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EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org I’ve long been fascinated by hardware. That fascination was re-awakened 

by Tom Van Vleck’s letter to the editor in this issue. Tom is a Multician 
(multicians.org), and he wrote to us with comments about my interview 

with Peter G. Neumann in the Winter 2017 issue of ;login:.
When I was fortunate enough to assemble my first (nearly UNIX) system [1], it included a 
34 MB Seagate drive with the ST-506 interface. The disk controller was not part of the hard 
drive, as it is today. Instead, the disk controller sent commands—such as seek-inward, switch 
to head two, read sector headers until sector 10 is reached, then write to sector 10, over a 34 
pin control cable—and read or wrote data over a separate 20 pin cable. Device driver writ-
ers had to consider issues like how fast to seek, how many blocks to skip between reading or 
writing to allow the CPU to finish with the previous operation, and handling the bad block 
map. The latter was truly a PITA, as it appeared as a printed label on the hard drive case and 
had to been entered, as block numbers, when formatting the drive. Even worse, the controller 
actually was responsible for sending or receiving analog signals for writing or reading, and 
that meant that you could only read a hard drive with the controller that had originally done 
the writing.

By the time ATA [2] became popular, hard drives included their own controllers, and instead 
of two cables, we only needed a single 40 pin cable that could be used to attach two drives. 
Each drive had a jumper to determine whether it was a master or not (device 0 or 1), and 
getting this wrong meant your system wouldn’t boot. But having the controller built into the 
drive was a huge leap forward, as you could now move drives between host adapters. The 
host adapter was just a 16-bit ISA bus relay for commands and data between the bus and the 
drive’s onboard drive controller. As the ATA standards evolved, the drive controllers became 
more sophisticated, able to understand SCSI commands.

The Small Computer System Interface [3] (SCSI, pronounced “scuzzy”) required an even 
smarter drive controller. Up to seven devices, plus a host adapter, could be connected to 
a SCSI cable, and each drive had to be capable of bus arbitration. The SCSI standard also 
allowed the drives to queue up multiple commands.

SATA, which means serial ATA, uses a four pin cable, with commands and data being sent 
serially rather than in parallel. Just as PC busses have moved from the parallel ISA bus to 
the PCI busses that support many simultaneous serial channels, SATA achieves higher data 
rates by moving away from parallel busses.

And somewhere along the way, disk vendors quietly changed how sectors were accessed. 
Except with really old interfaces, like the ST-506, disks presented an array of blocks. The 
operating system was responsible for writing blocks to the most appropriate free block, and 
the OS did its best to write sectors that would be read in sequence together later, or at least be 
located in nearby tracks, for better performance.

Since around 1999, hard disks accept Logical Block Addresses (LBAs) instead of block num-
bers. The hard disk then maps the LBA to a physical block address, a bit like flash transla-
tion layers (FTL) work. This change had two effects: the disk controller needed to become 
smarter, and the operating system no longer had control over disk layout. File systems like 
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ext4 and BSD’s fast file system (FFS) create cylinder groups, 
and associate directories and free block lists within these cylin-
der groups, to speed up both reading and writing. But the disk 
controller is unaware of these distinctions and just stores blocks 
using its own algorithms. These algorithms can even move blocks 
later, for example, if a group of blocks is often read in sequence.

I certainly thought that the operating system should have control 
over block placement, but the disk vendors saw things differently. 
They wanted to create the cheapest, most efficient drives in 
order to remain competitive, and for them, that meant taking 
control away from the operating system developers.

Disk vendors continue to leverage the CPUs and memory 
on disk drive controllers, and that’s led to some interesting 
developments.

The Lineup
Timothy Feldman wrote a ;login: article [4] in 2013 about Shin-
gled Magnetic Recording (SMR), a new technique for increas-
ing drive capacity. But SMR introduces its own set of issues, 
including highly variable write latencies. In this article, Tim 
explains a huge change to SMR drives: hybrid drives that include 
both conventional and SMR partitions. A new API means that 
the operating system can control how much of a drive appears as 
a conventional drive and how much as SMR, and it even allows 
changing the proportion of these two formats on the fly, with 
the disk controller moving blocks between the two regions as 
required. Tim explains the plans for the new APIs, changes that 
will be implemented in the drive’s on-disk controller, but also 
need to be included in device drivers.

Carl Waldspurger et al. in their FAST ’17 paper explain how to 
use very small samples of cache misses to determine how best 
to configure full-size caches. Cache miss rates are crucial when 
determining the optimal cache size. The authors create hashes 
of block numbers and select cache misses to record by using a 
portion of the hash space. Their creative use of hashes for getting 
a random collection of samples caught my attention.

I searched through the CCS [5] program for papers that match 
my criteria for articles that will have broad appeal and, out of a 
huge selection of security research, found two.

Luca Allodi narrates how he infiltrated a Russian exploit 
 market. But his real point is how examining what is bought 
and sold tells us about which exploits are likely to be used in 
un targeted attacks. I liked Luca’s exploit, managing to gain 
access to the market, and also how he explains what the going 
prices for exploits can reveal about which exploits are likely to  
be widely used.

Frank Li and Vern Paxson describe how they determined that 
it often takes a very long time for open source software to be 
patched. It’s likely that commercial software is similar, but with 

open source, they could trace the time a patch appeared in the 
code, the time it was announced or distributed, and compare 
that with the time the vulnerability first appeared in the Com-
mon Vulnerability Exposure (CVE) ratings. Much of their work 
involved crafting the means of trawling online Git repositories 
as well as info about vulnerabilities, a task that would have been 
much more difficult without techniques for winnowing the data.

AbdelRahman Abdou and Paul C. van Oorschot volunteered to 
share their work on secure geolocation. While geolocation is 
commonly used, often for secure applications, geolocation is just 
as commonly spoofed. Abdou and van Oorschot lay out their pro-
posal along with examples of how well it worked using sensors in 
PlanetLab.

Diptanu Choudhury offered an article about using eBPF. The 
extended Berkeley Packet Filter has been around for a few years 
and provides a secure method for injecting code within a live 
kernel. Choudhury’s particular example involves the Express 
Data Path (XDP), which can be used for moving network meth-
ods, like a firewall or packet forwarder, into code that can access 
a network device’s ring buffer, avoiding slow memory copies. 
Diptanu explains enough about eBPF to be helpful to anyone 
interested in beginning to use eBPF, as its programs can use 
triggers throughout the Linux and BSD kernels.

Tapasweni Pathak discusses her research into flaws in Linux 3.x 
kernels. Extending prior work, and using some of the same tools 
for searching through source code, Pathak explains her process 
and shows us, via graphs, just how well the kernel source is doing 
when it comes to bugs that can cause crashes or be exploited. For 
the most part, things have gotten better.

I interviewed Laura Nolan, a Google SRE and a past co-chair 
of SREcon Europe. Laura had helped me find authors for SRE 
articles, and I hoped to learn more about what it’s like to be an 
SRE. Laura was definitely forthcoming, as well as providing a 
humorous example, before she went to Google, of what it’s like 
to be a woman in this field. Laura also answers questions about 
why Google chose to use Paxos.

Bob Solomon interviewed David Rowe, the developer of the Open 
Source Line Echo Canceller (Oslec). Bob asks David about the 
difficulties involved in building something as difficult as an 
echo canceller and the tricks David used for testing and debug-
ging, while allowing him to tell us a bit about what it’s like to be a 
successful open source developer.

Chris McEniry takes us on a journey through using gRPC and 
protocol buffers in Golang. Borrowing the certificate generation 
portion of his Winter 2017 column, Mac explains how to use pro-
tobuf, a non-language-specific library, with Golang, as well as 
how to use gRPC, Golang’s version of Remote Procedure Calls. A 
lot of work for one column.
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David Blank-Edelman wants to prove to you that Perl is alive 
and well. He takes us to a site that keeps track of the hottest, or 
currently most interesting, Perl modules. He also demonstrates a 
few of these modules.

Dave Josephsen returns from KubeCon and CloudNativeCon 
fired up about the Open Tracing API. Dave explains just why 
tracing requests traveling between microservices is a crucial 
part of monitoring these systems, tells us how Open Tracing 
works, and suggests several frameworks for getting started.

Dan Geer and Dan Conway examine the security risks involved 
with crypto-currencies. At the time their column was written, 
Bitcoin had exceeded $18,000/BTC, 100,000 times its value just 
five years ago. Geer and Conway discuss the failings not just of 
Bitcoin but of other crypto-currencies. The amount of “value” 
that’s already been lost or stolen is enough to give any sane per-
son pause.

Robert Ferrell muses about the past, and the dark future, of the 
Internet. A much more serious column than his usual, but totally 
fitting the times.

Mark Lamourine has reviewed two books. He has high praise for 
Fluent Python, by Luciano Ramalho, a book that will sit beside 
his copy of Dave Beazley’s Python Essential Reference. Mark also 
reviewed Once Upon an Algorithm by Martin Erwig.

You might find yourself wondering whether disk vendors really 
have taken control over block placement on modern drives. I 
heard Dave Anderson of Seagate mention this during FAST ’07, 
questioned him about it, and wrote about this in a Musings col-
umn later in 2007. I’ve since been asked to prove this a number 
of times, and the best I’ve been able to come up with involves the 
documentation for a Seagate Enterprise SAS drive in 2004 [6]. 
I’m sure there are better examples, and even a standards doc that 
explains this change. If you know about this, please let me know, 
because people still find this hard to believe.

In the meantime, enjoy your hard drives, which are gaining not 
only in capacity over time, but also in intelligence.
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Letter to the Editor
Great interview of Peter in the Winter 2017 ;login:. I had the 
pleasure of knowing and learning from Peter for many years.

Rik asked, “What happened with Multics?” It was a moderate 
commercial success, until its hardware became obsolete and 
was not replaced. The operating system design and features, 
and the people who helped build them, influenced many sub-
sequent systems, including CHERI.

I can amplify Peter’s remarks on Multics in a few areas.

Peter said, “The 645 was pretty much frozen early”—in 
fact, Multics had a major hardware re-design in 1973 (after 
Bell Labs left Multics development) when the GE-645 was 
replaced by the Honeywell 6180. The 6180 architecture 
extended the Multics hardware-software co-design, provid-
ing support for eight rings in hardware (instead of the 645’s 
64 rings simulated in software), as well as better security. A 
later I/O controller ran in paged mode and supported Multics 
device drivers that ran unprivileged in the user ring.

The transition from discrete transistor implementation to 
integrated circuits gave us 1 MIPS per 6180 CPU rather than 
the 645’s 435 KIPS. The later DPS8/70 was rated at 1.7 MIPS.

Another minor clarification: Peter said, “The buffer overflow 
problem was solved by making everything outside of the 
active stack frame not executable, and enforcing that in hard-
ware.” Actually, there were several features preventing buffer 
overflows in Multics:

◆◆ The PL/I language has bounded strings and arrays, not  
just pointers.

◆◆ CPU string instructions enforced bounds at no runtime 
cost.

◆◆ “Execute” permission is limited to code segments.
◆◆ The stack grows from low addresses to high.
◆◆ ITS format prevents use of random data as pointers.
◆◆ The segment numbers are randomized.

See http://multicians.org/exec-env.html#buffer_overflow for 
more on this topic.

Another clarification: Peter said, “In the early 1970s there 
was even an effort that retrofitted multilevel security into 
Multics, which required a little jiggling of ring 0 and ring 1. I 
was a distant advisor to that (from SRI), although the heavy 
lifting was done by Jerry Saltzer, Mike Schroeder, and Rich 
Feiertag, with help from Roger Schell and Paul Karger.” There 
were several projects to enhance Multics security so it could 
be sold to the US Air Force. The MLS controls were done by a 

project called Project Guardian, led by Earl Boebert. A more 
ambitious project to restructure the Multics kernel, led by 
Schell, Saltzer, Schroeder, and Feiertag, was canceled before 
its results were included in Multics (http://multicians.org 
/b2.html#guardian).

In the mid-’80s, the NCSC B2 security level was awarded to 
Multics, after a thorough examination of the OS  architecture, 
implementation, and assurance. The evaluation process 
found a few implementation bugs; much of the effort in attain-
ing the digraph was documenting the existing product.

There are over 2000 names on the list of Multicians. I am 
mildly uncomfortable at being the only person mentioned by 
Peter as “heavily involved” in Multics—we all were. I did my 
part, but there were many others who made contributions 
more important than mine, and some who worked on Multics 
longer. I look back on those times and those colleagues with 
affection and awe.

Jeffrey Yost’s interview with Roger Schell, a key person in  
the design of security features and TCSEC (“the Orange 
Book”), is also fascinating: https://conservancy.umn.edu 
/handle/11299/133439.

Regards, 
Tom Van Vleck  
thvv@multicians.org

http://multicians.org/exec-env.html#buffer_overflow
http://multicians.org
https://conservancy.umn.edu
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Luca Allodi is an Assistant 
Professor at the Technical 
University of Eindhoven, the 
Netherlands. His research 
interests lie around the 

quantitative characterization of IT risk and 
attacker decisions. l.allodi@tue.nl

The estimation of vulnerability risk is at the core of any IT security 
management strategy. Among technical and infrastructural metrics 
of risk, attacker economics represent an emerging new aspect that 

several risk assessment methodologies propose to consider (e.g., based on 
game theory). Yet the factors over which attackers make their (economic) 
decisions remain unclear and, importantly, unquantified. To address this, I 
infiltrated a prominent Russian cybercrime market where the most promi-
nent attack technology is traded. Supported by direct observations of market 
activity, I investigate in this work the economic factors that drive the adop-
tion of new attacks at scale and their effect on risk of attack in the wild. As 
a market participant, I have access to the full spectrum of attack services 
offered to all members and, in particular, look at the market economics of 
vulnerability exploitation [1].

Software vulnerabilities are one of the main vectors of attack used to infect systems world-
wide. As such, an effective management of vulnerability fixes is desirable on any system. 
Unfortunately, due to technical and budgeting restrictions, applying all fixes as soon as they 
are available is oftentimes not possible. For this reason, prioritizing patching work is a key 
aspect of any vulnerability management policy. The goal is clear: identify which vulnerabili-
ties carry the highest risk and need immediate treatment.

Several methodologies to estimate this “potential risk” of vulnerability exploit exist, includ-
ing technical measures of vulnerability severity (e.g., the Common Vulnerability Scoring 
System, CVSS), attack graphs, attack surfaces, and game-theoretic approaches that, for 
example, assign probabilities to specific attacker strategies in response to a certain set of 
defender decisions.

Importantly, and across all current approaches, the probability assigned to the materializa-
tion of an exploit mainly depends on vulnerability characteristics or specific “contextual” 
aspects such as network topology, deployed security controls, and vulnerability chaining. 
This, in turn, implicitly assumes that, all other factors being the same, attackers will be 
indifferent to which vulnerability to exploit.

An implication of this model is that all “high severity” vulnerabilities on a certain system 
or software will be equally likely to be exploited. Oftentimes, due to the high prevalence of 
severe vulnerabilities, exploit estimations will not be dramatically different across systems 
and vulnerabilities. This ultimately leads to inefficient vulnerability patching strategies [4], 
as most vulnerabilities are “indistinguishable” in terms of posed risk, and therefore all need 
immediate treatment.

All Vulnerabilities Are Not Equally Important
On the other hand, recent research developments reveal that the vast majority of attacks 
seem to be driven by a handful of vulnerabilities only. In [2], across most software types, 
the top 10% of vulnerabilities are reported to carry 90% of attacks across 1M Internet users 
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worldwide, approximating a power law distribution. Other 
research has shown that this huge skew in attack distribution is 
present also for zero-day vulnerabilities. In this analysis [6], of 
20 zero-day vulnerabilities, two were reportedly responsible for 
millions of attacks worldwide, one for twenty thousand, and the 
remaining 18 for a few dozen only. These results are confirmed 
in follow-up empirical studies estimating that approximately 
15% of disclosed vulnerabilities are exploited in the wild, and 
that this fraction is decreasing for recent vulnerabilities [10]. 
Similarly, recent work showed that the refresh time of exploits is 
very slow, with exploits being actively deployed in the wild up to 
two or three years before being substituted at scale by a different 
exploit [5].

These observations are in sharp contrast with the current 
narrative in the information security community, where every 
new severe vulnerability loosely resembles Doomsday. Indus-
try studies recently started to acknowledge this effect as well: 
for example, in the last few editions of Verizon’s Data Breach 
Investigations Report. Overall, empirical data clearly shows that 
a handful of vulnerabilities carry disproportionately more risk 
(by several orders of magnitude) than most vulnerabilities. It 
seems therefore that factors other than the characteristics of the 
vulnerability should be considered to explain this phenomenon.

Vulnerability Risk and Attacker Types
It is important to clarify the nature of the data leading to the 
observations above and its relation to different attacker types. 
In general, field data concerns attacks of an “untargeted” nature, 
where attackers in possession of a “fixed” set of exploits deliver 
attacks in the wild against the population of Internet users as 
a whole. These attacks are the most common and involve high 
attack automation, exploitation as-a-service [8], and delivery 
infrastructures based on spam or redirection of Internet traffic. 

Attacks of a more “targeted” nature are radically different from 
the previous scenario: in such cases attackers adapt their exploit 
portfolio to the desired target system (as opposed to relying on a 
fixed set of exploits). Targeted attacks affect a very limited set of 
Internet systems and entail high levels of variability as attackers 
are (un)bounded by resource constraints, technical capabilities, 
and access rights to the network. Hence, in the case of targeted 
attacks, assigning probabilities to compute risk levels may not be 
a meaningful approach [7] as the notion itself of probabilistic risk 
does not apply anymore. In this article, I specifically refer to risk 
of untargeted attacks at scale.

A Dive into Exploit Economics
This distinction between “untargeted” and “targeted” attacks 
has become more and more relevant with the establishment of an 
underground economy driving the commodification of attacks at 
scale [8]. By outsourcing the complexity of attack engineering to 

the technically proficient sections of the underground, the tech-
nical difficulty of engineering and deploying an attack signifi-
cantly decreased for those who participate in this economy. The 
acquisition of “off the shelf” attack tools represents a “multiplier 
factor” whereby a single attack technology (e.g., malware or vul-
nerability exploit) is shared among a multitude of attackers. 

For example, exploit kits are known to be responsible for a 
significant share of the overall attack scenario by providing a 
ready-to-use, easy-to-configure attack framework that covers 
all steps of the attack process, from selection and redirection 
of vulnerable traffic, to vulnerability exploitation and malware 
delivery. Hence, buyers of these attack technologies may, poten-
tially, jointly deliver a large fraction of attacks in the wild by 
sharing the same attack vectors and infrastructure.

I propose that the adoption of attack techniques traded in the 
cybercrime markets may explain the disproportionate concen-
tration of attacks over a small set of vulnerabilities discussed 
above. Hence, under this hypothesis, it becomes central to 
understand the relation between deployment of an attack at 
scale and attackers’ economic activities [1]. For example, pricier 
exploits may be adopted less widely by attackers, and vulner-
abilities that are seldom substituted in the markets may remain 
exploited at scale for longer periods of time.

Market Identification and Infiltration
One of the difficulties associated with studying the underground 
economy is to identify active, well-functioning underground 
markets where prominent attack tools are traded. The under-
ground economy is indeed fragmented in a multitude of markets, 
both in the so-called “deep web” as “onion services” and in the 
“open Internet.” Whereas finding these markets is not a chal-
lenge per se, finding credible markets is: one should expect most 
markets to be places where gullible “wanna-be” criminals get 
scammed and no real technological innovation happens; Herley 
and Florencio provide an excellent coverage of the foundational 
economic reasons why this is the case [9].

Following Herley and Florencio’s guidelines, and jointly with 
Professor Fabio Massacci at the University of Trento (Italy) and 
Professor Julian Williams at the Durham Business School (UK), 
I started evaluating different underground markets in the Eng-
lish and Russian hacking communities in 2011. One (Russian) 
community, above all, emerged as a prominent market where 
we find convincing evidence of severe trade regulation enforce-
ment, credible trade activities, and the most prominent attack 
tools reported by the security industry, including exploit kits 
such as RIG and Blackhole, malware platforms, malware packers, 
and so on. We refer to this market under the fictitious name of 
 RuMarket. All other markets in our analysis have been dis-
carded for not meeting at least one of these criteria; [3] reports 
an example comparison. 
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We first gained access to RuMarket in 2011 and carried out 
“under-the-radar” observations of the activity therein, without 
performing any interaction with the market members. At the 
time, access to the market was only as difficult as registering to 
the corresponding forum platform under a fictitious identity.

This changed rather abruptly in 2013 when a prominent member 
of the market was arrested by the Russian authorities. The 
market reacted by ejecting all non-active participants and by 
significantly increasing the entry barrier to the market. Uncon-
trolled access to the market was replaced by a more strict pro-
cess supervised by the market administration whereby access 
was granted only if either:

1. A trusted member of the market vouched for the entry request, 
effectively implementing a pull-in mechanism.

2. The request for market entry was backed up by evidence that 
the requestor was a reputable member of the Russian hacking 
community.

As we had no contacts inside the market to regain access, we 
chose to follow (2). This required extensive research to identify 
communities affiliated with RuMarket with more loose access 
barriers and build our identity from there. This, in turn, called 
for some proficiency in Russian in the discussion boards but did 
not involve the execution or support of criminal activities.

We gained new access to RuMarket in 2014 after more than six 
months of activity in the affiliated communities. We have been 
observing the market ever since. In this article, we look at the 
economics of vulnerability exploit trading [1].

Market Activity and Exploit Packages
In RuMarket, vulnerability exploits are traded in packages, or 
bundles. These can be classified using three categories: EKIT 
(exploit kit), Malware, and Standalone exploits. Figure 1 reports 
on the introduction of new exploit packages per year. Standalone 
packages are clearly on the rise, whereas Malware and EKIT 
packages are introduced or updated at a steady rate each year. 
This difference can be explained by looking at the different 
business models behind the bundles: Malware and EKIT are 
typically service-oriented products that require a prolonged con-
tractual agreement between the buyer and the seller and are very 
popular in the market (in particular, the average EKIT adver-
tisement receives approximately 10 times more replies from the 
community than the average Standalone or Malware package). 
As such, vendors tend to regularly update their products (e.g., 
with new or more reliable exploits) as opposed to substituting the 
whole package with a new one. This creates a perhaps slightly 
counterintuitive effect in which only a few players sell EKITs 
(despite these being very attractive products in the market): the 
prolonged contractual form requires high levels of trust between 
market participants, a condition only well-established vendors 

can meet, and hence the low rate of new kits each year. As most 
malware in RuMarket is not advertised to exploit any specific 
vulnerability, Malware products have low introduction rates in 
Figure 1. 

Table 1 reports descriptive statistics of package prices. Prices for 
rented EKITs are averaged over a period of three weeks, follow-
ing the duration of typical malware delivery campaigns. We can 
observe that EKIT products are by far the cheapest, with a mean 
price of 700 USD, whereas Malware and Standalone products 
are significantly more expensive at 2000–3000 USD on average. 
This difference is stressed at the right-end tail of the distribu-
tions, where Standalone packages peak at 8000 USD, Malware 
at 4000, whereas EKITs stop at 2000 USD. Prices do not show 
a significant correlation with the number of embedded exploits, 
suggesting that other aspects, such as the business model behind 
the trade, or the age of the embedded exploits, may play a fac-
tor. An evaluation of the trend in pricing for each package type 
reveals that prices are clearly inflating for Standalone and Mal-
ware products, whereas EKIT prices are decreasing over time. 
This reflects the “consumer” nature of EKIT products, which 
are becoming more and more available to a larger pool of buyers, 
whereas the prices for Standalone exploits reflect a “niche” part 
of the market and are inflating.

Vulnerability Exploits
With the aim of evaluating the effect of exploit economics on 
vulnerability risk, it is useful to look at a breakdown of exploits 
bundled in a package, as opposed to the bundle “as a whole.” 
Figure 2 reports the rate of introduction of single exploits in the 
market aggregated by vendor of the vulnerable software. Unsur-

Type No. Min Mean Median Max
EKIT 6 150 693.89 400 2000

Malware 6 420 1735 1250 4000

Standalone 26 100 2972.69 3000 8000

ALL 38 100 2417.46 1500 8000

Table 1: Package prices (in USD)

Figure 1: Release of exploit packages by type per year
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prisingly, in RuMarket we find exploits for Microsoft, Oracle, 
and Adobe software, which can be expected to cover the vast 
majority of user systems in the wild. The first observation we 
make is that the first “burst” of exploits appears in 2011, which 
corresponds to the appearance of “exploitation-as-a-service” 
as a new attack model [8]. After 2011 the market experienced a 
relative drop in number of introduced exploits to then stabilize 
around an average level of 6–8 new exploits per software vendor 
per year. This trend loosely resembles the Gartner Hype Cycle 
describing the introduction of new technologies in a market: a 
first inflation in the expectations associated with that technol-
ogy causes a burst of interest in the market, followed by a “disil-
lusionment” phase and, finally, by what Gartner calls the plateau 
of productivity, where the technology reaches maturity and its 
true value. 

Table 2 reports the age, in days, of the exploits first introduced in 
RuMarket relative to the date of their publication in the National 
Vulnerability Database (NVD). As all collected exploits are asso-
ciated with a Common Vulnerabilities and Exposures (CVE) 
identifier, no vulnerability is published in RuMarket before its 
publication on NVD. Interestingly, reporting the vulnerability’s 
CVE is also the de facto standard for exploit advertisement in 
RuMarket (see sec. 3.2 in [1] for a discussion of why this is the 
case). All Malware samples included an exploit for the same 
vulnerability, which allows the malware to escalate to a higher 
privilege group on the victim system. 

EKIT and Standalone exploits account for most of the vari-
ability in the market. EKIT exploits are by far the older ones 
at time of publication; 50% of Standalone exploits arrive two 

months after disclosure, whereas the faster 50% of EKIT’s make 
it to the market after more than nine months. This has a clear 
correspondence with the package prices reported in Table 2, in 
which Standalone exploits are the most expensive in the market 
and EKITs the cheapest. A more formal analysis indeed reveals 
a strong correlation between exploit price and exploit age, with 
significantly different rates associated to different vulnerable 
software platforms: for example, exploits for Microsoft and 
Adobe products appear to better retain their value as they age 
than exploits for Oracle products.

Another important aspect in the overall threat scenario is how 
often exploits for a software platform are updated in the market. 
Figure 3 reports the cumulative distribution function of the 
time that passes between new exploits for a specific software, 
grouped by vendor. Irrespective of software vendor, we observe 
that in the median case, exploits are substituted six months after 
first introduction. The slowest update rate of exploits is around 
two years. This figure is well in line with previous findings 
on measurements of exploit appearance in the wild [5, 10] and 
underlines the importance of considering attacker activity in 
estimating vulnerability risk. 

Economic Factors of Vulnerability Exploitation
To evaluate the relation between market activity and risk of 
exploit, we rely on data from Symantec on the presence of an 
exploit at scale [4]. Note that whereas an exploit for a vulner-
ability might well exist even if not reported by Symantec, it is 
unlikely for an exploit that delivers on the order of hundreds 
of thousands or millions of attacks to remain unnoticed and 
unreported.

We consider exploit package price, market activity around 
an exploit (measured in terms of the number of RuMarket 
responses to the ad reporting the exploit), and vulnerability 
severity as factors that may affect the probability of finding 
an exploit at scale. A formal analysis reveals that all effects 
significantly affect the change in odds of exploitation in the wild 

Type No. Min Mean Median Max

EKIT 25 1 372.48 294 1745

Malware 1 185 185 185 185

Standalone 29 1 147.34 75 934

ALL 55 1 250.36 93 1745

Table 2: Exploit age (days) at time of first appearance in RuMarket

Figure 2: Occurrences of exploit publication by year

Figure 3: Distribution of days between exploit introduction
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for the respective vulnerability. Whereas a full description of the 
technical analysis is given in [1], as a rule-of-thumb the follow-
ing emerges:

1. As market activity around an exploit doubles, so do the 
odds of finding an exploit at scale for the corresponding 
vulnerability.

2. As price of exploit acquisition doubles, the odds of exploit at 
scale halve.

3. Once we consider exploits traded in the markets, vulnerabil-
ity severity becomes a significant predictor for exploitation in 
the wild.

Whereas the figures above are only indicative, a fully quantita-
tive model can be obtained by plugging the coefficients reported 
in [1] in any vulnerability risk model. Importantly, a first 
approximation can be obtained without any direct insight from 
the markets. For example, exploit price can be estimated by con-
sidering the software vendor and the age of the vulnerability at 

the time of the estimate; this price can then be used, in conjunc-
tion with the vulnerability’s severity, to estimate the change in 
the risk profile of the vulnerability if introduced in the market 
and how this evolves as time passes.

Although these conclusions are necessarily limited to  RuMarket, 
and therefore the specific quantitative estimations may vary by 
considering other markets (e.g., trading vulnerabilities affecting 
different software vendors, or aiming at a larger English-speak-
ing community), the qualitative conclusion remains: attacker 
economics are clearly correlated with risk of attack. Further 
research is needed in this direction: what is the attacker’s pro-
cess in deciding on which exploit to introduce and when? What 
determines whether an exploit can be expected to be traded in a 
market, as opposed to being used privately, or not being used at 
all? I believe that a characterization of these aspects can funda-
mentally change our perspective on cyber-risk and can provide 
an important building block for the division of workable and 
effective security practices.
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F R A N K  L I  A N D  V E R N  P A X S O N

Miscreants seeking to exploit computer systems incessantly dis-
cover and weaponize new security vulnerabilities. As a result, 
system administrators and end users must constantly run on the 

“patch treadmill,” where they apply security patch after security patch to 
fix newly discovered software vulnerabilities, relying on many of the same 
processes practiced for decades to update their software against the latest 
threats. Given the vital role that security patches play in our management of 
vulnerabilities, it behooves us to better understand the patch development 
process and characteristics of the resulting fixes. 

Prior studies [2, 4, 5, 7, 8] investigated aspects of the vulnerability and patching life cycles 
but typically at a restricted scale in terms of software diversity, focusing on only a few 
projects or even just one. While these studies provide insights into the patch development 
process, there remains a question of how generally their findings apply, and how the nature 
of security patches may differ from that of other types of bug fixes. Security patches are of 
particular importance given their critical role in securing software and the time sensitivity 
of their development.

In this work, we conduct a large-scale empirical study of security patches, investigating 
4,000+ bug fixes for 3,000+ vulnerabilities that affected a diverse set of 682 open-source 
software projects. We build our analysis on a data set that merges vulnerability entries from 
the National Vulnerability Database [6], information scraped from relevant external refer-
ences, affected software repositories, and their associated security fixes. Tying together 
these disparate data sources allows us to perform a deep analysis of the patch development 
life cycle, including investigation of the code base life span of vulnerabilities, the timeliness 
of security fixes, and the degree to which developers can produce safe and reliable security 
patches. We also extensively characterize the security fixes themselves in comparison to 
general bug patches, exploring the complexity of different types of patches and their impact 
on code bases.

Data Collection Methodology
To explore vulnerabilities and their fixes, we must collect security patches and information 
pertaining to them and the remedied security issues. Given this goal, we restricted our inves-
tigation to open-source software for which we could access source code repositories and 
associated metadata. Our data collection centered around the National Vulnerability Data-
base (NVD) [6], a database provided by the US National Institute of Standards and Technol-
ogy (NIST) with information pertaining to publicly disclosed software vulnerabilities. These 
vulnerabilities are identified by CVE (Common Vulnerabilities and Exposures) IDs.

We mined the NVD and crawled external references to extract relevant information, includ-
ing the affected software repositories, associated security patches, public disclosure dates, 
and vulnerability classifications. Figure 1 depicts an overview of this process. In the remainder 

Frank Li is a PhD student at 
the University of California, 
Berkeley. His research 
mainly focuses on improving 
the remediation process 

for security issues such as vulnerabilities 
and misconfigurations. More broadly, 
he is interested in large-scale network 
measurements and empirical studies in a 
computer security context.  
frankli@cs.berkeley.edu

Vern Paxson is a Professor 
of Electrical Engineering 
and Computer Sciences at 
the University of California, 
Berkeley, and leads the 

Networking and Security Group at the 
International Computer Science Institute in 
Berkeley. His research focuses heavily on 
measurement-based analysis of network 
activity and Internet attacks. He works 
extensively on high performance network 
monitoring, detection algorithms, cybercrime, 
and countering censorship and abusive 
surveillance. vern@berkeley.edu



14   S P R I N G 20 1 8  VO L .  4 3 ,  N O.  1  www.usenix.org

SECURITY
A Large-Scale Empirical Study of Security Patches

of this section, we briefly describe these various data sources 
and our collection methodology (see [3] for details).

Note that throughout our methodology, we frequently manu-
ally inspected random samples of populations to confirm that 
the population distributions accorded with our assumptions or 
expectations.

Finding Public Vulnerabilities with the NVD
The NVD contains entries for all publicly released vulnerabili-
ties assigned a CVE identifier, and rich annotations about the 
vulnerabilities. In particular, it summarizes the vulnerability, 
links to relevant external references (such as security advisories 
and reports), specifies the affected software, identifies the class 
of security weakness under the Common Weakness Enumeration 
(CWE) classifications, and evaluates the vulnerability severity 
using the Common Vulnerability Scoring System (CVSS).

We focused on the NVD as it is public, expansive, manually 
curated, and detailed. For this study, we analyzed a snapshot of 
the NVD taken on December 25, 2016. Its 80,741 CVE vulner-
abilities served as our starting point for further data collection.

Identifying Software Repositories and Security 
Patches
Many open-source version-controlled software repositories 
provide web interfaces to navigate project development (such 
as git.kernel.org). We frequently observed URLs to these web 
interfaces among the external references for CVE entries, link-
ing to particular repository commits that addressed the security 
vulnerability. We focused on popular Git web interfaces as they 
were the most commonly occurring (and Git overall is popular). 
Crawling these links afforded us the ability to collect security 
patches and access the source code repositories.

Figure 1: An overview of our data collection methodology. (1) We extracted vulnerability characteristics from CVE entries in the NVD with external refer-
ences to Git commit links. (2) We crawled other references and extracted page publication dates to estimate public disclosure dates. (3) We crawled the 
Git commit links to identify and clone the corresponding Git source code repositories, and collected security fixes using the commit hashes in the links. (4) 
We also used the Git repositories to select general bug fixes.
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In total, we retrieved 4,080 commits across 682 unique Git 
repositories, tied to 3,094 CVEs. Note that these repositories are 
distinct, as we de-duplicated mirrored versions. By manually 
investigating 100 randomly sampled commits, we found that all 
commits reflect fixes for the corresponding vulnerabilities, indi-
cating the vast majority, if not all, of our commits are security 
patches. This data set corresponds to a variety of vulnerability 
types and severities, affecting an expansive range of products 
(from OS distributions to applications to libraries), detailed in [3].

Identifying General Bug Fixes
We can gain insights into any especially distinct characteristics 
of security patches by comparing them to bug fixes in general. 
However, to do so at scale we must automatically identify bug 
fixes. We tackled this problem using a logistic regression that 
models the character n-grams in Git commit messages to iden-
tify likely bug fix commits. We discuss the details of our classi-
fier training and evaluation in [3].

With our classifier, we collected a data set of bug fixes by 
randomly selecting per repository up to 10 commits classified 
as bug fixes. This provided us with a large set of over 6,000 bug 
fixes (similar to our number of security fixes) balanced across 
repositories. 

Processing Commits
In a patch, it can be useful to consider only changes to functional 
source code, rather than documentation files or source code 
comments. For each commit that we collected (both security and 
general bug fixes), we processed the commit data to produce an 
alternative “cleaned” version that filtered non-source code files 
and removed comments.

Estimating Vulnerability Public Disclosure Dates
Determining the public disclosure date of a vulnerability is vital 
to understanding the timeline of its life cycle. The CVE publi-
cation date indicates when the CVE entry was published, not 
necessarily when the vulnerability was publicly disclosed. To 
estimate the public disclosure date, we analyzed the external 
references associated with CVEs. These web pages frequently 
contain publication dates for information pertaining to vulner-
abilities. Example pages include security advisories, public mail-
ing list archives, other vulnerability database entries, and bug 
reports. We chose the earliest date among the extracted dates 
and the CVE publication date as our estimate.

Analysis Results
Our collected data set provides us with a unique perspective 
on the development life cycle of security fixes, as well as on the 
characteristics of the security patches themselves in compari-
son to general bug fixes. In this section, we discuss our more 
salient analyses and findings (see [3] for additional analyses). 

We first consider the patch development process by connect-
ing the vulnerability information available in the NVD with the 
historical logs available in Git repositories. We follow that by 
analyzing our collection of security and general bug fixes to help 
illuminate their differences, considering facets such as the com-
plexity of fixes and the locality of changes. In general, to assess 
whether differences observed have statistical significance, we 
use permutation tests with a significance threshold of α = 0.05 
(discussed in detail in [3]).

Vulnerability Life Spans in Code Bases
Upon a vulnerability’s discovery, we might naturally ask how 
long it plagued a code base before a developer rectified the issue, 
a duration we call the code base life span. Automatically and reli-
ably determining this life span is difficult, requiring semantic 
understanding of the source code and the vulnerability. How-
ever, we can approximate a lower bound on age by determining 
when the source code affected by a security fix was previously 
last modified. We note that this heuristic does assume that secu-
rity fixes modify the same lines that contained insecure code. 
We assessed that this is a robust approximation through manual 
inspection of a random sample of security patches.

We analyzed the cleaned versions of security commit data to 
focus on source code changes. For all lines of code deleted or 
modified by a security commit, we retrieved the last time each 
line was previously updated. We conservatively designate the 
most recent change date across all of the lines as the estimated 
vulnerability birth. The duration between this date and the 
patch commit date provides a lower bound on the vulnerability’s 
code base life span. We observe that vulnerabilities exist in code 
bases for extensive durations, with a median life span of 438 days 
(14.4 months). Furthermore, a third of all CVEs had life spans 
beyond three years. The longest surviving vulnerability was a 
21-year-old information disclosure vulnerability in Kerberos.

Security Fix Timeliness
The timeliness of a security fix relative to the vulnerability’s 
public disclosure affects the remediation process and the poten-
tial impact of the security issue. On the one hand, developers 
who learn of insecurities in their code bases through unan-
ticipated public announcements have to quickly react before 
attackers leverage the information for exploitation. On the other 
hand, developers who learn of a security bug through private 
channels can address the issue before public disclosure, but may 
not release the available patch for some time due to a project’s 
release cycle, expanding the vulnerability’s window of exposure.

We explore this facet of remediation by comparing the patch 
commit date for CVEs in our data set with public disclosure 
dates (estimated as described in “Data Collection Methodology,” 
above).
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How frequently are vulnerabilities unpatched when dis-
closed? We observe that 21% of all vulnerabilities were not fixed 
at the time of public disclosure. We cannot determine whether 
these vulnerabilities were privately reported to project develop-
ers but with no prior action taken, or disclosed without any prior 
notice. However, a quarter (26%) of these unpatched security 
issues remained unaddressed 30 days after disclosure, leaving a 
window wide open for attacker exploitation.

For the remaining 79% of all CVEs, project developers commit-
ted the security fixes by public disclosure time. This suggests 
that the majority of vulnerabilities were either internally discov-
ered or disclosed to project developers using private channels, 
the expected best practice. 

Are vulnerability patches publicly visible long before dis-
closure? The degree to which security commits precede disclo-
sures varies widely. This behavior highlights the security impact 
of an interesting aspect of the open-source ecosystem. Given the 
public nature of open-source projects and their development, an 
attacker targeting a specific software project can feasibly track 
security patches and the vulnerabilities they address.

While the vulnerability is remedied in the project repository, it 
is unlikely to be widely fixed in the wild before public disclosure 
and update distribution. We note that over 50% of CVEs were 
patched more than two weeks before public disclosure, giving 
attackers ample time to develop and deploy exploits.

Patch Reliability
The patch that a developer creates to address a vulnerability may 
unfortunately disrupt existing code functionality or introduce 
new errors. Beyond the direct problems that arise from such 
patches, end-user trust in generally applying patches (or in the 
software itself) can erode. To assess how successful developers 
are at producing reliable and safe security fixes, we identified 
instances of multiple commits for the same CVE, and classified 
the causes.

To locate CVEs associated with multiple commits where a sub-
sequent commit may fix a previous one, we found CVEs listed 
in the NVD with multiple commits. Additionally, we attempted 
to identify further commits potentially associated with a CVE 
using repository Git logs, looking for commit messages that 
explicitly reference the original patch’s commit hash or the CVE 
ID. Note that with this approach, we could only identify multiple 
patches when commit messages contained this explicit linkage, 
so our analysis provides a lower bound.

Filtering out duplicate commits (e.g., merges, rebases, and 
cherry-picks) as well as CVEs where all commits were within a 
24-hour time window (thus even if there was a problem, it was 
quickly resolved), we found 440 CVEs with multiple commits.

We randomly sampled 50 of the remaining 440 CVEs and manu-
ally investigated whether the fixes were problematic. Table 
1 summarizes our results. We identified 26 (52%) as having 
incomplete fixes, requiring a later patch to complete the job. We 
labeled 17 (34%) as regressive, as they introduced new errors that 
required a later commit to address. Other follow-on commits 
were benign, such as commits for documentation, testing, or 
refactoring. Note that some CVEs had multiple commits in mul-
tiple categories, resulting in the sum of CVEs in each category 
exceeding 100%. Problematic initial patches were followed by 
a median of one additional commit, with a median of 181.5 days 
and 33 days between commits for incomplete and regressive 
patches, respectively. 

This random sample is representative of the 440 CVEs with 
multiple commits accounting for 14.2% of all CVEs. Extrapolat-
ing from the sample to all CVEs, we estimate that about 7% of 
all security fixes may be incomplete, and about 5% regressive. 
These findings indicate that broken patches occur with unfor-
tunate frequency, and applying security patches comes with 
non-negligible risks. In addition, these numbers have a skew 
towards underestimation: we may not have identified all existing 
problematic patches, and recent patches in our data set might 
not have had enough time yet to manifest as ultimately requiring 
multiple commits.

Patch Complexity
How complex are security patches compared to bug fixes in 
general? Given the number and diversity of software projects 
we consider, we chose lines of code (LOC) as a simple-albeit-
rudimentary metric.

Are security patches smaller than general bug fixes? 
Under the LOC metric, security commits overall are statisti-
cally significantly smaller than bug patches in general (p ≈ 0). 
The median security commit diff involved 7 LOC compared 
to 16 LOC for general bug fixes. Approximately 20% of general 
bug patches had diffs with over 100 lines changed, while this 
occurred in only 6% of security commits.

CVE 
Commits 
Label

Num. CVEs
Median Num. 
Follow-on 
Commits

Median Fix 
Interarrival 
Time (days)

Incomplete 26 (52%) 1.0 181.5 

Regressive 17 (34%) 1.0 33.0 

Benign 14 (28%) 1.5 118.5

Table 1: Summary of our manual investigation into 50 randomly sampled 
CVEs with multiple commits. Note that a CVE may have commits in 
multiple categories.
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Do security patches make fewer “logical” changes than gen-
eral bug fixes? As an alternative to our raw LOC metric, we can 
group consecutive lines changed by a commit as a single “logical” 
change. Under this definition, we consider several lines updated 
as a single logical update, and a chunk of deleted code counts 
as a single logical delete. Across all logical actions, we observe 
that security commits involve significantly fewer changes (all p 
< 0.01). Nearly 78% of security commits did not delete any code, 
compared to 66% of general bug-fix commits. Between 30% 
and 40% of all commits for both security and general bug-fix 
commits also did not add any new code portions, indicating the 
majority of logical changes were updates to existing code.

Do security patches change code base sizes less than gen-
eral bug fixes? Another metric for a patch’s complexity is its 
impact on the code base size. The net number of lines changed 
by a commit reflects the growth or decline in the associated 
code base’s size. We observe that significantly more general bug 
patches result in a net reduction in project LOC, compared to 
security fixes: 18% of general bug fixes reduced code base sizes 
compared to 9% of security patches. For all commits, approxi-
mately a quarter resulted in no net change in project LOC, which 
commonly occurs when lines are only updated. Overall, projects 
are more likely to grow in size with commits, since the major-
ity of all commits added to the code base. However, security 
commits tend to contribute less growth compared to general bug 
fixes, an observation that accords with our earlier results.

Patch Locality
Finally, we can quantify the impact of a patch by its locality. We 
consider two metrics: the number of files affected and the num-
ber of functions affected.

Do security patches affect fewer source code files than gen-
eral bug fixes? We observe that security patches modify fewer 
files compared to bug fixes in general, a statistically signifi-
cant observation (p ≈ 0). In aggregate, 70% of security patches 
affected one file, while 55% of general bug patches were equiva-
lently localized. Fixes typically updated, rather than created 
or deleted, files (mirroring code changes, which were typically 
updates). Only 4% of security fixes created new files vs. 13% of 
general bug fixes, and only 0.5% of security patches deleted files 
vs. 4% of general bug fixes.

Do security patches affect fewer functions than general bug 
fixes? We find that 5% of general bug fixes affected only global 
code outside of function boundaries, compared to 1% of security 
patches. Overall, we observe a similar trend as with the number 
of affected files. Security patches are significantly (p ≈ 0) more 
localized across functions: 59% of security changes resided in a 
single function compared to 42% of other bug fixes.

Moving Forward
In this study, we have conducted a large-scale empirical analysis 
of security patches across over 650 projects. Here we discuss 
the main takeaways, highlighting the primary results developed 
(summarized in Table 2) and their implications for the security 
community moving forward.

Need for more extensive or effective code testing and audit-
ing processes for open-source projects. Our results show that 
vulnerabilities live for years and their patches are sometimes 
problematic. These findings indicate that the software develop-
ment and testing process, at least for open-source projects, is not 
adequate at quickly detecting and properly addressing security 
issues. A natural avenue for future work is to develop more 
effective testing processes, particularly considering usability, 
as developers are unlikely to leverage methods that prove dif-
ficult to deploy or challenging to interpret. In addition, software 
developers can already make strides in improving their testing 
processes by using existing tools such as sanitizers or fuzzers 
more extensively.

The transparency of open-source projects makes them ripe for 
such testing not only by the developers, but by external research-
ers and auditors as well. Community-driven efforts, such as 
those supported by the Core Infrastructure Initiative [1], have 
already demonstrated that they can significantly improve the 
security of open-source software. Further support of such 
efforts, and more engagement between various project contribu-
tors and external researchers, can help better secure the open-
source ecosystem.

Aspect of Security 
Patches Summary of Results

Vulnerability Life Spans
Vulnerabilities often lived for 
years, with a third for more than 
three years.

Security Fix Timeliness

A fifth of vulnerabilities were not 
fixed at public disclosure time. 
When fixed before disclosure, the 
patches were visible in repositories 
weeks to months in advance.

Patch Reliability
We conservatively estimate that 
about 7% of security patches were 
incomplete and 5% regressive.

Patch Complexity
Security patches were significantly 
smaller than bug fixes in general.

Patch Locality
Security patches were more 
localized in their changes than 
general bug fixes.

Table 2: Summary of main analysis results.
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Need for refined bug reporting and public disclosure 
processes for open-source projects. Our analysis of the 
timeliness of security fixes revealed that they are poorly timed 
with vulnerability public disclosures. Over 20% of CVEs were 
unpatched when they were first announced, perhaps sometimes 
to the surprise of project developers.

In the opposite direction, we discovered that when security 
issues are reported or discovered privately and fixed, the remedy 
is not immediately distributed and divulged, likely due to soft-
ware release cycles. Over a third of fixed vulnerabilities were 
not publicly disclosed for more than a month. While operating 
in silence may help limit to a small degree the dissemination of 
information about the vulnerability, it also forestalls inform-
ing affected parties and spurring them to remediate. Given the 
transparency of open-source projects, attackers may be able to 
leverage this behavior by tracking the security commits of target 
software projects. From the public visibility into these commits, 
attackers can identify and weaponize the underlying vulner-
abilities. The issue of vulnerability disclosure and embargoing 
of information is a complex debate, but the visibility of the patch 
itself should be part of that discussion.

Opportunities for leveraging characteristics of security 
patches. Our comparison of security patches with general bug 
fixes revealed that security fixes have a smaller impact on code 
bases, across various metrics. They involve fewer lines of code, 
fewer logical changes, and are more localized in their changes. 
This has implications along various patch analysis dimensions, 
such as patch safety analysis. Tying back to broken patches, 
the lower complexity of security patches can perhaps be lever-
aged for safety analysis customized for evaluating just security 
fixes. Also, as these remedies involve fewer changes, automatic 
patching systems may operate more successfully if targeting 
security bugs. Zhong and Su [8] observed that general patches 
are frequently too complex or too delocalized to be amenable to 
automatic generation. However, security patches may be small 
and localized enough. From a usability angle, we may addition-
ally be able to better inform end users of the potential impact of 
a security update, given its smaller and more localized changes. 
The need for more exploration into the verification and auto-
mated generation of security patches is quite salient as our abil-
ity to respond to security vulnerabilities still heavily depends 
on patching, while the attack landscape has grown ever more 
dangerous.
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W e provide a summary of recent efforts towards achieving Internet 
geolocation securely, that is, without allowing the entity being 
geolocated to cheat about its own geographic location. Cheating 

motivations arise from many factors, including impersonation (if locations 
are used to reinforce authentication) and gaining location-dependent bene-
fits. In particular, we provide a technical overview of Client Presence Verifi-
cation (CPV) and Server Location Verification (SLV)—two recently proposed 
techniques designed to verify the geographic locations of clients and serv-
ers in real time over the Internet. Each technique addresses a wide range of 
adversarial tactics to manipulate geolocation, including the use of IP-hiding 
technologies like VPNs and anonymizers, as we now explain.

Internet geolocation is the process of determining the geographic location of an Internet-
connected device. Secure geolocating of a web client (a client visiting a website) is useful for 
location-aware authentication, location-aware access control, location-based online voting, 
location-based social networking, and fraud reduction. From the client’s perspective, geo-
locating the remote server can provide higher assurance to the server’s identity, and justify 
conducting certain sensitive transactions—for example, those requiring certain privacy 
measures or requiring data sovereignty [1]. Independent of server and client geolocation, 
geolocating network intermediate systems (e.g., routers) can also be useful for monitoring [2] 
and network mapping [3].

Both CPV and SLV are based on network measurements, where delays are measured from 
trusted network nodes dubbed verifiers and are analyzed in real time to verify physical pres-
ence inside a prescribed geographic region. We explain the threat model of both techniques, 
how they militate against known adversarial tactics, how they adapt to various network 
dynamics, and what distinguishes them from other geolocation approaches.

Geolocation Background
Many academic geolocation methods have been proposed, but there has been very limited 
deployment in practice. As of this writing, most of the geolocation conducted in practice 
relies on the clients’ IP address or GPS coordinates of hand-held devices, as explained below.

Geolocation in Practice
There are several methods for device geolocation over the Internet. If the device belongs to 
a user that is acting as a web client (i.e., visiting a website), the Geolocation API is a W3C 
standard that enables browsers to obtain location information of the device they are running 
on and communicate it to a webserver. Servers request location coordinates using JavaScript 
as follows:
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if(navigator.geolocation) {

      navigator.geolocation.getCurrentPosition(success, error, 

geoOptions);

   } else {

      console.log(“Geolocation is not supported on this 

browser.”);

}

The geolocation methods a browser uses are left to the browser 
vendor’s discretion. Most major browsers rely on the following 
in varying orders (that is, when one fails, the next is tried): GPS, 
WiFi Positioning System (WPS), IP address-based location 
lookups, or cell-tower triangulation of mobile devices. The loca-
tion of an IP address can be obtained from publicly available 
routing information or public registries, such as whois. Many 
IP location service providers (commercial and free) maintain 
lookup tables to instantly map IP addresses to locations. Such 
static tabulation methods may take long times to reflect changes 
or IP address reassignments, which occur quite often for client 
geolocation to be up-to-date (studies were conducted to confirm 
this [4]). IP address-based geolocation can, however, be reliable 
for benign server geolocation. Flagfox is an example Firefox 
extension that visually indicates a flag of the country corre-
sponding to the IP address resolution of the URL (Figure 1).

From a security perspective, none of the above techniques is 
resilient to adversarial manipulation. When the geolocation 
API is in use, the server normally makes no effort in geolocat-
ing the client device; it rather trusts the browser-communicated 
coordinates, which can easily be forged on the fly before being 
sent to the server. Firefox extensions that enable forgery include 
Fake Location (Figure 2) and Location Guard; both enable a user 
to specify where in the world they would like to appear to be. If 
the server relies on tabulation methods to geolocate the client 
(instead of asking the browser for its coordinates), the common 
practice of clients hiding their own IP addresses behind proxies 
and anonymizers comes into play.

Geolocation in the Literature
A wide set of techniques can be used, mostly for a server to 
geolocate clients [5]. These enable a server to infer a client’s 
geographic location from hints obtained from browser-generated 
HTTP headers such as preferred language or time zone. Loca-

tions can also be obtained through crowd-sourcing by interpo-
lating a device’s location from its proximity to nearby devices, 
like phones or WiFi access points (APs), with known GPS 
locations.

Another class of Internet geolocation approaches is based on 
network measurements. Similar to GPS triangulations that are 
based on the delays between the receiver and satellites, mea-
surement-based techniques also aim to locate devices (clients or 
server) by estimating their distance from landmarks in the net-
work with known locations. These landmarks measure network 
delays from themselves to the device, typically identified by its 
IP address, and map these delays to geographic distances. The 
accuracy of such mapping, however, is not anywhere near that 
of mapping satellite delays to distances, and is thus the primary 
source of inaccuracies in such techniques. Still, measurement-
based geolocation is generally considered more accurate than 
methods like tabulation-based geolocation.

From the security point of view, although most of the above 
methods are positioned as resilient to evasion, examination 
has shown otherwise. Delay-increasing attacks can allow an 
adversary to distort its perceived location [6]. Delay-decreasing 
was also studied, for example, by manipulating ICMP “ping” 
and “traceroute” as they fail to preserve the integrity of timing 
measurements.

Figure 1 [a-c]: Snapshots of the Flagfox browser extension

Figure 2: Snapshots of the Fake Location extension—an example browser 
extension allowing users to fake their locations
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Combining both attacks, an adversary can forge the calculated 
location to an accuracy of a few tens of kilometers relative to a 
target desired location [7].

Client Presence Verification—CPV
CPV [8] is a measurement-based technique designed to verify 
the geographic locations of web users (clients) over the Inter-
net. The client is assumed to be motivated to misrepresent its 
location to gain location-dependent benefits. CPV’s design takes 
into consideration various adversarial location-forging tactics, 
including delay manipulations and IP-hiding technologies like 
VPNs and anonymizers. CPV does not rely fundamentally on the 
clients’ IP addresses, nor does it determine geographic locations. 
Rather, it verifies an asserted (unverified) location, typically 
made by a client. The client’s location could be asserted using the 
client’s GPS coordinates, the client’s IP address, or even explic-
itly asking the user to fill-in their street address in an online 
form during login.

To verify location assertions, CPV relies on an infrastructure of 
geographically scattered nodes, dubbed verifiers. The technique 
works as follows. When a client visits a website and asserts the 
geographic location from which he/she is currently browsing, 
three verifiers surrounding the asserted location are selected. 
The verifiers measure (in real time) network delays between 
themselves and the client’s browser, and analyze these delays 
to corroborate that the client is present somewhere inside the 
triangle determined by their (the verifiers’) geographic locations. 
Because the verifiers cannot pinpoint where exactly the client 
is within the triangle, the size of the triangle is the verification 
granularity.

Secure One-Way Delay Estimation
The verifiers do not measure round-trip times (RTT) between 
themselves and the client. Rather, they estimate the smaller of 
the forward and reverse one-way delays (OWDs) between each 
of them and the client. The larger OWD is discarded because 
propagation delays between two network nodes are bounded by 
the physical distance between them, so a smaller OWD mea-
surement is a better representation to the geographic distance 
between both nodes than the larger—the larger must have been 
affected by other factors such as network congestion or circu-
itous routing.

To measure the OWD between a verifier and the client, CPV does not 
rely on standard OWD-estimation protocols like OWAMP (RFC 
4656), as those require honest client cooperation: for example, 
client clock synchronization and honest reporting of delays. As 
such, CPV relies on the minimum-pairs (MP) protocol [9]. MP 
requires the three verifiers, A, B, and C, to first synchronize 
their clocks and pre-share cryptographic keys to ensure opera-
tional integrity.

Through JavaScript, the client’s browser is first directed to 
establish a WebSocket (RFC 6455) connection to the three veri-
fiers, which are chosen based on the client’s asserted location. 
Verifier A begins by sending a cryptographically protected time-
stamp (in millisecond precision) to the client, which the browser 
forwards to the other two verifiers. On receiving this, verifier 
B calculates the propagation time from A → client → B, and like-
wise when the timestamp is received by C. Verifiers B and C then 
follow suit, taking turns in sending timestamps. When all three 
verifiers are done exchanging timestamp messages, they will 
have six delay values as follows:

• A→ client → B

• A→ client → C

• B→ client → A

• B→ client → C

• C→ client → A

• C→ client → B

Between each pair of verifiers, e.g., between {A → client → B} 
and {B → client → A}, the verifiers exclude the larger OWD and 
solve a system of three equations simultaneously for an estimate 
to the smaller OWD between the client and each verifier. That 
is, if the smaller of the forward and reverse OWD between the 
client and A, B, and C, respectively, is a, b, c, then (note: = sign 
here is used to indicate mathematical equality rather than an 
assignment operator):

• a + b = min(AtB, BtA)

• a + c = min(AtC, CtA)

• b + c = min(BtC, CtB)

where AtB is the delay A → client → B, and so on. Analysis of 
MP’s accuracy showed that the protocol is likely to provide more 
accurate estimates to the smaller OWD than simply using half 
the RTT [9].

Corroborating Presence Inside the Triangle
In order to avoid potential inaccuracies from delay-to-distance 
mapping, the calculated OWDs are not mapped to distances. 
Rather, they are compared to the smaller OWDs between the 
verifiers themselves, which are measured and updated periodi-
cally in a background process, independent of whether or not a 
client is currently being verified. Assuming x = min(AB, BA) is 
the smaller of the forward and reverse OWDs between verifiers 
A and B directly (not to be confused with min(AtB, BtA) from the 
previous section), and likewise y = min(BC, CB) and z = min(AC, 
CA), then the client’s asserted location is accepted as inside the 
triangle if:

area(Δxab)+area(Δybc)+area(Δzca) ≤ area(Δxyz) + ϵ

such that area (Δxab) is the area of that triangle calculated from 
its side lengths x, a, and b. The value of ϵ is used to account for 
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the two extra access network traversals occurring at the client 
when the timestamps propagate from a verifier to the client to 
another verifier.

Iterative Delay Measurement
To account for abrupt delay spikes or network irregularities, 
the above process of OWD calculations and comparison with 
those between the verifiers is iteratively repeated n times. If the 
condition is met for the majority of the conducted iterations, the 
location assertion is accepted.

CPV Calibration
There are several parameters that tune CPV’s reaction to events. 
The most important three are ϵ, n, which is the number of delay 
measurement iterations, and τ, which is the fraction of those 
iterations that must pass if the condition is met for the client’s 
asserted location to be accepted. This calibration should take 
place before the location verification process begins. To do that, 
the three verifiers may use network nodes that they know as a 
ground truth to be inside the triangle. From the network delays 
of these nodes, the verifiers compute values for the above-men-
tioned three parameters and then run CPV to verify a client’s 
location.

Hindering Illicit Traffic Relaying
In an attempt to defeat geolocation, a middlebox (like a proxy 
server or a VPN gateway) that is physically inside the triangle 
can be specifically customized to filter out the verifiers’ time-
stamps from the client’s traffic and forward them to the verifiers 
on behalf of the client. This threat against CPV is exacerbated 
by the presence of numerous cheap public VPN providers whose 
primary service is to enable subscribers to evade geolocation 
technologies.

Techniques like CPV can mitigate this by adapting known proof-
of-work techniques [10]. The verifiers generate a cryptographic 
client puzzle with each timestamp message, which the client’s 
browser must solve before forwarding the message (puzzle solu-
tion and timestamp) to the other two verifiers. The puzzles must 
be easy to solve so that they do not (1) overwhelm the client with 
high processing costs and (2) overshadow the network propaga-
tion delays. In the case of a middlebox connected to many simul-
taneously cheating clients, the middlebox will choose to either 
solve these puzzles on behalf of the clients or forward them to 
the clients. In the latter case, the network delay between the 
middlebox and the client will get added to the time the verifiers 
observe for location verification, which results in CPV correctly 
detecting the client’s absence from the respective triangle. It is 
thus in the middlebox’s interest to choose the former case—solv-
ing the puzzles on behalf of the clients. However, this means that 
as more clients are connected, the middlebox will have to solve 
more puzzles. When these puzzles begin to accumulate, they 

will increase queueing delays, which contribute to the delays 
observed by the verifiers, eventually causing CPV to reject the 
location assertions of all middlebox-connected clients.

In this model, there are two main parameters contributing to the 
puzzle queueing rate at the middlebox: the puzzle difficulty and 
the middlebox’s computational resources. Queueing analysis [10] 
shows that the puzzle difficulty has a higher impact on the rate 
of puzzle queueing than the middlebox’s computational power. 
This analysis suggests that this puzzle mechanism will effec-
tively hinder illicit middlebox relaying.

Evaluation Results
CPV was evaluated using PlanetLab—a distributed testbed for 
Internet measurement research and network experiments—
using 80 PlanetLab nodes in North America. Three of the nodes 
were selected to act as verifiers, and the remaining 77 acted as 
clients. Some of the 77 nodes were inside the triangle and oth-
ers were outside. All 77 nodes carried out the protocol with the 
verifiers simultaneously to get their locations verified. Knowing 
the ground-truth of which nodes were inside and which were 
outside (the geographic locations of PlanetLab nodes are publicly 
disclosed on PlanetLab’s website), we could count the number 
of false rejects, nodes inside the triangle identified by CPV as 
outside, and false accepts. The process is repeated after choos-
ing a different triangle, a different set of three nodes to act as 
verifiers, again counting false rejects and false accepts. In total, 
34 triangles where chosen. Triangles were chosen to be nearly 
equilateral (physically), with inside angles ranging from 50–70 
degrees (0.87–1.22 radians). The smallest triangle had an area 
equivalent to a circle of radius 100 km, and the largest of 400 km.

When the inside nodes were not too close to the triangle’s sides, 
that is, away from the closest side by at least 10% of its length, 
CPV resulted in a total of 1.0% false accepts and 2.0% false 
rejects [8]. These results were obtained when n = 600 CPV 
iterations were performed with each client. The results were not 
much different when only 100 iterations were performed, where 
the false accept rate increased only to 1.1% and the false reject 
rate remained unchanged. However, when only 10 iterations 
were performed, false accepts and false rejects were at 2.1% and 
4.1%, respectively.

Testing was later repeated to assess the effect of WiFi access 
networks on CPV’s efficacy [11]. WiFi access networks often 
have higher delays and delay jitters. A different evaluation 
technique was used, as the PlanetLab infrastructure used 
above involved nodes connected using wired access networks. 
To model WiFi clients, 802.11 delay models from the literature 
were used to generate the last-mile delays, which were added to 
the delay traces collected from PlanetLab. Since higher network 
delays for nodes inside the triangles may result in higher false 
rejects, the generated 802.11 delays were only added to the delays 



www.usenix.org  S P R I N G 20 1 8  VO L .  4 3 ,  N O.  1 23

SECURITY
Secure Client and Server Geolocation over the Internet

of inside nodes to create the most stressful testing situation. 
802.11 networks employ slotted retransmissions. The delays 
were generated such that each slot was 20 µsec, the propagation 
delay from the device to the wireless gateway was 1 µsec, and the 
four other wireless devices were continuously competing for the 
wireless media along with each wireless CPV client. With these 
parameters, CPV’s false accepts were at 2% and false rejects at 
4%. Although CPV’s efficacy was affected by the WiFi access 
network, increasing the number of iterations can improve the 
results (see [11]).

Live Demo
A live demo of CPV is currently running on http://cpv.ccsl 
.carleton.ca. This link hits a webserver in Ottawa, Canada, 
which enables clients to verify whether they are present inside 
a US-based triangle determined by verifiers in San Francisco, 
Las Vegas, and San Diego. The verifiers are provided by host-
ing services DigitalOcean, ServerPoint, and M5 Hosting. Each 
VM has a 500 MB RAM and runs Ubuntu 16.04. NTP is used to 
synchronize their clocks. Additionally, each verifier issues an 
NTP query every 30 minutes using the  “ntpq” utility to calculate 
the clock offset with the other two verifiers, which is added to 
the calculated OWDs between the verifiers for more accurate 
OWD estimates. Each verifier issues a timestamp to the other 
two verifiers every six seconds for direct OWD measurements 
between the verifiers.

A Java implementation of a CPV verifier runs on top of a light-
weight custom-written WebSocket server, which is also imple-
mented in Java. When a location verification request is initiated, 
the verifiers first check that it was issued from the authentic 
server (the one based in Ottawa in that demo implementation), 
because this server digitally signs connection IDs when they 
are issued. Additionally, each exchanged timestamp message 
between the verifiers through the client is corroborated using 
an MD5-based HMAC (a stronger HMAC is recommended to be 
used in practice). For the currently running demo, eight delay-
measuring iterations are performed, once every 300 ms. When 
all iterations are performed, the verifiers send the measured 
delays back to the Ottawa server, which processes the result and 
returns it to the browser as a jQuery response. 

No client puzzles are implemented yet in this demo as of this 
writing, nor is any automatic calibration of CPV’s parameters. 
Instead, the main server has manually set parameters of ϵ = 10 
ms and τ = 0.7, which are static and used across all clients.

Server Location Verification (SLV)
Analogous to CPV but on the server side, SLV [12] works by find-
ing evidence of a server’s physical presence inside a geographic 
region by measuring the server’s network delays. A browser typi-
cally communicates with an SLV Manager, which orchestrates 

a network of server location verifiers. The challenges faced in 
doing so are quite different from verifying clients: (1) clients do 
not normally have the ability to write and run code on the server, 
whereas that was easily achievable by the server on the client, 
typically using JavaScript; (2) the common physical distribu-
tion of web content using content distribution networks (CDNs) 
and replication technologies begs the questions: Of the multiple 
physical servers that may serve client content, which such serv-
ers should be selected to geographically locate (verify) in order to 
provide a useful server-authentication service? How should that 
machine be identified?

The answers to these questions depend on the threat model and 
the application for which geolocation is to be used. Since the goal 
of SLV is to reinforce server authentication, the implementation 
of SLV takes the view that the first machine that terminates the 
client’s TCP (and TLS) handshake is the most critical one. The 
protection provided from verifying that first machine would 
be comparable to that provided by TLS in the cases where the 
browser fetches content from multiple machines, some of which 
are not TLS-protected: for example, a page with mixed content.

For deciding on the mechanism used to identify machines, it is 
important to dissect man-in-the-middle (MITM) and server 
impersonation attacks. In MITM attacks, an adversary hijacks 
network traffic intended for the authentic server and relays it 
to the authentic server with or without modification. Hijacking 
could occur on several layers of the network stack as follows. 
(Note that using uncompromised TLS protects against the 
following hijacking cases; the value of using server location to 
reinforce server authentication is more profound for non-TLS-
enabled websites or to catch attacks against the TLS system.)

◆◆ Case 1: Attacker’s machine has a different IP address than 
the authentic server. In upper layers, phishing and pharming 
attacks are prominent traffic hijacking examples; the outbound 
traffic from the client has a different IP address from that of the 
authentic server. If the browser submits the domain name of 
the visited website to the SLV Manager, the Manager may re-
solve it to a different IP address from that seen by the browser 
(which could also occur benignly in the cases of CDNs). Verify-
ing the geographic location of that IP address then becomes 
useless to the browser because a MITM adversary would go 
undetected. It is thus important to have the browser resolve a 
domain and submit the IP address to the SLV Manager.

◆◆ Case 2: Attacker’s machine has same IP address as au-
thentic server. In a lower layer hijacking, such as MAC table 
poisoning, ARP spoofing, and BGP spoofing, outbound traffic 
from the client has the same destination IP address as that of 
the authentic server. Such tactics are based on routing manipu-
lation, so that traffic intended to the authentic server’s IP ad-
dress reaches a different network location (versus geographic 
location), which corresponds to the attacker’s machine.
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In comparison to upper layers, lower layer hijacking attacks 
tend to be more scalable, affecting a larger proportion of clients. 
For MAC table poisoning and ARP spoofing, the closer the 
attacker’s machine is to the authentic server’s network, the more 
the affected clients. Likewise, BGP spoofing can cause traffic 
hijacking at a global scale [13]. This implies that as with higher 
layer traffic hijacking attacks (discussed above), identifying the 
server by its IP address will likely allow the SLV Manager to 
detect whether the browser-intended machine is at a different 
geographic location from that asserted through a static location 
mapping previously obtained for that IP address.

Revisiting the above questions, if SLV targets the IP address 
as resolved by the browser of the first machine that the client 
initially handshakes, regardless of whether the browser will be 
instructed to fetch other content from different places later in 
the session, it can detect most of the above server impersonation 
attacks.

Verification Mechanism
After obtaining an unverified server location assertion, three 
verifiers surrounding that location are selected. The veri-
fiers measure network RTTs to the server over several layers, 
including an application using HTTP request-response times 
and transport using TCP handshake responses. By means of 
comparing these delays with the delays between the verifiers, 
each pair of verifiers then verify whether the server is physically 
present inside the circle whose diameter is the physical distance 
between the verifier pair, and whose center is the midpoint 
between them (Figure 3).

Evaluation Results
Pilot testing of ∼200 experiments was conducted on SLV using 
PlanetLab, half of which were true location assertions made by 
servers and the other half were false assertions. As with CPV, 
the rates of false rejects and false accepts were the fundamental 
evaluation parameters. SLV resulted in 0% false accepts and 
2.4% false rejects [12]. Although the false reject rate may seem 
high for some applications, it can be improved by proper selec-
tion of verifiers, those with sufficient network bandwidth and 
processing resources.

SLV Browser Extension
We have built a Firefox browser extension to reinforce TLS 
by integrating the webserver’s verified physical location, as 
described above, into the server authentication process. The 
extension sends the IP address of the server to the SLV Manager 
and receives the location verification result. The extension uses 
FlagFox to obtain an unverified assertion for the server’s loca-
tion. It also displays a flag in the URL (Figure 1) and a green tick 
mark or a red cross indicating whether the location asserted by 
FlagFox is true (according to SLV’s verification) or not. This pro-

cess takes a few seconds to execute, during which a throbber is 
displayed by the flag instead. Note that such visual cues are only 
meant as visual feedback in prototypes and are not an indica-
tion that we would expect end-users to base decisions upon. See 
below for how policies could be implemented to automatically 
make decisions on behalf of users.

Server Location Pinning in the Browser. 
To avoid having the user interpret visual icons, the SLV exten-
sion is supported with a location pinning feature, whereby a 
browser saves the fact that a website identified by its URL was 
previously verified to host content from a particular geographic 
location, analogous to key pinning [14]. Although location veri-
fication is performed based on the IP address, the SLV Manager 
only receives an IP address from the browser, with location pin-
ning in the browser based on the domain name. Upon receiving 
the verification result for a website, its location gets pinned only 
if the result is positive. This operation follows a trust on first use 
(TOFU) concept.

In general, for interpreting a received verification result, the SLV 
extension checks whether that location to some degree of geo-
graphic precision was pinned before for that website. The result 
of the operation falls into one of three categories: Critical, Suspi-
cious, or Unsuspicious. Critical means the verification result for 
a previously pinned location was negative. A Suspicious outcome 
occurs when the location verification result is negative, but no 
location was previously pinned for that website . Finally, an 
Unsuspicious outcome is when location verification passes for a 
domain that was not previously pinned. Note that these are only 
meant to illustrate how a client might utilize SLV, but we expect 
different applications would make different choices.

Figure 3: Server Location Verification (SLV) using network measurements 
from three verifiers (A, B, and C) to a server. Please view the online ver-
sion of this article to see the figure in color. Map data: Google, INEGI.
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Such outcomes could result in the browser automatically taking 
decisions through a policy-based engine. An example would be 
to instruct the browser to block/terminate the connection for all 
Critical outcomes of the user’s personal banking website. Such 
terminology is subject to more research scrutiny and is not yet 
part of the above-described SLV extension.

Conclusion
This article provides a technical overview of recent advance-
ments in the field of secure geolocation over the Internet. Two 
technologies, CPV and SLV, were explained to address client 

and server geolocation, respectively. Both rely on network tim-
ing measurements for secure location verification, taking into 
 consideration safety measures to limit adversarial manipula-
tions. Of the wide variety of applications that may benefit from 
secure location information of clients and servers, reinforcing 
authentication (location-aware authentication) for both ends 
remains an important example. Future research on CPV and 
SLV includes further enhancing their accuracy in terms of the 
false reject and accept rates and their efficiency for large-scale 
deployments in practice.
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Berkeley Packet Filter was introduced almost two decades ago and has 
been an important component in the networking subsystem of the 
kernel for assisting with packet filtering. Extended BPF can do much 

more than that and is gradually finding its way into more kernel subsystems 
as a generic event-processing infrastructure. In this article, I provide enough 
background to help you understand how eBPF works, then describe a simple 
and fast firewall using Express Data Path (XDP) and eBPF.

Berkeley Packet Filter (BPF) has been around for more than two decades, born out of the 
requirement for fast and flexible packet filtering machinery to replace the early ’90s imple-
mentations, which were no longer suitable for emerging processors. BPF has since made its 
way into Linux and BSDs via libpcap, which is the foundation of tcpdump.

Instead of writing the packet filtering subsystem as a kernel module, which can be unsafe 
and fragile, McCanne and Jacobson designed an efficient yet minimal virtual machine in the 
kernel, which allows execution of bytecode in the data path of the networking stack.

The virtual machine was very simple in design, providing a minimalistic RISC-based 
instruction set, with two 32-bit registers, but it was very effective in allowing developers to 
express logic around packet filtering. BPF owes its relative longevity to two factors—flex-
ibility and performance. The design goal was to design the subsystem in a protocol-agnostic 
manner and the instruction set to be able to handle unforeseen use cases.

A sample BPF program that filters every IP packet:

(000) ldh      [12]

(001) jeq      #0x800           jt 2        jf 3

(002) ret      #262144

(003) ret      #0

This program loads a half-word from offset 12, checks if the value is #0x800, and returns 
true if it matches and false if it doesn’t.

The flexible instruction set allowed programmers to use BPF for all sorts of use cases such 
as implementing packet filtering logic for iptables, which performs very well under high load 
and allows for more complex filtering logic. Having a protocol-independent instruction set 
allowed developers to update these filters without writing kernel modules; having a virtual 
machine run the instructions provided a secure environment for execution of the filters. A 
significant milestone was reached in 2011 when a just in time (JIT) compiler was added to 
the kernel, which allowed translating BPF bytecode into the host system’s assembly instruc-
tion set. However, it was limited to only x86_64 architecture because every instruction was 
mapped one on one to an x86 instruction or register.

Things took an interesting turn when the BPF subsystem was “extended” in the Linux oper-
ating system in 2013, and since then BPF is used in a lot more places, including tracing and 
security subsystems, besides networking.
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Extended BPF
Linux 3.18 had the first implementation of extended BPF (eBPF), 
which made significant improvements from its precursor. While 
the original BPF virtual machine had two 32-bit registers, 
eBPF had 10 64-bit registers, added more instructions that were 
close to the hardware, and made it possible to call a subset of 
the kernel functions. All the BPF registers matched with the 
actual hardware registers, and BPF’s calling conventions were 
similar to the Linux kernel’s ABI in most architectures. One of 
the important outcomes of this was that it was now possible to 
use a compiler like LLVM to emit BPF bytecode from a subset of 
the C programming language. Another important addition was 
the BPF_CALL instruction, which allows BPF programs to call 
helper functions from the kernel allowing reuse of certain exist-
ing kernel infrastructure. 

The important point to keep in mind is that eBPF today can be 
used as a general-purpose event-processing system by various 
subsystems in the kernel. These events can come from various 
different sources such as a kprobe tracepoint or an arrival of a 
packet in the receive queue of the network driver. Support for 
BPF has gradually been added to various strategic points in the 
kernel such that when code in those kernel subsystems execute, 
the BPF programs are triggered. The kernel subsystems that 
trigger a BPF program dictate the capability of a BPF program, 
and usually every BPF program type is connected to a kernel 
subsystem. For example, the traffic control subsystem supports 
the BPF_PROG_TYPE_SCHED_CLS and BPF_PROG_TYPE_
SCHED_ACT program types that allow developers to write BPF 
to classify traffic and control behavior of the traffic classifier 
actions, respectively. Similarly, the seccomp subsystem can 
invoke a BPF program to determine whether a userspace process 
can make a particular syscall.

Writing the BPF bytecode for anything nontrivial can be chal-
lenging, but things have become a lot simpler since BPF has been 
added as a target in LLVM and users can now generate BPF in a 
subset of the C programming language.

In today’s Linux kernel, the old BPF instruction set, commonly 
known as cBPF, is transparently translated to eBPF instruc-
tions. I will use eBPF and BPF interchangeably from here on.

BPF Maps
An introduction to BPF is incomplete without discussing BPF 
maps. BPF programs by themselves are stateless, and so maps 
allow programs to maintain state between invocations. For 
example, we could write a BPF program that prints a trace mes-
sage whenever the inet_listen function is called in the kernel. 
However, if we wanted to expose that information as a counter 
to some monitoring tool, we would need the program to main-
tain state somewhere and increment a counter every time the 

method is called. This is where BPF maps come in. BPF maps are 
generic data structures implemented in the kernel where eBPF 
programs can store arbitrary data. These data structures, com-
monly referred to as maps, treat the data as opaque, and hence 
programs can store arbitrary bytes as key-value as appropriate. 
Maps can only be created or deleted from the userspace; BPF 
programs access the maps by using helper functions such as 
bpf_map_lookup_elem.

As of this writing, there are 11 different types of maps imple-
mented in the kernel today, some of them generic and others used 
specifically with helper functions. The generic maps are:

BPF_MAP_TYPE_HASH

BPF_MAP_TYPE_ARRAY

BPF_MAP_TYPE_PERCPU_HASH

BPF_MAP_TYPE_PERCPU_ARRAY

BPF_MAP_TYPE_LRU_HASH

BPF_MAP_TYPE_LRU_PERCPU_HASH

BPF_MAP_TYPE_LPM_TRIE

Each of them is designed for a specific use case, so it’s useful to 
understand the performance characteristics and their heuristics 
before starting to use them in BPF programs. For example, if we 
were designing a filter that increments a counter for every UDP 
packet that is being dropped, it would be best to use a per-CPU 
hash map so that the counters can be incremented without 
any synchronization to prevent multiple instances of the BPF 
program being triggered on different CPUs simultaneously. The 
non-generic maps are best described in the context of the docu-
mentation for the operations with which they can be used.

The BPF Syscall
The BPF syscall introduced in kernel 3.18 is the main workhorse 
for userspace programs to interact with the BPF infrastructure. 
The syscall multiplexes almost all the operations that userspace 
processes need to perform when handling BPF programs and 
maps. The syscall’s usage includes, but is not limited to, loading 
BPF filters into the kernel, creating new maps, or retrieving data 
from existing ones.

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

◆◆ cmd—It could be one of the many operations that the syscall can 
perform. There are 10 such commands in total, six of which are 
documented in the man page.

◆◆ attr—A union that provides context to the command. For 
example, when used with the BPF_PROG_LOAD command, 
it allows the bytecode to be passed to the kernel, and with the 
BPF_MAP_CREATE, it lets the user define the size of the key 
and values of the map.

◆◆ size—The size of the attr union.
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The syscall returns 0 when it succeeds in most cases, except 
for BPF_PROG_LOAD and BPF_MAP_CREATE, which return 
the file descriptor of the BPF object created. For any failures, it 
returns -1 and sets the appropriate errno. 

However, most userspace programs don’t use the raw syscalls; 
the BPF Compiler Collection (BCC) provides the libbpf library, 
which has some wrapper functions that make working with BPF 
objects easier.

int bpf_prog_load(enum bpf_prog_type prog_type, const char 

*name, const struct bpf_insn *insns, int prog_len, const char 

*license, unsigned kern_version, int log_level, char *log_buf, 

unsigned log_buf_size)

For example, the above wrapper function creates the attribute 
union for the bpf() syscall and wires in appropriate parameters. 
The kernel samples include good examples of usage of the libbpf 
library and other userspace helpers.

BPF Verifier
Safety is a very important concern for BPF programs, especially 
because they tend to run in the performance-critical sections of 
the kernel. The BPF infrastructure includes an in-kernel verifier 
that uses CFG (control flow graph) to determine that the BPF 
program terminates within the limit of maximum number of 
instructions. The verifier, for example, forbids loops and makes 
sure that maps are not destroyed until a program that uses it 
doesn’t terminate. The verifier also statically ensures the safety 
of the calls to the helper functions by checking that the types of 
the data in the BPF VM register matches with the types of the 
helper function arguments.

In addition to ensuring type safety, the verifier also ensures 
safety of the program by prohibiting out of bounds jumps and 
out-of-range data access. The verifier also restricts what kernel 
functions and which data structures can be accessed based on 
the BPF program type.

BPF File System
BPF maps and filters are effectively kernel resources exposed to 
userspace via file descriptors backed by anonymous inodes; this 
comes with some benefits but also interesting challenges. Once a 
userspace program exits, the BPF program would get destroyed, 
and so would the maps related to that program. The lifetime of a 
BPF program and maps are tied to that of the userspace process 
that loaded the program, which prevents maps from persist-
ing between filter invocations. As a result, maintaining state 
between program invocations becomes impossible. To overcome 
these limitations, the BPF infrastructure comes with a file sys-
tem where BPF objects like maps and programs can be pinned 
to a path in the file system. This process is commonly known as 
Object Pinning, and two new commands, BPF_OBJ_PIN and 

BPF_OBJ_GET, facilitate pinning and retrieving an existing 
pinned object. The command simply needs file descriptors and 
the path to which the object is going to be pinned.

An interesting aspect of BPF objects being exposed as file sys-
tem objects is that processes with higher privileges could create 
the objects and pin them to the file system and then drop their 
permission. For example, this allows lower-privileged userspace 
tools, like monitoring tools, to read telemetry data from maps.

BPF Tail Calls
BPF programs are limited to 4096 instructions, but it’s possible 
to chain multiple programs together via tail calls. This technique 
allows a BPF program to call another BPF program when it fin-
ishes. Tail calls are implemented by long jumps inside the VM, 
which reuse the same stack frame. BPF tail calls are different 
from normal functions in the sense that once the new function is 
invoked when the current function ends, the previous program 
ends. Data could be shared between stages by using per-CPU 
maps as temporary buffers. Tail calls are used to modularize 
BPF programs. For example, a program could parse the headers 
of a network packet, and the following program could implement 
some other logic like tracing or running classifier actions based 
on the headers.

There are certain limitations to tail calls:

1. Only similar programs can be chained together.

2. The maximum number of tail calls allowed is 32.

3. Programs which are JITed can’t be mixed with the ones that 
are not JITed.

As stated earlier, various kernel subsystems now have support 
for BPF. I will cover one such area that is part of the networking 
subsystem.

Express Data Path (XDP)
The networking subsystem of the kernel is one of the more 
performance-sensitive areas—there is always ongoing work to 
improve performance! Over the years userspace networking 
frameworks like DPDK have attracted users with the promise of 
faster packet processing by bypassing the kernel network stack. 
While it’s lucrative for userspace programs to get access to net-
work devices and improve on some data copies by bypassing the 
kernel, there are some problems with that approach as well. Most 
notably, in some cases packets have to be re-injected back to the 
kernel when they are destined for ssh or other system services. 
XDP provides an in-kernel mechanism for packet processing 
for certain use cases by providing access to the raw packets, so 
BPF filters can make decisions based on the headers or contents 
within the packets. XDP programs run in the network driver, 
which enables them to read an ethernet frame from the Rx ring of 
the NIC and take actions before any memory is allocated for the 
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packet in the kernel’s socket buffers (skb). As a use case, XDP pro-
grams can drop packets in the event of denial-of-service attacks 
at the line rate without overwhelming the kernel’s TCP stack or 
the userspace application. It is important to note that XDP is 
designed to cooperate with the existing networking subsystem of 
the kernel, and so developers can selectively use XDP to imple-
ment certain features that don’t need to leave the kernel space.

XDP programs currently can make the following decisions:

1. XDP_DROP—Instructs the driver to simply drop the packet. 
It’s essentially recycling a page in the Rx ring queue, since 
this happens at the earliest possible stage of the Rx flow.

2. XDP_TX—Retransmits a packet on the same NIC source. In 
most scenarios the eBPF program alters the headers or the 
contents of the packet before retransmitting. This allows 
for some very interesting use cases, such as load balancing 
where the load balancing decision is entirely done in the eBPF 
program. In this scenario, the networking stack or any user-
space code doesn’t need to participate in the decision making 
or packet retransmission flow, which allows for throughput 
close to line rate. One important point to keep in mind is 
that the XDP infrastructure doesn’t have any sort of buffer, 
because the packets are processed at the driver layer, so when 
a packet is retransmitted and the TX device is slower, packets 
might simply get dropped.

3. XDP_PASS—The eBPF program has allowed the packet to 
move on to the networking stack of the kernel. It’s also pos-
sible to rewrite the contents of the packets before the packet 
is passed on.

4. XDP_ABORT—This action is reserved for usage when the 
program encounters some form of an internal error; it essen-
tially results in the packet getting dropped.

XDP depends on drivers to implement the Rx hook and plug into 
the eBPF infrastructure. Currently, there can be only one XDP 
program attached to a driver, but programs can call other pro-
grams using the tail calls infrastructure.

Case Study: XDP-Based Firewall
To demonstrate how XDP programs work, we can go through the 
design of a simple packet filtering service. Services like firewalls 
are usually divided into a distributed control plane and a data 
plane. The control plane provides APIs for operators to create 
filtering rules and introspects the filters to provide telemetry 
data. The data plane runs on every host in a cluster where packet 
filtering happens. XDP filters naturally constitute the data plane 
of such a system.

In general, software using BPF filters are divided into three parts:

1. BPF filter code and maps that are loaded into the kernel

2. Userspace program that loads the filter and provide APIs to 
update various maps

3. Optional processes like command line tools to access the maps

BPF Maps
The BPF maps form the most essential part of the firewall 
system. As stated above, they essentially allow the userspace 
processes to provide the rule set for performing packet filtering 
and the XDP program to emit telemetry data. We use the follow-
ing maps in the data plane:

1. LPM trie map—The trie data structure allows doing prefix-
based lookups efficiently, and BPF includes an implemen-
tation of LPM (longest prefix match) trie. We will use the 
LPM trie map to store the CIDR blocks of the source and the 
destination addresses which have to be either blacklisted or 
whitelisted.

2. Map array—For whitelisted or blacklisted destination ports.

3. Hash maps—Hold counters for packets dropped and passed 
based on the rule set.

XDP Filters
The BPF program that XDP invokes when a packet is received in 
the driver contains the logic for parsing incoming packets, reads 
the maps to look up the rules provided by the userspace process, 
and makes filtering decisions based on them. The BPF program 
also updates maps with telemetry data to provide observability 
into the actions taken.

There would be separate XDP filters for whitelisting and black-
listing flows, so we will have two different XDP filters:

1. The blacklisting filter would parse the ethernet frame and 
extract the source IP address and the destination port. If 
the source IP address has a match in the LPM trie, it would 
simply return the XDP_DROP action. From there on, it would 
look up the blacklist’s array map and return the XDP_DROP 
action if there is a match. If none of the above checks has a 
positive outcome, the filter returns the XDP_PASS action, 
thereby passing on the packet to the kernel’s networking stack.

2. The whitelisting filter behaves similarly except that it 
returns the XDP_PASS action and allows the packet to pass 
into the kernel only if the lookups within the LPM trie map 
and the array map have a successful match. In other cases it 
returns the XDP_DROP action, thereby dropping the packet.
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Userspace Program
The userspace program has all the necessary infrastructure to 
interact with the control plane service and also interacts with 
the BPF infrastructure. It retrieves the rules that need to be 
enforced, creates the necessary maps, and loads either of the 
whitelisting or the blacklisting filters based on the rules that 
need to be enforced. Any updates from the control plane would in 
turn update the maps containing the rules so that the filters can 
enforce the new rules. It can also provide APIs for other tools, 
such as monitoring system APIs that get telemetry data.

In addition to the XDP program and the userspace process that 
loads it, there could also be additional userspace tools that might 
interact with the pinned BPF objects. For example, third-party 
monitoring system tools could implement logic to read the maps 
and push telemetry data.

Conclusion
eBPF and XDP have been a major step towards achieving pro-
grammability in the kernel’s data path, which provides safety 
without compromising on speed. Beyond networking, eBPF has 
made a significant improvement in the tracing capabilities in 
the kernel, which has enabled instrumentations in areas that 
were previously not possible. The future of eBPF in the kernel 
is strong, and we will see more tools using the power of the BPF 
infrastructure.
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Faults in Linux 3.x
T A P A S W E N I  P A T H A K

Prior studies have used tools to find bugs in the Linux kernel versions 
1 and 2. In this article, I share the results for faults in 3.x versions. 
This study is a continuation of the work by Chou et al. [1] for versions 

1.0 to 2.4.1 and Palix et al. [2a–c] for 2.6 versions. I explain the types of bugs 
studied, trends for these bugs over newer versions, and how the reports were 
generated across the different Linux kernel versions.

In 2001, Chou et al. used static analysis tools run over each kernel version to get the results, 
and the number of common faults found was very high. By 2011, Linux kernel was in its third 
decade. Palix et al. found that the number of common faults decreased from the previous 
study results, implying better code quality in 2.6.x, but it was still very high. On February 
8, 2015, Linux kernel version 3.19 was released. Patches are regularly submitted for faults 
found using checkpatch [3], Sparse [4], Coccinelle [5] and Smatch [6]. The number of lines 
of code in the Linux kernel also crossed 15M at this time. I wanted to follow the path of the 
previous studies and research how many bugs were in 3.x versions.

Methodology
Palix et al. used the open source tools Coccinelle [5], to automatically find faults in source 
code, and Herodotos [7, 2c], to run Coccinelle for each fault type and to track the faults across 
multiple versions of the Linux kernel. Coccinelle and Herodotos are available on the open 
access archive HAL [7, 2b]. Coccinelle is a tool for pattern matching and text transformation. 
To study the bed of faults it is necessary to understand the history behind them. When were 
they first released? When did they die if they did? Did they move after they were first intro-
duced? Following the methodology deployed in the 2011 study, I used Coccinelle to automati-
cally find problematic programming patterns in Linux kernels, and Herodotos to correlate 
these fault reports between different versions of the Linux kernel. The data about faults in 
this article were compared with the last study performed and helped to improve the reports 
generated for the study done on 3.x versions. As an example, there were cases where false 
positives previously reported moved around in different places in the code file.

Emac’s org mode (orgmode.org), a text file format, was used to categorize the reports as bug 
or false positive. With this it was easier to move between different versions of the Linux 
kernel for the same report and study the history and reason behind a given bug type clas-
sification. This manual process was performed to make sure that none of the false posi-
tives generated were marked as bugs. I cloned all Linux kernel versions from 3.0 to 3.19 and 
considered the function stack, calls, and all possible inputs, outputs, Linux kernel standards, 
stack size etc. to categorize these reports as bugs or false positives. I also submitted patches 
for the bugs that were present in the then-current Linux kernel version.

In a few cases, I was not able to categorize the reports as bugs or false positives. In these 
cases, I used UNKNOWN/IGNORED.

The tools and marked reports generated were publicly made available in a GitHub repository [8].
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After analyzing the reports, Nicolas Palix generated figures to 
highlight the rise and fall of the number of bugs in the different 
versions. I used org2sql to update the database of records for the 
Linux kernel versions 3.xx. org2sql tries to import all the faults 
and needs of at least two parameters: the prefix of files to drop  
(/fast_scratch/linuxes/) and the new.org file to import. The 
output is on stdout, which I then directed to an SQL file, which 
later was used with psql. All the figures were generated using 
these data and scripts [9].

Studied Fault Types and Their State
Inconsistent Assumptions about NULL
Dereferencing a pointer is undefined if the pointer is null. This 
fault type comes in two flavors: IsNull and NullRef. An IsNull 
fault is where a NULL test is done preceding a dereference, and 
a NullRef fault is where a NULL test is done following a derefer-
ence. The former is always an error, while the latter may be an 
error or may simply indicate overly cautious code, if the pointer 
can never be NULL.

Both fault types consistently decreased between versions 3.0 to 
3.19. Figure 1 shows that the introduction of the IsNull bug type 
moved close to zero with Linux version 3.19 from the highest 
point with Linux version 3.0.

208 NullRef faults (Figure 2) were reported in total in Linux 
3.19, and 112 of them were introduced in 3.0 or later.

As an example, a bug in Linux 3.15 occurred where a null check 
was done after referencing it inside the file drivers/staging/
media/rtl2832u_sdr/rtl2832_sdr.c, line 992, in the function 
rtl2832_sdr_start_streaming for the s variable. 

dev_dbg(&s->udev->dev, “%s:\n”, __func__);

if (!s->udev)

An interesting false positive (FP) was found in Linux-3.11 
inside the file net/nfc/llcp_core.c, lines 724 (null test) and 761 
(nullref), in the function nfc_llcp_tx_work(), if llcp_sock is 
checked for null with one more condition (&&):

if (llcp_sock == NULL && nfc_llcp_ptype(skb) == LLCP_PDU_I)

         .....

else if (llcp_sock && !llcp_sock->remote_ready)

         .....

Then inside the else, llcp->sock is dereferenced using

skb_queue_tail(&llcp_sock->tx_pending_queue, copy_skb);

The code is only a problem if llcp_sock is null and if ptype  

== LLCP_PDU_I. But ptype is defined as u8 ptype = nfc_llcp 

_ptype(skb). And up at the top of the sequence of ifs there  
is another case for where llcp_sock == NULL && nfc_llcp 

_ptype(skb) == LLCP_PDU_I.

Disabling but Not Reenabling Interrupts
This includes interrupts that are turned off but not turned  
on again, using the function spin_lock_irqsave. spin_lock 

_irqsave is used to save the interrupt state before acquiring the 
spin lock. This is because spin lock disables the interrupt, when 
the lock is taken in interrupt context, and reenables it while 
unlocking or when using local_irq_disable and local_irq 

_save. The interrupt state is saved so that it can reinstate the 
interrupts again.

Locking but Not Unlocking and Double Locking
Double locking is a bug. This check looks for cases where a lock 
is taken but not released, that is, where an unlock is missing. In a 
few cases, interrupts are disabled at the same time that a lock is 
taken. Figure 3 shows that for the LockIntr bug type, the intro-
duction rate reached its peak during 2013. With the introduction 
of Linux 3.9, the LockIntr rate fell to zero, implying there were 
no new LockIntr bugs that were produced with this release.

I even found a few interesting FPs where I plan to improve the 
semantic patch in Linux 3.5 inside the file kernel/workqueue.c  
at line 1013, in the function __queue_work():

 spin_lock_irqsave(&last_gcwq->lock, flags);

 worker = find_worker_executing_work(last_gcwq, work);

if (worker && worker->current_cwq->wq == wq

gcwq = last_gcwq;

  else {

Figure 1: Birth and death of IsNull

Figure 2: Birth and death of NullRef
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 /* meh... not running there, queue here */

 spin_unlock_irqrestore(&last_gcwq->lock, flags);

 spin_lock_irqsave(&gcwq->lock, flags);

In the case where the unlock seems to be missing, there is the 
code gcwq = last_gcwq. In the case where the unlock is present, it 
is followed by the code spin_lock_irqsave(&gcwq->lock, flags). 
That is, the whole set of nested ifs terminates with the need to 
unlock &gcwq->lock. This lock is unlocked later. And in the case 
where worker && worker->current_cwq->wq == wq, it is the case 
that gcwq = last_gcwq, so the subsequent unlock of &gcwq->lock 
will unlock the last_gcwq lock because they are the same.

Calling Blocking Function with Interrupts Disabled or 
Spinlock Held
Blocking with interrupts disabled or a spinlock held can lead to 
deadlock. Basic memory allocation functions, such as the kernel 
function kmalloc, often take as their argument the constant GFP_

KERNEL when kmalloc is allowed to block until a page becomes 
available. Thus, a function that contains a call with GFP_KERNEL 
as an argument may block.

However, blocking with interrupts turned off is not necessar-
ily a fault, and indeed core Linux scheduling functions, such as 
interruptible_sleep_on, call “schedule” with their interrupts 
turned off. This issue was taken into account when checking for 
false positives.

This fault type checked for locks around possibly blocking 
functions.

Figure 4 shows that the birth and death of the Lock bug type had 
a fall. The slight increase in the introduction with Linux 3.19 is 
explained below.

In Linux 3.19, in the file drivers/staging/emxx_udc/emxx_udc.c 
at line 2797, inside the function nbu2ss_ep_queue(), GFP_KER-

NEL is used when calling dma_alloc_coherent. GFP_KERNEL was 
replaced with GFP_ATOMIC with a patch, as the latter will fail if 
the heap doesn’t have enough free pages but will not sleep and 
hence avoids deadlock.

Wrong Use of krealloc
This fault type checked for a wrong use of krealloc. krealloc 
reallocates memory, while the contents of the memory remain 
unchanged. If krealloc()’ returns NULL, it doesn’t free the 
original pointer, which was pointing to the memory allocated. 
So any code of the form foo = krealloc(foo, ...); is certainly a 
bug. krealloc should use a temporary pointer for allocations and 
check the temporary pointer returned against NULL too.

For krealloc type reports, all reports were bugs and none were 
FPs in the case for 3.x versions. The most recent was in Linux-
3.16 in the file drivers/pinctrl/sunxi/pinctrl-sunxi.c at line 740:

pctl->functions = krealloc(pctl->functions,

 pctl->nfunctions * sizeof(*pctl->functions),

 GFP_KERNEL);

If reallocation fails, krealloc will return NULL to pctl-

>functions without freeing the memory previously pointed to  
by pctl->functions.

Interrupts Turned Off but Not Turned On Again
Calling the local_irq_save function disables interrupts on the 
current processor and saves current interrupt state as flags 
(passed to this function). local_irq_restore function enables 
interrupts and restores state using the flags. In early versions of 
Linux, locks and interrupts were managed separately: typically 
interrupts were disabled and reenabled using cli and sti, respec-
tively, while locks were managed using operations on spinlocks 
or semaphores. This fault type checked for the case where inter-
rupts were turned off using the functions local_irq_save or 
save_and_cli but were not turned on again.

Figure 5 shows that in Linux kernel 3.17, this bug type had new 
introductions as well as eliminations. By Linux 3.19 both intro-
duction and elimination reached zero.

I found a total of four bugs of this type. One was in Linux 3.17 in 
the file arch/mips/kvm/tlb.c at line number 206, inside method 
kvm_mips_host_tlb_write()’:

local_irq_save(flags);

Figure 3: Birth and death of LockIntr Figure 4: Birth and death of Lock
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The interrupt state is saved so that it should reinstate the inter-
rupts again, but, in this case, after the above call to local_irq_

save(), there is no call to local_irq_restore().

Using Freed Memory
kfree frees previously allocated memory. Using freed memory 
can cause the kernel to crash, can lead to a write-what-where 
condition, and can have consequences like corruption of valid 
data and the execution of arbitrary code. I checked for cases 
where there was a use after kfree and after a function that 
directly or indirectly calls kfree. The false positives were mostly 
when the variable freed was accessed only after a null check.

There were a lot of cases where goto was being used immediately 
after the kfree, which doesn’t allow the statement to execute 
when using the freed memory. There were also many cases where 
an immediate return was done after kfree, and thus the state-
ment where a variable accessed after kfree was not executed. 
There were cases where a check on the variable just freed (inside 
an if) was being done, hence avoiding a buggy situation.

Allocating Large Arrays on the Stack
All the local variables in the function are allocated on the stack. 
If too much memory is allocated on the stack, the kernel might 
run out of stack memory because the Linux kernel stack has a 
fixed size.

This fault type checked for instances where large arrays were 
allocated on the stack. I considered an array to be large if it con-
tained more than 1023 bytes. Anything below that was marked 
as a false positive, and anything greater than that was consid-
ered a bug.

No new bugs of this bug type were introduced with Linux kernel 
version > 3.11. I found one FP of type var in Linux 3.11 in the file 
drivers/staging/lustre/lnet/klnds/socklnd/socklnd_cb.c at line 
1034:

static char ksocknal_slop_buffer[4096];

In this case it was a global static variable, only visible in one 
function and not declared on the stack, so this was an FP.

Using Value Taken from User as Array Bounds and 
Loop Index without Check
Values taken from userspace should be checked for limits before 
using these values. A value could be huge, or it could be negative 
if the type of the field is not unsigned. copy_from_user is used to 
copy a block of data from userspace to kernel space. It then returns 
the number of bytes that could not be copied. On success, this will 
be zero. If some data could not be copied, this function will pad the 
copied data to the requested size using zero bytes. get_user is 
used to get a simple variable from userspace. This macro copies a 
single simple variable from userspace to kernel space.

This fault type checked for the case where unchecked values 
were obtained from the user level through copy_from_user and  
copy_from_user may be used as an array index or loop bound.

The Linux kernel from versions 3.0 to 3.19 had very few instances 
of introduction of this bug type. The Linux kernel 3.19 had no 
new user-value bug type introductions. 

I found one copy_from_user type bug in Linux 3.12, in the file fs/
btrfs/ioctl.c at line number 2736, inside the function btrfs 

_ioctl_file_extent_same(); copy_from_user is done using the 
same structure. same->logical_offset is then assigned to off, 
and same->length is assigned to len. The len variable is then 
checked for the maximum value it can have; if it exceeds that, 
it is assigned the maximum it can take. But later, the loop uses 
same->dest_count and not len.

I found one bug of type get_user in Linux 3.14 in fs/btrfs/ioctl.c 
at line number 2759, inside the function btrfs_ioctl_file 

_extent_same()’. No checks were done on count, and later it was 
used as an array index.

Wrong Assumption about Size of Object Being 
Allocated Memory
There were a total of 25 bugs relating to size type, all in <= 3.9 
versions of the Linux kernel. A very simple way to identify this 
bug was in Linux 3.5 in the file drivers/net/wireless/mwifiex 
/ie.c at line 166. The two structures mwifiex_ie_list and 
mwifies_ie are different, which makes this usage buggy.

Using Floating Point Values
When a userspace process uses floating-point instructions, the 
kernel catches a trap for a floating-point instruction and then 
initiates the transition from integer to floating-point mode. 
This varies by architecture. In a kernel space process, the kernel 
cannot trap itself to support floating point. This is supported 
by manually saving and restoring the floating-point registers, 
among other chores. Saving and restoring floating point register 
state also makes floating-point operations slower than integer 
operations. People have always been advised not to use floating-
point operations in the kernel.

Figure 5: Birth and death of interrupt-related bugs
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This fault type checked for floating-point usages in kernel code. 
There was only one report for this case. Most false positives 
occur when the computation can be simplified at compile time 
to an integer. The checker only reports a floating-point con-
stant that is not a subterm of an arithmetic operation involving 
another constant, and hence may end up in the compiled kernel 
code. Examples of false positive occurred where values like 1.6 * 
1000 * 10 were being used.

The Overall Results
The total number of reports generated using the tools described 
in the Methodology section were 4114. This number constitutes 
the results generated by both 2.6.x and 3.x correlated reports. 
There were 1074 reports belonging only to 3.x, out of which 
567 were bugs and 506 were false positives. We marked one as 
unknown. This table breaks down the numbers per each fault 
type. The second line in each cell breaks down the total into the 
numbers from 2.x and 3.x versions.

Overall Birth and Death of Faults
This graph indicates the number of each type of bug introduced 
in the 3.x versions and the number of bugs introduced and 
removed in each version.

All of the six fault types have decreased over the period of 2012 
to 2015, with the greatest decrease being for the IsNull bug type. 
The Intr bug type, which was once zero, increased with the 3.10 
version but has remained flat up to Linux 3.19. Figure 6 also sug-
gests that these bug types did not reach zero until 2015.

Type Reports Bugs Unknown
Kfree 304 138 1

180 + 124 111 + 27 1 + 0

isNull 152 122 0

108 + 44 80 + 42 

NullRef 1813 1578 24

1313 + 500 1169 + 
409

23 + 1

LockIntr 252 103 2

186 + 66 89 + 14 2 + 0

Intr 35 23 0

25 + 10 19 + 4

Krealloc 25 21 0

14 + 11 10 + 11

Lock 674 230 4

454 + 220 198 + 32 4 + 0

var 66 36 0

51 + 15 35 + 1

copy_from_user 5 5 0 

4 + 1 4 + 1

get_user 25 19 1

24 + 1 18 + 1 1 + 0

Float 549 46 0

532 + 17 46 + 0

size 214 52 0

149 + 65 27 + 25

Table 1: Number of bugs in Linux 2.6.x and 3.x versions. The first number 
in each row shows the total bugs for both 2.6.x and 3.x, and the pairs of 
numbers following are for 2.6.x first and 3.x second.

Figure 6: Overall birth and death of six fault types

Figure 7 : Faults introduced with version 3.0 and after

Figure 8: Count of bugs of NullRef type
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Faults Introduced in 3.0 or After
Figure 7 shows the overall number of all the faults. The slope 
of the faults increases with newer Linux kernel versions, with 
NullRef being the highest (see Figure 8).

Future Work
Julia Lawall, Nicolas Palix, and I plan to study these fault types 
for Linux kernel 4.x. 
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Rik Farrow is the editor of ;login:. 
rik@usenix.org

I first heard about Laura Nolan when she spoke at SREcon Europe in 
2015. I watched the video of her talk [1], and that forms the basis of some 
of my questions.

Laura has since been a co-chair of SREcon, and we’ve had email discussions about potential 
;login: authors. Some of the people she suggested have written articles related to SRE for ;login:.

I thought it was time to get to know Laura better, so I asked her if we could do this interview.

Rik Farrow: I watched your presentation at SREcon Europe about distributed consensus 
algorithms. I have enough systems background to know what that means, but perhaps you’d 
like to explain that in the context of SRE? 

Laura Nolan: Well, distributed consensus is a really important building block of a lot of prac-
tical distributed systems. Any system where you need to get a group of processes to agree 
on something, as a whole, is solving distributed consensus. I think it’s important for SRE to 
know something about it because it is a difficult problem, and trying to solve it in ad hoc ways 
can lead to some very surprising outcomes. So that talk, and the distributed systems chapter 
of the O’Reilly SRE book [2], is really trying to focus on showing what distributed consensus 
problems are and discussing the operational aspects of distributed consensus systems: their 
performance constraints, failure modes, monitoring, and so on.

Generally speaking, I think we need to raise our level here as a profession. SREs are work-
ing at the sharp end of distributed systems. Most of us don’t have a solid background in them 
though; most engineering and computer science education is still pretty light on distributed 
systems content. We are figuring out these things on the fly all the time, and we’re not being 
systematic enough about it.

Software engineers have design patterns...we need distributed systems reliability patterns!

So I’d love to see more distributed systems content at SREcon next year, building on some of 
the great content we had such as Theo Schlossnagle and John Looney’s distributed systems 
workshop [3] and the reliable RPC talk and workshop presented by three Googlers (Grainne 
Sheerin, Lisa Carey, and Gabe Krabbe).

RF: In your talk, you mention using Paxos. I interviewed the primary author of Raft, Diego 
Ongaro, who said that one of the reasons for creating Raft was that Paxos was difficult to 
reason about. Yet Google seems to have settled on Paxos. Could you tell us the reasons for 
using Paxos instead of Raft (or ZAB)? 

LN: Well, historical reasons is one part—Google was using Paxos heavily since before 2006, 
when the Chubby paper was published. The Raft paper [4] was published around 2014, 
and ZAB was also after Chubby. I’m not involved personally in any of this infrastructure 
at Google—I used to be on a team that ran a lot of Paxos-based data stores but have moved 
on—but as a software engineer, I will say that making that sort of change to any software 
system is expensive, and always more expensive than you think. Effort to rewrite a system is 
one thing, but then you have to test it, which is particularly onerous in the case of this sort of 
system, with many subtle failure modes. You’d need a really compelling reason to do it, and 
Raft and ZAB don’t provide any immediate technical benefits over Paxos.
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RF: How much opportunity have you had to learn new things and 
move into other areas? How does that compare with other places 
you have worked?

LN: Google certainly affords plenty of opportunity to work on 
different things and learn—this is one of the benefits of being a 
large organization. Mobility is encouraged reasonably strongly—
not every few months, but if an SRE wants to move every few 
years that’s seen as positive. It avoids teams becoming too siloed 
and set in their ways.

In the almost-five years I’ve been here, I’ve worked on three 
major areas that were all very different—big data stores and 
pipelines were the first, then an internal development project, 
and now I’m working on a team whose main focus is the reli-
ability of our Edge Network and peering. So that’s been a major 
change for someone without a network engineering background, 
and I’ve been working hard on “knowledge upload” related to 
both networking generally and our network specifically.

Even staying on one team, though, things do change—the major 
tools we work with evolve and are replaced, for instance; new 
projects are developed, and SRE teams will begin to support 
them. One big change in the last couple of years has been the 
introduction of Golang as the programming language of choice 
for most SRE automation projects, so everyone’s learned Go.

RF: You mentioned that Golang has become the language of 
choice. What do you think of Go, and what were you using (or 
liked using) before Go, for contrast?

LN: I like Golang. It is relatively hard to shoot yourself in the foot 
with it compared to many other languages. It scales fairly well, 
has great concurrency constructs, and I am a fan of stronger 
typing. Generics would be nice, though, and I miss my ternary 
operator!

RF: John Looney has written about psychological safety on SRE 
teams. When I read his article, I felt like my entire work life 
would have been different if the teams I had worked with were 
more like the ideal John writes about. What has your experience 
been along the lines of psychological safety?

LN: I think that psychological safety is really important. My 
experiences as a member of teams have definitely been on a 
continuum from very psychologically unsafe to quite safe. It’s 
certainly much more pleasant and way more productive to be in 
a team that is safer. Unsafe teams will burn you out faster than 
anything else, and burnout is the curse of Ops work.

Google SRE is pretty good, as these things go, in particular 
with respect to blame. We had an incident a few months ago 
that I think illustrates this nicely. We had an internal mishap 
that caused us to have a pager storm, and without going into the 
details, the trigger was a junior non-engineer who erroneously 

did something involving a mailing list. I know for a fact that 
multiple SREs specifically reached out to that person’s manager 
afterwards to tell them that the incident was not that person’s 
fault. None of them knew the individual personally, they just 
didn’t want them to experience any negative consequences for 
the incident. I thought that was pretty great. And, of course, 
we’ve fixed the root cause of the pager storm too!

Tanya Reilly, an amazing SRE, gave a talk at LISA where she 
discussed what to do when someone breaks something in your 
system or finds a bug: you thank them for finding the gap and 
then you go fix it. That is for me an essence of psychological 
safety: no blame, no acrimony—just making the systems better.

On the flipside, I think the worst thing for psychological safety 
is the engineer who thinks they’re smarter than everyone else 
and is constantly negative and critical about other people’s 
ideas. That sucks the life right out of a team. Nobody, no matter 
how much of a rock star they are, is worth the kind of damage 
that causes. Don’t be that person! Far better to be the engineer 
who makes everyone around them better than to be the one that 
makes everyone around them miserable.

RF: While at a WiAC meetup during NSDI ’17 in Boston, one of 
the participants said that women have to work twice as hard as 
men do just to be noticed. You’ve worked in several organiza-
tions. What’s your viewpoint on this?

LN: Different people have different experiences. I don’t think 
I’ve ever been overlooked due to being a woman, but then I am 
assertive and outspoken, and it would be hard not to notice me. I 
did, however, once have a hilarious performance review (before 
I was at Google) with a male manager of mine where he spent 
about a solid hour telling me about how I talked too much. There 
was not an ounce of self-awareness there as I couldn’t get a word 
in edgewise to actually discuss this issue properly. I didn’t stay 
much longer in that organization.

I think there may be more truth in saying that there are some 
expectations for women that don’t exist for men. There’s a 
common antipattern where women end up doing a lot of the 
emotional labor in a team, even if it’s not in their job descrip-
tion—things like organizing team events and recognizing occa-
sions, and so on. Another huge thing is women engineers taking 
on things like taking minutes, organizing meetings, project 
management, building relationships with partner teams—some 
people call it being “the glue.” Teams actually really need the 
glue to work well, but it can be under-recognized compared to 
coding because it’s harder to measure. This also goes for men 
who are “glue” types. I also feel like it can be harder to get tech-
nical things done sometimes as women—I’ve seen things like 
excessively picky design and code reviews aimed at women more 
often than at men.
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B O B  S O L O M O N

Echo is a pain point in open source telephony. The default echo can-
cellers provided with Asterisk are generally held to be unacceptable 
[1]. Hardware add-on modules, the common alternative, add $200 or 

more to the cost of a voice card [2] and are closed source.

In 2008, David Rowe completed development of an improved software echo canceller: Oslec, 
the Open Source Line Echo Canceller. Although Oslec has been well reviewed by those who 
have tested it [3], the code has not been incorporated into the Asterisk/DAHDI source. Nine 
years later, I became aware of Oslec while shopping for new voice hardware. David agreed to 
an email interview for ;login:.

Robert Solomon: I am awed by the idea of software echo cancellation for Asterisk that 
actually works and that a lone developer (with help) could do this. Oslec has at least seven 
predecessors, none of which were usable IMO. How far along were you before you thought 
you might succeed?

David Rowe: I always knew it was possible. I mean an EC is just DSP software running on 
some sort of CPU. However, it took me nearly 20 years of failed attempts, first starting in the 
early 1990s as part of an early speech codec I was working on. So you might say determina-
tion played a part—an unscratched itch—something I had to “fix” at some point in my life.

There were a couple of key algorithms—a way to handle double-talk without diverging 
and the non-linear echo suppressor. When they dropped into place, I knew I was getting 
somewhere.

RS: When I first learned of Oslec, surprisingly on a vendor’s page offering a hardware EC 
module [4], and then on your website [5], I thought that you must be really good at maths and 
algorithms or something. Reading your five-part Oslec blog [6], I learned that the magic of 
Oslec is more like framing the problem clearly, getting help from people who already know 
what they are doing, researching the literature, writing the code, and then reaching out to the 
community for testing. Would you comment? Applied this process in other areas?

DR: Yes, you have the process spot on. A couple of other points are:

1. Developing against the standards-based set of unit tests for EC, which was supported by 
a framework in Steve Underwood’s spandsp library. This neatly isolated any issues and pro-
vided a binary pass/fail criteria to develop against.

2. Using open source and offline analysis to “crowd source” testing. Oslec was fitted with 
test points to capture the signals flowing to the EC. When a beta tester encountered a 
problem, they could run an application to capture some wave files, then email them to me 
for offline analysis. This quickly let me engineer solutions to corner cases: for example, low 
frequency audio from sound cards upsetting the analog hybrids (described in detail in one of 
the blog posts).

In contrast, everyone else was developing EC by saying “Hello 1,2,3…” down a telephone line 
in real time.

David Rowe has been 
working and playing with 
signal processing hardware 
and software for 30 years. 
In 2006 he left an executive 

position in the satellite communications 
industry to become a full-time open source 
developer. Since then David has worked on 
open hardware and software projects in VOIP, 
developing world communications, echo 
cancellation, speech compression, modems, 
and digital voice over HF radio. David writes 
a popular blog that is read by 70,000 people 
each month, drives a home-brew electric car, 
and also enjoys bike riding and sailing.  
www.rowetel.com

Phone System Administrator 
is one of too many hats Robert 
Solomon wears at a medium-
sized nonprofit in New York 
City. bobsol@gmail.com
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I use a very similar process for other signal-processing proj-
ects, in particular the use of a high-level simulation that can 
run “offline” (not in real time) using data captured from the 
real-time version. For example, in my Codec 2 project, I have 
GNU Octave simulations that can single step through frames of 
speech, plotting various signals and statistics. Then, when I’m 
happy with performance, I run the same code in real time using a 
bit-exact C port of the same algorithm.

RS: So there is some science involved. “PhD in Electronic 
Engineering (topic: speech compression).” Want to say anything 
about that?

DR: Well, the software engineering process was just as impor-
tant as the science. In addition to signal processing algorithm 
development, I have a parallel career as a project manager. I, and 
people working for me, have struggled at times with development 
of commercial signal-processing widgets. Turns out it’s really 
hard to get the clever maths running effectively in real time in 
real-world products.

So after having screwed up and licked my wounds a few times, I 
worked out how to engineer complex signal-processing products 
effectively. I apply these ideas to my own projects and those I 
manage for others.

The PhD was on low bit rate speech compression and was 
completed in the late 1990s. About 10 years later, Bruce Perens 
approached me—there was a need for an open source low bit 
rate speech codec. Like echo cancellation, low bit rate speech 
compression is mired in closed source, license fees, and FUD. So 
I dusted off the PhD, and the Codec 2 project started [7].

RS: Although Oslec is the default echo canceller in Debian 
installations [8], echo.ko is not found in any Debian packages 
except user-mode-linux. I asked Tzafrir Cohen, a Debian DAHDI 
maintainer, about this in an email and he said that “Debian 
generally does not ship out-of-tree kernel binary modules.” (He 
recommended building from Debian source with ‘m-a’.) I am sur-
prised that a module that was in staging in 2009 is not “in-tree” 
now. Could you comment, educate, explain?

DR: You know, I’ve lost track of the progress of Oslec through the 
staging process. I do recall there was some debate because it was 
a driver with no hardware. The kernel developer who was man-
aging Oslec in the kernel, Greg KH, may have some comment. It’s 
a good question, and I’d like to know the answer!

RS: Greg KH suggested that I “dig through the public email 
archives.” With the help of Google, I found threads as new as 
2012. This prompted me to actually browse the kernel, and I 
found that echo moved from staging to misc as of 3.15 [9]:

2014-02-28 staging: echo: move to drivers/misc/  

Greg Kroah-Hartman 6 -0/+1181

DR: Yayyy, that means I’m officially a “kernel hacker.” :-)

RS: I’m sure there is a good reason why Oslec was not imple-
mented in userspace, but I don’t know it. Would you explain?

DR: You need tight control of the delay in speech samples from 
the ADC/DAC signals flowing from the telephony hardware to 
the EC. Typically the kernel <-> user mode switch means buffer-
ing and timing uncertainty. For the Mesh Potato (village Telco 
project), I did the EC in user mode, as I built in careful control of 
the buffering in the kernel mode driver I wrote.

RS: I am noticing a decline of open source telephony in that ven-
dors who once supported “Linux” now, in one case, support only 
CentOS 6 or worse and, in another case, their special variant of 
CentOS 7. Would this be due to mobile, to vendor business model, 
or to the decline of the white box phone system? Some other 
reason?

DR: I don’t feel I have any useful knowledge on this one. I’m not 
involved in phone systems or Asterisk anymore myself. Given 
the rise of mobile phones I do wonder about the long-term viabil-
ity of any sort of PBX; in my day job (a seven-person startup), we 
don’t even have a landline.

RS: Your work on Oslec was complete in 2008 or so. What are 
you up to these days?

DR: Oslec was developed for the IP04, an open source embedded 
IP-PBX that I developed. I sold and supported the IP04 for many 
years in partnership with Atcom, but sales dropped off and, from 
a technical point of view, I lost interest.

Since 2009 my main project has been Codec 2, a low bit rate 
(3200 to 700 bits/s) open source speech codec. In the last few 
years I’ve been working on the problem of digital voice over HF 
radio. Making some progress but haven’t beat legacy analog 
Single Sideband (SSB) yet. Along the way, I’ve developed several 
high quality modems for digital radio and discovered some more 
marketing-based FUD—not unlike that around hardware EC. 
My blog (rowetel.com) is also very popular.

I recently joined an Australian startup (solinnov.com.au) that 
does contract-based FPGA-based signal processing development 
for communications and defense applications. They are growing 
rapidly, and I’m helping out with some high-level signal process-
ing, project management, and company process to help them 
grow. I’m working there a few days a week, plus keeping busy as a 
Dad, and I also enjoy sailing my little 16-foot “trailer sailer” and 
riding my bike.
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RS: A little more about the trailer sailer? Picture?

DR: Sure—it’s a Hartley TS16 16-foot sailing boat popular in 
Australia and New Zealand. It lives at my home, and once a 
week I tow it down to the sea and have a day out with friends and 
family.
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Hard disk drives are capable of various recording methods without 
changing the hardware. For example, shingled magnetic recording 
(SMR) is a technique in which higher track density is obtained, but 

with a tradeoff of requiring sequential writing through a band of tracks. I 
introduce a new way of letting the storage manager dynamically, in the field, 
specify different recording methods for different parts of the media in the 
device. This article prepares readers for this upcoming disk technology by 
describing the opportunities to lower the total cost of ownership (TCO) and 
exploring the new device interface that needs to be defined.

In February 2016, Google’s “Disks for Data Centers” white paper [1] proposed options to 
improve the total cost of ownership, speed, tail latency, and capacity of hard disk drives. 
One particular capacity improvement was for an implementation in which conventional and 
shingled recording are mixed in a single, hybrid hard disk drive. The white paper noted that 
if the outer tracks are conventional magnetic recording (CMR) and the inner tracks are SMR 
as shown in Figure 1, the outer tracks could be used for short-lived data enjoying the random 
write performance of CMR, while the inner tracks could hold long-lived data using higher 
density SMR.

More recently, Google has presented an initial set of requirements [2], and both Seagate and 
Western Digital have signaled their support in blog posts [3, 4]. In this article, I will refer to 
the ability to dynamically mix recording methods in a single disk as Flex, Seagate’s name for 
the technology, alternately called Hybrid SMR and Realms by Google and Western Digital, 
respectively.

Problems and Opportunities
The range of tracks accessed by a workload is known as the stroke, referring to the range of 
motion of the heads. An application that accesses the full logical block address (LBA) space 
uses 100% of the stroke. If a disk is partitioned into 10 volumes, then each volume uses about 
10% of the stroke—more accurately, 6.7% for the partition at the lowest LBAs, 10% in the 
middle, and 13.3% at the highest LBAs due to the variation in the number of sectors per track, 
with outer tracks at about twice the capacity of inner tracks. Note that this correspondence 
of logical addresses to physical radius assumes the conventional logical-to-physical disk 
mapping in which lower LBAs are on the outer tracks. With this partitioning, if the disk 
workload is restricted to a single partition, then the workload uses about 10% of the stroke. 
And since access time is highly sensitive to seek distance, this constrained workload is much 
faster than a 100% stroke workload.

In practice, accesses to hot data can be sped up by constraining it to a limited range of LBAs, 
a technique generally known as short stroking. This not only increases the I/Os per second 
(IOPS), but greatly increases the performance density (IOPS per TB) since the denominator 
of that term gets smaller. Figure 2 shows the relationship between performance density and 
stroke based on a first-order model of disk performance. Note that performance can increase 
by 4x just by short-stroking to 33%.
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But if short stroking is the only technique applied, and only 33% 
of the disk is used, there is unused media in the other 67% of the 
stroke. Finding a way to use this media while retaining the per-
formance of the hot data is a TCO improvement opportunity.

Cold data, in contrast to hot data, can generally be written 
sequentially. Using SMR for cold data lowers the cost per byte. 
But after filling a disk with only cold data, the disk actuator arm 
will mostly sit idle. Finding a way to keep the disk mechanics 
busy serving useful I/Os is another TCO improvement opportu-
nity. If a deployment has both hot and cold data, then a solution 
of segregated tiers not only leaves both TCO improvement oppor-
tunities unrealized, but also doubles the logistical complexity of 
managing two tiers and their unique drive types.

Flex, the ability to dynamically mix recording methods, allows 
the operating system to configure a single drive to a mix of CMR 
and SMR. And the mix can change to match a changing mix of 
hot and cold data. This means that hot data can enjoy the perfor-
mance benefits of short stroking while cold data makes use of 
the rest of the media. The disk is then fully subscribed; all of its 
media and all of its mechanical capability are utilized, and the 
total cost is minimized.

Flex is not limited to just mixing CMR and SMR. There are other 
ways to improve TCO, speed, tail latency, and capacity. An idea 
as simple as using Flash in SLC or MLC mode provides one set 
of tradeoffs. Heat- or microwave-assisted magnetic recording 
may be able to record in different track widths by modulating the 
laser or microwave power and mixing track widths in an inter-
laced manner, as depicted in Figure 3, which increases the data 
density and, thus, disk capacity [5].

Interlaced magnetic recording (IMR) does not actually use 
different physical layers. Instead, “bottom” tracks are simply 
the wider tracks and “top” tracks are the narrower tracks. Since 
writing a bottom track can make two top tracks unreadable, IMR 

presents a track write sequence problem similar to SMR, and the 
solutions invented for SMR can be applied [6]. For instance, 256 
MiB worth of interlaced tracks can be mapped as a contiguous 
set of LBAs; this 256 MiB extent is then a logical zone, and zones 
can be managed as regions that must be sequentially rewritten. 
Or other innovative techniques might be used to manage top and 
bottom tracks. Beyond IMR, there are other ideas in the pipeline 
not yet in the public domain.

When various techniques can coexist on the same physical 
device, the fundamental Flex proposition of letting the OS select 
what recording method to use on a specified set of media is the 
most flexible solution.

Toward a Flex API
There is no existing API that allows an OS to change the con-
figuration of a block device. A new interface needs to support 
conversions between the recording methods, and should include 
API improvements that kernel developers have been requesting 
for many years.

Figure 3: Depiction of interlaced track recording

Figure 1: Depiction of a two-platter hybrid hard disk drive with CMR at the 
outer tracks and SMR at the inner tracks

Figure 2: Performance density increase of small, random accesses from 
short stroking
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Here are our goals for a new, superlative interface.

1. Provide backward compatibility

2. Leverage existing protocols

3. Support both ATA and SCSI to enable both SATA and SAS 
devices

4. Allow diverse configurations with fine-grained assignment of 
the recording method

5. Have completely discoverable capabilities

6. Enable on-the-fly conversions between recording methods

7. Protect against the loss of locked data or data that is still valid 
to some application

8. Be extensible to future recording methods

The Open Compute Project, T10 and T13 standards groups, will 
engage in the work of defining an API that meets these goals in 
2018.

Providing Backward Compatibility
Flex devices should typically leave the factory in a configura-
tion that allows existing software that is oblivious about the 
new capabilities to use the device. This implies that not only is 
a 100% CMR configuration supported but that this is the initial 
state. A Flex drive should be able to return to this configuration 
from any state.

Leveraging Existing Protocols
Cooperatively managed SMR, now codified as the zoned block 
device model, is the natural starting point. Zones are contiguous 
sets of LBAs and are always 256 MiB. Zones are either conven-
tional zones without write pointers (for CMR space) or write 
pointer zones (for SMR space). The zoned block device model 
even already has an Offline zone state.

There are two observations about conversions that need to be 
addressed. First, conversions should be fast so that Flex does not 
introduce commands that take longer than any existing com-
mands. It is important not to break the command timeout model 
that drivers use to detect dead drives. 

Second, there may be valuable data that can be used to initialize 
space that has just come online as opposed to formatting with 
fill data only to immediately write the same media with valuable 
data. A conversion to SMR can finish with all of the space that 
just came online to be write pointer zones in the Empty state. 
This allows the device to skip initializing the SMR media with 
readable fill data, a process that takes about one second per 256-
MiB zone. But we also want conversions to CMR space to be just 
as fast. The obvious extension to the zoned block device model 
is to define a new zone type for CMR space that also starts off 
as Empty, but unlike an SMR zone would have no performance 

penalty for random writes below the write pointer. Both CMR 
and SMR zones must either fail reads above the write pointer or 
return zeros, the former catching improper reads and the latter 
mimicking formatted media.

Supporting ATA and SCSI
Since ATA does not support logical unit numbers (LUNs), the 
Flex protocol should use separate LBA ranges for the CMR and 
SMR spaces. This can extend to more than two ranges when the 
device supports more than two recording methods when Flex is 
extended beyond just CMR and SMR.

For maximum flexibility, both queued and non-queued com-
mands should be defined. And by co-developing ATA and SCSI, 
we can end up with a straight-wire SCSI to ATA translation 
(SAT) layer.

Allowing Diverse Configurations
To allow each storage stack to pursue its own optimal design 
point, conversions should be fine-grained. As part of embracing 
the zoned block device model, we want the zone to be the unit 
of conversion and the minimum allocation unit of the top-level 
allocator; that is, each zone is either online or offline, and a con-
version can target any contiguous extent of zones.

For maximum short stroking benefit, all of the CMR space 
should be contiguous. But there may be other configurations 
needed. For instance, a 10-TB drive chopped into 10 one-TB 
pieces for 10 different tenants may want each tenant to have a 
CMR space and an SMR space. Thus, multiple “seams” between 
differing recording methods should be allowed, albeit with a 
small efficiency loss that averages one-half zone at each seam.

Discovering Capabilities
Device discovery includes detecting the device type through 
its signature and Identify Device data. Due to the backward-
compatibility goal, Flex devices should identify as conventional 
disks. They also need to report the 100% CMR capacity in the 
existing capacity reporting fields. 

Capabilities discovery then allows a host to learn what features 
a device supports. Simple additions to ATA logs and SCSI vital 
product data pages can serve to alert a stack that is cognizant 
of Flex to find out whether a Flex device is present. From there, 
existing zoned block device mechanisms, including Report 
Zones, can expose the SMR space in addition to the CMR space.

Enabling On-the-Fly Conversion
Availability is critical. Conversions need to be allowed as part 
of the normal workflow and not be restricted to system integra-
tion or an offline mode. Conversion commands need reordering 
constraints if they overlap reads or writes to the same LBAs, but 
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the rest of the LBA space that is not participating in a conversion 
needs not only to retain its data, but concurrent reads and writes 
must be allowed.

Protecting Valid and Locked Data
Before a conversion that takes space offline, any data in that 
space that is still valid for some application needs to be copied, 
either to space on this disk that will stay online or elsewhere. 
Since a conversion operation has a side effect of making previ-
ously written data unreadable, a conversion that gets ahead of 
the valid data copy process will lose data.

The existing SMR zone types support an operation, Reset Write 
Pointer, for the host to move a zone’s write pointer back to the 
start of the zone. Since reads to LBAs above a write pointer 
either fail or return zeros, this also declares that the previously 
written data are discarded. Extending the Reset Write Pointer 
operation to the CMR zones allows a strong, firm handshake in 
the protocol: requiring that a zone’s write pointer is reset before 
it is allowed to be converted to Offline, the conversion itself has 
no data retention side effects.

Similarly, enforcing that zones must be unlocked for a conver-
sion allows a security management layer to know that locked 
data cannot be lost through execution of new Flex commands. 

Being Extensible
New zone types can be defined as needed to support techniques 
like interlaced tracks. Other innovations might pack data more 
densely in other ways, but the tradeoffs often break legacy 
requirements. Simply getting all of the media provisioned to 
user-addressable space has been boxed in by ingrained assump-
tions about static configurations.

While the first generation of Flex will address the hybrid mix of 
CMR and SMR, the protocol needs to be extensible. This means 
that capabilities reporting and conversion commands need to be 
open to more than just two recording methods. 

Adding Value
Flex Dynamic Recording recognizes that a single hardware 
configuration can be deployed in various ways, all the way down 
to physical recording methods on media. The philosophy of Flex 
is that allowing the owner of a device to configure what record-
ing method is best for them adds value to the whole system. So 
rather than locking down the method at the factory, Flex moves 
the decision to the field.
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Miniature Cache Simulations for Modeling  
and Optimization

W e present a surprisingly simple technique that accurately models 
the behavior of a cache with any policy by simulating a scaled-
down miniature cache with a small, spatially hashed sample of 

requests. We also demonstrate how to leverage such models to optimize 
caches dynamically, using scaled-down simulations to explore multiple cache 
configurations simultaneously.

Caches are ubiquitous in modern computing systems, improving system performance by 
exploiting locality to reduce access latency and offload work from contended storage systems 
and interconnects. A wide variety of caches have been implemented in hardware and soft-
ware, clients and servers, storage arrays, key-value stores, and other system infrastructure.

By definition, a cache is a small, fast memory backed by larger, slower storage. As a result, 
cache space is inherently scarce, and methods that can better utilize this space are extremely 
valuable. Techniques for accurate and efficient cache modeling are especially important for 
informing cache allocation and partitioning decisions, optimizing cache parameters, and 
supporting goals including performance, isolation, and quality of service.

However, caches are notoriously difficult to model. It is well known that performance is 
non-linear in cache size due to complex effects that vary enormously by workload. Although 
recent research has produced practical models for LRU caches, there has been no general, 
lightweight solution for more sophisticated policies, such as ARC [7], LIRS [4], and 2Q [5].

Modeling Caches with MRCs
Cache utility curves plot a performance metric as a function of cache size. Figure 1 shows an 
example miss-ratio curve (MRC), which plots the ratio of cache misses to total references for 
a workload (y-axis) as a function of cache size (x-axis). The miss ratio generally decreases as 
cache size increases, although complex algorithms such as ARC and LIRS can exhibit non-
monotonic behavior due to imperfect dynamic adaptation.

MRCs are valuable for analyzing cache behavior. Assuming a workload exhibits reason-
able stationarity at the time scale of interest, its MRC can also predict future performance. 
Thus, MRCs are powerful tools for optimizing cache allocations to improve performance and 
achieve service-level objectives. 

Mattson et al. introduced a method for constructing MRCs for stack algorithms—for example, 
LRU, LFU, etc.—that yields the entire MRC for all cache sizes in a single pass over a trace [6]. 
Efficient modern implementations of this algorithm have an asymptotic cost of O(N log M) 
time and O(M) space for a trace of length N containing M unique blocks. Recent approxima-
tion techniques can construct accurate MRCs with dramatically lower costs than exact 
methods. In particular, SHARDS [9] and AET [3] require only O(N) time and O(1) space, with 
a tiny footprint of approximately 1 MB. However, for more complex non-stack algorithms, 
such as ARC and LIRS, there are no known single-pass methods. As a result, separate runs 
are required for each cache size, similar to pre-Mattson modeling of LRU caches.
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Miniature Simulation
The main idea behind miniature simulation is to approximate 
the behavior of a large cache by simulating a tiny one that pro-
cesses only a tiny sample of its requests. Typically, the cache size 
and the input reference stream are both scaled down by several 
orders of magnitude.

A mini-simulation runs the full, unmodified cache replacement 
algorithm, making it possible to model any caching algorithm, 
including even ad hoc modifications often found in production 
systems. The miss ratio and other metrics are determined by 
simply extracting the usual statistics from the mini-cache, such 
as counts of misses and references. An adjustment that instead 
uses the expected number of references reduces bias due to sam-
pling error significantly [8].

The reference stream is scaled down by using hashing to ran-
domly sample the key space. A reference is sampled only when 
the hash value of its associated key is smaller than a threshold 
T that defines the sampling rate R. This approach is similar to 
our earlier work on SHARDS and is also related to sharding in 
distributed databases. Depending on the cache, a key may be 
a memory address, a logical block number for disk storage, or 
a string, as in a key-value store. The effectiveness of scaling 
depends on statistical self-similarity—that a randomized sample 
is fairly representative of the whole. As we will see, this is a good 
assumption that holds well in practice.

Figure 2 depicts a full-size cache and its input references, along 
with two scaled-down versions. To randomly sample the input, 
simple temporal sampling, such as flipping a coin for each refer-
ence, doesn’t work. We must ensure that all references to the 
same key are always sampled or we will be blind to reuses that 
are central to caching behavior. Instead, randomized spatial 
sampling is implemented by selecting references based on deter-
ministic hashes of their keys. In the figure, hash values are rep-

resented visually with shading. Scaling down by a factor of two 
results in a cache with half the size, and an input stream from 
half the key space, for example, by sampling a key only when the 
high-order bit of its hash is zero, shown as yielding half of the 
original shades. Similarly, scaling down by a larger factor of 128 
shrinks both the cache size and the key space more dramatically.

Scaling the key space and the cache size by the same amount 
maintains the same pressure on a mini-cache as the full-size 
cache, so it should exhibit approximately the same behavior. A 
cache of size S can be emulated by scaling down the cache size to 
R ⋅ S and scaling down the reference stream using a hash-based 
spatial filter with sampling rate R. In practice, sampling rates 
on the order of R = 0.01 or R = 0.001 yield very accurate results, 
achieving huge reductions in space and time compared to a con-
ventional full-size simulation.

More generally, scaled-down simulation need not use the same 
scaling factor for both the miniature cache size and its reference 
stream. The emulated cache size Se, mini-cache size Sm, and 
input sampling rate R are related by Se = Sm / R. Thus, Se may be 
emulated by specifying a fixed rate R, and using a mini-cache 
with size Sm = R ⋅ Se, or by specifying a fixed mini-cache size 
Sm and sampling its input with rate R = Sm / Se. In practice, it is 
useful to enforce reasonable constraints on the minimum mini-
cache size (e.g., Sm ≥100) and sampling rate (e.g., R ≥ 0.001) to 
ensure sufficient cache space and enough sampled references to 
simulate meaningful behavior.

Scaled-Down MRCs
For non-stack algorithms, there are no known methods capable 
of constructing an entire MRC in a single pass over a trace. 
Instead, MRC construction requires a separate run for each 
point on the MRC, corresponding to multiple discrete cache 
sizes. Fortunately, we can leverage miniature caches to emulate 
each size efficiently.

We evaluate the accuracy and performance of our approach with 
three diverse non-LRU cache replacement policies: ARC [7], 
LIRS [4], and the theoretically optimal OPT [2]. We use a col-
lection of 137 real-world storage block trace files, similar to the 
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Figure 1: Example MRC. Miss-ratio curve for a production disk block trace 
using the ARC cache algorithm. The ratio of cache misses to total refer-
ences is plotted as a function of cache size.

Figure 2: Scaling Down. Both the cache size and input reference stream 
are scaled down by factors of 2 and 128; each exhibits similar behavior. 
Only keys that fall within a subset of the hash space are sampled.
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SHARDS evaluation [9]. These represent 120 week-long virtual 
disk traces from production VMware environments collected by 
CloudPhysics, 12 week-long enterprise server traces collected 
by Microsoft Research Cambridge, and five day-long server 
traces collected by FIU. For our experiments, we use a 16-KB 
cache block size, and misses are read from storage in aligned, 
fixed-size 16-KB units. Reads and writes are treated identically, 
effectively modeling a simple write-back caching policy.

Accuracy
For each trace, we compute MRCs at 100 discrete cache sizes, 
spaced uniformly between zero and a maximum cache size. To 
ensure these points are meaningful, the maximum cache size is 
calculated as the aggregate size of all unique blocks referenced 
by the trace.

Figure 3 contains 12 small plots that illustrate the accuracy 
of approximate MRCs with R = 0.001 on example traces with 
diverse MRC shapes and sizes. In most cases, the approximate 
and exact curves are nearly indistinguishable. In all cases, 
miniature simulations model cache behavior accurately, includ-
ing complex non-monotonic behavior by ARC and LIRS. These 
compelling results with such diverse algorithms and workloads 
suggest that scaled-down simulation is capable of modeling 
nearly any caching algorithm.

To quantify accuracy, we compute the difference between the 
approximate and exact miss ratios at each discrete point on the 
MRC, and aggregate these into a mean absolute error (MAE) 
metric, as in related work [9, 3]. The box plots in Figure 4 show 
the MAE distributions for ARC, LIRS, and OPT with sampling 
rates R = 0.01 and R = 0.001. The average error is surprisingly 
small in all cases. For R = 0.001, the median MAE for each 

 algorithm is below 0.005, with a maximum of 0.033. With R = 0.01,  
the median MAE for each algorithm is below 0.002, with a maxi-
mum of 0.012.

Performance
For our performance evaluation, we used a platform configured 
with a six-core 3.3 GHz Intel Core i7-5820K processor and 32 GB 
RAM, running Ubuntu 14.04. Experiments compare traditional 
exact simulation with our lightweight scaled-down approach. In 
all cases, simulations track only metadata, and do not store data 
blocks.

Resource consumption was measured using our five largest 
traces. We simulated three cache algorithms at five emulated 
sizes Se (8 GB, 16 GB, 32 GB, 64 GB, and 128 GB), using multiple 

Figure 3: Example Mini-Sim MRCs. Exact and approximate MRCs for 12 representative traces. Approximate MRCs are constructed using scaled-down 
simulation with sampling rate R = 0.001. Each line type represents a different cache algorithm.

Figure 4: Error Analysis. Distribution of mean absolute error for all 137 
traces with three algorithms (ARC, LIRS, OPT) at two different sampling 
rates (R = 0.01, R = 0.001).
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sampling rates R (1, 0.1, 0.01, and 0.001) for a total of 60 experi-
ments per trace.

Unsurprisingly, the memory footprint for cache simulation is a 
simple linear function consisting of fixed overhead (for policy 
code, libraries, etc.) plus variable space. For ARC and LIRS, the 
variable component is proportional to the cache size, R ⋅ Se. For 
OPT, which must track all future references, it is proportional 
to the number of sampled references, R ⋅ N. Table 1 reports the 
fixed and variable components of the memory overhead deter-
mined by linear regression (r 2 > 0.99). As expected, accurate 
results with R = 0.001 require 1000x less space than full simula-
tion, excluding the fixed overhead.

We also measured the CPU usage consumed by our single-
threaded cache implementations with both exact and scaled-
down simulations for ARC, LIRS, and OPT. The runtime 
consists of two main components: cache simulation, which is 
roughly linear in R, and sampling overhead, which is roughly 
constant; each reference must be hashed to determine if it should 
be sampled. The scaled-down simulation with R = 0.001 requires 
about 10x less CPU time than full simulation, and achieves 
throughput exceeding 53 million references per second for ARC 
and LIRS, and 39 million references per second for OPT. Fortu-
nately, for multi-model optimization, hash-based sampling costs 
are incurred only once, not for each mini-cache. In an actual pro-
duction cache, the cost of data copying would dwarf the hashing 
overhead. Moreover, a separate hash for sampling isn’t needed 
if one is already available; storage caches and key-value stores 
typically hash keys for performing lookups.

Cache Optimization
A single cache instance runs with a single policy and a single set 
of configuration parameters. Unfortunately, policy and parame-
ter tweaking is typically performed only at design time, consid-
ering few benchmarks.

Low-cost online modeling allows efficient instantiation of 
multiple concurrent models with different cache configurations, 
offering a powerful framework for dynamic optimization. Quan-
tifying the impact of hypothetical parameter changes allows the 

best settings to be applied to the actual cache. Such a multi-
model approach can optimize cache block size, write policy, 
algorithm-specific tunables, or even replacement policy.

Lightweight MRCs can also guide efficient cache sizing, 
allocation, and partitioning for both individual workloads and 
complex multi-workload environments. For example, Talus [1], 
which requires an MRC as input, can remove performance cliffs 
within a single workload and improve cache partitioning across 
workloads.

Adapting Cache Parameters
As illustrated in Figure 5, our multi-model optimization frame-
work leverages miniature simulations to evaluate the impact of 
different candidate parameter values. The best setting is applied 
to the actual cache periodically. We have implemented optimiza-
tions that adapt tunable parameters automatically for two well-
known cache policies, LIRS [4] and 2Q [5], but we discuss only 
the LIRS results; the results for 2Q are similar [8].

While MRCs are typically stable over short time periods, they 
frequently vary over longer intervals. To adapt dynamically 
to changing workload behavior, we divide the input reference 
stream into a series of epochs. Our experiments use epochs 
consisting of one million references, although many alternative 
definitions based on wall-clock time, evictions, or other metrics 
are possible.

After each epoch, we calculate an exponentially weighted mov-
ing average (EWMA) of the miss ratio for each mini-cache to 
balance historical and current cache behavior. Our experiments 
use an EWMA weight of 0.2 for the current epoch. The param-
eter value associated with the mini-cache exhibiting the lowest 
smoothed miss ratio is applied to the actual cache for the next 
epoch.

LIRS Adaptation
We adapt the size of the LIRS S stack, which controls the num-
ber of metadata-only ghost entries that are tracked [4], by setting 
f, a parameter that specifies the size of S as a fraction of the over-

Table 1: Memory Footprint. Memory usage for ARC and LIRS is linear in 
the cache size, R ⋅ Se, while for OPT, it is linear in the number of sampled 
references, R ⋅ N. Measured values are shown for CloudPhysics trace t22 
with Se = 64 GB.

Linear Function Example Trace (t22)
Policy Fixed Variable R=.001 R=1
ARC 1.37 MB 71 B 1.57 MB 284 MB 

LIRS 1.59 MB 75 B 1.80 MB 301 MB

OPT 7.10 MB 37 B 19.55 MB 18,519 MB

Figure 5: Online Optimization. Simultaneous miniature simulations enable 
automatic selection of the best parameter setting.
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all cache [8]. For each workload, five scaled-down simulations 
are performed with different values for f: 1.1, 1.5, 2.0, 2.5, and 3.0. 
Each simulation emulates the same cache size, equal to the size 
of the actual cache, with a fixed sampling rate R = 0.005. After 
each epoch consisting of one million references, the miss ratios 
for each mini-cache are examined, and the best f value is applied 
to the actual cache.

Figure 6 presents the best-case and worst-case results across 
the 12 MSR traces. The goal of automatic LIRS adaptation is to 
find the best value of f for each cache size. These ideal static set-
tings form an MRC that traces the lower envelope of the curves 
for different static f values, plotted as the dashed curve. Simi-
larly, the dotted curve shows the MRC with the pessimal static f 
setting at each cache size. The auto-adapted results for msr_src2 
hug the ideal lower envelope closely at nearly all cache sizes. In 
contrast, msr_proj deviates from the ideal for many cache sizes, 
but still does well for others. We are currently experimenting 
with techniques that automatically disable adaptation when it is 
ineffective.

SLIDE
SLIDE (Sharded List with Internal Differential Eviction) is a 
completely different cache optimization technique that leverages 
scaled-down MRCs constructed by running miniature simula-
tions. SLIDE was inspired by Talus [1], a powerful technique 
introduced in the computer architecture community for set-
associative processor caches. Talus removes performance cliffs 
using interpolation to effectively operate at a point on the convex 
hull of an MRC—the shape formed by stretching a rubber band 
across the bottom of the curve. In the presence of cliffs, the large 
gap between an MRC and its convex hull represents a significant 
optimization opportunity.

Talus uses hash-based partitioning to divide the reference 
stream for a single workload into two shadow partitions, alpha 
and beta, which operate as separate sub-caches. Each partition is 
made to emulate the performance of a smaller or larger cache by 
controlling its size and its input load, represented by the fraction 
of the reference stream it receives. Talus requires the workload’s 
MRC as an input and computes the partition sizes and their 
respective loads in a clever manner that ensures their combined 
aggregate miss ratio lies on the convex hull of the MRC. We view 
the hash-based partitioning employed by Talus for optimization 
and our hash-based monitoring for efficient modeling as two 
sides of the same coin. Both rely on the property that hash-based 
sampling produces a smaller reference stream that is statisti-
cally self-similar to the original stream.

One key challenge with applying Talus to non-stack algorithms 
is constructing MRCs efficiently at runtime. Fortunately, 
scaled-down models provide a convenient solution. As with 
parameter adaptation, we divide the input reference stream into 
a series of epochs. After each epoch, we construct a discretized 
MRC from multiple scaled-down simulations with different 
cache sizes, smoothing each miss ratio using an EWMA. We 
then identify the subset that forms the convex hull for the MRC, 
and compute the optimal partition sizes and loads using the 
same inexpensive method as Talus.

Non-LRU Shadow Partitioning Challenges
In theory, combining scaled-down MRCs with Talus shadow 
partitioning can improve the performance of any caching policy 
by interpolating efficient operating points on the convex hulls of 
workload MRCs. In practice, it was much more difficult than we 
expected to apply Talus to caching algorithms such as ARC and 
LIRS.

Talus requires distinct cache instances for its alpha and beta 
partitions, which have a fixed aggregate size. This hard division 
becomes problematic in systems where partition boundaries 
change dynamically as MRCs evolve over time. Similarly, when 
per-partition input loads change dynamically, some cache entries 
may reside in the “wrong” partition based on their hash values.

Eager strategies, such as removing cache entries when decreas-
ing the size of a partition or migrating entries across partitions 
to ensure each resides in the correct partition, perform poorly 
since migration is expensive and data may be evicted from one 
partition before the other needs the space. Moreover, it’s not 
clear how migrated state should be integrated into its new parti-
tion, since list positions are not ordered across partitions.

Lazy strategies for reallocation and migration fare better but 
complicate the core caching logic. More importantly, while 
migrating to the MRU position on a hit seems reasonable for an 

Figure 6: Adaptive Parameter Tuning. Dynamic optimization selects 
good values for the LIRS f parameter at most sizes with potential gains. 
The msr_src2 and msr_proj workloads show the best- and worst-case 
results for the MSR traces.
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LRU policy, it’s not clear how to merge state appropriately for 
more general algorithms.

Transparent Shadow Partitioning
Faced with these challenges, we developed SLIDE. In contrast to 
Talus, SLIDE maintains a single unified cache and defers parti-
tioning decisions until eviction time, conveniently avoiding the 
resizing, migration, and complexity issues discussed above.

A SLIDE list is a new abstraction that serves as a drop-in 
replacement for the standard LRU list used as a common 
building block by many sophisticated algorithms. Since SLIDE 
interposes on primitive LRU operations that add, reference, and 
evict entries, it is transparent to cache replacement decisions. 
An unmodified algorithm can support Talus-like partitioning 
by simply relinking to substitute SLIDE lists for existing ones. 
We have optimized ARC (T1, T2, B1, and B2), LIRS (S and Q), 2Q 
(Am, A1in, and A1out), and LRU in this manner.

SLIDE extends a conventional doubly linked LRU list, which 
remains totally ordered from MRU (head) to LRU (tail). Each 
entry is augmented with a compact hash of its key, which is 
compared to a current threshold that dynamically classifies it 
as belonging to either the alpha or beta “partition.” Additional 
state supports efficient SLIDE versions of all list operations [8]. 
SLIDE preferentially evicts from the tail of the over-quota 
partition.

It is not obvious that substituting SLIDE lists for internal lists 
will approximate Talus partitions. The basic intuition is that 
configuring each internal list with identical SLIDE partition 
sizes and input loads effectively divides the occupancy of each 
individual list—and therefore the entire aggregate algorithm 
state—to achieve the desired split between alpha and beta. While 
SLIDE may differ from strict Talus partitioning, it empirically 
works well for ARC, LIRS, 2Q, and LRU.

Experiments
For each workload, a separate experiment is performed at 100 
cache sizes. For each size, a discrete MRC is constructed via 
multiple scaled-down simulations with sampling rate R = 0.005. 
SLIDE is reconfigured after each one million-reference epoch, 
using an EWMA weight of 0.2.

Seven emulated cache sizes are positioned exponentially around 
the actual size, using relative scaling factors of 1/8, 1/4, 1/2, 1, 
2, 4, and 8. For R = 0.005, the mini-cache metadata is approxi-
mately 8% of the actual metadata size (R times the sum of the 
scaling factors), representing less than 0.04% of total memory 
consumption for an actual cache. Alternative configurations 
provide different tradeoffs between time, space, and accuracy.

Figure 7 plots some example results of SLIDE performance 
cliff reduction for LIRS and ARC policies with workloads that 
exhibit cliffs. Ideally, SLIDE would trace the convex hull of the 
original MRC. In practice, this is not attainable, since the MRC 
evolves dynamically, and its few discrete points yield a crude 
convex hull. Nevertheless, for these examples, SLIDE captures a 
significant fraction of the potential gain, represented by the area 
between the MRC and its convex hull: 69% for LIRS and 38% for 
ARC. For workloads with MRCs that are already mostly convex, 
there is little opportunity for improvement, so SLIDE typically 
yields marginal benefits.

Conclusion
We have explored the use of miniature caches for modeling and 
optimizing cache performance. Compelling experimental results 
demonstrate that scaled-down simulation works extremely well 
for a diverse collection of complex caching algorithms—includ-
ing ARC, LIRS, and OPT—across a wide range of real-world 
traces. This suggests our technique is a robust method capable of 
modeling nearly any cache policy accurately and efficiently.

Lightweight modeling has many applications, including online 
analysis and control. We presented a general method that runs 
scaled-down simulations to evaluate hypothetical configura-
tions, and applied it to optimize tunable cache policy parameters 
automatically. We also introduced SLIDE, a new transparent 
technique that performs Talus-like performance cliff removal.

Miniature caches offer the tantalizing possibility of improving 
performance for most caching algorithms on most workloads 
automatically. We hope to make additional progress in this 
direction by exploring opportunities to refine and extend our 
optimization techniques.

Figure 7: SLIDE Cliff Reduction. Scaled-down MRCs are constructed dy-
namically from seven mini-cache simulations. SLIDE improves miss ratios 
for LIRS and ARC at most sizes with potential gains but does exhibit some 
regressions.
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C H R I S  “ M A C ”  M C E N I R Y

In the past few articles, we’ve used Go’s net/rpc library to build a simple 
file metadata server. In this article, we’re going to look at using gRPC 
(https://grpc.io) to fulfill the same purpose.

gRPC has many advantages over the built-in RPC library, namely:

◆◆ Fast and efficient network communication

◆◆ Ability to stream inputs and outputs

◆◆ Automatic transport encryption

◆◆ Ability to interact with other languages

◆◆ Ready extensions to support authentication and connection handling.

gRPC is typically boiled down to the description “Protobuf messages over HTTP/2.” This is 
true to a first pass, but it also encompasses the libraries, middleware extensions, and inter-
actions with other languages.

For the sake of brevity, some sections of the code examples here are left out. The full code for 
this example can be found at https://github.com/cmceniry/login-grpcls.

Getting Started
Our service building story goes a little something like this:

◆◆ First, we have to get the protobuf tools and gRPC Golang libraries.

◆◆ Next, we’ll create a language-independent protobuf definition for our service.

◆◆ With the protobuf definition in hand, we’ll generate Golang hooks.

◆◆ After that, we can fill in our interactions with those hooks.

◆◆ And finally, we can compile and run.

Getting the Tools
Building gRPC applications requires a couple of tools. The first is protoc which is the 
language-independent protobuf compiler. The second is the protoc-gen-go plugin which is 
used to generate Golang code for the data and interface types. In addition, we’re going to need 
the Golang grpc library.

The installation for protoc depends on your platform. It is packaged up for various platforms 
(rpm, brew, etc.), but when in doubt you can get it from the official release location: https:// 
github.com/google/protobuf/releases.

For the Golang-specific items, you can grab these with the go get command.

    go get -u google.golang.org/grpc

    go get -u github.com/golang/protobuf/protoc-gen-go

Chris “Mac” McEniry is a 
practicing sysadmin responsible 
for running a large e-commerce 
and gaming service. He’s been 
working and developing in 

an operational capacity for 15 years. In his 
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The former is a library, and it is possible to alternatively vendor 
it and manage it with dep. The latter produces the protoc-gen-

go executable, so it needs to be installed in such a way that that 
is available, typically with a go get into the home workspace. 
However you choose to install it, you will want to make sure that 
its location is in your PATH since protoc will look there for it. For 
the above, you can use

    export PATH=${PATH}:~/go/bin

Now that we have a good environment, we can move on to work-
ing on the code. If you’re following the go get commands from 
above, you can grab the example code and change into that direc-
tory now. This is dependent on the TLS credentials generated by 
the previous login-glss, so we’ll need to get that and create the 
certificates first.

    go get -u github.com/cmceniry/login-glss

    go get -u github.com/cmceniry/login-grpcls

    cd ~/go/src/github.com/cmceniry/login-glss

    go run certs/generate_certs.go

    cd ../login-grpcls

The Protobuf Definition File
Like any protobuf protocol, gRPC starts with a .proto file. On 
a first pass, this is a simplified description of the messages that 
will be transported over the connection. Specifically for gRPC 
(well, RPCs in general, but other implementations are rare), it is 
also a description of the services and their interfaces, which use 
these messages.

To determine what should be in our .proto file, we need to think 
about what we’re passing back and forth between the client and 
the server. To mirror glss, we will want to pass from the client to 
the server the Path that we’re going to be using. From the server 
to the client, the resulting File information blocks for the client-
supplied path. In addition, we want an RPC to call LS. The RPC 
semantics in .proto also define a service, Lister, which encapsu-
lates several RPCs and properties.

So we’ll want to define the following four items in our .proto: 
Path, File, LS, and Lister, for which we’ll need a bit of boiler-
plate. We are telling protobuf which version we’ll be using, and 
we need to wrap our collection of services and messages into a 
package.

    syntax = “proto3”;

    package directorycontents;

Next, we need to define what will be transporting over our 
connections: Path and File. We will structure these as mes-

sage items that will be used in our remote calls. message is 
the generic type for data passing between the client and server, 
regardless of whether it is a parameter or return value. Each 

 message is a combination of a message type name and specific 
typed fields that are of meaning in that message.

First, we’ll tackle Path, which just has a single field in it, string 
name.

    message Path {

      string name = 1;

    }

The 1 associated with name is a field numeric ID to allow for 
compatibility between clients and servers of different versions. 
This allows for nonbreaking changes to the API without having 
to upgrade every client and server out there. You can enable 
new fields by appending to the end with a new number. You can 
change existing fields by adding a new field with the appropri-
ate changes for the old field. You will end up populating both 
fields for a period of time, but it does allow for newer servers and 
clients to speak to both current and old versions of themselves.

Next, we’ll build out our File response. It also has a string name, 
as well as size, mode, and modtime:

    message File {

      string name = 1;

      int64 size = 2;

      string mode = 3;

      string modtime = 4;

    }

Now that we have our two message definitions, we can move on 
to our service definition. Since we’re providing a generalized 
directory lister service, we’re going to call this Lister. As men-
tioned, this will contain our collection of RPC calls (in this case, 
it’s just one). Each RPC has a list of inputs and outputs (in this 
case, it’s just Path and File).

    service Lister {

      rpc LS (Path) returns (stream File) {}

    }

As mentioned in the introduction, gRPC allows us to stream 
inputs and outputs. In this case, we’re going to call LS with a sin-
gle input item Path, but we’re going to get back a large list of File 
blocks. For efficiency and demonstrative purposes, we’re going 
to stream the File responses—hence the stream modifier in the 
LS return values. We could have wrapped them all up in an array, 
but this way we don’t need to maintain all of that in memory as 
we go through it. As we’ll see in the application code, once a file 
is found, it can immediately be sent back to the client.

Generating gRPC Code
Now that we have the data types and function-call semantics, we 
want to put this language-independent form into something that 

github.com/cmceniry/login-glss
github.com/cmceniry/login-grpcls
github.com/cmceniry/login-glss
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we can use in Golang. This is where protoc and protoc-gen-go 
come into play. From the root of our project:

    protoc --go_out=plugins=grpc:. \

 directorycontents/directorycontents.proto

This invokes protoc and tells it to use the proto-gen-go with the 
gRPC plugin to process our .proto file. This will produce direc-

torycontents/directorycontents.pb.go.

The full file is a bit much to go over in this article, but its key 
contributions are:

◆◆ It defines Go native structs for Path and File:

        type Path struct {

                Name string protobuf:”bytes,1,opt,name=name” 

json:”name,omitempty”

        }

        ...

        type File struct {

                Name    string protobuf:”bytes,1,opt,name=name” 

json:”name,omitempty”

                Size    int64  protobuf:”varint,2,opt,name=size” 

json:”size,omitempty”

                Mode    string protobuf:”bytes,3,opt,name=mode” 

json:”mode,omitempty”

                Modtime string protobuf:”bytes,4,opt,name= 

                modtime” 

json:”modtime,omitempty”

        }

◆◆ These each have some accessor functions to them, or you can 
manipulate the struct field directly.

◆◆ It defines a ListerClient interface (with accompanying con-
structor func). This interface is how we’re going to call the 
gRPC functions from our code. Specifically, we’re going to be 
calling the LS function on the return ListerClient interface.

        type ListerClient interface {

                LS(ctx context.Context, in *Path, opts 

...grpc.CallOption) (Lister_LSClient, error)

        }

        ...

        func NewListerClient(cc *grpc.ClientConn) ListerClient {

◆◆ It defines the ListerServer interface for the server side. We’re 
going to build a struct that implements this interface as our 
way of responding to gRPC calls. Related to this, it defines the 
Lister_LSServer interface that is used specifically for our out-
let to send responses to the LS calls.

        type ListerServer interface {

                LS(*Path, Lister_LSServer) error

        }

        ...

        type Lister_LSServer interface {

                Send(*File) error

        ...

The Server Implementation
Now it’s time to focus on our application code, starting with the 
server side. gRPC has presented us with an interface that we 
need to implement. As mentioned in the last section, we’re going 
to implement the ListerServer.

Since this is Golang code, let’s take care of the imports. Com-
mon practice is to import the generated .proto definitions with 
the alias name of pb. In addition, we’re going to import the grpc 
library itself, and the grpc/reflection library to support API 
information sharing.

    import (

        pb “github.com/cmceniry/login-grpcls/directorycontents”

        “google.golang.org/grpc”

        “google.golang.org/grpc/credentials”

        “google.golang.org/grpc/reflection”

Next, we’ll divide the server into two parts. The first is the 
actual remote procedure to be called LS. The second is wiring up 
everything.

Since ListerServer is an interface, we need to set up two parts to 
it: a struct and the supporting member methods.

    type server struct{}

    func (s *server) LS(p *pb.Path, fileInfoStream 

pb.Lister_LSServer) error {

You can wrap this up with much more, but for this example, our 
struct is as simple as can be. The func signature for LS must 
match the one from directorycontents.pb.go. Note that the 
gRPC response values are not a part of the return values from 
the function. Since we’re going to stream the results back, we 
will be working with the fileInfoStream value as our conduit to 
send the data back while inside of our function.

The remainder of the func uses filepath.Walk just as the original 
gls and glss servers did. It only has modifications to handle send-
ing the data directly back on the fileInfoStream.

        err := filepath.Walk(p.Name, func(path string, info 

os.FileInfo, err error) error {

github.com/cmceniry/login-grpcls/directorycontents
google.golang.org/grpc
google.golang.org/grpc/credentials
google.golang.org/grpc/reflection
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            f := &pb.File{

                Name:    info.Name(),

                Size:    info.Size(),

                Mode:    info.Mode().String(),

                Modtime: info.ModTime().Format(“Jan _2 15:04”),

            }

            err = fileInfoStream.Send(f)

In this, we’re converting every os.FileInfo we see as we receive 
it. For it to go over the gRPC connection, it has to be in the form 
of the messages from the .proto. Here, we convert it to pb.File, 
which allows us to send it back using fileInfoStream.Send. To 
reiterate, this is happening as we see every file, so we don’t have 
to construct any intermediate arrays before sending them all 
back.

Finally, on the server, we need to wire the network level up to our 
ListerServer. We’ll start with a standard TCP network listener.

    func main() {

        l, err := net.Listen(“tcp”, “:4270”)

Since we want to enable TLS authentication, we need to prepare 
that. The first part is to load in the certificates and keys. This is 
identical to the way that we loaded them in login-glss. 

        certificate, err := tls.LoadX509KeyPair(

            “../login-glss/certs/server.crt”,

            “../login-glss/certs/server.key”,

        )

        if err != nil {

            log.Fatalf(“could not load client key pair: %s”, err)

        }

        caCert, err := ioutil.ReadFile(“../login-glss/certs/CA.crt”)

        if err != nil {

            log.Fatal(err)

        }

        caCertPool := x509.NewCertPool()

        caCertPool.AppendCertsFromPEM(caCert)

With the credentials loaded, we need to format these for gRPC 
to use. This involves wrapping a typical tls.Config struct with 
a grpc.credentials struct. It’s the latter that is used by the 
gRPC services. Much like the glss server, we need to provide 
our certificate and configure the pool and flag for client auth. In 
addition, we need to ensure that our expected TLS ServerName 
is supplied so that the client can validate against that.

        creds := credentials.NewTLS(&tls.Config{

            ServerName:   “localhost”,

            Certificates: []tls.Certificate{certificate},

            ClientCAs:    caCertPool,

            ClientAuth:   tls.RequireAndVerifyClientCert,

        })

Next, we create a grpc.Server struct, then register a List-
erServer with it. When creating the grpc.Server, we indicate 
that we’re using the TLS configuration that we just set up.

        s := grpc.NewServer(grpc.Creds(creds))

        pb.RegisterListerServer(s, &server{})

Next, we enable information on the service via the grpc/reflec-

tion library. This is an optional step that allows generic gRPC 
clients to interact with our Lister service. You can inspect the 
information exposed using the gRPC command line tool found at 
https://github.com/grpc/grpc/blob/master/doc/command_line 
_tool.md.

        reflection.Register(s)

Finally, we can start the grpc.Server by telling it to act on our 
tcp.Listener. 

        err = s.Serve(l)

If all has gone well, we’ve successfully wired our server together. 
Now, on to the client side. Other than the import, it consists 
strictly of a main func. Like glss, it takes a single command line 
argument, which is the directory to get the listing.

The Client Implementation
The new imports for the client all involve the gRPC libraries. 
The client refers to the same .proto-generated definitions as the 
server, so it will need to import them as well. And, obviously, it 
needs to import the grpc library.

    import (

        pb “github.com/cmceniry/login-grpcls/directorycontents”

        “google.golang.org/grpc”

        “google.golang.org/grpc/credentials”

As the first part of our main function, we need to load our TLS 
values.

Again, this is identical to how it is configured in glss.

        certificate, err := tls.LoadX509KeyPair(

            “../login-glss/certs/client.crt”,

            “../login-glss/certs/client.key”,

        )

        if err != nil {

            log.Fatalf(“could not load client key pair: %s”, err)

        }

        caCert, err := ioutil.ReadFile(“../login-glss/certs/CA.crt”)

        if err != nil {

https://github.com/grpc/grpc/blob/master/doc/command_line_tool.md
https://github.com/grpc/grpc/blob/master/doc/command_line_tool.md
github.com/cmceniry/login-grpcls/directorycontents
google.golang.org/grpc
google.golang.org/grpc/credentials
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            log.Fatal(err)

        }

        caCertPool := x509.NewCertPool()

        caCertPool.AppendCertsFromPEM(caCert)

As with the server side, we need to wrap these as grpc.creden-

tials. Note that our TLS config only requires that we supply our 
certificate and provide a RootCA pool against which to validate 
the server.

        creds := credentials.NewTLS(&tls.Config{

            Certificates: []tls.Certificate{certificate},

            RootCAs:      caCertPool,

        })

Next, we form our network connection. Unlike on the server side, 
the grpc library has its own Dialer for the client side. We need to 
supply this with the endpoint to connect to and our general gRPC 
configuration—in this case, our credentials configuration.

        conn, err := grpc.Dial(“localhost:4270”, 

grpc.WithTransportCredentials(creds))

At this point, we’ve only established a general gRPC connection. 
There is nothing specific about our particular API, so we need to 
remedy that. We accomplish this by wrapping the general gRPC 
connection with a client that is specific to our Lister service.

        c := pb.NewListerClient(conn)

Now we can make our RPC call. This uses the context library for 
handling timeouts and cancellations. In this example, we’re just 
going to use the context.Background(), so we’re skipping over 
additional context library handling of timeouts and cancella-
tions. Our actual argument to LS is the pb.Path wrapped value 
from the command line.

        files, err := c.LS(context.Background(), &pb.Path{Name: 

os.Args[1]})

Since the return value from LS is a protobuf stream, we need 
to read each value from it. We do this by looping around files.

Recv(). If the stream is complete, LS returns the io.EOF sentry 
error and allows us to break out of the loop. Otherwise, unless 
there’s an error, we print out of the file information.

        for {

            f, err := files.Recv()

            if err == io.EOF {

                break

            }

            if err != nil {

                log.Fatalf(“LS file failure: %s”, err)

            }

            fmt.Printf(“%s %10d %s %s\n”, f.Mode, f.Size, 

f.Modtime, f.Name)

        }

Running It All
Now that we have the client and server, we can run it all together.

    login-grpcls$ go run server/main.go &

    [1] 11488

    login-grpcls$ 2017/12/16 21:44:17 Starting server

    login-grpcls$ go run client/main.go .

    drwxr-xr-x        204 Dec  6 21:27 .

    drwxr-xr-x        102 Dec 16 11:43 client

    drwxr-xr-x        136 Dec 13 19:16 directorycontents

    -rw-r--r--          267 Dec  6 21:27 links

    drwxr-xr-x        102 Dec 16 11:32 server

Conclusion
This article has provided a brief introduction to using gRPC 
with Golang. In addition, this series of articles has given us two 
implementations for our LS service—one using the net/rpc from 
Golang, and one using gRPC. I hope that you now feel comfort-
able enough to consider using gRPC in your work and, more 
importantly, to be able to weigh the pros and cons of when to use 
it or net/rpc as appropriate for your situation.

A few specific similarities and differences to remember between 
the two:

◆◆ Both setups involve configuring a generalized RPC server and 
then registering calls to it.

◆◆ Outside of some wrapping, both interact with TLS in the same 
way. The underlying implementation at the TLS layer is the 
same. Given the end-to-end principle, it should not be surpris-
ing to see the same behavior from a wrapping layer.

◆◆ With net/rpc, we’re handling Golang data structures. With 
grpc, we’re handling more generic data structures (which can 
be referenced by multiple languages). The net/rpc way is easier 
to handle in Golang but does limit the interaction to Golang. 
Which one you should use depends on the users of your API 
and the contract you need or want to maintain.

◆◆ While we did not demonstrate it in this example, gRPC has 
several middleware wrappers. These provide higher-level API 
enrichments to help enable resiliency and visibility. Since there 
are interface patterns, there is the possibility that the same 
exists for net/rpc, but its goal has been to be a solid simple 
standard library. It’s unlikely that these will exist for net/rpc.

Happy Going!

localhost:4270
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D A V I D  N .  B L A N K - E D E L M A N

I sometimes wonder if the people who make statements about Perl’s 
health in the world (some nostalgic, some a little more mean-spirited) 
have a sense of just how vibrant the Perl world is. I wonder whether see-

ing some of the interesting things being developed even as we speak or the 
range of projects available would change their thinking. 

This leads to a good question: how do you find out about the interesting things happening in 
Perl on a week-to-week basis? In this column I’d like to focus on one of the answers to that 
question: the weekly reports that are published about modules. 

We’ll look at three of them and for fun pick and consider interesting modules from each. 
All three of these listings are published each week on a blog created by Spanish Perl hacker 
Miguel Prz (“NICEPERL”), which can be found at http://niceperl.blogspot.com. Before 
we dive in, I should mention that these listings came to my attention thanks to the lovely 
newsletter started by Gabor Szabo called Perl Weekly. You can sign up and find past issues at 
http://perlweekly.com.

CPAN Great Modules Released Last Week
The first list we are going to look at is indeed titled “CPAN great modules released last week.” 
This is an ordered list of modules newly published to the Comprehensive Perl Archive Net-
work which has garnered 12 or more “favorite” ratings—that is, 12 or more people “++”d these 
modules on the MetaCPAN (metacpan.org) listing site. 

On the off chance you are brand new to the Perl world, let me quickly mention that CPAN is 
an archive where people in the Perl community share their modules and other Perl work for 
everyone to use. It is one of the best things Perl has going for it. And to be totally candid, it is 
not always the best; some of the code there isn’t the greatest. To give you a sense of its scale, 
here are the stats as of today from the cpan.org home page:

The Comprehensive Perl Archive Network (CPAN) currently has 194,457 Perl modules  

in 35,953 distributions, written by 13,329 authors, mirrored on 256 servers.  

The archive has been online since October 1995 and is constantly growing.

So what’s in the list of great modules for the week of December 17, 2017, the one in which I am 
writing? 

This week we find a few old friends of the column like Mojolicious and perlbrew. Instead 
of retreading, let’s instead look at DBIx::Simple. In the past, we’ve talked a bit about the 
framework that was a true innovator in the space at the time it was introduced: DBI. The 
idea of having a single portable abstraction layer for code that communicated with databases 
independent of the database backend being used was a great step forward at the time. This 
idea was subsequently expanded in many different directions (and the basic concept was 
repurposed for other non-database contexts as well). My magic 8-ball predicts an entire 
column on DBI-related expansions coming in our near future… But in the meantime, let’s look 
at DBIx::Simple.

David has over 30 years of 
experience in the systems 
administration/DevOps/SRE 
field in large multiplatform 
environments and is the author 

of the O’Reilly Otter book (new book on SRE 
forthcoming!). He is one of the co-founders 
of the now global set of SREcon conferences. 
David is honored to serve on the USENIX 
Board of Directors where he helps to organize 
and engineer conferences like LISA and 
SREcon. dnb@usenix.org
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Standard DBI has you writing code that looks like this (examples 
excerpted from the DBI doc with my comments inserted):

use DBI;

# connect to a database

$dbh = DBI->connect($data_source, $username, $auth, \%attr);

# execute a random SQL statement

$rv   = $dbh->do($statement);

# various ways of retrieving the results

$ary_ref   = $dbh->selectall_arrayref($statement);

$ary_ref   = $dbh->selectcol_arrayref($statement);

@row_ary   = $dbh->selectrow_array($statement);

$ary_ref   = $dbh->selectrow_arrayref($statement);

$hash_ref  = $dbh->selectrow_hashref($statement);

# more efficient ways of running/rerunning queries

$sth  = $dbh->prepare($statement); 

$rv   = $sth->execute;

# other ways of retrieving results

@row_ary   = $sth->fetchrow_array;

$ary_ref   = $sth->fetchrow_arrayref;

$hash_ref  = $sth->fetchrow_hashref;

# close connection to the database 

$rc  = $dbh->disconnect;

These are some of the more commonly used statements when 
working with DBI, certainly when first getting started. It’s worth 
reading the entire doc (several times) to get a good handle on the 
proper idioms and performant ways to work with DBI. And, hoo 
boy, is there plenty of doc to read—124 pages if you were to print 
it all out as of the time of this writing. 

DBIx::Simple aims to, well, you probably guessed it, make some 
of the coding with DBI more simple. With DBIx::Simple, you 
write code that looks almost identical to plain DBI:

use DBIx::Simple;

   

my $db = DBIx::Simple->connect(

    DBI:mysql:database=test,     # DBI source specification

    test, test,                  # Username and password

    { RaiseError => 1 }            # Additional options

);

but then you can write code of this form (as stated in the doc):

$db->query($query, @variables)->what_you_want;

Some examples of this from the doc would be:

my ($name, $email) = $db->query(

    SELECT name, email FROM people WHERE email = ? LIMIT 1,

    $mail

)->list;

Here we’re querying the people table for a list of two fields—
name and email—given the email address ($mail). We ask for the 
information back as a list.

If we didn’t want to chain methods like that, we could write:

$result = $db->query(...)

and then work from $result object returned using methods like:

@columns = $result->columns

or 

# CPAN module Version Votes Abstract
1 App::perlbrew 0.81 149 App::perlbrew - Manage Perl installations in your $HOME

2 Catalyst::Action::REST 1.21 16 Automated REST method dispatching

3 Data::Alias 1.21 12 Comprehensive set of aliasing operations

4 DBIx::Simple 1.37 27 Very complete easy-to-use OO interface to DBI

5 Digest::SHA 6.00 19 Perl extension for SHA-1/224/256/384/512

6 experimental 0.019 29 Experimental features made easy

7 libwww::perl 6.30 135 The World Wide Web library for Perl

8 Math::Prime::Util 0.70 12 Utilities related to prime numbers, including fast sieves and factoring

9 Mojolicious 7.58 352 Real-time web framework

10 SQL::Translator 0.11023 32 SQL DDL transformations and more

11 Test::Class::Moose 0.91 14 Serious testing for serious Perl

12 Text::Xslate v3.5.3 58 Scalable template engine for Perl5

Table 1: This is what the table at https://niceperl.blogspot.com/2017/12/clxii-cpan-great-modules-released-last.html looked like on December 17, 2017.
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@row   = $result->list    # return as a list   

@rows  = $result->flat    # return as a flattened list

$row   = $result->array   # return as an array ref   

@rows  = $result->arrays  # return as an array of arrays

$row   = $result->hash    # return as a hash 

@rows  = $result->hashes  # return as an array of hashes

Here’s an example of a query that returns a set of rows which we 
then iterate over to print separate fields:

for my $row (

   $db->query(SELECT name, email FROM people)->hashes) {

      print “Name: $row->{name}, Email: $row->{email}\n”;

}

I like how legible something like $row->{fieldname} is in the 
code.

DBIx::Simple also hooks into a few other modules (some of which 
we’ll likely talk about soon). For example, if you have  Text::Table 
installed, then code like:

print $result->text(“box”)

makes pretty output like:
+----+--------+----------  +
| ID | Animal | Type    |
+----+--------+---------- +
|  1  | camel | mammal  |
|  2  | llama | mammal |
|  3    | owl    | bird     |
+----+--------+---------- +

MetaCPAN Weekly Report
The second report to mention is also from data pulled from the 
MetaCPAN site. This report lists both the newly favorited mod-
ules (“Clicked for the first time”) and those whose popularity is 
on the rise (“Increasing its reputation”). If enough people vote 
for a particular module, this report will call out that module as 
“special,” but that did not happen this week.

You can find an example of the table at https://niceperl.blogspot 
.com/2017/12/ccxciv-metacpan-weekly-report.html. 

In the “first click” section, I found a couple of different modules 
to be interesting, not because they helped me discover a module 
I might use, but because they offered solutions for problems in 
spaces that I knew very little about. It can be fun to have some-
thing like this shoot you off on tangents (not to mention build 
your procrastination muscles). For example, I had never heard of 
a Confusion Matrix until I met AI::ConfusionMatrix. In case you 
are curious, Wikipedia defines them as follows:

In the field of machine learning and specifically the 
problem of statistical classification, a confusion 
matrix, also known as an error matrix, is a specific 
table layout that allows visualization of the 
performance of an algorithm, typically a supervised 
learning one (in unsupervised learning it is usually 
called a matching matrix). Each row of the matrix 
represents the instances in a predicted class while each 
column represents the instances in an actual class (or 
vice versa). The name stems from the fact that it makes 
it easy to see if the system is confusing two classes (i.e. 
commonly mislabeling one as another).

Similarly, I realized how woefully inadequate my understanding 
of graph theory was when I encountered Graph::Maker::Other. 
This appears to be a collection of modules for making graphs like 
Beineke, bi-star, quartet tree, twindragon area tree, and others I 
hadn’t heard of. Some are quite pretty—for example, that last one:

or hexgrid:
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or twin alternate area tree:

The documentation in this module distribution also references 
a website called House of Graphs (https://hog.grinvin.org), 
which is a “Database of interesting graphs.” And there goes that 
afternoon…

To pull things back to the world of Perl, I’d like to highlight the 
useful module File::HomeDir::Tiny, which describes itself as 
follows:

This module is useful for the 90% of the time that 
you only need 10% of File::HomeDir’s functionality. 
It depends on no other modules and consists of just 
fourteen lines of code.

so:

use File::HomeDir::Tiny;

$home = home;

Nothing complex, but highly useful. And if you want to have a 
quick party trick up your sleeve (presuming you go to the right 
parties) for when someone asks you about how nuts the Perl 
punctuation can be, check out the part of the docs that begins 
with:

If your code is only going to run on Unix, you do not 
need to bother with any module. Just use the alien 
spaceship operator:

($home) = <~> ;

From the “Increasing its reputation” section of this report, 
there’s a whole bunch of interesting modules to look at. There’s 
Damien Conway’s PPR (Pattern-based Perl Recognizer), which 
scares the pants off of me. It is basically a distribution of Perl 
regular expressions designed to match certain Perl constructs 
in a Perl program. Unlike PPI (which we looked at in a recent 
column), which actually parses Perl, this just allows you to easily 
say, “Is there a comment in this Perl code?” or give me back the 
code without the comment, the same way you might strip any-
thing else out of text using a regular expression. I was too scared 
to look at the actual source code for this module.

Other interesting stuff:

◆◆ App::tt, a time tracking module/app. This is the sort of thing 
that people who have to keep track of their time spent on 
individual activities or projects would love. From the command 
line, you can say “started” and then later “finished.” It can also 
do spiffy things like look at a directory with a Git repo in it and 
use the reflog there to automatically determine working times.

◆◆ App::RoboBot, an “event-driven, multi-protocol, multi-net-
work, user-programmable, plugin-based, S-Expression chatbot. 
Any text-based chat service could be supported, with plugins 
currently for IRC, Slack, and Mattermost included.” More info 
can be found at: https://robobot.automatomatromaton.com. 
Yup, there goes another afternoon.

◆◆ Promises, an implementation of Promises in Perl. If you ever 
get the chance to venture out into the wider programming 
world, especially in the world of JavaScript and the jQuery 
library, you may encounter a programming construct called 
“Promises.” Promises are an attempt to deal with the complex-
ity of writing reasonably sized asynchronous programs based 
on callbacks. At a certain point, those programs devolve into 
what people call “callback hell” because they invariably start to 
have callbacks calling other callbacks. If the forest of callbacks 
gets too thick or self-referential, it becomes very hard to debug 
or even to understand how the program will behave. As the 
doc says, “Promises give us back a top-to-bottom coding style, 
making async code easier to manage and understand. It looks 
like synchronous code, but execution is asynchronous.” If you 
find yourself writing even medium-sized programs that are 
event/callback based, it would probably behoove you to check 
out the world of Promises to see how others are coping with the 
complexity you are sure to encounter. The external references 
in the docs are also well worth taking some time to go read.

StackOverflow Perl Report
Okay, last report. This one is less useful for finding cool mod-
ules or strange afternoon-wasting tangents and more helpful 
for keeping your head in the Perl game and refreshing your Perl 
knowledge. This section lists the top 10 rated Perl questions on 
StackOverflow. It also lists the number of answers provided for 
each. I find it useful to just scan the list each week to see if there 
are any questions that pique my curiosity (or that make me feel 
like “hmm, I know that” or “hmm, I really should know that”). 
Table 2 shows the current list of questions for 12/9/17.

 1. Perl DBI (MySQL) puts single quote instead of actual param-
eter in prepared statement - [7/1]

 2. How to search and replace multiple lines with multiple lines 
- [5/5]

 3. In perl, when assigning a subroutines return value to a 
 variable, is the data duplicated in memory? - [5/3]
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 4. Is there a way to configure the default mirror for 
App::cpanminus (cpanm)? - [5/1]

 5. NBSP malformed while using Mojo::DOM - [5/0]

 6. How can I assign a weight for frequency score to a graph&’s 
edge using Graph::Easy - [4/2]

 7. How to run multiple perl Dancer2 apps in same nginx server 
- [3/2]

 8. How to accept self-signed certificates with LWP::UserAgent 
- [3/2]

 9. Why are the referenced arrays values not changed? - [3/2]

10. Time::Piece (localtime/gmtime) calculation vs bash date 
- [3/1]

And with that, we come to the end of these reports that are great 
for finding interesting things in the Perl world. Take care, and 
I’ll see you next time.

Table 2: The list at https://niceperl.blogspot.com/2017/12/cccxviii 
-stackoverflow-perl-report.html

https://niceperl.blogspot.com/2017/12/cccxviii-stackoverflow-perl-report.html
https://niceperl.blogspot.com/2017/12/cccxviii-stackoverflow-perl-report.html
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As I write this, I am just back from KubeCon and CloudNativeCon [1], 
where process isolation is a business plan and all your friends work 
 for Microsoft. I freely admit: it was a confusing conference for me 

in many ways; in fact, trying to get it all down on paper now, I even find the 
ways in which it was confusing, confusing. Rarely do I find myself so con-
fused that I must engage in the process of attempting to categorize my own 
confusion, but this is definitely one of those times, so let’s see what we can  
do here.

I suppose the best place to begin is with the ecosystem, which is currently undergoing so 
rapid an explosion of growth that the Cloud Native Computing Foundation (CNCF) orga-
nizers literally had posters on the wall to remind everyone just what the CNCF actually 
consisted of. Each CNCF project was also given its own space in the keynotes wherein it 
introduced itself to the user-base, which gave one the sense that a great deal of the current 
organizational structure had only recently been ironed out. There were also 20 (!) keynotes, 
covering project updates on 14 CNCF core projects (many of which I was hearing about for 
the first time). That’s ignoring, of course, the parallel explosion of Kubernetes-related start-
ups outside the CNCF, all fighting for mind-share, whose founders seem invariably to happen 
to be former Google employees.

To be clear, I’m making that observation without my tinfoil hat on. To be sure, one might 
be tempted to infer from the founders homogeneity of pedigree, some greater and possibly 
diabolical plan, but if such a plan existed I feel like there would be a lot less redundancy 
among them. Currently there are, for example, 10 competing container-runtimes (at least): 
Docker, rkt, containerd, CRI-O, LXC, OpenVZ, systemd-nspawn, machinectl, lkvm, and Kata 
containers. (That’s not counting the proprietary container runtimes used by the platform 
behemoths like AWS, Google Compute Engine, and Azure.)

Speaking of Azure, remember Microsoft? The company that stole all their core products and 
then spun off BSA [2] to sue everyone for copyright infringement? Remember? They were the 
ones who anti-competitively buried everyone they couldn’t buy, and then sent SCO to assas-
sinate Linux with a copyright lawsuit?

All totally so five minutes ago. At KubeCon, Microsoft is that low-key, tastefully appointed 
booth toward the back, where a well-spoken, highly tattooed twenty-something is speaking 
to passersby earnestly and excitedly about the future of open source while handing out rad 
Golang stickers. As for the other vendors on the floor, I only recognized half a dozen or so. It 
was like walking the vendor expo in a parallel dimension where Disney is an evil media syn-
dicate hell-bent on owning everything, and Microsoft a benevolent open-source cheerleader 
and funder of hacky experimental Google code.

And speaking of anti-competitiveness, despite the myriad overlap in functionality between 
so many of the tools, I never came away with the sense that any of them were serious 
competitors. I mean, it’s pretty obvious you’re in competition if you are currently one of 10 
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 possible mutually exclusive container-runtimes for Kubernetes, 
but having been in the room with them at the runtime salon, I 
can tell you, the lack of competitive tension between them was, 
well, confusing.

One thing there could be no confusion about was the CNCF’s 
choice of monitoring tool, emphatically Prometheus [3]. And 
while, yes, we should talk about that eventually, right now my 
heart pulls me in another direction: namely, the OpenTracing 
API [4] project. 

Have you read the Dapper [5] paper? Published in 2010, it describes 
Google’s production distributed systems tracing infrastructure. 
I bring it up because OpenTracing owes its lineage directly to 
Dapper, so if you really want to sink your teeth in, that paper is 
probably the best place to start. It’s also just a really good read.

I can hear you asking “Really, Dave?! Distributed tracing?!” I 
know, I know; talk about confusing. First of all, it isn’t even mon-
itoring, it’s application performance debugging or something like 
that. And second, it’s basically made of magic and impossible 
for laymen to comprehend, and anyway all the tracing stuff out 
there is proprietary and expensive. Also, I heard sampling is 
involved, and anyone who has read anything about monitoring in 
the last 10 years obviously knows that nothing but raw, unsam-
pled, nanosecond-resolution metrics can solve production issues 
in the real world. MONITOR EVERYTHING HOOYA! 

Hear me out for a second, though; I’ve been doing this for a while, 
and one thing I’ve seen quite a bit of is abstraction layers that 
make monitoring irrelevant. VPNs and tunneling protocols 
breaking SNMP traps, JVMs breaking systems memory moni-
toring, VMs breaking process monitoring, containers breaking 
VM monitoring, and on and on. If the Fundamental Theorem of 
Software Engineering [6] states all problems can be solved with 
one additional layer of abstraction, I propose this corollary: every 
monitoring system can be made irrelevant with one additional 
layer of abstraction.

Here’s a heads-up from yours truly, even if Kubernetes isn’t the 
inevitable future of computing everyone says it is; we’re in for 
a drastic increase in the use of abstraction layers in the next 10 
years. This is an important reason I’m such a big fan of StatsD 
and the process emitter/reporter pattern [7], wherein we move 
our monitoring up the stack into the process itself and let the 
processes we care about emit metrics directly to a monitoring 
system rather than trying to infer “badness” from system-level 
metrics. It’s difficult for anything to break your  monitoring 
when the programs you care about carry their monitoring 
around inside them, but even the process-emitter pattern 
has some abstraction to worry about—namely, microservices 
infrastructure. 

The services design pattern reduces the amount of work that a 
given process performs. A service is the smallest useful piece of 
software that can be defined simply and deployed independently 
(a program that does one thing and does it well), and therefore 
the metrics it emits are smaller in scope. Instead of, say, one pro-
cess emitting 10 metrics that expose the entire inner workings 
of a given job, we now have one metric each from 10 different 
processes. 

Maybe that’s fine. If we have a problem that’s endemic to one 
 service, it should be easy to pinpoint, but if our problem is the 
result of a particular call-path or the accumulated latency of 
many calls to multiple problematic services, we have a correla-
tion problem on our hands. To solve problems with requests 
 moving between multiple processes, we need to know which 
metric measurements relate to the same individual request.

In many ways, I think distributed tracing acts like a multi-
process-aware metrics emitter. Tracing is monitoring; it’s just 
scoped a little differently. Instead of monitoring a host, or a 
daemon, or an application, we are monitoring requests.

But how do we monitor a request, Dave? Requests are ephemeral. 
We can’t put our hands on them.

Hogwash. Ops has been doing it for decades. Think of the 
Received: header in an SMTP request. Each mail server that 
has a hand in message delivery knows to unpack and add its own 
Received: line to the email headers. Using those lines, we can 
dissect the path an email took from sender to recipient, as well 
as using the date/time stamps to derive latency metrics between 
hops. Distributed tracing does the same thing to propagate ad 
hoc metrics between hops by way of the HTTP headers, or what-
ever other transport is being used.

All we need is a standard that describes the structure of that 
header, and a collection of language APIs that implement the 
standard so services can search for, unpack, modify, and repack-
age the header regardless of the language they were written in 
or the architecture they run on. SMTP’s Received: header, along 
with the rest of the email headers, doesn’t work by magic; they’ve 
been implemented and reimplemented in every language on 
every architecture that has ever needed to send an email. 

Another interesting aspect of SMTP’s Received: header is that 
anything can consume it at any time. The implementation is 
indifferent with respect to its consumers; rather than being pur-
posefully designed for this or that sort of introspection system, it 
can use anything that knows how to unpack and parse it.

Like SMTP’s Received: header, the OpenTracing project pro-
vides a consumer-agnostic means of tracing individual requests 
through large, high-volume distributed systems. It’s imple-
mented as a header that piggy-backs along as a request makes 
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its way through a distributed application. OpenTracing provides 
APIs in nine languages, which makes it trivial for you to unpack, 
modify, and repackage the header without having to worry about 
the wire-protocol details.

Unlike SMTP, distributed application requests aren’t linear by 
nature. Your request to /foo/events might spawn subsequent 
requests to /foo/user-events and /foo/app-events, for exam-
ple, along with one or more database requests to look up user-IDs 
or authorize your request. When one request begets another that 
it depends on, OpenTracing describes that relationship in terms 
of parents and children. When a request begets another that it 
doesn’t depend on (say a non-blocking callout to a logging ser-
vice or a cache-write), OpenTracing describes the relationship 
as a “FollowsFrom” relationship. Each individual request (or 
operation) is described by a span struct, while the relationships 
between individual spans are maintained by a SpanContext.

Your job as a user of the API is to instrument your code to create 
a span roughly at each process boundary (wherever a request is 
sent or received and at exit). Within each span, you can create 
tags to track metrics like wait times or log process details.  

My mention of database calls in the paragraphs above was 
intentional. How can we hope to meaningfully trace requests 
that cross process boundaries into binary monoliths like MySQL 
or Cassandra? To be sure, we can time our DB interactions from 
the client-side, but everything happening inside the DB is a black 
box to us.

The good news is, given that OpenTracing is an API, support for 
it is slowly being proliferated into web-frameworks like Flask, 
RPC-layers like gRPC, databases like Cassandra, and even web-
servers like Nginx. These tools all fully support existing Open-
Tracing SpanContexts today, automatically unpacking them and 
adding new spans to provide a uniform source of insight into 
critical processes that have historically required vastly different 
monitoring strategies.

Confusingly (but on-message with respect to the greater Kuber-
netes community), there are nine (!) different tracer implemen-
tations that can be used to inspect OpenTracing data: Zipkin, 
Jaeger, Appdash, Lightstep, Hawkular, Instana, sky-walking, 
inspectIT, and stagemonitor. Some of these are language specific 
and others proprietary. Jaeger, Zipkin, and Lightstep are all good 
places to start for generalists. 

I’m kind of in love with the OpenTracing project’s goal and 
implementation, and I hope I’ve done both of those justice in this 
introduction. Tracing is monitoring, and it’s not made of magic, 
though it is somewhat magical. I’m really looking forward to API 
support in tools like Ruby-Rails and Node, and if I can get things 
arranged to be able to afford the time, they’re on the top of my list 
for OSS contributions in the new year. 

Take it easy!
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That Rumbling Sound

If you have been living under a rock the past five years, you will still have 
detected increasing vibrations in your rock, perhaps even out and out 
warming, depending on the damping effect of your rock’s material. If 

your rock is made of ideal material, then the repeated message in those vibra-
tions has been clear. Otherwise, we will disintermediate the Fourier trans-
form for you:

Bitcoin. Ethereum. Blockchain.

In this column, we examine the risk footprint of Bitcoin and other cryptocurrencies—not 
general risk, but risk in the computer security sense.

Debuting shortly after the fall of the iconic Lehman Brothers, and driven by global anti-
establishment sentiment, the top 100 virtual currencies have now amassed a market value 
exceeding $500B, 35% greater than that of JP Morgan Chase (~$366B). Bitcoin itself is up 
over 100,000% in those five years past. All the numbers in this column were true as of the 
hour we turned the column in; you will, yourself, want to update them because all are vola-
tile, to say the least. Go to  http://geer.tinho.net/fgm/fgm.geer.1803.references.html for the 
full set.

While some of this movement might be reasonably classified as hysteria (the CryptoKitties 
game clogging up the Ethereum network, with the highest priced “cat” selling for $117,712; 
Bitcoin mining in the trunk of a Tesla; and a FuckCoin raising $30K in 30 minutes), dismiss-
ing the entire movement seems too easy—but how much is dismissing it like whistling past 
the graveyard?

Until this year, China had been the most active trader in Bitcoin, but then the government 
made it all but illegal. Japan is currently the most active trader, accounting for 43% of trans-
actions, followed by the US at 29%, European countries at 8%, South Korea at 4%, and China 
at 1.6%. Both this year and last, and interestingly parallel, according to the World Intellec-
tual Property Organization, technology patents are running at three million per year, and the 
four countries that account for 78% of BTC trading account for 78% of those three million 
patents: China 36%, US 18%, Japan 16%, and South Korea 8%.

But to the point, on Sunday, December 10, the Chicago Board of Exchange launched Bitcoin 
futures. The day CBoE “GXBT” was announced, 100,000 new accounts were created on 
Coinbase, which now claims over 10,000,000 users. India has approximately 30,000 users 
active at any moment. 

What Do the Numbers Say?
Estimates of the number of detectible Bitcoin miners range from 5,000 to 100,000. The wide 
uncertainty range can be interpreted as the existence of discomfort regarding their discovery. 
The other 1355 cryptocurrencies, of course, have their own mining interests, and these are just 
the public blockchains. It is reasonable to believe that private, permissioned blockchains, such 
as those built on Multichain, will dwarf public blockchains in scale and variety going forward.

For Good Measure
Between a Block and a Hard Place
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In round numbers, the current hash rate is 12M hashes per 
second to power 450,000 transactions per day, with transactions 
totaling $2B/day, an average transaction of $4,444. This com-
pares to 704,000,000 credit card transactions per day totaling 
$54.8B, an average transaction of $77. The Federal Reserve ACH 
(Automated Clearing House) reports $86.7B/day in clearance, an 
average transaction of $1,680. To steal a line from the musical A 
Chorus Line, Bitcoin is “Too young to take over, too old to ignore; 
I’m almost ready, but...what...for?”

The growth rate for Bitcoin has been exponential, not linear, 
yet, according to Cisco estimates, overall peer-to-peer network 
traffic is not expected to grow at all through 2021, the smallest 
change of all network sub-segments, versus the leading sub-
segment, gaming, at 62% growth.

The annual electricity consumption of Bitcoin’s proof-of-work 
has been variously estimated, but we’ll go with 8.27 terawatt-
hours per year. That is “less than an eighth of what U.S. data cen-
ters use, and only about 0.21 percent of total U.S. consumption…
Global production of cash and coins consumes an estimated 11 
terawatt-hours per year. Gold mining burns the equivalent of 132 
terawatt-hours. And that doesn’t include armored trucks, bank 
vaults, security systems, and such.” So, one can plausibly argue 
that Bitcoin is a “green” technology [1].

Attack Surface
All new technology introduces new failure modes, that much 
is certain, but what is the proportionality constant here? Is it 
nodes, hashes, wallets, latency, or what? Bitcoin uses a peer-to-
peer distributed ledger technology; integrating that ledger with 
the incentive structure to participate in the network, the attack 
surface then consists of several facets and edges, everything 
from the characteristics of peer-to-peer networking to that of 
wallet (private key) management.

Remember, peer-to-peer networks do not have a single point of 
failure based on IP addresses, but also understand that the min-
ing operation is not uniformly distributed among miners. For 
example, 56% of Bitcoin mining is done using technology from 
AntPool in Beijing. As a different measure of concentration, if 
one were to disrupt the top-five mining pools, then one might be 
able to remove 70.4% of the competition. As yet another, “The top 
100 Bitcoin addresses control 17.3 percent of all the issued cur-
rency. With Ethereum, a rival to Bitcoin, the top 100 addresses 
control 40 percent of the supply, and with coins such as Gnosis, 
Qtum, and Storj, top holders control more than 90 percent. Many 
large owners are part of the teams running these projects” [2].

In the meantime, the bounty for breaking into and modifying the 
“immutable” record of Bitcoin is the market cap itself: $500+B. 
As you probably know, that immutable record is based on ellipti-
cal curve encryption, i.e., discrete logarithm problems widely 

considered to be Computationally Hard and hash functions. So 
far, only 109-bit curves are known to have been broken, though 
there is some interest in understanding the random numbers 
used to pick initial private keys.

Bitcoin’s incentive nature differs from that of BitTorrent— 
BitTorrent has a throttle system to restrict bandwidth to those 
freeloading. Bitcoin has no such self-repair facility. In fact, it is 
believed that 3.79 million bitcoins have been permanently lost 
(out of the 21 million that are the maximum number of bitcoins 
there will ever be), meaning the corresponding private keys 
required to access the bitcoins on the ledger have been lost, 
thus leaving those 3.79 million ledger entries orphaned. That 
makes the ultimate bitcoin pool size 18% smaller, and the single 
bitcoin 18% more valuable just for that reason alone. With a fixed 
upper bound on the number of bitcoins, you profit from causing 
other people to lose their private keys, and all without having to 
receive stolen property.

It’s not as if those who exploit security flaws are too busy else-
where to have noticed all this; Poloniex, a large marketplace, is 
warning customers not to use the app available through Google’s 
store as they haven’t created an app—it’s malware.

Is Immutability a Good Thing?
EOS is a blockchain operating system that will be released in 
July 2018. Its ICO currently has a market cap of $4.6B. This puts 
it above Wendy’s, Cracker Barrel, and MorningStar. That will 
add another layer to our security concerns.

In so many words, purported money is not the only thing that 
a blockchain can make immutable; by putting smart contract 
programs (code) on a blockchain, the code becomes immutable, 
and, with Ethereum and its Turing-complete language Solidity, 
we can trick the blockchain into executing updates by carefully 
using the equivalent of pointers. (Paging the Language Theoretic 
Security Group…)

Immutability, like anything else, is not without tradeoffs. As a 
case in point, Bitcoin is transparent as far as a history of what 
wallets have what amount of currency. Mapping those wallet 
addresses to IP addresses or user identities is likely not a great 
challenge today. In other words, blockchain immutability carries 
the same freight as biometric identifiers—there’s no invalidating 
the information once revealed. (Monero is more challenging and 
that is so on purpose, but remember the first rule of any serious 
investigation: “Follow the money.” What if you can’t?)

All of this is perhaps too speculative, too dynamic, too ephemeral 
for a column on “security metrics,” but our central point is that 
the faster the value-at-risk rises, the more certain it becomes 
that the structural advantage that offense has over defense will 
out. How these numbers change in the next year should offer 
some insight as to where perceived value is being pursued.



www.usenix.org  S P R I N G 20 1 8  VO L .  4 3 ,  N O.  1 71

COLUMNS
For Good Measure: Between a Block and a Hard Place

In any case, should you decide that being under your rock is not 
such a bad place after all, you still may want to consider invest-
ing in FortitudeCoin, which will give you priority to the surviv-
alist community Fortitude Ranch, and thus purchase priority 
accommodations should your rock prove inadequate. We recom-
mend you first make a sizable investment in our ICO “DanCoin,” 
a fork off of FreeLunchCoin, before pursuing this path.
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/dev/random
Web of Darkness

R O B E R T  G .  F E R R E L L

Behavior outside the acceptable social norm is part and parcel of human 
nature. We live, work, play, and interact on a bell curve. We also com-
pute there, as has become increasingly evident in recent years.

I won’t claim to have been present at the birth of the Internet—I was only 12 years old in 1969 
when the ball really got rolling—but I spent a fair amount of time in the early to mid-1980s 
playing with the first incarnations of TCP/IP and hanging around on USENET. As with most 
of my colleagues at the time, I could see the potential for NSFNET to connect, eventually, 
all the world’s academic institutions and libraries and thus be a really useful thing to have 
around. I don’t remember predicting the monster it would actually become, but I did once tell 
a skeptical boss in the early ’90s that having a web presence and email would be essential to 
doing business within a few years.

By the time Mosaic was released, enabling pictures as well as text to dangle in the sticky 
participles of the World Wide Web, the Internet had been public for a couple of years, and 
the highways, byways, and alleys were beginning to take shape. Some of those Information 
Alleyways were better lit than others. It didn’t take long for commerce to insinuate itself into 
the barrage of packets getting flung to and fro across this nascent behemoth. The object of 
commerce is profit, and profit can further be divided into legitimate and illicit—although 
that demarcation line can get a little smeary on occasion.

In the age of our innocence, Americans as a nation tended to believe that the default setting 
for the human conscience was “beneficent.” That might even have been true at some point. I 
can assure you, that is no longer the case. Our government and the Internet are prime exam-
ples. I leave the rationale for my first case in point to your own research, but for the Internet 
exemplar, allow me to break it down for you. 

The Internet was built, largely, on a platform of hacking. The original architects were work-
ing without blueprints or manuals, innovating as they went and solving technical challenges 
by the seat of their pants: that, dear friends, is the purest incarnation of the hacker’s art. As 
I have insisted on several occasions in this column, hacking has no innate connection what-
ever with criminality. That does not mean, however, that some of the less savory individuals 
who have taken up the hacker’s mantle haven’t applied those skills toward less than fully 
transparent pursuits.

While we’ve subsequently built a huge framework of what is somewhat ironically referred 
to as “legitimate” commerce on top of this hacker-originated underpinning, it should come 
as no surprise to anyone sentient that amoral entrepreneurship still thrives down in the 
Internet’s moldy sub-basement. What I’m not sure most people realize is that without those 
nefarious roots permeating its foundation, the commercial aspects of the Internet would 
probably collapse.

Let’s do a little deconstruction. What drives most technological advances? Is it pure 
research? The creative spirit? Impressing that girl in AP calculus? Or is it the military- 
industrial juggernaut that sucks up most of our tax dollars as it rolls past and spits them  
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out again as contractor funding? If you answered (D), you’re 
making forward progress toward the distant, craggy shoreline  
of enlightenment. 

Now, where does all that money go, really? Into “research and 
development,” as firms with their fingers shoved far into the 
national budgetary pie will invariably claim? No. It goes to the 
Internet. It goes to two-day shipping, streaming media services, 
online gaming, day trading, and cryptocurrency transactions. It 
also goes to porn and drugs, both licit and illicit—commodities 
in which the “Dark Web” specializes. Without these last two line 
items the infrastructure of the Internet, and therefore of our 
national prosperity, would fold in upon itself like a house of cards 
caught in a sudden gale.

If that sounds needlessly cynical, consider this: there are more 
programmers in the world than jobs to support them, due at least 
in part to the uneven clumping of money available to pay said 
coders. If you want to make a decent living as a programmer 
in the conventional arena you need to live and work in a place 
where salaries are commensurate with the value you can add to 
your employer’s products. The virtual nature of modern labor 
pools has ameliorated this market imbalance to a certain extent, 
but some considerable inequity remains.

The Dark Web makes no such distinctions. The amount of money 
one can earn there is not at all related to where one calls home 
physically. In fact, the less likely a nation is to grease the wheels 
of traditional commerce, the easier it is to set those of the Dark 
Web spinning. Those people who make money on the Dark Web 

return at least some of it to the conventional commercial sec-
tors of their nations of residence. They also go on in many cases 
to apply the talents they’ve honed in the underworld to more 
conventional projects—to which they would not have been able to 
contribute without the succor of their ill-gotten gains.

There is a growing industry related to combatting the efforts of 
those who populate the Dark Web. The cat-and-mouse games 
played with pirates, for example, have led to many advances in 
peer-to-peer networking, cryptography, protections against 
DDOS and other large-scale attacks, and even file integrity algo-
rithms. Without the economic pressures presented by actual and 
potential losses to criminal activity, these developments would 
have been far slower in coming.

The “dox the government” movement, which has revealed for the 
first time the depths to which intelligence agencies have pen-
etrated the lives of ordinary citizens, makes considerable use of 
the Dark Web as well. One might argue that these releases have 
done more damage than good, but no matter your stance on the 
issue, you can’t realistically question their impact. The spiders 
spinning the Dark Web shine their light in unexpected places.

Welcome, valued customer. Your call is very important to us. 
Please have your stolen ID and someone else’s credit card num-
ber handy. Remember to stay on the line until you have verified 
the color, size, model number, and/or dosage of your selected 
items, and thank you for choosing the Dark Web. We know you 
don’t really have a choice for most of this stuff.
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M A R K  L A M O U R I N E

Fluent Python
Luciano Ramalho
O’Reilly Media, 2015, 474 pages
ISBN 978-1-491-9-46008 

For a long time, I’ve told people I only need one book on Python: 
David Beazley’s Python Essential Reference. I don’t need tutorials 
any more—none of the references I’ve read does a better job than 
Beazley of balancing completeness and compactness. In Fluent 
Python, Ramalho has given me both a second book to keep close 
and an archetype for a type of book that I would like to see 
more of.

Ramalho sets out to teach not just what Python can do but how  
it works. Python has a lot of history, and the feature set is 
a mixed bag. It inherits from a lot of sources, and Ramalho is 
familiar with them and talks about them where it adds to the 
reader’s understanding.

The thing I really like about Fluent Python is that Ramalho talks 
about the characteristics that make Python special, different, 
and, especially, expressive and readable. He devotes a lot of space 
to practical aspects and to idiom.

This isn’t a book for beginning programmers or even  developers 
just starting to learn Python. While there are echoes of the top-
ics you’d expect to see in a programming language book, they are 
treated from the standpoint of internals and language-design 
choices. In many cases, Ramalho addresses would-be language 
purists on their own terms explaining why the language devel-
opers made their choices and how those affect Python  operation 
and performance. One standout is how Python has adopted 
functional programming concepts, and how the traditional con-
structs (filter, map, reduce), while they exist, are largely better 
written using list comprehensions in Python. Ramalho explains 
how comprehensions in Python are both more clearly expressive 
and more efficiently implemented than a classic MapReduce 
construct.

The author doesn’t shy away from what even he considers to be 
warts on the language. Python’s syntax restricts the lambda 
construct in ways that make anonymous functions nearly use-
less. He shows instead how to use regular functions, which, 
while more verbose, are often clearer for the reader and devel-
oper trying to debug a set of deeply nested anonymous functions. 
Developers coming from other scripting languages also face dif-
ficulties that arise when trying to extend built-in types. In this, I 
agree with him that the seeming problem is, in the grand scheme, 
a good thing, discouraging people from trying to do things which 
lead to obscure or too-clever code.

I especially liked the sections on decorators and his coverage of 
iterators and generators. I’ve often seen tutorials on the syntax 
for creating and using both of these constructs, but Ramalho 
discusses both the theory behind them (decorators are closures? 
Oh!) and how they behave in operation. I find the under-the-hood 
aspects to be useful when I’m deciding when to use constructs 
like these.

At the end of each chapter, the author includes an extensive 
references section and, my favorite, a “Soap-Box” section where 
he talks about his preferences, biases, and impressions. These 
give the reader both a sense of his background and some input  
on topics that can be interpreted as opinion (or religion).

These days I mostly skim books and then set them aside.  Fluent 
Python is one I mean to revisit. It’s too meaty to completely 
digest in one pass. Now I know where to look when I want to 
learn more about Python’s more interesting possibilities.

Once Upon an Algorithm
Martin Erwig
Massachusetts Institute of Technology, 2017, 317 pages
ISBN 978-0-262-0-36603

I was both intrigued and dubious when I first picked up Erwig’s 
book. I like the idea of using metaphor and, especially, storytell-
ing to make technical subjects accessible. I like to use them even 
when talking to my peers since a good metaphor can often be a 
shortcut to understanding. Presenting technical topics this way, 
however, risks oversimplifying. Such a presentation can either 
give a clear but incomplete treatment or bend metaphors so 
badly in an attempt to be make them rigorous that they lose their 
relevance. You can only push stories so far when applying them 
to complex topics.

Erwig starts off simply enough: Hansel and Gretel mark their 
path and then find their way home. They do it by following a 
series of repeated steps, first marking their path with stones 
and later bread and then following the markers back. This is  
the kind of thing I’d expect in a popular treatment of algorithms. 
The vocabulary and writing style is at odds with the simple story. 
Erwig is using children’s stories, but he’s not telling one.

It turns out that Once Upon an Algorithm is aimed at neither 
the purely technical nor the broad popular audience. Instead the 
intended audience, one that I am part of, is outside the field of 
computer science: the curious, dedicated lay reader.

The author organizes the book into two sections: “Algorithms” 
and “Languages.” This works because, contrary to my expec-
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tations, he’s not trying to explain algorithms by coding them. 
He actually treats the Theory of Computation right from the 
beginning, using the stories and the algorithms they illustrate 
to introduce the deepest concepts of computation: abstraction, 
representation, complexity, and computability.

As noted, in the first chapter, Erwig uses Hansel and Gretel to 
conceptualize an algorithm as a set of steps that can be followed 
to achieve some goal. In the second chapter, Sherlock Holmes is 
used to illuminate modeling, data representation, and abstrac-
tion. In the third, Indiana Jones is the focus used to discuss 
searching and sorting. In all three chapters, Erwig ends by talk-
ing about the deep questions that arise when trying to represent 
the real world with mathematics, logic, and machines. The third 
chapter closes with the best non-mathematical description I’ve 
read about the meaning of P (the set of problems computable in 
polynomial time), NP (problems where a given solution can be 
tested in polynomial time), and why the idea that P = NP (or not) 
is important for computation.

As if that’s not enough, the second half of the book covers the 
theory of formal languages. Erwig uses the song “Somewhere 
Over the Rainbow” and the example of musical notation to show 
how ubiquitous “computation” is. In a very real sense, a musical 

score is a “program” that can be converted into a result (a perfor-
mance) by a computer (the conductor and musicians). The movie 
Groundhog Day serves to show how iteration and looping work 
(and why terminating conditions are so important). Back to the 
Future is the inspiration for a discussion of recursion, and Harry 
Potter serves as the backdrop for the final chapters on the theory 
of abstraction and types.

In the end, I found the discussion to be on-point and clear. Erwig 
doesn’t condescend to the reader despite how easy that would be 
given the thesis that common stories can illustrate the theory of 
computation. He shows in this way how computation isn’t really 
some strange esoteric field but is grounded in everyday ideas and 
activities that anyone can relate to. The title of the book might 
lead someone to expect a watered down popular “dummies” 
treatment, but that would be a mistake. Erwig does indeed know 
his audience and writes to them. That audience will be well 
served by Once Upon an Algorithm.
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USENIX Member Benefits
Members of the USENIX Association 
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring techni-
cal articles, system administration articles, 
tips and techniques, practical columns on 
such topics as security, Perl, networks and 
operating systems, and book reviews

Access to ;login: online from December 
1997 to the current issue: www.usenix.org 
/publications/login/

Discounts on registration fees for all 
 USENIX conferences

Special discounts on a variety of products, 
books, software, and periodicals: www. 
usenix.org/member-services/discount- 
instructions

The right to vote on matters affecting the 
Association, its bylaws, and election of its 
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org/ 
membership/or contact office@usenix.org. 
Phone: 510-528-8649.

USENIX Board of Directors
Communicate directly with the  USENIX 
Board of Directors by writing to 
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of  
Standards and Technology 
carolyn@usenix.org

V I C E  P R E S I D E N T

Hakim Weatherspoon, Cornell University 
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois  
at Urbana-Champaign 
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier  Foundation 
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google 
cat@usenix.org

David N. Blank-Edelman, Apcera 
dnb@usenix.org

Angela Demke Brown, University  
of  Toronto 
demke@usenix.org

Daniel V. Klein, Google 
dan.klein@usenix.org

E X E C U T I V E  D I R E C T O R

Casey Henderson 
casey@usenix.org

Announcement of Changes to 
Future LISA Conferences
A Statement by the LISA Steering Committee on 
behalf of the USENIX Association

Starting in 2018, LISA will run for three 
days, rather than six.

We heard you! You couldn’t get your boss to 
agree to let you go for six days, or stepping 
away from other responsibilities for that 
long was too hard. It was also a firehose 
of content, and trying to keep it all in your 
brain upon returning to work was a real 
challenge. Could we take LISA and make it 
into a reasonably sized conference that still 
had amazing talks and training? Yes, we 
could, and we have.

LISA is one of the longest running tech 
conferences, originating in 1987, and we 
are proud that it continues to be among 
the most popular events in an increas-
ingly crowded field. Over the past 30 years, 
LISA has grown from a short workshop to a 
multi-track conference, evolving in format 
to suit the needs of a changing community. 
Most recently, we’ve added training ses-
sions within the main conference program 
to allow instructors to rapidly expose 
attendees to new topics; created LISA 
Lab and LISA Build to increase hands-on 
experience; and expanded invited talks to 
allow more industry experts to share their 
knowledge.

The new format will better allow attendees 
to fit LISA into their busy travel, work, and 
personal lives. We’ll continue to highlight 
the strengths of LISA, with three days of 
talks and training, LISA Build and LISA 
Lab, the expo, and the great conversations 
that happen in the hallway track and Birds-
of-a-Feather (BoF) sessions. The more 
focused scope also gives us the opportunity 
to push the proposal deadline closer to each 

Notice of Annual Meeting
The USENIX Association’s Annual Meeting with the  
membership and the Board of Directors will be held  

at 6:00 pm on  Tuesday, July 10, in Boston, MA, during the  
2018 USENIX Annual Technical Conference.

http://www.usenix.org/publications/login/
http://www.usenix.org/publications/login/
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/membership/or
http://www.usenix.org/membership/or
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conference to allow for emerging content 
and the latest updates, while also giving 
USENIX more flexibility around location 
and timing. This change also aligns the 
format with the rest of the family of systems 
engineering conferences, spread throughout 
the year in multiple geographic locations: 
LISA, SREcon Americas, SREcon Europe/
Middle East/Africa, and SREcon Asia/ 
Australia.

Members: 
Cast Your Vote!

Ballots due March 30, 2018
Ballots for the 2018 USENIX Board of 

Directors election have been mailed 
to all USENIX  members. Please mark 

your  ballot and return it in the mail  
to arrive no later than March 30, 2018.

The election results will be 
 announced in April. 

www.usenix.org/board/elections18

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft  NetApp Private Internet Access

USENIX Benefactors
Oracle Squarespace VMware

USENIX Partners
Booking.com CanStockPhoto Cisco Meraki DealsLands Fotosearch

Open Access Publishing Partner
PeerJ

LISA is an amazing conference and 
one of the highlights of our year. 
The LISA18 Call for Participation 
will be released this quarter, and we 
encourage you to submit a proposal. 
The deadline for submissions will be 
May 24, 2018. Interested in helping 
organize the conference? Send email 
to lisa@usenix.org. We look forward 
to seeing all of you in Nashville this 
coming October!
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Announcement and Preliminary Call for Papers www.usenix.org/fast19/cfp

February 25–28, 2019, Boston, MA, USA

FAST ’19: 17th USENIX Conference on 
File and Storage Technologies 
Sponsored by USENIX, the Advanced Computing Systems Association

Important Dates
• Submissions due: Wednesday, September 26, 2018, 8:59 pm PDT

• Notification to authors: Tuesday, December 11, 2018

• Final papers due: Thursday, January 24, 2019

Conference Organizers 
Program Co-Chairs
Arif Merchant, Google
Hakim Weatherspoon, Cornell University

Program Committee
TBA

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—Madison
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs
Geoff Kuenning, Harvey Mudd College
Florentina Popovici, Google
Erik Riedel, Dell Technologies
Jiri Schindler, SimpliVity
Bianca Schroeder, University of Toronto
Margo Seltzer, Harvard University and Oracle
Keith A. Smith, NetApp
Eno Thereska, Amazon
Carl Waldspurger, Carl Waldspurger Consulting
Ric Wheeler, Red Hat
Erez Zadok, Stony Brook University

Overview
The 17th USENIX Conference on File and Storage Technologies 
(FAST ’19) brings together storage-system researchers and practitio-
ners to explore new directions in the design, implementation, evalu-
ation, and deployment of storage systems. The program committee 
will interpret “storage systems” broadly; papers on low-level storage 
devices, distributed storage systems, and information management 
are all of interest. The conference will consist of technical presenta-
tions including refereed papers, Work-in-Progress (WiP) reports, 
poster sessions, and tutorials.

FAST accepts both full-length and short papers. Both types of sub-
missions are reviewed to the same standards and differ primarily in 
the scope of the ideas expressed. Short papers are limited to half the 
space of full-length papers. The program committee will not accept 
a full paper on the condition that it is cut down to fit in the short 
paper page limit, nor will it invite short papers to be extended to full 
length. Submissions will be considered only in the category in which 
they are submitted.

Topics
Topics of interest include but are not limited to:

• Archival storage systems

• Auditing and provenance

• Big data, analytics, and data sciences

• Caching, replication, and consistency

• Cloud storage

• Data deduplication

• Database storage

• Distributed and networked storage (wide-area, grid, 
peer-to-peer)

• Empirical evaluation of storage systems

• Experience with deployed systems

• File system design

• High-performance file systems

• Key-value and NoSQL storage

http://static.usenix.org/
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• Memory-only storage systems

• Mobile, personal, embedded, and home storage

• Parallel I/O and storage systems

• Power-aware storage architectures

• RAID and erasure coding

• Reliability, availability, and disaster tolerance

• Search and data retrieval

• Solid state storage technologies and uses (e.g., flash,  
byte-addressable NVM)

• Storage management

• Storage networking

• Storage performance and QoS

• Storage security

Deployed Systems
In addition to papers that describe original research, FAST ’19 also 
solicits papers that describe large-scale, operational systems. Such 
papers should address experience with the practical design, imple-
mentation, analysis, or deployment of such systems. We encourage 
submission of papers that disprove or strengthen existing assump-
tions, deepen the understanding of existing problems, and validate 
known techniques at scales or in environments in which they were 
never before used or tested. Deployed-system papers need not nec-
essarily present new ideas or results to be accepted, although that is 
certainly welcome, but should offer useful guidance to practitioners.

Authors should indicate on the title page of the paper and in the 
submission form that they are submitting a deployed-system paper.

Submission Instructions
Please submit full and short paper submissions (no extended 
abstracts) by 8:59 pm PDT on September 26, 2018, in PDF format via 
the submission form, which will be available here soon. Do not email 
submissions. There is no separate deadline for abstract submission.

• The complete submission must be no longer than 11 pages for 
full papers and 5 pages for short papers, excluding references. 
The program committee will value conciseness, so if an idea 
can be expressed in fewer pages than the limit, please do so. 
Supplemental material may be added as a single-but-separate 
file without page limit; however the reviewers are not required 
to read such material or consider it in making their decision. 
Any material that should be considered to properly judge the 
paper for acceptance or rejection is not supplemental and 
will apply to the page limit. Papers should be typeset on U.S. 
letter-sized pages in two-column format in 10-point Times 
Roman type on 12-point leading (single-spaced), in a text block 
being no more than 7” wide by 9” deep. Labels, captions, and 
other text in figures, graphs, and tables must use reasonable 
font sizes that, as printed, do not require extra magnification to 
be legible. Because references do not count against the page 
limit, they should not be set in a smaller font. Submissions 
that violate any of these restrictions will not be reviewed. The 
limits will be interpreted strictly. No extensions will be given for 
reformatting.

• A LaTeX template and style file are available on the 
USENIX templates page (www.usenix.org/conferences/
author-resources/paper-templates).

• Authors must not be identified in the submissions, either 
explicitly or by implication. When it is necessary to cite your 
own work, cite it as if it were written by a third party. Do not 
say “reference removed for blind review.” Any supplemental 
material must also be anonymized.

• Simultaneous submission of the same work to multiple 
venues, submission of previously published work, or plagiarism 
constitutes dishonesty or fraud. USENIX, like other scientific and 
technical conferences and journals, prohibits these practices 
and may take action against authors who have committed 
them. See the USENIX Conference Submissions Policy (www.
usenix.org/conferences/author-resources/submissions-policy) 
for details.

• If you are uncertain whether your submission meets USENIX’s 
guidelines, please contact the program co-chairs, fast19chairs@
usenix.org, or the USENIX office, submissionspolicy@usenix.org.

• Papers accompanied by nondisclosure agreement forms will 
not be considered.

Short papers present a complete and evaluated idea that does not 
need 11 pages to be appreciated. Short papers are not workshop 
papers or work-in-progress papers. The idea in a short paper needs 
to be formulated concisely and evaluated, and conclusions need to 
be drawn from it, just like in a full-length paper.

The program committee and external reviewers will judge papers 
on technical merit, significance, relevance, and presentation. A good 
research paper will demonstrate that the authors:

• are attacking a significant problem,

• have devised an interesting, compelling solution,

• have demonstrated the practicality and benefits of the 
solution,

• have drawn appropriate conclusions using sound experimental 
methods,

• have clearly described what they have done, and

• have clearly articulated the advances beyond previous work.

A good deployed-system paper will demonstrate that the authors:

• are describing an operational system that is of wide interest,

• have addressed the practicality of the system in more than one 
real-world environment, especially at large scale,

• have clearly explained the implementation of the system,

• have discussed practical problems encountered in production, 
and

• have carefully evaluated the system with good statistical 
techniques.

Moreover, program committee members, USENIX, and the reading 
community generally value a paper more highly if it clearly defines 
and is accompanied by assets not previously available. These assets 
may include traces, original data, source code, or tools developed as 
part of the submitted work.

Blind reviewing of all papers will be done by the program commit-
tee, assisted by outside referees when necessary. Each accepted 
paper will be shepherded through an editorial review process by a 
member of the program committee.
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Authors will be notified of paper acceptance or rejection no later 
than Tuesday, December 11, 2018. If your paper is accepted and you 
need an invitation letter to apply for a visa to attend the conference, 
please contact conference@usenix.org as soon as possible. (Visa 
applications can take at least 30 working days to process.) Please 
identify yourself as a presenter and include your mailing address in 
your email.

All papers will be available online to registered attendees no earlier 
than Thursday, January 24, 2019. If your accepted paper should not 
be published prior to the event, please notify production@usenix.
org. The papers will be available online to everyone beginning on 
the first day of the main conference, February 26, 2019. Accepted 
submissions will be treated as confidential prior to publication on the 
USENIX FAST ’19 website; rejected submissions will be permanently 
treated as confidential.

By submitting a paper, you agree that at least one of the authors will 
attend the conference to present it. If the conference registration fee 
will pose a hardship for the presenter of the accepted paper, please 
contact conference@usenix.org.

If you need a bigger testbed for the work that you will submit to 
FAST ’19, see PRObE at www.nmc-probe.org.

Best Paper Awards
Awards will be given for the best paper(s) at the conference. A small, 
selected set of papers will be forwarded for publication in ACM Trans-
actions on Storage (TOS) via a fast-path editorial process. Both full and 
short papers will be considered.

Test of Time Award
We will award a FAST paper from a conference at least 10 years ear-
lier with the “Test of Time” award in recognition of its lasting impact 
on the field.

Work-in-Progress Reports and Poster Sessions
The FAST technical sessions will include a slot for short Work-in-
Progress (WiP) reports presenting preliminary results and opinion 
statements. We are particularly interested in presentations of student 
work and topics that will provoke informative debate. While WiP 
proposals will be evaluated for appropriateness, they are not peer 
reviewed in the same sense that papers are.

We will also hold poster sessions each evening. WiP submissions 
will automatically be considered for a poster slot, and authors of 
all accepted full papers will be asked to present a poster on their 
paper. Other poster submissions are very welcome. Please see the 
Call for Posters and WiPs, which will be available soon, for submission 
information.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gatherings held in the 
evenings and organized by attendees interested in a particular topic. 
BoFs may be scheduled in advance by emailing the Conference 
Department at bofs@usenix.org. BoFs may also be scheduled at the 
conference.

Tutorial Sessions
Tutorial sessions will be held on February 25, 2019. Please submit 
tutorial proposals to fasttutorials@usenix.org .

Registration Materials
Complete program and registration information will be available in 
December 2018 on the conference website.

Rev. 02/09/2018



SREcon is a gathering of engineers who care deeply about site reliability, systems engineering, 
and working with complex distributed systems at scale. It strives to challenge both those new to 
the profession as well as those who have been involved in it for decades. The conference has a 
culture of critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 6–8, 2018 • SINGAPORE
www.usenix.org/srecon18asia

AUGUST 29–31, 2018 • DUSSELDORF, GERMANY
The Call for Participation is now available. Submissions are due April 3, 2018.
www.usenix.org/srecon18europe

MARCH 27–29, 2018 • SANTA CLARA, CA, USA
www.usenix.org/srecon18americas

Follow us at @SREcon



2018 USENIX Annual 
Technical Conference
JULY 11–13, 2018 • BOSTON, MA, USA

USENIX ATC ’18 will bring together leading systems researchers for cutting-edge 
systems research and unlimited opportunities to gain insight into a variety of 
must-know topics, including virtualization, system and network management and 
troubleshooting, cloud and edge computing, security, privacy, and trust, mobile 
and wireless, and more.

Program Co-Chairs:
Haryadi Gunawi, University of Chicago, and Benjamin Reed, Facebook

HotStorage ’18: 10th USENIX 
Workshop on Hot Topics in 
Storage and File Systems
July 9–10, 2018
www.usenix.org/hotstorage18

HotCloud ’18: 10th USENIX 
Workshop on Hot Topics in 
Cloud Computing
July 9, 2018
www.usenix.org/hotcloud18

HotEdge ’18: USENIX 
Workshop on Hot Topics 
in Edge Computing
July 10, 2018
www.usenix.org/hotedge18

www.usenix.org/atc18

Save the Date!

Co-located with USENIX ATC ’18

Registration will open in May 2018.
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Berkeley, CA 94710
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