate of change. “Why?” is hard to guess.

Let me be clear that we are not trying to do science here. If your
purpose in building a model is to come to a definitive conclusion
about causality, about how nature works, then you are saying
that the inputs to your model and the coefficients that calibrate
their influence within your model are what matters. Parsimony
in the sense of Occam’s Razor is your judge, or, as Saint-Exupéry
put it, “You know you have achieved perfection in design, not
when you have nothing more to add, but when you have nothing
more to take away.”

By contrast, when your purpose in building a model is to enable
control of some process or other, then you will not mind if your
input variables are correlated or redundant—their correlation
and their redundancy are not an issue if your goal is to direct
action rather than to explain causality. A goal of understanding
causality in its full elegance leads to F = ma or E = mc2. A goal
of control leads to econometric models with thousands of input
variables, each of whose individual contribution is neither clear
nor relevant.

That said, if you look month by month you see that some ques-
tions are perceived to indicate more risk than others. Ranking
the magnitude of individual risks over a 58-month period gives us:

Risk Number of times in the top
three for the month

Counterparty 52
Media & public perception 40
Hacktivist/Activist 30

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 85

COLUMNS
For Good Measure: Five Years of Listening to Security Operations

If you rank not by risk score but by which risk had the biggest
jump (volatility) that month, then you find

Risk Number of times in the top
three for the month

Media & public perception 42
Phishing/Social engineering 35
Counterparty 16

With the usual caveats about correlating too many things at
once, if you put all 25 current questions into a correlation matrix,
then some do appear to be in lock step.

Correlation Risk Pairs

0.971 Effect desired: Data theft
Weapons: Phishing/Social engineering

0.958 Effect desired: Data theft
Attackers: Criminals

0.946 Overall: Media & public perception
Weapons: Phishing/Social engineering

0.940 Weapons: Phishing/Social engineering
Attackers: Criminals

0.931 Overall: Media & public perception
Effect desired: Data theft

Given that array, one could argue that there is really only one
risk between all of those: the risk of data theft by criminals using
social engineering so that you look stupid in the newspaper.

Of course, one thing that we wish we had done from the get-go
was to record the dates of important security events, whether
that is in the newspaper, the laboratory, or the underworld. We
didn’t, and we’re not going to start now. But when you look at
all the variation, we do often want to say, “Where did that come
from?” We can’t answer that, so we won’t make believe we can; to
do so given our methods would be pure speculation [7].

We also compute for each risk and overall a diffusion index and
do it the same way as diffusion indices are done in finance. Dif-
fusion indices are a symmetric construct; they are just the sum
of all the indicators in a basket of indicators that are going in one
direction plus half of those that are static. As the ICS is a risk
index, we report what percentage of responses are either “Worse”
or “A Lot Worse” plus half the responses that are “Neutral.” For
January of this year, the top three were

Risk Diffusion Index

Phishing/Social engineering 69%
Criminals 63%
Customization to target 62%

Of the 25 risks, five of them had diffusion indices of 50% or less.
The other 20 were above 50%.

One final thing; each month, in addition to the standing set of 25
questions, we ask a question of the month. Once in a while these
are suggested. Most of the time Pareek and I think them up. In
2015, Questions of the Month covered encryption, safe harbor,
ransomware, IPv6, affordability, change management, CEO
involvement, regulation, worst case scenarios, security metrics,
and offensive dominance.

Sometimes we will repeat a question. For example, in September
of 2012 we asked, “What percentage of the security products you
are running now would you still run if you were starting from
scratch?” In January of this year we asked that question again.
Compiling the answers, we found in September of 2012 that
35.5% of the products then installed would not be reinstalled
should the respondents be in a position to start fresh. Call that
buyers’ remorse. In January of this year, we found that buyers’
remorse had swelled from 35.5% to 51.9%. I don’t have figures for
the number of cybersecurity products available for sale month
by month, but it is surely greater now than it was three and a half
years ago. I can tell you from where I work that the number of
cybersecurity startups has never been greater; a spokesman for
Kleiner-Perkins says that they are tracking over 1100 cyberse-
curity startups now in some part of the funding game. Is a rising
level of buyers’ remorse a sign that better tools are on offer or
that unmitigable risk is getting worse? It’s a puzzle.

Conclusion
This seems a good place to stop insofar as it is surely possible to
just keep doing exploratory data analysis for pages more. But that
isn’t actually what I have been doing. What I’ve been doing is
talking about a different kind of information sharing, bottom up,
as it were. All the talk about information sharing always seems
to mean something top down, something where those with more
power or better eyes or an enforceable structural advantage
share a portion of their information trove with the worthy below
them. I am not making fun of that; it is a time-proven technique
and it is policy across the board. It comes out of the idea of “need
to know,” and need to know is a protective mechanism in so
many things. Yet it seems to us that once upon a time any one of
us could start from nothing and, by diligence, come to know just
all that was necessary for cybersecurity. That is clearly less true
than it once was. The technical knowledge base has both deep-
ened and broadened, deepened in that sense of an accumulat-
ing welter of obscure interdependencies, and broadened in that
sense of cybersecurity becoming an issue wherever networks go.

That affects need to know in ways we have only barely acknowl-
edged. Sure, the Federal government, or any Western govern-
ment, can grant security clearances to the CISOs of every

http://www.usenix.org

86  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
For Good Measure: Five Years of Listening to Security Operations

market maker bank, or any other institution that matters to
them, so as to share classified information.

But, for Pareek and myself, the argument for official channels is
unsatisfactory and insufficient. We don’t mind them, but cyber-
security in its complexity just doesn’t seem to us to be headed for
some sort of denouement when all will become clear at taxpayer
expense. We are doing the Index of Cyber Security the way we
are on the grounds that (1) you can’t know what’s going on unless
you are on the playing field yourself, and (2) that there is no
way to tell if the risks you are seeing are specific to you without
comparing your risks to those of other people in your position
elsewhere.

In the fullness of time, we may add other things to our repertoire,
but we are expecting to keep doing the ICS for the indefinite
future. We invite you to participate. The respondent’s workload
is insignificant, the shared data cannot be gotten elsewhere,
and we are doing everything we know to do to make it possible
for respondents to be frank without concern to being quoted in
any way. To take part in this project, see the Contact page under
reference [1].

References
[1] Index of Cyber Security: cybersecurityindex.org.

[2] NIST Workload Index: nvd.nist.gov/Home/Workload-
Index.cfm.

[3] PNC Christmas Price Index: www.pncchristmaspriceindex
.com/cpi.

[4] D. Geer and D. Conway, “What We Got for Christmas,”
IEEE Security & Privacy, January 2008: geer.tinho.net/ieee/
ieee.sp.geer.0801.pdf.

[5] Conference Board Consumer Confidence Index, issued at
10 a.m., Eastern Time, on the last Tuesday of every month:
www.conference-board.org/data/consumerconfidence.cfm.

[6] Institute for Supply Management, Purchasing Managers’
Index, issued at 10 a.m., Eastern Time, on the first business
day of every month: www.instituteforsupplymanagement.org
/ismreport/mfgrob.cfm.

[7] If you want to read the best talk ever given on speculation,
the late Michael Crichton nailed it in 2002 with “Why Specu-
late?” archived at geer.tinho.net/crichton.why.speculate.txt.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft Research NetApp VMware

USENIX Benefactors
ADMIN magazine Hewlett-Packard Linux Pro Magazine Symantec

USENIX Partners
Booking.com CanStockPhoto

Open Access Publishing Partner
PeerJ

http://www.usenix.org
www.pncchristmaspriceindex.com/cpi
http://www.conference-board.org/data/consumerconfidence.cfm
www.instituteforsupplymanagement.org/ismreport/mfgrob.cfm
www.pncchristmaspriceindex.com/cpi
www.instituteforsupplymanagement.org/ismreport/mfgrob.cfm
geer.tinho.net/crichton.why.speculate.txt
http://geer.tinho.net/ieee/ieee.sp.geer.0801.pdf
http://geer.tinho.net/ieee/ieee.sp.geer.0801.pdf

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 87

COLUMNS

/dev/random
R O B E R T G . F E R R E L L

The first time I heard the term “Fuzzy Logic” I thought it referred to
the way cats plead with you to pet them and then park themselves just
outside your reach. Rather than binary absolutes, fuzzy logic admits

the existence of “degrees of truth” that acknowledge the ambiguous nature of
nature. Life, in other words, is a multiple-multiple examination wherein the
answer often turns out to be “all of the above.” One commonly cited example
is when you toss a ball to someone. You don’t calculate exact values for all
the variables constituting the trajectory; you just throw the dang thing in the
general direction of your target and hope it doesn’t break Mrs. Anderson’s
front window again. Fuzzy logic is a pandemic that has infected people and
institutions worldwide and across historical epochs.

The poster children for fuzzy thinking are of course politics, politicians, and the election
thereof. Every two years the American people throw rationality to the wind and vote for the
candidate with the best clothes, facial features, and PR team. The reason we do this is that
any given politician’s stance on issues is dependent on who’s asking, whether the month ends
in “y,” and the phase of the moon. Not that their stance matters, anyway, because what they
promise or assert during the run-up to the election often has no bearing on what they accom-
plish—or more often fail to accomplish—once in office. An American presidential election is
a giant game of chess where the only piece left on the board by mid-November is a king.

Another area where fuzzy logic rears its head is consumerism. Admit it: when some gadget
or other cool thing you have no actual need for rings your bells, the fuzz-synthesis system
swings into high gear. In the time it takes to type your PayPal password you will have come
up with at least two solid rationalizations for why you simply have no option but to hit the
“Checkout” button. It matters little that you already own three shower TVs; this one is 4K.
There is absolutely no point in living if you can’t watch Dancing with the Stars in 4K while
you lather up your pits: am I right?

Fuzziness experiences many manifestations in and around the home—the answer to the
perennial query “what’s for dinner,” for example. Open just about any fridge in America (I
suspect a great many other nations, as well) and with not a lot of effort you can probably
uncover a half-dozen textbook examples of fuzzy. Nor are household chores immune from
fuzziness. Anyone who uses a clothes dryer will know what I mean. I’m convinced that dry-
ers are quantum gateways, in fact.

When I put a pair of socks in a dryer, they assume a superpositional state wherein they exist
simultaneously as both a pair and a single sock. Opening the dryer door collapses the wave-
form. In my case it usually collapses in “single sock” mode. The probability should be 50%
per pair for any given load, but it isn’t. I can only presume that something in my laundry room
environment biases this result.

Robert G. Ferrell is an award-
winning author of humor,
fantasy, and science fiction,
most recently The Tol Chronicles
(www.thetolchronicles.com).

rgferrell@gmail.com

http://www.usenix.org
http://www.thetolchronicles.com
mailto:rgferrell@gmail.com

88  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
/dev/random

It seems to me that one of the prime uses for fuzzy logic in the
upcoming years will be in the Internet of Things. I would go so
far as to suggest, in fact, that we rename it the “Internet of Fuzz”
in honor of that relationship. After all, it takes a dedicated fuzzy
thinker to connect one’s lights, thermostat, security system, fish
tank, doorknob warmer, microwave, welcome mat, garage door
opener, medicine cabinet, pet door, and seal-a-meal to the notori-
ously insecure global mishmash we call the Internet. A hacker
taking control of all these things might not be able to cause
irreparable harm, but one could well come home to a frozen
house with dead fish, a garage full of raccoons, an exception-
ally high utility bill, and a pissed-off SWAT team camped on the
front lawn.

Fuzzy thinking is also evident in many legislative actions, from
Supreme Court rulings right down to your local city council’s
ponderous pronouncements. Legislative gems running the gamut
from authorization for police to bite dogs to calm them down to
forbidding the sale of both toothpaste and a brush for applica-
tion of such to the same person on Sunday demonstrate beyond a
reasonable doubt that the rule makers of our great nation subsist
on a rich diet of tasty, tasty fuzz.

The private sector evinces no shortages in the fuzz department,
either. Companies search high and low, night and day, for fuzzy
staff. This results in some quite puzzling products, and even

more puzzling warning labels. To be fair, some of these labels
owe their existence more to the anticipated fuzziness of the con-
sumer than that of the label creators themselves. My favorites
include instructions not to operate a motor vehicle included on
bottles of pills intended for babies and dogs, admonitions against
inserting people into washing machines, and a warning not to
swallow wire coat hangers. Because that’s a widespread health
hazard.

Returning to our own occupational neighborhood, the security
practices of some computer-related concerns are so heavily
fuzzed it’s hard to see through to the content. Password genera-
tion algorithms for security products that do not allow special
characters: fuzzy. SSL sessions that accept self-signed certifi-
cates: fuzzy. Vendors who quietly upload “security updates” to
your device that significantly increase the vulnerability of said
device to remote exploits: ridiculously fuzzy.

Now, you might argue that none of what I’ve laid out above is
really “fuzzy logic.” I would respond by making for the door while
distracting you with an ad for tablets boasting 4K resolution that
promise to download entire HD movies that haven’t even been
released yet in the time it takes to enter your character-only
password. The door in question can be closed, open, or some-
where in between, but as long as I can squeeze through, I don’t
care. I still carry my old Fuzzbuster.

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 89

BOOKSBook Reviews
M A R K L A M O U R I N E , P E T E R G U T M A N N , A N D R I K F A R R O W

Thinking Security: Stopping Next Year’s Hackers
Steven M. Bellovin
Addison Wesley, 2016, 382 pages
ISBN 978-0-13-427754-7
Reviewed by Mark Lamourine

It turns out that Steve Bellovin and I have a very similar taste for
science fiction. It’s common for authors to include an epigraph
at the beginning of each chapter to provide a hint at the topic
or even some humor. Bellovin’s choices come from some of my
favorite authors: Lewis Carroll, Poul Anderson, E. E. “Doc”
Smith, and Larry Niven among others. He uses many quotes
from a recent novelist, Charles Stross. Each of these authors
writes about a proposed future or alternate world. They also
write about the human implications of their new framework.
Stross in particular writes about a near future, extrapolating on
current trends in technology and the threats they pose as well as
the promise. Bellovin wants us to do the same thing.

In Firewalls and Internet Security, Bellovin’s previous book on
firewalls, he and co-authors William Cheswick and Aviel D.
Rubin wrote about a specific known threat and a particular
technology to address it. In Thinking Security he gives the reader
a broad survey of how things stand today, the technologies that
protect our systems, and how they can fail us, and he offers some
hints about how we might plan for tomorrow.

The narrative arc is what you would expect: understand the
problem; survey the technology, uncovering strengths and
weaknesses; and consider how to use the strengths to mitigate
the dangers. In each chapter, he clearly lays out the topic and
cites examples of ways in which each technology has failed. At
the end of each chapter he gives a brief summary analysis and
conclusions. The book is broken into five sections, which broadly
are: the problem statement; the list of technologies considered; a
survey of human factors; a set of architectural case-studies; and,
finally, a discussion and guidelines for understanding, planning,
and pitching good security practices to corporate management.

In the preface, Bellovin calls this book a graduate-level introduc-
tion to computer systems security. It is aimed at working system
administrators and other security-related IT professionals.
He assumes a working level of understanding of how computer
systems operate and constantly underpins his text with refer-
ences to articles and papers that illustrate his topic, with the
understanding that readers will follow up if they are not already
familiar with the material. Maintaining computer security is an
active pursuit.

His motivation in writing this book is a recognition that, in
large part, the computer industry is spending resources in ways
that do not really improve the security of our systems. This
misallocation of effort is understandable but not necessary.
His book is a call to arms for system administrators to become
versed in the ways in which they can be effective and to make
a clear case for good security design and practice over bad. He
also wants to impress IT managers to understand and to trust
the front-line workers and to support them in their efforts to
educate those who make the decisions. Good security is all of our
responsibility.

Essential Scrum
Kenneth Rubin
Pearson Education, 2013, 452 pages
ISBN 978-0-13-704329-3
Reviewed by Mark Lamourine

One of the major tenets at the root of all Agilish software
development processes is to eliminate unnecessary “ceremony.”
The idea is that many of the meetings and memos that were the
backbone of business processes from the ’90s and before have
lost their meaning and become largely empty rituals. They con-
sume time without actually conveying information or improving
coordination.

But, humans being humans, we love our rituals. People find a
truly free-form “just do what you need to” process disconcerting
or uncomfortable. If there are no prescribed activities, people
create them. It’s just my opinion, but I think that’s one of the
reasons for the popularity of the Scrum method.

Scrum is, in my experience, the most well-defined of the Agile
process methods.

In Essential Scrum, Rubin presents scrum with the same preci-
sion and structure that Scrum offers to the family of Agile
methods. His book is a proper reference, presenting the reader
with the goals, concepts, and the process of Scrum for software
development.

Rubin’s approach and tone will suit the business reader and
coach. There are no whimsically drawn characters and banter-
filled dialogs, which are often used to try to soften the process of
learning a new software process framework.

After presenting the conflict that most traditional software
development processes create between rigid long-term planning
and interrupt-driven priorities (which are the reality of modern

http://www.usenix.org

90  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

BOOKS

software development), Rubin introduces the core device of
Scrum: the sprint. He devotes an entire chapter to the concept
and purpose of the sprint: to break the work being addressed
into manageable chunks and set achievable goals and deadlines.
He uses that as the center around which the rest of the Scrum
concepts are based.

Three detailed sections follow on how to define the work to be
done, prioritize it, and then plan for development and delivery
over time. First, Rubin introduces user stories and the ideas of
backlog, technical debt, cadence, and velocity. He shows how to
define, think about, discuss, and finally agree on a plan and a
schedule for work that all of the participants can meet.

In the second of these sections, Rubin explores in detail the
roles of the people who participate in the development process,
identifying them by their interests in the product and their
responsibilities.

This is where Rubin circles back and devotes the final five
chapters to the sprint process. He guides the reader through the
phases, from planning through execution to retrospective. He
closes by noting that Scrum, like most of business, is an endless
process, but by providing a set of markers in time, it allows the
participants to see and recognize their real accomplishments
and keep their eye on the the larger goals of the project.

I usually read and review books with an individual reader in
mind, but it is really difficult to gauge how effective a book like
this would be for an individual. Books on software development
processes are about interactions and communications, and these
are not going to be immediately applicable for a reader in isola-
tion no matter how motivated he or she is. For a person who is
joining a team already using Scrum this book may be some help.
Where it will excel is as a manual for a team lead who is familiar
with the process but needs a touchstone to stay grounded while
coaching others. Read once, return often, make mistakes, and
learn.

Kanban in Action
Marcus Hammarberg and Joakim Sunden
Manning Publications, 2014, 330 pages
ISBN 978-1-617291-05-0
Reviewed by Mark Lamourine

I have mixed feelings sometimes about the “in Action” theme
of this series of books. I like books that are either reference or
tutorial, and sometimes these books try to span the two types
without really reaching the goals of either. Kanban, though, fits
the “in Action” slot perfectly.

Hammarberg and Sunden begin by introducing the process
itself, then laying down the philosophy that guides the process.
They don’t shy away from discussing the pitfalls and mistakes

that new kanban participants can make. Most significantly, they
finish with a section on teaching kanban, closing the loop with
the reader.

Kanban is a group process. It centers around the kanban board
and the cards, which represent tasks, but the heart of kanban is
the process and the culture it builds. Kanban requires practice
and diligence until the process becomes comfortable and innate.
Then it will no longer seem like something imposed, but rather a
natural way of thinking when organizing and managing work for
a group.

Whenever I can, I like to review both the dead-tree and ebook
versions of books. Personally, I like the experience of paper, but
I know others who prefer searchable media. Often there are sig-
nificant differences in the presentation, especially in the graph-
ics and the code sample rendering on tablets and phones. This is
a case where both are effective, but the differences remain.

The graphics in the ebook are clean and full color. This is
especially important when the discussion is how to use color to
convey information on the board. This is a significant loss in the
black-and-white paper copy. With its compactness and search-
ability, the ebook version would be my choice for a coach or group
leader learning and teaching kanban. The paper will be on my
shelf to scan and lend.

The authors do a good job of presenting the practice and theory
of kanban. They address those learning kanban as team mem-
bers and leaders, and include frequent sidebars to coaches. I do
wish they’d included a section devoted to tips and guidelines for
coaches. In my experience, coaching can be a full-time job, and it
requires a constant awareness of both the topic under discussion
and the “meta topic”: keeping the discussion moving and on mes-
sage. Everything I could want is there, I just wish I could find it
in one place.

I said I generally like books that are either tutorial or reference.
I think Kanban in Action actually will serve both purposes
whether you’re a member of a team or a new team lead or coach.
I’m going to keep both the paper book and the ebook handy.

iOS Application Security: The Definitive Guide for
Hackers and Developers
David Thiel
No Starch Press, 2015, 296 pages
ISBN: 978-1-59-327601-0
Reviewed by Peter Gutmann

This book begins with a good, solid backgrounder on iOS devel-
opment, debugging, and testing that covers the first hundred-
odd pages, which was useful for me as a non-iOS developer but
which is something that I get the feeling the target audience
should know already. It’s in Part III, which covers the security
aspects of the iOS API, that things get interesting.

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 91

BOOKS

For example, there have been a number of studies done on
Android that revealed the widespread misuse of TLS, something
that’s typically done in order to make it easy (or at least easier)
to use, but which also renders it totally insecure. The book goes
to some lengths to tell developers both how to detect signs of
this misuse in other apps and libraries and how to avoid doing
it themselves, either by ensuring that the certificate checking
is done right or, better, by using certificate pinning in which
only specific certificates are trusted rather than anything that
turns up signed by a commercial CA. The author’s background in
security research and pen-testing really comes through here in
that he’s seen the things that can go wrong and makes a point of
addressing these specific issues, rather than just paraphrasing
the API documentation.

The rest of the book continues in this manner, providing lots of
information and advice to augment the standard documentation
on various security-relevant areas, including numerous notes on
informal workarounds for issues that developers have discovered
over time. In that sense it’s a bit like an iOS-security-oriented
subset of Stack Overflow, providing all sorts of useful advice to
developers that isn’t covered in standard documentation.

The next section of the book contains a quick overview of non-
iOS-specific issues like buffer and integer overflows, XSS, SQL
and XML injection, and so on, standard OWASP issues that are
also covered extensively elsewhere. While it’s good to at least
mention these issues here, given what a hugely complex topic
this is and how difficult it is to address in the limited space that’s
available, it would have been useful to refer readers to more com-
prehensive coverage like the OWASP Top Ten or CERT’s secure
coding guides, or for non-free sources, something like The Art of
Software Security Assessment.

Finally, the book concludes with sections on using (and not
misusing) Apple-specific mechanisms like the keychain and
dealing with privacy issues around user tracking and unique
IDs, extending Apple’s not-always-up-to-date-or-completely-
accurate documentation in order to give developers best-practice
advice on how to get things right.

In summary, this is a book that every iOS developer needs to read
and then act on. The next time you see an app that leaks private
data everywhere, is vulnerable to a whole host of injection
attacks, and uses crypto like it’s 1995, ask them why they didn’t
consult this book before shipping.

The Car Hacker’s Handbook: A Guide for the
Penetration Tester
Craig Smith
No Starch Press, 2016, 278 pages
ISBN: 978-1-59327-703-1
Reviewed by Rik Farrow

Ever since I got to work with Ian Foster and Karl Koscher on
their CAN Bus article (and hear their WOOT ’15 presentation),
I’ve found myself wanting to know more about car hacking. Fos-
ter and Koscher were working at UCSD while the Jeep hackers,
Charlie Miller and Chris Valasek, were devoting a significant
chunk of their lives to hacking the Jeep. I wondered whether it
was possible to get started in this field, or at least to exercise my
curiosity about my own car.

Smith’s Handbook does a very good job of helping you under-
stand your car’s (or a target car’s) networking and computing
environment. Smith starts out with a simplified description of
penetration testing, then heads into his area of expertise: car
networks. I was surprised (but shouldn’t have been) that there
are multiple networks in cars, but pleased to learn that the CAN
Bus is the most common and certainly the best documented one.
And the Linux kernel has had support for devices that interface
to the CAN Bus for many years. Smith spends an entire chapter
on explaining how to use Linux tools for communicating with a
CAN Bus, as well as another chapter about setting up a testbed
environment so you can learn more without risking the device
you use to commute to work.

Smith is best when he is describing buses and Electronic Con-
trol Units (ECUs) but is not strong when it comes to disassem-
bling binaries. He does provide pointers to tools, hints on how
to identify the type of CPU, and so on, but I think his strong
point is really on the hardware and communication protocol
sides of things.

Even if you aren’t interested in becoming a car penetration
tester, but you do want to know more about the collection of
computers you routinely drive, you would do well to buy and
read this book.

http://www.usenix.org

NOTES

92  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring techni-
cal articles, system administration articles,
tips and techniques, practical columns on
such topics as security, Perl, networks and
operating systems, and book reviews

Access to ;login: online from December
1997 to the current issue: www.usenix.org/
publications/login/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org.
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Brian Noble, University of Michigan
noble@usenix.org

V I C E P R E S I D E N T

John Arrasjid, EMC
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman, Apcera
dnb@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

Hakim Weatherspoon, Cornell University
hakim@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Results of the Election for the
USENIX Board of Directors,
2016–2018
The newly elected Board will assume office
at the conclusion of the June Board of Direc-
tors meeting, which will take place im-
mediately before the 2016 USENIX Annual
Technical Conference in Denver, CO, June
22-24, 2016.

PRESIDENT
Carolyn Rowland, National Institute of
Standards and Technology (NIST)

VICE PRESIDENT
Hakim Weatherspoon, Cornell University

SECRETARY
Michael Bailey, University of Illinois
at Urbana-Champaign

TREASURER
Kurt Opsahl, Electronic Frontier
Foundation

DIRECTORS
Cat Allman, Google
David N. Blank-Edelman, Apcera
Angela Demke Brown, University
of Toronto
Daniel V. Klein, Google

Notice of
Annual Meeting

The USENIX Association’s
 Annual Meeting with the

 membership and the Board
of Directors will be held on

Tuesday, June 21, in Denver, CO,
during the 2016 USENIX Annual

Technical Conference.

http://www.usenix.org
https://www.usenix.org/publications/login/
www.usenix.org/membership/
mailto:office@usenix.org
mailto:board@usenix.org
mailto:noble@usenix.org
mailto:johna@usenix.org
mailto:carolyn@usenix.org
mailto:kurt@usenix.org
mailto:cat@usenix.org
mailto:dnb@usenix.org
mailto:dan.klein@usenix.org
mailto:hakim@usenix.org
mailto:casey@usenix.org
https://www.usenix.org/member-services/discount-instructions
https://www.usenix.org/member-services/discount-instructions
https://www.usenix.org/member-services/discount-instructions
https://www.usenix.org/publications/login/
www.usenix.org/membership/

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 93

NOTES

What USENIX Means
to Me
by John Yani Arrasjid,
USENIX Vice President

My involvement with USENIX began
almost 30 years ago while working on my
computer science degree at SUNY Buffalo.
I attended my first USENIX conference
in San Diego, CA, and was hooked from
then on. Before USENIX started hosting
the narrower-focused events that we have
today, they ran two technical conferences
a year. Because my first job was working
in the languages team at AT&T, many of
my coworkers and leaders participated in
USENIX events. I had my start as a UNIX
hacker, learning as much as I could and
even contributing code back to the BSD 4.3
release.

Attending a USENIX event allowed me to
interact with my peers, industry luminaries,
and potential team members. I remember
at a USENIX conference in San Diego hav-
ing dinner with Jeff Forys, Van Jacobson,
Gretchen Phillips, and others, when Van
borrowed a pen and a napkin and started
writing. Much later I learned that at the
dinner he had had an inspiration for his
TCP header prediction algorithm. Many
great things have had their start at USENIX
conferences!

I have always found the “hallway track” to
be a big benefit of attending conferences. I
remember finishing BoFs late in the evening,
followed by listening to stories by others in
the community like Rob Pike, John Quarter-
man, and David Blank-Edelman, many of
whom became friends over the years.

As my career evolved from programming to
systems design and system administration,
I continued to follow USENIX conferences,
relying heavily on the tutorial program.
Many thanks to Dan Klein in those early
days for helping me get my footing and
for eventually mentoring me on deliver-
ing USENIX tutorials on virtualization
and cloud technologies, which I did for
many years.

USENIX has played a very important role in
my work and in enabling me to find new op-
portunities. I feel strongly enough about this
that I have worked on three books on virtu-
alization and the cloud in the Short Topics
in System Administration series. Seeing the
value that USENIX brings to its communi-
ties, my coauthors and I have agreed to give
all proceeds from the books and the tutori-
als I taught at LISA back to USENIX.

Several years ago I made a further commit-
ment to the sustainability of USENIX and
have been an acting board member for three
terms, serving on several USENIX and con-
ference committees and serving as program
co-chair for the LISA16 conference.

I will not be returning in my current role as
USENIX Board of Directors Vice President
for the next term but hope to return in the
future. Thank you to those supporting my
work and to USENIX for allowing me to
participate and help shape USENIX.

My focus this year will be on making
LISA16 a success with my co-chair Matt
Simmons as we develop a program with
Mike Ciavarella, Patrick Cable, Ben Cot-
ton, Lee Damon, and Chris St. Pierre, with
additional input from past chairs Carolyn
Rowland and David Blank-Edelman. As
always, I see teamwork in this and other
conferences, with everyone contributing
towards a successful conference!

USENIX continues to deliver on quality
at its conferences by allowing a vendor-
agnostic approach. USENIX’s support of
open access to papers for researchers and
the community and its active approach to
achieving diversity in speakers and attend-
ees have been immensely valuable.

I know that time will continue to provide
new opportunities for USENIX to take a
leadership role in the communities that it
supports, including newer offerings such
as SREcon and the Enigma conference on
security threats and novel attacks.

I continue to be excited about attending
USENIX events and especially about work-
ing with the USENIX staff, who have given

their utmost to provide the quality that
USENIX attendees have come to expect. I
see USENIX staff, who ensure that members
and conference attendees have a great expe-
rience, as USENIX’s crown jewel! I encour-
age others to support USENIX activities
through membership. Those fees are part of
what allows USENIX to put on great events
and are the basis of the support for open
 access and low student fees.

I plan to continue learning through the con-
ferences and other activities that USENIX
presents. I encourage you to also contribute
as a volunteer and to donate to the USENIX
areas you can support, such as the Open
Access hosting of papers and the USENIX
student grant program.

Thank you.

John Yani Arrasjid, VCDX-001
USENIX Association Vice President
Sr. Consultant Technologist, EMC Office
of the CTO

http://www.usenix.org

Announcement and Call for Papers www.usenix.org/nsdi17/cfp

March 27–29, 2017 • Boston, MA

NSDI ’17: 14th USENIX Symposium on Networked
Systems Design and Implementation

Important Dates
• Paper titles and abstracts due: September 14, 2016
• Full paper submissions due: September 21, 2016
• Notification to authors: December 5, 2016
• Final paper files due: February 23, 2017

Conference Organizers
Program Co-Chairs
Aditya Akella, University of Wisconsin–Madison
Jon Howell, Google

Program Committee
Sharad Agarwal, Microsoft
Tom Anderson, University of Washington
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Anirudh Badam, Microsoft
Mahesh Balakrishnan, Yale University
Fabian Bustamante, Northwestern University
Ranveer Chandra, Microsoft
David Choffnes, Northeastern University
Romit Roy Choudhury, University of Illinois at Urbana–Champaign
Mosharaf Chowdhury, University of Michigan
Mike Dahlin, Google
Anja Feldmann, Technische Universität Berlin
Rodrigo Fonseca, Brown University
Nate Foster, Cornell University
Deepak Ganesan, University of Massachusetts Amherst
Phillipa Gill, Stony Brook University
Srikanth Kandula, Microsoft
Teemu Koponen, Styra
Sanjeev Kumar, Uber
Swarun Kumar, Carnegie Mellon University
Wyatt Lloyd, University of Southern California
Boon Thau Loo, University of Pennsylvania
Jacob Lorch, Microsoft
Ratul Mahajan, Microsoft
Dahlia Malkhi, VMware
Dave Maltz, Microsoft
Z. Morley Mao, University of Michigan
Michael Mitzenmacher, Harvard University
Jason Nieh, Columbia University
George Porter, University of California, San Diego
Luigi Rizzo, University of Pisa
Srini Seshan, Carnegie Mellon University

Anees Shaikh, Google
Ankit Singla, ETH Zurich
Robbert van Renesse, Cornell University
Geoff Voelker, University of California, San Diego
David Wetherall, Google
Adam Wierman, California Institute of Technology
John Wilkes, Google
Minlan Yu, University of Southern California
Heather Zheng, University of California, Santa Barbara
Lin Zhong, Rice University

Steering Committee
Katerina Argyraki, EPFL
Paul Barham, Google
Nick Feamster, Georgia Institute of Technology
Casey Henderson, USENIX Association
Arvind Krishnamurthy, University of Washington
Jeff Mogul, Google
Brian Noble, University of Michigan
Timothy Roscoe, ETH Zurich
Alex C. Snoeren, University of California, San Diego

Overview
NSDI focuses on the design principles, implementation, and practical evalu-
ation of networked and distributed systems. Our goal is to bring together
researchers from across the networking and systems community to foster a
broad approach to addressing overlapping research challenges.

NSDI provides a high-quality, single-track forum for presenting results and
discussing ideas that further the knowledge and understanding of the net-
worked systems community as a whole, continue a significant research dialog,
or push the architectural boundaries of network services.

Topics
We solicit papers describing original and previously unpublished research.
Specific topics of interest include but are not limited to:

• Highly available and reliable networked systems
• Security and privacy of networked systems
• Distributed storage, caching, and query processing
• Energy-efficient computing in networked systems
• Cloud/multi-tenant systems
• Mobile and embedded/sensor applications and systems
• Wireless networked systems
• Network measurements, workload, and topology characterization systems
• Self-organizing, autonomous, and federated networked systems
• Managing, debugging, and diagnosing problems in networked systems
• Virtualization and resource management for networked systems and

clusters
• Systems aspects of networking hardware
• Experience with deployed/operational networked systems
• Communication and computing over big data on a

networked system
• Practical aspects of network economics
• An innovative solution for a significant

problem involving networked systems

Sponsored by USENIX, the Advanced Computing Systems Association

http://www.usenix.org/nsdi17/cfp

Operational Systems Track
In addition to papers that describe original research, NSDI ’17 also solicits
papers that describe the design, implementation, analysis, and experience
with large-scale, operational systems and networks. We encourage submis-
sion of papers that disprove or strengthen existing assumptions, deepen the
understanding of existing problems, and validate known techniques at scales
or environments in which they were never used or tested before. Such opera-
tional papers need not present new ideas or results to be accepted.

Authors should indicate on the title page of the paper and in the submis-
sion form that they are submitting to this track.

What to Submit
NSDI ’17 is double-blind, meaning that authors should make a good faith
effort to anonymize papers. This is new for NSDI in 2017. As an author, you
should not identify yourself in the paper either explicitly or by implication
(e.g., through the references or acknowledgments). However, only non-
destructive anonymization is required. For example, system names may be
left un- anonymized, if the system name is important for a reviewer to be able
to evaluate the work. For example, a paper on experiences with the design
of .NET should not be re-written to be about “an anonymous but widely
used commercial distributed systems platform.”

Additionally, please take the following steps when preparing your
 submission:

• Remove authors’ names and affiliations from the title page.

• Remove acknowledgment of identifying names and funding sources.

• Use care in naming your files. Source file names, e.g., Joe.Smith.dvi, are
often embedded in the final output as readily accessible comments.

• Use care in referring to related work, particularly your own. Do not omit
references to provide anonymity, as this leaves the reviewer unable to
grasp the context. Instead, a good solution is to reference your past work
in the third person, just as you would any other piece of related work.

• If you need to reference another submission at NSDI ’17 on a related
topic, reference it as follows: “A related paper describes the design
and implementation of our compiler [Anonymous 2017].” with the
corresponding citation: “[Anonymous 2017] Under submission. Details
omitted for double-blind reviewing.”

• Work that extends an author’s previous workshop paper is welcome,
but authors should (a) acknowledge their own previous workshop
publications with an anonymous citation and (b) explain the differences
between the NSDI submission and the prior workshop paper.

• If you cite anonymous work, you must also send the deanonymized
reference(s) to the PC chair in a separate email.

• Blinding is intended to not be a great burden. If blinding your paper
seems too burdensome, please contact the program co-chairs and
discuss your specific situation.

Submissions must be no longer than 12 pages, including footnotes, figures,
and tables. Submissions may include as many additional pages as needed for
references and for supplementary material in appendices. The paper should
stand alone without the supplementary material, but authors may use this
space for content that may be of interest to some readers but is peripheral to
the main technical contributions of the paper. Note that members of the pro-
gram committee are free to not read this material when reviewing the paper.

Submissions must be in two-column format, using 10-point type on
12-point (single-spaced) leading, with a maximum text block of 6.5” wide
x 9” deep, with .25” inter-column space, formatted for 8.5” x 11” paper.
 Papers not meeting these criteria will be rejected without review, and
no deadline extensions will be granted for reformatting. Pages should be
 numbered, and figures and tables should be legible when printed without
requiring magnification. Authors may use color in their figures, but the figures
should be readable when printed in black and white. All papers must be sub-
mitted via the Web submission form linked from the Call for Papers Web site,
www.usenix.org/nsdi17/cfp.

Submissions will be judged on originality, significance, interest, clarity,
relevance, and correctness.

Policies
Simultaneous submission of the same work to multiple venues, submission
of previously published work, or plagiarism constitutes dishonesty or fraud.
 USENIX, like other scientific and technical conferences and journals, prohibits
these practices and may take action against authors who have committed
them. See the USENIX Conference Submissions Policy at www.usenix.org/
conferences/submissions-policy for details.

Previous publication at a workshop is acceptable as long as the NSDI
submission includes substantial new material. See remarks above about how
to cite and contrast with a workshop paper.

Authors uncertain whether their submission meets USENIX’s guidelines
should contact the Program Co-Chairs, nsdi17chairs@usenix.org.

Papers accompanied by nondisclosure agreement forms will not be con-
sidered. All submissions will be treated as confidential prior to publication on
the USENIX NSDI ’17 web site; rejected submissions will be permanently treated
as confidential.

Ethical Considerations
Papers describing experiments with users or user data (e.g., network traffic,
passwords, social network information), should follow the basic principles of
ethical research, e.g., beneficence (maximizing the benefits to an individual or to
society while minimizing harm to the individual), minimal risk (appropriateness
of the risk versus benefit ratio), voluntary consent, respect for privacy, and limited
deception. When appropriate, authors are encouraged to include a subsection
describing these issues. Authors may want to consult the Menlo Report at
www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
for further information on ethical principles, or the Allman/Paxson IMC ‘07
paper at conferences.sigcomm.org/imc/2007/papers/imc76.pdf for guidance
on ethical data sharing.

Authors must, as part of the submission process, attest that their work
complies with all applicable ethical standards of their home institution(s),
 including, but not limited to privacy policies and policies on experiments
involving humans. Note that submitting research for approval by one’s institu-
tion’s ethics review body is necessary, but not sufficient—in cases where the
PC has concerns about the ethics of the work in a submission, the PC will
have its own discussion of the ethics of that work. The PC’s review process
may examine the ethical soundness of the paper just as it examines the tech-
nical soundness.

Processes for Accepted Papers
If your paper is accepted and you need an invitation letter to apply for a visa
to attend the conference, please contact conference@usenix.org as soon as
possible. (Visa applications can take at least 30 working days to process.) Please
identify yourself as a presenter and include your mailing address in your email.

Accepted papers may be shepherded through an editorial review process
by a member of the Program Committee. Based on initial feedback from the
Program Committee, authors of shepherded papers will submit an editorial
revision of their paper to their Program Committee shepherd. The shepherd
will review the paper and give the author additional comments. All authors,
shepherded or not, will upload their final file to the submissions system by the
camera ready date for the conference Proceedings.

All papers will be available online to registered attendees before the
conference. If your accepted paper should not be published prior to the event,
please notify production@usenix.org. The papers will be available online to
everyone beginning on the first day of the conference.

Best Paper Awards
Awards will be given for the best paper(s) at the conference.

Community Award
To encourage broader code and data sharing within the NSDI community,
the conference will also present a “Community Award” for the best paper
whose code and/or data set is made publicly available by the final papers
deadline, February 23, 2017. Authors who would like their paper to be con-
sidered for this award will have the opportunity to tag their paper during
the submission process.

http://www.usenix.org/nsdi17/cfp
http://www.usenix.org/conferences/submissions-policy
http://www.usenix.org/conferences/submissions-policy
mailto:nsdi17chairs@usenix.org
http://www.caida.org/publications/papers/2012/menlo_report_actual_formatted/
mailto:conference@usenix.org
mailto:production@usenix.org

We are looking for people with personal experience and ex-
pertise who want to share their knowledge by writing. USENIX
supports many conferences and workshops, and articles about
topics related to any of these subject areas (system administra-
tion, programming, SRE, file systems, storage, networking, dis-
tributed systems, operating systems, and security) are welcome.
We will also publish opinion articles that are relevant to the
computer sciences research community, as well as the system
adminstrator and SRE communities.

Writing is not easy for most of us. Having your writing rejected,
for any reason, is no fun at all. The way to get your articles pub-
lished in ;login:, with the least effort on your part and on the part
of the staff of ;login:, is to submit a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new.
If you plan on writing a book, you need to write one chapter,
a proposed table of contents, and the proposal itself and
send the package to a book publisher. Writing the entire
book first is asking for rejection, unless you are a well-known,
popular writer.

;login: proposals are not like paper submission abstracts. We
are not asking you to write a draft of the article as the proposal,
but instead to describe the article you wish to write. There are
some elements that you will want to include in any proposal:

• What’s the topic of the article?

• What type of article is it (case study, tutorial, editorial,
article based on published paper, etc.)?

• Who is the intended audience (syadmins, programmers,
security wonks, network admins, etc.)?

• Why does this article need to be read?

• What, if any, non-text elements (illustrations, code,
diagrams, etc.) will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answering
the question about length, the limit for articles is about 3,000
words, and we avoid publishing articles longer than six pages.
We suggest that you try to keep your article between two and
five pages, as this matches the attention span of many people.

The answer to the question about why the article needs to be
read is the place to wax enthusiastic. We do not want marketing,
but your most eloquent explanation of why this article is impor-
tant to the readership of ;login:, which is also the membership
of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are not
limited to:

• Previously published articles. A piece that has appeared on
your own Web server but has not been posted to USENET
or slashdot is not considered to have been published.

• Marketing pieces of any type. We don’t accept articles
about products. “Marketing” does not include being
enthusiastic about a new tool or software that you can
download for free, and you are encouraged to write case
studies of hardware or software that you helped install
and configure, as long as you are not affiliated with or
paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people using
UNIX systems. Later phases involve Macs, but please send us
text/plain formatted documents for the proposal. Send pro-
posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown,
LaTex, or Microsoft Word/Libre Office. Illustrations should
be EPS if possible. Vector formats (TIFF, PNG, or JPG) are also
 acceptable, and should be a minimum of 1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can expect
to be asked to read proofs of your article, see the online sched-
ule at www.usenix.org/publications/login/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first pub-
lication rights. USENIX owns the copyright on the collection that
is each issue of ;login:. You have control over who may reprint
your text; financial negotiations are a private matter between
you and any reprinter.

Writing for ;login:

mailto:login@usenix.org
mailto:login@usenix.org
http://www.usenix.org/publications/login/publication_schedule

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

REAL SOLUTIONS
FOR REAL NETWORKS

FREE
CD or DVD
in Every Issue!

ORDER ONLINE AT: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 2/8/16 9:20 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

AUGUS T 10 –12 , 2016 • AUS T I N , T X

The USENIX Security Symposium brings together researchers, practitioners,

system administrators, system programmers, and others interested in the

 latest advances in the security and privacy of computer systems and networks.

The Symposium will span three days, with a technical program including

refereed papers, invited talks, panel discussions, posters, a Work-in-Progress

session, Doctoral Colloquium, and Birds-of-a-Feather sessions (BoFs).

Register by July 18 and Save!
www.usenix.org/sec16

The following co-located events will take place immediatey before the symposium:
WOOT ʼ16: 10th USENIX Workshop
on Offensive Technologies
August 8–9
CSET ʼ16: 9th Workshop on Cyber Security
Experimentation and Test
August 8
FOCI ʼ16: 6th USENIX Workshop on Free
and Open Communications on the Internet
August 8

ASE ʼ16: 2016 USENIX Workshop
on Advances in Security Education
August 9
HotSec ʼ16: 2016 USENIX Summit
on Hot Topics in Security
August 9

http://www.usenix.org/sec16

	Table of Contents
	Musings
	coz: This Is the Profile You've been Looking For
	Fuzzing the Code with AFL
	Boxify: Bringing Full-Fledged App Sandboxing to Stock Android
	Using OpenSCAP
	Interview with Nick Weaver
	Interview with Peter Gutmann
	Serving Data to the Lunatic Fringe
	Linux FAST Summit '16 Summary
	Improve Your Multi-Homed Servers with Policy Routing
	MongoDB Database Administration
	Linux at 25
	Precious Memory
	iVoyeur: Go Instrument Some Stuff
	Practical Perl Tools: Perl to the Music
	What's New In Go 1.6—Vendoring
	For Good Measure: Five Years of Listening to Security Operations
	/dev/random
	Book Reviews
	Results of the Election for the USENIX Board of Directors 2016–2018
	What USENIX Means to Me

