
;login:
S P R I N G 2 0 1 8 V O L . 4 3 , N O . 1

Columns
gRPC and Protocol Buffers
Chris “Mac” McEniry

Finding Hot Perl Modules
David N. Blank-Edelman

The Open Tracing API
Dave Josephsen

Cryptocurrency Security Risks
Dan Geer and Dan Conway

& Hybrid SMR and a New API
Timothy Feldman

& Infiltrating an Exploit Market
Luca Allodi

& Vulnerabilities and Patching Open
Source
Frank Li and Vern Paxson

& Finding Flaws in Linux Kernels
 Tapasweni Pathak

& Interviews with Laura Nolan and
David Rowe

UPCOMING EVENTS
SREcon18 Americas

March 27–29, 2018, Santa Clara, CA, USA
www.usenix.org/srecon18americas

NSDI ’18: 15th USENIX Symposium on Networked
Systems Design and Implementation

April 9–11, 2018, Renton, WA, USA
www.usenix.org/nsdi18

ScAINet ’18: 2018 USENIX Security and AI
Networking Conference

May 11, 2018, Atlanta, GA, USA
www.usenix.org/scainet18

SREcon18 Asia/Australia
June 6–8, 2018, Singapore
www.usenix.org/srecon18asia

2018 USENIX Annual Technical Conference
July 11–13, 2018, Boston, MA, USA
www.usenix.org/atc18

Co-located with USENIX ATC ’18
HotStorage ’18: 10th USENIX Workshop on Hot
Topics in Storage and File Systems
July 9–10, 2018
Submissions due March 15, 2018
www.usenix.org/hotstorage18

HotCloud ’18: 10th USENIX Workshop on Hot Topics
in Cloud Computing
July 9, 2018
Submissions due March 13, 2018
www.usenix.org/hotcloud18

HotEdge ’18: USENIX Workshop on Hot Topics
in Edge Computing
July 10, 2018
Submissions due March 20, 2018
www.usenix.org/hotedge18

27th USENIX Security Symposium
August 15–17, 2018, Baltimore, MD, USA
www.usenix.org/sec18

Co-located with USENIX Security ’18
SOUPS 2018: Fourteenth Symposium on Usable
Privacy and Security
August 12–14, 2018
www.usenix.org/soups2018

WOOT ’18: 12th USENIX Workshop on Offensive
Technologies
August 13–14, 2018
www.usenix.org/woot18
Submissions due May 30, 2018

ASE ’18: 2018 USENIX Workshop on Advances
in Security Education
August 13, 2018
www.usenix.org/ase18
Submissions due May 8, 2018

CSET ’18: 11th USENIX Workshop on Cyber Security
Experimentation and Test
August 13, 2018
www.usenix.org/cset18
Submissions due May 10, 2018

FOCI ’18: 8th USENIX Workshop on Free and Open
Communications on the Internet
August 14, 2018
www.usenix.org/foci18
Submissions due May 24, 2018

HotSec ’18: 2018 USENIX Summit on Hot Topics
in Security
August 14, 2018
Lightning Talk submissions due June 11, 2018
www.usenix.org/hotsec18

SREcon18 Europe/Middle East/Africa
August 29–31, 2018, Dusseldorf, Germany
Submissions due April 3, 2018
www.usenix.org/srecon18europe

OSDI ’18: 13th USENIX Symposium on Operating
Systems Design and Implementation

October 8–10, 2018, Carlsbad, CA, USA
Abstract registration due April 26, 2018
www.usenix.org/osdi18

LISA18
October 29–31, 2018, Nashville, TN, USA
www.usenix.org/lisa18
Submissions due May 24, 2018

Enigma 2019
January 28–30, 2019, Burlingame, CA, USA

FAST ’19: 17th USENIX Conference on File and
Storage Technologies

February 25–28, 2019, Boston, MA, USA
www.usenix.org/fast19
Submissions due September 26, 2018

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/gplus

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published quarterly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for
a subscription to ;login:. Subscriptions for
non members are $90 per year. Periodicals
postage paid at Berkeley, CA, and additional
mailing offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2018 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designa-
tions used by manufacturers and sellers
to distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those desig-
nations appear in this publication and
USENIX is aware of a trademark claim,
the designations have been printed in caps
or initial caps.

S P R I N G 2 0 1 8 V O L . 4 3 , N O . 1

E D I T O R I A L
2 Musings Rik Farrow

5 Letter to the Editor Tom Van Vleck

S E C U R I T Y
6 Underground Economics for Vulnerability Risk Luca Allodi

13 A Large-Scale Empirical Study of Security Patches
Frank Li and Vern Paxson

19 Secure Client and Server Geolocation over the Internet
AbdelRahman Abdou, Paul C. van Oorschot

P R O G R A M M I N G
26 XDP-Programmable Data Path in the Linux Kernel

Diptanu Gon Choudhury

32 Faults in Linux 3.x Tapasweni Pathak

I N T E R V I E W S
38 An Interview with Laura Nolan Rik Farrow

41 Oslec, the Open Source Line Echo Canceller:
An Interview with David Rowe Bob Solomon

F I L E S Y S T E M S A N D S T O R A G E
44 Flex Dynamic Recording Timothy Feldman

48 Miniature Cache Simulations for Modeling and Optimization
Carl A. Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park

C O L U M N S
56 Using gRPC with Go Chris (Mac) McEniry

61 Practical Perl Tools: Top of the Charts David N. Blank-Edelman

66 iVoyeur: OpenTracing Dave Josephsen

69 For Good Measure: Between a Block and a Hard Place
Dan Geer and Dan Conway

72 /dev/random: Web of Darkness Robert G. Ferrell

B O O K S
74 Book Reviews Mark Lamourine

U S E N I X N O T E S
76 Notice of Annual Meeting

76 Announcement of Changes to Future LISA Conferences

2  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org I’ve long been fascinated by hardware. That fascination was re-awakened

by Tom Van Vleck’s letter to the editor in this issue. Tom is a Multician
(multicians.org), and he wrote to us with comments about my interview

with Peter G. Neumann in the Winter 2017 issue of ;login:.
When I was fortunate enough to assemble my first (nearly UNIX) system [1], it included a
34 MB Seagate drive with the ST-506 interface. The disk controller was not part of the hard
drive, as it is today. Instead, the disk controller sent commands—such as seek-inward, switch
to head two, read sector headers until sector 10 is reached, then write to sector 10, over a 34
pin control cable—and read or wrote data over a separate 20 pin cable. Device driver writ-
ers had to consider issues like how fast to seek, how many blocks to skip between reading or
writing to allow the CPU to finish with the previous operation, and handling the bad block
map. The latter was truly a PITA, as it appeared as a printed label on the hard drive case and
had to been entered, as block numbers, when formatting the drive. Even worse, the controller
actually was responsible for sending or receiving analog signals for writing or reading, and
that meant that you could only read a hard drive with the controller that had originally done
the writing.

By the time ATA [2] became popular, hard drives included their own controllers, and instead
of two cables, we only needed a single 40 pin cable that could be used to attach two drives.
Each drive had a jumper to determine whether it was a master or not (device 0 or 1), and
getting this wrong meant your system wouldn’t boot. But having the controller built into the
drive was a huge leap forward, as you could now move drives between host adapters. The
host adapter was just a 16-bit ISA bus relay for commands and data between the bus and the
drive’s onboard drive controller. As the ATA standards evolved, the drive controllers became
more sophisticated, able to understand SCSI commands.

The Small Computer System Interface [3] (SCSI, pronounced “scuzzy”) required an even
smarter drive controller. Up to seven devices, plus a host adapter, could be connected to
a SCSI cable, and each drive had to be capable of bus arbitration. The SCSI standard also
allowed the drives to queue up multiple commands.

SATA, which means serial ATA, uses a four pin cable, with commands and data being sent
serially rather than in parallel. Just as PC busses have moved from the parallel ISA bus to
the PCI busses that support many simultaneous serial channels, SATA achieves higher data
rates by moving away from parallel busses.

And somewhere along the way, disk vendors quietly changed how sectors were accessed.
Except with really old interfaces, like the ST-506, disks presented an array of blocks. The
operating system was responsible for writing blocks to the most appropriate free block, and
the OS did its best to write sectors that would be read in sequence together later, or at least be
located in nearby tracks, for better performance.

Since around 1999, hard disks accept Logical Block Addresses (LBAs) instead of block num-
bers. The hard disk then maps the LBA to a physical block address, a bit like flash transla-
tion layers (FTL) work. This change had two effects: the disk controller needed to become
smarter, and the operating system no longer had control over disk layout. File systems like

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 3

EDITORIAL
Musings

ext4 and BSD’s fast file system (FFS) create cylinder groups,
and associate directories and free block lists within these cylin-
der groups, to speed up both reading and writing. But the disk
controller is unaware of these distinctions and just stores blocks
using its own algorithms. These algorithms can even move blocks
later, for example, if a group of blocks is often read in sequence.

I certainly thought that the operating system should have control
over block placement, but the disk vendors saw things differently.
They wanted to create the cheapest, most efficient drives in
order to remain competitive, and for them, that meant taking
control away from the operating system developers.

Disk vendors continue to leverage the CPUs and memory
on disk drive controllers, and that’s led to some interesting
developments.

The Lineup
Timothy Feldman wrote a ;login: article [4] in 2013 about Shin-
gled Magnetic Recording (SMR), a new technique for increas-
ing drive capacity. But SMR introduces its own set of issues,
including highly variable write latencies. In this article, Tim
explains a huge change to SMR drives: hybrid drives that include
both conventional and SMR partitions. A new API means that
the operating system can control how much of a drive appears as
a conventional drive and how much as SMR, and it even allows
changing the proportion of these two formats on the fly, with
the disk controller moving blocks between the two regions as
required. Tim explains the plans for the new APIs, changes that
will be implemented in the drive’s on-disk controller, but also
need to be included in device drivers.

Carl Waldspurger et al. in their FAST ’17 paper explain how to
use very small samples of cache misses to determine how best
to configure full-size caches. Cache miss rates are crucial when
determining the optimal cache size. The authors create hashes
of block numbers and select cache misses to record by using a
portion of the hash space. Their creative use of hashes for getting
a random collection of samples caught my attention.

I searched through the CCS [5] program for papers that match
my criteria for articles that will have broad appeal and, out of a
huge selection of security research, found two.

Luca Allodi narrates how he infiltrated a Russian exploit
 market. But his real point is how examining what is bought
and sold tells us about which exploits are likely to be used in
un targeted attacks. I liked Luca’s exploit, managing to gain
access to the market, and also how he explains what the going
prices for exploits can reveal about which exploits are likely to
be widely used.

Frank Li and Vern Paxson describe how they determined that
it often takes a very long time for open source software to be
patched. It’s likely that commercial software is similar, but with

open source, they could trace the time a patch appeared in the
code, the time it was announced or distributed, and compare
that with the time the vulnerability first appeared in the Com-
mon Vulnerability Exposure (CVE) ratings. Much of their work
involved crafting the means of trawling online Git repositories
as well as info about vulnerabilities, a task that would have been
much more difficult without techniques for winnowing the data.

AbdelRahman Abdou and Paul C. van Oorschot volunteered to
share their work on secure geolocation. While geolocation is
commonly used, often for secure applications, geolocation is just
as commonly spoofed. Abdou and van Oorschot lay out their pro-
posal along with examples of how well it worked using sensors in
PlanetLab.

Diptanu Choudhury offered an article about using eBPF. The
extended Berkeley Packet Filter has been around for a few years
and provides a secure method for injecting code within a live
kernel. Choudhury’s particular example involves the Express
Data Path (XDP), which can be used for moving network meth-
ods, like a firewall or packet forwarder, into code that can access
a network device’s ring buffer, avoiding slow memory copies.
Diptanu explains enough about eBPF to be helpful to anyone
interested in beginning to use eBPF, as its programs can use
triggers throughout the Linux and BSD kernels.

Tapasweni Pathak discusses her research into flaws in Linux 3.x
kernels. Extending prior work, and using some of the same tools
for searching through source code, Pathak explains her process
and shows us, via graphs, just how well the kernel source is doing
when it comes to bugs that can cause crashes or be exploited. For
the most part, things have gotten better.

I interviewed Laura Nolan, a Google SRE and a past co-chair
of SREcon Europe. Laura had helped me find authors for SRE
articles, and I hoped to learn more about what it’s like to be an
SRE. Laura was definitely forthcoming, as well as providing a
humorous example, before she went to Google, of what it’s like
to be a woman in this field. Laura also answers questions about
why Google chose to use Paxos.

Bob Solomon interviewed David Rowe, the developer of the Open
Source Line Echo Canceller (Oslec). Bob asks David about the
difficulties involved in building something as difficult as an
echo canceller and the tricks David used for testing and debug-
ging, while allowing him to tell us a bit about what it’s like to be a
successful open source developer.

Chris McEniry takes us on a journey through using gRPC and
protocol buffers in Golang. Borrowing the certificate generation
portion of his Winter 2017 column, Mac explains how to use pro-
tobuf, a non-language-specific library, with Golang, as well as
how to use gRPC, Golang’s version of Remote Procedure Calls. A
lot of work for one column.

4  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

EDITORIAL
Musings

David Blank-Edelman wants to prove to you that Perl is alive
and well. He takes us to a site that keeps track of the hottest, or
currently most interesting, Perl modules. He also demonstrates a
few of these modules.

Dave Josephsen returns from KubeCon and CloudNativeCon
fired up about the Open Tracing API. Dave explains just why
tracing requests traveling between microservices is a crucial
part of monitoring these systems, tells us how Open Tracing
works, and suggests several frameworks for getting started.

Dan Geer and Dan Conway examine the security risks involved
with crypto-currencies. At the time their column was written,
Bitcoin had exceeded $18,000/BTC, 100,000 times its value just
five years ago. Geer and Conway discuss the failings not just of
Bitcoin but of other crypto-currencies. The amount of “value”
that’s already been lost or stolen is enough to give any sane per-
son pause.

Robert Ferrell muses about the past, and the dark future, of the
Internet. A much more serious column than his usual, but totally
fitting the times.

Mark Lamourine has reviewed two books. He has high praise for
Fluent Python, by Luciano Ramalho, a book that will sit beside
his copy of Dave Beazley’s Python Essential Reference. Mark also
reviewed Once Upon an Algorithm by Martin Erwig.

You might find yourself wondering whether disk vendors really
have taken control over block placement on modern drives. I
heard Dave Anderson of Seagate mention this during FAST ’07,
questioned him about it, and wrote about this in a Musings col-
umn later in 2007. I’ve since been asked to prove this a number
of times, and the best I’ve been able to come up with involves the
documentation for a Seagate Enterprise SAS drive in 2004 [6].
I’m sure there are better examples, and even a standards doc that
explains this change. If you know about this, please let me know,
because people still find this hard to believe.

In the meantime, enjoy your hard drives, which are gaining not
only in capacity over time, but also in intelligence.

References
[1] Rik Farrow, the long version, Morrow Micronix: https://
www.rikfarrow.com/about/.

[2] Parallel ATA: https://en.wikipedia.org/wiki/Parallel_ATA.

[3] Small Computer System Interface: https://en.wikipedia
.org/wiki/SCSI.

[4] T. Feldman and G. Gibson, “Shingled Magnetic Recording:
Areal Density Increase Requires New Data Management,”
;login:, vol. 38, no. 3 (June 2013): https://goo.gl/wj5Doi.

[5] ACM CCS 2017 Agenda: https://ccs2017.sigsac.org
/agenda.html.

[6] Seagate documentation: https://www.seagate.com/www
-content/product-content/enterprise-hdd-fam/enterprise
-capacity-3-5-hdd-10tb/_shared/docs/100791103d.pdf.

https://www.rikfarrow.com/about/
https://www.rikfarrow.com/about/
https://en.wikipedia.org/wiki/Parallel_ATA
https://en.wikipedia
https://goo.gl/wj5Doi
https://ccs2017.sigsac.org
https://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-3-5-hdd-10tb/_shared/docs/100791103d.pdf
https://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-3-5-hdd-10tb/_shared/docs/100791103d.pdf
https://www.seagate.com/www-content/product-content/enterprise-hdd-fam/enterprise-capacity-3-5-hdd-10tb/_shared/docs/100791103d.pdf

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 5

EDITORIAL
Musings

Letter to the Editor
Great interview of Peter in the Winter 2017 ;login:. I had the
pleasure of knowing and learning from Peter for many years.

Rik asked, “What happened with Multics?” It was a moderate
commercial success, until its hardware became obsolete and
was not replaced. The operating system design and features,
and the people who helped build them, influenced many sub-
sequent systems, including CHERI.

I can amplify Peter’s remarks on Multics in a few areas.

Peter said, “The 645 was pretty much frozen early”—in
fact, Multics had a major hardware re-design in 1973 (after
Bell Labs left Multics development) when the GE-645 was
replaced by the Honeywell 6180. The 6180 architecture
extended the Multics hardware-software co-design, provid-
ing support for eight rings in hardware (instead of the 645’s
64 rings simulated in software), as well as better security. A
later I/O controller ran in paged mode and supported Multics
device drivers that ran unprivileged in the user ring.

The transition from discrete transistor implementation to
integrated circuits gave us 1 MIPS per 6180 CPU rather than
the 645’s 435 KIPS. The later DPS8/70 was rated at 1.7 MIPS.

Another minor clarification: Peter said, “The buffer overflow
problem was solved by making everything outside of the
active stack frame not executable, and enforcing that in hard-
ware.” Actually, there were several features preventing buffer
overflows in Multics:

◆◆ The PL/I language has bounded strings and arrays, not
just pointers.

◆◆ CPU string instructions enforced bounds at no runtime
cost.

◆◆ “Execute” permission is limited to code segments.
◆◆ The stack grows from low addresses to high.
◆◆ ITS format prevents use of random data as pointers.
◆◆ The segment numbers are randomized.

See http://multicians.org/exec-env.html#buffer_overflow for
more on this topic.

Another clarification: Peter said, “In the early 1970s there
was even an effort that retrofitted multilevel security into
Multics, which required a little jiggling of ring 0 and ring 1. I
was a distant advisor to that (from SRI), although the heavy
lifting was done by Jerry Saltzer, Mike Schroeder, and Rich
Feiertag, with help from Roger Schell and Paul Karger.” There
were several projects to enhance Multics security so it could
be sold to the US Air Force. The MLS controls were done by a

project called Project Guardian, led by Earl Boebert. A more
ambitious project to restructure the Multics kernel, led by
Schell, Saltzer, Schroeder, and Feiertag, was canceled before
its results were included in Multics (http://multicians.org
/b2.html#guardian).

In the mid-’80s, the NCSC B2 security level was awarded to
Multics, after a thorough examination of the OS architecture,
implementation, and assurance. The evaluation process
found a few implementation bugs; much of the effort in attain-
ing the digraph was documenting the existing product.

There are over 2000 names on the list of Multicians. I am
mildly uncomfortable at being the only person mentioned by
Peter as “heavily involved” in Multics—we all were. I did my
part, but there were many others who made contributions
more important than mine, and some who worked on Multics
longer. I look back on those times and those colleagues with
affection and awe.

Jeffrey Yost’s interview with Roger Schell, a key person in
the design of security features and TCSEC (“the Orange
Book”), is also fascinating: https://conservancy.umn.edu
/handle/11299/133439.

Regards,
Tom Van Vleck
thvv@multicians.org

http://multicians.org/exec-env.html#buffer_overflow
http://multicians.org
https://conservancy.umn.edu

6  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITYUnderground Economics for Vulnerability Risk
L U C A A L L O D I

Luca Allodi is an Assistant
Professor at the Technical
University of Eindhoven, the
Netherlands. His research
interests lie around the

quantitative characterization of IT risk and
attacker decisions. l.allodi@tue.nl

The estimation of vulnerability risk is at the core of any IT security
management strategy. Among technical and infrastructural metrics
of risk, attacker economics represent an emerging new aspect that

several risk assessment methodologies propose to consider (e.g., based on
game theory). Yet the factors over which attackers make their (economic)
decisions remain unclear and, importantly, unquantified. To address this, I
infiltrated a prominent Russian cybercrime market where the most promi-
nent attack technology is traded. Supported by direct observations of market
activity, I investigate in this work the economic factors that drive the adop-
tion of new attacks at scale and their effect on risk of attack in the wild. As
a market participant, I have access to the full spectrum of attack services
offered to all members and, in particular, look at the market economics of
vulnerability exploitation [1].

Software vulnerabilities are one of the main vectors of attack used to infect systems world-
wide. As such, an effective management of vulnerability fixes is desirable on any system.
Unfortunately, due to technical and budgeting restrictions, applying all fixes as soon as they
are available is oftentimes not possible. For this reason, prioritizing patching work is a key
aspect of any vulnerability management policy. The goal is clear: identify which vulnerabili-
ties carry the highest risk and need immediate treatment.

Several methodologies to estimate this “potential risk” of vulnerability exploit exist, includ-
ing technical measures of vulnerability severity (e.g., the Common Vulnerability Scoring
System, CVSS), attack graphs, attack surfaces, and game-theoretic approaches that, for
example, assign probabilities to specific attacker strategies in response to a certain set of
defender decisions.

Importantly, and across all current approaches, the probability assigned to the materializa-
tion of an exploit mainly depends on vulnerability characteristics or specific “contextual”
aspects such as network topology, deployed security controls, and vulnerability chaining.
This, in turn, implicitly assumes that, all other factors being the same, attackers will be
indifferent to which vulnerability to exploit.

An implication of this model is that all “high severity” vulnerabilities on a certain system
or software will be equally likely to be exploited. Oftentimes, due to the high prevalence of
severe vulnerabilities, exploit estimations will not be dramatically different across systems
and vulnerabilities. This ultimately leads to inefficient vulnerability patching strategies [4],
as most vulnerabilities are “indistinguishable” in terms of posed risk, and therefore all need
immediate treatment.

All Vulnerabilities Are Not Equally Important
On the other hand, recent research developments reveal that the vast majority of attacks
seem to be driven by a handful of vulnerabilities only. In [2], across most software types,
the top 10% of vulnerabilities are reported to carry 90% of attacks across 1M Internet users

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 7

SECURITY
Underground Economics for Vulnerability Risk

worldwide, approximating a power law distribution. Other
research has shown that this huge skew in attack distribution is
present also for zero-day vulnerabilities. In this analysis [6], of
20 zero-day vulnerabilities, two were reportedly responsible for
millions of attacks worldwide, one for twenty thousand, and the
remaining 18 for a few dozen only. These results are confirmed
in follow-up empirical studies estimating that approximately
15% of disclosed vulnerabilities are exploited in the wild, and
that this fraction is decreasing for recent vulnerabilities [10].
Similarly, recent work showed that the refresh time of exploits is
very slow, with exploits being actively deployed in the wild up to
two or three years before being substituted at scale by a different
exploit [5].

These observations are in sharp contrast with the current
narrative in the information security community, where every
new severe vulnerability loosely resembles Doomsday. Indus-
try studies recently started to acknowledge this effect as well:
for example, in the last few editions of Verizon’s Data Breach
Investigations Report. Overall, empirical data clearly shows that
a handful of vulnerabilities carry disproportionately more risk
(by several orders of magnitude) than most vulnerabilities. It
seems therefore that factors other than the characteristics of the
vulnerability should be considered to explain this phenomenon.

Vulnerability Risk and Attacker Types
It is important to clarify the nature of the data leading to the
observations above and its relation to different attacker types.
In general, field data concerns attacks of an “untargeted” nature,
where attackers in possession of a “fixed” set of exploits deliver
attacks in the wild against the population of Internet users as
a whole. These attacks are the most common and involve high
attack automation, exploitation as-a-service [8], and delivery
infrastructures based on spam or redirection of Internet traffic.

Attacks of a more “targeted” nature are radically different from
the previous scenario: in such cases attackers adapt their exploit
portfolio to the desired target system (as opposed to relying on a
fixed set of exploits). Targeted attacks affect a very limited set of
Internet systems and entail high levels of variability as attackers
are (un)bounded by resource constraints, technical capabilities,
and access rights to the network. Hence, in the case of targeted
attacks, assigning probabilities to compute risk levels may not be
a meaningful approach [7] as the notion itself of probabilistic risk
does not apply anymore. In this article, I specifically refer to risk
of untargeted attacks at scale.

A Dive into Exploit Economics
This distinction between “untargeted” and “targeted” attacks
has become more and more relevant with the establishment of an
underground economy driving the commodification of attacks at
scale [8]. By outsourcing the complexity of attack engineering to

the technically proficient sections of the underground, the tech-
nical difficulty of engineering and deploying an attack signifi-
cantly decreased for those who participate in this economy. The
acquisition of “off the shelf” attack tools represents a “multiplier
factor” whereby a single attack technology (e.g., malware or vul-
nerability exploit) is shared among a multitude of attackers.

For example, exploit kits are known to be responsible for a
significant share of the overall attack scenario by providing a
ready-to-use, easy-to-configure attack framework that covers
all steps of the attack process, from selection and redirection
of vulnerable traffic, to vulnerability exploitation and malware
delivery. Hence, buyers of these attack technologies may, poten-
tially, jointly deliver a large fraction of attacks in the wild by
sharing the same attack vectors and infrastructure.

I propose that the adoption of attack techniques traded in the
cybercrime markets may explain the disproportionate concen-
tration of attacks over a small set of vulnerabilities discussed
above. Hence, under this hypothesis, it becomes central to
understand the relation between deployment of an attack at
scale and attackers’ economic activities [1]. For example, pricier
exploits may be adopted less widely by attackers, and vulner-
abilities that are seldom substituted in the markets may remain
exploited at scale for longer periods of time.

Market Identification and Infiltration
One of the difficulties associated with studying the underground
economy is to identify active, well-functioning underground
markets where prominent attack tools are traded. The under-
ground economy is indeed fragmented in a multitude of markets,
both in the so-called “deep web” as “onion services” and in the
“open Internet.” Whereas finding these markets is not a chal-
lenge per se, finding credible markets is: one should expect most
markets to be places where gullible “wanna-be” criminals get
scammed and no real technological innovation happens; Herley
and Florencio provide an excellent coverage of the foundational
economic reasons why this is the case [9].

Following Herley and Florencio’s guidelines, and jointly with
Professor Fabio Massacci at the University of Trento (Italy) and
Professor Julian Williams at the Durham Business School (UK),
I started evaluating different underground markets in the Eng-
lish and Russian hacking communities in 2011. One (Russian)
community, above all, emerged as a prominent market where
we find convincing evidence of severe trade regulation enforce-
ment, credible trade activities, and the most prominent attack
tools reported by the security industry, including exploit kits
such as RIG and Blackhole, malware platforms, malware packers,
and so on. We refer to this market under the fictitious name of
 RuMarket. All other markets in our analysis have been dis-
carded for not meeting at least one of these criteria; [3] reports
an example comparison.

8  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
Underground Economics for Vulnerability Risk

We first gained access to RuMarket in 2011 and carried out
“under-the-radar” observations of the activity therein, without
performing any interaction with the market members. At the
time, access to the market was only as difficult as registering to
the corresponding forum platform under a fictitious identity.

This changed rather abruptly in 2013 when a prominent member
of the market was arrested by the Russian authorities. The
market reacted by ejecting all non-active participants and by
significantly increasing the entry barrier to the market. Uncon-
trolled access to the market was replaced by a more strict pro-
cess supervised by the market administration whereby access
was granted only if either:

1. A trusted member of the market vouched for the entry request,
effectively implementing a pull-in mechanism.

2. The request for market entry was backed up by evidence that
the requestor was a reputable member of the Russian hacking
community.

As we had no contacts inside the market to regain access, we
chose to follow (2). This required extensive research to identify
communities affiliated with RuMarket with more loose access
barriers and build our identity from there. This, in turn, called
for some proficiency in Russian in the discussion boards but did
not involve the execution or support of criminal activities.

We gained new access to RuMarket in 2014 after more than six
months of activity in the affiliated communities. We have been
observing the market ever since. In this article, we look at the
economics of vulnerability exploit trading [1].

Market Activity and Exploit Packages
In RuMarket, vulnerability exploits are traded in packages, or
bundles. These can be classified using three categories: EKIT
(exploit kit), Malware, and Standalone exploits. Figure 1 reports
on the introduction of new exploit packages per year. Standalone
packages are clearly on the rise, whereas Malware and EKIT
packages are introduced or updated at a steady rate each year.
This difference can be explained by looking at the different
business models behind the bundles: Malware and EKIT are
typically service-oriented products that require a prolonged con-
tractual agreement between the buyer and the seller and are very
popular in the market (in particular, the average EKIT adver-
tisement receives approximately 10 times more replies from the
community than the average Standalone or Malware package).
As such, vendors tend to regularly update their products (e.g.,
with new or more reliable exploits) as opposed to substituting the
whole package with a new one. This creates a perhaps slightly
counterintuitive effect in which only a few players sell EKITs
(despite these being very attractive products in the market): the
prolonged contractual form requires high levels of trust between
market participants, a condition only well-established vendors

can meet, and hence the low rate of new kits each year. As most
malware in RuMarket is not advertised to exploit any specific
vulnerability, Malware products have low introduction rates in
Figure 1.

Table 1 reports descriptive statistics of package prices. Prices for
rented EKITs are averaged over a period of three weeks, follow-
ing the duration of typical malware delivery campaigns. We can
observe that EKIT products are by far the cheapest, with a mean
price of 700 USD, whereas Malware and Standalone products
are significantly more expensive at 2000–3000 USD on average.
This difference is stressed at the right-end tail of the distribu-
tions, where Standalone packages peak at 8000 USD, Malware
at 4000, whereas EKITs stop at 2000 USD. Prices do not show
a significant correlation with the number of embedded exploits,
suggesting that other aspects, such as the business model behind
the trade, or the age of the embedded exploits, may play a fac-
tor. An evaluation of the trend in pricing for each package type
reveals that prices are clearly inflating for Standalone and Mal-
ware products, whereas EKIT prices are decreasing over time.
This reflects the “consumer” nature of EKIT products, which
are becoming more and more available to a larger pool of buyers,
whereas the prices for Standalone exploits reflect a “niche” part
of the market and are inflating.

Vulnerability Exploits
With the aim of evaluating the effect of exploit economics on
vulnerability risk, it is useful to look at a breakdown of exploits
bundled in a package, as opposed to the bundle “as a whole.”
Figure 2 reports the rate of introduction of single exploits in the
market aggregated by vendor of the vulnerable software. Unsur-

Type No. Min Mean Median Max
EKIT 6 150 693.89 400 2000

Malware 6 420 1735 1250 4000

Standalone 26 100 2972.69 3000 8000

ALL 38 100 2417.46 1500 8000

Table 1: Package prices (in USD)

Figure 1: Release of exploit packages by type per year

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 9

SECURITY
Underground Economics for Vulnerability Risk

prisingly, in RuMarket we find exploits for Microsoft, Oracle,
and Adobe software, which can be expected to cover the vast
majority of user systems in the wild. The first observation we
make is that the first “burst” of exploits appears in 2011, which
corresponds to the appearance of “exploitation-as-a-service”
as a new attack model [8]. After 2011 the market experienced a
relative drop in number of introduced exploits to then stabilize
around an average level of 6–8 new exploits per software vendor
per year. This trend loosely resembles the Gartner Hype Cycle
describing the introduction of new technologies in a market: a
first inflation in the expectations associated with that technol-
ogy causes a burst of interest in the market, followed by a “disil-
lusionment” phase and, finally, by what Gartner calls the plateau
of productivity, where the technology reaches maturity and its
true value.

Table 2 reports the age, in days, of the exploits first introduced in
RuMarket relative to the date of their publication in the National
Vulnerability Database (NVD). As all collected exploits are asso-
ciated with a Common Vulnerabilities and Exposures (CVE)
identifier, no vulnerability is published in RuMarket before its
publication on NVD. Interestingly, reporting the vulnerability’s
CVE is also the de facto standard for exploit advertisement in
RuMarket (see sec. 3.2 in [1] for a discussion of why this is the
case). All Malware samples included an exploit for the same
vulnerability, which allows the malware to escalate to a higher
privilege group on the victim system.

EKIT and Standalone exploits account for most of the vari-
ability in the market. EKIT exploits are by far the older ones
at time of publication; 50% of Standalone exploits arrive two

months after disclosure, whereas the faster 50% of EKIT’s make
it to the market after more than nine months. This has a clear
correspondence with the package prices reported in Table 2, in
which Standalone exploits are the most expensive in the market
and EKITs the cheapest. A more formal analysis indeed reveals
a strong correlation between exploit price and exploit age, with
significantly different rates associated to different vulnerable
software platforms: for example, exploits for Microsoft and
Adobe products appear to better retain their value as they age
than exploits for Oracle products.

Another important aspect in the overall threat scenario is how
often exploits for a software platform are updated in the market.
Figure 3 reports the cumulative distribution function of the
time that passes between new exploits for a specific software,
grouped by vendor. Irrespective of software vendor, we observe
that in the median case, exploits are substituted six months after
first introduction. The slowest update rate of exploits is around
two years. This figure is well in line with previous findings
on measurements of exploit appearance in the wild [5, 10] and
underlines the importance of considering attacker activity in
estimating vulnerability risk.

Economic Factors of Vulnerability Exploitation
To evaluate the relation between market activity and risk of
exploit, we rely on data from Symantec on the presence of an
exploit at scale [4]. Note that whereas an exploit for a vulner-
ability might well exist even if not reported by Symantec, it is
unlikely for an exploit that delivers on the order of hundreds
of thousands or millions of attacks to remain unnoticed and
unreported.

We consider exploit package price, market activity around
an exploit (measured in terms of the number of RuMarket
responses to the ad reporting the exploit), and vulnerability
severity as factors that may affect the probability of finding
an exploit at scale. A formal analysis reveals that all effects
significantly affect the change in odds of exploitation in the wild

Type No. Min Mean Median Max

EKIT 25 1 372.48 294 1745

Malware 1 185 185 185 185

Standalone 29 1 147.34 75 934

ALL 55 1 250.36 93 1745

Table 2: Exploit age (days) at time of first appearance in RuMarket

Figure 2: Occurrences of exploit publication by year

Figure 3: Distribution of days between exploit introduction

10  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
Underground Economics for Vulnerability Risk

for the respective vulnerability. Whereas a full description of the
technical analysis is given in [1], as a rule-of-thumb the follow-
ing emerges:

1. As market activity around an exploit doubles, so do the
odds of finding an exploit at scale for the corresponding
vulnerability.

2. As price of exploit acquisition doubles, the odds of exploit at
scale halve.

3. Once we consider exploits traded in the markets, vulnerabil-
ity severity becomes a significant predictor for exploitation in
the wild.

Whereas the figures above are only indicative, a fully quantita-
tive model can be obtained by plugging the coefficients reported
in [1] in any vulnerability risk model. Importantly, a first
approximation can be obtained without any direct insight from
the markets. For example, exploit price can be estimated by con-
sidering the software vendor and the age of the vulnerability at

the time of the estimate; this price can then be used, in conjunc-
tion with the vulnerability’s severity, to estimate the change in
the risk profile of the vulnerability if introduced in the market
and how this evolves as time passes.

Although these conclusions are necessarily limited to RuMarket,
and therefore the specific quantitative estimations may vary by
considering other markets (e.g., trading vulnerabilities affecting
different software vendors, or aiming at a larger English-speak-
ing community), the qualitative conclusion remains: attacker
economics are clearly correlated with risk of attack. Further
research is needed in this direction: what is the attacker’s pro-
cess in deciding on which exploit to introduce and when? What
determines whether an exploit can be expected to be traded in a
market, as opposed to being used privately, or not being used at
all? I believe that a characterization of these aspects can funda-
mentally change our perspective on cyber-risk and can provide
an important building block for the division of workable and
effective security practices.

References
[1] L. Allodi, “Economic Factors of Vulnerability Trade and
Exploitation,” in Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’17), pp.
1483–1499: https://acmccs.github.io/papers/p1483-allodiA.pdf.

[2] L. Allodi, “The Heavy Tails of Vulnerability Exploitation,”
in Proceedings of 7th International Symposium on Engineering
Secure Software and Systems (ESSoS ’15), pp. 133–148.

[3] L. Allodi, M. Corradin, and F. Massacci, “Then and Now: On
the Maturity of the Cybercrime Markets,” IEEE Transactions
on Emerging Topics in Computing, vol. 4, no. 1 (Jan.–March
2016): http://ieeexplore.ieee.org/document/7044581/.

[4] L. Allodi and F. Massacci, “Comparing Vulnerability Sever-
ity and Exploits Using Case-Control Studies,” ACM Transaction
on Information and System Security (TISSEC), vol. 17, no. 1
(August 2014): http://disi.unitn.it/~allodi/allodi-tissec-14.pdf.

[5] L. Allodi, F. Massacci, and J. Williams, “The Work-Averse
Cyber Attacker Model: Evidence from Two Million Attack Sig-
natures,” in Workshop on the Economics of Information Security
(WEIS ’17): https://ssrn.com/abstract=2862299.2017.

[6] L. Bilge and T. Dumitras, “Before We Knew It: An Empirical
Study of Zero-Day Attacks in the Real World,” in Proceedings
of the 2012 ACM Conference on Computer and Communications
Security (CCS ’12), pp. 833–844: http://users.ece.cmu.edu/
~tdumitra/public_documents/bilge12_zero_day.pdf.

[7] B. C. Ezell, S. P. Bennett, D. von Winterfeldt, J. Sokolowski,
and A. J. Collins, “Probabilistic Risk Analysis and Terrorism
Risk,” Risk Analysis, vol. 30, no. 4 (2010), pp. 575–589: https://
www.dhs.gov/xlibrary/assets/rma-risk-assessment-technical
-publication.pdf.

[8] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Diet-
rich, K. Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A.
Pitsillidis, N. Provos, M. Z. Rafique, M. A. Rajab, C. Rossow,
K. Thomas, V. Paxson, S. Savage, G. M. Voelker, “Manufactur-
ing Compromise: The Emergence of Exploit-as-a-Service,”
in Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS ’12), pp. 821–832: http://cseweb
.ucsd.edu/~voelker/pubs/eaas-ccs12.pdf.

[9] C. Herley and D. Florencio, “Nobody Sells Gold for the
Price of Silver: Dishonesty, Uncertainty and the Underground
Economy” in Economics of Information Security and Privacy
(Springer, 2010).

[10] K. Nayak, D. Marino, P. Efstathopoulos, T. Dumitras, “Some
Vulnerabilities Are Different Than Others,” in Proceedings of
the 17th International Symposium on Research into Attacks,
Intrusions, and Defenses (RAID ’14), pp. 426–446: http://www
.umiacs.umd.edu/~tdumitra/papers/RAID-2014.pdf.

https://acmccs.github.io/papers/p1483-allodiA.pdf
http://ieeexplore.ieee.org/document/7044581/
http://disi.unitn.it/~allodi/allodi-tissec-14.pdf
https://ssrn.com/abstract=2862299.2017
http://users.ece.cmu.edu/~tdumitra/public_documents/bilge12_zero_day.pdf
http://users.ece.cmu.edu/~tdumitra/public_documents/bilge12_zero_day.pdf
https://www.dhs.gov/xlibrary/assets/rma-risk-assessment-technical-publication.pdf
https://www.dhs.gov/xlibrary/assets/rma-risk-assessment-technical-publication.pdf
https://www.dhs.gov/xlibrary/assets/rma-risk-assessment-technical-publication.pdf
http://cseweb.ucsd.edu/~voelker/pubs/eaas-ccs12.pdf
http://cseweb.ucsd.edu/~voelker/pubs/eaas-ccs12.pdf
http://www.umiacs.umd.edu/~tdumitra/papers/RAID-2014.pdf
http://www.umiacs.umd.edu/~tdumitra/papers/RAID-2014.pdf

August 15–17, 2018 • Baltimore, MD, USA

The 27th USENIX Security Symposium brings together researchers, practitioners, system administrators,
system programmers, and others interested in the latest advances in the security and privacy of computer
systems and networks.

The Symposium will span three days, with a technical program including refereed papers, invited talks,
posters, panel discussions, and Birds-of-a-Feather sessions. Co-located workshops will precede the
Symposium on August 13 and 14.

Program Co-Chairs
William Enck, North Carolina State University, and Adrienne Porter Felt, Google

Registration will open in May 2018.

Save the Date!

www.usenix.org/sec18

Save the Date!

www.usenix.org/soups2018

S
O

U PS

2018

Sym
posiu

m
 O

n U
sable Privacy and Security

Fourteenth Symposium on
Usable Privacy and Security
Co-located with USENIX Security ’18
August 12–14, 2018 • Baltimore, MD, USA

The Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018) will bring together an interdisciplinary group of
 researchers and practitioners in human computer interaction,
 security, and privacy. The program will feature technical papers,
including replication papers, workshops and tutorials, a poster
session, and lightning talks.

Registration will open in May 2018.

Symposium Organizers
General Chair

Mary Ellen Zurko,
MIT Lincoln Laboratory

Technical Papers Co-Chairs
Sonia Chiasson, Carleton University

Rob Reeder, Google

Vice General Chair
Heather Richter Lipford,

University of North Carolina at Charlotte

Co-located Workshops

WOOT ’18 12th USENIX Workshop on Offensive Technologies
August 13–14, 2018
Submissions due May 30, 2018
www.usenix.org/woot18

WOOT ’18 aims to present a broad picture of offense and its contributions, bringing together researchers and practitioners in all areas of computer
security. Offensive security has changed from a hobby to an industry. No longer an exercise for isolated enthusiasts, offensive security is today a
large-scale operation managed by organized, capitalized actors. Meanwhile, the landscape has shifted: software used by millions is built by start-
ups less than a year old, delivered on mobile phones and surveilled by national signals intelligence agencies. In the field’s infancy, offensive security
research was conducted separately by industry, independent hackers, or in academia. Collaboration between these groups could be difficult. Since
2007, the USENIX Workshop on Offensive Technologies (WOOT) has aimed to bring those communities together.

ASE ’18 2018 USENIX Workshop on Advances in Security Education
August 13, 2018
Submissions due May 8, 2018
www.usenix.org/ase18

ASE ’18 is intended to be a venue for cutting-edge research, best practices, and experimental curricula in computer security education. The work-
shop welcomes a broad range of paper and demo submissions on the subject of computer security education in any setting (K–12, undergraduate,
graduate, non-traditional students, professional development, and the general public) with a diversity of goals, including developing or maturing
specific knowledge, skills and abilities (KSAs), or improving awareness of issues in the cyber domain (e.g., cyber literacy, online citizenship). ASE is
intended to be a venue for educators, designers, and evaluators to collaborate, share knowledge, improve existing practices, critically review state-
of-the-art, and validate or refute widely held beliefs.

CSET ’18 11th USENIX Workshop on Cyber Security Experimentation and Test
August 13, 2018
Submissions due May 10, 2018
www.usenix.org/cset18

CSET ’18 invites submissions on cyber security evaluation, experimentation, measurement, metrics, data, simulations, and testbeds. The science
of cyber security poses significant challenges. For example, experiments must recreate relevant, realistic features in order to be meaningful, yet
identifying those features and modeling them is very difficult. Repeatability and measurement accuracy are essential in any scientific experiment,
yet hard to achieve in practice. Few security-relevant datasets are publicly available for research use and little is understood about what “good
datasets” look like. Finally, cyber security experiments and performance evaluations carry significant risks if not properly contained and controlled,
yet often require some degree of interaction with the larger world in order to be useful.

FOCI ’18 8th USENIX Workshop on Free and Open Communications on the Internet
August 14, 2018
Submissions due May 24, 2018
www.usenix.org/foci18

FOCI ’18 will bring together researchers and practitioners from technology, law, and policy who are working on means to study, detect, or circum-
vent practices that inhibit free and open communications on the Internet. Internet communications drive political and social change around the
world. Governments and other actors seek to control, monitor, and block Internet communications for a variety of reasons, ranging from extending
copyright law to suppressing free speech and assembly. Methods for controlling what content people post and view online are also multifarious.
Whether it’s traffic throttling by ISPs or man-in-the-middle attacks by countries seeking to identify those who are organizing protests, threats to
free and open communications on the Internet raise a wide range of research and interdisciplinary challenges.

HotSec ’18 2018 USENIX Summit on Hot Topics in Security
August 14, 2018
Lightning talk submissions due June 11, 2018
www.usenix.org/hotsec18

HotSec ’18 aims to bring together researchers across computer security disciplines to discuss the state of the art, with emphasis on future directions
and emerging areas. HotSec is not your traditional security workshop! The day will consist of sessions of lightning talks on emerging work and
positions in security, followed by discussion among attendees. Lightning talks are 5 MINUTES in duration—time limit strictly enforced with a gong!
The format provides a way for lots of individuals to share ideas with others in a quick and more informal way, which will inspire breakout discussion
for the remainder of the day.

Registration will open in May 2018.

BALTIMORE, MD, USA

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 13

SECURITY

A Large-Scale Empirical Study of
Security Patches
F R A N K L I A N D V E R N P A X S O N

Miscreants seeking to exploit computer systems incessantly dis-
cover and weaponize new security vulnerabilities. As a result,
system administrators and end users must constantly run on the

“patch treadmill,” where they apply security patch after security patch to
fix newly discovered software vulnerabilities, relying on many of the same
processes practiced for decades to update their software against the latest
threats. Given the vital role that security patches play in our management of
vulnerabilities, it behooves us to better understand the patch development
process and characteristics of the resulting fixes.

Prior studies [2, 4, 5, 7, 8] investigated aspects of the vulnerability and patching life cycles
but typically at a restricted scale in terms of software diversity, focusing on only a few
projects or even just one. While these studies provide insights into the patch development
process, there remains a question of how generally their findings apply, and how the nature
of security patches may differ from that of other types of bug fixes. Security patches are of
particular importance given their critical role in securing software and the time sensitivity
of their development.

In this work, we conduct a large-scale empirical study of security patches, investigating
4,000+ bug fixes for 3,000+ vulnerabilities that affected a diverse set of 682 open-source
software projects. We build our analysis on a data set that merges vulnerability entries from
the National Vulnerability Database [6], information scraped from relevant external refer-
ences, affected software repositories, and their associated security fixes. Tying together
these disparate data sources allows us to perform a deep analysis of the patch development
life cycle, including investigation of the code base life span of vulnerabilities, the timeliness
of security fixes, and the degree to which developers can produce safe and reliable security
patches. We also extensively characterize the security fixes themselves in comparison to
general bug patches, exploring the complexity of different types of patches and their impact
on code bases.

Data Collection Methodology
To explore vulnerabilities and their fixes, we must collect security patches and information
pertaining to them and the remedied security issues. Given this goal, we restricted our inves-
tigation to open-source software for which we could access source code repositories and
associated metadata. Our data collection centered around the National Vulnerability Data-
base (NVD) [6], a database provided by the US National Institute of Standards and Technol-
ogy (NIST) with information pertaining to publicly disclosed software vulnerabilities. These
vulnerabilities are identified by CVE (Common Vulnerabilities and Exposures) IDs.

We mined the NVD and crawled external references to extract relevant information, includ-
ing the affected software repositories, associated security patches, public disclosure dates,
and vulnerability classifications. Figure 1 depicts an overview of this process. In the remainder

Frank Li is a PhD student at
the University of California,
Berkeley. His research
mainly focuses on improving
the remediation process

for security issues such as vulnerabilities
and misconfigurations. More broadly,
he is interested in large-scale network
measurements and empirical studies in a
computer security context.
frankli@cs.berkeley.edu

Vern Paxson is a Professor
of Electrical Engineering
and Computer Sciences at
the University of California,
Berkeley, and leads the

Networking and Security Group at the
International Computer Science Institute in
Berkeley. His research focuses heavily on
measurement-based analysis of network
activity and Internet attacks. He works
extensively on high performance network
monitoring, detection algorithms, cybercrime,
and countering censorship and abusive
surveillance. vern@berkeley.edu

14  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
A Large-Scale Empirical Study of Security Patches

of this section, we briefly describe these various data sources
and our collection methodology (see [3] for details).

Note that throughout our methodology, we frequently manu-
ally inspected random samples of populations to confirm that
the population distributions accorded with our assumptions or
expectations.

Finding Public Vulnerabilities with the NVD
The NVD contains entries for all publicly released vulnerabili-
ties assigned a CVE identifier, and rich annotations about the
vulnerabilities. In particular, it summarizes the vulnerability,
links to relevant external references (such as security advisories
and reports), specifies the affected software, identifies the class
of security weakness under the Common Weakness Enumeration
(CWE) classifications, and evaluates the vulnerability severity
using the Common Vulnerability Scoring System (CVSS).

We focused on the NVD as it is public, expansive, manually
curated, and detailed. For this study, we analyzed a snapshot of
the NVD taken on December 25, 2016. Its 80,741 CVE vulner-
abilities served as our starting point for further data collection.

Identifying Software Repositories and Security
Patches
Many open-source version-controlled software repositories
provide web interfaces to navigate project development (such
as git.kernel.org). We frequently observed URLs to these web
interfaces among the external references for CVE entries, link-
ing to particular repository commits that addressed the security
vulnerability. We focused on popular Git web interfaces as they
were the most commonly occurring (and Git overall is popular).
Crawling these links afforded us the ability to collect security
patches and access the source code repositories.

Figure 1: An overview of our data collection methodology. (1) We extracted vulnerability characteristics from CVE entries in the NVD with external refer-
ences to Git commit links. (2) We crawled other references and extracted page publication dates to estimate public disclosure dates. (3) We crawled the
Git commit links to identify and clone the corresponding Git source code repositories, and collected security fixes using the commit hashes in the links. (4)
We also used the Git repositories to select general bug fixes.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 15

SECURITY
A Large-Scale Empirical Study of Security Patches

In total, we retrieved 4,080 commits across 682 unique Git
repositories, tied to 3,094 CVEs. Note that these repositories are
distinct, as we de-duplicated mirrored versions. By manually
investigating 100 randomly sampled commits, we found that all
commits reflect fixes for the corresponding vulnerabilities, indi-
cating the vast majority, if not all, of our commits are security
patches. This data set corresponds to a variety of vulnerability
types and severities, affecting an expansive range of products
(from OS distributions to applications to libraries), detailed in [3].

Identifying General Bug Fixes
We can gain insights into any especially distinct characteristics
of security patches by comparing them to bug fixes in general.
However, to do so at scale we must automatically identify bug
fixes. We tackled this problem using a logistic regression that
models the character n-grams in Git commit messages to iden-
tify likely bug fix commits. We discuss the details of our classi-
fier training and evaluation in [3].

With our classifier, we collected a data set of bug fixes by
randomly selecting per repository up to 10 commits classified
as bug fixes. This provided us with a large set of over 6,000 bug
fixes (similar to our number of security fixes) balanced across
repositories.

Processing Commits
In a patch, it can be useful to consider only changes to functional
source code, rather than documentation files or source code
comments. For each commit that we collected (both security and
general bug fixes), we processed the commit data to produce an
alternative “cleaned” version that filtered non-source code files
and removed comments.

Estimating Vulnerability Public Disclosure Dates
Determining the public disclosure date of a vulnerability is vital
to understanding the timeline of its life cycle. The CVE publi-
cation date indicates when the CVE entry was published, not
necessarily when the vulnerability was publicly disclosed. To
estimate the public disclosure date, we analyzed the external
references associated with CVEs. These web pages frequently
contain publication dates for information pertaining to vulner-
abilities. Example pages include security advisories, public mail-
ing list archives, other vulnerability database entries, and bug
reports. We chose the earliest date among the extracted dates
and the CVE publication date as our estimate.

Analysis Results
Our collected data set provides us with a unique perspective
on the development life cycle of security fixes, as well as on the
characteristics of the security patches themselves in compari-
son to general bug fixes. In this section, we discuss our more
salient analyses and findings (see [3] for additional analyses).

We first consider the patch development process by connect-
ing the vulnerability information available in the NVD with the
historical logs available in Git repositories. We follow that by
analyzing our collection of security and general bug fixes to help
illuminate their differences, considering facets such as the com-
plexity of fixes and the locality of changes. In general, to assess
whether differences observed have statistical significance, we
use permutation tests with a significance threshold of α = 0.05
(discussed in detail in [3]).

Vulnerability Life Spans in Code Bases
Upon a vulnerability’s discovery, we might naturally ask how
long it plagued a code base before a developer rectified the issue,
a duration we call the code base life span. Automatically and reli-
ably determining this life span is difficult, requiring semantic
understanding of the source code and the vulnerability. How-
ever, we can approximate a lower bound on age by determining
when the source code affected by a security fix was previously
last modified. We note that this heuristic does assume that secu-
rity fixes modify the same lines that contained insecure code.
We assessed that this is a robust approximation through manual
inspection of a random sample of security patches.

We analyzed the cleaned versions of security commit data to
focus on source code changes. For all lines of code deleted or
modified by a security commit, we retrieved the last time each
line was previously updated. We conservatively designate the
most recent change date across all of the lines as the estimated
vulnerability birth. The duration between this date and the
patch commit date provides a lower bound on the vulnerability’s
code base life span. We observe that vulnerabilities exist in code
bases for extensive durations, with a median life span of 438 days
(14.4 months). Furthermore, a third of all CVEs had life spans
beyond three years. The longest surviving vulnerability was a
21-year-old information disclosure vulnerability in Kerberos.

Security Fix Timeliness
The timeliness of a security fix relative to the vulnerability’s
public disclosure affects the remediation process and the poten-
tial impact of the security issue. On the one hand, developers
who learn of insecurities in their code bases through unan-
ticipated public announcements have to quickly react before
attackers leverage the information for exploitation. On the other
hand, developers who learn of a security bug through private
channels can address the issue before public disclosure, but may
not release the available patch for some time due to a project’s
release cycle, expanding the vulnerability’s window of exposure.

We explore this facet of remediation by comparing the patch
commit date for CVEs in our data set with public disclosure
dates (estimated as described in “Data Collection Methodology,”
above).

16  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
A Large-Scale Empirical Study of Security Patches

How frequently are vulnerabilities unpatched when dis-
closed? We observe that 21% of all vulnerabilities were not fixed
at the time of public disclosure. We cannot determine whether
these vulnerabilities were privately reported to project develop-
ers but with no prior action taken, or disclosed without any prior
notice. However, a quarter (26%) of these unpatched security
issues remained unaddressed 30 days after disclosure, leaving a
window wide open for attacker exploitation.

For the remaining 79% of all CVEs, project developers commit-
ted the security fixes by public disclosure time. This suggests
that the majority of vulnerabilities were either internally discov-
ered or disclosed to project developers using private channels,
the expected best practice.

Are vulnerability patches publicly visible long before dis-
closure? The degree to which security commits precede disclo-
sures varies widely. This behavior highlights the security impact
of an interesting aspect of the open-source ecosystem. Given the
public nature of open-source projects and their development, an
attacker targeting a specific software project can feasibly track
security patches and the vulnerabilities they address.

While the vulnerability is remedied in the project repository, it
is unlikely to be widely fixed in the wild before public disclosure
and update distribution. We note that over 50% of CVEs were
patched more than two weeks before public disclosure, giving
attackers ample time to develop and deploy exploits.

Patch Reliability
The patch that a developer creates to address a vulnerability may
unfortunately disrupt existing code functionality or introduce
new errors. Beyond the direct problems that arise from such
patches, end-user trust in generally applying patches (or in the
software itself) can erode. To assess how successful developers
are at producing reliable and safe security fixes, we identified
instances of multiple commits for the same CVE, and classified
the causes.

To locate CVEs associated with multiple commits where a sub-
sequent commit may fix a previous one, we found CVEs listed
in the NVD with multiple commits. Additionally, we attempted
to identify further commits potentially associated with a CVE
using repository Git logs, looking for commit messages that
explicitly reference the original patch’s commit hash or the CVE
ID. Note that with this approach, we could only identify multiple
patches when commit messages contained this explicit linkage,
so our analysis provides a lower bound.

Filtering out duplicate commits (e.g., merges, rebases, and
cherry-picks) as well as CVEs where all commits were within a
24-hour time window (thus even if there was a problem, it was
quickly resolved), we found 440 CVEs with multiple commits.

We randomly sampled 50 of the remaining 440 CVEs and manu-
ally investigated whether the fixes were problematic. Table
1 summarizes our results. We identified 26 (52%) as having
incomplete fixes, requiring a later patch to complete the job. We
labeled 17 (34%) as regressive, as they introduced new errors that
required a later commit to address. Other follow-on commits
were benign, such as commits for documentation, testing, or
refactoring. Note that some CVEs had multiple commits in mul-
tiple categories, resulting in the sum of CVEs in each category
exceeding 100%. Problematic initial patches were followed by
a median of one additional commit, with a median of 181.5 days
and 33 days between commits for incomplete and regressive
patches, respectively.

This random sample is representative of the 440 CVEs with
multiple commits accounting for 14.2% of all CVEs. Extrapolat-
ing from the sample to all CVEs, we estimate that about 7% of
all security fixes may be incomplete, and about 5% regressive.
These findings indicate that broken patches occur with unfor-
tunate frequency, and applying security patches comes with
non-negligible risks. In addition, these numbers have a skew
towards underestimation: we may not have identified all existing
problematic patches, and recent patches in our data set might
not have had enough time yet to manifest as ultimately requiring
multiple commits.

Patch Complexity
How complex are security patches compared to bug fixes in
general? Given the number and diversity of software projects
we consider, we chose lines of code (LOC) as a simple-albeit-
rudimentary metric.

Are security patches smaller than general bug fixes?
Under the LOC metric, security commits overall are statisti-
cally significantly smaller than bug patches in general (p ≈ 0).
The median security commit diff involved 7 LOC compared
to 16 LOC for general bug fixes. Approximately 20% of general
bug patches had diffs with over 100 lines changed, while this
occurred in only 6% of security commits.

CVE
Commits
Label

Num. CVEs
Median Num.
Follow-on
Commits

Median Fix
Interarrival
Time (days)

Incomplete 26 (52%) 1.0 181.5

Regressive 17 (34%) 1.0 33.0

Benign 14 (28%) 1.5 118.5

Table 1: Summary of our manual investigation into 50 randomly sampled
CVEs with multiple commits. Note that a CVE may have commits in
multiple categories.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 17

SECURITY
A Large-Scale Empirical Study of Security Patches

Do security patches make fewer “logical” changes than gen-
eral bug fixes? As an alternative to our raw LOC metric, we can
group consecutive lines changed by a commit as a single “logical”
change. Under this definition, we consider several lines updated
as a single logical update, and a chunk of deleted code counts
as a single logical delete. Across all logical actions, we observe
that security commits involve significantly fewer changes (all p
< 0.01). Nearly 78% of security commits did not delete any code,
compared to 66% of general bug-fix commits. Between 30%
and 40% of all commits for both security and general bug-fix
commits also did not add any new code portions, indicating the
majority of logical changes were updates to existing code.

Do security patches change code base sizes less than gen-
eral bug fixes? Another metric for a patch’s complexity is its
impact on the code base size. The net number of lines changed
by a commit reflects the growth or decline in the associated
code base’s size. We observe that significantly more general bug
patches result in a net reduction in project LOC, compared to
security fixes: 18% of general bug fixes reduced code base sizes
compared to 9% of security patches. For all commits, approxi-
mately a quarter resulted in no net change in project LOC, which
commonly occurs when lines are only updated. Overall, projects
are more likely to grow in size with commits, since the major-
ity of all commits added to the code base. However, security
commits tend to contribute less growth compared to general bug
fixes, an observation that accords with our earlier results.

Patch Locality
Finally, we can quantify the impact of a patch by its locality. We
consider two metrics: the number of files affected and the num-
ber of functions affected.

Do security patches affect fewer source code files than gen-
eral bug fixes? We observe that security patches modify fewer
files compared to bug fixes in general, a statistically signifi-
cant observation (p ≈ 0). In aggregate, 70% of security patches
affected one file, while 55% of general bug patches were equiva-
lently localized. Fixes typically updated, rather than created
or deleted, files (mirroring code changes, which were typically
updates). Only 4% of security fixes created new files vs. 13% of
general bug fixes, and only 0.5% of security patches deleted files
vs. 4% of general bug fixes.

Do security patches affect fewer functions than general bug
fixes? We find that 5% of general bug fixes affected only global
code outside of function boundaries, compared to 1% of security
patches. Overall, we observe a similar trend as with the number
of affected files. Security patches are significantly (p ≈ 0) more
localized across functions: 59% of security changes resided in a
single function compared to 42% of other bug fixes.

Moving Forward
In this study, we have conducted a large-scale empirical analysis
of security patches across over 650 projects. Here we discuss
the main takeaways, highlighting the primary results developed
(summarized in Table 2) and their implications for the security
community moving forward.

Need for more extensive or effective code testing and audit-
ing processes for open-source projects. Our results show that
vulnerabilities live for years and their patches are sometimes
problematic. These findings indicate that the software develop-
ment and testing process, at least for open-source projects, is not
adequate at quickly detecting and properly addressing security
issues. A natural avenue for future work is to develop more
effective testing processes, particularly considering usability,
as developers are unlikely to leverage methods that prove dif-
ficult to deploy or challenging to interpret. In addition, software
developers can already make strides in improving their testing
processes by using existing tools such as sanitizers or fuzzers
more extensively.

The transparency of open-source projects makes them ripe for
such testing not only by the developers, but by external research-
ers and auditors as well. Community-driven efforts, such as
those supported by the Core Infrastructure Initiative [1], have
already demonstrated that they can significantly improve the
security of open-source software. Further support of such
efforts, and more engagement between various project contribu-
tors and external researchers, can help better secure the open-
source ecosystem.

Aspect of Security
Patches Summary of Results

Vulnerability Life Spans
Vulnerabilities often lived for
years, with a third for more than
three years.

Security Fix Timeliness

A fifth of vulnerabilities were not
fixed at public disclosure time.
When fixed before disclosure, the
patches were visible in repositories
weeks to months in advance.

Patch Reliability
We conservatively estimate that
about 7% of security patches were
incomplete and 5% regressive.

Patch Complexity
Security patches were significantly
smaller than bug fixes in general.

Patch Locality
Security patches were more
localized in their changes than
general bug fixes.

Table 2: Summary of main analysis results.

18  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
A Large-Scale Empirical Study of Security Patches

Need for refined bug reporting and public disclosure
processes for open-source projects. Our analysis of the
timeliness of security fixes revealed that they are poorly timed
with vulnerability public disclosures. Over 20% of CVEs were
unpatched when they were first announced, perhaps sometimes
to the surprise of project developers.

In the opposite direction, we discovered that when security
issues are reported or discovered privately and fixed, the remedy
is not immediately distributed and divulged, likely due to soft-
ware release cycles. Over a third of fixed vulnerabilities were
not publicly disclosed for more than a month. While operating
in silence may help limit to a small degree the dissemination of
information about the vulnerability, it also forestalls inform-
ing affected parties and spurring them to remediate. Given the
transparency of open-source projects, attackers may be able to
leverage this behavior by tracking the security commits of target
software projects. From the public visibility into these commits,
attackers can identify and weaponize the underlying vulner-
abilities. The issue of vulnerability disclosure and embargoing
of information is a complex debate, but the visibility of the patch
itself should be part of that discussion.

Opportunities for leveraging characteristics of security
patches. Our comparison of security patches with general bug
fixes revealed that security fixes have a smaller impact on code
bases, across various metrics. They involve fewer lines of code,
fewer logical changes, and are more localized in their changes.
This has implications along various patch analysis dimensions,
such as patch safety analysis. Tying back to broken patches,
the lower complexity of security patches can perhaps be lever-
aged for safety analysis customized for evaluating just security
fixes. Also, as these remedies involve fewer changes, automatic
patching systems may operate more successfully if targeting
security bugs. Zhong and Su [8] observed that general patches
are frequently too complex or too delocalized to be amenable to
automatic generation. However, security patches may be small
and localized enough. From a usability angle, we may addition-
ally be able to better inform end users of the potential impact of
a security update, given its smaller and more localized changes.
The need for more exploration into the verification and auto-
mated generation of security patches is quite salient as our abil-
ity to respond to security vulnerabilities still heavily depends
on patching, while the attack landscape has grown ever more
dangerous.

Acknowledgements
This work was supported in part by the National Science Foun-
dation awards CNS-1237265 and CNS-1518921.

References
[1] Core Infrastructure Initiative: https://www
.coreinfrastructure.org.

[2] Z. Huang, M. D’Angelo, D. Miyani, and D. Lie, “Talos:
Neutralizing Vulnerabilities with Security Workarounds for
Rapid Response,” in Proceedings of the 37th I-EEE Symposium
on Security and Privacy (S&P ’16): https://www.eecg.toronto
.edu/~lie/papers/zhuang_talos_oakland2016.pdf.

[3] F. Li and V. Paxson, “A Large-Scale Empirical Study of
Security Patches,” in Proceedings of the 24th ACM Conference
on Computer and Communications Security (CCS ’17): https://
www.icir.org/vern/papers/patch-study.ccs17.pdf.

[4] A. Ozment and S. E. Schechter, “Milk or Wine: Does Soft -
-ware Security Improve with Age?” in Proceedings of the 15th
USENIX Security Symposium (Security ’06): https://www
.usenix.org/legacy/event/sec06/tech/full_papers/ozment
/ozment.pdf.

[5] J. Park, M. Kim, B. Ray, and D. Bae, “An Empirical Study of
Supplementary Bug Fixes,” in Proceedings of the 9th Work-
ing Conference on Mining Software Repositories (MSR ’12):
https://web.cs.ucla.edu/~miryung/Publications/msr2012
-supplementarypatch.pdf.

[6] US National Institute of Standards and Technology, National
Vulnerability Database: https://nvd.nist.gov/home.cfm.

[7] S. Zaman, B. Adams, and A. E. Hassan, “Security Versus
Performance Bugs: A Case Study on Firefox,” in Proceedings of
the 8th Working Conference on Mining Software Repositories
(MSR ’11): https://citeseerx.ist.psu.edu/viewdoc/download
?doi=10.1.1.740.4377&rep=rep1&type=pdf.

[8] H. Zhong and Z. Su, “An Empirical Study on Real Bug Fixes,”
in Proceedings of the 37th International Conference on Soft-
ware Engineering (ICSE ’15): https://web.cs.ucdavis.edu/~su
/publications/icse15-bugstudy.pdf.

https://www.coreinfrastructure.org
https://www.coreinfrastructure.org
https://www.eecg.toronto.edu/~lie/papers/zhuang_talos_oakland2016.pdf
https://www.eecg.toronto.edu/~lie/papers/zhuang_talos_oakland2016.pdf
https://www.icir.org/vern/papers/patch-study.ccs17.pdf
https://www.icir.org/vern/papers/patch-study.ccs17.pdf
https://www.usenix.org/legacy/event/sec06/tech/full_papers/ozment/ozment.pdf
https://www.usenix.org/legacy/event/sec06/tech/full_papers/ozment/ozment.pdf
https://www.usenix.org/legacy/event/sec06/tech/full_papers/ozment/ozment.pdf
https://web.cs.ucla.edu/~miryung/Publications/msr2012-supplementarypatch.pdf
https://web.cs.ucla.edu/~miryung/Publications/msr2012-supplementarypatch.pdf
https://nvd.nist.gov/home.cfm
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.4377&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.740.4377&rep=rep1&type=pdf
https://web.cs.ucdavis.edu/~su/publications/icse15-bugstudy.pdf
https://web.cs.ucdavis.edu/~su/publications/icse15-bugstudy.pdf

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 19

SECURITY

Secure Client and Server Geolocation over
the Internet
A B D E L R A H M A N A B D O U , P A U L C . V A N O O R S C H O T

W e provide a summary of recent efforts towards achieving Internet
geolocation securely, that is, without allowing the entity being
geolocated to cheat about its own geographic location. Cheating

motivations arise from many factors, including impersonation (if locations
are used to reinforce authentication) and gaining location-dependent bene-
fits. In particular, we provide a technical overview of Client Presence Verifi-
cation (CPV) and Server Location Verification (SLV)—two recently proposed
techniques designed to verify the geographic locations of clients and serv-
ers in real time over the Internet. Each technique addresses a wide range of
adversarial tactics to manipulate geolocation, including the use of IP-hiding
technologies like VPNs and anonymizers, as we now explain.

Internet geolocation is the process of determining the geographic location of an Internet-
connected device. Secure geolocating of a web client (a client visiting a website) is useful for
location-aware authentication, location-aware access control, location-based online voting,
location-based social networking, and fraud reduction. From the client’s perspective, geo-
locating the remote server can provide higher assurance to the server’s identity, and justify
conducting certain sensitive transactions—for example, those requiring certain privacy
measures or requiring data sovereignty [1]. Independent of server and client geolocation,
geolocating network intermediate systems (e.g., routers) can also be useful for monitoring [2]
and network mapping [3].

Both CPV and SLV are based on network measurements, where delays are measured from
trusted network nodes dubbed verifiers and are analyzed in real time to verify physical pres-
ence inside a prescribed geographic region. We explain the threat model of both techniques,
how they militate against known adversarial tactics, how they adapt to various network
dynamics, and what distinguishes them from other geolocation approaches.

Geolocation Background
Many academic geolocation methods have been proposed, but there has been very limited
deployment in practice. As of this writing, most of the geolocation conducted in practice
relies on the clients’ IP address or GPS coordinates of hand-held devices, as explained below.

Geolocation in Practice
There are several methods for device geolocation over the Internet. If the device belongs to
a user that is acting as a web client (i.e., visiting a website), the Geolocation API is a W3C
standard that enables browsers to obtain location information of the device they are running
on and communicate it to a webserver. Servers request location coordinates using JavaScript
as follows:

AbdelRahman Abdou is a
Postdoctoral Researcher in
the Department of Computer
Science at ETH Zurich. He
received his PhD (2015) in

systems and computer engineering from
Carleton University. His research interests
include location-aware security, SDN security,
and using Internet measurements to solve
problems related to Internet security.
abdoua@inf.ethz.ch

Paul C. van Oorschot is a
Professor of Computer Science
at Carleton University, and
the Canada Research Chair in
Authentication and Computer

Security. He was the program chair of USENIX
Security 2008, NDSS 2001–2002, and NSPW
2014–2015; a co-author of the Handbook of
Applied Cryptography; and a past Associate
Editor of IEEE TDSC, IEEE TIFS, and ACM TISSEC.
He is an ACM Fellow and Fellow of the Royal
Society of Canada. His research interests
include authentication and Internet security.
paulv@scs.carleton.ca

20  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
Secure Client and Server Geolocation over the Internet

if(navigator.geolocation) {

 navigator.geolocation.getCurrentPosition(success, error,

geoOptions);

 } else {

 console.log(“Geolocation is not supported on this

browser.”);

}

The geolocation methods a browser uses are left to the browser
vendor’s discretion. Most major browsers rely on the following
in varying orders (that is, when one fails, the next is tried): GPS,
WiFi Positioning System (WPS), IP address-based location
lookups, or cell-tower triangulation of mobile devices. The loca-
tion of an IP address can be obtained from publicly available
routing information or public registries, such as whois. Many
IP location service providers (commercial and free) maintain
lookup tables to instantly map IP addresses to locations. Such
static tabulation methods may take long times to reflect changes
or IP address reassignments, which occur quite often for client
geolocation to be up-to-date (studies were conducted to confirm
this [4]). IP address-based geolocation can, however, be reliable
for benign server geolocation. Flagfox is an example Firefox
extension that visually indicates a flag of the country corre-
sponding to the IP address resolution of the URL (Figure 1).

From a security perspective, none of the above techniques is
resilient to adversarial manipulation. When the geolocation
API is in use, the server normally makes no effort in geolocat-
ing the client device; it rather trusts the browser-communicated
coordinates, which can easily be forged on the fly before being
sent to the server. Firefox extensions that enable forgery include
Fake Location (Figure 2) and Location Guard; both enable a user
to specify where in the world they would like to appear to be. If
the server relies on tabulation methods to geolocate the client
(instead of asking the browser for its coordinates), the common
practice of clients hiding their own IP addresses behind proxies
and anonymizers comes into play.

Geolocation in the Literature
A wide set of techniques can be used, mostly for a server to
geolocate clients [5]. These enable a server to infer a client’s
geographic location from hints obtained from browser-generated
HTTP headers such as preferred language or time zone. Loca-

tions can also be obtained through crowd-sourcing by interpo-
lating a device’s location from its proximity to nearby devices,
like phones or WiFi access points (APs), with known GPS
locations.

Another class of Internet geolocation approaches is based on
network measurements. Similar to GPS triangulations that are
based on the delays between the receiver and satellites, mea-
surement-based techniques also aim to locate devices (clients or
server) by estimating their distance from landmarks in the net-
work with known locations. These landmarks measure network
delays from themselves to the device, typically identified by its
IP address, and map these delays to geographic distances. The
accuracy of such mapping, however, is not anywhere near that
of mapping satellite delays to distances, and is thus the primary
source of inaccuracies in such techniques. Still, measurement-
based geolocation is generally considered more accurate than
methods like tabulation-based geolocation.

From the security point of view, although most of the above
methods are positioned as resilient to evasion, examination
has shown otherwise. Delay-increasing attacks can allow an
adversary to distort its perceived location [6]. Delay-decreasing
was also studied, for example, by manipulating ICMP “ping”
and “traceroute” as they fail to preserve the integrity of timing
measurements.

Figure 1 [a-c]: Snapshots of the Flagfox browser extension

Figure 2: Snapshots of the Fake Location extension—an example browser
extension allowing users to fake their locations

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 21

SECURITY
Secure Client and Server Geolocation over the Internet

Combining both attacks, an adversary can forge the calculated
location to an accuracy of a few tens of kilometers relative to a
target desired location [7].

Client Presence Verification—CPV
CPV [8] is a measurement-based technique designed to verify
the geographic locations of web users (clients) over the Inter-
net. The client is assumed to be motivated to misrepresent its
location to gain location-dependent benefits. CPV’s design takes
into consideration various adversarial location-forging tactics,
including delay manipulations and IP-hiding technologies like
VPNs and anonymizers. CPV does not rely fundamentally on the
clients’ IP addresses, nor does it determine geographic locations.
Rather, it verifies an asserted (unverified) location, typically
made by a client. The client’s location could be asserted using the
client’s GPS coordinates, the client’s IP address, or even explic-
itly asking the user to fill-in their street address in an online
form during login.

To verify location assertions, CPV relies on an infrastructure of
geographically scattered nodes, dubbed verifiers. The technique
works as follows. When a client visits a website and asserts the
geographic location from which he/she is currently browsing,
three verifiers surrounding the asserted location are selected.
The verifiers measure (in real time) network delays between
themselves and the client’s browser, and analyze these delays
to corroborate that the client is present somewhere inside the
triangle determined by their (the verifiers’) geographic locations.
Because the verifiers cannot pinpoint where exactly the client
is within the triangle, the size of the triangle is the verification
granularity.

Secure One-Way Delay Estimation
The verifiers do not measure round-trip times (RTT) between
themselves and the client. Rather, they estimate the smaller of
the forward and reverse one-way delays (OWDs) between each
of them and the client. The larger OWD is discarded because
propagation delays between two network nodes are bounded by
the physical distance between them, so a smaller OWD mea-
surement is a better representation to the geographic distance
between both nodes than the larger—the larger must have been
affected by other factors such as network congestion or circu-
itous routing.

To measure the OWD between a verifier and the client, CPV does not
rely on standard OWD-estimation protocols like OWAMP (RFC
4656), as those require honest client cooperation: for example,
client clock synchronization and honest reporting of delays. As
such, CPV relies on the minimum-pairs (MP) protocol [9]. MP
requires the three verifiers, A, B, and C, to first synchronize
their clocks and pre-share cryptographic keys to ensure opera-
tional integrity.

Through JavaScript, the client’s browser is first directed to
establish a WebSocket (RFC 6455) connection to the three veri-
fiers, which are chosen based on the client’s asserted location.
Verifier A begins by sending a cryptographically protected time-
stamp (in millisecond precision) to the client, which the browser
forwards to the other two verifiers. On receiving this, verifier
B calculates the propagation time from A → client → B, and like-
wise when the timestamp is received by C. Verifiers B and C then
follow suit, taking turns in sending timestamps. When all three
verifiers are done exchanging timestamp messages, they will
have six delay values as follows:

• A→ client → B

• A→ client → C

• B→ client → A

• B→ client → C

• C→ client → A

• C→ client → B

Between each pair of verifiers, e.g., between {A → client → B}
and {B → client → A}, the verifiers exclude the larger OWD and
solve a system of three equations simultaneously for an estimate
to the smaller OWD between the client and each verifier. That
is, if the smaller of the forward and reverse OWD between the
client and A, B, and C, respectively, is a, b, c, then (note: = sign
here is used to indicate mathematical equality rather than an
assignment operator):

• a + b = min(AtB, BtA)

• a + c = min(AtC, CtA)

• b + c = min(BtC, CtB)

where AtB is the delay A → client → B, and so on. Analysis of
MP’s accuracy showed that the protocol is likely to provide more
accurate estimates to the smaller OWD than simply using half
the RTT [9].

Corroborating Presence Inside the Triangle
In order to avoid potential inaccuracies from delay-to-distance
mapping, the calculated OWDs are not mapped to distances.
Rather, they are compared to the smaller OWDs between the
verifiers themselves, which are measured and updated periodi-
cally in a background process, independent of whether or not a
client is currently being verified. Assuming x = min(AB, BA) is
the smaller of the forward and reverse OWDs between verifiers
A and B directly (not to be confused with min(AtB, BtA) from the
previous section), and likewise y = min(BC, CB) and z = min(AC,
CA), then the client’s asserted location is accepted as inside the
triangle if:

area(Δxab)+area(Δybc)+area(Δzca) ≤ area(Δxyz) + ϵ

such that area (Δxab) is the area of that triangle calculated from
its side lengths x, a, and b. The value of ϵ is used to account for

22  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
Secure Client and Server Geolocation over the Internet

the two extra access network traversals occurring at the client
when the timestamps propagate from a verifier to the client to
another verifier.

Iterative Delay Measurement
To account for abrupt delay spikes or network irregularities,
the above process of OWD calculations and comparison with
those between the verifiers is iteratively repeated n times. If the
condition is met for the majority of the conducted iterations, the
location assertion is accepted.

CPV Calibration
There are several parameters that tune CPV’s reaction to events.
The most important three are ϵ, n, which is the number of delay
measurement iterations, and τ, which is the fraction of those
iterations that must pass if the condition is met for the client’s
asserted location to be accepted. This calibration should take
place before the location verification process begins. To do that,
the three verifiers may use network nodes that they know as a
ground truth to be inside the triangle. From the network delays
of these nodes, the verifiers compute values for the above-men-
tioned three parameters and then run CPV to verify a client’s
location.

Hindering Illicit Traffic Relaying
In an attempt to defeat geolocation, a middlebox (like a proxy
server or a VPN gateway) that is physically inside the triangle
can be specifically customized to filter out the verifiers’ time-
stamps from the client’s traffic and forward them to the verifiers
on behalf of the client. This threat against CPV is exacerbated
by the presence of numerous cheap public VPN providers whose
primary service is to enable subscribers to evade geolocation
technologies.

Techniques like CPV can mitigate this by adapting known proof-
of-work techniques [10]. The verifiers generate a cryptographic
client puzzle with each timestamp message, which the client’s
browser must solve before forwarding the message (puzzle solu-
tion and timestamp) to the other two verifiers. The puzzles must
be easy to solve so that they do not (1) overwhelm the client with
high processing costs and (2) overshadow the network propaga-
tion delays. In the case of a middlebox connected to many simul-
taneously cheating clients, the middlebox will choose to either
solve these puzzles on behalf of the clients or forward them to
the clients. In the latter case, the network delay between the
middlebox and the client will get added to the time the verifiers
observe for location verification, which results in CPV correctly
detecting the client’s absence from the respective triangle. It is
thus in the middlebox’s interest to choose the former case—solv-
ing the puzzles on behalf of the clients. However, this means that
as more clients are connected, the middlebox will have to solve
more puzzles. When these puzzles begin to accumulate, they

will increase queueing delays, which contribute to the delays
observed by the verifiers, eventually causing CPV to reject the
location assertions of all middlebox-connected clients.

In this model, there are two main parameters contributing to the
puzzle queueing rate at the middlebox: the puzzle difficulty and
the middlebox’s computational resources. Queueing analysis [10]
shows that the puzzle difficulty has a higher impact on the rate
of puzzle queueing than the middlebox’s computational power.
This analysis suggests that this puzzle mechanism will effec-
tively hinder illicit middlebox relaying.

Evaluation Results
CPV was evaluated using PlanetLab—a distributed testbed for
Internet measurement research and network experiments—
using 80 PlanetLab nodes in North America. Three of the nodes
were selected to act as verifiers, and the remaining 77 acted as
clients. Some of the 77 nodes were inside the triangle and oth-
ers were outside. All 77 nodes carried out the protocol with the
verifiers simultaneously to get their locations verified. Knowing
the ground-truth of which nodes were inside and which were
outside (the geographic locations of PlanetLab nodes are publicly
disclosed on PlanetLab’s website), we could count the number
of false rejects, nodes inside the triangle identified by CPV as
outside, and false accepts. The process is repeated after choos-
ing a different triangle, a different set of three nodes to act as
verifiers, again counting false rejects and false accepts. In total,
34 triangles where chosen. Triangles were chosen to be nearly
equilateral (physically), with inside angles ranging from 50–70
degrees (0.87–1.22 radians). The smallest triangle had an area
equivalent to a circle of radius 100 km, and the largest of 400 km.

When the inside nodes were not too close to the triangle’s sides,
that is, away from the closest side by at least 10% of its length,
CPV resulted in a total of 1.0% false accepts and 2.0% false
rejects [8]. These results were obtained when n = 600 CPV
iterations were performed with each client. The results were not
much different when only 100 iterations were performed, where
the false accept rate increased only to 1.1% and the false reject
rate remained unchanged. However, when only 10 iterations
were performed, false accepts and false rejects were at 2.1% and
4.1%, respectively.

Testing was later repeated to assess the effect of WiFi access
networks on CPV’s efficacy [11]. WiFi access networks often
have higher delays and delay jitters. A different evaluation
technique was used, as the PlanetLab infrastructure used
above involved nodes connected using wired access networks.
To model WiFi clients, 802.11 delay models from the literature
were used to generate the last-mile delays, which were added to
the delay traces collected from PlanetLab. Since higher network
delays for nodes inside the triangles may result in higher false
rejects, the generated 802.11 delays were only added to the delays

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 23

SECURITY
Secure Client and Server Geolocation over the Internet

of inside nodes to create the most stressful testing situation.
802.11 networks employ slotted retransmissions. The delays
were generated such that each slot was 20 µsec, the propagation
delay from the device to the wireless gateway was 1 µsec, and the
four other wireless devices were continuously competing for the
wireless media along with each wireless CPV client. With these
parameters, CPV’s false accepts were at 2% and false rejects at
4%. Although CPV’s efficacy was affected by the WiFi access
network, increasing the number of iterations can improve the
results (see [11]).

Live Demo
A live demo of CPV is currently running on http://cpv.ccsl
.carleton.ca. This link hits a webserver in Ottawa, Canada,
which enables clients to verify whether they are present inside
a US-based triangle determined by verifiers in San Francisco,
Las Vegas, and San Diego. The verifiers are provided by host-
ing services DigitalOcean, ServerPoint, and M5 Hosting. Each
VM has a 500 MB RAM and runs Ubuntu 16.04. NTP is used to
synchronize their clocks. Additionally, each verifier issues an
NTP query every 30 minutes using the “ntpq” utility to calculate
the clock offset with the other two verifiers, which is added to
the calculated OWDs between the verifiers for more accurate
OWD estimates. Each verifier issues a timestamp to the other
two verifiers every six seconds for direct OWD measurements
between the verifiers.

A Java implementation of a CPV verifier runs on top of a light-
weight custom-written WebSocket server, which is also imple-
mented in Java. When a location verification request is initiated,
the verifiers first check that it was issued from the authentic
server (the one based in Ottawa in that demo implementation),
because this server digitally signs connection IDs when they
are issued. Additionally, each exchanged timestamp message
between the verifiers through the client is corroborated using
an MD5-based HMAC (a stronger HMAC is recommended to be
used in practice). For the currently running demo, eight delay-
measuring iterations are performed, once every 300 ms. When
all iterations are performed, the verifiers send the measured
delays back to the Ottawa server, which processes the result and
returns it to the browser as a jQuery response.

No client puzzles are implemented yet in this demo as of this
writing, nor is any automatic calibration of CPV’s parameters.
Instead, the main server has manually set parameters of ϵ = 10
ms and τ = 0.7, which are static and used across all clients.

Server Location Verification (SLV)
Analogous to CPV but on the server side, SLV [12] works by find-
ing evidence of a server’s physical presence inside a geographic
region by measuring the server’s network delays. A browser typi-
cally communicates with an SLV Manager, which orchestrates

a network of server location verifiers. The challenges faced in
doing so are quite different from verifying clients: (1) clients do
not normally have the ability to write and run code on the server,
whereas that was easily achievable by the server on the client,
typically using JavaScript; (2) the common physical distribu-
tion of web content using content distribution networks (CDNs)
and replication technologies begs the questions: Of the multiple
physical servers that may serve client content, which such serv-
ers should be selected to geographically locate (verify) in order to
provide a useful server-authentication service? How should that
machine be identified?

The answers to these questions depend on the threat model and
the application for which geolocation is to be used. Since the goal
of SLV is to reinforce server authentication, the implementation
of SLV takes the view that the first machine that terminates the
client’s TCP (and TLS) handshake is the most critical one. The
protection provided from verifying that first machine would
be comparable to that provided by TLS in the cases where the
browser fetches content from multiple machines, some of which
are not TLS-protected: for example, a page with mixed content.

For deciding on the mechanism used to identify machines, it is
important to dissect man-in-the-middle (MITM) and server
impersonation attacks. In MITM attacks, an adversary hijacks
network traffic intended for the authentic server and relays it
to the authentic server with or without modification. Hijacking
could occur on several layers of the network stack as follows.
(Note that using uncompromised TLS protects against the
following hijacking cases; the value of using server location to
reinforce server authentication is more profound for non-TLS-
enabled websites or to catch attacks against the TLS system.)

◆◆ Case 1: Attacker’s machine has a different IP address than
the authentic server. In upper layers, phishing and pharming
attacks are prominent traffic hijacking examples; the outbound
traffic from the client has a different IP address from that of the
authentic server. If the browser submits the domain name of
the visited website to the SLV Manager, the Manager may re-
solve it to a different IP address from that seen by the browser
(which could also occur benignly in the cases of CDNs). Verify-
ing the geographic location of that IP address then becomes
useless to the browser because a MITM adversary would go
undetected. It is thus important to have the browser resolve a
domain and submit the IP address to the SLV Manager.

◆◆ Case 2: Attacker’s machine has same IP address as au-
thentic server. In a lower layer hijacking, such as MAC table
poisoning, ARP spoofing, and BGP spoofing, outbound traffic
from the client has the same destination IP address as that of
the authentic server. Such tactics are based on routing manipu-
lation, so that traffic intended to the authentic server’s IP ad-
dress reaches a different network location (versus geographic
location), which corresponds to the attacker’s machine.

24  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

SECURITY
Secure Client and Server Geolocation over the Internet

In comparison to upper layers, lower layer hijacking attacks
tend to be more scalable, affecting a larger proportion of clients.
For MAC table poisoning and ARP spoofing, the closer the
attacker’s machine is to the authentic server’s network, the more
the affected clients. Likewise, BGP spoofing can cause traffic
hijacking at a global scale [13]. This implies that as with higher
layer traffic hijacking attacks (discussed above), identifying the
server by its IP address will likely allow the SLV Manager to
detect whether the browser-intended machine is at a different
geographic location from that asserted through a static location
mapping previously obtained for that IP address.

Revisiting the above questions, if SLV targets the IP address
as resolved by the browser of the first machine that the client
initially handshakes, regardless of whether the browser will be
instructed to fetch other content from different places later in
the session, it can detect most of the above server impersonation
attacks.

Verification Mechanism
After obtaining an unverified server location assertion, three
verifiers surrounding that location are selected. The veri-
fiers measure network RTTs to the server over several layers,
including an application using HTTP request-response times
and transport using TCP handshake responses. By means of
comparing these delays with the delays between the verifiers,
each pair of verifiers then verify whether the server is physically
present inside the circle whose diameter is the physical distance
between the verifier pair, and whose center is the midpoint
between them (Figure 3).

Evaluation Results
Pilot testing of ∼200 experiments was conducted on SLV using
PlanetLab, half of which were true location assertions made by
servers and the other half were false assertions. As with CPV,
the rates of false rejects and false accepts were the fundamental
evaluation parameters. SLV resulted in 0% false accepts and
2.4% false rejects [12]. Although the false reject rate may seem
high for some applications, it can be improved by proper selec-
tion of verifiers, those with sufficient network bandwidth and
processing resources.

SLV Browser Extension
We have built a Firefox browser extension to reinforce TLS
by integrating the webserver’s verified physical location, as
described above, into the server authentication process. The
extension sends the IP address of the server to the SLV Manager
and receives the location verification result. The extension uses
FlagFox to obtain an unverified assertion for the server’s loca-
tion. It also displays a flag in the URL (Figure 1) and a green tick
mark or a red cross indicating whether the location asserted by
FlagFox is true (according to SLV’s verification) or not. This pro-

cess takes a few seconds to execute, during which a throbber is
displayed by the flag instead. Note that such visual cues are only
meant as visual feedback in prototypes and are not an indica-
tion that we would expect end-users to base decisions upon. See
below for how policies could be implemented to automatically
make decisions on behalf of users.

Server Location Pinning in the Browser.
To avoid having the user interpret visual icons, the SLV exten-
sion is supported with a location pinning feature, whereby a
browser saves the fact that a website identified by its URL was
previously verified to host content from a particular geographic
location, analogous to key pinning [14]. Although location veri-
fication is performed based on the IP address, the SLV Manager
only receives an IP address from the browser, with location pin-
ning in the browser based on the domain name. Upon receiving
the verification result for a website, its location gets pinned only
if the result is positive. This operation follows a trust on first use
(TOFU) concept.

In general, for interpreting a received verification result, the SLV
extension checks whether that location to some degree of geo-
graphic precision was pinned before for that website. The result
of the operation falls into one of three categories: Critical, Suspi-
cious, or Unsuspicious. Critical means the verification result for
a previously pinned location was negative. A Suspicious outcome
occurs when the location verification result is negative, but no
location was previously pinned for that website . Finally, an
Unsuspicious outcome is when location verification passes for a
domain that was not previously pinned. Note that these are only
meant to illustrate how a client might utilize SLV, but we expect
different applications would make different choices.

Figure 3: Server Location Verification (SLV) using network measurements
from three verifiers (A, B, and C) to a server. Please view the online ver-
sion of this article to see the figure in color. Map data: Google, INEGI.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 25

SECURITY
Secure Client and Server Geolocation over the Internet

Such outcomes could result in the browser automatically taking
decisions through a policy-based engine. An example would be
to instruct the browser to block/terminate the connection for all
Critical outcomes of the user’s personal banking website. Such
terminology is subject to more research scrutiny and is not yet
part of the above-described SLV extension.

Conclusion
This article provides a technical overview of recent advance-
ments in the field of secure geolocation over the Internet. Two
technologies, CPV and SLV, were explained to address client

and server geolocation, respectively. Both rely on network tim-
ing measurements for secure location verification, taking into
 consideration safety measures to limit adversarial manipula-
tions. Of the wide variety of applications that may benefit from
secure location information of clients and servers, reinforcing
authentication (location-aware authentication) for both ends
remains an important example. Future research on CPV and
SLV includes further enhancing their accuracy in terms of the
false reject and accept rates and their efficiency for large-scale
deployments in practice.

References
[1] Z. N. J. Peterson, M. Gondree, and R. Beverly, “A Position
Paper on Data Sovereignty: The Importance of Geolocating
Data in the Cloud,” in Proceedings of the 3rd USENIX Confer-
ence on Hot topics in Cloud Computing (HotCloud ’11): https://
www.usenix.org/legacy/event/hotcloud11/tech/final_files
/Peterson.pdf.

[2] B. Huffaker, M. Fomenkov, and k. claffy, “DRoP: DNS-Based
Router Positioning,” SIGCOMM Computer Communication
Review, vol. 44, no. 3 (2014), pp. 5–13: http://www.caida.org
/publications/papers/2014/drop/drop.pdf.

[3] A. Csoma, A. Gulyás, and L. Toka, “On Measuring the Geo-
graphic Diversity of Internet Routes,” IEEE Communications
Magazine, vol. 55, no. 5 (2017), pp. 192–197: https://arxiv.org/pdf
/1601.01116.pdf.

[4] I. Poese, S. Uhlig, M. A. Kaafar, B. Donnet, and B. Gueye, “IP
Geolocation Databases: Unreliable?” ACM SIGCOMM Com-
puter Communication Review, vol. 41, no. 2 (2011), pp. 53–56:
https://inl.info.ucl.ac.be/system/files/paper_2.pdf.

[5] J. A. Muir and P. C. van Oorschot, “Internet Geolocation:
Evasion and Counterevasion,” ACM Computing Surveys, vol. 42,
no. 1 (2009): https://www.ccsl.carleton.ca/~jamuir/papers/TR
-06-05.pdf.

[6] P. Gill, Y. Ganjali, B. Wong, and D. Lie, “Dude, Where’s That
IP?: Circumventing Measurement-Based IP Geolocation,” in
Proceedings of the 19th USENIX Conference on Security (Secu-
rity ’10), pp. 241–256: https://people.cs.umass.edu/~phillipa
/papers/UsenixSec2010.pdf.

[7] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Accurate
Manipulation of Delay-Based Internet Geolocation,” in Proceed-
ings of the ACM Asia Conference on Computer and Communica-
tions Security (ASIACCS ’17), pp. 887–898: http://people.scs
.carleton.ca/~paulv/papers/asiaccs-2017.pdf.

[8] A. Abdou, A. Matrawy, and P. C. van Oorschot, “CPV: Delay-
Based Location Verification for the Internet,” IEEE Transactions
on Dependable and Secure Computing (TDSC), vol. 14, no. 2 (2017),
pp. 130–144: https://sce.carleton.ca/~abdou/CPV_TDSC.pdf.

[9] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Accurate One-
Way Delay Estimation with Reduced Client-Trustworthiness,”
IEEE Communications Letter, vol. 19, no. 5 (2015): http://people
.scs.carleton.ca/~paulv/papers/OWD.pdf.

[10] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Taxing the
Queue: Hindering Middleboxes from Unauthorized Large-Scale
Traffic Relaying,” IEEE Communications Letter, vol. 19, no. 1
(2015): http://people.scs.carleton.ca/~paulv/papers/taxing-the
-queue.pdf.

[11] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Loca-
tion Verification of Wireless Internet Clients: Evaluation and
Improvements,” IEEE Transactions on Emerging Topics in
Computing (TETC), vol. 5, no. 4 (2017), pp. 563–575.

[12] A. Abdou and P. C. van Oorschot, “Server Location Verifi-
cation (SLV) and Server Location Pinning: Augmenting TLS
Authentication,” ACM Transactions on Privacy and Security
(TOPS), vol. 21, no. 1, (2017), pp. 1–26.

[13] R. Hiran, N. Carlsson, and P. Gill, “Characterizing
 Large-Scale Routing Anomalies: A Case Study of the China
Telecom Incident,” in International Conference on Passive and
Active Network Measurement (Springer, 2013), pp. 229–238:
https://people.cs.umass.edu/~phillipa/papers/Hiran_Pam2013
_full.pdf.

[14] M. Kranch and J. Bonneau, “Upgrading HTTPS in Mid-
Air: An Empirical Study of Strict Transport Security and Key
 Pinning,” Network and Distributed System Security Sympo-
sium, Internet Society, 2015: http://www.jbonneau.com/doc
/KB15-NDSS-hsts_pinning_survey.pdf.

https://www.usenix.org/legacy/event/hotcloud11/tech/final_files/Peterson.pdf
https://www.usenix.org/legacy/event/hotcloud11/tech/final_files/Peterson.pdf
https://www.usenix.org/legacy/event/hotcloud11/tech/final_files/Peterson.pdf
http://www.caida.org/publications/papers/2014/drop/drop.pdf
http://www.caida.org/publications/papers/2014/drop/drop.pdf
https://arxiv.org/pdf/1601.01116.pdf
https://arxiv.org/pdf/1601.01116.pdf
https://inl.info.ucl.ac.be/system/files/paper_2.pdf
https://www.ccsl.carleton.ca/~jamuir/papers/TR-06-05.pdf
https://www.ccsl.carleton.ca/~jamuir/papers/TR-06-05.pdf
https://people.cs.umass.edu/~phillipa/papers/UsenixSec2010.pdf
https://people.cs.umass.edu/~phillipa/papers/UsenixSec2010.pdf
http://people.scs.carleton.ca/~paulv/papers/asiaccs-2017.pdf
http://people.scs.carleton.ca/~paulv/papers/asiaccs-2017.pdf
https://sce.carleton.ca/~abdou/CPV_TDSC.pdf
http://people.scs.carleton.ca/~paulv/papers/OWD.pdf
http://people.scs.carleton.ca/~paulv/papers/OWD.pdf
http://people.scs.carleton.ca/~paulv/papers/taxing-the-queue.pdf
http://people.scs.carleton.ca/~paulv/papers/taxing-the-queue.pdf
https://people.cs.umass.edu/~phillipa/papers/Hiran_Pam2013_full.pdf
https://people.cs.umass.edu/~phillipa/papers/Hiran_Pam2013_full.pdf
http://www.jbonneau.com/doc/KB15-NDSS-hsts_pinning_survey.pdf
http://www.jbonneau.com/doc/KB15-NDSS-hsts_pinning_survey.pdf

26  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

PROGRAMMINGXDP-Programmable Data Path in the
Linux Kernel
D I P T A N U G O N C H O U D H U R Y

Diptanu Gon Choudhury works
on large-scale distributed
systems. His interests lie in
designing large-scale cluster
schedulers, highly available

control plane systems, and high-performance
network services. He is the author of the
upcoming O’Reilly book Scaling Microservices.
diptanuc@gmail.com

Berkeley Packet Filter was introduced almost two decades ago and has
been an important component in the networking subsystem of the
kernel for assisting with packet filtering. Extended BPF can do much

more than that and is gradually finding its way into more kernel subsystems
as a generic event-processing infrastructure. In this article, I provide enough
background to help you understand how eBPF works, then describe a simple
and fast firewall using Express Data Path (XDP) and eBPF.

Berkeley Packet Filter (BPF) has been around for more than two decades, born out of the
requirement for fast and flexible packet filtering machinery to replace the early ’90s imple-
mentations, which were no longer suitable for emerging processors. BPF has since made its
way into Linux and BSDs via libpcap, which is the foundation of tcpdump.

Instead of writing the packet filtering subsystem as a kernel module, which can be unsafe
and fragile, McCanne and Jacobson designed an efficient yet minimal virtual machine in the
kernel, which allows execution of bytecode in the data path of the networking stack.

The virtual machine was very simple in design, providing a minimalistic RISC-based
instruction set, with two 32-bit registers, but it was very effective in allowing developers to
express logic around packet filtering. BPF owes its relative longevity to two factors—flex-
ibility and performance. The design goal was to design the subsystem in a protocol-agnostic
manner and the instruction set to be able to handle unforeseen use cases.

A sample BPF program that filters every IP packet:

(000) ldh [12]

(001) jeq #0x800 jt 2 jf 3

(002) ret #262144

(003) ret #0

This program loads a half-word from offset 12, checks if the value is #0x800, and returns
true if it matches and false if it doesn’t.

The flexible instruction set allowed programmers to use BPF for all sorts of use cases such
as implementing packet filtering logic for iptables, which performs very well under high load
and allows for more complex filtering logic. Having a protocol-independent instruction set
allowed developers to update these filters without writing kernel modules; having a virtual
machine run the instructions provided a secure environment for execution of the filters. A
significant milestone was reached in 2011 when a just in time (JIT) compiler was added to
the kernel, which allowed translating BPF bytecode into the host system’s assembly instruc-
tion set. However, it was limited to only x86_64 architecture because every instruction was
mapped one on one to an x86 instruction or register.

Things took an interesting turn when the BPF subsystem was “extended” in the Linux oper-
ating system in 2013, and since then BPF is used in a lot more places, including tracing and
security subsystems, besides networking.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 27

PROGRAMMING
XDP-Programmable Data Path in the Linux Kernel

Extended BPF
Linux 3.18 had the first implementation of extended BPF (eBPF),
which made significant improvements from its precursor. While
the original BPF virtual machine had two 32-bit registers,
eBPF had 10 64-bit registers, added more instructions that were
close to the hardware, and made it possible to call a subset of
the kernel functions. All the BPF registers matched with the
actual hardware registers, and BPF’s calling conventions were
similar to the Linux kernel’s ABI in most architectures. One of
the important outcomes of this was that it was now possible to
use a compiler like LLVM to emit BPF bytecode from a subset of
the C programming language. Another important addition was
the BPF_CALL instruction, which allows BPF programs to call
helper functions from the kernel allowing reuse of certain exist-
ing kernel infrastructure.

The important point to keep in mind is that eBPF today can be
used as a general-purpose event-processing system by various
subsystems in the kernel. These events can come from various
different sources such as a kprobe tracepoint or an arrival of a
packet in the receive queue of the network driver. Support for
BPF has gradually been added to various strategic points in the
kernel such that when code in those kernel subsystems execute,
the BPF programs are triggered. The kernel subsystems that
trigger a BPF program dictate the capability of a BPF program,
and usually every BPF program type is connected to a kernel
subsystem. For example, the traffic control subsystem supports
the BPF_PROG_TYPE_SCHED_CLS and BPF_PROG_TYPE_
SCHED_ACT program types that allow developers to write BPF
to classify traffic and control behavior of the traffic classifier
actions, respectively. Similarly, the seccomp subsystem can
invoke a BPF program to determine whether a userspace process
can make a particular syscall.

Writing the BPF bytecode for anything nontrivial can be chal-
lenging, but things have become a lot simpler since BPF has been
added as a target in LLVM and users can now generate BPF in a
subset of the C programming language.

In today’s Linux kernel, the old BPF instruction set, commonly
known as cBPF, is transparently translated to eBPF instruc-
tions. I will use eBPF and BPF interchangeably from here on.

BPF Maps
An introduction to BPF is incomplete without discussing BPF
maps. BPF programs by themselves are stateless, and so maps
allow programs to maintain state between invocations. For
example, we could write a BPF program that prints a trace mes-
sage whenever the inet_listen function is called in the kernel.
However, if we wanted to expose that information as a counter
to some monitoring tool, we would need the program to main-
tain state somewhere and increment a counter every time the

method is called. This is where BPF maps come in. BPF maps are
generic data structures implemented in the kernel where eBPF
programs can store arbitrary data. These data structures, com-
monly referred to as maps, treat the data as opaque, and hence
programs can store arbitrary bytes as key-value as appropriate.
Maps can only be created or deleted from the userspace; BPF
programs access the maps by using helper functions such as
bpf_map_lookup_elem.

As of this writing, there are 11 different types of maps imple-
mented in the kernel today, some of them generic and others used
specifically with helper functions. The generic maps are:

BPF_MAP_TYPE_HASH

BPF_MAP_TYPE_ARRAY

BPF_MAP_TYPE_PERCPU_HASH

BPF_MAP_TYPE_PERCPU_ARRAY

BPF_MAP_TYPE_LRU_HASH

BPF_MAP_TYPE_LRU_PERCPU_HASH

BPF_MAP_TYPE_LPM_TRIE

Each of them is designed for a specific use case, so it’s useful to
understand the performance characteristics and their heuristics
before starting to use them in BPF programs. For example, if we
were designing a filter that increments a counter for every UDP
packet that is being dropped, it would be best to use a per-CPU
hash map so that the counters can be incremented without
any synchronization to prevent multiple instances of the BPF
program being triggered on different CPUs simultaneously. The
non-generic maps are best described in the context of the docu-
mentation for the operations with which they can be used.

The BPF Syscall
The BPF syscall introduced in kernel 3.18 is the main workhorse
for userspace programs to interact with the BPF infrastructure.
The syscall multiplexes almost all the operations that userspace
processes need to perform when handling BPF programs and
maps. The syscall’s usage includes, but is not limited to, loading
BPF filters into the kernel, creating new maps, or retrieving data
from existing ones.

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

◆◆ cmd—It could be one of the many operations that the syscall can
perform. There are 10 such commands in total, six of which are
documented in the man page.

◆◆ attr—A union that provides context to the command. For
example, when used with the BPF_PROG_LOAD command,
it allows the bytecode to be passed to the kernel, and with the
BPF_MAP_CREATE, it lets the user define the size of the key
and values of the map.

◆◆ size—The size of the attr union.

28  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

PROGRAMMING
XDP-Programmable Data Path in the Linux Kernel

The syscall returns 0 when it succeeds in most cases, except
for BPF_PROG_LOAD and BPF_MAP_CREATE, which return
the file descriptor of the BPF object created. For any failures, it
returns -1 and sets the appropriate errno.

However, most userspace programs don’t use the raw syscalls;
the BPF Compiler Collection (BCC) provides the libbpf library,
which has some wrapper functions that make working with BPF
objects easier.

int bpf_prog_load(enum bpf_prog_type prog_type, const char

*name, const struct bpf_insn *insns, int prog_len, const char

*license, unsigned kern_version, int log_level, char *log_buf,

unsigned log_buf_size)

For example, the above wrapper function creates the attribute
union for the bpf() syscall and wires in appropriate parameters.
The kernel samples include good examples of usage of the libbpf
library and other userspace helpers.

BPF Verifier
Safety is a very important concern for BPF programs, especially
because they tend to run in the performance-critical sections of
the kernel. The BPF infrastructure includes an in-kernel verifier
that uses CFG (control flow graph) to determine that the BPF
program terminates within the limit of maximum number of
instructions. The verifier, for example, forbids loops and makes
sure that maps are not destroyed until a program that uses it
doesn’t terminate. The verifier also statically ensures the safety
of the calls to the helper functions by checking that the types of
the data in the BPF VM register matches with the types of the
helper function arguments.

In addition to ensuring type safety, the verifier also ensures
safety of the program by prohibiting out of bounds jumps and
out-of-range data access. The verifier also restricts what kernel
functions and which data structures can be accessed based on
the BPF program type.

BPF File System
BPF maps and filters are effectively kernel resources exposed to
userspace via file descriptors backed by anonymous inodes; this
comes with some benefits but also interesting challenges. Once a
userspace program exits, the BPF program would get destroyed,
and so would the maps related to that program. The lifetime of a
BPF program and maps are tied to that of the userspace process
that loaded the program, which prevents maps from persist-
ing between filter invocations. As a result, maintaining state
between program invocations becomes impossible. To overcome
these limitations, the BPF infrastructure comes with a file sys-
tem where BPF objects like maps and programs can be pinned
to a path in the file system. This process is commonly known as
Object Pinning, and two new commands, BPF_OBJ_PIN and

BPF_OBJ_GET, facilitate pinning and retrieving an existing
pinned object. The command simply needs file descriptors and
the path to which the object is going to be pinned.

An interesting aspect of BPF objects being exposed as file sys-
tem objects is that processes with higher privileges could create
the objects and pin them to the file system and then drop their
permission. For example, this allows lower-privileged userspace
tools, like monitoring tools, to read telemetry data from maps.

BPF Tail Calls
BPF programs are limited to 4096 instructions, but it’s possible
to chain multiple programs together via tail calls. This technique
allows a BPF program to call another BPF program when it fin-
ishes. Tail calls are implemented by long jumps inside the VM,
which reuse the same stack frame. BPF tail calls are different
from normal functions in the sense that once the new function is
invoked when the current function ends, the previous program
ends. Data could be shared between stages by using per-CPU
maps as temporary buffers. Tail calls are used to modularize
BPF programs. For example, a program could parse the headers
of a network packet, and the following program could implement
some other logic like tracing or running classifier actions based
on the headers.

There are certain limitations to tail calls:

1. Only similar programs can be chained together.

2. The maximum number of tail calls allowed is 32.

3. Programs which are JITed can’t be mixed with the ones that
are not JITed.

As stated earlier, various kernel subsystems now have support
for BPF. I will cover one such area that is part of the networking
subsystem.

Express Data Path (XDP)
The networking subsystem of the kernel is one of the more
performance-sensitive areas—there is always ongoing work to
improve performance! Over the years userspace networking
frameworks like DPDK have attracted users with the promise of
faster packet processing by bypassing the kernel network stack.
While it’s lucrative for userspace programs to get access to net-
work devices and improve on some data copies by bypassing the
kernel, there are some problems with that approach as well. Most
notably, in some cases packets have to be re-injected back to the
kernel when they are destined for ssh or other system services.
XDP provides an in-kernel mechanism for packet processing
for certain use cases by providing access to the raw packets, so
BPF filters can make decisions based on the headers or contents
within the packets. XDP programs run in the network driver,
which enables them to read an ethernet frame from the Rx ring of
the NIC and take actions before any memory is allocated for the

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 29

PROGRAMMING
XDP-Programmable Data Path in the Linux Kernel

packet in the kernel’s socket buffers (skb). As a use case, XDP pro-
grams can drop packets in the event of denial-of-service attacks
at the line rate without overwhelming the kernel’s TCP stack or
the userspace application. It is important to note that XDP is
designed to cooperate with the existing networking subsystem of
the kernel, and so developers can selectively use XDP to imple-
ment certain features that don’t need to leave the kernel space.

XDP programs currently can make the following decisions:

1. XDP_DROP—Instructs the driver to simply drop the packet.
It’s essentially recycling a page in the Rx ring queue, since
this happens at the earliest possible stage of the Rx flow.

2. XDP_TX—Retransmits a packet on the same NIC source. In
most scenarios the eBPF program alters the headers or the
contents of the packet before retransmitting. This allows
for some very interesting use cases, such as load balancing
where the load balancing decision is entirely done in the eBPF
program. In this scenario, the networking stack or any user-
space code doesn’t need to participate in the decision making
or packet retransmission flow, which allows for throughput
close to line rate. One important point to keep in mind is
that the XDP infrastructure doesn’t have any sort of buffer,
because the packets are processed at the driver layer, so when
a packet is retransmitted and the TX device is slower, packets
might simply get dropped.

3. XDP_PASS—The eBPF program has allowed the packet to
move on to the networking stack of the kernel. It’s also pos-
sible to rewrite the contents of the packets before the packet
is passed on.

4. XDP_ABORT—This action is reserved for usage when the
program encounters some form of an internal error; it essen-
tially results in the packet getting dropped.

XDP depends on drivers to implement the Rx hook and plug into
the eBPF infrastructure. Currently, there can be only one XDP
program attached to a driver, but programs can call other pro-
grams using the tail calls infrastructure.

Case Study: XDP-Based Firewall
To demonstrate how XDP programs work, we can go through the
design of a simple packet filtering service. Services like firewalls
are usually divided into a distributed control plane and a data
plane. The control plane provides APIs for operators to create
filtering rules and introspects the filters to provide telemetry
data. The data plane runs on every host in a cluster where packet
filtering happens. XDP filters naturally constitute the data plane
of such a system.

In general, software using BPF filters are divided into three parts:

1. BPF filter code and maps that are loaded into the kernel

2. Userspace program that loads the filter and provide APIs to
update various maps

3. Optional processes like command line tools to access the maps

BPF Maps
The BPF maps form the most essential part of the firewall
system. As stated above, they essentially allow the userspace
processes to provide the rule set for performing packet filtering
and the XDP program to emit telemetry data. We use the follow-
ing maps in the data plane:

1. LPM trie map—The trie data structure allows doing prefix-
based lookups efficiently, and BPF includes an implemen-
tation of LPM (longest prefix match) trie. We will use the
LPM trie map to store the CIDR blocks of the source and the
destination addresses which have to be either blacklisted or
whitelisted.

2. Map array—For whitelisted or blacklisted destination ports.

3. Hash maps—Hold counters for packets dropped and passed
based on the rule set.

XDP Filters
The BPF program that XDP invokes when a packet is received in
the driver contains the logic for parsing incoming packets, reads
the maps to look up the rules provided by the userspace process,
and makes filtering decisions based on them. The BPF program
also updates maps with telemetry data to provide observability
into the actions taken.

There would be separate XDP filters for whitelisting and black-
listing flows, so we will have two different XDP filters:

1. The blacklisting filter would parse the ethernet frame and
extract the source IP address and the destination port. If
the source IP address has a match in the LPM trie, it would
simply return the XDP_DROP action. From there on, it would
look up the blacklist’s array map and return the XDP_DROP
action if there is a match. If none of the above checks has a
positive outcome, the filter returns the XDP_PASS action,
thereby passing on the packet to the kernel’s networking stack.

2. The whitelisting filter behaves similarly except that it
returns the XDP_PASS action and allows the packet to pass
into the kernel only if the lookups within the LPM trie map
and the array map have a successful match. In other cases it
returns the XDP_DROP action, thereby dropping the packet.

30  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

PROGRAMMING
XDP-Programmable Data Path in the Linux Kernel

Userspace Program
The userspace program has all the necessary infrastructure to
interact with the control plane service and also interacts with
the BPF infrastructure. It retrieves the rules that need to be
enforced, creates the necessary maps, and loads either of the
whitelisting or the blacklisting filters based on the rules that
need to be enforced. Any updates from the control plane would in
turn update the maps containing the rules so that the filters can
enforce the new rules. It can also provide APIs for other tools,
such as monitoring system APIs that get telemetry data.

In addition to the XDP program and the userspace process that
loads it, there could also be additional userspace tools that might
interact with the pinned BPF objects. For example, third-party
monitoring system tools could implement logic to read the maps
and push telemetry data.

Conclusion
eBPF and XDP have been a major step towards achieving pro-
grammability in the kernel’s data path, which provides safety
without compromising on speed. Beyond networking, eBPF has
made a significant improvement in the tracing capabilities in
the kernel, which has enabled instrumentations in areas that
were previously not possible. The future of eBPF in the kernel
is strong, and we will see more tools using the power of the BPF
infrastructure.

XKCD xkcd.com

Save the Date!

www.usenix.org/lisa18

October 29–31, 2018
Nashville, TN, USA

LISA: Where systems engineering and operations professionals
share real-world knowledge about designing, building, and

maintaining the critical systems of our interconnected world.

The Call for Participation is now available.
Submissions are due May 24, 2018.

Program Co-Chairs

Rikki Endsley
Opensource.com

Brendan Gregg
Netflix

32  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

PROGRAMMING

Faults in Linux 3.x
T A P A S W E N I P A T H A K

Prior studies have used tools to find bugs in the Linux kernel versions
1 and 2. In this article, I share the results for faults in 3.x versions.
This study is a continuation of the work by Chou et al. [1] for versions

1.0 to 2.4.1 and Palix et al. [2a–c] for 2.6 versions. I explain the types of bugs
studied, trends for these bugs over newer versions, and how the reports were
generated across the different Linux kernel versions.

In 2001, Chou et al. used static analysis tools run over each kernel version to get the results,
and the number of common faults found was very high. By 2011, Linux kernel was in its third
decade. Palix et al. found that the number of common faults decreased from the previous
study results, implying better code quality in 2.6.x, but it was still very high. On February
8, 2015, Linux kernel version 3.19 was released. Patches are regularly submitted for faults
found using checkpatch [3], Sparse [4], Coccinelle [5] and Smatch [6]. The number of lines
of code in the Linux kernel also crossed 15M at this time. I wanted to follow the path of the
previous studies and research how many bugs were in 3.x versions.

Methodology
Palix et al. used the open source tools Coccinelle [5], to automatically find faults in source
code, and Herodotos [7, 2c], to run Coccinelle for each fault type and to track the faults across
multiple versions of the Linux kernel. Coccinelle and Herodotos are available on the open
access archive HAL [7, 2b]. Coccinelle is a tool for pattern matching and text transformation.
To study the bed of faults it is necessary to understand the history behind them. When were
they first released? When did they die if they did? Did they move after they were first intro-
duced? Following the methodology deployed in the 2011 study, I used Coccinelle to automati-
cally find problematic programming patterns in Linux kernels, and Herodotos to correlate
these fault reports between different versions of the Linux kernel. The data about faults in
this article were compared with the last study performed and helped to improve the reports
generated for the study done on 3.x versions. As an example, there were cases where false
positives previously reported moved around in different places in the code file.

Emac’s org mode (orgmode.org), a text file format, was used to categorize the reports as bug
or false positive. With this it was easier to move between different versions of the Linux
kernel for the same report and study the history and reason behind a given bug type clas-
sification. This manual process was performed to make sure that none of the false posi-
tives generated were marked as bugs. I cloned all Linux kernel versions from 3.0 to 3.19 and
considered the function stack, calls, and all possible inputs, outputs, Linux kernel standards,
stack size etc. to categorize these reports as bugs or false positives. I also submitted patches
for the bugs that were present in the then-current Linux kernel version.

In a few cases, I was not able to categorize the reports as bugs or false positives. In these
cases, I used UNKNOWN/IGNORED.

The tools and marked reports generated were publicly made available in a GitHub repository [8].

Tapasweni Pathak has
completed her Bachelor’s
in computer science from
IGDTUW (previously IGIT),
Delhi. She has worked with

Qualcomm Inc., SAP, and now is with Mapbox.
She contributes to open source projects
like Linux Kernel, OWASP, Debian Sources,
X.org and ABI’s Syster Org’s projects.
She is interested in studying more about
decentralization of networks and operating
systems as her research interest.
tapaswenipathak@gmail.com

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 33

PROGRAMMING
Faults in Linux 3.x

After analyzing the reports, Nicolas Palix generated figures to
highlight the rise and fall of the number of bugs in the different
versions. I used org2sql to update the database of records for the
Linux kernel versions 3.xx. org2sql tries to import all the faults
and needs of at least two parameters: the prefix of files to drop
(/fast_scratch/linuxes/) and the new.org file to import. The
output is on stdout, which I then directed to an SQL file, which
later was used with psql. All the figures were generated using
these data and scripts [9].

Studied Fault Types and Their State
Inconsistent Assumptions about NULL
Dereferencing a pointer is undefined if the pointer is null. This
fault type comes in two flavors: IsNull and NullRef. An IsNull
fault is where a NULL test is done preceding a dereference, and
a NullRef fault is where a NULL test is done following a derefer-
ence. The former is always an error, while the latter may be an
error or may simply indicate overly cautious code, if the pointer
can never be NULL.

Both fault types consistently decreased between versions 3.0 to
3.19. Figure 1 shows that the introduction of the IsNull bug type
moved close to zero with Linux version 3.19 from the highest
point with Linux version 3.0.

208 NullRef faults (Figure 2) were reported in total in Linux
3.19, and 112 of them were introduced in 3.0 or later.

As an example, a bug in Linux 3.15 occurred where a null check
was done after referencing it inside the file drivers/staging/
media/rtl2832u_sdr/rtl2832_sdr.c, line 992, in the function
rtl2832_sdr_start_streaming for the s variable.

dev_dbg(&s->udev->dev, “%s:\n”, __func__);

if (!s->udev)

An interesting false positive (FP) was found in Linux-3.11
inside the file net/nfc/llcp_core.c, lines 724 (null test) and 761
(nullref), in the function nfc_llcp_tx_work(), if llcp_sock is
checked for null with one more condition (&&):

if (llcp_sock == NULL && nfc_llcp_ptype(skb) == LLCP_PDU_I)

else if (llcp_sock && !llcp_sock->remote_ready)

Then inside the else, llcp->sock is dereferenced using

skb_queue_tail(&llcp_sock->tx_pending_queue, copy_skb);

The code is only a problem if llcp_sock is null and if ptype

== LLCP_PDU_I. But ptype is defined as u8 ptype = nfc_llcp

_ptype(skb). And up at the top of the sequence of ifs there
is another case for where llcp_sock == NULL && nfc_llcp

_ptype(skb) == LLCP_PDU_I.

Disabling but Not Reenabling Interrupts
This includes interrupts that are turned off but not turned
on again, using the function spin_lock_irqsave. spin_lock

_irqsave is used to save the interrupt state before acquiring the
spin lock. This is because spin lock disables the interrupt, when
the lock is taken in interrupt context, and reenables it while
unlocking or when using local_irq_disable and local_irq

_save. The interrupt state is saved so that it can reinstate the
interrupts again.

Locking but Not Unlocking and Double Locking
Double locking is a bug. This check looks for cases where a lock
is taken but not released, that is, where an unlock is missing. In a
few cases, interrupts are disabled at the same time that a lock is
taken. Figure 3 shows that for the LockIntr bug type, the intro-
duction rate reached its peak during 2013. With the introduction
of Linux 3.9, the LockIntr rate fell to zero, implying there were
no new LockIntr bugs that were produced with this release.

I even found a few interesting FPs where I plan to improve the
semantic patch in Linux 3.5 inside the file kernel/workqueue.c
at line 1013, in the function __queue_work():

 spin_lock_irqsave(&last_gcwq->lock, flags);

 worker = find_worker_executing_work(last_gcwq, work);

if (worker && worker->current_cwq->wq == wq

gcwq = last_gcwq;

 else {

Figure 1: Birth and death of IsNull

Figure 2: Birth and death of NullRef

34  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

PROGRAMMING
Faults in Linux 3.x

 /* meh... not running there, queue here */

 spin_unlock_irqrestore(&last_gcwq->lock, flags);

 spin_lock_irqsave(&gcwq->lock, flags);

In the case where the unlock seems to be missing, there is the
code gcwq = last_gcwq. In the case where the unlock is present, it
is followed by the code spin_lock_irqsave(&gcwq->lock, flags).
That is, the whole set of nested ifs terminates with the need to
unlock &gcwq->lock. This lock is unlocked later. And in the case
where worker && worker->current_cwq->wq == wq, it is the case
that gcwq = last_gcwq, so the subsequent unlock of &gcwq->lock
will unlock the last_gcwq lock because they are the same.

Calling Blocking Function with Interrupts Disabled or
Spinlock Held
Blocking with interrupts disabled or a spinlock held can lead to
deadlock. Basic memory allocation functions, such as the kernel
function kmalloc, often take as their argument the constant GFP_

KERNEL when kmalloc is allowed to block until a page becomes
available. Thus, a function that contains a call with GFP_KERNEL
as an argument may block.

However, blocking with interrupts turned off is not necessar-
ily a fault, and indeed core Linux scheduling functions, such as
interruptible_sleep_on, call “schedule” with their interrupts
turned off. This issue was taken into account when checking for
false positives.

This fault type checked for locks around possibly blocking
functions.

Figure 4 shows that the birth and death of the Lock bug type had
a fall. The slight increase in the introduction with Linux 3.19 is
explained below.

In Linux 3.19, in the file drivers/staging/emxx_udc/emxx_udc.c
at line 2797, inside the function nbu2ss_ep_queue(), GFP_KER-

NEL is used when calling dma_alloc_coherent. GFP_KERNEL was
replaced with GFP_ATOMIC with a patch, as the latter will fail if
the heap doesn’t have enough free pages but will not sleep and
hence avoids deadlock.

Wrong Use of krealloc
This fault type checked for a wrong use of krealloc. krealloc
reallocates memory, while the contents of the memory remain
unchanged. If krealloc()’ returns NULL, it doesn’t free the
original pointer, which was pointing to the memory allocated.
So any code of the form foo = krealloc(foo, ...); is certainly a
bug. krealloc should use a temporary pointer for allocations and
check the temporary pointer returned against NULL too.

For krealloc type reports, all reports were bugs and none were
FPs in the case for 3.x versions. The most recent was in Linux-
3.16 in the file drivers/pinctrl/sunxi/pinctrl-sunxi.c at line 740:

pctl->functions = krealloc(pctl->functions,

 pctl->nfunctions * sizeof(*pctl->functions),

 GFP_KERNEL);

If reallocation fails, krealloc will return NULL to pctl-

>functions without freeing the memory previously pointed to
by pctl->functions.

Interrupts Turned Off but Not Turned On Again
Calling the local_irq_save function disables interrupts on the
current processor and saves current interrupt state as flags
(passed to this function). local_irq_restore function enables
interrupts and restores state using the flags. In early versions of
Linux, locks and interrupts were managed separately: typically
interrupts were disabled and reenabled using cli and sti, respec-
tively, while locks were managed using operations on spinlocks
or semaphores. This fault type checked for the case where inter-
rupts were turned off using the functions local_irq_save or
save_and_cli but were not turned on again.

Figure 5 shows that in Linux kernel 3.17, this bug type had new
introductions as well as eliminations. By Linux 3.19 both intro-
duction and elimination reached zero.

I found a total of four bugs of this type. One was in Linux 3.17 in
the file arch/mips/kvm/tlb.c at line number 206, inside method
kvm_mips_host_tlb_write()’:

local_irq_save(flags);

Figure 3: Birth and death of LockIntr Figure 4: Birth and death of Lock

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 35

PROGRAMMING
Faults in Linux 3.x

The interrupt state is saved so that it should reinstate the inter-
rupts again, but, in this case, after the above call to local_irq_

save(), there is no call to local_irq_restore().

Using Freed Memory
kfree frees previously allocated memory. Using freed memory
can cause the kernel to crash, can lead to a write-what-where
condition, and can have consequences like corruption of valid
data and the execution of arbitrary code. I checked for cases
where there was a use after kfree and after a function that
directly or indirectly calls kfree. The false positives were mostly
when the variable freed was accessed only after a null check.

There were a lot of cases where goto was being used immediately
after the kfree, which doesn’t allow the statement to execute
when using the freed memory. There were also many cases where
an immediate return was done after kfree, and thus the state-
ment where a variable accessed after kfree was not executed.
There were cases where a check on the variable just freed (inside
an if) was being done, hence avoiding a buggy situation.

Allocating Large Arrays on the Stack
All the local variables in the function are allocated on the stack.
If too much memory is allocated on the stack, the kernel might
run out of stack memory because the Linux kernel stack has a
fixed size.

This fault type checked for instances where large arrays were
allocated on the stack. I considered an array to be large if it con-
tained more than 1023 bytes. Anything below that was marked
as a false positive, and anything greater than that was consid-
ered a bug.

No new bugs of this bug type were introduced with Linux kernel
version > 3.11. I found one FP of type var in Linux 3.11 in the file
drivers/staging/lustre/lnet/klnds/socklnd/socklnd_cb.c at line
1034:

static char ksocknal_slop_buffer[4096];

In this case it was a global static variable, only visible in one
function and not declared on the stack, so this was an FP.

Using Value Taken from User as Array Bounds and
Loop Index without Check
Values taken from userspace should be checked for limits before
using these values. A value could be huge, or it could be negative
if the type of the field is not unsigned. copy_from_user is used to
copy a block of data from userspace to kernel space. It then returns
the number of bytes that could not be copied. On success, this will
be zero. If some data could not be copied, this function will pad the
copied data to the requested size using zero bytes. get_user is
used to get a simple variable from userspace. This macro copies a
single simple variable from userspace to kernel space.

This fault type checked for the case where unchecked values
were obtained from the user level through copy_from_user and
copy_from_user may be used as an array index or loop bound.

The Linux kernel from versions 3.0 to 3.19 had very few instances
of introduction of this bug type. The Linux kernel 3.19 had no
new user-value bug type introductions.

I found one copy_from_user type bug in Linux 3.12, in the file fs/
btrfs/ioctl.c at line number 2736, inside the function btrfs

_ioctl_file_extent_same(); copy_from_user is done using the
same structure. same->logical_offset is then assigned to off,
and same->length is assigned to len. The len variable is then
checked for the maximum value it can have; if it exceeds that,
it is assigned the maximum it can take. But later, the loop uses
same->dest_count and not len.

I found one bug of type get_user in Linux 3.14 in fs/btrfs/ioctl.c
at line number 2759, inside the function btrfs_ioctl_file

_extent_same()’. No checks were done on count, and later it was
used as an array index.

Wrong Assumption about Size of Object Being
Allocated Memory
There were a total of 25 bugs relating to size type, all in <= 3.9
versions of the Linux kernel. A very simple way to identify this
bug was in Linux 3.5 in the file drivers/net/wireless/mwifiex
/ie.c at line 166. The two structures mwifiex_ie_list and
mwifies_ie are different, which makes this usage buggy.

Using Floating Point Values
When a userspace process uses floating-point instructions, the
kernel catches a trap for a floating-point instruction and then
initiates the transition from integer to floating-point mode.
This varies by architecture. In a kernel space process, the kernel
cannot trap itself to support floating point. This is supported
by manually saving and restoring the floating-point registers,
among other chores. Saving and restoring floating point register
state also makes floating-point operations slower than integer
operations. People have always been advised not to use floating-
point operations in the kernel.

Figure 5: Birth and death of interrupt-related bugs

36  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

PROGRAMMING
Faults in Linux 3.x

This fault type checked for floating-point usages in kernel code.
There was only one report for this case. Most false positives
occur when the computation can be simplified at compile time
to an integer. The checker only reports a floating-point con-
stant that is not a subterm of an arithmetic operation involving
another constant, and hence may end up in the compiled kernel
code. Examples of false positive occurred where values like 1.6 *
1000 * 10 were being used.

The Overall Results
The total number of reports generated using the tools described
in the Methodology section were 4114. This number constitutes
the results generated by both 2.6.x and 3.x correlated reports.
There were 1074 reports belonging only to 3.x, out of which
567 were bugs and 506 were false positives. We marked one as
unknown. This table breaks down the numbers per each fault
type. The second line in each cell breaks down the total into the
numbers from 2.x and 3.x versions.

Overall Birth and Death of Faults
This graph indicates the number of each type of bug introduced
in the 3.x versions and the number of bugs introduced and
removed in each version.

All of the six fault types have decreased over the period of 2012
to 2015, with the greatest decrease being for the IsNull bug type.
The Intr bug type, which was once zero, increased with the 3.10
version but has remained flat up to Linux 3.19. Figure 6 also sug-
gests that these bug types did not reach zero until 2015.

Type Reports Bugs Unknown
Kfree 304 138 1

180 + 124 111 + 27 1 + 0

isNull 152 122 0

108 + 44 80 + 42

NullRef 1813 1578 24

1313 + 500 1169 +
409

23 + 1

LockIntr 252 103 2

186 + 66 89 + 14 2 + 0

Intr 35 23 0

25 + 10 19 + 4

Krealloc 25 21 0

14 + 11 10 + 11

Lock 674 230 4

454 + 220 198 + 32 4 + 0

var 66 36 0

51 + 15 35 + 1

copy_from_user 5 5 0

4 + 1 4 + 1

get_user 25 19 1

24 + 1 18 + 1 1 + 0

Float 549 46 0

532 + 17 46 + 0

size 214 52 0

149 + 65 27 + 25

Table 1: Number of bugs in Linux 2.6.x and 3.x versions. The first number
in each row shows the total bugs for both 2.6.x and 3.x, and the pairs of
numbers following are for 2.6.x first and 3.x second.

Figure 6: Overall birth and death of six fault types

Figure 7 : Faults introduced with version 3.0 and after

Figure 8: Count of bugs of NullRef type

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 37

PROGRAMMING
Faults in Linux 3.x

Faults Introduced in 3.0 or After
Figure 7 shows the overall number of all the faults. The slope
of the faults increases with newer Linux kernel versions, with
NullRef being the highest (see Figure 8).

Future Work
Julia Lawall, Nicolas Palix, and I plan to study these fault types
for Linux kernel 4.x.

Acknowledgements
Thanks to Julia Lawall, Inria Senior Research Scientist, and
Nicolas Palix, Assistant Professor at University Grenoble Alpes,
for working alongside me on this and for reviewing the article.

References
[1] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An
Empirical Study of Operating Systems Errors,” in Proceedings
of the 18th ACM Symposium on Operating System Principles
(SOSP ’01), pp. 73–88: http://www.stanford.edu/~engler/.

[2a] N. Palix, G. Thomas, S. Saha, C. Muller, J. Lawall, “Faults in
Linux 2.6,” ACM Transactions on Computer Systems, vol. 32, no.
2 (June 2014): https://arxiv.org/pdf/1407.4346v1.pdf.

[2b] N. Palix, S. Saha, G. Thomas, C. Calvès, J. Lawall, and G.
Muller, Faults in Linux: Ten Years Later (Dec. 2010): http://
faultlinux.lip6.fr/.

[2c] N. Palix, S. Saha, G. Thomas, C. Calvès, J. Lawall,
and G. Muller, Faults in Linux: Ten Years Later, Research
Report RR-7357, INRIA (July 2010): http://hal.inria.fr/inria
-00509256.

[3] Checkpatch: https://git.kernel.org/pub/scm/linux/kernel
/git/torvalds/linux.git/tree/scripts/checkpatch.pl.

[4] Sparse: https://sparse.wiki.kernel.org/.

[5] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Docu-
menting and Automating Collateral Evolutions in Linux Device
Drivers,” in Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys ’08), pp.
247–260: https://www.cse.unsw.edu.au/~cs9242/08/exam
/paper2.pdf.

[6] The Kernel Janitors, “Smatch, the Source Matcher,” 2010:
http://smatch.sourceforge.net.

[7] N. Palix, J. Lawall, and G. Muller, “Tracking Code Patterns
over Multiple Software Versions with Herodotos,” in Proceed-
ings of the ACM International Conference on Aspect-Oriented
Software Development (AOSD ’10), pp. 169–180: DOI:http://dx
.doi.org/10.1145/1739230.1739250.

[8] GitHub, “Coccinelle/Faults in Linux: Experimental Bed to
Study Linux Faults”: https://github.com/coccinelle/faults-in
-Linux.

[9] Scripts to generate graphs for Linux kernel fault study:
https://github.com/npalix/linux-study-figures.

http://www.stanford.edu/~engler/
https://arxiv.org/pdf/1407.4346v1.pdf
http://faultlinux.lip6.fr/
http://faultlinux.lip6.fr/
http://hal.inria.fr/inria-00509256
http://hal.inria.fr/inria-00509256
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/checkpatch.pl
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/checkpatch.pl
https://sparse.wiki.kernel.org/
https://www.cse.unsw.edu.au/~cs9242/08/exam/paper2.pdf
https://www.cse.unsw.edu.au/~cs9242/08/exam/paper2.pdf
http://smatch.sourceforge.net
DOI:http://dx.doi.org/10.1145/1739230.1739250
DOI:http://dx.doi.org/10.1145/1739230.1739250
https://github.com/coccinelle/faults-in-Linux
https://github.com/coccinelle/faults-in-Linux
https://github.com/npalix/linux-study-figures

38  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

INTERVIEWSAn Interview with Laura Nolan
R I K F A R R O W

Laura Nolan has been writing
software since teaching herself
to code in 1996. After earning
her computer science degree
at Trinity College Dublin, she

worked as a Software Engineer for several
years before joining Google as a Site Reliability
Engineer in 2013. Currently, she is Tech Lead
for a team of SREs working on Google’s Edge
Network in Dublin. Laura is also co-chair of
the USENIX SREcon Europe/Middle East/
Africa Conference as well as one of the (many)
authors of the O’Reilly SRE book. When away
from the keyboard, Laura can often be found
traveling, hiking, scuba diving, or just enjoying
a scotch and a good book (Longmorn and
space opera are her particular weaknesses).
lnolan@google.com

Rik Farrow is the editor of ;login:.
rik@usenix.org

I first heard about Laura Nolan when she spoke at SREcon Europe in
2015. I watched the video of her talk [1], and that forms the basis of some
of my questions.

Laura has since been a co-chair of SREcon, and we’ve had email discussions about potential
;login: authors. Some of the people she suggested have written articles related to SRE for ;login:.

I thought it was time to get to know Laura better, so I asked her if we could do this interview.

Rik Farrow: I watched your presentation at SREcon Europe about distributed consensus
algorithms. I have enough systems background to know what that means, but perhaps you’d
like to explain that in the context of SRE?

Laura Nolan: Well, distributed consensus is a really important building block of a lot of prac-
tical distributed systems. Any system where you need to get a group of processes to agree
on something, as a whole, is solving distributed consensus. I think it’s important for SRE to
know something about it because it is a difficult problem, and trying to solve it in ad hoc ways
can lead to some very surprising outcomes. So that talk, and the distributed systems chapter
of the O’Reilly SRE book [2], is really trying to focus on showing what distributed consensus
problems are and discussing the operational aspects of distributed consensus systems: their
performance constraints, failure modes, monitoring, and so on.

Generally speaking, I think we need to raise our level here as a profession. SREs are work-
ing at the sharp end of distributed systems. Most of us don’t have a solid background in them
though; most engineering and computer science education is still pretty light on distributed
systems content. We are figuring out these things on the fly all the time, and we’re not being
systematic enough about it.

Software engineers have design patterns...we need distributed systems reliability patterns!

So I’d love to see more distributed systems content at SREcon next year, building on some of
the great content we had such as Theo Schlossnagle and John Looney’s distributed systems
workshop [3] and the reliable RPC talk and workshop presented by three Googlers (Grainne
Sheerin, Lisa Carey, and Gabe Krabbe).

RF: In your talk, you mention using Paxos. I interviewed the primary author of Raft, Diego
Ongaro, who said that one of the reasons for creating Raft was that Paxos was difficult to
reason about. Yet Google seems to have settled on Paxos. Could you tell us the reasons for
using Paxos instead of Raft (or ZAB)?

LN: Well, historical reasons is one part—Google was using Paxos heavily since before 2006,
when the Chubby paper was published. The Raft paper [4] was published around 2014,
and ZAB was also after Chubby. I’m not involved personally in any of this infrastructure
at Google—I used to be on a team that ran a lot of Paxos-based data stores but have moved
on—but as a software engineer, I will say that making that sort of change to any software
system is expensive, and always more expensive than you think. Effort to rewrite a system is
one thing, but then you have to test it, which is particularly onerous in the case of this sort of
system, with many subtle failure modes. You’d need a really compelling reason to do it, and
Raft and ZAB don’t provide any immediate technical benefits over Paxos.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 39

INTERVIEWS
An Interview with Laura Nolan

RF: How much opportunity have you had to learn new things and
move into other areas? How does that compare with other places
you have worked?

LN: Google certainly affords plenty of opportunity to work on
different things and learn—this is one of the benefits of being a
large organization. Mobility is encouraged reasonably strongly—
not every few months, but if an SRE wants to move every few
years that’s seen as positive. It avoids teams becoming too siloed
and set in their ways.

In the almost-five years I’ve been here, I’ve worked on three
major areas that were all very different—big data stores and
pipelines were the first, then an internal development project,
and now I’m working on a team whose main focus is the reli-
ability of our Edge Network and peering. So that’s been a major
change for someone without a network engineering background,
and I’ve been working hard on “knowledge upload” related to
both networking generally and our network specifically.

Even staying on one team, though, things do change—the major
tools we work with evolve and are replaced, for instance; new
projects are developed, and SRE teams will begin to support
them. One big change in the last couple of years has been the
introduction of Golang as the programming language of choice
for most SRE automation projects, so everyone’s learned Go.

RF: You mentioned that Golang has become the language of
choice. What do you think of Go, and what were you using (or
liked using) before Go, for contrast?

LN: I like Golang. It is relatively hard to shoot yourself in the foot
with it compared to many other languages. It scales fairly well,
has great concurrency constructs, and I am a fan of stronger
typing. Generics would be nice, though, and I miss my ternary
operator!

RF: John Looney has written about psychological safety on SRE
teams. When I read his article, I felt like my entire work life
would have been different if the teams I had worked with were
more like the ideal John writes about. What has your experience
been along the lines of psychological safety?

LN: I think that psychological safety is really important. My
experiences as a member of teams have definitely been on a
continuum from very psychologically unsafe to quite safe. It’s
certainly much more pleasant and way more productive to be in
a team that is safer. Unsafe teams will burn you out faster than
anything else, and burnout is the curse of Ops work.

Google SRE is pretty good, as these things go, in particular
with respect to blame. We had an incident a few months ago
that I think illustrates this nicely. We had an internal mishap
that caused us to have a pager storm, and without going into the
details, the trigger was a junior non-engineer who erroneously

did something involving a mailing list. I know for a fact that
multiple SREs specifically reached out to that person’s manager
afterwards to tell them that the incident was not that person’s
fault. None of them knew the individual personally, they just
didn’t want them to experience any negative consequences for
the incident. I thought that was pretty great. And, of course,
we’ve fixed the root cause of the pager storm too!

Tanya Reilly, an amazing SRE, gave a talk at LISA where she
discussed what to do when someone breaks something in your
system or finds a bug: you thank them for finding the gap and
then you go fix it. That is for me an essence of psychological
safety: no blame, no acrimony—just making the systems better.

On the flipside, I think the worst thing for psychological safety
is the engineer who thinks they’re smarter than everyone else
and is constantly negative and critical about other people’s
ideas. That sucks the life right out of a team. Nobody, no matter
how much of a rock star they are, is worth the kind of damage
that causes. Don’t be that person! Far better to be the engineer
who makes everyone around them better than to be the one that
makes everyone around them miserable.

RF: While at a WiAC meetup during NSDI ’17 in Boston, one of
the participants said that women have to work twice as hard as
men do just to be noticed. You’ve worked in several organiza-
tions. What’s your viewpoint on this?

LN: Different people have different experiences. I don’t think
I’ve ever been overlooked due to being a woman, but then I am
assertive and outspoken, and it would be hard not to notice me. I
did, however, once have a hilarious performance review (before
I was at Google) with a male manager of mine where he spent
about a solid hour telling me about how I talked too much. There
was not an ounce of self-awareness there as I couldn’t get a word
in edgewise to actually discuss this issue properly. I didn’t stay
much longer in that organization.

I think there may be more truth in saying that there are some
expectations for women that don’t exist for men. There’s a
common antipattern where women end up doing a lot of the
emotional labor in a team, even if it’s not in their job descrip-
tion—things like organizing team events and recognizing occa-
sions, and so on. Another huge thing is women engineers taking
on things like taking minutes, organizing meetings, project
management, building relationships with partner teams—some
people call it being “the glue.” Teams actually really need the
glue to work well, but it can be under-recognized compared to
coding because it’s harder to measure. This also goes for men
who are “glue” types. I also feel like it can be harder to get tech-
nical things done sometimes as women—I’ve seen things like
excessively picky design and code reviews aimed at women more
often than at men.

40  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

INTERVIEWS
An Interview with Laura Nolan

References
[1] L. Nolan, “Distributed Consensus Algorithms for Extreme
Reliability,” SREcon15 Europe: https://www.usenix.org
/conference/srecon15europe/program/presentation/nolan.

[2] B. Beyer, C. Jones, J. Petoff, and N. Murphy, “Monitoring
Distributed Systems,” in Site Reliability Engineering (O’Reilly
Media, 2016).

[3] J. Looney and T. Schlossnagle, “Distributed Systems-
Reasoning,” SREcon17 Europe: https://www.usenix.org
/conference/srecon17europe/program/presentation/looney.

[4] D. Ongaro, J. Ousterhout, “In Search of an Understandable
Consensus Algorithm,” in Proceedings of the 2014 USENIX
Annual Technical Conference (ATC ’14): https://web.stanford
.edu/~ouster/cgi-bin/papers/raft-atc14.

https://www.usenix.org/conference/srecon15europe/program/presentation/nolan
https://www.usenix.org/conference/srecon15europe/program/presentation/nolan
https://www.usenix.org/conference/srecon17europe/program/presentation/looney
https://www.usenix.org/conference/srecon17europe/program/presentation/looney
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 41

INTERVIEWS

Oslec, the Open Source Line Echo Canceller
An Interview with David Rowe

B O B S O L O M O N

Echo is a pain point in open source telephony. The default echo can-
cellers provided with Asterisk are generally held to be unacceptable
[1]. Hardware add-on modules, the common alternative, add $200 or

more to the cost of a voice card [2] and are closed source.

In 2008, David Rowe completed development of an improved software echo canceller: Oslec,
the Open Source Line Echo Canceller. Although Oslec has been well reviewed by those who
have tested it [3], the code has not been incorporated into the Asterisk/DAHDI source. Nine
years later, I became aware of Oslec while shopping for new voice hardware. David agreed to
an email interview for ;login:.

Robert Solomon: I am awed by the idea of software echo cancellation for Asterisk that
actually works and that a lone developer (with help) could do this. Oslec has at least seven
predecessors, none of which were usable IMO. How far along were you before you thought
you might succeed?

David Rowe: I always knew it was possible. I mean an EC is just DSP software running on
some sort of CPU. However, it took me nearly 20 years of failed attempts, first starting in the
early 1990s as part of an early speech codec I was working on. So you might say determina-
tion played a part—an unscratched itch—something I had to “fix” at some point in my life.

There were a couple of key algorithms—a way to handle double-talk without diverging
and the non-linear echo suppressor. When they dropped into place, I knew I was getting
somewhere.

RS: When I first learned of Oslec, surprisingly on a vendor’s page offering a hardware EC
module [4], and then on your website [5], I thought that you must be really good at maths and
algorithms or something. Reading your five-part Oslec blog [6], I learned that the magic of
Oslec is more like framing the problem clearly, getting help from people who already know
what they are doing, researching the literature, writing the code, and then reaching out to the
community for testing. Would you comment? Applied this process in other areas?

DR: Yes, you have the process spot on. A couple of other points are:

1. Developing against the standards-based set of unit tests for EC, which was supported by
a framework in Steve Underwood’s spandsp library. This neatly isolated any issues and pro-
vided a binary pass/fail criteria to develop against.

2. Using open source and offline analysis to “crowd source” testing. Oslec was fitted with
test points to capture the signals flowing to the EC. When a beta tester encountered a
problem, they could run an application to capture some wave files, then email them to me
for offline analysis. This quickly let me engineer solutions to corner cases: for example, low
frequency audio from sound cards upsetting the analog hybrids (described in detail in one of
the blog posts).

In contrast, everyone else was developing EC by saying “Hello 1,2,3…” down a telephone line
in real time.

David Rowe has been
working and playing with
signal processing hardware
and software for 30 years.
In 2006 he left an executive

position in the satellite communications
industry to become a full-time open source
developer. Since then David has worked on
open hardware and software projects in VOIP,
developing world communications, echo
cancellation, speech compression, modems,
and digital voice over HF radio. David writes
a popular blog that is read by 70,000 people
each month, drives a home-brew electric car,
and also enjoys bike riding and sailing.
www.rowetel.com

Phone System Administrator
is one of too many hats Robert
Solomon wears at a medium-
sized nonprofit in New York
City. bobsol@gmail.com

42  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

INTERVIEWS
Oslec, the Open Source Line Echo Canceller: An Interview with David Rowe

I use a very similar process for other signal-processing proj-
ects, in particular the use of a high-level simulation that can
run “offline” (not in real time) using data captured from the
real-time version. For example, in my Codec 2 project, I have
GNU Octave simulations that can single step through frames of
speech, plotting various signals and statistics. Then, when I’m
happy with performance, I run the same code in real time using a
bit-exact C port of the same algorithm.

RS: So there is some science involved. “PhD in Electronic
Engineering (topic: speech compression).” Want to say anything
about that?

DR: Well, the software engineering process was just as impor-
tant as the science. In addition to signal processing algorithm
development, I have a parallel career as a project manager. I, and
people working for me, have struggled at times with development
of commercial signal-processing widgets. Turns out it’s really
hard to get the clever maths running effectively in real time in
real-world products.

So after having screwed up and licked my wounds a few times, I
worked out how to engineer complex signal-processing products
effectively. I apply these ideas to my own projects and those I
manage for others.

The PhD was on low bit rate speech compression and was
completed in the late 1990s. About 10 years later, Bruce Perens
approached me—there was a need for an open source low bit
rate speech codec. Like echo cancellation, low bit rate speech
compression is mired in closed source, license fees, and FUD. So
I dusted off the PhD, and the Codec 2 project started [7].

RS: Although Oslec is the default echo canceller in Debian
installations [8], echo.ko is not found in any Debian packages
except user-mode-linux. I asked Tzafrir Cohen, a Debian DAHDI
maintainer, about this in an email and he said that “Debian
generally does not ship out-of-tree kernel binary modules.” (He
recommended building from Debian source with ‘m-a’.) I am sur-
prised that a module that was in staging in 2009 is not “in-tree”
now. Could you comment, educate, explain?

DR: You know, I’ve lost track of the progress of Oslec through the
staging process. I do recall there was some debate because it was
a driver with no hardware. The kernel developer who was man-
aging Oslec in the kernel, Greg KH, may have some comment. It’s
a good question, and I’d like to know the answer!

RS: Greg KH suggested that I “dig through the public email
archives.” With the help of Google, I found threads as new as
2012. This prompted me to actually browse the kernel, and I
found that echo moved from staging to misc as of 3.15 [9]:

2014-02-28 staging: echo: move to drivers/misc/

Greg Kroah-Hartman 6 -0/+1181

DR: Yayyy, that means I’m officially a “kernel hacker.” :-)

RS: I’m sure there is a good reason why Oslec was not imple-
mented in userspace, but I don’t know it. Would you explain?

DR: You need tight control of the delay in speech samples from
the ADC/DAC signals flowing from the telephony hardware to
the EC. Typically the kernel <-> user mode switch means buffer-
ing and timing uncertainty. For the Mesh Potato (village Telco
project), I did the EC in user mode, as I built in careful control of
the buffering in the kernel mode driver I wrote.

RS: I am noticing a decline of open source telephony in that ven-
dors who once supported “Linux” now, in one case, support only
CentOS 6 or worse and, in another case, their special variant of
CentOS 7. Would this be due to mobile, to vendor business model,
or to the decline of the white box phone system? Some other
reason?

DR: I don’t feel I have any useful knowledge on this one. I’m not
involved in phone systems or Asterisk anymore myself. Given
the rise of mobile phones I do wonder about the long-term viabil-
ity of any sort of PBX; in my day job (a seven-person startup), we
don’t even have a landline.

RS: Your work on Oslec was complete in 2008 or so. What are
you up to these days?

DR: Oslec was developed for the IP04, an open source embedded
IP-PBX that I developed. I sold and supported the IP04 for many
years in partnership with Atcom, but sales dropped off and, from
a technical point of view, I lost interest.

Since 2009 my main project has been Codec 2, a low bit rate
(3200 to 700 bits/s) open source speech codec. In the last few
years I’ve been working on the problem of digital voice over HF
radio. Making some progress but haven’t beat legacy analog
Single Sideband (SSB) yet. Along the way, I’ve developed several
high quality modems for digital radio and discovered some more
marketing-based FUD—not unlike that around hardware EC.
My blog (rowetel.com) is also very popular.

I recently joined an Australian startup (solinnov.com.au) that
does contract-based FPGA-based signal processing development
for communications and defense applications. They are growing
rapidly, and I’m helping out with some high-level signal process-
ing, project management, and company process to help them
grow. I’m working there a few days a week, plus keeping busy as a
Dad, and I also enjoy sailing my little 16-foot “trailer sailer” and
riding my bike.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 43

INTERVIEWS
Oslec, the Open Source Line Echo Canceller: An Interview with David Rowe

RS: A little more about the trailer sailer? Picture?

DR: Sure—it’s a Hartley TS16 16-foot sailing boat popular in
Australia and New Zealand. It lives at my home, and once a
week I tow it down to the sea and have a day out with friends and
family.

References
[1] J. Van Meggelen, L. Madsen, and J. Smith, Asterisk: The
Future of Telephony, 2nd edition (O’Reilly, 2007), p. 201: https://
ftp.openbsd.org/pub/OpenBSD/distfiles/9780596510480.pdf.

[2] Quick price comparison: https://www.voipsupply.com/.

[3] Oslec Echo Canceller: http://www.rowetel.
com/?page_id=454.

[4] https://xorcom.com/product/
voip-hardware-echo-cancellation/.

[5] http://www.rowetel.com/?page_id=454.

[6] Open Source Echo Canceller: http://www.rowetel.
com/?p=18.

[7] http://www.rowetel.com/?p=128.

[8] See /usr/share/doc/dahdi/README.Debian.

[9] https://git.kernel.org/pub/scm/linux/kernel/git/stable/
linux-stable.git/log/drivers/misc/echo?h=linux-3.15.y.

44  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGEFlex Dynamic Recording
T I M O T H Y F E L D M A N

Tim Feldman works on
drive design at the Seagate
Technology Design Center
in Longmont, Colorado. His
current work focuses on cloud

storage. He also spends time randonneuring,
Nordic skiing, and logging.
timothy.r.feldman@seagate.com

Hard disk drives are capable of various recording methods without
changing the hardware. For example, shingled magnetic recording
(SMR) is a technique in which higher track density is obtained, but

with a tradeoff of requiring sequential writing through a band of tracks. I
introduce a new way of letting the storage manager dynamically, in the field,
specify different recording methods for different parts of the media in the
device. This article prepares readers for this upcoming disk technology by
describing the opportunities to lower the total cost of ownership (TCO) and
exploring the new device interface that needs to be defined.

In February 2016, Google’s “Disks for Data Centers” white paper [1] proposed options to
improve the total cost of ownership, speed, tail latency, and capacity of hard disk drives.
One particular capacity improvement was for an implementation in which conventional and
shingled recording are mixed in a single, hybrid hard disk drive. The white paper noted that
if the outer tracks are conventional magnetic recording (CMR) and the inner tracks are SMR
as shown in Figure 1, the outer tracks could be used for short-lived data enjoying the random
write performance of CMR, while the inner tracks could hold long-lived data using higher
density SMR.

More recently, Google has presented an initial set of requirements [2], and both Seagate and
Western Digital have signaled their support in blog posts [3, 4]. In this article, I will refer to
the ability to dynamically mix recording methods in a single disk as Flex, Seagate’s name for
the technology, alternately called Hybrid SMR and Realms by Google and Western Digital,
respectively.

Problems and Opportunities
The range of tracks accessed by a workload is known as the stroke, referring to the range of
motion of the heads. An application that accesses the full logical block address (LBA) space
uses 100% of the stroke. If a disk is partitioned into 10 volumes, then each volume uses about
10% of the stroke—more accurately, 6.7% for the partition at the lowest LBAs, 10% in the
middle, and 13.3% at the highest LBAs due to the variation in the number of sectors per track,
with outer tracks at about twice the capacity of inner tracks. Note that this correspondence
of logical addresses to physical radius assumes the conventional logical-to-physical disk
mapping in which lower LBAs are on the outer tracks. With this partitioning, if the disk
workload is restricted to a single partition, then the workload uses about 10% of the stroke.
And since access time is highly sensitive to seek distance, this constrained workload is much
faster than a 100% stroke workload.

In practice, accesses to hot data can be sped up by constraining it to a limited range of LBAs,
a technique generally known as short stroking. This not only increases the I/Os per second
(IOPS), but greatly increases the performance density (IOPS per TB) since the denominator
of that term gets smaller. Figure 2 shows the relationship between performance density and
stroke based on a first-order model of disk performance. Note that performance can increase
by 4x just by short-stroking to 33%.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 45

FILE SYSTEMS AND STORAGE
But if short stroking is the only technique applied, and only 33%
of the disk is used, there is unused media in the other 67% of the
stroke. Finding a way to use this media while retaining the per-
formance of the hot data is a TCO improvement opportunity.

Cold data, in contrast to hot data, can generally be written
sequentially. Using SMR for cold data lowers the cost per byte.
But after filling a disk with only cold data, the disk actuator arm
will mostly sit idle. Finding a way to keep the disk mechanics
busy serving useful I/Os is another TCO improvement opportu-
nity. If a deployment has both hot and cold data, then a solution
of segregated tiers not only leaves both TCO improvement oppor-
tunities unrealized, but also doubles the logistical complexity of
managing two tiers and their unique drive types.

Flex, the ability to dynamically mix recording methods, allows
the operating system to configure a single drive to a mix of CMR
and SMR. And the mix can change to match a changing mix of
hot and cold data. This means that hot data can enjoy the perfor-
mance benefits of short stroking while cold data makes use of
the rest of the media. The disk is then fully subscribed; all of its
media and all of its mechanical capability are utilized, and the
total cost is minimized.

Flex is not limited to just mixing CMR and SMR. There are other
ways to improve TCO, speed, tail latency, and capacity. An idea
as simple as using Flash in SLC or MLC mode provides one set
of tradeoffs. Heat- or microwave-assisted magnetic recording
may be able to record in different track widths by modulating the
laser or microwave power and mixing track widths in an inter-
laced manner, as depicted in Figure 3, which increases the data
density and, thus, disk capacity [5].

Interlaced magnetic recording (IMR) does not actually use
different physical layers. Instead, “bottom” tracks are simply
the wider tracks and “top” tracks are the narrower tracks. Since
writing a bottom track can make two top tracks unreadable, IMR

presents a track write sequence problem similar to SMR, and the
solutions invented for SMR can be applied [6]. For instance, 256
MiB worth of interlaced tracks can be mapped as a contiguous
set of LBAs; this 256 MiB extent is then a logical zone, and zones
can be managed as regions that must be sequentially rewritten.
Or other innovative techniques might be used to manage top and
bottom tracks. Beyond IMR, there are other ideas in the pipeline
not yet in the public domain.

When various techniques can coexist on the same physical
device, the fundamental Flex proposition of letting the OS select
what recording method to use on a specified set of media is the
most flexible solution.

Toward a Flex API
There is no existing API that allows an OS to change the con-
figuration of a block device. A new interface needs to support
conversions between the recording methods, and should include
API improvements that kernel developers have been requesting
for many years.

Figure 3: Depiction of interlaced track recording

Figure 1: Depiction of a two-platter hybrid hard disk drive with CMR at the
outer tracks and SMR at the inner tracks

Figure 2: Performance density increase of small, random accesses from
short stroking

46  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Flex Dynamic Recording

Here are our goals for a new, superlative interface.

1. Provide backward compatibility

2. Leverage existing protocols

3. Support both ATA and SCSI to enable both SATA and SAS
devices

4. Allow diverse configurations with fine-grained assignment of
the recording method

5. Have completely discoverable capabilities

6. Enable on-the-fly conversions between recording methods

7. Protect against the loss of locked data or data that is still valid
to some application

8. Be extensible to future recording methods

The Open Compute Project, T10 and T13 standards groups, will
engage in the work of defining an API that meets these goals in
2018.

Providing Backward Compatibility
Flex devices should typically leave the factory in a configura-
tion that allows existing software that is oblivious about the
new capabilities to use the device. This implies that not only is
a 100% CMR configuration supported but that this is the initial
state. A Flex drive should be able to return to this configuration
from any state.

Leveraging Existing Protocols
Cooperatively managed SMR, now codified as the zoned block
device model, is the natural starting point. Zones are contiguous
sets of LBAs and are always 256 MiB. Zones are either conven-
tional zones without write pointers (for CMR space) or write
pointer zones (for SMR space). The zoned block device model
even already has an Offline zone state.

There are two observations about conversions that need to be
addressed. First, conversions should be fast so that Flex does not
introduce commands that take longer than any existing com-
mands. It is important not to break the command timeout model
that drivers use to detect dead drives.

Second, there may be valuable data that can be used to initialize
space that has just come online as opposed to formatting with
fill data only to immediately write the same media with valuable
data. A conversion to SMR can finish with all of the space that
just came online to be write pointer zones in the Empty state.
This allows the device to skip initializing the SMR media with
readable fill data, a process that takes about one second per 256-
MiB zone. But we also want conversions to CMR space to be just
as fast. The obvious extension to the zoned block device model
is to define a new zone type for CMR space that also starts off
as Empty, but unlike an SMR zone would have no performance

penalty for random writes below the write pointer. Both CMR
and SMR zones must either fail reads above the write pointer or
return zeros, the former catching improper reads and the latter
mimicking formatted media.

Supporting ATA and SCSI
Since ATA does not support logical unit numbers (LUNs), the
Flex protocol should use separate LBA ranges for the CMR and
SMR spaces. This can extend to more than two ranges when the
device supports more than two recording methods when Flex is
extended beyond just CMR and SMR.

For maximum flexibility, both queued and non-queued com-
mands should be defined. And by co-developing ATA and SCSI,
we can end up with a straight-wire SCSI to ATA translation
(SAT) layer.

Allowing Diverse Configurations
To allow each storage stack to pursue its own optimal design
point, conversions should be fine-grained. As part of embracing
the zoned block device model, we want the zone to be the unit
of conversion and the minimum allocation unit of the top-level
allocator; that is, each zone is either online or offline, and a con-
version can target any contiguous extent of zones.

For maximum short stroking benefit, all of the CMR space
should be contiguous. But there may be other configurations
needed. For instance, a 10-TB drive chopped into 10 one-TB
pieces for 10 different tenants may want each tenant to have a
CMR space and an SMR space. Thus, multiple “seams” between
differing recording methods should be allowed, albeit with a
small efficiency loss that averages one-half zone at each seam.

Discovering Capabilities
Device discovery includes detecting the device type through
its signature and Identify Device data. Due to the backward-
compatibility goal, Flex devices should identify as conventional
disks. They also need to report the 100% CMR capacity in the
existing capacity reporting fields.

Capabilities discovery then allows a host to learn what features
a device supports. Simple additions to ATA logs and SCSI vital
product data pages can serve to alert a stack that is cognizant
of Flex to find out whether a Flex device is present. From there,
existing zoned block device mechanisms, including Report
Zones, can expose the SMR space in addition to the CMR space.

Enabling On-the-Fly Conversion
Availability is critical. Conversions need to be allowed as part
of the normal workflow and not be restricted to system integra-
tion or an offline mode. Conversion commands need reordering
constraints if they overlap reads or writes to the same LBAs, but

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 47

FILE SYSTEMS AND STORAGE
Flex Dynamic Recording

the rest of the LBA space that is not participating in a conversion
needs not only to retain its data, but concurrent reads and writes
must be allowed.

Protecting Valid and Locked Data
Before a conversion that takes space offline, any data in that
space that is still valid for some application needs to be copied,
either to space on this disk that will stay online or elsewhere.
Since a conversion operation has a side effect of making previ-
ously written data unreadable, a conversion that gets ahead of
the valid data copy process will lose data.

The existing SMR zone types support an operation, Reset Write
Pointer, for the host to move a zone’s write pointer back to the
start of the zone. Since reads to LBAs above a write pointer
either fail or return zeros, this also declares that the previously
written data are discarded. Extending the Reset Write Pointer
operation to the CMR zones allows a strong, firm handshake in
the protocol: requiring that a zone’s write pointer is reset before
it is allowed to be converted to Offline, the conversion itself has
no data retention side effects.

Similarly, enforcing that zones must be unlocked for a conver-
sion allows a security management layer to know that locked
data cannot be lost through execution of new Flex commands.

Being Extensible
New zone types can be defined as needed to support techniques
like interlaced tracks. Other innovations might pack data more
densely in other ways, but the tradeoffs often break legacy
requirements. Simply getting all of the media provisioned to
user-addressable space has been boxed in by ingrained assump-
tions about static configurations.

While the first generation of Flex will address the hybrid mix of
CMR and SMR, the protocol needs to be extensible. This means
that capabilities reporting and conversion commands need to be
open to more than just two recording methods.

Adding Value
Flex Dynamic Recording recognizes that a single hardware
configuration can be deployed in various ways, all the way down
to physical recording methods on media. The philosophy of Flex
is that allowing the owner of a device to configure what record-
ing method is best for them adds value to the whole system. So
rather than locking down the method at the factory, Flex moves
the decision to the field.

References
[1] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and T. Ts’o,
“Disks for Data Centers”: https://static.googleusercontent.
com/media/research.google.com/en//pubs/archive/44830.
pdf.

[2] T. Ts’o, “Hybrid-SMR Product Requirements Proposal for
OCP”: http://files.opencompute.org/oc/public.php?service=fil
es&t=50192ac3fff6f7d96c314dc39cd92f26.

[3] Seagate, “New Flex Dynamic Recording Method Redefines
the Data Center Hard Drive”: https://blog.seagate.com/intel-
ligent/new-flex-dynamic-recording-method-redefines-data-
center-hard-drive/.

[4] Western Digital, Dynamic Hybrid SMR: https://itblog.
sandisk.com/dynamic-hybrid-smr/.

[5] E. Hwang, J. Park, R. Rauschmayer, and B. Wilson, “Inter-
laced Magnetic Recording (IMR),” Journal of Transactions on
Magnetics, vol. 53, no. 4 (April 2017): http://ieeexplore.ieee.
org/document/7781604/.

[6] T. Feldman and G. Gibson, “Shingled Magnetic Recording:
Areal Density Increase Requires New Data Management,”
;login:, vol. 38, no. 3 (USENIX, June 2013): https://goo.gl/
wj5Doi.

48  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE

Miniature Cache Simulations for Modeling
and Optimization

W e present a surprisingly simple technique that accurately models
the behavior of a cache with any policy by simulating a scaled-
down miniature cache with a small, spatially hashed sample of

requests. We also demonstrate how to leverage such models to optimize
caches dynamically, using scaled-down simulations to explore multiple cache
configurations simultaneously.

Caches are ubiquitous in modern computing systems, improving system performance by
exploiting locality to reduce access latency and offload work from contended storage systems
and interconnects. A wide variety of caches have been implemented in hardware and soft-
ware, clients and servers, storage arrays, key-value stores, and other system infrastructure.

By definition, a cache is a small, fast memory backed by larger, slower storage. As a result,
cache space is inherently scarce, and methods that can better utilize this space are extremely
valuable. Techniques for accurate and efficient cache modeling are especially important for
informing cache allocation and partitioning decisions, optimizing cache parameters, and
supporting goals including performance, isolation, and quality of service.

However, caches are notoriously difficult to model. It is well known that performance is
non-linear in cache size due to complex effects that vary enormously by workload. Although
recent research has produced practical models for LRU caches, there has been no general,
lightweight solution for more sophisticated policies, such as ARC [7], LIRS [4], and 2Q [5].

Modeling Caches with MRCs
Cache utility curves plot a performance metric as a function of cache size. Figure 1 shows an
example miss-ratio curve (MRC), which plots the ratio of cache misses to total references for
a workload (y-axis) as a function of cache size (x-axis). The miss ratio generally decreases as
cache size increases, although complex algorithms such as ARC and LIRS can exhibit non-
monotonic behavior due to imperfect dynamic adaptation.

MRCs are valuable for analyzing cache behavior. Assuming a workload exhibits reason-
able stationarity at the time scale of interest, its MRC can also predict future performance.
Thus, MRCs are powerful tools for optimizing cache allocations to improve performance and
achieve service-level objectives.

Mattson et al. introduced a method for constructing MRCs for stack algorithms—for example,
LRU, LFU, etc.—that yields the entire MRC for all cache sizes in a single pass over a trace [6].
Efficient modern implementations of this algorithm have an asymptotic cost of O(N log M)
time and O(M) space for a trace of length N containing M unique blocks. Recent approxima-
tion techniques can construct accurate MRCs with dramatically lower costs than exact
methods. In particular, SHARDS [9] and AET [3] require only O(N) time and O(1) space, with
a tiny footprint of approximately 1 MB. However, for more complex non-stack algorithms,
such as ARC and LIRS, there are no known single-pass methods. As a result, separate runs
are required for each cache size, similar to pre-Mattson modeling of LRU caches.

Carl Waldspurger is an
Independent Consultant and
Technical Advisor, collaborating
on research and development
projects with several companies.

Carl has a PhD in computer science from MIT
and has served as program chair for USENIX
ATC, FAST, and VEE. His research interests
include resource management, virtualization,
caching, computer architecture, and security.
carl@waldspurger.org

Trausti Saemundsson is a
Software Engineer at Google
working on datacenter software.
He has an MSc in computer
science from Reykjavik

University in Iceland. His research interests are
systems, analytics, caching, machine learning,
security, and optimizations. He has papers
published at SoCC, USENIX ATC, and GLBIO.
trauzti@gmail.com

Irfan Ahmad is the founder of
CachePhysics. Irfan works on
interdisciplinary endeavors
in memory, storage, CPU,
and distributed resource

management. He has published at ACM,
USENIX, and IEEE. He has served as program
chair for HotCloud, HotStorage, and HotEdge.
mr.irfan@gmail.com

Nohhyun Park is a Software
Engineer at DatosIO working on
data protection for distributed
databases. He has a PhD
in electrical and computer

engineering from the University of Minnesota
and is interested in workload characterization
and performance modeling for large-scale
systems. nohhyun.park@datos.io

C A R L A . W A L D S P U R G E R , T R A U S T I S A E M U N D S S O N , I R F A N A H M A D , A N D N O H H Y U N P A R K

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 49

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

Miniature Simulation
The main idea behind miniature simulation is to approximate
the behavior of a large cache by simulating a tiny one that pro-
cesses only a tiny sample of its requests. Typically, the cache size
and the input reference stream are both scaled down by several
orders of magnitude.

A mini-simulation runs the full, unmodified cache replacement
algorithm, making it possible to model any caching algorithm,
including even ad hoc modifications often found in production
systems. The miss ratio and other metrics are determined by
simply extracting the usual statistics from the mini-cache, such
as counts of misses and references. An adjustment that instead
uses the expected number of references reduces bias due to sam-
pling error significantly [8].

The reference stream is scaled down by using hashing to ran-
domly sample the key space. A reference is sampled only when
the hash value of its associated key is smaller than a threshold
T that defines the sampling rate R. This approach is similar to
our earlier work on SHARDS and is also related to sharding in
distributed databases. Depending on the cache, a key may be
a memory address, a logical block number for disk storage, or
a string, as in a key-value store. The effectiveness of scaling
depends on statistical self-similarity—that a randomized sample
is fairly representative of the whole. As we will see, this is a good
assumption that holds well in practice.

Figure 2 depicts a full-size cache and its input references, along
with two scaled-down versions. To randomly sample the input,
simple temporal sampling, such as flipping a coin for each refer-
ence, doesn’t work. We must ensure that all references to the
same key are always sampled or we will be blind to reuses that
are central to caching behavior. Instead, randomized spatial
sampling is implemented by selecting references based on deter-
ministic hashes of their keys. In the figure, hash values are rep-

resented visually with shading. Scaling down by a factor of two
results in a cache with half the size, and an input stream from
half the key space, for example, by sampling a key only when the
high-order bit of its hash is zero, shown as yielding half of the
original shades. Similarly, scaling down by a larger factor of 128
shrinks both the cache size and the key space more dramatically.

Scaling the key space and the cache size by the same amount
maintains the same pressure on a mini-cache as the full-size
cache, so it should exhibit approximately the same behavior. A
cache of size S can be emulated by scaling down the cache size to
R ⋅ S and scaling down the reference stream using a hash-based
spatial filter with sampling rate R. In practice, sampling rates
on the order of R = 0.01 or R = 0.001 yield very accurate results,
achieving huge reductions in space and time compared to a con-
ventional full-size simulation.

More generally, scaled-down simulation need not use the same
scaling factor for both the miniature cache size and its reference
stream. The emulated cache size Se, mini-cache size Sm, and
input sampling rate R are related by Se = Sm / R. Thus, Se may be
emulated by specifying a fixed rate R, and using a mini-cache
with size Sm = R ⋅ Se, or by specifying a fixed mini-cache size
Sm and sampling its input with rate R = Sm / Se. In practice, it is
useful to enforce reasonable constraints on the minimum mini-
cache size (e.g., Sm ≥100) and sampling rate (e.g., R ≥ 0.001) to
ensure sufficient cache space and enough sampled references to
simulate meaningful behavior.

Scaled-Down MRCs
For non-stack algorithms, there are no known methods capable
of constructing an entire MRC in a single pass over a trace.
Instead, MRC construction requires a separate run for each
point on the MRC, corresponding to multiple discrete cache
sizes. Fortunately, we can leverage miniature caches to emulate
each size efficiently.

We evaluate the accuracy and performance of our approach with
three diverse non-LRU cache replacement policies: ARC [7],
LIRS [4], and the theoretically optimal OPT [2]. We use a col-
lection of 137 real-world storage block trace files, similar to the

C A R L A . W A L D S P U R G E R , T R A U S T I S A E M U N D S S O N , I R F A N A H M A D , A N D N O H H Y U N P A R K

Figure 1: Example MRC. Miss-ratio curve for a production disk block trace
using the ARC cache algorithm. The ratio of cache misses to total refer-
ences is plotted as a function of cache size.

Figure 2: Scaling Down. Both the cache size and input reference stream
are scaled down by factors of 2 and 128; each exhibits similar behavior.
Only keys that fall within a subset of the hash space are sampled.

50  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

SHARDS evaluation [9]. These represent 120 week-long virtual
disk traces from production VMware environments collected by
CloudPhysics, 12 week-long enterprise server traces collected
by Microsoft Research Cambridge, and five day-long server
traces collected by FIU. For our experiments, we use a 16-KB
cache block size, and misses are read from storage in aligned,
fixed-size 16-KB units. Reads and writes are treated identically,
effectively modeling a simple write-back caching policy.

Accuracy
For each trace, we compute MRCs at 100 discrete cache sizes,
spaced uniformly between zero and a maximum cache size. To
ensure these points are meaningful, the maximum cache size is
calculated as the aggregate size of all unique blocks referenced
by the trace.

Figure 3 contains 12 small plots that illustrate the accuracy
of approximate MRCs with R = 0.001 on example traces with
diverse MRC shapes and sizes. In most cases, the approximate
and exact curves are nearly indistinguishable. In all cases,
miniature simulations model cache behavior accurately, includ-
ing complex non-monotonic behavior by ARC and LIRS. These
compelling results with such diverse algorithms and workloads
suggest that scaled-down simulation is capable of modeling
nearly any caching algorithm.

To quantify accuracy, we compute the difference between the
approximate and exact miss ratios at each discrete point on the
MRC, and aggregate these into a mean absolute error (MAE)
metric, as in related work [9, 3]. The box plots in Figure 4 show
the MAE distributions for ARC, LIRS, and OPT with sampling
rates R = 0.01 and R = 0.001. The average error is surprisingly
small in all cases. For R = 0.001, the median MAE for each

 algorithm is below 0.005, with a maximum of 0.033. With R = 0.01,
the median MAE for each algorithm is below 0.002, with a maxi-
mum of 0.012.

Performance
For our performance evaluation, we used a platform configured
with a six-core 3.3 GHz Intel Core i7-5820K processor and 32 GB
RAM, running Ubuntu 14.04. Experiments compare traditional
exact simulation with our lightweight scaled-down approach. In
all cases, simulations track only metadata, and do not store data
blocks.

Resource consumption was measured using our five largest
traces. We simulated three cache algorithms at five emulated
sizes Se (8 GB, 16 GB, 32 GB, 64 GB, and 128 GB), using multiple

Figure 3: Example Mini-Sim MRCs. Exact and approximate MRCs for 12 representative traces. Approximate MRCs are constructed using scaled-down
simulation with sampling rate R = 0.001. Each line type represents a different cache algorithm.

Figure 4: Error Analysis. Distribution of mean absolute error for all 137
traces with three algorithms (ARC, LIRS, OPT) at two different sampling
rates (R = 0.01, R = 0.001).

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 51

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

sampling rates R (1, 0.1, 0.01, and 0.001) for a total of 60 experi-
ments per trace.

Unsurprisingly, the memory footprint for cache simulation is a
simple linear function consisting of fixed overhead (for policy
code, libraries, etc.) plus variable space. For ARC and LIRS, the
variable component is proportional to the cache size, R ⋅ Se. For
OPT, which must track all future references, it is proportional
to the number of sampled references, R ⋅ N. Table 1 reports the
fixed and variable components of the memory overhead deter-
mined by linear regression (r 2 > 0.99). As expected, accurate
results with R = 0.001 require 1000x less space than full simula-
tion, excluding the fixed overhead.

We also measured the CPU usage consumed by our single-
threaded cache implementations with both exact and scaled-
down simulations for ARC, LIRS, and OPT. The runtime
consists of two main components: cache simulation, which is
roughly linear in R, and sampling overhead, which is roughly
constant; each reference must be hashed to determine if it should
be sampled. The scaled-down simulation with R = 0.001 requires
about 10x less CPU time than full simulation, and achieves
throughput exceeding 53 million references per second for ARC
and LIRS, and 39 million references per second for OPT. Fortu-
nately, for multi-model optimization, hash-based sampling costs
are incurred only once, not for each mini-cache. In an actual pro-
duction cache, the cost of data copying would dwarf the hashing
overhead. Moreover, a separate hash for sampling isn’t needed
if one is already available; storage caches and key-value stores
typically hash keys for performing lookups.

Cache Optimization
A single cache instance runs with a single policy and a single set
of configuration parameters. Unfortunately, policy and parame-
ter tweaking is typically performed only at design time, consid-
ering few benchmarks.

Low-cost online modeling allows efficient instantiation of
multiple concurrent models with different cache configurations,
offering a powerful framework for dynamic optimization. Quan-
tifying the impact of hypothetical parameter changes allows the

best settings to be applied to the actual cache. Such a multi-
model approach can optimize cache block size, write policy,
algorithm-specific tunables, or even replacement policy.

Lightweight MRCs can also guide efficient cache sizing,
allocation, and partitioning for both individual workloads and
complex multi-workload environments. For example, Talus [1],
which requires an MRC as input, can remove performance cliffs
within a single workload and improve cache partitioning across
workloads.

Adapting Cache Parameters
As illustrated in Figure 5, our multi-model optimization frame-
work leverages miniature simulations to evaluate the impact of
different candidate parameter values. The best setting is applied
to the actual cache periodically. We have implemented optimiza-
tions that adapt tunable parameters automatically for two well-
known cache policies, LIRS [4] and 2Q [5], but we discuss only
the LIRS results; the results for 2Q are similar [8].

While MRCs are typically stable over short time periods, they
frequently vary over longer intervals. To adapt dynamically
to changing workload behavior, we divide the input reference
stream into a series of epochs. Our experiments use epochs
consisting of one million references, although many alternative
definitions based on wall-clock time, evictions, or other metrics
are possible.

After each epoch, we calculate an exponentially weighted mov-
ing average (EWMA) of the miss ratio for each mini-cache to
balance historical and current cache behavior. Our experiments
use an EWMA weight of 0.2 for the current epoch. The param-
eter value associated with the mini-cache exhibiting the lowest
smoothed miss ratio is applied to the actual cache for the next
epoch.

LIRS Adaptation
We adapt the size of the LIRS S stack, which controls the num-
ber of metadata-only ghost entries that are tracked [4], by setting
f, a parameter that specifies the size of S as a fraction of the over-

Table 1: Memory Footprint. Memory usage for ARC and LIRS is linear in
the cache size, R ⋅ Se, while for OPT, it is linear in the number of sampled
references, R ⋅ N. Measured values are shown for CloudPhysics trace t22
with Se = 64 GB.

Linear Function Example Trace (t22)
Policy Fixed Variable R=.001 R=1
ARC 1.37 MB 71 B 1.57 MB 284 MB

LIRS 1.59 MB 75 B 1.80 MB 301 MB

OPT 7.10 MB 37 B 19.55 MB 18,519 MB

Figure 5: Online Optimization. Simultaneous miniature simulations enable
automatic selection of the best parameter setting.

52  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

all cache [8]. For each workload, five scaled-down simulations
are performed with different values for f: 1.1, 1.5, 2.0, 2.5, and 3.0.
Each simulation emulates the same cache size, equal to the size
of the actual cache, with a fixed sampling rate R = 0.005. After
each epoch consisting of one million references, the miss ratios
for each mini-cache are examined, and the best f value is applied
to the actual cache.

Figure 6 presents the best-case and worst-case results across
the 12 MSR traces. The goal of automatic LIRS adaptation is to
find the best value of f for each cache size. These ideal static set-
tings form an MRC that traces the lower envelope of the curves
for different static f values, plotted as the dashed curve. Simi-
larly, the dotted curve shows the MRC with the pessimal static f
setting at each cache size. The auto-adapted results for msr_src2
hug the ideal lower envelope closely at nearly all cache sizes. In
contrast, msr_proj deviates from the ideal for many cache sizes,
but still does well for others. We are currently experimenting
with techniques that automatically disable adaptation when it is
ineffective.

SLIDE
SLIDE (Sharded List with Internal Differential Eviction) is a
completely different cache optimization technique that leverages
scaled-down MRCs constructed by running miniature simula-
tions. SLIDE was inspired by Talus [1], a powerful technique
introduced in the computer architecture community for set-
associative processor caches. Talus removes performance cliffs
using interpolation to effectively operate at a point on the convex
hull of an MRC—the shape formed by stretching a rubber band
across the bottom of the curve. In the presence of cliffs, the large
gap between an MRC and its convex hull represents a significant
optimization opportunity.

Talus uses hash-based partitioning to divide the reference
stream for a single workload into two shadow partitions, alpha
and beta, which operate as separate sub-caches. Each partition is
made to emulate the performance of a smaller or larger cache by
controlling its size and its input load, represented by the fraction
of the reference stream it receives. Talus requires the workload’s
MRC as an input and computes the partition sizes and their
respective loads in a clever manner that ensures their combined
aggregate miss ratio lies on the convex hull of the MRC. We view
the hash-based partitioning employed by Talus for optimization
and our hash-based monitoring for efficient modeling as two
sides of the same coin. Both rely on the property that hash-based
sampling produces a smaller reference stream that is statisti-
cally self-similar to the original stream.

One key challenge with applying Talus to non-stack algorithms
is constructing MRCs efficiently at runtime. Fortunately,
scaled-down models provide a convenient solution. As with
parameter adaptation, we divide the input reference stream into
a series of epochs. After each epoch, we construct a discretized
MRC from multiple scaled-down simulations with different
cache sizes, smoothing each miss ratio using an EWMA. We
then identify the subset that forms the convex hull for the MRC,
and compute the optimal partition sizes and loads using the
same inexpensive method as Talus.

Non-LRU Shadow Partitioning Challenges
In theory, combining scaled-down MRCs with Talus shadow
partitioning can improve the performance of any caching policy
by interpolating efficient operating points on the convex hulls of
workload MRCs. In practice, it was much more difficult than we
expected to apply Talus to caching algorithms such as ARC and
LIRS.

Talus requires distinct cache instances for its alpha and beta
partitions, which have a fixed aggregate size. This hard division
becomes problematic in systems where partition boundaries
change dynamically as MRCs evolve over time. Similarly, when
per-partition input loads change dynamically, some cache entries
may reside in the “wrong” partition based on their hash values.

Eager strategies, such as removing cache entries when decreas-
ing the size of a partition or migrating entries across partitions
to ensure each resides in the correct partition, perform poorly
since migration is expensive and data may be evicted from one
partition before the other needs the space. Moreover, it’s not
clear how migrated state should be integrated into its new parti-
tion, since list positions are not ordered across partitions.

Lazy strategies for reallocation and migration fare better but
complicate the core caching logic. More importantly, while
migrating to the MRU position on a hit seems reasonable for an

Figure 6: Adaptive Parameter Tuning. Dynamic optimization selects
good values for the LIRS f parameter at most sizes with potential gains.
The msr_src2 and msr_proj workloads show the best- and worst-case
results for the MSR traces.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 53

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

LRU policy, it’s not clear how to merge state appropriately for
more general algorithms.

Transparent Shadow Partitioning
Faced with these challenges, we developed SLIDE. In contrast to
Talus, SLIDE maintains a single unified cache and defers parti-
tioning decisions until eviction time, conveniently avoiding the
resizing, migration, and complexity issues discussed above.

A SLIDE list is a new abstraction that serves as a drop-in
replacement for the standard LRU list used as a common
building block by many sophisticated algorithms. Since SLIDE
interposes on primitive LRU operations that add, reference, and
evict entries, it is transparent to cache replacement decisions.
An unmodified algorithm can support Talus-like partitioning
by simply relinking to substitute SLIDE lists for existing ones.
We have optimized ARC (T1, T2, B1, and B2), LIRS (S and Q), 2Q
(Am, A1in, and A1out), and LRU in this manner.

SLIDE extends a conventional doubly linked LRU list, which
remains totally ordered from MRU (head) to LRU (tail). Each
entry is augmented with a compact hash of its key, which is
compared to a current threshold that dynamically classifies it
as belonging to either the alpha or beta “partition.” Additional
state supports efficient SLIDE versions of all list operations [8].
SLIDE preferentially evicts from the tail of the over-quota
partition.

It is not obvious that substituting SLIDE lists for internal lists
will approximate Talus partitions. The basic intuition is that
configuring each internal list with identical SLIDE partition
sizes and input loads effectively divides the occupancy of each
individual list—and therefore the entire aggregate algorithm
state—to achieve the desired split between alpha and beta. While
SLIDE may differ from strict Talus partitioning, it empirically
works well for ARC, LIRS, 2Q, and LRU.

Experiments
For each workload, a separate experiment is performed at 100
cache sizes. For each size, a discrete MRC is constructed via
multiple scaled-down simulations with sampling rate R = 0.005.
SLIDE is reconfigured after each one million-reference epoch,
using an EWMA weight of 0.2.

Seven emulated cache sizes are positioned exponentially around
the actual size, using relative scaling factors of 1/8, 1/4, 1/2, 1,
2, 4, and 8. For R = 0.005, the mini-cache metadata is approxi-
mately 8% of the actual metadata size (R times the sum of the
scaling factors), representing less than 0.04% of total memory
consumption for an actual cache. Alternative configurations
provide different tradeoffs between time, space, and accuracy.

Figure 7 plots some example results of SLIDE performance
cliff reduction for LIRS and ARC policies with workloads that
exhibit cliffs. Ideally, SLIDE would trace the convex hull of the
original MRC. In practice, this is not attainable, since the MRC
evolves dynamically, and its few discrete points yield a crude
convex hull. Nevertheless, for these examples, SLIDE captures a
significant fraction of the potential gain, represented by the area
between the MRC and its convex hull: 69% for LIRS and 38% for
ARC. For workloads with MRCs that are already mostly convex,
there is little opportunity for improvement, so SLIDE typically
yields marginal benefits.

Conclusion
We have explored the use of miniature caches for modeling and
optimizing cache performance. Compelling experimental results
demonstrate that scaled-down simulation works extremely well
for a diverse collection of complex caching algorithms—includ-
ing ARC, LIRS, and OPT—across a wide range of real-world
traces. This suggests our technique is a robust method capable of
modeling nearly any cache policy accurately and efficiently.

Lightweight modeling has many applications, including online
analysis and control. We presented a general method that runs
scaled-down simulations to evaluate hypothetical configura-
tions, and applied it to optimize tunable cache policy parameters
automatically. We also introduced SLIDE, a new transparent
technique that performs Talus-like performance cliff removal.

Miniature caches offer the tantalizing possibility of improving
performance for most caching algorithms on most workloads
automatically. We hope to make additional progress in this
direction by exploring opportunities to refine and extend our
optimization techniques.

Figure 7: SLIDE Cliff Reduction. Scaled-down MRCs are constructed dy-
namically from seven mini-cache simulations. SLIDE improves miss ratios
for LIRS and ARC at most sizes with potential gains but does exhibit some
regressions.

54  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Miniature Cache Simulations for Modeling and Optimization

References
[1] N. Beckmann and D. Sanchez, “Talus: A Simple Way to
Remove Cliffs in Cache Performance,” in Proceedings of the
21st International Symposium on High Performance Computer
Architecture (HPCA-21) (February 2015): https://people.csail
.mit.edu/sanchez/papers/2015.talus.hpca.pdf.

[2] L. A. Belady, “A Study of Replacement Algorithms for Virtual
Storage Computers,” IBM Systems Journal, vol. 5, no. 2 (1966),
pp. 78–101: http://users.informatik.uni-halle.de/~hinnebur
/Lehre/Web_DBIIb/uebung3_belady_opt_buffer.pdf.

[3] X. Hu, X. Wang, L. Zhou, Y. Luo, C. Ding, and Z. Wang, “Kinetic
Modeling of Data Eviction in Cache,” in Proceedings of the 2016
USENIX Annual Technical Conference (ATC ’16), pp. 351–364:
https://www.usenix.org/conference/atc16/technical-sessions
/presentation/hu.

[4] S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Refer-
ence Recency Set Replacement Policy to Improve Buffer Cache
Performance,” in Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’02), pp. 31–42: http://web
.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers
/TR-02-6.pdf.

[5] T. Johnson and D. Shasha, “2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm,” in
Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB ’94), pp. 439–450: http://www.vldb.org/conf
/1994/P439.PDF.

[6] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evalu-
ation Techniques for Storage Hierarchies,” IBM Systems Jour-
nal, vol. 9, no. 2 (June 1970), pp. 78–117.

[7] N. Megiddo and D. S. Modha, “ARC: A Self-Tuning, Low
Overhead Replacement Cache,” in Proceedings of the 2nd
 USENIX Conference on File and Storage Technologies (FAST
’03), pp. 115–130: http://www2.cs.uh.edu/~paris/7360
/PAPERS03/arcfast.pdf.

[8] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park,
“Cache Modeling and Optimization Using Miniature Simula-
tions,” in 2017 USENIX Annual Technical Conference (ATC ’17),
pp. 487–498: https://www.usenix.org/system/files/conference
/atc17/atc17-waldspurger.pdf.

[9] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad,
“Efficient MRC Construction with SHARDS,” in Proceedings
of the 13th USENIX Conference on File and Storage Technologies
(FAST ’15), pp. 95–110: https://www.usenix.org/system/files
/conference/fast15/fast15-paper-waldspurger.pdf.

https://people.csail.mit.edu/sanchez/papers/2015.talus.hpca.pdf
https://people.csail.mit.edu/sanchez/papers/2015.talus.hpca.pdf
http://users.informatik.uni-halle.de/~hinnebur/Lehre/Web_DBIIb/uebung3_belady_opt_buffer.pdf
http://users.informatik.uni-halle.de/~hinnebur/Lehre/Web_DBIIb/uebung3_belady_opt_buffer.pdf
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc16/technical-sessions/presentation/hu
http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-02-6.pdf
http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-02-6.pdf
http://web.cse.ohio-state.edu/hpcs/WWW/HTML/publications/papers/TR-02-6.pdf
http://www.vldb.org/conf/1994/P439.PDF
http://www.vldb.org/conf/1994/P439.PDF
http://www2.cs.uh.edu/~paris/7360/PAPERS03/arcfast.pdf
http://www2.cs.uh.edu/~paris/7360/PAPERS03/arcfast.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-waldspurger.pdf
https://www.usenix.org/system/files/conference/atc17/atc17-waldspurger.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-waldspurger.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-waldspurger.pdf

NSDI focuses on the design principles, implementation, and practical evaluation of networked and dis-
tributed systems. The symposium provides a high-quality, single-track forum for presenting results and
discussing ideas that further the knowledge and understanding of the networked systems community as
a whole, continue a significant research dialog, or push the architectural boundaries of network services.

The program includes three days of technical sessions, a poster session, and evening Birds-of-a-Feather
sessions (BoFs).

Register by March 19 and save!

April 9–11, 2018 • Renton, WA, USA

15th USENIX Symposium on Networked Systems
Design and Implementation18

Register Now!

www.usenix.org/nsdi18

18 13th USENIX Symposium on Operating Systems
Design and Implementation

October 8–10, 2018 • Carlsbad, CA, USA
OSDI brings together professionals from academic and industrial backgrounds in what has become a

premier forum for discussing the design, implementation, and implications of systems software. The

OSDI Symposium emphasizes innovative research as well as quantifi ed or insightful experiences in

systems design and implementation.

Abstract registrations are due April 26, 2018.

Program Co-Chairs:
Andrea Arpaci-Dusseau, University of Wisconsin—Madison

 and Geoff Voelker, University of California, San Diego

Save the Date!

www.usenix.org/osdi18

56  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNSUsing gRPC with Go
C H R I S “ M A C ” M C E N I R Y

In the past few articles, we’ve used Go’s net/rpc library to build a simple
file metadata server. In this article, we’re going to look at using gRPC
(https://grpc.io) to fulfill the same purpose.

gRPC has many advantages over the built-in RPC library, namely:

◆◆ Fast and efficient network communication

◆◆ Ability to stream inputs and outputs

◆◆ Automatic transport encryption

◆◆ Ability to interact with other languages

◆◆ Ready extensions to support authentication and connection handling.

gRPC is typically boiled down to the description “Protobuf messages over HTTP/2.” This is
true to a first pass, but it also encompasses the libraries, middleware extensions, and inter-
actions with other languages.

For the sake of brevity, some sections of the code examples here are left out. The full code for
this example can be found at https://github.com/cmceniry/login-grpcls.

Getting Started
Our service building story goes a little something like this:

◆◆ First, we have to get the protobuf tools and gRPC Golang libraries.

◆◆ Next, we’ll create a language-independent protobuf definition for our service.

◆◆ With the protobuf definition in hand, we’ll generate Golang hooks.

◆◆ After that, we can fill in our interactions with those hooks.

◆◆ And finally, we can compile and run.

Getting the Tools
Building gRPC applications requires a couple of tools. The first is protoc which is the
language-independent protobuf compiler. The second is the protoc-gen-go plugin which is
used to generate Golang code for the data and interface types. In addition, we’re going to need
the Golang grpc library.

The installation for protoc depends on your platform. It is packaged up for various platforms
(rpm, brew, etc.), but when in doubt you can get it from the official release location: https://
github.com/google/protobuf/releases.

For the Golang-specific items, you can grab these with the go get command.

 go get -u google.golang.org/grpc

 go get -u github.com/golang/protobuf/protoc-gen-go

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

https://grpc.io
https://github.com/cmceniry/login-grpcls
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
google.golang.org/grpc
github.com/golang/protobuf/protoc-gen-go

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 57

COLUMNS
Using gRPC with Go

The former is a library, and it is possible to alternatively vendor
it and manage it with dep. The latter produces the protoc-gen-

go executable, so it needs to be installed in such a way that that
is available, typically with a go get into the home workspace.
However you choose to install it, you will want to make sure that
its location is in your PATH since protoc will look there for it. For
the above, you can use

 export PATH=${PATH}:~/go/bin

Now that we have a good environment, we can move on to work-
ing on the code. If you’re following the go get commands from
above, you can grab the example code and change into that direc-
tory now. This is dependent on the TLS credentials generated by
the previous login-glss, so we’ll need to get that and create the
certificates first.

 go get -u github.com/cmceniry/login-glss

 go get -u github.com/cmceniry/login-grpcls

 cd ~/go/src/github.com/cmceniry/login-glss

 go run certs/generate_certs.go

 cd ../login-grpcls

The Protobuf Definition File
Like any protobuf protocol, gRPC starts with a .proto file. On
a first pass, this is a simplified description of the messages that
will be transported over the connection. Specifically for gRPC
(well, RPCs in general, but other implementations are rare), it is
also a description of the services and their interfaces, which use
these messages.

To determine what should be in our .proto file, we need to think
about what we’re passing back and forth between the client and
the server. To mirror glss, we will want to pass from the client to
the server the Path that we’re going to be using. From the server
to the client, the resulting File information blocks for the client-
supplied path. In addition, we want an RPC to call LS. The RPC
semantics in .proto also define a service, Lister, which encapsu-
lates several RPCs and properties.

So we’ll want to define the following four items in our .proto:
Path, File, LS, and Lister, for which we’ll need a bit of boiler-
plate. We are telling protobuf which version we’ll be using, and
we need to wrap our collection of services and messages into a
package.

 syntax = “proto3”;

 package directorycontents;

Next, we need to define what will be transporting over our
connections: Path and File. We will structure these as mes-

sage items that will be used in our remote calls. message is
the generic type for data passing between the client and server,
regardless of whether it is a parameter or return value. Each

 message is a combination of a message type name and specific
typed fields that are of meaning in that message.

First, we’ll tackle Path, which just has a single field in it, string
name.

 message Path {

 string name = 1;

 }

The 1 associated with name is a field numeric ID to allow for
compatibility between clients and servers of different versions.
This allows for nonbreaking changes to the API without having
to upgrade every client and server out there. You can enable
new fields by appending to the end with a new number. You can
change existing fields by adding a new field with the appropri-
ate changes for the old field. You will end up populating both
fields for a period of time, but it does allow for newer servers and
clients to speak to both current and old versions of themselves.

Next, we’ll build out our File response. It also has a string name,
as well as size, mode, and modtime:

 message File {

 string name = 1;

 int64 size = 2;

 string mode = 3;

 string modtime = 4;

 }

Now that we have our two message definitions, we can move on
to our service definition. Since we’re providing a generalized
directory lister service, we’re going to call this Lister. As men-
tioned, this will contain our collection of RPC calls (in this case,
it’s just one). Each RPC has a list of inputs and outputs (in this
case, it’s just Path and File).

 service Lister {

 rpc LS (Path) returns (stream File) {}

 }

As mentioned in the introduction, gRPC allows us to stream
inputs and outputs. In this case, we’re going to call LS with a sin-
gle input item Path, but we’re going to get back a large list of File
blocks. For efficiency and demonstrative purposes, we’re going
to stream the File responses—hence the stream modifier in the
LS return values. We could have wrapped them all up in an array,
but this way we don’t need to maintain all of that in memory as
we go through it. As we’ll see in the application code, once a file
is found, it can immediately be sent back to the client.

Generating gRPC Code
Now that we have the data types and function-call semantics, we
want to put this language-independent form into something that

github.com/cmceniry/login-glss
github.com/cmceniry/login-grpcls
github.com/cmceniry/login-glss

58  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNS
Using gRPC with Go

we can use in Golang. This is where protoc and protoc-gen-go
come into play. From the root of our project:

 protoc --go_out=plugins=grpc:. \

 directorycontents/directorycontents.proto

This invokes protoc and tells it to use the proto-gen-go with the
gRPC plugin to process our .proto file. This will produce direc-

torycontents/directorycontents.pb.go.

The full file is a bit much to go over in this article, but its key
contributions are:

◆◆ It defines Go native structs for Path and File:

 type Path struct {

 Name string protobuf:”bytes,1,opt,name=name”

json:”name,omitempty”

 }

 ...

 type File struct {

 Name string protobuf:”bytes,1,opt,name=name”

json:”name,omitempty”

 Size int64 protobuf:”varint,2,opt,name=size”

json:”size,omitempty”

 Mode string protobuf:”bytes,3,opt,name=mode”

json:”mode,omitempty”

 Modtime string protobuf:”bytes,4,opt,name=

 modtime”

json:”modtime,omitempty”

 }

◆◆ These each have some accessor functions to them, or you can
manipulate the struct field directly.

◆◆ It defines a ListerClient interface (with accompanying con-
structor func). This interface is how we’re going to call the
gRPC functions from our code. Specifically, we’re going to be
calling the LS function on the return ListerClient interface.

 type ListerClient interface {

 LS(ctx context.Context, in *Path, opts

...grpc.CallOption) (Lister_LSClient, error)

 }

 ...

 func NewListerClient(cc *grpc.ClientConn) ListerClient {

◆◆ It defines the ListerServer interface for the server side. We’re
going to build a struct that implements this interface as our
way of responding to gRPC calls. Related to this, it defines the
Lister_LSServer interface that is used specifically for our out-
let to send responses to the LS calls.

 type ListerServer interface {

 LS(*Path, Lister_LSServer) error

 }

 ...

 type Lister_LSServer interface {

 Send(*File) error

 ...

The Server Implementation
Now it’s time to focus on our application code, starting with the
server side. gRPC has presented us with an interface that we
need to implement. As mentioned in the last section, we’re going
to implement the ListerServer.

Since this is Golang code, let’s take care of the imports. Com-
mon practice is to import the generated .proto definitions with
the alias name of pb. In addition, we’re going to import the grpc
library itself, and the grpc/reflection library to support API
information sharing.

 import (

 pb “github.com/cmceniry/login-grpcls/directorycontents”

 “google.golang.org/grpc”

 “google.golang.org/grpc/credentials”

 “google.golang.org/grpc/reflection”

Next, we’ll divide the server into two parts. The first is the
actual remote procedure to be called LS. The second is wiring up
everything.

Since ListerServer is an interface, we need to set up two parts to
it: a struct and the supporting member methods.

 type server struct{}

 func (s *server) LS(p *pb.Path, fileInfoStream

pb.Lister_LSServer) error {

You can wrap this up with much more, but for this example, our
struct is as simple as can be. The func signature for LS must
match the one from directorycontents.pb.go. Note that the
gRPC response values are not a part of the return values from
the function. Since we’re going to stream the results back, we
will be working with the fileInfoStream value as our conduit to
send the data back while inside of our function.

The remainder of the func uses filepath.Walk just as the original
gls and glss servers did. It only has modifications to handle send-
ing the data directly back on the fileInfoStream.

 err := filepath.Walk(p.Name, func(path string, info

os.FileInfo, err error) error {

github.com/cmceniry/login-grpcls/directorycontents
google.golang.org/grpc
google.golang.org/grpc/credentials
google.golang.org/grpc/reflection

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 59

COLUMNS
Using gRPC with Go

 f := &pb.File{

 Name: info.Name(),

 Size: info.Size(),

 Mode: info.Mode().String(),

 Modtime: info.ModTime().Format(“Jan _2 15:04”),

 }

 err = fileInfoStream.Send(f)

In this, we’re converting every os.FileInfo we see as we receive
it. For it to go over the gRPC connection, it has to be in the form
of the messages from the .proto. Here, we convert it to pb.File,
which allows us to send it back using fileInfoStream.Send. To
reiterate, this is happening as we see every file, so we don’t have
to construct any intermediate arrays before sending them all
back.

Finally, on the server, we need to wire the network level up to our
ListerServer. We’ll start with a standard TCP network listener.

 func main() {

 l, err := net.Listen(“tcp”, “:4270”)

Since we want to enable TLS authentication, we need to prepare
that. The first part is to load in the certificates and keys. This is
identical to the way that we loaded them in login-glss.

 certificate, err := tls.LoadX509KeyPair(

 “../login-glss/certs/server.crt”,

 “../login-glss/certs/server.key”,

)

 if err != nil {

 log.Fatalf(“could not load client key pair: %s”, err)

 }

 caCert, err := ioutil.ReadFile(“../login-glss/certs/CA.crt”)

 if err != nil {

 log.Fatal(err)

 }

 caCertPool := x509.NewCertPool()

 caCertPool.AppendCertsFromPEM(caCert)

With the credentials loaded, we need to format these for gRPC
to use. This involves wrapping a typical tls.Config struct with
a grpc.credentials struct. It’s the latter that is used by the
gRPC services. Much like the glss server, we need to provide
our certificate and configure the pool and flag for client auth. In
addition, we need to ensure that our expected TLS ServerName
is supplied so that the client can validate against that.

 creds := credentials.NewTLS(&tls.Config{

 ServerName: “localhost”,

 Certificates: []tls.Certificate{certificate},

 ClientCAs: caCertPool,

 ClientAuth: tls.RequireAndVerifyClientCert,

 })

Next, we create a grpc.Server struct, then register a List-
erServer with it. When creating the grpc.Server, we indicate
that we’re using the TLS configuration that we just set up.

 s := grpc.NewServer(grpc.Creds(creds))

 pb.RegisterListerServer(s, &server{})

Next, we enable information on the service via the grpc/reflec-

tion library. This is an optional step that allows generic gRPC
clients to interact with our Lister service. You can inspect the
information exposed using the gRPC command line tool found at
https://github.com/grpc/grpc/blob/master/doc/command_line
_tool.md.

 reflection.Register(s)

Finally, we can start the grpc.Server by telling it to act on our
tcp.Listener.

 err = s.Serve(l)

If all has gone well, we’ve successfully wired our server together.
Now, on to the client side. Other than the import, it consists
strictly of a main func. Like glss, it takes a single command line
argument, which is the directory to get the listing.

The Client Implementation
The new imports for the client all involve the gRPC libraries.
The client refers to the same .proto-generated definitions as the
server, so it will need to import them as well. And, obviously, it
needs to import the grpc library.

 import (

 pb “github.com/cmceniry/login-grpcls/directorycontents”

 “google.golang.org/grpc”

 “google.golang.org/grpc/credentials”

As the first part of our main function, we need to load our TLS
values.

Again, this is identical to how it is configured in glss.

 certificate, err := tls.LoadX509KeyPair(

 “../login-glss/certs/client.crt”,

 “../login-glss/certs/client.key”,

)

 if err != nil {

 log.Fatalf(“could not load client key pair: %s”, err)

 }

 caCert, err := ioutil.ReadFile(“../login-glss/certs/CA.crt”)

 if err != nil {

https://github.com/grpc/grpc/blob/master/doc/command_line_tool.md
https://github.com/grpc/grpc/blob/master/doc/command_line_tool.md
github.com/cmceniry/login-grpcls/directorycontents
google.golang.org/grpc
google.golang.org/grpc/credentials

60  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNS
Using gRPC with Go

 log.Fatal(err)

 }

 caCertPool := x509.NewCertPool()

 caCertPool.AppendCertsFromPEM(caCert)

As with the server side, we need to wrap these as grpc.creden-

tials. Note that our TLS config only requires that we supply our
certificate and provide a RootCA pool against which to validate
the server.

 creds := credentials.NewTLS(&tls.Config{

 Certificates: []tls.Certificate{certificate},

 RootCAs: caCertPool,

 })

Next, we form our network connection. Unlike on the server side,
the grpc library has its own Dialer for the client side. We need to
supply this with the endpoint to connect to and our general gRPC
configuration—in this case, our credentials configuration.

 conn, err := grpc.Dial(“localhost:4270”,

grpc.WithTransportCredentials(creds))

At this point, we’ve only established a general gRPC connection.
There is nothing specific about our particular API, so we need to
remedy that. We accomplish this by wrapping the general gRPC
connection with a client that is specific to our Lister service.

 c := pb.NewListerClient(conn)

Now we can make our RPC call. This uses the context library for
handling timeouts and cancellations. In this example, we’re just
going to use the context.Background(), so we’re skipping over
additional context library handling of timeouts and cancella-
tions. Our actual argument to LS is the pb.Path wrapped value
from the command line.

 files, err := c.LS(context.Background(), &pb.Path{Name:

os.Args[1]})

Since the return value from LS is a protobuf stream, we need
to read each value from it. We do this by looping around files.

Recv(). If the stream is complete, LS returns the io.EOF sentry
error and allows us to break out of the loop. Otherwise, unless
there’s an error, we print out of the file information.

 for {

 f, err := files.Recv()

 if err == io.EOF {

 break

 }

 if err != nil {

 log.Fatalf(“LS file failure: %s”, err)

 }

 fmt.Printf(“%s %10d %s %s\n”, f.Mode, f.Size,

f.Modtime, f.Name)

 }

Running It All
Now that we have the client and server, we can run it all together.

 login-grpcls$ go run server/main.go &

 [1] 11488

 login-grpcls$ 2017/12/16 21:44:17 Starting server

 login-grpcls$ go run client/main.go .

 drwxr-xr-x 204 Dec 6 21:27 .

 drwxr-xr-x 102 Dec 16 11:43 client

 drwxr-xr-x 136 Dec 13 19:16 directorycontents

 -rw-r--r-- 267 Dec 6 21:27 links

 drwxr-xr-x 102 Dec 16 11:32 server

Conclusion
This article has provided a brief introduction to using gRPC
with Golang. In addition, this series of articles has given us two
implementations for our LS service—one using the net/rpc from
Golang, and one using gRPC. I hope that you now feel comfort-
able enough to consider using gRPC in your work and, more
importantly, to be able to weigh the pros and cons of when to use
it or net/rpc as appropriate for your situation.

A few specific similarities and differences to remember between
the two:

◆◆ Both setups involve configuring a generalized RPC server and
then registering calls to it.

◆◆ Outside of some wrapping, both interact with TLS in the same
way. The underlying implementation at the TLS layer is the
same. Given the end-to-end principle, it should not be surpris-
ing to see the same behavior from a wrapping layer.

◆◆ With net/rpc, we’re handling Golang data structures. With
grpc, we’re handling more generic data structures (which can
be referenced by multiple languages). The net/rpc way is easier
to handle in Golang but does limit the interaction to Golang.
Which one you should use depends on the users of your API
and the contract you need or want to maintain.

◆◆ While we did not demonstrate it in this example, gRPC has
several middleware wrappers. These provide higher-level API
enrichments to help enable resiliency and visibility. Since there
are interface patterns, there is the possibility that the same
exists for net/rpc, but its goal has been to be a solid simple
standard library. It’s unlikely that these will exist for net/rpc.

Happy Going!

localhost:4270

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 61

COLUMNS

Practical Perl Tools
Top of the Charts

D A V I D N . B L A N K - E D E L M A N

I sometimes wonder if the people who make statements about Perl’s
health in the world (some nostalgic, some a little more mean-spirited)
have a sense of just how vibrant the Perl world is. I wonder whether see-

ing some of the interesting things being developed even as we speak or the
range of projects available would change their thinking.

This leads to a good question: how do you find out about the interesting things happening in
Perl on a week-to-week basis? In this column I’d like to focus on one of the answers to that
question: the weekly reports that are published about modules.

We’ll look at three of them and for fun pick and consider interesting modules from each.
All three of these listings are published each week on a blog created by Spanish Perl hacker
Miguel Prz (“NICEPERL”), which can be found at http://niceperl.blogspot.com. Before
we dive in, I should mention that these listings came to my attention thanks to the lovely
newsletter started by Gabor Szabo called Perl Weekly. You can sign up and find past issues at
http://perlweekly.com.

CPAN Great Modules Released Last Week
The first list we are going to look at is indeed titled “CPAN great modules released last week.”
This is an ordered list of modules newly published to the Comprehensive Perl Archive Net-
work which has garnered 12 or more “favorite” ratings—that is, 12 or more people “++”d these
modules on the MetaCPAN (metacpan.org) listing site.

On the off chance you are brand new to the Perl world, let me quickly mention that CPAN is
an archive where people in the Perl community share their modules and other Perl work for
everyone to use. It is one of the best things Perl has going for it. And to be totally candid, it is
not always the best; some of the code there isn’t the greatest. To give you a sense of its scale,
here are the stats as of today from the cpan.org home page:

The Comprehensive Perl Archive Network (CPAN) currently has 194,457 Perl modules

in 35,953 distributions, written by 13,329 authors, mirrored on 256 servers.

The archive has been online since October 1995 and is constantly growing.

So what’s in the list of great modules for the week of December 17, 2017, the one in which I am
writing?

This week we find a few old friends of the column like Mojolicious and perlbrew. Instead
of retreading, let’s instead look at DBIx::Simple. In the past, we’ve talked a bit about the
framework that was a true innovator in the space at the time it was introduced: DBI. The
idea of having a single portable abstraction layer for code that communicated with databases
independent of the database backend being used was a great step forward at the time. This
idea was subsequently expanded in many different directions (and the basic concept was
repurposed for other non-database contexts as well). My magic 8-ball predicts an entire
column on DBI-related expansions coming in our near future… But in the meantime, let’s look
at DBIx::Simple.

David has over 30 years of
experience in the systems
administration/DevOps/SRE
field in large multiplatform
environments and is the author

of the O’Reilly Otter book (new book on SRE
forthcoming!). He is one of the co-founders
of the now global set of SREcon conferences.
David is honored to serve on the USENIX
Board of Directors where he helps to organize
and engineer conferences like LISA and
SREcon. dnb@usenix.org

62  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: Top of the Charts

Standard DBI has you writing code that looks like this (examples
excerpted from the DBI doc with my comments inserted):

use DBI;

connect to a database

$dbh = DBI->connect($data_source, $username, $auth, \%attr);

execute a random SQL statement

$rv = $dbh->do($statement);

various ways of retrieving the results

$ary_ref = $dbh->selectall_arrayref($statement);

$ary_ref = $dbh->selectcol_arrayref($statement);

@row_ary = $dbh->selectrow_array($statement);

$ary_ref = $dbh->selectrow_arrayref($statement);

$hash_ref = $dbh->selectrow_hashref($statement);

more efficient ways of running/rerunning queries

$sth = $dbh->prepare($statement);

$rv = $sth->execute;

other ways of retrieving results

@row_ary = $sth->fetchrow_array;

$ary_ref = $sth->fetchrow_arrayref;

$hash_ref = $sth->fetchrow_hashref;

close connection to the database

$rc = $dbh->disconnect;

These are some of the more commonly used statements when
working with DBI, certainly when first getting started. It’s worth
reading the entire doc (several times) to get a good handle on the
proper idioms and performant ways to work with DBI. And, hoo
boy, is there plenty of doc to read—124 pages if you were to print
it all out as of the time of this writing.

DBIx::Simple aims to, well, you probably guessed it, make some
of the coding with DBI more simple. With DBIx::Simple, you
write code that looks almost identical to plain DBI:

use DBIx::Simple;

my $db = DBIx::Simple->connect(

 DBI:mysql:database=test, # DBI source specification

 test, test, # Username and password

 { RaiseError => 1 } # Additional options

);

but then you can write code of this form (as stated in the doc):

$db->query($query, @variables)->what_you_want;

Some examples of this from the doc would be:

my ($name, $email) = $db->query(

 SELECT name, email FROM people WHERE email = ? LIMIT 1,

 $mail

)->list;

Here we’re querying the people table for a list of two fields—
name and email—given the email address ($mail). We ask for the
information back as a list.

If we didn’t want to chain methods like that, we could write:

$result = $db->query(...)

and then work from $result object returned using methods like:

@columns = $result->columns

or

CPAN module Version Votes Abstract
1 App::perlbrew 0.81 149 App::perlbrew - Manage Perl installations in your $HOME

2 Catalyst::Action::REST 1.21 16 Automated REST method dispatching

3 Data::Alias 1.21 12 Comprehensive set of aliasing operations

4 DBIx::Simple 1.37 27 Very complete easy-to-use OO interface to DBI

5 Digest::SHA 6.00 19 Perl extension for SHA-1/224/256/384/512

6 experimental 0.019 29 Experimental features made easy

7 libwww::perl 6.30 135 The World Wide Web library for Perl

8 Math::Prime::Util 0.70 12 Utilities related to prime numbers, including fast sieves and factoring

9 Mojolicious 7.58 352 Real-time web framework

10 SQL::Translator 0.11023 32 SQL DDL transformations and more

11 Test::Class::Moose 0.91 14 Serious testing for serious Perl

12 Text::Xslate v3.5.3 58 Scalable template engine for Perl5

Table 1: This is what the table at https://niceperl.blogspot.com/2017/12/clxii-cpan-great-modules-released-last.html looked like on December 17, 2017.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 63

COLUMNS
Practical Perl Tools: Top of the Charts

@row = $result->list # return as a list

@rows = $result->flat # return as a flattened list

$row = $result->array # return as an array ref

@rows = $result->arrays # return as an array of arrays

$row = $result->hash # return as a hash

@rows = $result->hashes # return as an array of hashes

Here’s an example of a query that returns a set of rows which we
then iterate over to print separate fields:

for my $row (

 $db->query(SELECT name, email FROM people)->hashes) {

 print “Name: $row->{name}, Email: $row->{email}\n”;

}

I like how legible something like $row->{fieldname} is in the
code.

DBIx::Simple also hooks into a few other modules (some of which
we’ll likely talk about soon). For example, if you have Text::Table
installed, then code like:

print $result->text(“box”)

makes pretty output like:
+----+--------+---------- +
| ID | Animal | Type |
+----+--------+---------- +
1	camel	mammal
2	llama	mammal
3	owl	bird
+----+--------+---------- +

MetaCPAN Weekly Report
The second report to mention is also from data pulled from the
MetaCPAN site. This report lists both the newly favorited mod-
ules (“Clicked for the first time”) and those whose popularity is
on the rise (“Increasing its reputation”). If enough people vote
for a particular module, this report will call out that module as
“special,” but that did not happen this week.

You can find an example of the table at https://niceperl.blogspot
.com/2017/12/ccxciv-metacpan-weekly-report.html.

In the “first click” section, I found a couple of different modules
to be interesting, not because they helped me discover a module
I might use, but because they offered solutions for problems in
spaces that I knew very little about. It can be fun to have some-
thing like this shoot you off on tangents (not to mention build
your procrastination muscles). For example, I had never heard of
a Confusion Matrix until I met AI::ConfusionMatrix. In case you
are curious, Wikipedia defines them as follows:

In the field of machine learning and specifically the
problem of statistical classification, a confusion
matrix, also known as an error matrix, is a specific
table layout that allows visualization of the
performance of an algorithm, typically a supervised
learning one (in unsupervised learning it is usually
called a matching matrix). Each row of the matrix
represents the instances in a predicted class while each
column represents the instances in an actual class (or
vice versa). The name stems from the fact that it makes
it easy to see if the system is confusing two classes (i.e.
commonly mislabeling one as another).

Similarly, I realized how woefully inadequate my understanding
of graph theory was when I encountered Graph::Maker::Other.
This appears to be a collection of modules for making graphs like
Beineke, bi-star, quartet tree, twindragon area tree, and others I
hadn’t heard of. Some are quite pretty—for example, that last one:

or hexgrid:

64  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: Top of the Charts

or twin alternate area tree:

The documentation in this module distribution also references
a website called House of Graphs (https://hog.grinvin.org),
which is a “Database of interesting graphs.” And there goes that
afternoon…

To pull things back to the world of Perl, I’d like to highlight the
useful module File::HomeDir::Tiny, which describes itself as
follows:

This module is useful for the 90% of the time that
you only need 10% of File::HomeDir’s functionality.
It depends on no other modules and consists of just
fourteen lines of code.

so:

use File::HomeDir::Tiny;

$home = home;

Nothing complex, but highly useful. And if you want to have a
quick party trick up your sleeve (presuming you go to the right
parties) for when someone asks you about how nuts the Perl
punctuation can be, check out the part of the docs that begins
with:

If your code is only going to run on Unix, you do not
need to bother with any module. Just use the alien
spaceship operator:

($home) = <~> ;

From the “Increasing its reputation” section of this report,
there’s a whole bunch of interesting modules to look at. There’s
Damien Conway’s PPR (Pattern-based Perl Recognizer), which
scares the pants off of me. It is basically a distribution of Perl
regular expressions designed to match certain Perl constructs
in a Perl program. Unlike PPI (which we looked at in a recent
column), which actually parses Perl, this just allows you to easily
say, “Is there a comment in this Perl code?” or give me back the
code without the comment, the same way you might strip any-
thing else out of text using a regular expression. I was too scared
to look at the actual source code for this module.

Other interesting stuff:

◆◆ App::tt, a time tracking module/app. This is the sort of thing
that people who have to keep track of their time spent on
individual activities or projects would love. From the command
line, you can say “started” and then later “finished.” It can also
do spiffy things like look at a directory with a Git repo in it and
use the reflog there to automatically determine working times.

◆◆ App::RoboBot, an “event-driven, multi-protocol, multi-net-
work, user-programmable, plugin-based, S-Expression chatbot.
Any text-based chat service could be supported, with plugins
currently for IRC, Slack, and Mattermost included.” More info
can be found at: https://robobot.automatomatromaton.com.
Yup, there goes another afternoon.

◆◆ Promises, an implementation of Promises in Perl. If you ever
get the chance to venture out into the wider programming
world, especially in the world of JavaScript and the jQuery
library, you may encounter a programming construct called
“Promises.” Promises are an attempt to deal with the complex-
ity of writing reasonably sized asynchronous programs based
on callbacks. At a certain point, those programs devolve into
what people call “callback hell” because they invariably start to
have callbacks calling other callbacks. If the forest of callbacks
gets too thick or self-referential, it becomes very hard to debug
or even to understand how the program will behave. As the
doc says, “Promises give us back a top-to-bottom coding style,
making async code easier to manage and understand. It looks
like synchronous code, but execution is asynchronous.” If you
find yourself writing even medium-sized programs that are
event/callback based, it would probably behoove you to check
out the world of Promises to see how others are coping with the
complexity you are sure to encounter. The external references
in the docs are also well worth taking some time to go read.

StackOverflow Perl Report
Okay, last report. This one is less useful for finding cool mod-
ules or strange afternoon-wasting tangents and more helpful
for keeping your head in the Perl game and refreshing your Perl
knowledge. This section lists the top 10 rated Perl questions on
StackOverflow. It also lists the number of answers provided for
each. I find it useful to just scan the list each week to see if there
are any questions that pique my curiosity (or that make me feel
like “hmm, I know that” or “hmm, I really should know that”).
Table 2 shows the current list of questions for 12/9/17.

 1. Perl DBI (MySQL) puts single quote instead of actual param-
eter in prepared statement - [7/1]

 2. How to search and replace multiple lines with multiple lines
- [5/5]

 3. In perl, when assigning a subroutines return value to a
 variable, is the data duplicated in memory? - [5/3]

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 65

COLUMNS
Practical Perl Tools: Top of the Charts

 4. Is there a way to configure the default mirror for
App::cpanminus (cpanm)? - [5/1]

 5. NBSP malformed while using Mojo::DOM - [5/0]

 6. How can I assign a weight for frequency score to a graph&’s
edge using Graph::Easy - [4/2]

 7. How to run multiple perl Dancer2 apps in same nginx server
- [3/2]

 8. How to accept self-signed certificates with LWP::UserAgent
- [3/2]

 9. Why are the referenced arrays values not changed? - [3/2]

10. Time::Piece (localtime/gmtime) calculation vs bash date
- [3/1]

And with that, we come to the end of these reports that are great
for finding interesting things in the Perl world. Take care, and
I’ll see you next time.

Table 2: The list at https://niceperl.blogspot.com/2017/12/cccxviii
-stackoverflow-perl-report.html

https://niceperl.blogspot.com/2017/12/cccxviii-stackoverflow-perl-report.html
https://niceperl.blogspot.com/2017/12/cccxviii-stackoverflow-perl-report.html

66  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNS

iVoyeur
OpenTracing

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

As I write this, I am just back from KubeCon and CloudNativeCon [1],
where process isolation is a business plan and all your friends work
 for Microsoft. I freely admit: it was a confusing conference for me

in many ways; in fact, trying to get it all down on paper now, I even find the
ways in which it was confusing, confusing. Rarely do I find myself so con-
fused that I must engage in the process of attempting to categorize my own
confusion, but this is definitely one of those times, so let’s see what we can
do here.

I suppose the best place to begin is with the ecosystem, which is currently undergoing so
rapid an explosion of growth that the Cloud Native Computing Foundation (CNCF) orga-
nizers literally had posters on the wall to remind everyone just what the CNCF actually
consisted of. Each CNCF project was also given its own space in the keynotes wherein it
introduced itself to the user-base, which gave one the sense that a great deal of the current
organizational structure had only recently been ironed out. There were also 20 (!) keynotes,
covering project updates on 14 CNCF core projects (many of which I was hearing about for
the first time). That’s ignoring, of course, the parallel explosion of Kubernetes-related start-
ups outside the CNCF, all fighting for mind-share, whose founders seem invariably to happen
to be former Google employees.

To be clear, I’m making that observation without my tinfoil hat on. To be sure, one might
be tempted to infer from the founders homogeneity of pedigree, some greater and possibly
diabolical plan, but if such a plan existed I feel like there would be a lot less redundancy
among them. Currently there are, for example, 10 competing container-runtimes (at least):
Docker, rkt, containerd, CRI-O, LXC, OpenVZ, systemd-nspawn, machinectl, lkvm, and Kata
containers. (That’s not counting the proprietary container runtimes used by the platform
behemoths like AWS, Google Compute Engine, and Azure.)

Speaking of Azure, remember Microsoft? The company that stole all their core products and
then spun off BSA [2] to sue everyone for copyright infringement? Remember? They were the
ones who anti-competitively buried everyone they couldn’t buy, and then sent SCO to assas-
sinate Linux with a copyright lawsuit?

All totally so five minutes ago. At KubeCon, Microsoft is that low-key, tastefully appointed
booth toward the back, where a well-spoken, highly tattooed twenty-something is speaking
to passersby earnestly and excitedly about the future of open source while handing out rad
Golang stickers. As for the other vendors on the floor, I only recognized half a dozen or so. It
was like walking the vendor expo in a parallel dimension where Disney is an evil media syn-
dicate hell-bent on owning everything, and Microsoft a benevolent open-source cheerleader
and funder of hacky experimental Google code.

And speaking of anti-competitiveness, despite the myriad overlap in functionality between
so many of the tools, I never came away with the sense that any of them were serious
competitors. I mean, it’s pretty obvious you’re in competition if you are currently one of 10

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 67

COLUMNS
iVoyeur: OpenTracing

 possible mutually exclusive container-runtimes for Kubernetes,
but having been in the room with them at the runtime salon, I
can tell you, the lack of competitive tension between them was,
well, confusing.

One thing there could be no confusion about was the CNCF’s
choice of monitoring tool, emphatically Prometheus [3]. And
while, yes, we should talk about that eventually, right now my
heart pulls me in another direction: namely, the OpenTracing
API [4] project.

Have you read the Dapper [5] paper? Published in 2010, it describes
Google’s production distributed systems tracing infrastructure.
I bring it up because OpenTracing owes its lineage directly to
Dapper, so if you really want to sink your teeth in, that paper is
probably the best place to start. It’s also just a really good read.

I can hear you asking “Really, Dave?! Distributed tracing?!” I
know, I know; talk about confusing. First of all, it isn’t even mon-
itoring, it’s application performance debugging or something like
that. And second, it’s basically made of magic and impossible
for laymen to comprehend, and anyway all the tracing stuff out
there is proprietary and expensive. Also, I heard sampling is
involved, and anyone who has read anything about monitoring in
the last 10 years obviously knows that nothing but raw, unsam-
pled, nanosecond-resolution metrics can solve production issues
in the real world. MONITOR EVERYTHING HOOYA!

Hear me out for a second, though; I’ve been doing this for a while,
and one thing I’ve seen quite a bit of is abstraction layers that
make monitoring irrelevant. VPNs and tunneling protocols
breaking SNMP traps, JVMs breaking systems memory moni-
toring, VMs breaking process monitoring, containers breaking
VM monitoring, and on and on. If the Fundamental Theorem of
Software Engineering [6] states all problems can be solved with
one additional layer of abstraction, I propose this corollary: every
monitoring system can be made irrelevant with one additional
layer of abstraction.

Here’s a heads-up from yours truly, even if Kubernetes isn’t the
inevitable future of computing everyone says it is; we’re in for
a drastic increase in the use of abstraction layers in the next 10
years. This is an important reason I’m such a big fan of StatsD
and the process emitter/reporter pattern [7], wherein we move
our monitoring up the stack into the process itself and let the
processes we care about emit metrics directly to a monitoring
system rather than trying to infer “badness” from system-level
metrics. It’s difficult for anything to break your monitoring
when the programs you care about carry their monitoring
around inside them, but even the process-emitter pattern
has some abstraction to worry about—namely, microservices
infrastructure.

The services design pattern reduces the amount of work that a
given process performs. A service is the smallest useful piece of
software that can be defined simply and deployed independently
(a program that does one thing and does it well), and therefore
the metrics it emits are smaller in scope. Instead of, say, one pro-
cess emitting 10 metrics that expose the entire inner workings
of a given job, we now have one metric each from 10 different
processes.

Maybe that’s fine. If we have a problem that’s endemic to one
 service, it should be easy to pinpoint, but if our problem is the
result of a particular call-path or the accumulated latency of
many calls to multiple problematic services, we have a correla-
tion problem on our hands. To solve problems with requests
 moving between multiple processes, we need to know which
metric measurements relate to the same individual request.

In many ways, I think distributed tracing acts like a multi-
process-aware metrics emitter. Tracing is monitoring; it’s just
scoped a little differently. Instead of monitoring a host, or a
daemon, or an application, we are monitoring requests.

But how do we monitor a request, Dave? Requests are ephemeral.
We can’t put our hands on them.

Hogwash. Ops has been doing it for decades. Think of the
Received: header in an SMTP request. Each mail server that
has a hand in message delivery knows to unpack and add its own
Received: line to the email headers. Using those lines, we can
dissect the path an email took from sender to recipient, as well
as using the date/time stamps to derive latency metrics between
hops. Distributed tracing does the same thing to propagate ad
hoc metrics between hops by way of the HTTP headers, or what-
ever other transport is being used.

All we need is a standard that describes the structure of that
header, and a collection of language APIs that implement the
standard so services can search for, unpack, modify, and repack-
age the header regardless of the language they were written in
or the architecture they run on. SMTP’s Received: header, along
with the rest of the email headers, doesn’t work by magic; they’ve
been implemented and reimplemented in every language on
every architecture that has ever needed to send an email.

Another interesting aspect of SMTP’s Received: header is that
anything can consume it at any time. The implementation is
indifferent with respect to its consumers; rather than being pur-
posefully designed for this or that sort of introspection system, it
can use anything that knows how to unpack and parse it.

Like SMTP’s Received: header, the OpenTracing project pro-
vides a consumer-agnostic means of tracing individual requests
through large, high-volume distributed systems. It’s imple-
mented as a header that piggy-backs along as a request makes

68  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNS
iVoyeur: OpenTracing

its way through a distributed application. OpenTracing provides
APIs in nine languages, which makes it trivial for you to unpack,
modify, and repackage the header without having to worry about
the wire-protocol details.

Unlike SMTP, distributed application requests aren’t linear by
nature. Your request to /foo/events might spawn subsequent
requests to /foo/user-events and /foo/app-events, for exam-
ple, along with one or more database requests to look up user-IDs
or authorize your request. When one request begets another that
it depends on, OpenTracing describes that relationship in terms
of parents and children. When a request begets another that it
doesn’t depend on (say a non-blocking callout to a logging ser-
vice or a cache-write), OpenTracing describes the relationship
as a “FollowsFrom” relationship. Each individual request (or
operation) is described by a span struct, while the relationships
between individual spans are maintained by a SpanContext.

Your job as a user of the API is to instrument your code to create
a span roughly at each process boundary (wherever a request is
sent or received and at exit). Within each span, you can create
tags to track metrics like wait times or log process details.

My mention of database calls in the paragraphs above was
intentional. How can we hope to meaningfully trace requests
that cross process boundaries into binary monoliths like MySQL
or Cassandra? To be sure, we can time our DB interactions from
the client-side, but everything happening inside the DB is a black
box to us.

The good news is, given that OpenTracing is an API, support for
it is slowly being proliferated into web-frameworks like Flask,
RPC-layers like gRPC, databases like Cassandra, and even web-
servers like Nginx. These tools all fully support existing Open-
Tracing SpanContexts today, automatically unpacking them and
adding new spans to provide a uniform source of insight into
critical processes that have historically required vastly different
monitoring strategies.

Confusingly (but on-message with respect to the greater Kuber-
netes community), there are nine (!) different tracer implemen-
tations that can be used to inspect OpenTracing data: Zipkin,
Jaeger, Appdash, Lightstep, Hawkular, Instana, sky-walking,
inspectIT, and stagemonitor. Some of these are language specific
and others proprietary. Jaeger, Zipkin, and Lightstep are all good
places to start for generalists.

I’m kind of in love with the OpenTracing project’s goal and
implementation, and I hope I’ve done both of those justice in this
introduction. Tracing is monitoring, and it’s not made of magic,
though it is somewhat magical. I’m really looking forward to API
support in tools like Ruby-Rails and Node, and if I can get things
arranged to be able to afford the time, they’re on the top of my list
for OSS contributions in the new year.

Take it easy!

References
[1] KubeCon + CloudNativeCon: https://events
.linuxfoundation.org/events/kubecon-cloudnativecon-north
-america-2018/.

[2] The Business Software Alliance: http://www.bsa.org/.

[3] Prometheus monitoring software: https://prometheus.io/.

[4] OpenTracing API: http://opentracing.io.

[5] Dapper paper: https://research.google.com/pubs/pub36356
.html.

[6] FTSE: https://en.wikipedia.org/wiki/Fundamental
_theorem_of_software_engineering.

[7] Process emitter/reporter pattern: http://blog.librato.com
/posts/collector-patterns.

https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2018/
http://www.bsa.org/
https://prometheus.io/
http://opentracing.io
https://research.google.com/pubs/pub36356.html
https://research.google.com/pubs/pub36356.html
https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
http://blog.librato.com/posts/collector-patterns
http://blog.librato.com/posts/collector-patterns

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 69

COLUMNS

That Rumbling Sound

If you have been living under a rock the past five years, you will still have
detected increasing vibrations in your rock, perhaps even out and out
warming, depending on the damping effect of your rock’s material. If

your rock is made of ideal material, then the repeated message in those vibra-
tions has been clear. Otherwise, we will disintermediate the Fourier trans-
form for you:

Bitcoin. Ethereum. Blockchain.

In this column, we examine the risk footprint of Bitcoin and other cryptocurrencies—not
general risk, but risk in the computer security sense.

Debuting shortly after the fall of the iconic Lehman Brothers, and driven by global anti-
establishment sentiment, the top 100 virtual currencies have now amassed a market value
exceeding $500B, 35% greater than that of JP Morgan Chase (~$366B). Bitcoin itself is up
over 100,000% in those five years past. All the numbers in this column were true as of the
hour we turned the column in; you will, yourself, want to update them because all are vola-
tile, to say the least. Go to http://geer.tinho.net/fgm/fgm.geer.1803.references.html for the
full set.

While some of this movement might be reasonably classified as hysteria (the CryptoKitties
game clogging up the Ethereum network, with the highest priced “cat” selling for $117,712;
Bitcoin mining in the trunk of a Tesla; and a FuckCoin raising $30K in 30 minutes), dismiss-
ing the entire movement seems too easy—but how much is dismissing it like whistling past
the graveyard?

Until this year, China had been the most active trader in Bitcoin, but then the government
made it all but illegal. Japan is currently the most active trader, accounting for 43% of trans-
actions, followed by the US at 29%, European countries at 8%, South Korea at 4%, and China
at 1.6%. Both this year and last, and interestingly parallel, according to the World Intellec-
tual Property Organization, technology patents are running at three million per year, and the
four countries that account for 78% of BTC trading account for 78% of those three million
patents: China 36%, US 18%, Japan 16%, and South Korea 8%.

But to the point, on Sunday, December 10, the Chicago Board of Exchange launched Bitcoin
futures. The day CBoE “GXBT” was announced, 100,000 new accounts were created on
Coinbase, which now claims over 10,000,000 users. India has approximately 30,000 users
active at any moment.

What Do the Numbers Say?
Estimates of the number of detectible Bitcoin miners range from 5,000 to 100,000. The wide
uncertainty range can be interpreted as the existence of discomfort regarding their discovery.
The other 1355 cryptocurrencies, of course, have their own mining interests, and these are just
the public blockchains. It is reasonable to believe that private, permissioned blockchains, such
as those built on Multichain, will dwarf public blockchains in scale and variety going forward.

For Good Measure
Between a Block and a Hard Place

D A N G E E R A N D D A N C O N W A Y

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc.
dan@geer.org

Daniel G. Conway serves on
the faculty at the University
of South Florida, where he
teaches blockchain technology,
analytics, and data science.

He has previously also served at Notre Dame,
Indiana, Iowa, and Northwestern. He can be
reached at dconway@usf.edu.

70  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNS
For Good Measure: Between a Block and a Hard Place

In round numbers, the current hash rate is 12M hashes per
second to power 450,000 transactions per day, with transactions
totaling $2B/day, an average transaction of $4,444. This com-
pares to 704,000,000 credit card transactions per day totaling
$54.8B, an average transaction of $77. The Federal Reserve ACH
(Automated Clearing House) reports $86.7B/day in clearance, an
average transaction of $1,680. To steal a line from the musical A
Chorus Line, Bitcoin is “Too young to take over, too old to ignore;
I’m almost ready, but...what...for?”

The growth rate for Bitcoin has been exponential, not linear,
yet, according to Cisco estimates, overall peer-to-peer network
traffic is not expected to grow at all through 2021, the smallest
change of all network sub-segments, versus the leading sub-
segment, gaming, at 62% growth.

The annual electricity consumption of Bitcoin’s proof-of-work
has been variously estimated, but we’ll go with 8.27 terawatt-
hours per year. That is “less than an eighth of what U.S. data cen-
ters use, and only about 0.21 percent of total U.S. consumption…
Global production of cash and coins consumes an estimated 11
terawatt-hours per year. Gold mining burns the equivalent of 132
terawatt-hours. And that doesn’t include armored trucks, bank
vaults, security systems, and such.” So, one can plausibly argue
that Bitcoin is a “green” technology [1].

Attack Surface
All new technology introduces new failure modes, that much
is certain, but what is the proportionality constant here? Is it
nodes, hashes, wallets, latency, or what? Bitcoin uses a peer-to-
peer distributed ledger technology; integrating that ledger with
the incentive structure to participate in the network, the attack
surface then consists of several facets and edges, everything
from the characteristics of peer-to-peer networking to that of
wallet (private key) management.

Remember, peer-to-peer networks do not have a single point of
failure based on IP addresses, but also understand that the min-
ing operation is not uniformly distributed among miners. For
example, 56% of Bitcoin mining is done using technology from
AntPool in Beijing. As a different measure of concentration, if
one were to disrupt the top-five mining pools, then one might be
able to remove 70.4% of the competition. As yet another, “The top
100 Bitcoin addresses control 17.3 percent of all the issued cur-
rency. With Ethereum, a rival to Bitcoin, the top 100 addresses
control 40 percent of the supply, and with coins such as Gnosis,
Qtum, and Storj, top holders control more than 90 percent. Many
large owners are part of the teams running these projects” [2].

In the meantime, the bounty for breaking into and modifying the
“immutable” record of Bitcoin is the market cap itself: $500+B.
As you probably know, that immutable record is based on ellipti-
cal curve encryption, i.e., discrete logarithm problems widely

considered to be Computationally Hard and hash functions. So
far, only 109-bit curves are known to have been broken, though
there is some interest in understanding the random numbers
used to pick initial private keys.

Bitcoin’s incentive nature differs from that of BitTorrent—
BitTorrent has a throttle system to restrict bandwidth to those
freeloading. Bitcoin has no such self-repair facility. In fact, it is
believed that 3.79 million bitcoins have been permanently lost
(out of the 21 million that are the maximum number of bitcoins
there will ever be), meaning the corresponding private keys
required to access the bitcoins on the ledger have been lost,
thus leaving those 3.79 million ledger entries orphaned. That
makes the ultimate bitcoin pool size 18% smaller, and the single
bitcoin 18% more valuable just for that reason alone. With a fixed
upper bound on the number of bitcoins, you profit from causing
other people to lose their private keys, and all without having to
receive stolen property.

It’s not as if those who exploit security flaws are too busy else-
where to have noticed all this; Poloniex, a large marketplace, is
warning customers not to use the app available through Google’s
store as they haven’t created an app—it’s malware.

Is Immutability a Good Thing?
EOS is a blockchain operating system that will be released in
July 2018. Its ICO currently has a market cap of $4.6B. This puts
it above Wendy’s, Cracker Barrel, and MorningStar. That will
add another layer to our security concerns.

In so many words, purported money is not the only thing that
a blockchain can make immutable; by putting smart contract
programs (code) on a blockchain, the code becomes immutable,
and, with Ethereum and its Turing-complete language Solidity,
we can trick the blockchain into executing updates by carefully
using the equivalent of pointers. (Paging the Language Theoretic
Security Group…)

Immutability, like anything else, is not without tradeoffs. As a
case in point, Bitcoin is transparent as far as a history of what
wallets have what amount of currency. Mapping those wallet
addresses to IP addresses or user identities is likely not a great
challenge today. In other words, blockchain immutability carries
the same freight as biometric identifiers—there’s no invalidating
the information once revealed. (Monero is more challenging and
that is so on purpose, but remember the first rule of any serious
investigation: “Follow the money.” What if you can’t?)

All of this is perhaps too speculative, too dynamic, too ephemeral
for a column on “security metrics,” but our central point is that
the faster the value-at-risk rises, the more certain it becomes
that the structural advantage that offense has over defense will
out. How these numbers change in the next year should offer
some insight as to where perceived value is being pursued.

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 71

COLUMNS
For Good Measure: Between a Block and a Hard Place

In any case, should you decide that being under your rock is not
such a bad place after all, you still may want to consider invest-
ing in FortitudeCoin, which will give you priority to the surviv-
alist community Fortitude Ranch, and thus purchase priority
accommodations should your rock prove inadequate. We recom-
mend you first make a sizable investment in our ICO “DanCoin,”
a fork off of FreeLunchCoin, before pursuing this path.

References
[1] Elaine O-u, “No, Bitcoin Won’t Boil the Oceans,” Bloomberg
View, December 7, 2017: https://www.bloomberg.com/view
/articles/2017-12-07/bitcoin-is-greener-than-its-critics
-think.

[2] Olga Kharif, “The Bitcoin Whales: 1,000 People Who Own
40 Percent of the Market,” Bloomberg Businessweek, Decem-
ber 8, 2017: https://www.bloomberg.com/news/articles/2017
-12-08/the-bitcoin-whales-1-000-people-who-own-40
-percent-of-the-market.

https://www.bloomberg.com/view/articles/2017-12-07/bitcoin-is-greener-than-its-critics-think
https://www.bloomberg.com/view/articles/2017-12-07/bitcoin-is-greener-than-its-critics-think
https://www.bloomberg.com/view/articles/2017-12-07/bitcoin-is-greener-than-its-critics-think
https://www.bloomberg.com/news/articles/2017-12-08/the-bitcoin-whales-1-000-people-who-own-40-percent-of-the-market
https://www.bloomberg.com/news/articles/2017-12-08/the-bitcoin-whales-1-000-people-who-own-40-percent-of-the-market
https://www.bloomberg.com/news/articles/2017-12-08/the-bitcoin-whales-1-000-people-who-own-40-percent-of-the-market

72  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

COLUMNS

/dev/random
Web of Darkness

R O B E R T G . F E R R E L L

Behavior outside the acceptable social norm is part and parcel of human
nature. We live, work, play, and interact on a bell curve. We also com-
pute there, as has become increasingly evident in recent years.

I won’t claim to have been present at the birth of the Internet—I was only 12 years old in 1969
when the ball really got rolling—but I spent a fair amount of time in the early to mid-1980s
playing with the first incarnations of TCP/IP and hanging around on USENET. As with most
of my colleagues at the time, I could see the potential for NSFNET to connect, eventually,
all the world’s academic institutions and libraries and thus be a really useful thing to have
around. I don’t remember predicting the monster it would actually become, but I did once tell
a skeptical boss in the early ’90s that having a web presence and email would be essential to
doing business within a few years.

By the time Mosaic was released, enabling pictures as well as text to dangle in the sticky
participles of the World Wide Web, the Internet had been public for a couple of years, and
the highways, byways, and alleys were beginning to take shape. Some of those Information
Alleyways were better lit than others. It didn’t take long for commerce to insinuate itself into
the barrage of packets getting flung to and fro across this nascent behemoth. The object of
commerce is profit, and profit can further be divided into legitimate and illicit—although
that demarcation line can get a little smeary on occasion.

In the age of our innocence, Americans as a nation tended to believe that the default setting
for the human conscience was “beneficent.” That might even have been true at some point. I
can assure you, that is no longer the case. Our government and the Internet are prime exam-
ples. I leave the rationale for my first case in point to your own research, but for the Internet
exemplar, allow me to break it down for you.

The Internet was built, largely, on a platform of hacking. The original architects were work-
ing without blueprints or manuals, innovating as they went and solving technical challenges
by the seat of their pants: that, dear friends, is the purest incarnation of the hacker’s art. As
I have insisted on several occasions in this column, hacking has no innate connection what-
ever with criminality. That does not mean, however, that some of the less savory individuals
who have taken up the hacker’s mantle haven’t applied those skills toward less than fully
transparent pursuits.

While we’ve subsequently built a huge framework of what is somewhat ironically referred
to as “legitimate” commerce on top of this hacker-originated underpinning, it should come
as no surprise to anyone sentient that amoral entrepreneurship still thrives down in the
Internet’s moldy sub-basement. What I’m not sure most people realize is that without those
nefarious roots permeating its foundation, the commercial aspects of the Internet would
probably collapse.

Let’s do a little deconstruction. What drives most technological advances? Is it pure
research? The creative spirit? Impressing that girl in AP calculus? Or is it the military-
industrial juggernaut that sucks up most of our tax dollars as it rolls past and spits them

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist
for the 2011 Robert Benchley
Society Humor Writing

Award. rgferrell@gmail.com

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 73

COLUMNS
/dev/random: Web of Darkness

out again as contractor funding? If you answered (D), you’re
making forward progress toward the distant, craggy shoreline
of enlightenment.

Now, where does all that money go, really? Into “research and
development,” as firms with their fingers shoved far into the
national budgetary pie will invariably claim? No. It goes to the
Internet. It goes to two-day shipping, streaming media services,
online gaming, day trading, and cryptocurrency transactions. It
also goes to porn and drugs, both licit and illicit—commodities
in which the “Dark Web” specializes. Without these last two line
items the infrastructure of the Internet, and therefore of our
national prosperity, would fold in upon itself like a house of cards
caught in a sudden gale.

If that sounds needlessly cynical, consider this: there are more
programmers in the world than jobs to support them, due at least
in part to the uneven clumping of money available to pay said
coders. If you want to make a decent living as a programmer
in the conventional arena you need to live and work in a place
where salaries are commensurate with the value you can add to
your employer’s products. The virtual nature of modern labor
pools has ameliorated this market imbalance to a certain extent,
but some considerable inequity remains.

The Dark Web makes no such distinctions. The amount of money
one can earn there is not at all related to where one calls home
physically. In fact, the less likely a nation is to grease the wheels
of traditional commerce, the easier it is to set those of the Dark
Web spinning. Those people who make money on the Dark Web

return at least some of it to the conventional commercial sec-
tors of their nations of residence. They also go on in many cases
to apply the talents they’ve honed in the underworld to more
conventional projects—to which they would not have been able to
contribute without the succor of their ill-gotten gains.

There is a growing industry related to combatting the efforts of
those who populate the Dark Web. The cat-and-mouse games
played with pirates, for example, have led to many advances in
peer-to-peer networking, cryptography, protections against
DDOS and other large-scale attacks, and even file integrity algo-
rithms. Without the economic pressures presented by actual and
potential losses to criminal activity, these developments would
have been far slower in coming.

The “dox the government” movement, which has revealed for the
first time the depths to which intelligence agencies have pen-
etrated the lives of ordinary citizens, makes considerable use of
the Dark Web as well. One might argue that these releases have
done more damage than good, but no matter your stance on the
issue, you can’t realistically question their impact. The spiders
spinning the Dark Web shine their light in unexpected places.

Welcome, valued customer. Your call is very important to us.
Please have your stolen ID and someone else’s credit card num-
ber handy. Remember to stay on the line until you have verified
the color, size, model number, and/or dosage of your selected
items, and thank you for choosing the Dark Web. We know you
don’t really have a choice for most of this stuff.

74  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

Fluent Python
Luciano Ramalho
O’Reilly Media, 2015, 474 pages
ISBN 978-1-491-9-46008

For a long time, I’ve told people I only need one book on Python:
David Beazley’s Python Essential Reference. I don’t need tutorials
any more—none of the references I’ve read does a better job than
Beazley of balancing completeness and compactness. In Fluent
Python, Ramalho has given me both a second book to keep close
and an archetype for a type of book that I would like to see
more of.

Ramalho sets out to teach not just what Python can do but how
it works. Python has a lot of history, and the feature set is
a mixed bag. It inherits from a lot of sources, and Ramalho is
familiar with them and talks about them where it adds to the
reader’s understanding.

The thing I really like about Fluent Python is that Ramalho talks
about the characteristics that make Python special, different,
and, especially, expressive and readable. He devotes a lot of space
to practical aspects and to idiom.

This isn’t a book for beginning programmers or even developers
just starting to learn Python. While there are echoes of the top-
ics you’d expect to see in a programming language book, they are
treated from the standpoint of internals and language-design
choices. In many cases, Ramalho addresses would-be language
purists on their own terms explaining why the language devel-
opers made their choices and how those affect Python operation
and performance. One standout is how Python has adopted
functional programming concepts, and how the traditional con-
structs (filter, map, reduce), while they exist, are largely better
written using list comprehensions in Python. Ramalho explains
how comprehensions in Python are both more clearly expressive
and more efficiently implemented than a classic MapReduce
construct.

The author doesn’t shy away from what even he considers to be
warts on the language. Python’s syntax restricts the lambda
construct in ways that make anonymous functions nearly use-
less. He shows instead how to use regular functions, which,
while more verbose, are often clearer for the reader and devel-
oper trying to debug a set of deeply nested anonymous functions.
Developers coming from other scripting languages also face dif-
ficulties that arise when trying to extend built-in types. In this, I
agree with him that the seeming problem is, in the grand scheme,
a good thing, discouraging people from trying to do things which
lead to obscure or too-clever code.

I especially liked the sections on decorators and his coverage of
iterators and generators. I’ve often seen tutorials on the syntax
for creating and using both of these constructs, but Ramalho
discusses both the theory behind them (decorators are closures?
Oh!) and how they behave in operation. I find the under-the-hood
aspects to be useful when I’m deciding when to use constructs
like these.

At the end of each chapter, the author includes an extensive
references section and, my favorite, a “Soap-Box” section where
he talks about his preferences, biases, and impressions. These
give the reader both a sense of his background and some input
on topics that can be interpreted as opinion (or religion).

These days I mostly skim books and then set them aside. Fluent
Python is one I mean to revisit. It’s too meaty to completely
digest in one pass. Now I know where to look when I want to
learn more about Python’s more interesting possibilities.

Once Upon an Algorithm
Martin Erwig
Massachusetts Institute of Technology, 2017, 317 pages
ISBN 978-0-262-0-36603

I was both intrigued and dubious when I first picked up Erwig’s
book. I like the idea of using metaphor and, especially, storytell-
ing to make technical subjects accessible. I like to use them even
when talking to my peers since a good metaphor can often be a
shortcut to understanding. Presenting technical topics this way,
however, risks oversimplifying. Such a presentation can either
give a clear but incomplete treatment or bend metaphors so
badly in an attempt to be make them rigorous that they lose their
relevance. You can only push stories so far when applying them
to complex topics.

Erwig starts off simply enough: Hansel and Gretel mark their
path and then find their way home. They do it by following a
series of repeated steps, first marking their path with stones
and later bread and then following the markers back. This is
the kind of thing I’d expect in a popular treatment of algorithms.
The vocabulary and writing style is at odds with the simple story.
Erwig is using children’s stories, but he’s not telling one.

It turns out that Once Upon an Algorithm is aimed at neither
the purely technical nor the broad popular audience. Instead the
intended audience, one that I am part of, is outside the field of
computer science: the curious, dedicated lay reader.

The author organizes the book into two sections: “Algorithms”
and “Languages.” This works because, contrary to my expec-

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 75

BOOKS

tations, he’s not trying to explain algorithms by coding them.
He actually treats the Theory of Computation right from the
beginning, using the stories and the algorithms they illustrate
to introduce the deepest concepts of computation: abstraction,
representation, complexity, and computability.

As noted, in the first chapter, Erwig uses Hansel and Gretel to
conceptualize an algorithm as a set of steps that can be followed
to achieve some goal. In the second chapter, Sherlock Holmes is
used to illuminate modeling, data representation, and abstrac-
tion. In the third, Indiana Jones is the focus used to discuss
searching and sorting. In all three chapters, Erwig ends by talk-
ing about the deep questions that arise when trying to represent
the real world with mathematics, logic, and machines. The third
chapter closes with the best non-mathematical description I’ve
read about the meaning of P (the set of problems computable in
polynomial time), NP (problems where a given solution can be
tested in polynomial time), and why the idea that P = NP (or not)
is important for computation.

As if that’s not enough, the second half of the book covers the
theory of formal languages. Erwig uses the song “Somewhere
Over the Rainbow” and the example of musical notation to show
how ubiquitous “computation” is. In a very real sense, a musical

score is a “program” that can be converted into a result (a perfor-
mance) by a computer (the conductor and musicians). The movie
Groundhog Day serves to show how iteration and looping work
(and why terminating conditions are so important). Back to the
Future is the inspiration for a discussion of recursion, and Harry
Potter serves as the backdrop for the final chapters on the theory
of abstraction and types.

In the end, I found the discussion to be on-point and clear. Erwig
doesn’t condescend to the reader despite how easy that would be
given the thesis that common stories can illustrate the theory of
computation. He shows in this way how computation isn’t really
some strange esoteric field but is grounded in everyday ideas and
activities that anyone can relate to. The title of the book might
lead someone to expect a watered down popular “dummies”
treatment, but that would be a mistake. Erwig does indeed know
his audience and writes to them. That audience will be well
served by Once Upon an Algorithm.

NOTES

76  S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s quarterly magazine, featuring techni-
cal articles, system administration articles,
tips and techniques, practical columns on
such topics as security, Perl, networks and
operating systems, and book reviews

Access to ;login: online from December
1997 to the current issue: www.usenix.org
/publications/login/

Discounts on registration fees for all
 USENIX conferences

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org.
Phone: 510-528-8649.

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of
Standards and Technology
carolyn@usenix.org

V I C E P R E S I D E N T

Hakim Weatherspoon, Cornell University
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois
at Urbana-Champaign
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google
cat@usenix.org

David N. Blank-Edelman, Apcera
dnb@usenix.org

Angela Demke Brown, University
of Toronto
demke@usenix.org

Daniel V. Klein, Google
dan.klein@usenix.org

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

Announcement of Changes to
Future LISA Conferences
A Statement by the LISA Steering Committee on
behalf of the USENIX Association

Starting in 2018, LISA will run for three
days, rather than six.

We heard you! You couldn’t get your boss to
agree to let you go for six days, or stepping
away from other responsibilities for that
long was too hard. It was also a firehose
of content, and trying to keep it all in your
brain upon returning to work was a real
challenge. Could we take LISA and make it
into a reasonably sized conference that still
had amazing talks and training? Yes, we
could, and we have.

LISA is one of the longest running tech
conferences, originating in 1987, and we
are proud that it continues to be among
the most popular events in an increas-
ingly crowded field. Over the past 30 years,
LISA has grown from a short workshop to a
multi-track conference, evolving in format
to suit the needs of a changing community.
Most recently, we’ve added training ses-
sions within the main conference program
to allow instructors to rapidly expose
attendees to new topics; created LISA
Lab and LISA Build to increase hands-on
experience; and expanded invited talks to
allow more industry experts to share their
knowledge.

The new format will better allow attendees
to fit LISA into their busy travel, work, and
personal lives. We’ll continue to highlight
the strengths of LISA, with three days of
talks and training, LISA Build and LISA
Lab, the expo, and the great conversations
that happen in the hallway track and Birds-
of-a-Feather (BoF) sessions. The more
focused scope also gives us the opportunity
to push the proposal deadline closer to each

Notice of Annual Meeting
The USENIX Association’s Annual Meeting with the
membership and the Board of Directors will be held

at 6:00 pm on Tuesday, July 10, in Boston, MA, during the
2018 USENIX Annual Technical Conference.

http://www.usenix.org/publications/login/
http://www.usenix.org/publications/login/
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/member-services/discount-instructions
http://www.usenix.org/membership/or
http://www.usenix.org/membership/or

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 77

NOTES

conference to allow for emerging content
and the latest updates, while also giving
USENIX more flexibility around location
and timing. This change also aligns the
format with the rest of the family of systems
engineering conferences, spread throughout
the year in multiple geographic locations:
LISA, SREcon Americas, SREcon Europe/
Middle East/Africa, and SREcon Asia/
Australia.

Members:
Cast Your Vote!

Ballots due March 30, 2018
Ballots for the 2018 USENIX Board of

Directors election have been mailed
to all USENIX members. Please mark

your ballot and return it in the mail
to arrive no later than March 30, 2018.

The election results will be
 announced in April.

www.usenix.org/board/elections18

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp Private Internet Access

USENIX Benefactors
Oracle Squarespace VMware

USENIX Partners
Booking.com CanStockPhoto Cisco Meraki DealsLands Fotosearch

Open Access Publishing Partner
PeerJ

LISA is an amazing conference and
one of the highlights of our year.
The LISA18 Call for Participation
will be released this quarter, and we
encourage you to submit a proposal.
The deadline for submissions will be
May 24, 2018. Interested in helping
organize the conference? Send email
to lisa@usenix.org. We look forward
to seeing all of you in Nashville this
coming October!

78 S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

Announcement and Preliminary Call for Papers www.usenix.org/fast19/cfp

February 25–28, 2019, Boston, MA, USA

FAST ’19: 17th USENIX Conference on
File and Storage Technologies
Sponsored by USENIX, the Advanced Computing Systems Association

Important Dates
• Submissions due: Wednesday, September 26, 2018, 8:59 pm PDT

• Notification to authors: Tuesday, December 11, 2018

• Final papers due: Thursday, January 24, 2019

Conference Organizers
Program Co-Chairs
Arif Merchant, Google
Hakim Weatherspoon, Cornell University

Program Committee
TBA

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—Madison
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs
Geoff Kuenning, Harvey Mudd College
Florentina Popovici, Google
Erik Riedel, Dell Technologies
Jiri Schindler, SimpliVity
Bianca Schroeder, University of Toronto
Margo Seltzer, Harvard University and Oracle
Keith A. Smith, NetApp
Eno Thereska, Amazon
Carl Waldspurger, Carl Waldspurger Consulting
Ric Wheeler, Red Hat
Erez Zadok, Stony Brook University

Overview
The 17th USENIX Conference on File and Storage Technologies
(FAST ’19) brings together storage-system researchers and practitio-
ners to explore new directions in the design, implementation, evalu-
ation, and deployment of storage systems. The program committee
will interpret “storage systems” broadly; papers on low-level storage
devices, distributed storage systems, and information management
are all of interest. The conference will consist of technical presenta-
tions including refereed papers, Work-in-Progress (WiP) reports,
poster sessions, and tutorials.

FAST accepts both full-length and short papers. Both types of sub-
missions are reviewed to the same standards and differ primarily in
the scope of the ideas expressed. Short papers are limited to half the
space of full-length papers. The program committee will not accept
a full paper on the condition that it is cut down to fit in the short
paper page limit, nor will it invite short papers to be extended to full
length. Submissions will be considered only in the category in which
they are submitted.

Topics
Topics of interest include but are not limited to:

• Archival storage systems

• Auditing and provenance

• Big data, analytics, and data sciences

• Caching, replication, and consistency

• Cloud storage

• Data deduplication

• Database storage

• Distributed and networked storage (wide-area, grid,
peer-to-peer)

• Empirical evaluation of storage systems

• Experience with deployed systems

• File system design

• High-performance file systems

• Key-value and NoSQL storage

http://static.usenix.org/

www.usenix.org S P R I N G 20 1 8 VO L . 4 3 , N O. 1 79

• Memory-only storage systems

• Mobile, personal, embedded, and home storage

• Parallel I/O and storage systems

• Power-aware storage architectures

• RAID and erasure coding

• Reliability, availability, and disaster tolerance

• Search and data retrieval

• Solid state storage technologies and uses (e.g., flash,
byte-addressable NVM)

• Storage management

• Storage networking

• Storage performance and QoS

• Storage security

Deployed Systems
In addition to papers that describe original research, FAST ’19 also
solicits papers that describe large-scale, operational systems. Such
papers should address experience with the practical design, imple-
mentation, analysis, or deployment of such systems. We encourage
submission of papers that disprove or strengthen existing assump-
tions, deepen the understanding of existing problems, and validate
known techniques at scales or in environments in which they were
never before used or tested. Deployed-system papers need not nec-
essarily present new ideas or results to be accepted, although that is
certainly welcome, but should offer useful guidance to practitioners.

Authors should indicate on the title page of the paper and in the
submission form that they are submitting a deployed-system paper.

Submission Instructions
Please submit full and short paper submissions (no extended
abstracts) by 8:59 pm PDT on September 26, 2018, in PDF format via
the submission form, which will be available here soon. Do not email
submissions. There is no separate deadline for abstract submission.

• The complete submission must be no longer than 11 pages for
full papers and 5 pages for short papers, excluding references.
The program committee will value conciseness, so if an idea
can be expressed in fewer pages than the limit, please do so.
Supplemental material may be added as a single-but-separate
file without page limit; however the reviewers are not required
to read such material or consider it in making their decision.
Any material that should be considered to properly judge the
paper for acceptance or rejection is not supplemental and
will apply to the page limit. Papers should be typeset on U.S.
letter-sized pages in two-column format in 10-point Times
Roman type on 12-point leading (single-spaced), in a text block
being no more than 7” wide by 9” deep. Labels, captions, and
other text in figures, graphs, and tables must use reasonable
font sizes that, as printed, do not require extra magnification to
be legible. Because references do not count against the page
limit, they should not be set in a smaller font. Submissions
that violate any of these restrictions will not be reviewed. The
limits will be interpreted strictly. No extensions will be given for
reformatting.

• A LaTeX template and style file are available on the
USENIX templates page (www.usenix.org/conferences/
author-resources/paper-templates).

• Authors must not be identified in the submissions, either
explicitly or by implication. When it is necessary to cite your
own work, cite it as if it were written by a third party. Do not
say “reference removed for blind review.” Any supplemental
material must also be anonymized.

• Simultaneous submission of the same work to multiple
venues, submission of previously published work, or plagiarism
constitutes dishonesty or fraud. USENIX, like other scientific and
technical conferences and journals, prohibits these practices
and may take action against authors who have committed
them. See the USENIX Conference Submissions Policy (www.
usenix.org/conferences/author-resources/submissions-policy)
for details.

• If you are uncertain whether your submission meets USENIX’s
guidelines, please contact the program co-chairs, fast19chairs@
usenix.org, or the USENIX office, submissionspolicy@usenix.org.

• Papers accompanied by nondisclosure agreement forms will
not be considered.

Short papers present a complete and evaluated idea that does not
need 11 pages to be appreciated. Short papers are not workshop
papers or work-in-progress papers. The idea in a short paper needs
to be formulated concisely and evaluated, and conclusions need to
be drawn from it, just like in a full-length paper.

The program committee and external reviewers will judge papers
on technical merit, significance, relevance, and presentation. A good
research paper will demonstrate that the authors:

• are attacking a significant problem,

• have devised an interesting, compelling solution,

• have demonstrated the practicality and benefits of the
solution,

• have drawn appropriate conclusions using sound experimental
methods,

• have clearly described what they have done, and

• have clearly articulated the advances beyond previous work.

A good deployed-system paper will demonstrate that the authors:

• are describing an operational system that is of wide interest,

• have addressed the practicality of the system in more than one
real-world environment, especially at large scale,

• have clearly explained the implementation of the system,

• have discussed practical problems encountered in production,
and

• have carefully evaluated the system with good statistical
techniques.

Moreover, program committee members, USENIX, and the reading
community generally value a paper more highly if it clearly defines
and is accompanied by assets not previously available. These assets
may include traces, original data, source code, or tools developed as
part of the submitted work.

Blind reviewing of all papers will be done by the program commit-
tee, assisted by outside referees when necessary. Each accepted
paper will be shepherded through an editorial review process by a
member of the program committee.

80 S P R I N G 20 1 8 VO L . 4 3 , N O. 1 www.usenix.org

Authors will be notified of paper acceptance or rejection no later
than Tuesday, December 11, 2018. If your paper is accepted and you
need an invitation letter to apply for a visa to attend the conference,
please contact conference@usenix.org as soon as possible. (Visa
applications can take at least 30 working days to process.) Please
identify yourself as a presenter and include your mailing address in
your email.

All papers will be available online to registered attendees no earlier
than Thursday, January 24, 2019. If your accepted paper should not
be published prior to the event, please notify production@usenix.
org. The papers will be available online to everyone beginning on
the first day of the main conference, February 26, 2019. Accepted
submissions will be treated as confidential prior to publication on the
USENIX FAST ’19 website; rejected submissions will be permanently
treated as confidential.

By submitting a paper, you agree that at least one of the authors will
attend the conference to present it. If the conference registration fee
will pose a hardship for the presenter of the accepted paper, please
contact conference@usenix.org.

If you need a bigger testbed for the work that you will submit to
FAST ’19, see PRObE at www.nmc-probe.org.

Best Paper Awards
Awards will be given for the best paper(s) at the conference. A small,
selected set of papers will be forwarded for publication in ACM Trans-
actions on Storage (TOS) via a fast-path editorial process. Both full and
short papers will be considered.

Test of Time Award
We will award a FAST paper from a conference at least 10 years ear-
lier with the “Test of Time” award in recognition of its lasting impact
on the field.

Work-in-Progress Reports and Poster Sessions
The FAST technical sessions will include a slot for short Work-in-
Progress (WiP) reports presenting preliminary results and opinion
statements. We are particularly interested in presentations of student
work and topics that will provoke informative debate. While WiP
proposals will be evaluated for appropriateness, they are not peer
reviewed in the same sense that papers are.

We will also hold poster sessions each evening. WiP submissions
will automatically be considered for a poster slot, and authors of
all accepted full papers will be asked to present a poster on their
paper. Other poster submissions are very welcome. Please see the
Call for Posters and WiPs, which will be available soon, for submission
information.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gatherings held in the
evenings and organized by attendees interested in a particular topic.
BoFs may be scheduled in advance by emailing the Conference
Department at bofs@usenix.org. BoFs may also be scheduled at the
conference.

Tutorial Sessions
Tutorial sessions will be held on February 25, 2019. Please submit
tutorial proposals to fasttutorials@usenix.org .

Registration Materials
Complete program and registration information will be available in
December 2018 on the conference website.

Rev. 02/09/2018

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering,
and working with complex distributed systems at scale. It strives to challenge both those new to
the profession as well as those who have been involved in it for decades. The conference has a
culture of critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 6–8, 2018 • SINGAPORE
www.usenix.org/srecon18asia

AUGUST 29–31, 2018 • DUSSELDORF, GERMANY
The Call for Participation is now available. Submissions are due April 3, 2018.
www.usenix.org/srecon18europe

MARCH 27–29, 2018 • SANTA CLARA, CA, USA
www.usenix.org/srecon18americas

Follow us at @SREcon

2018 USENIX Annual
Technical Conference
JULY 11–13, 2018 • BOSTON, MA, USA

USENIX ATC ’18 will bring together leading systems researchers for cutting-edge
systems research and unlimited opportunities to gain insight into a variety of
must-know topics, including virtualization, system and network management and
troubleshooting, cloud and edge computing, security, privacy, and trust, mobile
and wireless, and more.

Program Co-Chairs:
Haryadi Gunawi, University of Chicago, and Benjamin Reed, Facebook

HotStorage ’18: 10th USENIX
Workshop on Hot Topics in
Storage and File Systems
July 9–10, 2018
www.usenix.org/hotstorage18

HotCloud ’18: 10th USENIX
Workshop on Hot Topics in
Cloud Computing
July 9, 2018
www.usenix.org/hotcloud18

HotEdge ’18: USENIX
Workshop on Hot Topics
in Edge Computing
July 10, 2018
www.usenix.org/hotedge18

www.usenix.org/atc18

Save the Date!

Co-located with USENIX ATC ’18

Registration will open in May 2018.

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Cover
	Upcoming Events
	Contents/Masthead
	Musings
	Letter to the Editor
	Underground Economics for Vulnerability Risk
	A Large-Scale Empirical Study of Security Patches
	Secure Client and Server Geolocation over the Internet
	XDP-Programmable Data Path in the Linux Kernel
	Faults in Linux 3.x
	An Interview with Laura Nolan
	Oslec, the Open Source Line Echo Canceller: An Interview with David Rowe
	Flex Dynamic Recording
	Miniature Cache Simulations for Modeling and Optimization
	Using gRPC with Go
	Practical Perl Tools: Top of the Charts
	iVoyeur: OpenTracing
	For Good Measure: Between a Block and a Hard Place
	/dev/random: Web of Darkness
	Book Reviews
	USENIX Notes
	Announcement and Preliminary Call for Papers: FAST ’19

