

2

motd

Leverage
I keep thinking that I will soon be wizened and know everything

I need to know. I avoid prejudices and try to judge actions and

results more than hype.

I try to partake of technology services so that I can respond

intelligently about Web sites, software services, initiatives, ideas,

and the like. I pay my bills online. I read my email. I installed a

spam filter (what a treat; I am using SpamAssassin and it's so

much better than not having it). I have online access throughout

my house via strategically placed laptops and other computers. I

have both UNIX(-like) and Windows running on various plat-

forms both fixed and portable.

I had the opportunity last week to extend my knowledge of the

use of Windows. I had a document that was required to be for-

matted “nicely” in order that I might distribute it to SAGE mem-

bers who might wish to see it. For better or worse, the document

contained roughly 40 tables and a dozen postscript graphs. Troff

is not regarded as the world’s best table formatter, so I embarked

on implementing something a bit snazzier that would inspire my

readers to enjoy the document and its myriad figures.

I had implemented the original document in HTML but found I

needed a PDF document. We know that HTML ➝ PDF convert-

ers are not renowned for their beauty. I tried to get the docu-

ment typeset (by someone else) in Quark but initially failed on a

quick success due to scheduling and other non-technical rea-

sons. So, I reasoned, Quark can read MSWord files, I’ll just for-

mat the document in MSWord and then it will be trivially

convertable to Quark.

I spent a few minutes writing a short script to extract the docu-

ment from the HTML so that it could be imported into

MSWord and formatted (for the text) and converted to a table

(for the tables). After accidentally typing the wrong filename, I

learned that MSWord will read HTML directly and do a credible

job of laying it out – including tables! I figured my troubles were

over.

That was before my ultimate epiphany about MSWord (and, as it

turns out, so many of the “tools” under Windows). I found that

while MSWord has styles and templates for global formatting

conventions, it is difficult to get tables to fall into a consistent

format. Each table required personal attention. Even moving the

tables to be justified on the right margin was also not possible

without clicking on each table and moving it. In fact, I ulti-

mately spent about 25 hours trying to get the document to be

passably presentable.

What was the epiphany? Windows has the wrong kind of lever-

age. I think of leverage as using devices (e.g., computers) or peo-

ple to increase one’s reach or one’s ability to solve problems. The

Windows tools I was using were insidious. They accepted incre-

mental improvement but never enabled me to improve by an

increment of any appreciable size. I could inch closer to my

desired solution, but only a little at a time – a snail’s pace. “I

think I’d like the tables on the right margin,” required multiple

clicks on each table. Argh!

Why is it insidious? Because it was always possible to move

(often to move closer to the solution). At no time did I fail to

have some (potentially untried) option or some idea of how to

move forward. I have every reason to believe that people who

format one table every two months find extraordinary power in

the ability to do so with MSWord.

And, to be fair, MSWord works for dozens (hundreds?) of lan-

guages. The folks at the international programming contests reg-

ularly translate the problems into 65 languages – all using

MSWord. This is an incredible feat!

But I hate it. No leverage! More skill or practice only incremen-

tally improves my ability to format tables (in this case). The

same seems to be true for any repetitive operation that one

would like Windows to perform (e.g., “Please convert these 22

PostScript files to PDF” for our LISA attendees). That’s 22 sets of

choose-a-file, convert, confirm, and iterate. Ick.

So, I am now familiar with the state of the art. It was an

epiphany for me.

Vol. 27, No. 5 ;login:

by Rob Kolstad

Rob Kolstad is cur-
rently Executive
Director of SAGE, the
System Administra-
tors Guild. Rob has
edited ;login: for
over ten years.

kolstad@sage.org

3October 2002 ;login:

I’ll Scratch Your Back . . .
A few years ago I wrote an article entitled “Ready, Set, No?” in which I outlined things

that I thought a good manager does for – and doesn’t do to – their employees. Appar-

ently it struck a chord with many readers, since I continue to receive comments about

it.

Initially, I was surprised at the response, but it just underscores that most of us want a

few very similar things from our managers. We want our managers to set the tone for

the work environment. They should provide leadership, but also mentoring and learn-

ing opportunities to let the employees know that they are valued today, and will be in

the future as well. A savvy manager will figure out what matters most to each employee

and, wherever possible, make things like work assignments, office arrangements, and

face-time hours accommodate those preferences. Managers shouldn’t set their employ-

ees up to fail with unrealistic workloads, deadlines, or expectations. And when politics,

heavy workloads, or other office snafus inevitably rear their ugly head, managers who

support their employees, run interference for them, or simply push back a little, will

gain employees’ undying loyalty and their willingness to go the extra mile – after all,

“s/he did it for me.”

What about the individual contributor? Are we all created equal? Or can our perfor-

mance in the workplace vary, and if so, what makes a good worker? I asked a few

friends of mine about this and found that, just like managers, there are soft skills that

make individuals better to work with and land them consistently on the top of the

heap among peers and managers alike.

Whenever the opportunity presents itself to make your boss or co-workers look good,

do so! This has multiple payoffs. You’ll be rewarded for your individual contribution,

but you’ll also be recognized for the part you play in giving credit to others. There is

usually ample praise to go around, so make yourself look good by making others look

good too.

If you want your technical prowess to really shine, share it with others! Those employ-

ees who inform others about newsworthy items, teach about and document what

they’re working on, and mentor peers are much more highly valued than those who

don’t. If you have a clue, don’t keep it to yourself! Teaching and mentoring are forms

of leadership and are often rewarded come advancement time.

If you see the wreck coming, telegraph the information ahead of time. No one likes to

be the bearer of bad news, but if you feel your manager is going to be blindsided, it’s

better to give an in-private “heads-up” than let them be publicly caught off guard. No

matter how bad the news, they’ll appreciate hearing it and appreciate you for giving it.

There’s more to most business decisions than simply technical input. Managers are

tasked with considering a larger picture, such as risk assessment, profitability, and

return on investment. Employees should provide their managers with all the technical

information necessary for these big-picture decisions and be willing to entertain give-

and-take discussions that involve non-technical considerations. Employees who

demonstrate the ability to see the whole picture will be called upon more often for

advice, and will ultimately be in a better position to have it adopted.

We expect a lot of our managers, but it’s not a one-way street. Make your manager

look good, share a clue, and get behind the big picture. The sooner you get on board

with these soft skills, the sooner you’ll become that all-around employee who has their

manager’s ear.

apropos
by Tina
Darmohray

Tina Darmohray, co-
editor of ;login:, is a
computer security
and networking con-
sultant. She was a
founding member of
SAGE. She is cur-
rently a Director of
USENIX.

<tmd@usenix.org>

ED
IT

O
RI

A
LS

Vol. 27, No. 5 ;login:

To John Nicholson:

I thoroughly enjoyed your article,

“Politeness in Computing,” which

appeared in the February 2000 edition

of ;login:. In particular I appreciate the

commonsense analogies you have drawn

to a home with a welcome mat. You have

a gift for explaining difficult

technical/legal issues. Have you written

any similar articles discussing the legali-

ties of “honeypots”? I am the InfoSec

security specialist at my firm. Along

with my superiors and the legal depart-

ment, we are having a lively debate after

reading an article by William Jackson in

Government Computer News, http://
www.gcn.com/vol1_no1/daily-updates/
19506-1.html.

He basically cites a speech by one

Richard P. Salgado, a trial attorney in the

[Justice] Department’s Computer Crime

and Intellectual Property section, in

which Mr. Salgado preaches caution.

One of our attorneys feels that the

entrapment defense is a “pure fantasy”

and I am inclined to agree, but others

are more cautious. The downside of

being cautious is that it tends to make

my job of protecting information assets

more difficult.

I eagerly await any input you may have.

Regards,

Dave Warde

John Nicholson replies:

Dave –

I’m glad you liked the article, and, just as

importantly, my editors are glad you

liked the article. It’s funny that you

should ask about honeypots, because

that was the issue that got me into the

writing business in the first place. There

was an argument a couple of years ago

on one of the Security Focus lists about

whether honeypots are entrapment or

not, and one of the ;login: editors saw

my response and asked if I would be

willing to write a column.

To address the issues raised in the arti-

cle:

Federal wiretap laws prohibit intercep-

tion of electronic communications,

including traffic monitoring across a

network. There are exceptions for net-

work protection, but Salgado said that is

an “uneasy fit” for honeypots, because

they are set up with the expectation of

being attacked.

This isn’t entirely correct. If you are the

owner of the network, you can monitor

what happens on it. You can doubly pro-

tect yourself by putting a banner on

your login page that says that any use of

the network is subject to monitoring,

but the key thing that courts have

looked at with regard to such monitor-

ing is whether the person had a legiti-

mate expectation of privacy in the

communication. I think a judge would

have a tough time accepting an argu-

ment that someone attacking your net-

work had a legitimate expectation of

privacy in his/her attack.

Even if you were only allowed to moni-

tor your network for defensive purposes,

I think the honeypot could arguably

qualify as a defensive tool. For example,

I have a limited budget for physical secu-

rity at my home. I recognize that there

are a number of ways that someone

could break in, and I take steps to secure

or prevent those. However, if someone is

determined to break in, I must recognize

that they will find a way. To deal with

that possibility, I try to recognize where

an intruder might be able to break in,

and I have cameras in those areas. If I

could only afford a certain number of

cameras, I might make one path a little

easier or more attractive than the others

so that the intruder would take that path

and thereby pass in front of the camera,

allowing me to gather evidence of the

crime. The intruder has already commit-

letters to the editors

4

EDITORIAL STAFF

EDITORS:
Tina Darmohray tmd@usenix.org

Rob Kolstad kolstad@usenix.org

STANDARDS REPORT EDITOR:
David Blackwood dave@usenix.org

MANAGING EDITOR:
Alain Hénon ah@usenix.org

COPY EDITOR:
Steve Gilmartin

TYPESETTER:
Festina Lente

MEMBERSHIP, PUBLICATIONS,

AND CONFERENCES
USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: 510 528 8649

FAX: 510 548 5738

Email: office@usenix.org

login@usenix.org

conference@usenix.org

WWW: http://www.usenix.org

http://www.sage.org

ted the crime by being inside the house;

the camera simply collects the evidence.

By placing a honeypot and monitoring

it, you are simply putting an intrusion

detector on a place where unauthorized

individuals are likely to go, if they are

already committing the crime of being

inside your network without authoriza-

tion.

An operator might be held liable for

damages if a compromised honeypot is

used to launch an attack against a third

party. “We don’t know” if such liability

would hold up in court, Salgado said.

This is theoretically possible, and I actu-

ally wrote another article for ;login: on

this subject called, “You’ve Been Cracked

. . . And Now You’re Sued.” But if you’re

setting up a honeypot, you ought to be

sophisticated enough to isolate it and

prevent outbound attacks on other net-

works (or at least either notify those net-

works that they are being attacked or

shut down the attack as soon as it

starts). There’s really no excuse for set-

ting up a honeypot and then allowing it

to be used as a zombie.

A hacker charged with illegal activities

involving a honeypot could argue

entrapment, which Salgado said is a dif-

ficult defense. He said it might not apply

to so-called passive honeypots.

Salgado is correct that entrapment is a

very difficult defense. The article doesn’t

point out, however, that the defense of

entrapment is also only available to

someone who is being prosecuted as the

result of activity by a government agent

(like the DOJ, FBI, or some state or local

law enforcement agency). If your com-

pany (or client), as a non-governmental

entity, sets up a honeypot and a cracker

gets prosecuted because of it, the defense

of entrapment is not available. See the

legal definition of entrapment at

http://dictionary.lp.findlaw.com/scripts/
results.pl?co=dictionary.lp.findlaw.com&
topic=64/64a96fc79d0fff3a77e4ddea401c7688.

5October 2002 ;login:

Furthermore, as Salgado also notes,

because a honeypot is a purely passive

thing, even if you were a government

agent, you are not really inducing or

encouraging a potential cracker to go

attack it. If you are a government agent

and set up a honeypot and then anony-

mously went to hacker sites and talked

about this fantastic server with all kinds

of really cool stuff on it and how easy it

was to own, etc., etc., then you might be

setting yourself up for the defense of

entrapment.

Hope this helps. Feel free to write back

with any comments or questions.

John.Nicholson@shawpittman.com

letters to the editors

LE
TT

ER
S

Correction
Robert Faust’s article in the last issue (Vol. 27, No. 4, August 2002) contains an error: the

last equation on page 41 should read:

Received signal strength (non-normalized %) = .83(C – 35log10√(A – x)2 + (B -y)2) + 83.891

6

Let’s consider the small-appliance manufacturing industry. I sincerely doubt

that anyone goes into that industry expecting to comfortably retire a few

decades early by dint of hard work and picking the right company. I also

doubt anyone there expects to be lionized in glossy self-referential maga-

zines or considered an “industry elder statesman” for the supreme achieve-

ment of starting a can-opener or toaster company and managing not to go

out of business for several years.

We need to abandon the fiction of the high-tech industry as “the future.” It is not the

future. It is merely part of the future, yet another tool in the growing plethora of tools

developed by civilization. The revolution is over. Technology won. As technologists, we

won. We just may not have realized it yet.

After Enlightenment, Carry Water, Chop Wood
Now you turn to me with incredulity and say, “How can you say that we ‘won’ the

computer revolution?! For Turing’s sake, more people than ever are using Windows,

the Internet is full of spam, Congress is passing all these ridiculous laws about stuff

they clearly don’t grok, and SAGE is still chafing under the iron yoke of USENIX!

Okay, maybe that last one isn’t the big deal some people make it out to be, but what

about the other stuff?!”

To this question I must pose another: what happens when you win a revolution? There

are several large-scale effects, of which two are most noteworthy. Firstly, the patriotic

militia now must lay down its arms and go back to being shopkeepers, farmers, and

draymen. Think of the American Revolutionary War (or Rebellion, with a cordial nod

to our neighbors across the Pond). The minutemen who survived went back to what

was left of their shops or farms and got back to work. Not very glamorous.

Secondly, and perhaps more applicably, when society-at-large accepts the validity of a

general concept, that acceptance is far from complete and universal; it is often without

full comprehension and always comes with some highly vocal dissenters. In sports

terms, players take the ball and run with it – but probably out of bounds and often

along a playing field that looks nothing like what the game’s originators imagined.

General societal adoption of technology takes “our ball” and goes off to play with it

according to larger rules: in particular, with adaptation of technology into more spe-

cialized tool sets and re-purposing of technology and technological infrastructure for

previously unfeasible uses – including those which we, as de facto technocrats, may

feel lack a certain elegance or relevance.

Which Came First: The Goose or the Golden Egg?
To make matters more confusing, our technological revolution has largely become

conflated with a minor economic “revolution” – in the old-fashioned sense of “a turn

of the wheel.” The economic boom cycle came to be considered part and parcel of the

technological progression. The success of the technology boom cycle was the wide-

spread normalization of an unprecedented level of technological sophistication.

Today’s high school kids tweaking their Doom skins have more power to do graphics

visualization than the entire MIT astrophysics department had in 1981. Wow. The guy

on the street doesn’t think twice about this anymore. Double wow. To us it seems to

matter that the kid may be running Windows instead of Linux, but in the larger con-

text, the victory is that he or she is using a sophisticated tool and not thinking about

vive la révolution!
now get over it!

Vol. 27, No. 5 ;login:

by Strata R.
Chalup

President, VirtualNet.
Starting as a Unisys
68K admin in 1983,
Strata Chalup is now
an IT project manag-
er but allegedly has
retained human qual-
ities. Her mixed
home network (Linux,
Solaris, Windows)
provides endless
opportunties to stay
current with hands-
on tech.

strata@virtual.net

OS or hardware issues at all. Let’s not forget the forest as we argue about which trees

are better, and which types of woodlot management are best.

Did you know that not only your box-o-hardware but your OS and your applications

are now commodity items? Why do you think Microsoft wants to turn on system

auditing with mandatory updates in Windows 2000 (SP 3, read the EULA) or applica-

tion licensing in XP? Commodity, commodity, commodity. Applications are just con-

duits for file formats, which in turn are just a convenient box with handles around

content. “Pththt!” you say. “Content is king? Been there, done that, no market in it.”

Not quite true – there’s no content market with pie-in-the-sky valuations that will cat-

apult a company to stardom. What there is, instead, is a vast and insatiable long-term

income stream. The big companies are spending millions twisting our legislative struc-

ture to support this income stream, this multi-billion-dollar market for those who

aggregate intellectual property rights and copyrights to content.

Day-to-day technology is rapidly becoming merely a conduit to deliver content to

those who require it. This mirrors the business world, where technological applica-

tions have been largely harnessed to make existing business processes easier. Everyone

who has used it has a Meeting Maker™ horror story, yet for the corporation overall it

still makes a positive difference. The success of the PDA is largely rooted in synchro-

nization, and could not come to fruition until there was enough electronic infrastruc-

ture carrying out business processes that there was something on the other end to

synchronize to.

I Will Gladly Pay You Tuesday for a Hamburger Today
This brings us to another key point. What many of us in the technology field tend to

forget is that technology has everyday value only when it is applied. Further, Moore’s

Law gives technology something of the nature of a perishable good or even a service.

This may seem counterintuitive, given the tangible nature of a rackmounted box

stuffed with hard drives and application servers. The economics of perishable goods

and of services are rather well understood. Empty hotel rooms are not bankable. The

high prices with which we are familiar, and upon which empires were built, came

largely from relative scarcity of technology applied in the right place at the right time.

When you just had to have a 100GB RAID 5 file system to support your e-commerce

application, and the server box only had so many disk drive slots, a 10GB 9600 rpm

drive was priceless. Especially when time to market was perceived as the most critical

factor, and a dozen other dot-com companies were trying to pry the same pallet of in-

stock drives out of your local vendor’s warehouse. What if there weren’t a dozen other

companies trying to buy the same drives? Or fast-forward six months to a year, when

the same dollars buy you a 30GB drive. Those 10GB drives sitting on the shelf still cost

the same to produce but their dollar value has dropped. Yet we consistently see busi-

ness plans that insist that the price should have nothing to do with the current situa-

tion, and that the “value” of the drives is $whatever.

This is an understandable, yet common, mistake. I had hopes that an MBA and a little

bit of history would have proven more of a deterrent. Most of us think of technology

prices as intrinsic rather than situational. The cost of manufacturing technically does

not include research and development, despite our vendor’s sales team’s assurances to

the contrary. Hence the thriving clone markets and the profitability therein. They’re

not building empires, but they’re paying salaries and staying in business. It’s a brave

new world to the people who entered the workforce in the late ’80s, but it’s “back to

reality” for the rest of us. In my most cynical moments I think that the industry will

7October 2002 ;login:

Technology has everyday

value only when it is applied.

VIVE LA RÉVOLUTION ●

●

O

PI
N

IO
N

Vol. 27, No. 5 ;login:

resist normalization until everyone who remembers the glory days of IBM and DEC

retires from positions of responsibility. We may have to broaden that to include Sun,

Microsoft, and Oracle. The time of empires has passed. When the market was smaller,

you could corner it. Who has cornered the market on butter? On best-selling novels?

On gasoline?

It’s the End of the World As We Know It . . .
Much of the technology sector is waiting for investors to “come to their senses.” Sorry,

they already have! Except for random islands of scarcity produced by the market

equivalent of “lift pressure,” the high flying days are over. Plenty of successful compa-

nies are making can openers. They don’t have stock with valuations reflecting obscene

P/E ratios. After all, they’re making can openers. Welcome to the commodity market-

place.

In many ways the burst of the dot-com bubble was like Watergate. Its worst aspect was

not the individual investments or reputations destroyed, but the damage to the societal

perceptions of the institutions behind them. There are still many things that we can do

with the new technologies, but the man-on-the-street perception in much of our soci-

ety today is that all technology is over-hyped and that there’s nothing out there but

Web site pyramid schemes and pop-up ads.

There are still good technology stocks out there. They’re the kind that will help fund

your retirement in 40 years, not the kind that will buy you a house in five years. The

familiar proverb is missing a key modifier – it’s not that “there’s no such thing as a free

lunch”; it’s “there’s no such thing as a consistently free lunch.” If you’re used to having

Peets or Starbucks in the break room, “Office Caterer House Blend” seems like a deep

pit rather than a return from the mountains to sea level.

. . . And I Feel Fine
Do you remember life before Post-it™ Notes? A lot of us can’t imagine being without

them. Their invention didn’t “make” 3M, nor did they become 3M’s flagship product

against which all other products were measured. Their inventor didn’t leave 3M and

try to start his own company to propel himself into stardom and riches. There is still a

lot of potential out there. It’s just traditional potential, which can feel a lot like “noth-

ing” in contrast with the excitement of the past couple of decades.

So where is this all going? Is the high-tech sector dead? Should we all just take up dog

walking or open a hot dog stand? I think that the end of the Age of Empires in high

tech has a lot of potential for us as a profession. Work can still be fun, which is good

because you won’t be retiring at 35. Opportunities are out there, and while they aren’t

as glamorous, they may not demand as high a personal price in unpaid overtime and

ulcers.

There are still next-level paradigm jumps out there. They may not make you rich, but

who cares? As the late Michael Dertouzos said at a futurism forum in 1999, “We

haven’t really invented the bulldozer yet. We’re just out there with platinum, diamond-

encrusted shovels.” I think that there’s the potential for a New Internet that looks a lot

like the Old Internet, a place where innovation was exciting and people did it for fun,

and innovators weren’t punished with a four-digit surprise bandwidth bill from their

ISP. New advances might make hardware hobbyism possible on a level that would

remind old-timers of the heady days of the ’70s when “home computing” meant

breathing solder fumes. Details, details, you say. But that’s the next column. See you

next issue!

Plenty of successful

companies are making can

openers. They don’t have

stock with valuations

reflecting obscene P/E ratios.

8

9October 2002 ;login:

We’ve all seen them – pages and pages of two-column text, generally in

8-point type. In real life, we might get a CD in a jewel case with lots of

small text printed on it and a warning that says that opening the box

means that you accept the license. When we’re online, we get an easy “I

Accept” box that doesn’t require reading all the gibberish before letting us

install the software that we want. But have you ever actually read one?

What are you agreeing to? Software vendors have lawyers who spend hun-

dreds, if not thousands, of hours drafting these licenses to protect the

“rights” of the seller. And in the case of Microsoft, Adobe, AutoDesk, Bor-

land, and several others, they also have the Business Software Alliance

(http://www.bsa.org) to collect reports of and prosecute unauthorized soft-

ware use.1 The only thing protecting your company is your understanding

of the terms of the license and your (or your lawyer’s) ability to negotiate

with the vendor.

The purpose of this article is to give you some insight into what a software license

should cover, provide an analysis of some sample language that vendors have used,

and give you some tips for negotiating with vendors.

What Is a “License”?
The word “license” is somewhat misleading. A software license is a contract. According

to WhatIs.com, “An End User License Agreement (EULA) is a legal contract between a

software application author or publisher and the user of that application. The EULA,

often referred to as the ‘software license,’ is similar to a rental agreement; the user

agrees to pay for the privilege of using the software, and promises the software author

or publisher to comply with all restrictions stated in the EULA.”2 So, in exchange for

being allowed to use the software, you agree to comply with the restrictions imposed

by the vendor. If you break the rules, you have breached the contract, and there may

be specific remedies written into the license or you may have even violated some laws

(e.g., copyright laws,3 the Digital Millennium Copyright Act,4 the No Electronic Theft

[or NET] Act,5 or others).

License Structure and Analysis
A software license tells you what you can and can’t do with the software and what the

vendor can and can’t do. What the license says (and doesn’t say) is just as important to

you as it is to the vendor. In general, a software license should cover:

■ Software included under the license
■ Scope of use for the software and any restrictions on its use, as well as any

different restrictions on the use of the documentation
■ Duration of the license
■ Related services (e.g., consulting, enhancement, help-desk support) that will be

provided, and the terms under which those services will be provided
■ Pricing and payment terms
■ Confidentiality provisions
■ Warranties and indemnities
■ Limitations on liability
■ Termination of the license and/or the services
■ Other legal terms that are relevant (e.g., rights of publicity, choice of law)

software licensing
101

by John
Nicholson

John Nicholson is an
attorney in the Technol-
ogy Group of the firm
of Shaw Pittman in
Washington, D.C. He
focuses on technology
outsourcing, application
development and sys-
tem implementation.
and other technology
issues.

John.Nicholson@ShawPittman.com

●

TH

E
LA

W

Vol. 27, No. 5 ;login:10

If the software is going to be used internationally, there may be specific terms that

need to be discussed. For example, the US government restricts certain software from

being exported to certain countries or at all, and you might have to apply for a special

permit; or there are certain international treaties that may come into play regarding

the sale of goods.

SOFTWARE INCLUDED UNDER THE LICENSE
The first question to ask when looking at a software license is whether it covers all of

the software (and all of the functionality) that you think you are getting. It’s important

to make sure that you understand how the software covered by the license will provide

all of the functionality that you think you are getting, and that it will continue to pro-

vide the same functionality in the future. Although this may seem obvious, there are

certain provisions related to updates and upgrades that can affect the availability of

functionality down the road. (See the section on updates and upgrades, below.) When

you are discussing the software covered by the license, be sure to review in detail how

the software will provide the functionality that you think you are getting. If the soft-

ware cannot currently provide some of the functionality that you need, see whether

there is a workaround, whether the vendor plans to provide such functionality in the

future, or whether you will need to develop that functionality in cooperation with the

vendor, using a consultant or on your own.

SCOPE
The scope of a license can vary dramatically, depending on the restrictions that the

vendor wants to place on your use of the software. The license may specify:

WHO CAN USE THE SOFTWARE

Frequently, software licenses drafted by vendors will try to limit software use to

employees of the company purchasing the software. This would mean that neither

your contractors nor any consultants could use the software, which could be an incon-

venience for you (if you complied with the restriction) or could result in a breach of

the license (if you didn’t). If you are only using object code, there isn’t really much rea-

son for this restriction. If you have source code, it would be reasonable for the vendor

to insist that contractors and consultants sign a Non-Disclosure Agreement before

being allowed access to the source code. And there might even be a short list of direct

competitors that the vendor would want to prevent from seeing the source code under

any circumstances.

FOR WHOSE BENEFIT

Software vendors want to sell as many copies of their software as possible, so they try

to limit the number of people who can benefit from each installed version of the soft-

ware. You, on the other hand, want to buy as few copies of the software as possible, so

you want to be able to use it for your own company, your subsidiaries, other affiliates,

your customers, your suppliers, etc. As long as you and the vendor come to an under-

standing regarding how the software will be used prior to executing the license, the

vendor can take the scope of your use into account in its pricing.

FOR WHAT PURPOSES

Just as vendors want to limit access to the software by other companies, vendors want

to limit access across business lines, if possible. By understanding how your company

will want to use the software, you can reach a reasonable agreement with the vendor in

this area.

Frequently, software licenses

drafted by vendors will try to

limit software use to

employees of the company

purchasing the software.

11October 2002 ;login:

IN WHAT LOCATIONS

If you plan to use the software in multiple countries, some vendors will try to argue

that they need to get approval from regional segments of their organization in order to

negotiate a deal. How the vendor organizes its own accounting is not your problem,

and if a vendor wants to be a global player, it should act like one. (Note: this is just an

extension of the “no authority” strategy discussed in the “Negotiation Tips” section

later in the article.) It is possible, however, that there may be countries in which, for

some legitimate reason (generally legal or regulatory), a vendor is unable to license you

to use the software.

ON WHAT EQUIPMENT

Certain licenses are restricted to a particular-sized processor. Be certain that the license

you are getting is sufficient for the use you intend now and throughout the term of the

license. You will not put yourself (or your successor) in a good negotiating position if

your business needs to renegotiate the license in the middle of the term because you

did not adequately anticipate growth levels. If the pricing for the license is based on

the processor (or other equipment) that you will be using, and there is a possibility

that you might need to upgrade or expand your equipment during the term, negotiate

the pricing for using the software on the upgraded/expanded equipment before sign-

ing the initial deal. Remember, your negotiating leverage is at a maximum before you

sign.

If the license is based on number of users or number of machines accessing the soft-

ware, you should consider whether devices like PDAs would qualify. For example, one

vendor’s standard license prices the software by “client,” which it defines as “an appli-

cation that invokes, typically via a network protocol, the software functions provided

by one or more servers.” Under that language, a query from an application installed on

a PDA could qualify as a “client,” which could dramatically increase the price of the

software.

PERMITTED COPYING

Vendors frequently include language such as, “Customer shall not make any copies of

the Software, except for a single archival copy solely for internal purposes.” This means

that, for example, you would have to separately license development, test, and produc-

tion instances of the software, and that you might also need to separately license any

copies to be used for training. Since you must have at least a test region in addition to

your production region, the license should include copies for you to use in those addi-

tional regions without an additional charge. Furthermore, if you have multiple loca-

tions, each running the software locally, you might want to have a backup copy at each

location so that you can re-install via the local network. This is also a reasonable

request.

Another thing to look out for in software licenses is whether the defined term “soft-

ware” includes the documentation. Frequently, it does, and the impact of that defini-

tion combined with the language quoted in the previous paragraph would mean that

you could not copy any of the documentation associated with the software in order to

make training materials or procedures manuals. Training materials and other docu-

mentation provided by the vendor are likely to be generic rather than customized to

your particular implementation. To customize your documentation, you might want

to make sure that the license includes language such as, “Customer may copy, share,

distribute, modify and create derivative works from the user manuals and any related

documentation solely for Customer’s internal business purposes.”

Certain licenses are restricted

to a particular-sized

processor.

SOFTWARE LICENSING 101 ●

●

TH

E
LA

W

Vol. 27, No. 5 ;login:12

WHETHER THE LICENSE IS TRANSFERABLE OR NOT

Frequently, a license will specify either that (1) the customer may not assign the license

without the vendor’s consent or (2) neither party may assign the license without the

other party’s consent. If your company is acquired or wishes to assign the license to

another company (including a parent, affiliate, or subsidiary) for some other valid

business reason, this provision could allow the vendor to refuse to grant its consent

unless you satisfy conditions specified by the vendor. Language like this should be

revised so that you can transfer the license to a parent, affiliate, or subsidiary without

being required to get the consent of the vendor. At the least, you should get the vendor

to agree that it will not unreasonably withhold any consent.

DURATION/TERMINATION OF THE LICENSE
The license should specify the term of the license. Large system operating software is

generally priced by the month or the year. In the US, a perpetual license is legally

acceptable, but outside the US you should discuss with a lawyer using a term of 20

years of less in order to avoid certain legal issues related to perpetual contracts.

In addition to knowing when the license will expire, you should examine very carefully

the ways that the license can be terminated. A piece of software can be critical to your

company’s operations. Unless you don’t pay for the license or you knowingly disclose

the vendor’s legitimately confidential information, the vendor should not be able to

terminate the license. There are legal (i.e., financial) remedies that can compensate the

vendor for virtually anything else that your company could do without threatening

your company’s ability to use a potentially mission-critical piece of software. On the

other hand, you should be able to terminate the license and associated maintenance as

long as you provide a reasonable amount of notice to the vendor.

Frequently, vendors will agree to allow you to terminate a contract early provided that

you give them notice and pay a termination-for-convenience fee.6 These fees range

from a reasonable recovery of costs by the vendor (such as any investments that the

vendor had to make to provide your particular services or to develop a particular func-

tion) to bordering-on-absurd attempts to include all of the revenues that the vendor

would have received during the term of the contract. If you terminate the contract

early, it isn’t unreasonable for a vendor to recover costs that the vendor expected to

recover during the term. The vendor shouldn’t suffer harm because you elected to ter-

minate a contract early. However, once you terminate the contract, the vendor won’t

be providing services or incurring costs, so there is no reason for the vendor to receive

the total revenues that the vendor would have received for providing the services dur-

ing the remainder of the term.

Nor is there much ground for the vendor to argue that it should receive the profits that

it would have received during the remainder of the term. Vendors will try to use the

argument that they have a right to lost profits because they shouldn’t suffer harm

because you decided to terminate the contract early. If the contract had never hap-

pened, the vendor would not have received the profits that they are trying to claim, so

allowing the vendor to include lost profits in a termination-for-convenience charge

puts the vendor in a better position than if the deal had never happened. The vendor

should be allowed to recover costs, but not lost profits.

PAYMENT, ACCEPTANCE TESTING, AND WARRANTIES
In general, the vendor wants its money for the software right away (particularly these

days). When negotiating, vendors look for payment on delivery (if not sooner) and in

a lump sum. For example, one vendor’s standard license agreement specifies, “Within

10 days after the Effective Date of this Agreement, the applicable Order Form and pay-

ment to [Vendor] of the associated license fees, Support Fees or other fees set forth in

the Order Form, [Vendor] shall provide access to the [Vendor] FTP site to enable

licensee to download the license Products and Documentation.” This means that you

have to pay for everything up front and only then will you be able to download the

software and documentation. For something really simple and basic, this might not be

too bad.

But for more complicated software that will require some implementation, you should

be able to delay at least some of the payment until the software is successfully imple-

mented (i.e., after acceptance testing). Vendors will argue that acceptance testing isn’t

necessary because (1) the product is proven in the market and (2) you’re getting a war-

ranty. However, the warranties frequently are effective for 90 days after delivery of the

software. Most implementations take longer than 90 days, so unless the implementa-

tion is either simple or on a fast track, your warranty is effectively useless if it is based

on the delivery date. Your warranty should begin running after the software has been

successfully installed and tested (including integration testing), and you should be able

to return the software for a full refund of the license fees if it isn’t accepted.

Vendors want to be able to recognize the revenue from the sale of the software as soon

as possible, and allowing you to return the software can interfere with the vendor’s

ability to recognize the revenue. Revenue recognition affects the vendor’s earnings and

the salesperson’s incentive compensation. There are very specific rules regarding when

revenue can be recognized.7 If revenue recognition becomes an issue in your deal, you

should have someone from your accounting/finance group who is experienced in this

area working with your team.

For ongoing services or installment payments, you should look at the payment terms

specified in the license. For example, one vendor’s standard terms states:

All billed charges are due ten (10) days from the invoice date. Licensee agrees that a

copy of an invoice received by facsimile machine shall be binding on Licensee and

have the same effect as an original. All balances ten (10) days past due will be sub-

ject to a ten (10) percent annual finance charge, and [Vendor] may elect to suspend

technical support, software updates and enhancements, withhold shipment of com-

puter supplies, and/or activate time sensitive devices . . . until [Vendor] receives said

past due payments.

Not only is “Net 10” a short period of time for your company to make its payments,

but the multiple remedies to this vendor of being able to charge interest, withhold sup-

port or other services, and potentially disable the software for failure to pay a bill

within 20 days of the date the invoice was printed (not received by your company) is

unreasonable. Because the license specifies an interest charge for late payments, the

vendor is already being compensated for a late payment.

REMOTE DEACTIVATION OF SOFTWARE
As mentioned in the language quoted in the previous section, vendors sometimes

include in licenses the right to switch off the software or deny you access to date-sensi-

tive activation codes if you haven’t paid for something or if the vendor thinks that you

are in breach of the license. For example, one vendor’s standard form license states:

13October 2002 ;login:

●

TH

E
LA

W

SOFTWARE LICENSING 101 ●

Vol. 27, No. 5 ;login:

Licensee acknowledges that some or all of the [software] may contain time sensitive

devices which may be activated automatically, by [Vendor] or otherwise upon a

material breach of this Agreement by Licensee, including without limit Licensee’s

breach of the payment terms . . . and Licensee’s breach of the confidentiality provi-

sions . . . or the expiration or termination for any reason of this Agreement. Upon

activation, such time sensitive devices may alter or prevent the functionality of the

[software]. Licensee acknowledges and agrees that such time sensitive devices are

necessary to protect [Vendor’s] intellectual property rights, that [Vendor] shall have

no liability whatsoever for any outcomes caused by activation of such time sensitive

devices and that Licensee shall be liable for all costs associated with the activation of

such time sensitive devices, as well as costs associated with resuming normal use of

the [software].

You should rarely, if ever, accept a license that allows the vendor to deactivate any part

of your software with time-sensitive disabling devices. If the vendor can deactivate

your software, you will likely give in to the vendor’s demands rather than lose your

functionality. Under the license, and under the law in general (at least in the US), the

vendor will have legal remedies for any breach; the ability to remotely disable the soft-

ware represents a self-help measure that gives the vendor unreasonable leverage over

your company.

Maintenance and Support
GENERAL
The standard vendor position regarding maintenance and support is that it begins

after the warranty period (if any), is payable in advance, is non-refundable, and is sub-

ject to annual increases that are not capped in any way. From your perspective, you

want the maintenance and support to be optional, since you might not need it or

might be able to get it from someone else; you want to be able to pay in installments;

and you want the price to be fixed during the term of the license, or if not fixed, then

at least have the increases specified in advance and capped, to ensure that you under-

stand the maximum amount of costs that you will have to pay.

NEW RELEASES, UPDATES, AND UPGRADES
Frequently, vendors will include new “releases,”“updates,” or “maintenance patches” in

the cost of maintenance but will expect you to pay for “upgrades” to new “versions.”

Each vendor uses these terms differently and, frequently, in confusing ways. You

should understand how the vendor numbers its software, and agree in advance to what

constitutes something covered by maintenance (e.g., going from version 3.1.1 to 3.1.2)

versus something for which you’ll have to pay (e.g., going from version 3 to 4). It’s rea-

sonable for you to pay for significant new functionality, assuming that you want it and

can use it, but it seems unfair for a vendor to require you to pay for the privilege of

going through an upgrade to receive new functionality that you may not want or, in

the alternative, risk losing your maintenance.

To minimize their costs of providing support, vendors try to limit the number of

releases that they have to support at any one time. They do this by requiring you to

upgrade to within a certain release level (e.g., “n–1”) or by specifying that support for

a previous version will be discontinued some period of time after the next version is

released. On the other hand, upgrades are unpleasant and expensive for you. The more

frequently you have to upgrade, particularly where an upgrade provides some change

in the user experience, the less happy your users will be.

14

You should rarely, if ever,

accept a license that allows

the vendor to deactivate any

part of your software with

time-sensitive disabling

devices.

One vendor’s standard license states:

[Vendor] periodically issues software updates that may require additional process-

ing capacity (i.e., CPU memory or additional disk capacity) for Licensee’s equip-

ment. Licensee understands this requirement and agrees to purchase equipment as

needed to remain current with [Vendor’s] software releases. Licensee agrees to

install each update and enhancement as soon as reasonably possible but in no event

later than ninety (90) days after receipt. In the event that Licensee fails to so install

any update or enhancement, then any warranty or obligation of [Vendor] with

respect to the affected Program shall be invalidated.

The impact of the quoted language means that if the vendor releases an upgrade that

required more processing capacity than your existing hardware had available, then

within 90 days of the new release being made available, you must (1) upgrade your

hardware to the specifications for the upgrade and (2) install the upgrade. Think of

the impact that this could have on your budget and your upgrade schedule for your

hardware.

Vendors frequently will not commit to a specific number of releases or the frequency

with which they will produce new releases. It’s not unreasonable to insist on a maxi-

mum number of required upgrades in a given year, nor is it unreasonable to expect

vendors to keep up with industry-standard hardware/OS upgrades and industry-spe-

cific regulations.

The Legal Stuff You Usually Ignore
There are whole sections of contracts that business people regularly ignore because

they feel like those sections cover stuff that is only interesting to lawyers. Although the

lawyers are usually the only ones who argue about these issues, the business people

really ought to pay more attention to them. Things like confidentiality, warranties,

limitations of liability, and other terms that are always at the back of the contract can

have a significant operational and financial impact; frequently, the vendors put things

back there assuming that the business people won’t be paying close attention.

CONFIDENTIALITY PROVISIONS
Some vendors’ standard licenses define every aspect of their software and documenta-

tion to be confidential information. While it is not unreasonable for a vendor’s source

code or detailed technical documentation to be confidential, making the object code

or user manuals confidential could create a problem. For example, one vendor’s stan-

dard form contract states:

The parties agree . . . that they shall not use, except as otherwise expressly permitted

hereunder, or disclose to any third person, including any of its affiliates, or to any

employee of the receiving party without a need to know, either during or after the

term of this Agreement, any Confidential Information.

If the definition of “Confidential Information” were to include the object code or user

documentation (which this vendor’s license does), this would mean that except for

employees of your company who actually have a need to see the software, no one else

could even see the screen while the software was being used without it being a viola-

tion of this term.

Some vendors’ standard agreements also have confidentiality provisions that are “one-

way”: they protect the vendor’s information but not yours. If your company is hiring

15October 2002 ;login:

It’s not unreasonable to insist

on a maximum number of

required upgrades in a given

year.

SOFTWARE LICENSING 101 ●

●

TH

E
LA

W

Vol. 27, No. 5 ;login:

the vendor to implement the software or provide any other services, the vendor will be

learning a great deal about how your company operates and would be under no obli-

gation to keep any of it a secret.

WARRANTIES AND INDEMNITIES
High on the list of things that non-lawyers traditionally ignore are the warranties and

indemnities. In addition to the warranty that there are no disabling devices included in

the software, the big one from your perspective is that the vendor should warrant that

the software and documentation do not violate any patents or otherwise infringe on

any other intellectual property rights. If someone claims that the software or docu-

mentation does violate their intellectual property rights, the vendor should indemnify

your company for all costs and expenses associated with that claim.

LIMITATION OF LIABILITY
Next time you drop film off to be developed, look at the disclaimer on the envelope

that says that if the developer screws up your pictures or even just completely loses the

film, all they have to do is give you a new roll of film. This is a limitation of liability. A

limitation of liability provision is a contractual term that specifies the maximum

amount of damages for which a party can be liable under the contract.

In most standard vendor licenses, the limitation of liability generally only limits the

liability of the vendor and limits it to an amount equal to something like the cost of

the software or one year’s maintenance. This means, in general, that no matter how

badly the vendor screws up or how much it costs your company to fix the problem, the

vendor only has to pay your company a maximum of what is specified in this clause.

Whether the cost of the software or the price of a year’s maintenance is a reasonable

limitation on damages is something that you and your business people can evaluate

and negotiate. This provision should also be mutual, so that your company’s damages

are also capped.

There are certain standard exclusions to this limitation that are generally included in

each contract without too much argument from either side. If you’re really interested,

your general counsel can tell you more.

OTHER LEGAL TERMS
There are frequently a few other sections at the back of any agreement covering things

like “choice of law” and “right of publicity” and other terms that sound trivial, and

sometimes they are. However, if you are not careful, your agreement could be gov-

erned, for example, by the law of Virginia, which has passed a very vendor-friendly

version of the Uniform Computer Information Transactions Act (UCITA).8 New York

is a state that has not passed a version of UCITA and is generally considered to have a

well-developed body of commercial law.

Vendors like to publicize their sales. Some companies like to keep very close control

over how their name and trademarks are used. Frequently, vendor licenses include the

right for the vendor to issue a press release announcing that you are a customer and to

use your company’s name in their customer list. Your company may have a policy

regarding publicity, and if you don’t pay attention to the provisions at the end of the

license, you could end up agreeing to a contract that violates your company’s policy.

16

Modifications and Customizations
What happens if the software you are buying doesn’t do exactly what you need it to?

The first question is whether you’re going to do something about it or just live with the

lack of functionality. If you want to do something about it, then you will either need to

modify or customize the software. “Modifications” to the software are modules devel-

oped by you or a third party that use pre-defined APIs in the software but do not

require any changes to the underlying source code. “Customizations” are changes to

the underlying source code, made by you, the vendor, or a third party.

Some vendors will encourage you to make modifications to their software, or they may

offer to either assist you with developing them or develop them for you. Be careful,

though, because some vendors’ licenses give them the rights to any modifications you

develop.

If you plan to develop customizations, you will need access to the source code for the

software. This is not usually provided as part of a standard license. Some companies

provide access to source code as part of a “developer’s license” that is more expensive

than the standard object code license.

Customizations can create risks, though, and the biggest is that a customization will

take you out of the upgrade path (this is sometimes true with modifications, too). The

best way to make sure that a customization or modification will not lock you into a

particular version is to have the vendor develop the customization for you, but negoti-

ating a development and implementation deal is a subject for another time.

Negotiation Tips
The most important thing in any technology procurement is to understand what busi-

ness need the technology solution must satisfy and what that is worth to the company.

Once you understand why you are looking for in a technology solution, the negotia-

tion can begin.

As with any deal, negotiating software licenses is all about who has leverage, and, until

you sign the deal, you have the most leverage you are going to have (in some cases, this

is still very little, but once you sign the deal you have even less). Frequently, customers

are reluctant to negotiate, believing that if they don’t make things difficult for the ven-

dor at the negotiating table, the vendor will take that into account during the relation-

ship. It’s a nice thought, but this almost never happens. By that logic, you would agree

to pay the sticker price for a new car in the hopes that you would get better service

from the dealer in the long run. It’s important to realize that, in general, a vendor’s

standard initial position is a position that is very favorable to the vendor. It’s simply

the opening position in the negotiation. One of the most important aspects of a nego-

tiation is to know what is reasonable and why. Hopefully, this article has given you

some insight into that.

Both comparison shopping and getting references are reasonable things to do in any

procurement. If there are multiple packages that can provide the functionality that you

need, a competitive procurement increases the likelihood that you will get a better deal

from whichever vendor you ultimately pick. Also, discussing your needs and a vendor’s

offering with one vendor will give you ideas for additional questions to ask the other

vendor(s). You should also ask the vendor for references, including at least one cus-

tomer that has stopped using the vendor’s software recently. If the vendor has a users

group, contact them, as well, and ask them for references similar to your company’s

17October 2002 ;login: SOFTWARE LICENSING 101 ●

●

TH

E
LA

W

Vol. 27, No. 5 ;login:

profile and for a former user of the software. References can give you valuable infor-

mation about issues with the vendor’s software, how well the vendor supports the soft-

ware, and the vendor’s plans for the future.

When it comes time to negotiate, most vendors will try to send someone who does not

have negotiation authority. He or she will agree to take your positions back to the ven-

dor, particularly to the vendor’s legal department, for review. It’s the same principle

that car dealers use – the salesman actually has no authority and acts like he is on your

side, and it’s just his manager who’s being inflexible and unreasonable. Try to make

sure that the person you are dealing with has the authority to agree to changes in the

terms of the license. If they don’t, then you’re wasting your time negotiating with

them.

To the extent possible, you should avoid using the vendor’s standard form license. Any

document can be written any number of ways, and software vendors have had lots of

practice at drafting agreements that are interpreted in their favor. If you do have to use

the vendor’s form, have an experienced attorney look at it to identify areas of concern.

Vendors are very good at writing provisions that sound very reasonable but that can

have serious consequences to the consumer. You may not be able to do anything about

them in negotiations, but at least you will understand the risks of a particular deal.

The common arguments that vendors will make when resisting changes to their form

are that the changes will adversely affect their pricing model (i.e., they’ll have to charge

you more), that they will affect the vendor’s ability to recognize the revenue, or that

the vendor will have to make special accommodations to manage your contract if you

get terms that are different from everyone else. The only one of these that holds any

water from the customer perspective is that some provisions of a software license allo-

cate risk (for example, a warranty pushes the risk of a failure onto the vendor), and if

you change the allocation of the risk, you may actually legitimately change the

assumptions underlying the vendor’s pricing. However, vendors tend to use this as an

argument much more often than it is merited. If the vendor argues that a change will

affect the vendor’s ability to recognize the revenue from the sale of the software, ask to

see the opinion of the vendor’s accountant.

Conclusion
If all of the above wasn’t enough to make you want to look through your software

licenses with a pair of lawyers and a fine-tooth comb, here’s a recent quote from a

Microsoft EULA for the patch that fixed a security problem in Windows Media Player:

You agree that in order to protect the integrity of content and software protected by

digital rights management (“Secure Content”), Microsoft may provide security

related updates to the OS Components that will be automatically downloaded onto

your computer. These security related updates may disable your ability to copy

and/or play Secure Content and use other software on your computer. If we provide

such a security update, we will use reasonable efforts to post notices on a web site

explaining the update.9

By downloading and installing that security patch, which you really needed to do, you

would give Microsoft the authority to automatically dump software onto your

machine, and the only thing they would have to do would be to make a reasonable

effort to post a notice about it somewhere on a Web site.10

18

Your software is letting your company do its business, and the licenses are what control

how you use that software. Understanding the reasons why your company wants to use

a particular software and the terms and conditions governing its use are critical issues

if you are going to be involved in negotiating or administering software licenses. At the

very least, read the licenses of the software for which you are responsible so that you

can have a clear understanding of what you are and aren’t allowed to do.

Notes
1. This article provides general information and represents the author’s views. It does

not constitute legal advice and should not be used or taken as legal advice relating to

any specific situation.

2. http://whatis.techtarget.com/ under EULA (as of Sept, 3, 2002).

3. US Code Title 17.

4. PL 105-34 (1998).

5. PL 106-113, 113 Stat 1501, 1501A-521 (1999).

6. Note that there is a difference between “termination for convenience” and “termina-

tion for cause.” Termination for cause is when the vendor has breached the contract in

some way and you are firing the vendor. Termination for convenience means that you

have simply decided that you don’t want to use the software or the services any more.

7. American Institute of Certified Public Accountants Statement of Position 97-2.

8. VA Code §§ 59.1-501.1 through 59.1-502.1. Maryland is the only other state so far

that has passed a version of UCITA, but it is being considered in a number of other

states. Three states, Iowa, North Carolina, and West Virginia, have enacted “bomb shel-

ter” anti-UCITA statutes to protect their citizens from the effects of UCITA provisions

in shrink-wrap or click-wrap licenses.

9. As quoted in Thomas C. Greene, “MS Security Patch EULA Gives Billg Admin Privi-

leges on Your Box,” posted at http://www.theregister.co.uk/content/4/25956.html, as of

7/01/02.

10. For a humorous take on this, see J.D. “Illiad” Frazer’s comic strip, “User Friendly,”

for July 6 and 8, 2002, at http://www.userfriendly.org.

19October 2002 ;login: SOFTWARE LICENSING 101 ●

●

TH

E
LA

W

http://whatis.techtarget.com/
http://www.theregister.co.uk/content/4/25956.html
http://www.userfriendly.org

20 Vol. 27, No. 5 ;login:

C99 and compatibility

In previous columns, we’ve looked at some of the new

features in C99, the standards update to C. In this pre-

sentation we’ll discuss compatibility and look at issues

with mixing C89 (the previous C standard) and C99

code. We’ll also look at compatibility between C99 and

C++.

C99 and C89
Let’s start by stating what is probably obvious: if you use new

C99 features in your C programming, you should not expect

your programs to compile with an older C89 compiler. Here’s

an example:

#include <stdio.h>

struct A {
int x;
int y;

};

struct A a = {
.y = 37,
.x = 47

};

int main()
{

printf("%d\n", a.x);
}

This program uses the designator feature of C99. When I com-

pile the program as C89, the result is:

"e1a.c", line 9: error: expected an expression
.y = 37,
^

"e1a.c", line 10: error: expected an expression
.x = 47
^

2 errors detected in the compilation of "e1a.c".

Another example is the use of interspersed declarations and

statements:

#include <stdio.h>

int main()
{

int x;
x = 37;
int y;
y = 47;
printf("%d %d\n", x, y);

}

This feature was borrowed from C++ and added to C99.

You can’t use C99 features with a C89 compiler, but what about

going the other way? What happens if you try to compile a C89

program with a C99 compiler?

For example, consider the following program:

#include <stdio.h>

int main()
{

static x = 37;
x = g(x);
printf(“"%d\n", x);

}

int g(int x)
{

return x + 10;
}

This usage is legal C89, but not C99. The declaration:

static x = 37;

leaves off the type (int), and the statement

x = g(x);

calls an undeclared function. The C99 standard tightened up

both of these areas. Requiring that a function be declared before

use catches a certain class of errors, such as passing a wrong

argument type.

Another example of valid C89 usage that is invalid C99 con-

cerns the use of keywords. For example, restrict is a C99 key-

word, so this program is no longer legal:

#include <stdio.h>

int restrict = 37;

int main()
{

printf("%d\n", restrict);
}

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

21October 2002 ;login:

●

PR

O
G

RA
M

M
IN

GOther new keywords include inline, _Bool, _Complex, and

_Imaginary. There are also many new library functions, which

may conflict with existing functions in C89 programs.

A third example is failure to specify a return value:

int f()
{

return;
}

int main()
{
}

This is valid C89 but invalid C99.

Beyond a few areas like this, C89 programs should work with a

C99 compiler.

C99 and C++
The C++ language was designed on a C base, and in the early

days there was emphasis on trying to keep C++ compatible

with C, so that C programs could be compiled as C++ code.

Since that time, C and C++ have both diverged and converged,

and compatibility between them is a complicated issue.

The first point is similar to what we said above about using C99

features with a C89 compiler. There are a great many C++ fea-

tures that have no equivalent in C99. One example is the C++

template feature:

#include <cstdio>

using namespace std;

template <class T> T min(T a, T b)
{

return a < b ? a : b;
}

int main()
{

int x = min(37, 47);

printf("%d\n", x);
}

This usage has long been part of C++ but is unknown in C.

Another example is function overloading:

#include <cstdio>

using namespace std;

void f(int i)
{

printf("f(int) called\n");
}

void f(double d)
{

printf("f(double) called\n");
}

int main()
{

f(37);
}

The specific f() to call is determined based on the argument

type. Again, there’s no C equivalent to this feature.

Just as there are C++ features not known to C, there are C99

features not part of C++. For example, C99 mandates a long
long type:

#include <stdio.h>

long long x = 0xffffffffffffffffull;

int main()
{

printf("%llu\n", x);
}

Many C++ compilers allow this feature, but if I compile the

code using strict conformance compiler options, the result is:

"e4a.c", line 3: error: the type "long long" is nonstandard
long long x = 0xffffffffffffffffull;

^
"e4a.c", line 3: error: the type "long long" is nonstandard

long long x = 0xffffffffffffffffull;
^

2 errors detected in the compilation of "e4a.c".

Another example is the C99 predefined identifier feature, used

to obtain the name of a function at compile time:

#include <stdio.h>

void f()
{

printf("%s\n", __func__);
}

int main()
{

f();
}

C and C++ have diverged over the years, but they’ve also con-

verged in some areas. For example, the following code uses a

declaration within a for loop, and is now both legal C (C99)

and C++:

#include <stdio.h>
int main()
{

c99 AND COMPATIBILITY ●

Vol. 27, No. 5 ;login:22

for (int i = 1; i <= 10; i++)
printf("%d\n", i);

}

Likewise, this code uses //-style comments, an idea C99 bor-

rowed from C++:

// This is an example of C++-style comments.

int main()
{
}

Another area of incompatibility between C and C++ concerns

features that are part of both languages, but which have differ-

ent semantics. For example, both C and C++ support wide

character types, but in C, wchar_t is a typedef defined in a

header file, whereas in C++ it is a keyword. Based on this differ-

ence, the following code is valid C99, but not C++:

int wchar_t = 37;

int printf(const char*, ...);

int main()
{

printf("%d\n", wchar_t);
}

No header file is included in this program, so it’s perfectly okay

to use wchar_t as an identifier, assuming this is a C99 program.

If it’s a C++ program, then wchar_t is a keyword, and the pro-

gram is invalid.

An additional example of different semantics concerns file stat-

ics:

#include <stdio.h>

static int x = 37;

int main()
{

printf("%d\n", x);
}

This code is legal C and C++, but the C++ usage is deprecated,

that is, there is a possibility that the code will not be valid at

some future time. The preferred C++ usage is unnamed name-

spaces:

#include <cstdio>

using namespace std;

namespace {
int x = 37;

}

int main()

{
printf("%d\n", x);

}

Whether this approach is really better than file statics obviously

depends on your particular biases.

Conclusions
Suppose that you are concerned about compatibility in a practi-

cal way. You might have a large body of C89 code that you are

thinking of migrating to C99. Or you might have some C code

that you want to compile as C++. What should you do?

It seems likely that current C compilers will be upgraded to

incorporate C99 features, and C99 is mostly compatible with

existing C89 code. C99 provides some attractive new features

that you might want to use. But if you care about compatibility

with C++, it’s not at all clear if and when C++ will incorporate

C99 features. And it seems very unlikely that C will ever adopt

many of the distinctive C++ features such as templates.

If you have a body of C code that you compile with a C++ com-

piler, some of the C99 features will help with compatibility: for

example, support for C++-style comments and for mixing dec-

larations and code.

Beyond these basic observations, there is really no alternative to

sitting down and identifying the underlying differences between

C and C++ and specifying some coding standards for use in

your project. For example, if you want to use wide characters in

your C application and compile the result with a C++ compiler,

then you need to know that C treats wchar_t as a typedef ’d type

defined in a header, whereas C++ treats it as a keyword.

One Web page that discusses C/C++ differences can be found at

http://david.tribble.com/text/cdiffs.htm.

http://david.tribble.com/text/cdiffs.htm.

23October 2002 ;login:

practical perl

PRACTICAL PERL ●

●

PR

O
G

RA
M

M
IN

G

Lightweight Databases
Many programs need to store some kind of state infor-

mation between sessions. What’s the best way to main-

tain this data? It depends on the application, of course.

This month, I investigate solutions that are easy to use

and that fit somewhere in between text files and rela-

tional database servers.

Managing Persistent Data
A few months ago, I started writing a program to monitor the

online catalogs of several technical publishers periodically.

Every time my program would visit a Web site, it would look for

recently added book titles. Some of these publishers maintain

extensive online catalogs, and as a good Web citizen, I certainly

don’t want to overload their servers with requests for informa-

tion my program has already seen. Furthermore, I wanted to

highlight new titles to see what I might be interested in reading.

Obviously, my program would need to store some state on disk

describing what links had been seen before. However, there are

literally dozens of ways to accomplish this, and it’s not entirely

obvious which one is best.

The lazy programmer’s solution would be to write out some flat

text files on exit that would be read in the next time my pro-

gram runs. In this case, flat files would be adequate, if the saved

data were relatively simple, such as a list of links stored one per

line. However, if I need to save more data (ISBN, title, author,

etc.), then other issues arise. For example, I would need to syn-

chronize the functions to read and write to my datafile, to make

sure they use the exact same format for both input and output.

This might become a little tricky if I need to upgrade my pro-

gram to store even more information later on.

Another perfectly valid approach is to start out using a rela-

tional database engine, such as MySQL, PostgreSQL, or Oracle.

This is generally a good choice, except in this situation, using a

relational database server seemed like an overengineered solu-

tion. I didn’t want to get bogged down with details of setting up

databases, users, or passwords – I just wanted to write a simple

Web crawler and save some data once my program finished.

One issue I particularly wanted to avoid was having a program

that magically breaks whenever a database server is moved, or

when a database user or password changes.

In the end, I found that this simple little program fit into a

sweet spot – somewhere between quick-and-dirty flat text files

and full relational database servers. Many little programs I’ve

written (most of them just quick hacks) fall into this category.

One benefit of using Perl is that I’m not stuck using an inappro-

priate technology for my problem, whether that technology is

overengineered or underengineered.

Of course, in Perl there is more than one way to solve this prob-

lem. In this article I want to examine two main types of solu-

tions: the venerable DBM file, and lightweight relational

databases.

Persistence Through DBM Files
The classic solution to this data storage problem is the venera-

ble DBM file. DBM files come in many different forms, and all

of them can be used to store simple key/value pairs. In this way,

DBM files behave much like Perl hash variables, except that the

keys and values can be saved and restored for later use.

Using a DBM file is quite simple and requires only a few lines of

code to start:

#!/usr/bin/perl -w

use AnyDBM_File;
use Fcntl;

my %urls;

tie %urls, "AnyDBM_File", "url_data", O_RDWR | O_CREAT, 0640;

... %urls is transparently connected to the file "url_data.db" ...

First, we need to load a DBM library. In this case, I loaded the

AnyDBM_File library through the use statement on line 3. I

then create a new hash variable, %urls, on line 6, and connect

that hash to the DBM file url_data.db with the tie statement on

line 8. (The default DBM file implementation on my machine

adds the .db suffix automatically.) From this point forward, any

keys or values that are added or modified to the %urls hash in

my program will also be stored on disk in the file url_data.db.

The connection will be broken either when my program fin-

ishes or when I execute the statement untie %urls;.

All of the magic occurs in the tie statement. This tells Perl to

associate the variable %urls with the package AnyDBM_File.

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long- time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

Vol. 27, No. 5 ;login:24

The other parameters are sent to AnyDBM_File to describe the

file we wish to use. Here, the parameters are a portion of the

filename we’ll be using (url_data), the flags used to open the file

(O_RDWR | O_CREAT, values that come from the Fcntl mod-

ule), and the permissions mode (0640, or read/write for the

owner, read only for the group).

For my program to monitor online publisher catalogs, I could

add a new key to this hash for each URL I process, with the

value being the day it was processed. By checking to see if an

entry already exists for a particular URL, I can easily identify

which URLs are new:

foreach (@links) {
next if defined $urls{$_}; ## We've seen this URL before

print "New URL: $_\n";
$urls{$_} = localtime();

}

And that’s it. The first time I run my little link checker, I’ll see a

whole slew of URLs fly by. Starting with the second time I run

my program, I’ll only see the URLs that have been added since

the previous run.

Flavors of DBM Files
Using the AnyDBM_File module is guaranteed to work when-

ever a new DBM file is created, but it does have some problems.

Depending on the configuration of your system, Perl will sup-

port some of the various implementations of DBM files, includ-

ing NDBM, Berkeley DB, GDBM, and SDBM. By using

AnyDBM, you tell Perl that you don’t care which one to use, any

one of them is fine. The main problem with AnyDBM is that it

is not guaranteed to use the same implementation on two dif-

ferent machines, nor is it guaranteed to open any random DBM

file you happen to have. It is quite possible that AnyDBM_File
will load the NDBM_File module when you want to open a file

created by DB_File or GDBM_File. This operation will fail

because the naming conventions or the file formats differ.

Therefore, it is better to choose a specific type of DBM file

module instead of the AnyDBM_File:

■ NDBM_File uses the native NDBM library on your system,

if one exists.
■ DB_File uses the Berkeley DB 1.85 library, if present.
■ GDBM_File uses the GNU GDBM library, if present.
■ SDBM_File is Perl’s own DBM library and is always avail-

able.

Each of these DBM libraries has its own advantages and disad-

vantages; see the documentation for AnyDBM_File for more

information (man AnyDBM_File or perldoc AnyDBM_File). I

use either DB_File or GDBM_File, because they tend to be avail-

able on most Perl installations. SDBM_File will always work,

and it exists as a DBM implementation of last resort.

Remember that DBM files store simple key/value pairs. If you

are programming multi-level data structures, such as a hash of

hashes or a hash of lists, then regular DBM files will not store all

of your data properly. For these kinds of data structures, look

into Joshua Chamas’ “multi-level DBM” module, MLDBM,

available on the Comprehensive Perl Archive Network (CPAN).

Limits to DBM Files
Perl’s support for DBM files makes it easy to add persistent data

structures to a program with just a few lines of code. The main

disadvantage is that you need to manage all of the data yourself,

using Perl hashes. This may be a useful technique in the small,

but tends not to scale very well as requirements grow.

Suppose I wanted to create a report program to count URLs,

grouped by the day they were first encountered. Using DBM

files, that code might look something like this program:

#!/usr/bin/perl -w

use strict;

use DB_File;
use Fcntl;

Load in the cache of URL => date values
my %url_dates;
tie %url_dates, “DB_File”, “url_dates”, O_RDWR | O_CREAT, 0640;

Count books (hash entries), grouped by the day they were found
my %count_by_day;
foreach (values %url_dates) {

Strip out the time component of the date
"Sun Aug 11 13:18:59 2002" -> "Sun Aug 11 2002"
my $date = $_;
$date =~ s/\d{2}:\d{2}:\d{2} //;

$count_by_day{$date}++;
}

Print out the results (unsorted)
my ($date, $count);
while (($date, $count) = each %count_by_day) {

print "$date:$count\n";
}

This small program re-uses the existing DBM file created by my

Web-crawling program that finds new links. Note that this “lit-

tle” program is 28 lines long (with whitespace and comments).

More interesting reports, like one that counts books that con-

tain the word “Perl” in the title, would require more data and

might actually be significantly more involved. Now, imagine

that two, three, or more of these reports become useful. All of a

sudden, the quick-and-dirty solution is starting to run out of

25October 2002 ;login:

●

PR

O
G

RA
M

M
IN

Gsteam, since each new report might require a few dozen lines of

new code.

It’s clear that DBM files, while useful in some circumstances,

aren’t always the best or the simplest solution available.

Lightweight Relational Databases
As the requirements for my quick little book-catalog program

slowly grow, it’s clear that a SQL database is the most appropri-

ate solution, especially if I intend to perform multiple queries

on this data. Remember that the problems I intentionally want

to avoid are some of the administrative details of setting up

databases and passwords with a database engine like MySQL or

PostgreSQL. That is, I want my program to “just work,” and not

be impacted if I happen to move my MySQL server to another

computer, convert to PostgreSQL, or change a username or

password. Additionally, I want my program to “just work” if I

move it to another computer, without requiring that a particu-

lar database engine be installed to run this little hack.

Again, we’re using Perl, so there’s more than one way to do it.

Two ready-to-use modules are available on CPAN that meet my

requirements. The first is Jeff Zucker’s DBD::CSV module, and

the second is Matt Sergeant’s DBD::SQLite module. Both of

these are database drivers that work with Perl’s DBI module,

Perl’s generic interface to many different database engines.

DBD::CSV simulates a relational database by using text files

with comma-separated values for each table in the database.

DBD::SQLite contains a full-fledged relational database engine

written in C that’s embedded in the database driver module

itself. Neither of these modules require setup, configuration, or

a server process to manage the database. They just work.

If you’re already familiar with using DBI to connect to MySQL

or other relational databases, there is nothing new to learn here.

Furthermore, should you need to upgrade from a CSV or a

SQLite database, all you need to do is change the DBI connec-

tion string, and possibly some of your SQL statements – the rest

of your Perl programs remain unchanged.

I used to recommend and use DBD::CSV when I wanted to cre-

ate a lightweight relational database. Once Matt released his

DBD::SQLite module, I started using that instead, since it con-

tains a more robust database engine. This is mostly due to the

hard work of Richard Hipp, who created SQLite as a full-fea-

tured, embeddable relational database, complete with indexes,

transactions, and multiuser access.

Creating a Perl program that uses SQLite is straightforward,

assuming you’re already familiar with DBI and SQL (another

issue entirely):

#!/usr/bin/perl -w

use strict;
use DBI;

my $dbname = "url_dates.db";
my $dbh = DBI->connect("dbi:SQLite:dbname=$dbname");

... use this SQLite database just like any other DBI database ...

One interesting feature of SQLite is that its columns are gener-

ally typeless. The column types that are declared in a CREATE
TABLE statement are ignored (with the exception of integer pri-

mary keys), so there is no need to worry about losing data when

storing a 30-character string in a column declared to be of type

CHAR(25), or getting an error when storing a string value in an

INTEGER column.

Using a relational database makes reporting much easier. For

example, a program to count all URLs in the database, grouped

by date, would be much simpler than the DBM version seen

above:

#!/usr/bin/perl -w

use strict;
use DBI;

my $dbh = DBI->connect("dbi:SQLite:dbname=url_dates.db");

my $stmt = $dbh->prepare("SELECT day, COUNT(day)
FROM urls GROUP BY day");

$stmt->execute();
while (my @row = $stmt->fetchrow_array()) {

print join(": ", @row), "\n";
}

This program is half the size of my previous report program,

and all of the logic for this report is contained in the SQL state-

ment on line 4. The while loop at the bottom is reasonably

generic and can be abstracted out into a separate sub. It would

also be relatively easy to add another SQL query to count the

number of books that contain “Perl” in the title – something

that would have required more than one extra line of code in

the DBM version of the program.

Conclusion
Maintaining persistent data is a common task in Perl programs,

and there are easily dozens of ways to do it. For the truly simple

tasks, Perl makes simple DBM files available easily and trans-

parently. For more complicated tasks, the easiest solution tends

to involve using the DBI, along with a suitable database engine,

whether that’s something big and powerful, or something small

and easy to set up.

PRACTICAL PERL ●

26 Vol. 27, No. 5 ;login:

This article is the first of a series on building network

and firewall testing and validation tools using Tcl, open

source packages, and some special-purpose hardware.

This time I will describe building and testing a Tcl exten-

sion for generating Ethernet packets. Subsequent arti-

cles will expand on techniques for using this and other

extensions.

When I’m building a firewall system I always worry about what

I might have missed. Did I install the new security patches in

the right places, define the rules correctly, leave no holes?

There are online services like http://scan.sygatetech.com/ that

will scan my system for common flaws, but that requires that I

put the system on the Net to test it.

SATAN or SAINT, for example, will check the system for a lot of

holes, but they don’t test all the firewall rules.

So, I decided to write my own firewall test framework and add

new tests as I find and need them.

The first thing I needed for this toolkit was some way to send

arbitrary IP packets, to confirm that things like packets on the

outside interface with inside addresses are blocked, malformed

packets are discarded, and so on.

A little Net searching found a few tools that would almost do

what I want. These tools include the Tcl extensions psh from

Sun and pkt from USC, and the programs mgen from the Naval

Research Laboratory and sendip from Project Purple.

After a little bit of looking, I decided to work with the libdnet
library, written by Dug Song (http://libdnet.sourceforge.net/).

The advantage of this package is that it has the low-level sup-

port I need, is currently supported, and has adequate documen-

tation.

The disadvantage is that it’s a C library, not a Tcl extension, but

that’s easily changed.

Tcl was designed to be easily extended. With just a few hours’

labor you can pick up a random library and generate the inter-

face code to use it as a Tcl extension. However, this does require

some knowledge of how Tcl extensions are constructed. Doing

this the first time can take closer to eight hours.

If you don’t feel like spending that much time and learning Tcl

internals, you can use the SWIG (SoftWare Interface Generator)

program to create the interface code for you (http://www.swig.org/).

SWIG was developed by David Beazley (beazley@cs.uchicago.edu)

to make his life easier while he was developing software at Los

Alamos. Even in its early forms the program was very useful.

I downloaded the version 1.3.13 for this work. SWIG’s built-in

support for structures and complex data types is constantly

improving. Some details described in this article may be differ-

ent on the version of SWIG you are using.

SWIG works by examining a definition file that describes the

functions and data structures in a library and generating some

C code to allow those functions to be loaded into a Perl,

Python, Tcl/Tk, Ruby, Guile, or MzScheme interpreter.

Generating a definition file is fairly simple. The basic format is

just a list of function declarations.

For example, if you have a file named fibon.c that contains this

Fibonacci function:

int fib (int i) {
if (i <= 1) {return 1;}

return fib(i-2) + fib(i-1);
}

it could be turned into a Tcl extension with this one-line defini-

tion file:

$> cat fibon.i
int fib(int i);

and this SWIG command line:

swig -tcl -module fib -prefix fib -namespace -v fibon.i

The -module fib argument defines the name for this module.

The module name can be defined on the command line (as

done here) or in the definition file, with the line %module fib.

The -prefix fib argument sets a value that will be used to prevent

command name collisions. When used with the -namespace
argument, SWIG will generate code to create the new com-

mands in the fib namespace. Placing the extension commands

generating ethernet packets
by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

http://scan.sygatetech.com/
http://libdnet.sourceforge.net/
http://www.swig.org/

27GENERATING ETHERNET PACKETS ●

●

PR

O
G

RA
M

M
IN

G

October 2002 ;login:

in a namespace has become the preferred style for Tcl exten-

sions.

Running this SWIG command will create a wrapper file named

fibon_wrap.c, which can be compiled into a shared library with

a command line resembling this:

gcc -shared -L/usr/lib fibon_wrap.c fibon.o -o libfib.so

Once this is done, you can load the libfib.so library and use the

Fibonacci code in your Tcl scripts just as you would any other

Tcl extension.

load ./libfib.so
for {set i 1} {$i < 5} {incr i} {

puts "The Fibonacci series at level $i is [fib::fib $i]"
}

Unfortunately, most projects are a bit more complex than this.

One problem you run into is that C is a lower level language

than Tcl. The C compiler supports data structures that reflect

the organization of the data in physical memory, while the Tcl

interpreter insulates the programmer from the hardware.

The SWIG solution for this is to generate new Tcl commands

for creating and accessing C data structures. The new Tcl com-

mands to create a C data structure will allocate memory for the

data structure and return an identifier that Tcl scripts can use

to reference the structure. The Tcl script can then pass that

identifier to the interface for C functions that need to access the

data. As an added benefit, SWIG uses some magic naming con-

ventions to do runtime data checking, so you can’t accidentally

pass a structure of type a to a function expecting a structure of

type b.

You can create an extension with support for creating and using

C arrays by adding a little bit of code to the definition file.

The easiest way to do this is to use SWIG’s %inline directive.

This directive defines functions which should be both included

in the final wrapper and exposed to the SWIG parser and code

generator.

The SWIG documentation includes this example to show how

an array of doubles can be created and accessed:

// SWIG helper functions for double arrays
%inline %{
// Create a new array of doubles of a given length
double *new_double(int size) {

return (double *) malloc(size*sizeof(double));
}
// Delete an array of double
void delete_double(double *a) {

free (a);
}

// Retrieve the value of an element of the array
double get_double(double *a, int index) {

return a[index];
}
// Set the value of an element in the array
void set_double(double *a, int index, double val) {

a[index] = val;
}
%}

The new commands can be used like this.

Create an array of doubles
set squares [new_double 5]
Fill the array with the square of the index
for {set i 0} {$i < 5} {incr i} {

set_double $squares $i [expr $i * $i]
}
Invoke a library procedure that requires a
pointer to an array of doubles as an argument
foo $squares

Structures can be a bit more tricky to use but are very simple to

describe in the definition file. All you need to do is include the

C struct in the body or in an %inline section of the definition

file and SWIG will generate a set of interface functions and

include them in the Tcl extension.

For example, a structure like this:

struct arp {
unsigned char mac_address[6];
unsigned char ip_address[4];

}

can be accessed with a Tcl script by making a definition file that

looks like this:

%inline %{
// Define an ARP structure for Machine and IP address
struct arp {

unsigned char mac_address[6];
unsigned char ip_address[4];

}
// A helper utility to set values in an array of
// unsigned chars -
// copied from the array example

int unsigned_char_set (unsigned char *ar, \
int index, unsigned char val) {

ar[index] = val;
}
// A test function to display the contents of an
// arp structure

int showArp (struct arp *p) {
int i;
for (i=0; i<6; i++) {

28 Vol. 27, No. 5 ;login:

printf("0x%x ", p->mac_address[i]);
}
printf("\n");
for (i=0; i<4; i++) {

printf("0x%x ", p->ip_address[i]);
}
printf("\n");

}
%}

When SWIG processes this code, it creates these new Tcl

commands:

::fib::new_arp Allocates memory for a new arp

::fib::arp structure and returns the name to

the Tcl script that invokes it.

::fib::delete_arp Frees the memory associated with an

arp structure

::fib::arp_ip_address_get Returns a handle to access the

ip_address C array element of the

arp structure.

::fib::arp_mac_address_get Returns a handle to access the

mac_address C array element of the

arp structure.

::fib::showArp An interface into the showArp C

function.

::fib::unsigned_char_set An interface into the

unsigned_char_set C function to

assign values to elements in a C

array.

The Tcl code to test this resembles the following:

set arp [arp::new_arp]
set mac [arp::arp_mac_address_get $arp]
for {set i 0} {$i < 6} {incr i} {

arp::unsigned_char_set $mac $i $i
}

set ip [arp::arp_ip_address_get $arp]
for {set i 0} {$i < 4} {incr i} {

arp::unsigned_char_set $ip $i $i
}

arp::showArp $arp

The body of a definition file can usually be extracted from an

include file. If you are lucky, you can just use the package’s pri-

mary include file as a definition file.

The dnet.h file has too much information that’s not relevant to

creating a wrapper (and is confusing to the SWIG parser), so the

simple solution of using dnet.h as a definition file didn’t work.

However, all the critical pieces of information (the functions,

declarations, and structures used as arguments) are described in

the man page, so a set of cut-and-paste operations will create a

minimal definition file.

To ensure portability across different word-size machines, the

libdnet package uses several data types that aren’t part of the

basic C language. The SWIG parser doesn’t recognize these new

datatypes. The SWIG solution for unrecognized data types is to

consider them to be pointers.

However, the SWIG parser will recognize a #define or typedef
directive to define these datatypes. Adding these lines to the def-

inition file satisfies the SWIG parser:

typedef unsigned short uint16_t;
typedef unsigned char uint_8_t;
typedef unsigned int uint_32_t;
typedef unsigned int ip_addr_t;
typedef unsigned int size_t;

To finish the dnet.i definition file, I added versions of the C

array access code described above to handle arrays of uint_32_t,
uint_16_t, and uint_8_t data.

Once the definition file is complete, SWIG can create a Tcl

extension in seconds. The next step is to test the new extension

and see if it works.

One of the features of the libdnet library is the ability to send

raw packets over the Ethernet. This is as low-level as you can

get, and will let me generate whatever type of malformed IP

packet I need.

The two critical commands are eth_open, to open a connection

to an Ethernet device, and eth_send, to transmit a buffer of

binary data (an Ethernet frame).

Syntax: eth_t *eth_open(const char *device);

Open a connection to an Ethernet device and

return a handle for future use.

char *device The name of the Ethernet device to be con-

nected to, such as eth0, pn0, etc.

Syntax: ssize_t eth_send(eth_t *e, const void *buf, size_t len);

Transmit a buffer of data over the Ethernet.

The buffer should be a valid Ethernet frame.

Returns the number of bytes sent. The check-

sum will be appended automatically.

eth_t *e The handle returned by eth_open

void *buf The data to send over the link

size_t len The number of 8-bit characters to transmit

29

●

PR

O
G

RA
M

M
IN

G

October 2002 ;login:

One problem is that eth_send requires that the buf buffer be a

pointer to an area of memory. A Tcl string won’t be accepted by

the SWIG wrapper. Fortunately, the SWIG wrapper’s data valid-

ity checking will accept any pointer as a void pointer, so we can

use the uint_8_t array commands to create and fill an array of

unsigned chars.

Simple code like this will generate garbage packets on the local

Ethernet. The data is illegal Ethernet frames, which aren’t

accepted by other nodes on the network, but running the script

will cause the activity lights on an interface card to blink,

demonstrating that frames are being sent.

Load the new extension
load ./libdnet.so
Open a connection to the Ethernet device
set e [dnet::eth_open eth1]
Create a buffer
set buf [dnet::new_uint_8Array 60]
Stuff the buffer with incrementing values
for {set i 0} {$i < 60} {incr i} {

dnet::set_uint_8Array $buf $i $i
}
And shove it onto the wire 10 times
for {set i 0} {$i < 10} {incr i} {

dnet::eth_send $e $buf 60

Pause for 100 milliseconds
after 100

}

The next step is to send a legal packet and see if it’s recognized.

An Ethernet frame consists of five fields of data:

Field size Description

(bytes)

6 The destination MAC address.

6 The source MAC address.

2 A type definition. This is 0x0800 for IP

datagrams.

46–1500 The datagram.

4 A Cyclic Redundancy Checksum.

The arp -a command gave me a list of IP addresses and corre-

sponding MAC addresses to fill in the source MAC address and

destination MAC address fields; the type field for an IP data-

gram is 0x0800, and the CRC will be appended by the transmis-

sion code.

To generate a valid IP datagram, I used tcpdump with the -x
option to get a hex dump of an IP packet. I decided to ping the

target node from the node running the Tcl script and grab one

of those packets. Using an Echo Request packet provides two

sets of validation. Using tcpdump, I can watch the packet arrive

on the target node, and I can also see if the target machine

responds to the fabricated ping request.

Tcl has full support for operating with lists of data. It makes

sense to treat a packet as a Tcl list of hex values until it needs to

be converted to an array of unsigned chars for the eth_send
command.

The code below creates an Ethernet frame from the various

pieces of data. It uses the split command, to convert a colon-

delimited MAC address into a list of hex bytes, and the eval
command, to combine two lists into a single list.

The Tcl split command will split string data into a list.

Syntax: split string ?splitChars?
split Splits a string into a list. Elements are delim-

ited by a marker character.

string The string to split.

?splitChars? A string of characters to mark elements. By

default the markers are whitespace characters

(tab, newline, space, carriage return). In this

example, the character to split on is the colon

separating the bytes in a MAC address.

The eval command concatenates the arguments into a string

before starting the evaluation. This causes a set of data to lose

one level of data grouping. Without eval, a command like lap-
pend list $list2 would be evaluated as lappend list {a b c}, which

will append the list element {a b c} to a list. The command eval
lappend list $list2 would be evaluated as lappend list a b c,

which will append three list elements, a, b, and c to a list.

This script will generate an Ethernet frame and transmit it to

the local network:

The MAC address, obtained with arp -s
set destEther 00:E0:4C:00:14:4D
set srcEther 00:A0:CC:D1:B6:00
A valid echo request packet,
obtained with tcpdump
set echo_Request [list 45 00 00 54 00 00 40 00 40 01 \

05 16 c0 a8 5a 40 c0 a8 5a 02 08 00 98 d9 \
df 22 00 00 63 cf 4d 3d d5 f3 0e 00 08 09 \
0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 \
18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 \
26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 \
34 35 36 37]

Fill a list with hex values
set packet [split $destEther :]
eval lappend packet [split $srcEther :]

GENERATING ETHERNET PACKETS ●

30 Vol. 27, No. 5 ;login:

lappend packet 08 00
eval lappend packet $echo_Request
How many bytes are we using?
set len [llength $packet]
Create a C array and fill it.
set buf [dnet::new_uint_8Array $len]
for {set i 0} {$i < $len} {incr i} {

dnet::set_uint_8Array $buf $i 0x[lindex $packet $i]
}
And shove it onto the wire 10 times
for {set i 0} {$i < 10} {incr i} {

dnet::eth_send $e $buf $len

Wait 100 milliseconds between frames
after 100

}

This extension provides a platform for generating IP packets.

The next article will start describing techniques for validating

the packet generator before using the generator to validate

another system.

USENIX and SAGE Need You
People often ask how they can contribute to our organizations. Here is a list of tasks for which we hope to find

volunteers (some contributions not only reap the rewards of fame and the good feeling of having helped the community, but

authors also receive a small honorarium). Each issue we hope to have a list of openings and opportunities.

The SAGEwire and SAGEweb staff are seeking:

■ Interview candidates
■ Short article contributors (see http://sagewire.sage.org)
■ White paper contributors for topics like these:

Back-ups Emerging technology Privacy

Career development User education/training Product round-ups

Certification Ethics SAGEwire

Consulting Great new products Scaling

Culture Group tools Scripting

Databases Networking Security implementation

Displays New challenges Standards

E-mail Performance analysis Storage

Education Politics and the sysadim Tools, system
■ Local user groups: If you have a local user group affiliated with USENIX or SAGE, please mail the particulars to

kolstad@sage.org so they can be posted on the Web site.

;login: is seeking attendees of non-USENIX conferences who can write lucid conference summaries. Contact Tina Darmohray,

tmd@usenix.org, for eligibility and remuneration info. Conferences of interest include (but are not limited to): Interop, SOSP,

O’Reilly Open Source Conference, Blackhat (multiple venues), SANS, and IEEE networking conferences. Contact login@usenix.org.

;login: always needs conference summarizers for USENIX conferences too! Contact Alain Hénon, ah@usenix.org, if you’d like to

help.

http://sagewire.sage.org

31October 2002 ;login:

●
SE

C
U

RI
TY

musings,
Or What I Did on My Summer Vacation
I once imagined that I would like to spend my life attending conferences.

Instead, I am feeling glad to be home, although I am also glad I did get to

hang out in a couple of security conferences. And, rather than making you

have to drive, ride, or fly, I will share with you parts of my experiences, and

something that I think you may find very frightening.

I loathe Las Vegas. Gambling does not appeal to me, so having to walk through three

casinos to reach the registration desk at Caesars Palace had me seething inside. I

remembered (just in time!) that I am enlightened and cheered up enough to survive

the 20-minute check-in line, then another 20-minute wait for the elevator (you’d think

this was Eastern Europe, not an expensive hotel), all to attend Black Hat 2002.

The Black Hat conference is designed for security consultants, although I did see DoD

types and even some faces from USENIX conferences there. The format consists of

three tracks, with intermediate to moderately advanced talks about the security of

software and hardware. At the low end, some guys from iDefense gave a lecture about

cookies (I liked Kevin Fu’s invited talk at last year’s Security Symposium better). I

enjoyed the explanation of Hogwash and how it had been integrated into Snort code-

base as of version 9.2. And how the Honeynet Project plans to proceed with their ver-

sion 2 honeynets.

Daemon9, now better known as Mark Schiffman of @stake, described his new library,

libradiate, which adds to libnet (low-level networking functions for crafting/reading

packet headers) with the headers necessary for 802.11B (WiFi). Schiffman demon-

strated Omerta, a program that sniffs a wireless channel and disassociates any network

card currently associated with an access point. He did not share the source code, a dis-

appointment to many. He did provide other C code examples, but a show of hands

revealed that there were only three C coders in the audience. Rather disappointing for

a technical con.

While Schiffman rushed through his code examples, FX and Kimo, of Phenoelit

(http://www.phenoelit.de), were explaining how to turn HP printers into port scanners,

using Java code and a class loader included in networked HP printers. The audience

found this very amusing (printers scanning a network!), but someone later pointed

out to me that HP network printers already will scan networks looking for print

servers. What I had missed was their discussion of heap buffer overflows of low-end

Cisco routers. Their exploit invalidates the stored configuration and forces a reboot, at

which point the router, realizing its configuration is hosed, begins broadcasting a

request for a new configuration from anyone. IOS 12 and Cisco 1000, 1600, and 2600

routers are vulnerable to remote attacks, and the 2500 series to local attacks only.

Remember that I mentioned rumors about exploits to IOS in an earlier column. FX

made certain that I (and Cisco) understood that they had not done any reverse engi-

neering, just opened the router, recognized that it used a Motorola 68K processor, and

used debug messages and information on the Cisco Web site to create their exploit. FX

told me that he did not want to be this year’s Sklyarov (the Russian arrested at DefCon

9 for explaining how to defeat Adobe’s pitiful encryption in eBooks). I really wish that

Cisco had succeeded in rewriting IOS as a modern embedded OS instead of abandon-

ing the effort (as far as I have been able to find out).

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

MUSINGS ●

http://www.phenoelit.de

Vol. 27, No. 5 ;login:

I ran into FX at the next conference I visited, DefCon. DefCon was a bit more subdued

this year when compared to previous years, I’ve been told. I had just enough time to

hang out the night before and the first half-day, long enough to get a feel for things

and not really missing out on what I hadn’t liked about the first DefCon – drunken,

chain-smoking teenagers. Keep in mind that DefCon is a serious security conference,

with a very low entry fee ($75). Many speakers from Black Hat also speak at DefCon

but give a more technical version of their talks.

I listened to Ofir Arkin present the revised version of Xprobe, which does away with

the tree structure for probes and instead focuses on a list of probe modules. The mod-

ular structure makes Xprobe easier to extend, but it also loses one of the benefits of the

original tool, which was accurate TCP/IP fingerprinting with two or three packets.

Being an “older guy” who has lost enough hearing (probably from loud concerts in the

sixties) was a real disadvantage at DefCon, as two of the conference rooms were out-

door tents, and the roaring of the AC units attempting to keep the temperature at rea-

sonable levels drowned out some of what the speakers said, as well as most questions.

I am sorry I missed Jennifer Granick’s talk on the implications of the PATRIOT Act

(and yes, it is an acronym) for security practitioners, Simple Nomad’s (http://www.
nmrc.org) talk about the Hacker Nation and how the “War on Terrorism” affects hack-

ing in general, the two lock-picking sessions, and Richard Thieme’s (http://www.
thiemeworks.com) closing session, reminding the audience that hacking is a form of

truth seeking.

Lest this last statement confuse you, remember that hacking has nothing to do with

breaking into other people’s computers and everything to do with understanding how

things work – even if it means taking them apart first. My next trip (and why I left

DefCon early) took me to San Francisco for the USENIX Security Symposium. The

December issue of ;login: will include the summaries from this conference, as well as

other articles dedicated to security, and will be a great edition. I know, as I am the edi-

tor and already have some of the articles in hand.

But I don’t want to make you wait quite that long. This year’s symposium was great,

lots of good papers and ITs, and the hall talk was great as well. Professor Felton spoke

about the “Freedom to Tinker,” another way of saying that reverse engineering of code

is akin to US First Amendment rights. Tinkering with things is not only common

(would you buy a car where the hood was sealed?) but is good for the community

and economically beneficial. Tinkerers have discovered security mistakes in code,

and their activities often result in better, competing products (see http://www.freedom-
to-tinker.com/).

One hall debate led right into a special evening talk about Palladium and TCPA

(Trusted Computing Platform Alliance). Tom Perrine, of San Diego Supercomputing

Center, asked, rhetorically, why software was so insecure. His argument: that better and

more formal design processes would make a huge difference, even when using the

insecure programming languages common today (C and Perl as examples). I piped up

with my common assertion that you cannot compel people to use formal design

processes, but you might instead provide them with safer tools to use – that is, instead

of C, using programming languages that enforce good practices, and make it close to

impossible to create buffer and heap overflows or to write code that does not check

user input, etc. And that this must be implemented on top of a secure operating sys-

tem that can run untrusted applications in their own compartments. No one agreed

Hacking has nothing to do

with breaking into other

people’s computers, and

everything to do with

understanding how things

work.

32

http://www
http://www
http://www.freedom-to-tinker.com/

with me, although Perrine did muse about the virtues of ADA, a programming lan-

guage developed by the DoD for portability and security, and KSOS, an operating sys-

tem with a trusted kernel.

The EFF’s Lucky Green moderated a panel discussion with Peter Biddle of Microsoft

and Seth Schoen of the EFF about Palladium. Palladium is Microsoft’s project for

developing software and hardware for a trusted kernel (see http://vitanuova.loyalty.
org/2002-07-05.html, under the Microsoft heading, for details). You might think that I

would be happy that someone is thinking about hardware support in PCs for running a

trusted kernel, but the Microsoft focus is of course not the same as an open source

focus for security. You should read Ross Anderson’s TCPA FAQ for a very detailed cri-

tique (http://www.cl.cam.ac.uk/%7Erja14/tcpa-faq.html). But I will give you the nut-

shell here.

Biddle explained how Microsoft’s Palladium will work to provide a trusted operating

system. Briefly, after booting the trusted kernel, special hardware calculates a hash of

this trusted kernel. Then the regular operating system continues with the boot process.

The trusted kernel – officially the Trusted Operating Root (TOR), unofficially the

“nub” – provides a limited set of services to the operating system and other applica-

tions, particularly the ability to seal and unseal “blobs” – any set of data, be it a pro-

gram, a text file, or a DVD image. The TOR relies on a bit of hardware, a secure

cryptographic coprocessor (SCC or SCP) that can perform asymmetric encryption

(used in digital signatures) and symmetric encryption (AES in CBC mode), and sup-

port a secure store for keys. The SCP also controls memory management, protecting

certain regions of memory so that even a root user or the operating system itself can-

not access protected memory. At this point, it sounds like there exists the basis for the

trusted kernel and compartments that I have long advocated.

But the plan for these wonderful security features is quite different. Instead of protect-

ing the security of your system from attacks, Palladium protects rights of copyright

owners. To quote Anderson:

TCPA and Palladium do not so much provide security for the user as for the PC

vendor, the software supplier, and the content industry. They do not add value for

the user, but destroy it. They constrain what you can do with your PC in order to

enable application and service vendors to extract more money from you. This is the

classic definition of an exploitative cartel – an industry agreement that changes the

terms of trade so as to diminish consumer surplus.

To provide a few examples of how Palladium and TCPA work to enforce Digital Rights

Management (DRM), imagine a system where you cannot migrate files from, say,

Microsoft Office 2003 to any other software package. The TOR will not allow you to

decrypt the file for the purpose of exporting it to, say, StarOffice. Organizations can

configure applications so that data can never be shared, or so that files automatically

and irrevocably delete themselves after some time period. No whistle-blowers “leak-

ing” information, no email records detailing dirty deeds, and no more unlicensed

copies of Microsoft software, as you must have a valid license to run – one that is keyed

to your hardware platform using the SCP and the TOR. For the people controlling dig-

ital rights, this will be a windfall, as they control how many times you can play a DVD,

prevent you from copying it (even by screen scraping), or can even charge you each

time you open an application.

33October 2002 ;login:

Instead of protecting the

security of your system from

attacks, Palladium protects

rights of copyright owners.

MUSINGS ●

●
SE

C
U

RI
TY

http://vitanuova.loyalty
http://www.cl.cam.ac.uk/%7Erja14/tcpa-faq.html

Vol. 27, No. 5 ;login:

Microsoft and Intel claim that these new initiatives, once completed, will make your

PC more secure, even prevent spam. But, instead of making your own computer more

trustworthy for your own use, it will make it trustworthy for the use of content and

application providers. Viruses will not be able to affect the TOR or Trusted Agents pro-

tected by the TOR, but they will still be able to write to files, delete files, send email –

in fact, do almost everything they do today. The only exception will be those files and

devices protected by the TOR (which in Palladium includes the keyboard, so no more

keystroke sniffers).

Too bad these are DRM initiatives, not real security initiatives. Lucky Green pointed

out to me, as does Dar Williams in his July 5 journal entry, that Intel and Microsoft felt

they had no choice but to create an unbreakable system for DRM. If they failed to do

so, the home entertainment system of the future might not use Intel hardware and

Microsoft software. But the very success of these schemes gives each company tremen-

dous leverage, far beyond the virtual monopolies each enjoys today.

You will still be able to run your favorite operating system on Palladium and TCPA-

enabled systems. In fact, there were people at the Symposium with IBM T30 laptops

that incorporate a TCPA chip. You just won’t be able to use any of the features that

require the chip, as these make use of a TOR and trusted hardware: for example, an

encrypted link to your monitor, DVD-ROM, keyboard, etc.

The RIAA and MPA argue that flagrant copyright violations are destroying their busi-

nesses and hurting artists. Perhaps the former might one day be true, but the latter

rarely is. Record companies lend money to bands, and it is unusual for the artists that

provide the content for RIAA members to make a living as musicians. But providing

free digital downloads can help promote artists (read about Janis Ian’s experiences as a

recording artist and musician, and how free downloads have helped her and Mercedes

Lackey, http://www.janisian.com/article-internet_debacle.html).

The TCPA chip has been coined the “Fritz” chip, after Senator Fritz Hollings, who has

sponsored a law that would make the selling of any computer or storage device that

does not support TCPA illegal in the US (http://www.salon.com/tech/feature/2002/03/
29/hollings_bill/).

The sky is not falling. We find ourselves at a crossroads where we must choose between

freedom (with its responsibilities) or passing over control of our computers and

aspects of our lives to large corporations. I believe the decision is clear, but I know my

mother, as well as many of my friends, doesn’t understand the issues (yet). Make your-

self heard, ask for real security, and don’t give up your freedom.

We must choose between

freedom (with its responsibili-

ties) or passing over control

of our computers and aspects

of our lives to large

corporations.

34

http://www.janisian.com/article-internet_debacle.html
http://www.salon.com/tech/feature/2002/03/

35October 2002 ;login:

Stopping Spam, Part 2
Introduction
This installment of ISPadmin will examine techniques for stopping outbound

spam (“unsolicited commercial email,” or UCE, originating on your net-

work, destined for a machine or network which you do not control). In the

last edition, how to stop spam from the inbound side (from someone else’s

network to your mailbox) was covered in detail.

Background
Methods for stopping outbound mail are very different from those used to stop

inbound spam. Most of the ways outbound spam is stopped can be classified as fol-

lows:

■ Controlling access to a mail relay machine (e.g., smtp.isp.net)
■ Limiting SMTP access to known blocks of open mail relays (e.g., Korea)
■ Limiting the number of outbound SMTP connections a client can make over a

period of time
■ Capping the amount of k/sec an outbound SMTP connection can make

The methods covered in this article will fall into one of the categories listed above,

although the coverage will be grouped differently to enable clearer coverage of the

topics.

Generic Methods
First, let’s discuss generic methods that are not tied directly to a specific open source

solution or network hardware (e.g., routers). These methods can be applied to any

mail infrastructure, though Sendmail-specific information is listed within this section.

RESTRICTING IP
Controlling what IP addresses are allowed to send mail through a mail server is an

important step everyone who runs a mail system on the Internet should take. This is a

very common method to control access to a mail relay. In the provider’s mail relay

machines, a list of IP addresses or blocks is kept that are allowed to relay mail through

the relay(s). For Sendmail, the “IP allowed to relay” list is kept in an access database

entry similar to the following:

209.206.10 RELAY

(Sendmail access databases were covered in last issue’s ISPadmin column.) Even if you

are not a provider, if you are running Sendmail you should be restricting access to

your mail relays in this manner. If you don’t, you run the very high risk of becoming a

spam pariah!

POP BEFORE SMTP
The POP before SMTP method requires the end subscriber to simply check their mail

before sending it. This method can be used for “roaming” subscribers, who won’t be

coming from one of the provider’s own IP address ranges. Once the POP box is

accessed successfully, the subscriber’s IP address goes into the IP address “allowed” list

on the mail relay(s) for a certain period of time, most commonly 30 minutes. In the

case of a Sendmail-based mail relay, the method to control mail relay access can be

ISPADMIN ●

●

SY

SA
D

M
IN

ISPadmin
by Robert Haskins

Robert Haskins is
currently employed
by WorldNET Inter-
net Services, an ISP
based in Norwood,
MA. After many
years of saying he
wouldn't work for a
telephone company,
he is now affiliated
with one.

rhaskins@usenix.org

Vol. 27, No. 5 ;login:

performed via the access database entry, identical to the approach outlined in the

“Restricting IP” section.

MAIL MESSAGE METERING
(Disclaimer: This author developed the Mail Message Metering anti-spam method,

which has a patent pending. Describing the method here does not imply the ability to

use the system described here.) The Mail Message Metering method is simple in con-

cept and relatively simple to implement. The method is useful to wholesale Internet

access providers, although any enterprise that generates lots of outbound mail could

use it.

As each subscriber generates an outbound mail message, the network component

(switch, RAS gear, DSL aggregating equipment, etc.) redirects the connection to a spe-

cially configured mail relay. This specialized mail relay queries a database which con-

tains a current listing of all originating IP addresses that have relayed mail, and

associated counts of the number of messages for several time periods (e.g., past

minute, past 30 minutes, past hour). If the message would exceed predetermined

thresholds, then the message would be re-queued. If the message didn’t exceed the lim-

its, then the message would be allowed through and the counts updated appropriately.

Other people and organizations hold anti-spam patents. Of these, Brightmail is proba-

bly the best known. However, this author (who is not an attorney) can find no patent

(granted or pending) specific to outbound spam.

The benefits of this approach are many:

■ Blocks high percentage of outbound spam
■ No subscriber and little customer impact
■ Configurable and scalable
■ Limited impact on authentication (RADIUS) servers

The shortcomings are:

■ Requires “white hat” list of legitimate bulk mailers
■ Requires use of SMTP redirection (may require additional hardware)

The December 2000 issue of ;login: contained an in-depth article on the Mail Message

Metering solution.

Open Source Packages
One open source package is specifically designed to counter outbound spam (Kai’s

SpamShield). The others described below can be used to control both inbound and

outbound spam.

KAI’S SPAMSHIELD 1.0
Kai’s SpamShield is probably one of the oldest packages out there specifically designed

to counter outbound spam. It is a Perl script run out of cron which works by analyzing

the most recent sections of the Sendmail log file (usually maillog). The program

counts the IP addresses from which messages are originating. If these counts exceed

previously entered thresholds, the sender’s access to the mail relay is blocked. While

dated (it doesn’t appear to have been updated since 1997), it is very effective against

outbound spam.

Kai’s SpamShield is probably

one of the oldest packages

out there specifically

designed to counter

outbound spam.

36

Kai’s SpamShield version 2.0 was just announced as of this writing in July 2002. No

details on the functionality included in the new version exist on the Web site, however.

BLACKMAIL
Blackmail performs various checks against the headers of incoming and outgoing mail

messages. These checks include:

■ Known sources of spam
■ Specific words and/or phrases
■ Resolvable names in headers
■ Black hole lists
■ To: and From: headers
■ Correct header formation

While more recent than Kai’s SpamShield, it appears that most of these checks are per-

formed by SpamAssassin as well. One difference would be the fact that Blackmail is

written in C, while SpamAssassin is written in Perl.

PROCMAIL
System-wide procmail filters can be built to assist in the fight against spam. Two such

packages are The SpamBouncer and Email Sanitizer. These work by encapsulating the

various anti-spam rule sets (e.g., black hole lookups, resolvable to/from domains, etc.)

as procmail recipes. While this author has no direct experience with them, there are

enough procmail-based tools out there to indicate this is a valid approach.

SMTP PROXY
SMTP proxies (such as Obtuse Systems Corporation’s Juniper firewall toolkit or

Trusted Information Systems’ fwtk) contain basic SMTP filtering that can be used to

control outbound spam. In fact, the Mail Message Metering implementation utilized

the Juniper firewall toolkit’s smtpd as the basis for the message processing. The proxy

approach is a minimalistic one, as SpamAssassin contains much more anti-spam func-

tionality built into it. However, they are implemented in C/C++, which may make the

proxies more reliable than code written in Perl.

Stopping Spam at the Network
There are ways spam can be controlled by the provider at the network level:

■ Blocking access to known open relays via access control lists (ACLs) on routers
■ Caller-ID blocking

The downside to these methods is they do take resources on the network components

(such as routers), which can cause additional cash outlays by the provider to imple-

ment these methods.

BLOCKING ACCESS TO KNOWN OPEN RELAYS
One very effective (but drastic) way to reduce unwanted outbound spam is to simply

disallow access to all SMTP servers except for the provider’s own mail relays. This

could be accomplished by the following ACL on a Cisco router:

access-list 101 permit tcp host a.b.c.d any eq smtp access-list 101 permit tcp
host e.f.g.h any eq smtp

37October 2002 ;login:

System-wide procmail filters

can be built to assist in the

fight against spam.

●

SY

SA
D

M
IN

ISPADMIN ●

Vol. 27, No. 5 ;login:

.

.

.
access-list 101 deny tcp i.j.k.l.0 0.0.0.255 any eq smtp access-list 101 permit

ip any any
The first two access-list statements allow access to legitimate mail relays, and more

permit hosts/networks could be added. The third access-list statement denies all other

access to port 25 (SMTP) outside of what is specified in the permit list. The final state-

ment allows all other traffic to be routed normally.

A variation on this idea is to block outbound SMTP access to known networks that

house open relays, such as Korean networks. A dialup customer should be using the

mail relays provided, rather than misconfigured ones located halfway around the

world!

OTHER RAS/NETWORK TECHNIQUES
Many spammers will block caller ID to make it harder to track them down. One tech-

nique that is used to block spammers from wholesale dialup networks is to disallow

outbound SMTP access to anyone who calls in without providing caller ID. This will

stop a lot of spam. Also, RAS filters can be loaded dynamically onto the modem ports

via RADIUS, allowing SMTP access to a certain set of IP addresses and excluding the

rest. In fact, UUNET requires its customers to pass a RADIUS attribute (Ascend-Data-

Filter), allowing outbound SMTP access to its wholesale customers’ mail relay, and

nothing else.

Other tactics that can be attempted include:

■ limiting outbound SMTP connection rate
■ limiting SMTP bandwidth

This author is not aware where this has been tried “in the wild” on a production net-

work.

Miscellaneous Topics
This section contains odds and ends regarding both inbound and outbound spam.

ACCEPTABLE USE POLICY
Perhaps the most important document a service provider has is its Acceptable Use Pol-

icy, or AUP. Without a properly written AUP, it is impossible to legally shut off cus-

tomers who abuse a provider’s network. All organizations, be they providers, small

companies, large companies, nonprofits or others should have an AUP. While it takes

time and effort to write a good one, the headache it cures in the long run makes it well

worth it.

LEGAL ASPECTS
A book could be written on the legal aspects of UCE. In the US the only laws currently

governing spam at the federal level surround fax broadcasting (governed by the Fed-

eral Communications Commission) and the legality of claims made by spammers

(governed by the Federal Trade Commission). Case law is being built every day. In July

2002, Earthlink was awarded US$25 million in a lawsuit against spammers. The FTC

has been active in pursuing spammers who make illegal claims.

Perhaps the most important

document a service provider

has is its Acceptable Use

Policy, or AUP.

38

In the US, the only codified anti-spam law is at the state level. David E. Sorkin has a

great site that summarizes the current status of anti-spam law, both inside and outside

the US.

STAFF
At most ISPs, customer support and/or the network operations center personnel han-

dle spam complaints. At Ziplink, the company dedicated approximately two staff posi-

tions to handle the influx of spam complaints, with a 70,000 port dial-in network.

Many complaints are duplicates, or are sent in error, which causes additional overhead.

Automated systems such as Spamcop work well. However, they are not infallible and

do make mistakes. One benefit of such systems is the elimination of duplication of

effort that automated systems can provide. Spamcop will stop sending spam reports to

the provider, once the provider tells Spamcop the spammer has been deactivated.

However, Spamcop continues to send duplicate spam reports, with the same “foot-

print” (i.e., source IP address, subject line, etc.) until the provider takes action.

COSTS
The additional strain spam puts on staff, machines, and networks is hard to quantify. If

we use an assumption that 33% of all email is spam, that loosely translates into 33%

higher costs for the provider. Those two additional staff positions mentioned above

could be eliminated if spam were not a problem. A server or two could probably be

reallocated at a small- to mid-sized ISP, while a larger provider could probably elimi-

nate more. The upstream network connections, if the provider buys transit, would be

less without spam.

USENET NEWS SPAM
Most news servers these days are able to control news spammers without much diffi-

culty. InterNetNews (INN) v2.3.2 has an “exponential backoff” feature. The associated

control parameters are:

■ backoffauth
■ backoffdb
■ backoffk
■ backoffpostfast
■ backoffpostslow
■ backofftrigger

Check the man pages for inn.conf and search for “backoff” for more information. If

the Highwinds Software series (Typhoon/Cyclone/Twister) of news servers is used, a

Perl program is available to rate limit article posting. This rate limiting works very

well.

PLACES TO SEND YOUR SPAM
Ever wonder where you can send spam you receive (besides to the provider that origi-

nates it)? A list of email addresses appears below; if anyone knows of additional email

addresses to send junk mail to, please send them and they will be published in a future

column. Some of these addresses are just statistics trackers, others are for actual com-

plaints, and some are commercial services which block spam using the email submit-

ted to generate rules for protecting their customers.

39October 2002 ;login:

●

SY

SA
D

M
IN

ISPADMIN ●

Vol. 27, No. 5 ;login:

spamrecycle@chooseyourmail.com The spam recycling center (statistics)

uce@ftc.gov FTC’s junk mail address

fraud@uspis.gov For complaints involving US Postal Service mail

enforcement@sec.gov For securities-related complaints involving US

publicly listed companies

cyberfraud@nasaa.org For securities-related complaints involving North

American publicly listed companies

otcfraud@cder.fda.gov For food/drug-related complaints

junk@brightmail.com Honeypot address for Brightmail spam filtering

service

Conclusion
There are available tools for ISPs (and others) to control outbound spam. Mail transfer

agents (MTAs) such as Sendmail can be configured to allow certain IP address ranges

to relay mail, which all organizations running a mail server on the Internet today

should employ. Outside of MTAs, Kai’s SpamShield can be utilized to control out-

bound spam, and other mail proxy agents can be useful as well. These open source

methods work, but are not perfect and take effort to implement. Steps can be taken at

the router/network-device level as well, but these are not adaptive and must be regu-

larly updated. Some proprietary methods (such as Mail Message Metering) do exist

but are applicable to certain classes of spam sources (such as large ISPs) and are cov-

ered by intellectual property law.

References
Blackmail: http://www.jsm-net.demon.co.uk/blackmail/blackmail.html
Brightmail: http://www.brightmail.com/
Brightmail anti-spam patents: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=

PTO2&Sect2=HITOFF&u=%2Fnetahtml%2Fsearch-adv.htm&r=0&p=1&f=S&l=
50&Query=in%2F%22paul%3B+sunil%22%0D%0A&d=ft00

David E. Sorkin’s spam-law site: http://www.spamlaws.com/
Email Sanitizer: http://www.impsec.org/email-tools/procmail-security.html
Highwinds Software (Typhoon/Cyclone/Twister): http://www.highwinds-software.com/

discussion/index.html
INN: http://www.isc.org/products/INN/inn-current.html
ISP-Planet article on Earthlink spam lawsuit: http://www.internetnews.com/isp-news/

article.php/1430591
Kai’s SpamShield: http://spamshield.conti.nu/
Mail Message Metering: http://www.ziplink.net/ziplink/solutions/mmm/
Obtuse Systems Juniper firewall toolkit smtpd: http://www.obtuse.com/smtpd.html
POP-before-SMTP: http://popbsmtp.sourceforge.net/
Relay control in Sendmail for roaming users: http://www.Sendmail.org/~ca/email/

roaming.html
SpamCon Foundation: http://www.spamcon.org/
SpamCon Foundation’s list of places to send junk email: http://www.spamcon.org/

recipients/spam-response/help-statistics.shtml
Spamcop: http://spamcop.net/
The SpamBouncer: http://www.spambouncer.org/
Trusted Information Systems fwtk: http://www.fwtk.org/fwtk/

40

http://www.jsm-net.demon.co.uk/blackmail/blackmail.html
http://www.brightmail.com/
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=
http://www.spamlaws.com/
http://www.impsec.org/email-tools/procmail-security.html
http://www.highwinds-software.com/
http://www.isc.org/products/INN/inn-current.html
http://www.internetnews.com/isp-news/
http://spamshield.conti.nu/
http://www.ziplink.net/ziplink/solutions/mmm/
http://www.obtuse.com/smtpd.html
http://popbsmtp.sourceforge.net/
http://www.Sendmail.org/~ca/email/
http://www.spamcon.org/
http://www.spamcon.org/
http://spamcop.net/
http://www.spambouncer.org/
http://www.fwtk.org/fwtk/

41October 2002 ;login:

●

SY

SA
D

M
IN

by
Introduction
It is possible to monitor and administer a small number of computers indi-

vidually, for example, by running an interactive session on each one. We

would be most likely interested in observing the CPU, memory, and disk

space utilizations or verifying that a particular process is running. We could

run commands like df or ps at regular intervals in order to assure ourselves

that everything is fine. We could also create various smart scripts to per-

form automatic monitoring functions locally and notify the administrator

about the exceptions by, say, email. However, this approach has obvious

limitations as the number of servers increases, for it demands a manual

modification of the local scripts should the threshold values or the email

address change. In general, we would want to have available one central-

ized point (management station) where we could set up the thresholds and

process the notifications about the exceptions. We would prefer to have a

unified, simple installation and configuration of the part of the monitoring

software which runs on the managed nodes since that would allow for more

robust and automated installation procedures for a large number of the sys-

tems. Also, we would prefer such a monitoring method to be able to work

for the different platforms found in data centers nowadays.

SNMP (Simple Network Management Protocol) fits the task well despite some limita-

tions. It takes care of network communication between the management station and

managed nodes. It organizes the management information on the client side so that it

can be retrieved and modified by the management station via a small number of

SNMP operations. It does not process, filter, or correlate the management information

retrieved from the clients. It passes the information to other application programs, or,

put differently, the management applications take advantage of SNMP in order to

communicate with their clients. One of the compelling reasons for using SNMP is the

fact that the SNMP daemon or service is a part of the standard installation of all major

modern operating systems. Enterprise-grade database systems, firewalls, and other

applications often contain an SNMP module which can communicate the application-

specific management information. The components of the network infrastructure

such as routers or switches support SNMP; many other devices such as uninterruptible

power supplies allow for the installation of a card with an embedded SNMP daemon.

Therefore, with relatively little extra burden caused by the planning and configuration,

we can have a multi-platform, network-monitoring capability based on open stan-

dards.

SNMP standards are defined by the RFC documents created by the Internet Engineer-

ing Task Force (IETF). The evolution of SNMP has not been straightforward, varying

as different ideas were getting more or less attention. There are three versions of the

protocol; the newest (SNMP v3) was standardized on March 27, 2002. From the point

of view of the IETF, SNMP is a part of the Internet Standard Management Framework

and all three versions share the same basic structure and components:

1. Managed nodes, each with an SNMP entity that provides remote access to man-

agement information. These are usually called “agents.”

2. One or more SNMP entities with management applications. These are tradition-

ally called “managers.”

remote monitoring
with SNMP

REMOTE MONITORING WITH SNMP ●

by Jozef Skvarcek

Jozef Skvarcek is cur-
rently working as a
system administrator.
He holds a PhD in
Physics. Computer
technology and
science are his long-
time hobbies.

jozef@photonfield.net

Vol. 27, No. 5 ;login:

3. Management protocol to communicate management information between the

SNMP entities.

4. Management information.

The architecture of SNMP is modular and it consists of:

1. Data definition language, called Structure of Management Information (SMI). It

defines the fundamental data types, object model, and rules for writing the MIB

modules.

2. Management Information Base (MIB) modules. They define the objects and

event notifications (“traps”).

3. Protocol operations. The operations are performed by Protocol Data Units

(PDU).

4. Security and administration.

The SMI can be viewed as a collection of management objects residing in a virtual

information store, which is the MIB. Collections of related objects are defined in MIB

modules written in the SNMP MIB module language. An object in this scheme is

called an “Object Identifier” (OID), an ordered sequence of non-negative integers.

OID can also be represented by strings; the whole structure resembles DNS. Only a

small number of MIBs (the core set) is required to be supported by each conforming

agent.

NAME DEFINITION

MIB-II RFC 1213

Interfaces MIB RFC 1573

SNMPv2 Core RFC 1907

These provide access to a small common set of management information such as the

system name, location, contact information and statistics about the network interfaces.

There are a large number of non-mandatory MIB modules from the IETF. Another set

of MIB modules are written by hardware and software vendors to support the man-

agement of their products. These enterprise-specific MIBs specify objects that lie

under the “1.3.6.1.4.1” (“iso.org.dod.internet.private.enterprise”) branch, sometimes

simply called the “enterprise” branch. The administration of the enterprise branch is

delegated to the vendors who normally provide their MIB modules as text files on

some media, say, CD-ROMs or floppy disks that ship with their products. The admin-

istrator can study the files in order to determine which OIDs and traps are available.

For example, the administrator would likely be searching for the OIDs holding the

current values of input/output voltages or output load if he were reading the MIB

which came with a power supply unit.

There are a small number of PDUs; the most frequently used are GET, GET-NEXT, SET,

and TRAP. The PDUs are encapsulated into the SNMP messages and then are trans-

mitted over the IP network using the UDP protocol. The SNMP daemon usually lis-

tens on port 161 for all PDUs except TRAP, which is sent to port 162. If you have

installed a network management application with the GUI such as IBM Tivoli

Netview, the PDUs are generated by choosing the appropriate items from the menus.

NET-SNMP, the excellent open source SNMP agent, implements the PDUs as com-

mand-line executables.

42

SNMP and Security
The IETF explicitly specifies the following security threats:

1. “Modification of information” – This is the danger of the modification of SNMP

information during network transmission by an unauthorized person.

2. “Masquerade” – This is the danger that an unauthorized user may assume the

identity of another user with more administrative rights.

3. “Disclosure” – This is the threat that an unauthorized person may observe the

SNMP communication between the managed agents and the management sta-

tion.

4. “Message stream modification” – This is the danger that the SNMP messages can

be re-ordered, delayed, or replayed in order to force some unauthorized manage-

ment operations.

Versions 1 and 2 of the SNMP protocol provided hooks for multiple authentication

schemes; however, they did not explicitly specify any but a trivial authentication

scheme based on “community” strings. The “community” is included within an SNMP

message, the message is transmitted in the clear-text format, and then the community

is verified by the receiving entity. Obviously, this security scheme does not really solve

the problems posed by the threats and is vulnerable to various sorts of attacks. It is the

goal of version 3 to address the threats. It employs the traditional concept of a user

who is identified by a username and secret key (passphrase). The security information

is associated with the user. The cryptographic algorithms MD5 and SHA are used for

the authentication and DES for the encryption. Other protocols are permitted by the

standard. The standard also mandates time synchronization between the SNMP enti-

ties in order to tackle the message stream modification threat. Note, this time synchro-

nization is performed by the SNMP agent software and is independent of other

methods of system-time adjustment such as the NTP. These security methods make

SNMPv3 operations safe on the public IP networks. On the other hand, user-based

authentication adds another user database not correlated with the system accounts in

general. That fact increases the complexity of the administration and implies derived

security threats. This problem can be handled by installing an SNMP agent software

which supports some kind of centralized and secure user authentication. For example,

the latest version of NET-SNMP (version 5) can take advantage of the Kerberos proto-

col for that purpose.

Which SNMP version to use? SNMPv3 seems to be the trivial answer after what has

been said in the previous paragraph. Unfortunately, the standard is too new to be fully

supported by all software agents. Your choice will likely by limited by the capabilities of

your management station, too. For example, popular enterprise-grade network man-

agement applications such as Tivoli Netview or HP OpenView support only SNMPv1

and v2. There are several ways to reduce the risks that stem from running SNMPv1 or

v2:

1. Set the community strings. Traditionally, “public” is used as the default for the

read-only community and “private” is used for the read-write community. Many

agents install with these communities pre-defined. They should be changed

before the agent is started for the first time.

2. Disable the write access. In most cases the read-only access is sufficient to satisfy

management objectives.

3. Allow PDUs from your management station only. The configuration file of an

SNMP agent normally allows you to limit the access only from pre-defined IP

43October 2002 ;login:

●

SY

SA
D

M
IN

REMOTE MONITORING WITH SNMP ●

Vol. 27, No. 5 ;login:

addresses or domain names. If you decide to use domain names, then your DNS

server should be safe from unauthorized manipulation of the DNS data.

4. Use a private, closed network for SNMP traffic.

As with other software, security vulnerabilities may be discovered in the code occa-

sionally. Therefore, it is important to keep an eye on the security alerts issued for

SNMP software you use and apply the security patches whenever necessary.

We shall take a look at the configuration and utilization of the SNMPv3 protocol in an

illustrative case in the following section.

A Practical Example
We used a machine called “Jupiter” as the manager station and a machine called

“Europa” as the agent. During preparation of this article, Jupiter was a PC running

RedHat Linux 7.2 and Europa was a SPARC box running Solaris 8. NET-SNMP agent

software version 4.2.3 was used on both systems. The NET-SNMP software on Jupiter

came with the distribution, while the one on Europa was compiled from sources.

There were several factors that motivated our use of this particular software. NET-

SNMP supports SNMPv3; it is open source, which reduces the cost of the manage-

ment infrastructure; it is under active development; and it is part of the standard

installations of many GNU/Linux distributions. Last but not least, despite the com-

plexity of the SNMP implementation, NET-SNMP has been relatively easy to config-

ure and has been working reliably. It will be assumed in this section that the agent has

been properly installed on both systems. (We shall provide more information regard-

ing the installation in the next section.) It is assumed that OpenSSL, required for the

encryption, has been installed, too.

Our first objective was to retrieve the system uptime from Europa on Jupiter. How did

we know to choose this particular information? Every SNMP agent has to support the

core set of MIBs, one of which is MIB-II, defined by RFC 1213. We read the document

and found the object sysUpTime with OID 1.3.6.1.2.1.1.3 (iso.org.dod.internet.mgmt.

mib-2.system.sysUpTime), described as the time (in hundredths of a second) since the

network management portion of the system was last re-initialized. The sysUpTime
object is a member of “System Group,” which contains other useful objects such as

sysName, sysContact, and sysLocation. A MIB may be difficult to read, since the lan-

guage is meant to be processed by a machine rather than read by a human. (Please

consult the books mentioned in the Bibliography section for further information.)

We started by configuring the agent on Europa. We needed to create a user (“john”)

with a passphrase “secret123” (the passphrase must have at least 8 characters). We put

into file /var/ucd-snmp/snmpd.conf the line

createUser john MD5 secret123 DES

This version of NET-SNMP does not support SHA protocol yet, and therefore we

don’t really have a choice but to use MD5 for the authentication. It is possible to use a

different password for the DES; you would need to put it behind DES on the line. In

the next step it is necessary to create the configuration file /usr/local/etc/snmp/
snmpd.conf. NET-SNMP uses the View-Based Access Control Model (VACM), defined

by RFC 2575. VACM provides the administrator with the capability of allowing a par-

ticular user access to only a specified subset of the OID tree at the agent. In our case,

we want to give “john” complete read-write access to the management information.

Also, we want to enforce SNMPv3 and the highest security level, which means that

44

“john” will have to use the strong authentication and encryption. Below is an example

of the content of a simplified file which satisfies these objectives.

/usr/local/etc/snmp/snmpd.conf
#
Map the security name into a group name:
#
groupName securityModel securityName
group johngrp usm john

#
Create a view for us to let the group have rights to:
#
name incl/excl subtree mask(optional)
view all included .1

####
Finally, grant access to the view.
#
group context sec.model sec.level prefix read write notif
access johngrp “” usm priv exact all all none

#
Set value for `system.sysLocation' object
#
syslocation Datacenter

Set value for `system.sysContact' object
#
syscontact Networking

#
END
#

For the sake of brevity, we can’t discuss the file in detail; please consult the documenta-

tion which comes with the NET-SNMP software. Finally, we are ready to launch the

SNMP daemon on Europa with the command:

/usr/local/sbin/snmpd

At this point the daemon should be listed among the running processes on Europa. An

important transformation to the file /var/ucd-snmp/snmpd.conf occurs during the

start-up of the daemon. The createUser line is replaced by john’s security key. For the

calculation of the key, the daemon used the password and the IP address of Europa.

This fact is worth noting, since the security key would need to be re-created should the

IP change.

The snmpd is running on Europa, but how can we access the information from

Jupiter? We can do it with the GET-NEXT PDU, which is implemented by the command

snmpwalk. We can run on Jupiter, for example, the following command:

$ snmpwalk -v 3 -u john -l authPriv -a MD5 -A secret123 -x DES \
-X secret123 europa .iso.org.dod.internet.mgmt.mib-2.system

which retrieves the values of the OIDs in the “system” branch. We get several lines as

the output and recognize the OIDs defined by MIB-II. Among them are the following:

45October 2002 ;login:

●

SY

SA
D

M
IN

REMOTE MONITORING WITH SNMP ●

Vol. 27, No. 5 ;login:

system.sysDescr.0 = SunOS europa 5.8 Generic_108528-12 sun4u
system.sysObjectID.0 = OID: enterprises.ucdavis.ucdSnmpAgent.solaris
system.sysUpTime.0 = Timeticks: (383093) 1:03:50.93
system.sysContact.0 = Networking
system.sysName.0 = europa
system.sysLocation.0 = Datacenter

The zero trailing the OID names is the “instance.” Some OIDs may have multiple

instances; for example, the OID describing the mounting point of a disk partition has

as many instances as there are partitions.

One may object that the snmpwalk command is too long and poses a security risk. A

local user may learn the passwords by running the ps command while we are execut-

ing snmpwalk. To deal with this, we can create the file .snmp/snmp.conf in our home

directory with the following content:

defVersion 3
defSecurityName john
defAuthType MD5
defAuthPassword secret123
defPrivType DES
defPrivPassword secret123
defSecurityLevel authPriv

This file should be readable only for the user since it includes the passwords. Having

this file in place, we are able to simplify the snmpwalk command to

$ snmpwalk europa .iso.org.dod.internet.mgmt.mib-2.system

If we recall our original objective, our task was to retrieve the value of the sysUpTime
object. We already have the result; the appropriate line is in the output from

snmpwalk. We can get the value of that single object by using the GET PDU, which is

implemented by the snmpget command. We can run on Jupiter the following:

$ snmpget europa .iso.org.dod.internet.mgmt.mib-2.system.sysUpTime.0

which returns as output the line

system.sysUpTime.0 = Timeticks: (1015919) 2:49:19.19.

Our second objective, which will be less trivial, is to monitor the disk space in the root

partition on Europa. The necessary information is provided by Host MIB, defined by

RFC 1514. Although this MIB is not mandatory, it is supported by many agents, NET-

SNMP among them. The MIB specifies the OIDs under the iso.org.dod.internet.mgmt.
mib-2.host branch. The command:

$ snmpwalk europa .iso.org.dod.internet.mgmt.mib-2.host

produces long output containing much interesting information, such as process names

currently running on the system, their arguments, partitions, and mounting points,

and so on. We are interested in the latest. Among the output were the following lines:

host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageIndex.1 = 1
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageType.1 = OID:

host.hrStorage.hrStorageTypes.hrStorageFixedDisk
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageDescr.1 = /
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageAllocationUnits.1 =

4096 Bytes

46

host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageSize.1 = 756012
host.hrStorage.hrStorageTable.hrStorageEntry.hrStorageUsed.1 = 120936

It makes sense, doesn’t it? We should verify that the OIDs really are what they seem by

reading their descriptions in the MIB file. There were many instances of these OIDs,

but we picked up instance 1 since the OID hrStorageDescr.1 returned “/” and that was

what we had been looking for. Then we found the rest of the OIDs with that instance

number. The size of the file system could now be calculated by multiplying hrStorage-
Size by hrStorageAllocationUnits, and the result would be in bytes. Space utilization as

a percentage can be calculated using the formula

(hrStorageUsed / hrStorageSize) * 100.

The monitoring can be automated by creating, say, a Perl script which could regularly

poll the agent. Such a script could parse a configuration file where we could define the

threshold. The script would then fire up an alarm if space utilization greater than the

threshold were detected. The procedure could be further scaled up to monitor a large

number of systems.

NET-SNMP Compilation Notes
The NET-SNMPv4.2.3 sources were downloaded from the project’s home site. The

agent compiled without any problem on RedHat Linux 7.2 with GCCv2.96 and on

Solaris 8 with Sun Work Shop 6.1. After the sources are unpacked we need to run the

“configure” script. The script takes several arguments; you can use:

./configure —help

in order to get the list. SNMPv3 is supported as the default, but the Host MIB is not. It

is necessary to include the support by the command-line argument:

./configure —with-mib-modules=”host”

The agent can support several more MIBs and other functionality; for example, it is

possible to include the support for the tcp_wrappers. The configuration uses /usr/local
as the default installation prefix, which is why the snmpd.conf file is located in the

/usr/local/etc/snmp directory. It is possible to change the location of this and other

NET-SNMP files by choosing the appropriate arguments for the configure script.

Please read the included documentation for more information. Then we can compile

the binaries:

make

and install them with

make install

The distribution does not provide provisions for those who wish to create the software

packages. There are many Makefile files inside the source tree. One has to manually

edit the install targets so that the software will be installed in a directory suitable for

the build of the package.

47October 2002 ;login:

●

SY

SA
D

M
IN

REMOTE MONITORING WITH SNMP ●

Vol. 27, No. 5 ;login:

Notes on SNMP Agents on Some Operating Systems
REDHAT LINUX 7.2
Typically, two packages are installed on a production box from RedHat 7.2 CD media:

■ ucd-snmp
■ ucd-snmp-utils

A third package ucd-snmp-devel which provides the API, can be installed on a devel-

opment system. Don’t be confused by the names; the packages are the NET-SNMP dis-

tribution version 4.2.3. (NET-SNMP had been previously known as UCD-SNMP.) The

full path to the configuration file is /etc/snmp/snmpd.conf. The packages from the

original CDs contained a security vulnerability and the snmpd daemon did not start

under certain circumstances. We replaced them with the latest versions of the RPM

packages from the home site of the NET-SNMP project and that fixed both problems.

SOLARIS
The agent is part of the product called “Solstice Enterprise Agents,” which is installed

automatically during a typical installation. The product consists of five packages:

■ SUNWsacom
■ SUNWsasnm
■ SUNWsadmi
■ SUNWmibii
■ SUNWsasdk

where the last one provides the development platform and is not installed if only a

runtime environment is required. The configuration files are located in the

/etc/snmp/conf directory. However, in our opinion this agent is difficult to configure

and the documentation is not sufficient. Also, the Host MIB does not seem to be sup-

ported and neither does SNMPv3. Therefore we suggest using NET-SNMP instead.

WINDOWS 2000
The agent is installed automatically during a typical installation. Make sure that the

“SNMP Agent Service” is enabled for automatic startup. The agent is configured

through the SNMP Agent Service Properties window popup in a manner similar to the

other system components. The relevant registry keys are located in HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\Services\SNMP.

The documentation can be found in the Windows 2000 Server Resource Kit, TCP/IP

Core Networking Guide. The agent works well on small systems, but it seems to have

certain problems serving the Host MIB information on larger multi-processor boxes.

It does not support SNMPv3.

Conclusions
The scope of this article is limited to describing the configuration of the SNMP agent

and demonstrating use of management information for the monitoring of the system

parameters. The management information served by the Core and the Host MIBs we

discussed is sufficient for monitoring:

1. Disk space utilization

2. CPU load

3. Swap space utilization

4. Running processes

5. TCP/IP statistics

48

and other parameters. The aim is to give the interested reader enough knowledge for

starting practical, secure remote monitoring. The other parts of the SNMP are left to

the reader for further research.

Although much can be achieved by scripting SNMP polls, as hinted in the paragraph

about the monitoring of disk space usage, in many cases it would be desirable to have a

GUI-based network management application with a rich set of features. A few com-

mercial products such as IBM Tivoli Netview or HP OpenView, as well as free ones

such as GxSNMP, are available, although they do not support SNMPv3 yet.

We did not write much about the TRAP PDU. When a problem comes up, traps are

emitted by certain hardware and software components such as network routers,

UPSes, and databases that support the feature. The traps are usually processed by a

network management application, which can sort them out, perform correlations, and

issue notifications. In many cases the traps are more efficient than a periodical polling,

since they do not cyclically consume the network bandwidth and host resources.

Acknowledgments
We would like to thank the members of the UniGroup in New York City for valuable

suggestions.

Bibliography and Web Sites
BOOKS

Essential SNMP, by D.R. Mauro and K.J. Schmidt, O’Reilly, 2001

Practical Guide to SNMP v3 and Network Management, by D. Zeltserman, Prentice

Hall, 1999

SNMP Network Management, by P. Simoneau, McGraw-Hill, 1999

Understanding SNMP MIBs, by D. Perkins and E. McGinnis, Prentice Hall, 1997

WEB SITES

GxSNMP: http://www.gxsnmp.org/

HP OpenView: http://www.openview.hp.com/

IBM Tivoli Netview: http://www.tivoli.com/products/index/netview/

NET-SNMP (UCD-SNMP): http://net-snmp.sourceforge.net/

RFC: http://www.ietf.org/rfc.html

SNMPv3: http://www.ibr.cs.tu-bs.de/projects/snmpv3/

The details of the standardization of SNMPv3: http://www.ietf.org/IESG/actions.html

49October 2002 ;login:

●

SY

SA
D

M
IN

REMOTE MONITORING WITH SNMP ●

http://www.gxsnmp.org/
http://www.openview.hp.com/
http://www.tivoli.com/products/index/netview/
http://net-snmp.sourceforge.net/
http://www.ietf.org/rfc.html
http://www.ibr.cs.tu-bs.de/projects/snmpv3/
http://www.ietf.org/IESG/actions.html

50 Vol. 27, No. 5 ;login:

cabling
Just the Tip of the Infrastructure
Cabling problems are common in all buildings and data centers. In perfor-

ming cabling assessments for more than 15 years for many property man-

agement companies and major organizations (as well as acting as an expert

witness on several multimillion-dollar lawsuits related to cabling infrastruc-

ture problems), I can safely say that your building has cabling problems.

From Wacker Drive to Kansas City to Beverly Hills, I have never walked through a

building without finding major problems resulting from a lack of management of the

inside wiring and cabling facilities. These problems are going to cost you and your

organization a lot of money – maybe even the sustainability of your business.

Huge Insurance Risk Second-Round Funding
Some years ago, most property management firms and large organizations didn’t care

about cabling problems. They were too busy with more important things, like what

type of espresso machine they should be installing in the lunchroom. They would let

maintenance go until something drastic happened: overhead cabling troughs would

get maxed out; tenants (in properties) would move, leaving abandoned cable under

floor cable troughs so that raceways got maxed out; a new application would have to

be installed, and dead (abandoned) cable would need to be removed to make room for

the new network media.

Today, there are some new rules pertaining to maintaining inside wiring within an

organization. Managers in charge have to understand that there is huge liability now if

cabling is messed up.

The insurance companies have finally perked up and are pushing the issue of cabling

infrastructure. National electrical codes are specifying that abandoned cable must be

eliminated and that cable ducts must be free of dead cable.

In liability cases, if a fire spreads due to cabling conduits not being properly fire

stopped (covered with a flame-retardant material so the pathway, or riser system, can-

not act as a “chimney” for smoke and other toxic fumes to travel through the build-

ing), the insurance company can claim that your organization’s building was not up to

code. No payment. Claim dismissed.

Let’s say that the fire caused millions of dollars of damage. Your organization needs the

money to restore its capabilities – quickly. The insurance company can wiggle out of

paying the claim because they can show that the cabling was not up to the national

electrical code as well as the municipality’s building code.

Is Your Facility Management Awake?
A fast way to find out if the people responsible for cabling within your facility are “on

top of the job” is to ask them if they know about the TWINS in the building.

What are the TWINS? It’s a fast view of the health of your cabling, which is the lifeline

of your business. TWINS stands for Total pair, Working pair, In-service pair, Non-

working pair, and Spare pair.

An example of using TWINS would be to evaluate the amount of spare capacity you

have coming to the building. You might think you have a lot of spare capacity because

you know you have a 5,000-pair cable coming into the building and you are only using

2,000 of that 5,000.

Here is a quick example of how that assumption can be grossly misleading:

by James Carlini

James Carlini is presi-
dent of Carlini &
Associates, Inc., a
management con-
sulting firm focused
on developing mar-
keting strategies and
applications of
strategic integrated
information technol-
ogy. He offers semi-
nars.

carlini@northwestern.edu

773-370-1888

51October 2002 ;login:

●

SY

SA
D

M
INTotal Pair: 5,000 – Working Pair: 2,200

In-Service Pair: 2,000 – Non-Working Pair: 3,000 – Spare Pair: 200

(Determine non-working pairs through testing.)

All of a sudden, you realize that you don’t have the extra capacity you thought you

had. You thought you had more than enough for that new telemarketing department

you were going to move into the building that needed 500 pair for their incoming

lines. Now it’s a crisis. Don’t think that the phone company is going to come rescue

you.

I have actually seen a building that could not be leased up because they ran out of

cable to the building. The phone company diverted “spare cable” to another building

being built, and the existing building could not lease up the last 20 percent of the

office space. For those who are curious about how long it took for them to run more

cable to that building, it was a priority order and it took 18 months. If you or your

telecom manager really know the TWINS formula for cabling, you may save yourself a

crisis or two. Try asking about this TWINS check with your facilities manager.

Data Centers Are Centers for Potential Disaster
So many organizations have built data centers and call centers on the cheap. The newer

centers are sometimes more susceptible to cabling problems because the people in

charge didn’t spend enough money to do a proper job of insulation, fire stopping,

compartmentalizing, and creating a redundant approach.

There are many areas for improvement that are often overlooked because the people in

charge may not know what a good data center should be. A great example of the right

job is the Chicago E-911 center. Another is AT&T’s 10 S. Canal facility, where they have

four jet aircraft engines as power back-ups if ComEd fails.

I used to take my students through both because I wanted to show them what “the

right way” looked like. These were great field trips for those professionals who were

jaded and thought they had seen it all. They were impressed and shocked at the level of

reliability and redundancy, but jet aircraft engines can chew up a lot of fuel and are

not cheap. Neither is filling up their 330,000-gallon tank (a big price difference com-

pared to a PC surge protector).

Fiber-optic cable and copper cables running through cable trays with the proper load-

ing and strapping gave a real-life example, rather than just talking about a quality stan-

dard. No overfilled trays, no spaghetti cable messes or other problems that I saw in so

many other buildings – just a perfect design.

Pay Now or Pay Dearly Later
So many organizations have gotten by with substandard design and maintenance on

cabling and data centers that they might read this with a “so what” attitude.

Those are the companies that will eventually go out of business or be acquired by their

competitors when they hit their first major outage and can’t get their data center

working, or when they have a fire, a bad design, or disaster and find out they can’t col-

lect the insurance because the insurance company sends out some person to review the

problem before writing a check for $10 million.

Some of you know-it-alls say that will never happen and insurance companies will

always pay out. Sorry to burst your bubble. I know this happens because I was that

person, and the check wasn’t written.

I have actually seen a

building that could not be

leased up because they ran

out of cable to the building.

CABLING ●

52

the bookworm

Vol. 27, No.5 ;login:

by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Chief
Knowledge Officer at
Matrix NetSystems.
He owns neither a
dog nor a cat.

peter@matrix.net

BOOKS REVIEWED IN THIS COLUMN
them. And they’re indexed and cross ref-

erenced.

The CD-ROM is very well done, and the

indexing is superb. You may not need

this tome, but you do need the CD.

FreeBSD
I read most of Absolute BSD on my flight

home from the security symposium. A

very fine piece of work, it isn’t about

how to implement BSD solutions, but it

is about managing systems in situ. Its big

lack is that there’s no bibliography.

Sendmail
Christenson has not written an ordinary

book. This is a book for the sysadmin

who spends a lot of time working on her

mail servers. UNIX mail servers. All over

the world, more mail servers run Send-

mail than anything else. About 15 years

ago, I looked at the sendmail.cf file run-

ning on our Sun 3/150. I hope to never

have to look at one again.

Featuring Sendmail 8.12, this book may

possibly enable me to never look at one

again. It is not a replacement for

Costales and Allman (1997), but if you

meddle with mail servers, you need this

volume.

Hard-Core Economics
Dale Jorgenson is a professor of eco-

nomics at Harvard. But don’t let that or

the fact that his subject is supposed to be

tedious put you off.

Econometrics 3 is the third volume of

Jorgenson’s papers. It is subtitled “Eco-

nomic Growth in the Information Age.”

I was really taken by a number of the

articles in this hefty book: “Information

Technology and the US Economy” and

“Computers and Growth” serve as a

great introduction to Jorgenson’s inter-

ests. “What Ever Happened to Produc-

tivity Growth?” and “Did We Lose the

War on Poverty?” were really enlighten-

ing.

This is going to be a strange, disjunctive

column.

I was going to rest a bit and write about

the SQL books I’ve been looking at since

June. But a number of things have hit

my mailbox, and the SQL stuff will just

take some space at the end of this piece.

There are five books I really enjoyed this

past few weeks. One of them is a little

out of line, but I think worthwhile. The

others are obvious choices.

Hacking
Hank Warren has been hacking for

about 40 years. In that time he has come

up with a number of neat ways to do

math and some algorithms that are quite

useful.

Hacker’s Delight is, to me, the com-

putenik’s response to W.W. Sawyer’s

Mathematician’s Delight, which I discov-

ered when I was in high school. Warren

has made the world of elegant and effi-

cient hacking come alive, and has man-

aged to be useful at the same time.

Commands
The Universal Command Guide weighs

in at about 4 kilos. It may be the most

unreadable book I’ve got; but it’s also

the most useful one I’ve seen.

Every command for Windows 95, 98,

Me, NT 4.0, 2000, XP; Solaris 7.8; AIX

4.3.3; OpenBSD 2.7; RedHat Linux 7;

NetWare 3.12, 4.11, 5.1.6; Mac OS 9.1;

and DOS 6.22 is listed. Over 8000 of

HACKER’S DELIGHT

HENRY S. WARREN, JR.
Boston, MA: Addison-Wesley, 2002. Pp. 306.

ISBN 0-201-91465-4.

UNIVERSAL COMMAND GUIDE

GUY LOTGERING & THE UCG TRAINING TEAM

New York: Hungry Minds, 2002. Pp. 1591 +

CD-ROM. ISBN 0-7645-4833-6.

ABSOLUTE BSD

MICHAEL LUCAS

San Francisco: No Starch Press, 2002. Pp. 616.

ISBN 1-886411-74-3.

SENDMAIL PERFORMANCE TUNING

NICK CHRISTENSON

Boston, MA: Addison-Wesley, 2002. Pp. 228.

ISBN 0-321-11570-8.

ECONOMETRICS, VOL. 3.

DALE W. JORGENSON

Cambridge, MA: MIT Press, 2002. Pp. 461.

ISBN 0-262-10094-0.

THE COMMUNICATIONS TOOLKIT

P.H. LONGSTAFF

Cambridge, MA: MIT Press, 2002. Pp. 271.

ISBN 0-262-12246-4.

THE ESSENTIAL GUIDE TO
NETWORKING

JIM KEOGH

Upper Saddle River, NJ: Prentice Hall, 2001.

Pp. 407. ISBN 0-13-030548-0.

THE PRACTICAL SQL HANDBOOK,
3RD ED.

J.S. BOWMAN ET AL.
Reading, MA: Addison-Wesley, 1996. Pp. 454.

ISBN 0-201-44787-8.

ORACLE WEB APPLICATIONS

ANDREW ODEWAHN

Sebastopol, CA: O’Reilly, 1999. Pp. 256. ISBN

1-565-92687-0.

XML AND SQL SERVER 2000

JOHN GRIFFIN

Indianapolis, IN: New Riders, 2001. Pp. 384.

ISBN 0-735-71112-7.

WEB DATABASE APPLICATIONS

HUGH E. WILLIAMS & DAVID LANE

Sebastopol, CA: O’Reilly, 2002. Pp. 582.

ISBN 0-596-00041-3.

53October 2002 ;login:

●

BO

O
K

RE
V

IE
W

S

INCIDENT RESPONSE ●

book reviews
Two Other Good Books
While I’m on a roll, I want to tip my hat

to P.H. Longstaff, whose interests are in

communications business and policy. As

we recognize that computers (and the

Internet) are a part of that communica-

tions business, it becomes ever more

necessary to try to understand it. The
Communications Toolkit does a really

good job of providing the flexible strate-

gies we’ll need in the future.

Keogh’s book is the best introduction to

networking for your grandmother I’ve

come across. It is so simple and straight-

forward that even politicians should be

able to comprehend it. At times Keogh

dumbs things down a great deal, but this

may be necessary.

SQL
After I read the Sleepycat BDB book, I

realized that I needed to know more

about SQL and its uses. I looked at and

read too many items. But here are the

four that I found most useful.

Bowman and her colleagues produced

their volume over five years ago. Though

there are some parts that are dated, I

think it may be the very best book I’ve

seen on SQL.

Odewahn’s book is also a bit dated, but

it is both clear and well written. The

early chapters are a bit too introductory,

but the final four were very, very good.

On occasion, I wanted a bit more detail,

though.

Griffin’s book is far more up-to-date. It’s

good, with many useful examples.

Williams and Lane is also good, espe-

cially the PHP and MySQL sections. I

can recommend all four.

recognition; establishment of threat level

and communication with attackers. The

chapter provides an exciting journey

into the mind of a computer criminal, a

cyber-sleuth, and a cybercrime victim.

Also covered are insider attacks, often

considered to be the doom of informa-

tion security. The question “Why do

insiders attack?” is thoroughly analyzed.

The author overlays social methods on

standard incident-response procedure

(detection/containment/eradication/rec

overy) to help understand the crucial

role the human element plays in any

security incident.

Two chapters are devoted to high-level

computer forensics overview. Hard disk

basics are explained – FAT, cluster,

secure deletion are all given appropriate

space. The book goes on to talk about

the “guiding principles” of the investiga-

tion. A brief overview of forensic soft-

ware and hardware is also provided but

only serves to familiarize the reader with

the names of common packages and

utilities. For example, TCT coroner kit is

only given about 15 lines of text.

Honeypots also take an honorable place

in the book. Their role in IR is studied in

detail and is deemed important. Honey-

pots are also tied to PDCERF, and their

value in studying attackers, shielding IT

resources, and even gathering evidence

for court prosecution is recognized.

Some common ways of implementing

honeypots (such as via virtual environ-

ment) are discussed. The authors even

digress to touch upon the ethical impli-

cation of honeypots.

Another gem is a stimulating chapter on

future directions in IR. The ambitious

prediction of intelligent automated inci-

dent response and attacker tracking

tools is made by the authors. While it is

known that automated response to secu-

rity incidents must be viewed with cau-

tion, the potential seems to exist for

future automated IR “helpers.”

INCIDENT RESPONSE:

A STRATEGIC GUIDE TO HANDLING SYSTEM AND

NETWORK SECURITY BREACHES

EUGENE SCHULTZ AND RUSSELL SHUMWAY

New Riders Publishing, ISBN 1-578-70256-9

Reviewed by Anton Chuvakin
Anton Chuvakin, Ph.D., GCIA, is a senior
security analyst with a major security com-
pany.

anton@netForensics.com

Incident Response by Eugene Schultz and

Russell Shumway – the third book with

this title that I have reviewed – had to

overcome a certain expectation barrier,

even though the authors are recognized

experts in the security field. It passed the

barrier with flying colors, being different

but still covering many facets of the

intricate incident response (IR) process,

with sections on technology, procedures,

and, especially, people.

The books starts with security basics. A

risk assessment overview with loss esti-

mates and a summary of digital risks

(such as privilege escalation, break-in,

denial-of-service, etc.) is provided. This

material appears to be useful mostly for

newcomers to the security field. Formal

six-stage incident-response methodol-

ogy is then presented by the authors: the

preparation, detection, containment,

eradication, recovery, and follow-up

(PDCERF) process helps create a solid

skeleton to support the fluid form of the

IR process.

Admittedly, the book is less hands-on

oriented than some other IR manuals;

the reader will not find things like com-

puter forensics-tool command-line

options and ext2fs file system internals

here. However, the book shines in its

coverage of the human aspect of inci-

dent response. Written by an ex-CIA

Ph.D. psychologist, the amazing chapter

on social sciences and incident response

covers a diverse range of topics: cyber-

crime profiling techniques, such as vic-

tim counseling and victimology; “modus

operandi” identification; attack pattern

Vol. 27, No. 5 ;login:

hide and dodge attacks that cannot be

defended against.

Tracking Hackers also has a “Legal

Issues” chapter, written with a lot of

feedback from a Department of Justice

official. It dispels some of the miscon-

ceptions about honeypots, such as the

“entrapment” issue, and summarizes

wiretap laws and related data-capture

problems.

The book is almost the cutting edge of

honeypot research and technology; to

truly get the cutting edge and learn

about the Honeynet Project’s latest

activities in detail, wait for the second

edition of Know Your Enemy (coming

out next year). In the “Future of Honey-

pots” chapter, Spitzner includes material

on honeypot-based early warning sys-

tem and distributed deployments, analy-

sis of new threats, expanding research

applications, and making honeypots eas-

ier to deploy and maintain.

To conclude: Marcus Ranum’s enthusi-

astic preface is not an overstatement. It

is indeed a great book, both for security

professionals and for others interested in

this exciting technology. While I was

already familiar with most of the infor-

mation in the book, it was a fascinating

read! This book is a real page turner.

An overview of legal issues is a must for

any IR book. A brief and to-the-point

section on US laws and international

cybercrime treaties is available.

Last but not least, a short response and

reporting checklist is compiled by the

authors. It is based on the six-step IR

process and will help investigators to

structure their efforts and assist with

data collection. Also included is a copy

of a “Site Security Handbook”

(RFC2196), with an extensive list of ref-

erences.

Overall, the book is an extremely useful

guide for security managers and those

tasked with organizing/maintaining

incident response teams. Skilled com-

puter crime investigators will not learn

anything new from this book, but they

will likely enjoy the book nevertheless.

HONEYPOTS: TRACKING HACKERS

LANCE SPITZNER

Addison Wesley Professional,
ISBN: 0-321-10895-7, 480 pp.

Reviewed by Anton Chuvakin

If you liked Know Your Enemy by the

Honeynet Project, you will undoubtedly

like Honeynet Project founder Lance

Spitzner’s Tracking Hackers much more.

In fact, even if you did not like Know
Your Enemy, you will probably be

impressed with the new book on honey-

pots and their use for tracking hackers.

The structure of the book is different

from Know Your Enemy: Spitzner begins

with his first honeypot penetration

experience and goes on to talk about all

aspects of honeypots. In-depth and

structured background on honeypot

technology is provided. Honeypots are

sorted by the level of interaction with

the attacker they are able to provide.

In addition, the book covers the business

benefits of using honeypots. By classify-

ing honeypots by their value in the areas

of prevention, detection, and response

54

(exactly as done in Honeynet Project

white papers), Spitzner analyzes honey-

pot technology’s contribution to an

overall security posture. He also

describes the differences between

research and production honeypots and

demonstrates the benefits of both for

various deployment scenarios.

A large part of the book is devoted to

particular honeypot solutions – “hon-

eyd” by Niels Provos, plus several com-

mercial honeypots – with detailed

explanation of how they work. For

example, there is a clear description of

ARP spoofing and how it is used by the

“honeyd” honeypot daemon. An inter-

esting chapter on “homegrown” honey-

pot solutions (such as the ones used to

capture popular worms of 2001) sheds

some light on the simplest honeypots

that can be built for specific purposes,

such as one to capture a popular attack

by means of a simple port listener. Use

of a UNIX chroot() jail environment for

honeypots is also analyzed.

Of course, a special chapter is devoted to

honeynets, Honeynet Project’s primary

weapon in the war against malicious

hackers. Generation II honeynet tech-

nology is introduced in the book. The

chapter not only lists honeynet deploy-

ment and maintenance suggestions but

also talks about the risks of honeynets.

Another great feature of the book is a

chapter on honeypot implementation

strategies and methods, such as using

NAT to forward traffic to a honeypot

and DMZ honeypot installation. The

information is then further demon-

strated using two full honeypot case

studies, from planning to operation.

What is even more important, maintain-

ing the honeypot architecture, is covered

in a separate chapter. Honeypots are a

challenge to run, mainly since no “lock it

down and maintain state” is possible.

One has to constantly build defenses and

book reviews

59October 2002 ;login:

as an artifact of some pre-historic process

that they shouldn’t bother themselves

with.

The schedule for elections is laid out in

the SAGE policy document; it was newly

amended this year for more flexibility.

The key policies summarized are: nomi-

nations are open for two months before

elections, a candidates forum is sched-

uled for LISA, elections take place a cou-

ple of weeks after LISA, eligibility to vote

is set based on the election date. Specific

to this year, the schedule is:

Nominations open: Sept. 1, 2002

Nominations close: Nov. 22, 2002

Candidates Forum: LISA, Nov.

7th, 8:00 p.m.

Eligibility Date: Nov. 22, 2002

Balloting opens: Dec. 2, 2002

Balloting closes: Dec. 15, 2002

Results announced: As soon as practical

following balloting

The mechanism for voting will be on-

line voting again this year. For those of

you who remember, two years ago was

our first attempt at on-line voting and it

wasn’t a resounding success. Operating

System and browser compatibility

requirements mired an alright system.

This year we are implementing a system

without those limitations. I will be

working with the creator of the on-line

balloting system to have it donated so

that election costs are kept at a mini-

mum.

The Nominating Committee this year is

being led by the estimable Cat Okita. Cat

will be assembling a committee in the

next couple of weeks (after I write this; it

should be together by publication) to

solicit and generate nominations. Email

with suggested nominations or com-

ments to that committee can be sent to

exec-nom-com@sage.org.

The SAGE Exec believes in an open elec-

tion process. So, in addition to the nom-

inating committee the official SAGE

policy document also specifies that any

five members of SAGE acting together

can nominate a candidate. These nomi-

nations should be submitted to the

SAGE secretary, Trey Harris, by sending

email to trey@sage.org.

Candidates will be able to address the

membership through SAGEwire, the

interactive portion of SAGEweb. Mem-

bers will be able to address questions for

candidates through SAGEwire forums

and see the responses in the same. Fol-

low-up comments or questions are

encouraged.

I am the chair of the election committee,

so any questions about what’s been in

here should be addressed to me at

andregg@sage.org. That said, don’t forget

to VOTE!

SAGE Elections

“Autumn approaches

in descending darkness

leading to LISA.

The year’s end

means the term’s end

and elections

are upon us.”

As LISA approaches this year, the end of

the term for the current SAGE Executive

Committee is upon us. As the Chair for

the 2002 Election Committee it is my

job to set the schedule for the elections,

make sure that a mechanism is in place

for them, and make sure that the Nomi-

nating Committee provides a suitable

slate of candidates. That said, I think my

real job is to make sure people get

involved, promote candidates, and

VOTE! From elections past most mem-

bers seem to see this last step, the voting,

news

●

SA

G
E

N
EW

S

SAGE ELECTIONS ●

SAGE STG Executive Committee
PRESIDENT:

David Parter parter@sage.org

VICE-PRESIDENT:

Geoff Halprin geoff@sage.org

SECRETARY:

Trey Harris trey@sage.org

TREASURER

Bryan C. Andregg andregg@sage.org

EXECUTIVES:

Tim Gassaway gassaway@sage.org

Gabriel Krabbe gabe@sage.org

Josh Simon jss@sage.org

SAGE membership includes USENIX member-

ship. SAGE members receive all USENIX mem-

ber benefits plus others exclusive to SAGE.

SAGE members save when registering for

USENIX conferences and conferences co-spon-

sored by SAGE.

SAGE publishes a series of practical booklets.

SAGE members receive a free copy of the latest

booklet when they join SAGE, and they receive

a 33% member discount on all SAGE booklets.

In addition SAGE members can freely access

the full texts of the booklets on the Web.

SAGE sponsors an in-depth annual survey of

sysadmin salaries collated with job responsibili-

ties. Results are available to members online.

by Bryan Andregg

Chair, SAGE 2002
Election Committee

andregg@sage.org

The SAGE Web site offers a members-only

Jobs-Offered and Positions-Sought Job Center.

SAGE sponsors members-only mailing lists. The

archive of the SAGE members list is available

on the Web for members only.

SAGE EXECUTIVE DIRECTOR
Rob Kolstad: kolstad@sage.org

SAGE MEMBERSHIP
office@sage.org

SAGE ONLINE SERVICES
list server: majordomo@sage.org

Web: http://www.sage.org/

http://SAGEwire.sage.org

http://SAGEweb.sage.org

http://www.sagecert.org

60

news

Vol. 27, No. 5 ;login:

USENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published six times a year, featur-

ing technical articles, system administration

articles, tips and techniques, practical

columns on security, Tcl, Perl, Java, and

operating systems, book and software

reviews, summaries of sessions at USENIX

conferences, and reports on various stan-

dards activities.

ACCESS TO ;login: online from October 1997

to last month: www.usenix.org/publications/

login/

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993:

www.usenix.org/publications/library/proceedings/

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

http://www.usenix.org/membership/

specialdisc.html for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

http://www.usenix.org/

membership/

OR CONTACT

office@usenix.org

Phone: 510 528 8649

The second (also relating to Bell Labs)

was that The C Programming Language
by Ritchie and Kernighan was to be pub-

lished by Prentice-Hall – at $9.95.

Dennis and Brian , if I’ve not said it

often enough, thank you very much.

Third, there was to be a meeting (in

May) in New York at Columbia Univer-

sity.

It’s worth noting that the May 1978

meeting at Columbia, chaired by Lou

Katz, was attended by 350 folks, by far

the largest meeting of UNIX users up to

then.

Oh, yes. The October 1987 issue of

;login: also carried an article by Charlie

Sauer et al. on “RT PC Distributed Ser-

vices: File System.” It really seems long

ago!

Finally, in October 1987, USENIX ran

two workshops: the Fourth Computer

Graphics Workshop in the Cambridge

(MA) Marriott (thanks, Tom Duff and,

again, Lou Katz); and the POSIX Porta-

bility Workshop in the Berkeley (CA)

Marina Marriott (thanks, Jim McGin-

ness and, especially, John Quarterman).

I was at both workshops. They were

exciting.

Twenty-five Years
Ago in ;login:

Yes. It was ;login: 25 years ago.

In October 1977 the big problems were:

being late with ;login:; back orders on

the third distribution tape; lack of con-

tributions for a fourth distribution.

The news was: the new Toronto software

release; “You are reminded that a new

Toronto release must be submitted even

if you had a previous release”; a one-day

West Coast meeting in January; and

“The membership in the Users’ Group

now exceeds 250.”

In November 1977 there were three

major announcements. The first was of

the death of Joseph F. Ossanna, the

author of NROFF/TROFF. (Joe had

given a paper at the May 1977 meeting

in Champaign-Urbana.) This was a

major loss to the field as a whole and to

Bell Labs in particular. (Ten years later,

in the October 1987 issue of ;login:, Jaap

Akkerhuis reviewed Emerson & Paulsell,

troff Typesetting for UNIX Systems. I still

use groff/troff.)

by Peter H. Salus

USENIX Historian

peter@usenix.org

USENIX SUPPORTING MEMBERS

Freshwater Software

Interhack Corporation

Lucent Technologies

Microsoft Research

Motorola Australia Software Centre

New Riders Publishing

OSDN

Sendmail, Inc.

Sun Microsystems, Inc.

Sybase, Inc.

Taos: The Sys Admin Company

UUNET Technologies, Inc.

Zimian

	motd
	apropos
	letters
	chalup
	nicholson
	mccluskey
	turoff
	flynt
	farrow
	haskins
	skvarcek
	carlini
	books
	SAGEnews
	usenixnews

