

2

Regrettably, human nature and our cul-
ture being what it is, we’re more likely to
observe reactions like:

“Rats, more stupid managers.”
“Oh no, now I’ll be even more of a
cog in a machine.”

“These people have always been
known to be bozos.”

Now why is that?

I am absolutely sure that some of these
sorts of negative reactions are cultural –
both organizational and occupational.
Organizationally, they were de rigeur in
the past and are perpetuated as each new
employee acquires the company or
career culture. In the occupational con-
text, I know that as a trained engineer I
can spot problems a mile away. Unfortu-
nately, I have as much trouble as anyone
convincing management that the prob-
lems truly exist and that appropriate
resources (funding) should be devoted
to attacking them. So, I tend to react
negatively when I don’t think an idea’s
creator (or even announcer) has thought
through the “big picture.”

Is negativity just human nature? Is it a
rational learned response/reaction to a
long history of missed expectations in
the engineering field?

Whatever it is, it is truly a pain if one
believes that “vision” is important. Con-
sider: “Let’s have a conference on XXX.”
“Nah, no one will come.” That sounds
contrived, I know. Here’s a real example
I received an email last week from a 20
year old intern at a Large Computer
Research Lab: He says in a meeting:
“Let’s go ahead and sort the ten PC
prices in our program.” They respond:
“No, the database has optimized sorting
algorithms. We don’t want to rewrite the
database. Besides, it will take a long time
to sort the numbers.”

Of course, sorting ten numbers is a sub-
millisecond task. Amusingly, the note to
me was entitled “I am working with

motd
Making Your
Partner Be Right

Over lunch at various conferences, my
friend Dan Klein teaches me about
“improv,” the art of improvisational
comedy. He tells me that one of the pri-
mary rules of improv is “Make your
partner right.” In the context of improv,
this means that you accept your part-
ner’s lead and, hopefully in some con-
structive way, you amplify it. Imagine
your partner suggesting that rain is
imminent. Your response might be to
open an (imaginary?) umbrella. This
“makes your partner right.”

I raise this topic because I think our
industry (both the producers and
administrators of software) exhibits very
little of this “spirit of cooperation” that
is demanded in the improv setting.

Consider this scenario: Your manager
comes by to visit or invites you to a
meeting. In the ensuing communication,
it is learned that your institution is soon
to merge with another institution. Ide-
ally, this might lead to thoughts like:

“Oh boy, stable paychecks.”
“Goodie; more bright people with
whom to interact.”

“Fabulous! Finally we will have suffi-
cient resources to tackle the really
big problems.”

Vol. 26, No. 6 ;login:

by Rob Kolstad

Dr. Rob Kolstad has
long served as editor of
;login:. He is also head
coach of the USENIX-
sponsored USA Com-
puting Olympiad.

kolstad@usenix.org

idiots.” As it turns out, he was, in fact,
working with idiots, as near as I can fig-
ure.

Of course, those idiots had the same sort
of cultural markers that we all seem to
exhibit from time to time: “Let’s not do
it a new way, we know and understand
the both the idiosyncrasies and com-
plexities of the old way(s).” Sometimes,
this is a valid response. In my friend’s
case, I think his mentors were a bit mis-
informed or inexperienced. (Another
paragraph he wrote me notes that pro-
grams they write are supposed to avoid
the use of constructors because “. . . it
says right here in the textbook that con-
structors are slow.”)

So I have a proposal for all of us. One of
these days when the workload is no
more stressful than usual and you feel
like you have a slight excess of “good
energy,” give it a try. For that day, see if
“making your partner righ” is a reason-
able strategy. Support people’s ideas
with your own constructive suggestions.
Encourage them to apply themselves
most fully in their visions and ideas. See
if you can help them with your own
style and expertise.

Let me know how it goes – I’ll publish
the most interesting responses.

3October 2001 ;login:

Haphazard
Heroics

System administrators often lament that
when they’re doing a good job, no one
knows it. As such, it’s hard to get recog-
nition in the workplace or raises at
review time. This non-recognition situa-
tion is disturbing, but lately I’ve wit-
nessed an opposite trend in the
workplace, which is equally disturbing.
Over and over again, I see system
administrators succumb to the pressure
to over-commit or under-plan, landing
themselves and their co-workers in situ-
ations that require heroic efforts to dig
themselves out. I think this can and
should be avoided.

Over-committing doesn’t help anyone. It
may feel better in the short run to give a
“can do” answer to the management, but
if it’s unrealistic, it’s better to say so up
front. Too often IT managers fall into
this trap. Recently, a friend witnessed
this dilemma. The company was out-
sourcing a mission critical application,
but had become unhappy with the situa-
tion. A dead-of-the night scenario was
concocted in which the company would
request a current tape of the data as an
“upper-management disaster prepared-
ness drill” so as not to tip off the out-
sourcing company. Next, in a mere 48
hours, the IT group would bring up new
RAID servers, install database software,
and restore the tapes. If you’re not gasp-

apropos
the afternoon of one such upgrade
involving migration to two new redun-
dant mail gateways, the IT manager sug-
gested the site also migrate the DNS
servers in house: IP address change and
all. “What about notifying the NIC?” I
squealed in terror, but there was no
stopping her. She argued that we’d co-
locate the inconvenience and come out
ahead for doing so. Not the case. The
mail successfully rolled over to the
awaiting servers with no problems.
Then, we brought up the DNS servers
in-house easily enough too. But, of
course, the NIC changes lagged pre-
dictably behind, and we had to undo
and redo the cutover again. I felt there
was no excuse for such a mid-course
change of plans, but she hailed herself as
a hero, and I wondered how anyone
could agree.

There’s also the appearance of heroics by
the chronic all-nighters. These are the
folks who wander into the office mid
afternoon on a daily basis, or skip a few
days entirely and then come in for sev-
eral days running. They’re frequently the
topic of water cooler conversations
about their seeming dedication to the
job; putting fire fighting above sleeping
on a mattress, eating self-cooked meals,
or taking a shower at home. But when I
do the math, I’m not sure they’re any
more dedicated, on a straight hour by
hour basis, than the guy that gets there
fed, clean, and rested at 8 a.m. each day
and spends all of his efforts on-site
attending to the machines and network.
Too often, the quality of work which
comes out of the all-night heroes reflect
the lack of sleep and lack of planning.

Fire fighting is part of our job. Hardware
fails, systems wedge, and occasionally,
there’s a virus or two let loose on the
network. Going into the blazes when it’s
necessary is a noble and reasonable
thing to do. However, over committing,
under planning, or creating your own
crisis is not a good approach, and fight-
ing those kinds of fires makes for hapless
heroes at best.

by Tina
Darmohray

Tina Darmohray, co-
editor of ;login:, is a
member of Stanford
University's Network
Security Team.She was a
founding member of
SAGE.

tmd@usenix.org

ED
IT

O
RI

A
LS

ing yet, let me add that the RAID servers
hadn’t been procured yet!

Of course, this became a fire drill for all
involved. Just getting the machines
onsite and running was a formidable
task. Bringing them up taxed the exist-
ing machine room cooling capacity, so
for days, the doors were propped open,
the door alarm was temporarily dis-
armed, fans were brought in, and the IT
group anxiously watched as the new
machines teetered on the brink of over-
heating until the AC guys could get out
and rework the system.

Meanwhile, contractors were brought in
to do shift work to get the database up
and the tapes restored. The round-the-
clock shifts were uncomfortable in the
over-heated machine room, but the
oppressive heat paled in comparison to
the pressure-cooker environment the
entire IT group was working in, now
that the entire company’s productivity
hinged on getting these machines up.

In the end, they didn’t make the dead-
line. It eventually took about two weeks
to get everything working, which would
have probably been a reasonable “can
do” estimate in the first place. In my
book, the inability to size the project was
a failure on the part of the IT manager,
but she proclaimed victory via heroics
instead. Somehow unrealistically sizing
the job up-front was overlooked, and
instead, pulling the all-nighters, and hir-
ing contractors to do the same, was por-
trayed as “going above and beyond” to
get the job done.

Often, unrealistic demands come down
from above, and it’s hard to say no to
them. But some folks do it to them-
selves! Email upgrades are always fertile
ground for such problems. Email is typi-
cally the most visible computing service,
which means that email upgrades are
prime candidates for maximum plan-
ning and minimum upheaval. Yet email
upgrades go awry, often due to the folks
doing the upgrading! Midway through

Vol. 26, No. 6 ;login:

THE COST OF GOING TO

CONFERENCES

from Art Mulder
amulder@irus.rri.ca

Dan Geer had an interesting column in
the July 2001 issue of ;login:.

I completely agree with his thoughts
about pursuing excellence in your work,
learning as much as you can, working
hard. I also, like Dan, have found the
USENIX association with it’s publica-
tions and conferences, to be a great
source for learning and networking. I’m
already looking forward to attending the
LISA conference in December.

Yet I was struck by his comment: “For
much of my career, I have attended
USENIX on my own nickel . . .”

My initial reaction was that I wasn’t sure
if this was realistic or even possible for
most people. However, Dan goes on to
say “the pain was more than compen-
sated by the gain.” I can’t really argue
with that, it’s one person’s opinion after
all. Affordability is a judgement call also
– once we decide something is impor-
tant, we can usually find a way to afford
it.

Still, I thought it would be a worthwhile
exercise to do the math here, and share
the results with you. Let’s just see what
Dan is suggesting here . . . (I’ve detailed
my calculations below). I came up with a
cost of approximately US$1650 for
someone to attend the LISA conference
this December. (Or about $2500 in
Canadian funds, for someone like
myself.) I find that to be a pretty steep
price to pay.

Furthermore, I have to assume that if
I’m paying for it myself, then it’s also on
my own time, so that’s four days out of
my annual vacation.

So, was Dan writing in his column in is
official capacity as president of the
USENIX association? Can we conclude

that it is the official policy of the
USENIX board that their conferences
should be affordable enough for us to
pay out of our own pockets? (OK maybe
I’m being a bit facetious here)

I checked the 2000 USENIX salary sur-
vey, and if I read it correctly, the major-
ity of USENIX members receive 3 or
more days of training per year, paid by
their company. Hopefully this is not an
issue for most of us. I would be curious
though to know specifically how many
people do pay out of their own pocket to
attend the USENIX conferences. Perhaps
a more specific question on next years
salary survey?

So what about myself, would I be willing
to pay for this most excellent conference
out of my own pocket? I think I am rea-
sonably well paid, and I think I get a big
benefit from attending, but 4 days out of
my personal vacation time, plus $2500
out of my family budget? Sorry, No.

I think I can say in conclusion that I’m
glad that my employer has a travel
budget and sees the value of conferences
for its employees.

My Calculations:

$120 – USENIX membership fee, might
as well include it, as we’ll need to pay it
sometime during the year.
$510 – LISA technical sessions fee (Wed-
Fri, Dec 5–7, 2001) (NOTE: adding a
one-day tutorial would nearly double
this)
$374 – hotel costs for Tue. – Sat. evening
(The travelocity web site gives the con-
ference hotel cost to be $747 incl. taxes)
assuming that you share the room with
one other person and that you stay in
the conference hotel (which USENIX
requests us to do since they would incur
substantial penalties if they did not fill
up the block of rooms arranged in their
contracts. I further assume that this pre-
vents them from informing us of
cheaper hotels in the vicinity).

letters to the editor
EDITORIAL STAFF

EDITORS:
Tina Darmohray tmd@usenix.org

Rob Kolstad kolstad@usenix.org

STANDARDS REPORT EDITOR:
David Blackwood dave@usenix.org

MANAGING EDITOR:
Alain Hénon ah@usenix.org

COPY EDITOR:
Steve Gilmartin

TYPESETTER:
Festina Lente

PROOFREADER:
Lesley Kay

MEMBERSHIP, PUBLICATIONS,

AND CONFERENCES
USENIX Association

2560 Ninth Street, Suite 215

Berkeley, CA 94710

Phone: 510 528 8649

FAX: 510 548 5738

Email: office@usenix.org

login@usenix.org

conference@usenix.org

WWW: http://www.usenix.org

4

I also assume that the average attendee
will be flying in, and will, therefore,
require a hotel for Tuesday-Saturday
evening. (It had better be the majority, if
this truly is a international conference)
Note this requires at least 4 days off
from work. (If you only earn two weeks
of vacation, this is virtually 50% of your
vacation allotment, if three weeks, this is
still 25-30%)
$150 - food 6 days (Tue-Sun @ $25/day)
$100 - incidentals (taxi, bus, long dis-
tance calls, fudge factor)
$400 - Average flight cost: The traveloc-
ity Web site gave these flight costs – as of
July 2001: Chi-San Diego = Average
$330, NY-San Diego = avg $400,
Denver-San Diego = avg $440, Atlanta-
San Diego = avg $393. And the Air
Canada Web site gave these prices :
Toronto-San Diego = $CA 840
(US$540) Vancouver-San Diego =
$CA 700 (US$ 455)

$1654 – Total US Dollars
($2544 Canadian Funds)

Dan Geer comments:

Of course, only a tiny percentage of
USENIX attendees pay their own fees;
most are covered by their employers. I
think that education really is less expen-
sive than ignorance and wanted to
emphasize that thought.

AN EXCHANGE ON CHARITY

from Anne Bennett
anne@alcor.concordia.ca
I just read Andrew Hume’s note “What’s
Up with Charity” in the June 2001
;login:. I was pleased to see USENIX get-
ting involved in providing and setting
up computer equipment for poor peo-
ple, even though so far the efforts (or at
least those he reported) have been cen-
tered in the States.

It’s easy for many of us to forget that
there is very much a “digital divide”
between the rich and the poor (this is
true not only within first world coun-

5October 2001 ;login:

tries such as the USA and Canada, but
even more so on a planetary scale). Yet,
we computer professionals are very well
placed to understand the huge negative
effect of not having access to the net on
someone’s ability to function in society
– and it seems a particularly appropriate
form of charity for us to try to remedy
this problem, even in small ways. I’d be
very interested in seeing the results of
those projects published, so that others
who also want to help can learn from
our successes and failures.

I’d like to see this type of project con-
tinue to be funded by USENIX.

Dan Geer Replies:

Thank you for your comments.

Might I ask you in return if you think it
better to overcharge for the services
USENIX offers and then to put that
money to unrelated charitable work or
to undercharge so as to permit any char-
ity to be a decision left to the individual
member as to what charities they wish to
support and how, a decision then
unbuffered by the personal whims of a
simple majority of the USENIX board?
This money is not free money – it is
your money and when any middle man,
USENIX being no exception, handles
monies said monies shrink. This is true
of taxation; it is true of the United Way;
it is an economic reality.

You doubtless did not wish to enter
debate, and you are clearly welcome to
demur further conversation. Your note is
one of a tiny few received in any case,
which thus makes it special.

and Anne Bennett replies:

It’s true that I’m not really yearning to
debate this at length, but your points are
relevant, and they are certainly issues
that I have considered. In the general
case, I’d agree with you – for example, if
USENIX proposed donating to some
random charity, even one I agree with, I

would not be in favor, for exactly the
reasons you raise. In fact, despite my
support for the EFF’s work, for example,
I’m not particularly in favor of USENIX
donating funds to it (though I would
not jump up and down to prevent it,
either). Supporting that cause with
expertise in our area is another matter.

However, the examples given by Andrew
Hume seemed to me quite different, in
this respect: they address needs which
the “general charitable community” is
not really yet equipped to handle. It is
not only difficult to find and to evaluate
the expertise needed to “put the poor on
the net,” but more importantly I think,
the need to do this is not yet properly
recognized by the general population.
This is an area in which we computing
professionals are in the best position to
kick-start the action; in fact, as fans of
UNIX and as proponents of open-
source software (which I suspect a good
number of us are), we would do well to
seize the opportunity to show that open-
source operating systems on older
machines can serve such needs at a frac-
tion of the cost of commercial systems.

In any case, whether or not we are able
to use this kind of charitable opportu-
nity to advance the cause of our operat-
ing systems of choice, it still seems to me
that, until the general population real-
izes that access to the Internet is about
to rival access to affordable education
with respect to each individual’s full
functioning in society (or until the digi-
tal divide disappears, hah!), it is very
appropriate for us of USENIX to get
involved in solving this problem.

So yes, I’d like to be overcharged for my
USENIX membership (which to me is
not only a question of “member serv-
ices”) in order to permit us to support
charitable work which I consider far
from unrelated to our goals. The “inno-
vation and research that works” which
we are supposed to be fostering has to
“work” in society, not just in the lab.

letters to the editor

LE
TT

ER
S

35October 2001 ;login:

●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

Part 7: Diagnosis – A Projection of LISA
to Come?
And now remains
That we find out the cause of this effect
Or rather say, the cause of this defect,
For this effect defective comes by cause.

(Hamlet, 2.2.100–4)

Earlier in the series, I talked about how computer systems can be under-

stood in a framework which befits any complex, dynamical system, by

viewing changes as signals (i.e., processes) which compete for dominance in

complex environments of many players. I talked about how order has a

price and how disorder or uncertainty inevitably grows, unless it can be

held in check by an idealistic, ordering “potential.” I discussed how human

attitudes complicate matters by fixing expectations, demanding policy,

over-simplifying evidence and thus losing important information, by com-

placency, and even by irrational psycho-social instinct.

One might get the impression from all of this that the situation for understanding and
stabilizing computer systems is rather hopeless, that system administration is really a
“soft” subject with no hope of rational analysis. My reason for embarking upon this
series is that I believe that this is too pessimistic a view. Looking around at the world
we live in, there is astonishing order, in spite of the odds. It is my suspicion that the
main limitation in our understanding, is not the world of computers, but rather our
vision of them.

How then can we go beyond bemoaning our troubles and come to firm conclusions
about improving that understanding? Aiming to do science, rather than guesswork, we
need to formalize our methods and investigations and erect a framework for study
which is both criticizable and refinable – in which it is possible to know, within quan-
tifiable tolerances. Fortunately, the ideas in the previous chapters of this series hold the
answers.

The most fundamental and profound of all principles in science is the principle of
causality:

For every effect, there is a cause which precedes it.

(See my book Principles of Network and System Administration, published by J. Wiley &
Sons, for a further discussion of this.) Causality, framed as information theory, was the
thrust of Part 5. It might seem trivial, even obvious, but this foundation of all change
is quickly forgotten, even by scientists and engineers, when the going gets tough. As I
noted in part 5, causal influence is a mapping from events which occurred in the past
to events which are occurring now. It is an N:M mapping, i.e., a many-to-many map-
ping. Each observable phenomenon stems, in general, from several causes, and, con-
versely, each causal factor leads to many consequences. This is what makes matters

needles in the
craystack: when
machines get sick

by Mark Burgess

Mark is an associate
professor at Oslo
College and is the
program chair for
LISA 2001.

Mark.Burgess@iu.hio.no

Vol. 26, No. 6 ;login:

hard to unravel. When we make observations of the present, it is impossible to say
with certainty what the cause was. The best we can do is to see whether statistical evi-
dence supports a model or hypothesis. So the central problem becomes: how do we
formulate such a model?

We can study systems empirically and obtain clues, but empirical studies have many
shortcomings. What is needed is a simplification. The aim of science, after all, is to
provide suitably idealized descriptions of phenomena, so that they may be analyzed and
verified to within the limits of their assumptions. Science is not about complete
descriptions, with every detail pinned down. The latter would be impossible, since the
level of detail in the perturbing environment is essentially infinite.

What about the human aspect? Sometimes colleagues suggest to me that one cannot
apply science to problems like human management. I find this astonishing. Manage-
ment is nothing more than the problem of scheduling of resources in space and time,
given a somewhat fickle environment. Although science will not have the exact
answers, because it is always about simplification, the idea that one would rather revert
to witchcraft than surrender a problem for analysis is rather frightening. Either such
colleagues have no faith in science (in which case they are just bureaucrats going
through some learned motions, and will never find anything new), or they are blink-
ered into believing that knowledge is devoid of principles which can be applied
beyond an immediate context.

Clearly, computer science has a lot to say about how data structures and scheduling
algorithms can be applied. If they can be applied to computer programs, they can be
applied to humans. The results will not be exactly the same, nor exactly predictable,
but it is possible to make the study and learn something.

Security is an excellent demonstration of causal trees. Every security issue essentially
boils down to a problem of whom or what we are willing to trust. Every security prob-
lem can be drawn as a causal tree. At the top is the thing we want to secure, it splits
into everything that thing depends on, then in turn the dependencies of each of those
elements, and when we decide to stop this (at some arbitrary level of recursion) we
end up with a number of possible sources of security breaches. Those are the things we
are placing our trust in. If we don’t like some of them, they can be replaced by other
things, by putting some technology in the way, making another link, and moving the
trust. But, however we look at it, we cannot escape this causal dependency. Security
hangs on the threads of trust.

Cause-Signal-Effect and Projective Digitization
To sum up the series so far, science can be understood as a causal analysis. Such an
analysis needs a motivation, or a direction which can be used to trace the tangled skein
from cause to each effect. This is the role of a model. Without it, one is immediately
confounded by multiplicity: many causes have many consequences. We have to be able
to separate the interesting signals from the background noise.

If you have been following the series, you will now realize that we know something
about this problem. It is just information theory: the theory of signals. All causal phe-
nomena can be discussed in terms of the theory of communication, because the arrow
of causal development can always be mapped onto the basic idea of a signal from past
to present, or cause to effect. Some signals are strong and obvious, while others are
down there amidst the noise.

Every security issue

essentially boils down to a

problem of whom or what we

are willing to trust

36

Causal analysis of a system’s behavior is also the skill of diagnostics: it is a systematic
and logical imitation of the evolutionary probing which complex environments exert
on systems. While the involuntary complexity of environment alone will get you sick, a
doctor has to simulate complexity systematically by prodding and asking: tell me when
it hurts. Tracing backwards from effect to cause is only possible if the mapping is one-
to-one, and the information about changes is preserved. One-to-one mappings only
occur in strictly isolated systems, with stringent, reversible protocols. Such things are
rare, as it happens, and usually only possible for infinitesimal changes, because larger
changes inevitably convolute with the environment.

Perhaps you are still of the belief that the relationship between cause and effect is a
simple one, that we can just decide how systems should be, introduce “management,”
and bingo! If so, it is already clear that you are not a perfect manager, but I ask: are you
a perfect typist? Consider your interaction with the keyboard as an input device. The
human computer interaction is fraught with much error. The interface itself is digital.
When we hit the space bar, we do so with information about exactly where we hit it,
how hard, how fast, and so on. That might be affected by muscle spasms, distractions,
or (in the case of my laptop) random electromagnetic spikes. The computer digitizes
this into the coarse classification space or no space. It is a many-to-one map. Informa-
tion is lost and cannot be recovered.

Now suppose we try to hit the “M” key: now there is a finite chance that we might
actually hit the space bar, or the “N” key. Again, the reason for this is lost to the com-
puter, but the result is not: it is neatly classified and recorded, giving a precise yet
wrong outcome. The effect is said to be projected into the space of outcomes, which is
digital. Determining the cause of a bad key hit is so difficult that most would call it a
waste of time to try, but it happens quite regularly, because between the brain and the
CPU, there is a bunch of environmental contamination: what Shannon would have
called a noisy channel.

An almost identical case of projective causality is found in the hierarchical form of
evolution. Phylogenetic trees are branchings of species, which record the causal influ-
ence of an environment, projected onto digital genes. Although the tree provides a
simple relationship between previous and current, it is a projective description, like a
string of typed characters, full of errors. It has forgotten all of the environmental
information which led to the changes. It cannot be “rolled back.”

Digitization leads to a projective representation, like the shadow of an object on a wall,
the impression left on the keyboard, or on system resources. Part of the information is
dropped, and only an impression of the truth is left as a clue to what really happened.

Causal Trees with Imperfect Information
Computer scientists have acyclic, directed graphs growing in their gardens. That is the
graph-theoretical name for a tree. Tree structures abound in science of all kinds,
because they are direct representations of causality. In an ideal microscopic description
of a system, we would know every detail of every change and be able to trace each one
from cause to effect in a huge complicated tree. In order to draw such a tree, we would
have to have perfect information about the changes in the system.

Because data are projected onto a finite, digital map of resources, some of the causal
branches which should be there are missing, lumped together. This means that there is
hidden information in the projective paths. If temperature of the machine room could

37October 2001 ;login:

The human computer

interaction is fraught with

much error ●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

Vol. 26, No. 6 ;login:

affect the results of transactions, then that information would also have to be meas-
ured and recorded, to get the full picture; if stray cosmic rays could affect input, the
results of transactions (as they do on my laptop’s electrostatic mouse), then they
would also have to be catalogued. Since these things are not recorded in the workings
of the machine, a probabilistic element enters into the projective result. Perfect infor-
mation is stifled by projection. Some administrators try to achieve it with auditing, but
even the molasses of information in full system accounting are never complete,
because nothing on the system can record what motivates users to do what they do.

When addressing complexity, one does not normally pretend that exact results are
possible; rather, one tries to model probable outcomes of the system. Such an analysis
must have “hidden variables,” which represent what is not known about the system.
The best one can then do is to look for likely or possible outcomes using a causal tree
analysis.

One kind of analysis is “risk analysis.” Risk analyses are common in a variety of disci-
plines and go by many names (see Rob Apthorpe’s paper at LISA 2001 for an applica-
tion of the method to system administration). Such analyses usually attempt to
quantify the different causal pathways in terms of some idealized reward called “pay-
off.” Risk can be minimized, profits can be maximized, “uptime” can be maximized,
and so forth. How the payoff is defined depends on what one is interested in achiev-
ing. It is essentially a matter of policy.

Framed as a principle for minimizing risk or maximizing payoff, the optimization
problem is one of extremizing a parameterized function. This is something which is
well known in the sciences: the principle of minimum risk, the principle of least
action, Fermat’s principle, the minimax principle. All of these are variational methods
looking to optimize some criterion. It is essentially a search-algorithm for probing the
parameter space of possibilities for a desirable property.

The properties one might hope to maximize or minimize represent desirable or unde-
sirable pathways from cause to effect. Risk, productivity, user satisfaction, return on
investment, etc., are all abstract qualities which are baked into the causal pathways
with probabilities that arise from the hidden variables. In contrast to many other areas
of analysis, such as pure economics, artificial intelligence decision-making, human
issues like customer satisfaction can play a role in system administration. Ideally, it
would be possible to eliminate such subjectivities, but users have an irrational insis-
tence on their own subjective wishes. Nothing new there: we are basically concerned
with ourselves, not the abstract vagaries of “the system.”

States and Models of Change
Our aim is to model how computer systems change by traversing the pathways of a
projective causal tree, i.e., we are looking for their dynamical properties, projected
onto the set of variables and resources which pertain to the interaction with users.
Changes can occur in a machine at several levels; the smallest, most primitive changes
(executed instructions, read/write operations, etc.) are often called microscopic and
happen all the time, over very short intervals. Long-term changes (amount of free
memory, level of activity) are called macroscopic, because they represent the cumula-
tive effect of many microscopic transactions. Their changes are average changes, and
these happen more gradually since there is some reinforcement and some cancellation
of the microscopic changes over time.

Human issues like customer

satisfaction can play a role in

system administration.

Ideally, it would be possible

to eliminate such

subjectivities, but users have

an irrational insistence on

their own subjective wishes

38

What variables characterize the system? Are they functions of time, continuous
(smooth) averages or discrete (digital) measurements? Software metrics, such as num-
bers of processes, numbers of conversations, rate of packets per second, amount of free
memory all characterize the resource usage of the system, and many more. These
reflect changes taking place, but clearly they do not record why, so there must be hid-
den variables.

One can choose to examine these over intervals of time (micro or milliseconds) during
which they change only slightly, or over longer periods (minutes to weeks) which more
closely reflect the activity of external influences such as user behavior. In order to build
a model, and find answers, we need to compare values at different times. Sometimes it
makes more sense to compare changes to the system with a corresponding value meas-
ured a few moments before, and other times it will make more sense to compare to a
value from a similar time one or more days or weeks ago. As we shall see below, the
working week plays an important role in modeling.

A useful, if somewhat overused notion is that of state. A microstate is a set of values
which characterizes the system at some moment. For instance, the simplest dynamical
systems, studied in physics are particles which fly around. Particles are characterized
by variables such as their mass, their charge, their position and their velocity. This set
forms a state of a microscopic element of the system, or microstate. Once we put
together more complex, composite systems, we can talk about emergent properties
also as describing macrostate: for instance, temperature, pressure, roughness, viscosity,
etc.

Computer systems are a bit like this; they have primitive things going on, such as
atomic operations: read, write, add, locate. At a higher level, we also combine these
actions into programs, processes and other structures, which have emergent properties
like “busy,”“idle,”“thrashing,” and so on. At the microscopic level, the state of a system
can be thought of as the values of a long line of bits and bit operations. At a higher
level, one can talk about numbers of processes, user sessions, protocol states, which are
coded into the bits at a higher level.

A characteristic of complexity in a system is that there is no unique way of describing
it. Any convenient modeling projection will do, but there is a trade-off. The more
detailed one gets, the more information one sees; but information is noise, and mean-
ing is difficult to find. Alternatively, one can step back and perform the half-closed-eye
test: there is less information, but the structure is seen more clearly.

What pays, in general, is an approach in terms of the most convenient measurable
parameters over the time-scale which is germane to the problem. For system adminis-
trators, the variables and time-scales generally occupy the level of the operating sys-
tem’s interaction with users (processes, files, over minutes or weeks). What we are
looking for, then, is a description which captures changes of state variables at some
arbitrary level.

Markov Chain
The essence of describing such changes in state, is the Markov chain, or Nth-order
Markov model, and its more realistic extension, the “hidden Markov model.”

Put succinctly, a Markov model is a model in which the state of the system after the
next time step depends only on the state of the system now. It is literally a sequence of
links in a chain. For example, a traffic light has this property: when the light is red, you

39October 2001 ;login:

A characteristic of complexity

in a system is that there is no

unique way of describing it ●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

Vol. 26, No. 6 ;login:

know the next state will be green (in the US; red and amber in parts of Europe). When
it is green, you know the next state will be amber. When it is amber, you know the next
state will be red, and so on. One does not have to remember the entire history of what
happened to the traffic light in order to understand what it is going to do next.
Markov models are the simplest kinds of model, but surprisingly they describe many
situations fairly well. One finds simple Markov models in computer science, but, in
this form, they are usually trivial.

Traffic lights and other Markov processes are sometimes said to be in a steady-state,
because their behavior is predictable for all time. It doesn’t vary. Either it is constant,
or it goes ‘round and ‘round in a limit cycle. Alas, not many problems are really quite so
simple. Nth-order Markov models are models where the next transition to a new state
is governed by the last N states of the system. Such models are sometimes useful for
parsing simple grammars but are not very useful for understanding anything as com-
plex as a computer system. A Markov model can be represented simply as a transition
function, which is a list of now-states and next-states.

Real-world problems are too difficult to solve with this kind of approach. Why?
Because the level at which Markov models could be applied is usually so low that the
amount of detail would be overwhelming, and therefore simply noise. Instead, one
purposely hides some of the data, using the half-closed-eye method, and by making
the fundamental separation into system plus environment.

Billiards is a game which is often used to illustrate problems in dynamics. It cannot
easily be represented as a Markov model, because the positions of the other balls in
relationship to the environment of the table influence the outcome of the next move.
In other words, the billiards “system” has a memory of what went on before, and the
shape of the table play a role in determining what can or will transpire next. Moreover,
there is an external entity in the game: the player. The player brings additional infor-
mation to bear, which is not on display on the table. Chess is another example, which
is digital, like a computer. The state of a game of chess is the position of all of the
pieces on the board at a given time. The next move is determined not only by the posi-
tions of all of the pieces on the board, but also by the choice of the player. The next
move has not one but several possibilities, and the extra information which decides
which possible it has chosen is hidden from view. The transition diagram for chess is
not one-to-one; there are many possible moves at each stage. The game eventually
converges to a checkmate when the game runs into a part of its state-space which is a
dead end (checkmate) or a limit cycle (stalemate).

When a system has fairly regular behavior and is affected by hidden variables, it is not
completely predictable. A useful approach to understanding it is to look at its average
or expected behavior. The average behavior is defined by the mean value of the state of
the system over an ensemble of equivalent situations. Each equivalent observation of
the system brings new values but, over time, these yield approximately the same result,
up to smaller corrections. One says that the system exhibits microscopic fluctuations
about its macroscopic average value. The separation

signal = average + fluctuation

is deeply connected to the fundamental split:

world = system + environment

When a system has fairly

regular behavior and is

affected by hidden variables,

it is not completely

predictable

40

This is not so much a fundamental property of nature, as it is a management view-
point. This is the way the human cognitive apparatus analyzes: what we expect versus
what we see.

Models which describe state transitions with imperfect information are called hidden
Markov models. There are two ways to handle these models. One is to actually model
the external information; the other is to create a stochastic model, i.e., one which only
predicts the probability that a transition between states will be made. These models
will form the substance of models of computers as dynamical systems (see papers by
Apthorpe and Haugerud at LISA 2001), since computers have external players called
users. Hidden Markov models are characterized by probabilistic transition functions,
with hidden variables H, e.g.,

(s1|s2) = P12(H)

denoting a transition from a microstate s1 to a microstate s2, with probability P12(H),
which depends on the hidden variables. The approach has been used to build quite
convincing simulations and mathematical models of the behavior of computers in
projective representations (numbers of processes, numbers of users, etc). Given such
a model, with predictive power, one knows enough about the system in order to
characterize its long-term behavior in terms of what is predictable and what is unpre-
dictable. This leads to great simplification and time saving when looking for anom-
alous behavior.

Boundary Conditions
Every manageable dynamical system makes contact with its environment at some time
or place, either at the outset of its evolution or during the act of measurement, at an
edge, or at some boundary or interface. The environment leaves its projected imprint
on the system: incomplete information about its state. The effect of the environment is
usually strong, because the environment is bigger and more pervasive than most sys-
tems.

Computers touch base with users via the keyboard and via the network. These chan-
nels link computers to a reservoir of thoughts and activity which have a direct impact
on what computers do. It would be bizarre indeed if it were not possible to see these
effects reflected in the state of the system. Indeed,
the working week is easily identified in the patterns
of resource usage. It shows a fundamental periodic-
ity in computer behavior, which has its origin in the
approximately cyclic behavior of “the average user.”

One way to take account of the approximate perio-
dicity is to formulate computer activity as a process
on a circular topology (see Figure 1). By winding the
time parameter around a cylinder of one-week cir-
cumference, and then squashing the resulting spiral
into a circle, one ends up with many recorded values
for the time-series variables at each point, a bit like
old recording weather barometers. By averaging the
many values at each time of the week, one then sees
average behavior in relation to the working week.
This is a more useful description than an average

41October 2001 ;login:

●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

Figure 1

Vol. 26, No. 6 ;login:

over all times, since it contains real information about the changes going on in the
environment.

By using stochastic methods or Monte Carlo simulation techniques, on a pseudo-
periodic background, it is possible to put together a simple model which reproduces
the main features of computer behavior (see the work at http://www.iu.hio.no/
SystemAdmin/scisa.html). This allows one to say with quantifiable (calculable) cer-
tainty when a computer is behaving in one way or another. Any anomalies which are
then observed must be due to effects which were not considered by the model and can
be singled out as worthy of attention.

We can say two things, at the macroscopic level, about users’ effect on computers:

■ It is pseudo-periodic (driven by the working week).
■ It is stochastic.

At the simplest level of approximation, one could say that the behavior of users was a
sinusoidal, diurnal rhythm. This is not a very good approximation, but it is better than
assuming that user behavior is constant, as many intrusion detection systems do. With
further refinement, one can reproduce the graphs of user behavior displayed (see
Haugerud and Straumsnes’ paper at LISA 2001, based on our earlier studies), in order
to discover how the actual pattern arises, whether it is coincidence or predictable.
These patterns are the most basic “laws of nature” in system administration.

I refer to this kind of model as a type I model of a computing system. A type I model is
a description of the state of a computer, over time, subject to the external behavior of
users. Such a model might have many interesting features: steady-state behavior, dead
ends (crashes, deadlocks etc.), and even chaos. I have spent some years working on the
separation of system and environment in approximately steady systems (in physics as
well as computers) and have a detailed stochastic model in the limit of large numbers
of data, which identifies the important scaling properties of the system. To the trained
eye, the model is very simple, but it fits the data surprisingly well.

The importance of such a model is in understanding how the structure of cause relates
to the shape of effect in real, observed behavior. While we have barely scratched the
surface in our work at Oslo, the results promise to explain many features of observed
behavior and can be fed back into actual methodologies and tools such as cfengine.
Only when armed with such knowledge does it makes sense to speak of anomaly
detection.

Policy Constraints: Type II Models
Type I models are likely to be important as a general guide to understanding how
cause and effect are related in computers, but the success of that approach is depen-
dant on how well one can represent the behavior of users, who represent the largest
perturbation. It is not just about projecting the world onto a model, it is also about
how many nuances the model should cover. Type I models treat users as a relatively
formless gas of influence in which no overriding, strong signals dominate. This is a
beginning, but it will not be sufficient to deal with real systems, in which a single user
can make his or her influence felt by all the rest.

So how shall we know the shape of users’ behavior? What happens when users do not
obey simple rules, i.e., when they are not a formless gas, but an obelisk: a needle in the
Craystack? Is it still possible to gauge their effect on the system? The answer is yes,

A type I model is a

description of the state of a

computer, over time, subject

to the external behavior of

users

42

http://www.iu.hio.no/

though the difficulty of doing so steps up an order of magnitude. The reason is that
crowds of users behave in simpler average patterns than individuals, just as a view
from a distance looks simpler than a view in close-up. Crowds have a natural inertia in
number: the averages are augmented only by small fluctuations. However, in smaller
group sizes, fluctuations can dominate over the average part, leaving a view of disor-
der.

The success of science is largely based on the idea that the laws of nature are constant,
and that one therefore stands a fighting chance of unraveling them. If the rules are
changing too fast, one cannot find meaning in the variation, and the good goes from
bad to ugly. One thing one can do then is to look at the long-term variations only, by
averaging, and find laws for those. As I said at my LISA 2000 talk on “Theoretical Sys-
tem Administration,” there are no “Newton’s laws” of system administration. There is
no single set of rules which governs right from wrong, likely from unlikely. Why not?
Because each site has its own environment and its own policy for dealing with it.
Strong individuals will shine against this background.

Policy can be used to evaluate user behavior numerically, by defining a scale of value.
The value is “payoff” once again, only now one must also say, payoff from whose per-
spective? The scale is not necessarily unique. It is only required to be consistent in all
comparisons. The idea of scales of values determining social behavior is a fascinating
problem which has plagued the social sciences for many years. What is new and inter-
esting about computers is that we actually have a chance of quantifying the behavior
stringently, because the machine can see everything that is going on, within an auto-
matically limited arena. Also, formalized value systems can be evaluated impartially.

Our quest, then, is to evaluate the likely mixture of behaviors in a mass of users
according to some criterion. The scale of measurement will be related to system policy
in the sense that users will tend to aggregate around behaviors which are provoked by
what they are allowed or supposed to do. Some users are law-abiding or altruistic; oth-
ers are contrary and selfish. Mixed up in here, is the somewhat fluid notion of “secu-
rity”; it is rather hard to pin down, but it is clearly related to the extent to which the
system and its users work within the boundaries of policy, and the idea that an unfor-
tunate mixture of user behavior might drive the system into an undesirable state.

A model which evaluates a profile of user behavior in relation to policy is what I call a
type II model of a computer system. Such a model is not completely independent of
type I models. Rather, the two feed off one another.

Policy and State: Paths through a Lattice
At the most primitive level, the resources of a computer can be thought of as a string
of bits, subject to external change: disks and memory are represented by the bits, and
the external change comes from I/O with users and the network, mediated by the
CPU. The structure that we build on top of this bit string, including the file system, the
operating system, the structure of data, and so on, is multidimensional, and discrete,
i.e., it forms a lattice. As we look at changes in the system, we can classify those changes
on this lattice. The contention is that, when one decides policy, the effect is to select a
preferred region of this lattice. In other words, policy is a projective action, which
effectively selects one or more acceptable regions of the state space.

As far as a computer is concerned, the effect of a system policy is to do the following:

43October 2001 ;login:

The success of science is

largely based on the idea that

the laws of nature are

constant, and that one

therefore stands a fighting

chance of unraveling them

●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

Vol. 26, No. 6 ;login:

■ System: specify machine configuration in terms of allowed behavior, access
controls etc.

■ Environment: encourage users to obey limitations and work patterns.
The initial configuration of the system, places it within a region of the lattice which is
chosen by policy. This is controllable and verifiable. Asking users to obey rules is
politely asking them not to try to drive the system away from this policy region. This is
not controllable, but it is verifiable. Because of the environment, we cannot expect a
policy specified to be completely upheld, because we cannot control the minds of
users. What we can say, however, is that a stable solution to the problem of policy ver-
sus users will lead to a situation where the system remains in the acceptable regions of
the lattice for most of the time (on average). A counterforce (police force, or immune
system) can correct the minor transgressions which must inevitably occur.

But who says the policy will be stable, that transgressions will only be minor? It is, of
course, possible to write system policies for a given mass of users which will provoke
them into such rebellion that the policy will immediately fail. I claim that this is a
good criterion for an unrealistic policy (governments sometimes make such mistakes)
and that such a catastrophic failure is a pathology of the initial assumptions. The aim
of system administration is never to build such unstable systems, so sufficient stability
is just a basic requirement, a starting point.

This model of the user-machine interaction, constrained by policy, can be written in a
more formal way, in order to map it onto well-known methods of stochastic dynamics.
Suppose we examine any variable of the system, as a function of time. Suppose also
that we collect the data over many periods (weeks) and examine the averages, calcu-
lated for all corresponding intervals. This provides us with an average picture of what
the system is doing, in addition to an actual picture of what the system is doing. Now
we define:

Actual value = average value + fluctuation

This split is significant for two reasons. The first is that the average value categorizes
the approximate behavior of the system at any given moment, while the fluctuation
tells us essentially about the variation of the environment. The second is that it sepa-
rates microscopic from macroscopic, i.e., fast changes, or what happens over short
times (fluctuation), from slow changes, or what happens over long times (changing
average). We have thus formalized the idea that the environment is a complex chang-
ing signal which pokes and prods with much higher resolution than the stable part of
the system.

In the lattice of changes, policy can only be associated with the stable part of the con-
figuration. Acceptable levels of deviation from “perfect” can be used to define a dis-
tance from acceptable policy, or an average policy, but not an exactly enforceable one.
The problem thus becomes, how can one keep the system as close as possible to an
ideal policy-abiding state?

Can we curve the lattice, like a gravity well, so that the system rolls back into its point
of lowest “energy,” or most “policy correct” configuration (see Part 5)? This is the idea
behind computer immunology. By building an immune system, or a mobilizable
counterforce which regulates policy, one effectively builds such a gravity well. Unlike a
gravity well, where all particles respond equally to the force, an immune system has a
harder time of this job, because the lattice is multidimensional and the changes
respond differently in each direction. This means that signatures and distinctions have

44

to be made. Work of this kind has been done at the University of New Mexico using a
method of classifying sequences of system calls inspired by the human immune system
(see http://www.cs.unm.edu/~immsec/).

Let the Games Begin
In the future one can imagine feedback to users which indicates the state of the system.
If users see a machine which is not “feeling well,” this would be a signal to avoid that
particular machine. This alone might be sufficient relief to allow the machine to cor-
rect itself (heal itself). This kind of bilateral feedback has been experimented with in
artificial intelligence (e.g., the MIT Kismet robot; see http://www.ai.mit.edu/projects/
kismet). I think it could be essential to the development of truly robust systems which
interact with humans.

What happens when environment meets machines? The unpredictable meets the spec-
ified. If the machine is capable of adapting, there ensues a game of competition for the
integrity of its design policy. If the machine cannot adapt, the specification ends up
being ruined.

In a game theoretical model of system administration, it makes sense to divide users
into those who obey policy and those who do not. Users who obey policy are irrelevant
to the evaluation of policy because they can be absorbed into the background activity,
i.e., the way in which the value of the “payoff” changes normally in time. On the other
hand, if users do not obey policy, they might choose any number of strategies to try to
confound it. A model of system administration is interested in evaluating how likely it
is that such a strategy would succeed against policy.

Thus, at the simplest level, we think of the actors as motivated individuals who are in
competition to maximize their gain or minimize their risk. They might work coopera-
tively, in an altruistic way, or non-cooperatively in a purely selfish way. There might be
any number of players in a game, but the simplest case (also the first approximation) is
to think of system behavior as a two-person game, in which the users of the system
compete with the system itself for possession of valuables.

A game is characterized by a matrix (see Figure 2) in which
the rows and columns are labeled by the strategies and
counter-strategies of the players, and the body of the matrix
contains the payoff to one of the players of interest. By using
minimum/maximum techniques, one can seek the most
effective mixture of strategies (represented by the histogram
distributions), which leads to optimal results. In traditional
games, the valuables of the game are easily identifiable game
pieces or token rewards. In economics the reward is money;
in natural sciences the reward is energy. In Part 6 of the
series, I argued that rewards in a social setting are not only
tangible assets, but can also be the vagaries of emotional
reward: peer respect, personal satisfaction, aesthetics, and any
number of others from our complicated emotional psyche.
The relative importance of these pieces of the puzzle is also,
in a sense, a matter of policy. Little is known in our field
about the value-scales for the variability of human traits, but
it would be surprising if such research had never been done

45October 2001 ;login:

●

C

O
M

PU
TI

N
G

NEEDLES IN THE CRAYSTACK ●

Figure 2

http://www.cs.unm.edu/~immsec/
http://www.ai.mit.edu/projects/

Vol. 26, No. 6 ;login:

by psychologists in other contexts. With this viewpoint, there is a considerable simpli-
fication of the problem.

A game may be set up of hostile users versus a system policy agent (counterforce) and
used to evaluate the optimal mixture of counterforce strategies, given that users do
their worst. The game also doubles as a formal framework for finding out what the
users’ worst actually is. The solution of the game is one or more distributions and
counter-distributions of strategies for each of the players, which the players can adopt
in order to maximize their interest.

At the simplest level, one can assume that users do not cooperate with the system, but
clearly one can extend the sophistication of the game in many ways to explore more
refined possibilities. Evaluation of payoff is complex, and game playing is iterative. I
can foresee that, in the future, simulation tools such as Petri Nets will play a role in
simulating these complexities. It is not certain how much would be gained by this, but
it is an avenue for further research.

Conclusion
In this series, I have tried to emphasize the dynamical, competitive aspect of complex-
ity and the central importance of concentration (centralization) versus distribution:
the management of entropy. Low entropy can be poison, high entropy dilapidation,
but these are the extreme polarities of the scale. The issue is not a simple question of
right or wrong; rather, it is one of seeking appropriate balance in the face of prevailing
conditions. This theme recurs in many guises: Cray or workstation; central server or
distributed database; uniqueness or redundancy; first-come, first-served (FCFS); or
time-sharing, law-abiding users or disruptive users; knowledgeable users or ignorant
users; automatic regulation or human intervention? These problems are all, at some
level, about entropy management. The message, which applies in every case, is that the
environment seeks out a balance between these strategies. We have the means to
address these problems in quantitative terms.

I hope that I have drawn attention, in this series, to the idea that system administration
is neither a once-and-for-all solvable problem, nor a problem in which humans have
to watch endlessly over their sheep; rather, it is a process of continual regulation, a
constant war against sickness, in which human or someday artificial ingenuity will
occasionally be called upon to exceed the boundaries of simplistic programming. I
have focused on what happens on computers, not on what happens in between com-
puters (the network). The latter is another story altogether, far more complex, but
building on what I have discussed here. At LISA this year, we will begin to see the
results of our early probings into this challenging field.

. . . system administration is

neither a once-and-for-all

solvable problem, nor a

problem in which humans

have to watch endlessly over

their sheep

46

47October 2001 ;login:

If you open a book on Tk programming, the internals of the geometry man-

agers are usually considered a rather advanced topic. And the fact that

there are not many geometry managers for Tk correlates well with this

observation. A major obstacle in writing a geometry manager is that they

are normally written in the C language and then linked with Tcl (or possibly

Perl). To overcome this obstacle, I wrote a small module that implements

the operations missing in Tcl/Tk but necessary for writing a geometry man-

ager. This made writing the new geometry managers and experimentation

with them much easier, so I want to share this experience.

Of course, an important question to consider is: why would someone want to write
another geometry manager? Are not the managers provided with Tcl/Tk enough? Well,
it depends on what do you want to do with them. For my project “Not A Commander”
(see its home page at http://nac.sourceforge.net) they were not. I started this project in
order to learn Tcl/Tk while doing something useful. And I had a quite good idea of
what this useful thing would be: an X11 file manager done the way I like it.

I like to have the modal dialog windows shown within the main window of the appli-
cation. When they are created as new top-level windows, one of two things usually
happens: either a Netscape dialog pops up when I’m typing something in xterm, and
my typing gets diverted to this dialog which immediately disappears; or the dialog gets
lost among the other windows so that I am surprised when the main Netscape window
refuses to react to any typing and mouse-clicking. Both cases annoy me greatly.

In a program I write for my pleasure, such dialogs should be shown in the main win-
dow, preferably as big as their natural size but not bigger than the size of the main
window. Achieving this effect with the standard geometry managers is possible but far
from easy, and even at its best does not work very well. For this reason, I decided to
write my own geometry managers. And since I wanted to experiment with them easily,
they had to be written in Tcl.

General Principles
The general principles of the geometry managers are described in the classic book Tcl
and the Tk Toolkit, by John Ousterhout. The only caveat regarding this book is that it
describes a quite old version of Tcl/Tk, so the details of the geometry managers’ imple-
mentation have changed significantly. But the general principles are the same.

In short, they work as follows: as the slave widgets (or windows – for the purposes of
this discussion these terms are synonyms) are configured, they calculate the size they
need. They send these size requests to the geometry manager. The geometry manager
collects these requests and places the slave widgets inside the master widget according
to its policies and to the size of the master widget. If the size of the master widget is
not enough to satisfy the requests of all the slaves, the geometry manager will usually
resize some of the slaves to a smaller size than they requested.

The geometry manager also calculates the needed size of the master window that
would fully satisfy the requests of its slaves and passes this request further up the hier-
archy, to the master’s master. Also, if the master widget gets resized, the geometry man-

writing the tk
geometry managers
in tcl

by Sergey Babkin

Sergey Babkin works
for Caldera Systems
on UnixWare/
OpenUNIX. He is
also a FreeBSD
developer and partic-
ipates in a few
smaller Open Source
projects.

babkin@users.sourceforge.net

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

WRITING THE TK GEOMETRY MANAGERS IN TCL ●

http://nac.sourceforge.net

Vol. 26, No. 6 ;login:48

ager must recalculate the placement of the slave widgets in it accordingly. Because usu-
ally many slaves are created or changed at once, the geometry managers try to avoid
the unnecessary work of doing the full recalculation on each and every change. They
postpone the actual recalculation until the script becomes idle and then sweep up all
the changes at once.

Writing the Geometry Manager
To write the geometry managers in Tcl I needed to implement in C the special opera-
tions not normally available to the Tcl scripts:

■ Notify Tk that a slave widget will be managed by this manager.
■ Notify Tk that a slave widget will no longer be managed by this manager.
■ Map a slave widget within a master widget.
■ Unmap a slave widget from a master widget.
■ React to a geometry request from a slave.
■ Send a geometry request further up.
■ React to a reassignment of a slave to another geometry manager.
■ Get the border width of the master window.

The last operation is theoretically not really necessary because the border width infor-
mation usually can be obtained by running the cget -bd command of a widget, but in
practice getting this information directly is safer and faster.

Two more operations are needed to connect the Tcl part of the geometry manager
with the C services:

■ Register a geometry manager with the C services.
■ Unregister a geometry manager with the C services.

For reasons of space, I won’t include the full listing of the C part; it can be downloaded
(the file geom.c) as part of the Not A Commander (NAC) project. I will only describe
the commands that are visible to the Tcl side and how they map to the Tk’s C calls.

Since the code was written specifically for the NAC project, it doesn’t try to be a proper
module with, for example, namespace isolation. For the purposes of study, the simpli-
fied code seems to me more of an advantage than a drawback. Also it uses the NAC
object model and conventions. For the examples in this article, I’ve gotten rid of most
of these dependencies and dragged in only a minimal amount of them. The most
important one is that the code is generally organized into “classes.” The “classes” are
not exactly what is meant by this word in the world of object-oriented programming
but are a reasonable approximation. The procedures and global variables of a class are
prefixed with the class name followed by a colon:

<class_name>:<object_name>

The object names that start with underscore are intended for the use of procedures of
this class only (sort of like “private” and “protected” in C++ but without enforcement).
More of these conventions will be described when we get to the Tcl code.

The commands implemented in C are:

REGISTER A TCL GEOMETRY MANAGER:
nacgeom:register <manager_prefix>

manager_prefix is the class name of this manager. The implementation has an array of
Tk per-manager structures, in which it finds a free slot and remembers the name.

Then it returns a manager ID which may be used for the subsequent calls. The most
important part of the implementation is:

managers[freeid].name = strdup(argv[1]);
snprintf(interp->result, TCL_RESULT_SIZE, "%d", freeid);

UNREGISTER A TCL GEOMETRY MANAGER:
nacgeom:unregister <manager_prefix>

The implementation marks the structure in the registration array as free.

NOTIFY TK THAT THIS MANAGER WILL TAKE CARE OF THE SLAVES:
nacgeom:ofslave <mgr_id> <slave_window>...

mgr_id is the ID returned by nacgeom:register. More than one window can be speci-
fied. The most important call repeated for each slave window is:

Tk_ManageGeometry(win, &managers[mgr_id], (ClientData) mgr_id);

NOTIFY TK THAT THIS MANAGER RELEASES THE SLAVES:
nacgeom:freeslave <mgr_id> <slave window>...

The most important call in the implementation (repeated for each slave) is:

Tk_ManageGeometry(win, NULL, (ClientData) 0);

MAP A SLAVE WINDOW WITHIN A MASTER WINDOW:
nacgeom:map <slave_window> <master_window> <x> <y> <width>
<height>

x, y, width, and height are the position and size of the slave window in the master win-
dow. Tk provides a convenient function that takes care of all the necessary details:

Tk_MaintainGeometry(slave, master, x, y, width, height);

The Tk standard geometry managers separate a special case when the slave window is
an immediate child of the master window; in this case they do all the mapping, posi-
tioning, and resizing by calling the low-level functions directly to improve the perfor-
mance. However, the geometry managers written in Tcl are slow enough by
themselves, so a little more overhead traded for convenience won’t hurt them notice-
ably.

UNMAP A SLAVE WINDOW:
nacgeom:unmap <slave_window> <master_window>

This is implemented as another convenience call:

Tk_UnmaintainGeometry(slave, master);

REACT TO A GEOMETRY REQUEST TO A SLAVE.

This function passes the control in the opposite direction, it is called from Tk and calls
a Tcl callback procedure that should be defined in the Tcl code:

<manager_prefix>:_geometry <slave_window> <width> <height> <border>

Width, height, and border width are the requested dimensions of the slave window.
This function gets two arguments: the manager ID (as passed to Tk in Tk_ManageGe-
ometry) and the slave window ID. Its important part is:

49October 2001 ;login:

●

C

O
M

PU
TI

N
G

WRITING THE TK GEOMETRY MANAGERS IN TCL ●

Vol. 26, No. 6 ;login:

snprintf(bf, sizeof bf, "%s:_geometry %s %d %d %d", managers[id].name,
Tk_PathName(win), Tk_ReqWidth(win), Tk_ReqHeight(win),
Tk_InternalBorderWidth(win));

Tcl_GlobalEval(my_interp, bf);

SEND A GEOMETRY REQUEST UP THE HIERARCHY:
nacgeom:request <master_window> <width> <height>

This translates to the call

Tk_GeometryRequest(master, width, height);

REACT TO A LOSS OF SLAVE DUE TO ITS REASSIGNMENT TO ANOTHER GEOMETRY MANAGER.

Transfers the call to another Tcl callback function:

<manager_prefix>:_lost_slave <slave_window>

The implementation is similar to another callback:

snprintf(bf, sizeof bf, "%s:_lost_slave %s", managers[id].name,
Tk_PathName(win));

Tcl_GlobalEval(my_interp, bf);

GET THE BORDER WIDTH OF A WINDOW:
nacgeom:infobd <window>

This is implemented as

snprintf(interp->result, TCL_RESULT_SIZE, "%d",
Tk_InternalBorderWidth(win));

The full text of the C support (geom.c) and the Makefile are parts of Not A Comman-
der, and can be downloaded from http://nac.sourceforge.net.

An Example
Now let’s look at an example of a full geometry manager that uses this interface: a sim-
plified version of the post geometry manager from NAC. It allows posting of the slave
widgets at the center of the master widget (if multiple slaves are posted, then they will
overlap each other). The size of the slave widgets is limited only by the size of the mas-
ter window.

The full text of the example is available for download from:
http://nac.sourceforge.net/pub/post.tcl.

The procedures in the example do not follow the Tk convention of one command with
many subcommands but instead follow the usual NAC naming conventions. The
meaning of commands implemented in this manager is similar to the standard Tk
geometry managers but simplified:

post:add <slave-widget>... [-in <master-widget>] – Manage the slave widgets
post:forget <slave-widget>... – Stop managing the slave widgets
post:slaves <master-widget> – Return the list of slaves posted in this master

To save space, the less essential parts are not shown here and are only briefly described.
The script starts with loading the C part:

load ../geom.so nacgeom

The script expects that it would be placed in a subdirectory one level under the base
directory of NAC.

50

http://nac.sourceforge.net
http://nac.sourceforge.net/pub/post.tcl

Then three auxiliary procedures are defined. These procedures can be obtained by
including the files gman.tcl and util.tcl from NAC but are defined in the script explic-
itly to avoid extra dependencies.

nacgeom:assert_ancestor <slave> <master> checks that the master and slave
widgets conform to the proper ancestral relations, or throws an error otherwise.
bind_adduniqtag <window> <position> <tag> adds the binding tag to the binding
list of the window at the specified position unless it’s already on the list.
bind_rmclass <window> <tag> removes the tag from the binding list of the win-
dow (opposite of bind_adduniqtag).

The first action of the geometry manager itself is its registration with the C support
code:

set post:gmid [nacgeom:register post]

The information about the widgets is stored in the global associative arrays indexed by
the widget names. The value at the empty string ("") index is used to set the default val-
ues for the newly associated windows. For a master widget two variables are defined:

set post:slaves("") {}
set post:calcid("") {}

post:slaves contains the list of slaves posted in this master. post:calcid contains the
delayed command ID of the scheduled geometry recalculation procedure. As I said
before, when a Tk geometry manager gets a new slave or a geometry change request
from a slave, it does not recalculate its geometry immediately because there is a good
chance that more changes will follow immediately. Instead, it schedules its recalcula-
tion procedure for the time when the Tk process becomes otherwise idle.

For a slave widget the variables

set post:mymaster("") {}
set post:reqwidth("") 1
set post:reqheight("") 1

contain the name of its master and the size that it requested. This size can also be
obtained by the Tk commands winfo reqwidth and winfo reqheight, but storing it in
variables is more convenient. The procedure

proc post:_globals {} { ...

imports all the class global variables (those with names starting with post:) into the
current function. When imported, these variables lose the class prefix in their names;
for example, post:slaves simply becomes slaves. Normally, in NAC such a procedure
(and a bit more) for a class would be generated automatically by calling

defclass post

But again to reduce dependencies in the example it’s defined explicitly.

The binding tags are defined for the master and slave widgets:

bind post.master: <Destroy> {post:_forgetmaster %W}
bind post.master: <Configure> {post:_schedcalc %W}
bind post.slave: <Destroy> {post:forget %W}

When a master widget is destroyed, all of its slaves are freed. When a slave widget is
destroyed, it’s just forgotten as usual. When the master widget is resized by its own

51October 2001 ;login: WRITING THE TK GEOMETRY MANAGERS IN TCL ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

master, a geometry recalculation must be done for it. As always, this recalculation is
not done immediately but scheduled for later.

The procedure that adds the slaves to a master is one of the two larger ones (another
large procedure is for the geometry recalculation). Its arguments are like the Tk com-
mand place but with only one option supported.

proc post:add {args} {
post:_globals
set optpos [lsearch -regexp $args {^[^.].*}]

It starts with importing the class globals and finding where the options start in the
argument list. All the widget names start with a dot, so anything not starting with a
dot is considered an option.

if {$optpos >= 0} {
set opts [lrange $args $optpos end]
set args [lreplace $args $optpos end]

} else {
set opts {}

}

If any options are found, they are separated from the list of the new slave widgets.
Since the packing order for this widget manager does not matter, the slaves are always
added to the end of the list. And the only supported option is -in to select the master:

set omaster {}
foreach {opt val} $opts {

switch — $opt {
{-in} {set omaster $val}
default { error "unknown post option $opt"}
}

}
if {$args == ""} {

nothing to do
return

}

Having parsed the options, we add the slaves one by one:

foreach win $args {
if {$omaster == ""} {

set master [winfo parent $win]
if {$master == ""} {

error "can't manage the root window as a slave"
}

} else {
nacgeom:assert_ancestor $win $omaster
set master $omaster

}

If the master was specified explicitly, we need to assert that it’s appropriate for this par-
ticular slave.

if [info exists mymaster($win)] {
post:forget $win

}

52

If this slave is already posted, we need to forget it first. If the slave was previously man-
aged by another geometry manager, Tk will notify that geometry manager automati-
cally when we take over its slave. But if the slave was already managed by the same
manager, then Tk will not send this notification to us, so we have to check for it.

if { ![info exists slaves($master)] } {
post:_initmaster $master

}
lappend slaves($master) $win

If this master has no slaves managed by this manager yet, we need to initialize our
global variables and bindings for it. Then we add the new slave to its list.

set mymaster($win) $master
set reqwidth($win) [winfo reqwidth $win]
set reqheight($win) [winfo reqheight $win]
bind_adduniqtag $win end post.slave:

Then we initialize our global variables for the slave and add the post.slave binding to
the end of its binding list.

nacgeom:ofslave $gmid $win

We let Tk know that we take over the management of this slave.

post:_schedcalc $master
}

}

Finally, for each posted slave we schedule the geometry recalculation procedure for its
master. And that completes the adding of slaves.

The procedure for the opposite action, forgetting the slaves, is:

proc post:forget {args} {
post:_globals
foreach win $args {

if {![info exists mymaster($win)]} {
continue

}
nacgeom:unmap $win $mymaster($win)
nacgeom:freeslave $gmid $win
post:_lost_slave $win

}
}

It does not take any options. Each slave is checked whether it’s managed. The managed
slaves are unmapped and Tk is notified that we don’t manage them any more. Finally,
we clean up our variables, and this cleanup happens to be the same as when Tk notifies
us that the slave was moved by the user to another geometry manager, so we just call
that procedure.

The last procedure of the user API returns the list of slaves for a master:

proc post:slaves {master} {
post:_globals
return slaves($master)

}

53October 2001 ;login: WRITING THE TK GEOMETRY MANAGERS IN TCL ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

If no slaves are managed by this geometry mamager for this master it throws an error
on an undefined variable.

The scheduling and unscheduling of the geometry recalculation is done with the fol-
lowing procedures:

proc post:_schedcalc {master} {
post:_globals
if {![info exists calcid($master)] || $calcid($master) == ""} {

set calcid($master) [after idle "post:_recalc $master"]
}

}
proc post:_unschedcalc {master} {

post:_globals
if {$calcid($master) != ""} {

after cancel $calcid($master)
set calcid($master) {}

}
}

post:_schedcalc schedules the run only if it was not already scheduled, because one
recalculation run is enough to process all the changes.

The geometry recalculation routine is the heart of a geometry manager:

proc post:_recalc {master} {
post:_globals
if {$slaves($master) == ""} {

post:_forgetmaster $master
return

}

First we check that there are some slaves to manage. If no slaves are left, then this mas-
ter does not need any more geometry management from us.

set calcid($master) {}

Since the delayed command already has been called, its ID is not usable anymore, so
we clean it. This is also a sign to post:_schedcalc that when called it must schedule a
new delayed execution of the geometry recalculation.

set bd [nacgeom:infobd $master]
set maxwd [expr [winfo width $master] - $bd *2]
set maxht [expr [winfo height $master] - $bd *2]

The geometry manager should respect the internal border of the master window and
not use it for placing the slaves. For this simple manager this just means that the bor-
der width must be deducted from the available size.

For geometry managers that do not change the size of the master, such as this post or
the standard place, we can now start mapping the slaves. However, the geometry man-
agers that propagate the geometry requests up the widget hierarchy should first calcu-
late the size of the master necessary to accommodate all its slaves as requested and pass
this request up. In a hypothetical case of a geometry manager that tries to make the
master widget as big in each dimension as the largest size requested by a slave, this
code might be:

54

set reqwd 1
set reqht 1
foreach win $slaves($master) {

if {$reqwidth($win) > $reqwd} {
set reqwd $reqwidth($win)

}
if {$reqheight($win) > $reqht} {

set reqht $reqheight($win)
}

}
if {[winfo reqwidth $master] != $reqwd
|| [winfo reqheight $master] != $reqht} {

nacgeom:request $master $reqwd $reqht
post:_schedcalc $master
return

}

The smallest valid size for a widget is 1. So the calculation starts with this value. If
some slave has requested a larger size, we take this larger size. After processing all the
slaves we check whether our new calculated size is different from the size we calculated
last time (and passed further up). If it’s the same, we can start mapping the slaves. If it
has changed, the request for the new size is passed to Tk, which passes it to the geome-
try manager that has our master as a slave. That geometry manager will schedule its
own geometry recalculation for later. There is a good chance that by results of this
recalculation it will change the size allocated to our master according to our request.

So for now, mapping the slaves based on the old size of the master widget would be a
waste of time, and the best thing we can do is to schedule our own recalculation for
later and return. If all goes well, the upper geometry manager’s scheduled recalculation
will run first (because presumably it was scheduled first) and set the new size to our
master. Then our recalculation will run again and map the slaves according to the new
size. However, if our master’s master wants to resize itself as well, then our rescheduled
procedure would run before the resizing happens at the upper level. But it’s not a big
problem: the only loss is time spent on an extra run of recalculation. Then when the
upper geometry manager finally resizes our master widget, it will cause a configure
event in this widget which we have bound to the recalculation request, so eventually
our recalculation will run again and redo everything based on the new available size.

Now let’s return from that hypothetical case to the post geometry manager. We map
each slave in its turn. First we calculate its dimensions (wd and ht) and position (atx
and aty) and then we actually map it:

foreach win $slaves($master) {
if {$maxwd <= 0 || $maxht <=0} {

nacgeom:unmap $win $master
continue

Zero or negative maximal dimensions of the slave may occur if the size of the master
widget is less than its border width. Since there is no way to display the slave, we
unmap it.

} else {
set wd $reqwidth($win)
if {$wd > $maxwd} {

55October 2001 ;login: WRITING THE TK GEOMETRY MANAGERS IN TCL ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:56

set wd $maxwd
}
set ht $reqheight($win)
if {$ht > $maxht} {

set ht $maxht
}
set atx [expr ($maxwd-$wd)/2]
set aty [expr ($maxht-$ht)/2]

}

The size of the slave in each dimension is limited by the available space. Then the
slave’s position is centered.

incr atx $bd; incr aty $bd
nacgeom:map $win $master $atx $aty $wd $ht

}
}

Finally, the position is adjusted for the border width, and the slave is mapped at its cal-
culated position.

When the first slave is added to the master, the following procedure is called to initial-
ize the master’s data structures:

proc post:_initmaster {master} {
post:_globals
set slaves($master) {}
set calcid($master) {}
bind_adduniqtag $master end post.master:

}

It also adds a bind tag which allows us to react to the master widget’s destruction or
resizing by the master’s master.

When the master widget is destroyed or loses its last slave, its data should be cleaned
up. All this cleanup activity is done in the next procedure:

proc post:_forgetmaster {master} {
post:_globals
if [info exists slaves($master)] {

If there is no data for this master then there is nothing to clean up. This check also
gives some additional safety against double calling of this function due to some race
condition.

eval "post:forget $slaves($master)"

Any slaves that are left over should be forgotten. If the slaves list is empty, post:forget
will just do nothing.

post:_unschedcalc $master

If the recalculation was scheduled, it must be canceled. Otherwise when it runs later it
would find no data entries and throw an error. This cancellation can be done only after
forgetting the slaves because when a slave is forgotten, the master’s geometry recalcula-
tion gets scheduled.

bind_rmclass $master post.master:
unset slaves($master)
unset calcid($master)

}
}

Finally, we remove the binding tag and free the per-master data entries.

When we stop managing a slave, a cleanup should be done as well. This is handled by
the procedure post:_lost_slave, which is called in the following cases: a slave is forgot-
ten on a user’s call to post:forget; a slave is destroyed and post:forget is called through
the binding of the destroy event; a slave is passed to another geometry manager by the
user and this procedure is called as a callback from the supporting C code.

proc post:_lost_slave {win} {
post:_globals
if {![info exists mymaster($win)]} {

return
}

As with the masters, we’d rather be safe than sorry and not try to free data that is not
allocated.

set master $mymaster($win)
set idx [lsearch -exact $slaves($master) $win]
if {$idx >= 0} {

set slaves($master) [lreplace $slaves($master) $idx $idx]
post:_schedcalc $master

}

This slave is removed from its master’s list, and the master’s geometry recalculation is
scheduled. The recalculation is not absolutely necessary for this particular geometry
manager because the slaves are posted independently of each other. But in a generic
case, forgetting a slave may cause serious changes in the master’s geometry. Even for
this manager, however, doing a recalculation is a good thing; if this were the last slave
of this master, the geometry recalculation will catch it and free the master’s data struc-
tures as well. Otherwise we would have to check here for this case explicitly.

bind_rmclass $win post.slave:
unset mymaster($win)
unset reqwidth($win)
unset reqheight($win)

}

Finally, we remove the binding tag and free the per-slave data entries.

When a slave sends a new geometry request, the C portion of the code forwards the
call to the callback procedure:

proc post:_geometry {win wd ht bd} {
post:_globals
if [info exists mymaster($win)] {

set reqwidth($win) $wd
set reqheight($win) $ht
post:_schedcalc $mymaster($win)

}
}

57October 2001 ;login: WRITING THE TK GEOMETRY MANAGERS IN TCL ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

If the slave is associated with a master, we remember the values it requested and sched-
ule the geometry recalculation. Otherwise we consider this a spurious call and do
nothing.

This completes the simplified post geometry manager. The post geometry manager in
NAC has many more features, such as margins around dialog windows and completely
different logic for the posting of menus.

Customized geometry managers open many other interesting possibilities. Some of the
more complex examples that may be found in Not A Commander include:

■ An auto-wrapping label widget (see the classes awlabel and awlpack in wdgt.tcl).
If the label can not get enough space along the X axis, it wraps the text at the
available width and tries to extend itself vertically. This is achieved by composing
the widget from the Tk label subwidgets and controlling them with a highly spe-
cialized geometry manager. Of course, this effect may be achieved much more
efficiently by modifying the implementation of the Tk label widget, but the inter-
nals of that widget are far from simple and are difficult to modify.

■ A scrollbar displayed automatically when there is not enough space for all the
slaves (see the class menupack in gman.tcl). Note that this is different from the
Perl/Tk widget “Scrolled” in which the scrollbars are displayed all the time. The
customized geometry managers allow the scrollbars to be displayed only when
they are really necessary – that is, when there is not enough space for all the slaves.

■ A pseudo-grid (see the class pgrid in gman.tcl). It implements a two-level compo-
sition: the whole grid consists of a set of row widgets, each of the rows containing
a few slave widgets. The rows are combined by some other geometry manager
(such as Tk’s pack). The pseudo-grid manager controls the slaves within the rows
so that the columns within each row are aligned with each other row. The pseudo-
grid is extremely convenient for the vertical menus: each row is a composite menu
button widget while the slaves are the items within these buttons. These items are
arranged into non-overlapping columns: the optional radio/checkbutton indica-
tor, the button label, and the accelerator key label.

Of course, the downside of implementing the geometry managers in Tk is that they
are quite slow compared to those implemented in C. Because of this they do not scale
well to a large number of managed widgets and work best either for special cases
involving a small number of widgets or for prototyping with a following rewrite in C.

58

59October 2001 ;login:

The previous Tclsh Spot article described a simple telnet client that would

report the initial configuration options. This article will expand the sniffer

into a client that can interact with a server, maintain its internal state, and

respond to various commands the server can send. In the course of this, I’ll

demonstrate some things we can do with the Tcl namespace.

The Tcl namespace command provides a private, named area in a Tcl script where
data and procedures can exist without interfering with other data and procedures that
might have the same names. A Tcl namespace can implement most of the capabilities
of a Java or C++ class.

A Tcl script is most useful when it’s merged into other Tcl code. You can merge one
Tcl script into another with the source command which loads a script into a Tcl pro-
gram, and evaluates the commands in that script before evaluating the next line of the
original script.

Syntax: source fileName

This is similar to the C language #include or the C-shell source command. This is a
simple technique, and it works well for many applications.

However, if you source two packages that have overlapping names for variables or pro-
cedures, the last package you load will overwrite the procedure body or data values set
by the first package.

We can use the Tcl namespace command to create a private, named area in our telnet
client where data and procedures can exist without interfering with other data and
procedures that might have the same names.

A namespace is created with the namespace eval command:

Syntax: namespace eval namespaceID arg ?args?

namespace eval Create a namespace, and evaluate the script arg in that scope. If
more than one arg is present, the arguments are concatenated
together into a single command to be evaluated.

namespaceID The identifying name for this namespace.
arg ?args? The script or scripts to evaluate within namespace namespaceID.

The variables defined within a namespace will last until the namespace is destroyed by
the namespace delete command. This makes a namespace an ideal place to keep a
package’s internal state.

The state information for the telnet sniffer application was held in a global associative
array. A telnet namespace with that array included in it can be created with code like
this:

namespace eval telnet {
variable Telnet

The variable command declares a Tcl variable within a namespace. When the variable
command is used outside a procedure, it creates a variable within a namespace and
initializes it to an optional value. When the variable command is used within a proce-
dure, it maps a variable from that namespace scope into the procedure’s local scope.

the tclsh spot
by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

THE TCLSH SPOT ●

Vol. 26, No. 6 ;login:60

Syntax: variable varName ?value? ?var2? ?val2?

varName The name of the variable to create, or map into local scope.
value An optional value for this variable. If the variable already has a

value, the new value will overwrite the old.

The sniffer program used two global arrays, the telnet array that held the state infor-
mation, and the Lookups array that was used to map from hex values to human-
friendly information strings. The Lookups array was created at run time by scanning
the telnet.h include file and massaging the #define xx yy lines into Tcl array assign-
ments in a simple procedure.

Any Tcl code can be evaluated within the namespace eval body. We can evaluate the
readIncludeFile procedure to create the Lookups array within the telnet namespace,
and can even use the source command to load the script that includes this procedure
into the namespace.

namespace eval telnet {
variable Telnet

source readincl.tcl

readIncludeFile Lookups /usr/include/arpa/telnet.h
set Lookups(UNKNOWN.-1) "Unknown Option"

By sourcing the readincl.tcl script within the namespace, the readIncludeFile procedure
is defined within the namespace. This procedure is available for use within the name-
space but is not easily visible from the outside world.

Tcl namespaces are a tree-structured construct, like a file system or graphics windows.
Where a POSIX-style file system uses a slash to separate parent from child directory,
namespaces use a double colon to delimit parent and child namespaces.

When Tcl is started, the default, top level, namespace is ::. The namespace eval telnet
{...} command creates a new namespace ::telnet.

Unlike Java or C++ classes, there is no privacy in a Tcl namespace. The Tcl philosophy
is to make as much information as possible available to the programmer. Thus, you
can always access a member of a Tcl namespace by its full namespace pathname.

We can define a procedure within the telnet namespace with a normal looking Tcl
command like:

namespace eval telnet {
...
proc openSocket {address} {

variable Telnet
set Telnet(socket) [socket $address 23]

}
}

We could invoke the procedure from outside the namespace with a command like:

::telnet::openSocket 127.0.0.1

Java and C++ let the application programmer know the private and public API by
restricting access to non-public methods. Since any procedure within a namespace can
be invoked from outside the namespace, we need a mechanism to let the programmer
know which are public and which are private methods.

61October 2001 ;login:

One convention used within Tcl is that public methods start with a lowercase letter
and private methods start with an uppercase letter. The rationale is that it takes an
extra keystroke to type an uppercase letter. This forces programmers to recognize that
they are violating the package’s intended use by calling this procedure.

The Tcl namespace also includes a namespace export command to declare which pro-
cedures are part of the external API.

Including this line in the namespace eval body tells the application programmer that
the external API for this namespace is the openSocket, binarySend, and telnetEvent
procedures.

namespace export openSocket binarySend telnetEvent

Along with using a namespace to hide variables, we sometimes use a namespace to
hold just procedures. This ensures that we don’t have procedure-naming collisions
when our application sources several files.

We could define a namespace that has functions to convert strings of binary data to
hex digits like this:

namespace eval binaryStrings {
namespace export bin2hex hex2bin

proc bin2hex {binaryString} {
binary scan $binaryString "H*" hexData
regsub -all {..} $hexData {\0 } hexList
return $hexList

}

proc hex2bin {string} {
regsub -all " " $string "" string
set line [binary format "H*" $string]
return $line

}
}

One of the strengths of the Tcl namespace is that they can be nested. This implements
the OO composition (or “has-a”) feature. For example, the binaryStrings namespace
can be embedded in the telnet namespace with code like:

namespace eval telnet {
source binaryStrings.tcl
...

}

Just as file systems support absolute naming by starting from the root file system
(/usr/local/bin/tclsh) or relative naming, by starting from the current directory
(subdir/file), Tcl namespaces can be accessed by either absolute or relative names.

The procedures in binaryStrings can be invoked from within the telnet namespace as:
::telnet::binaryStrings::hex2bin or binaryStrings::hex2bin.

Since the telnet namespace may be included in another namespace, it’s best to use rela-
tive naming when embedding one namespace within another.

Alternatively, since the public API for the binaryStrings namespace is exported, we can
use the namespace import command to import those procedures into the current
namespace. This would let us invoke the procedures without any namespace prefix.

THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

namespace eval telnet {
source binaryStrings.tcl
namespace import binaryStrings::*
...
set hex [bin2hex $binaryValue]

}

Using the namespace import command undoes the protection from procedure-name
collisions that we got from using namespaces, but within a controlled environment
(like a namespace), the namespace import command can make code easier to read.

These techniques let us set up a telnet namespace for the sniffer that was developed in
the last article. In order to handle real telnet client-server interactions, the script needs
to be able to handle the negotiation commands and retain state information about the
supported and unsupported options.

The telnet protocol includes a lot of subnegotiation options ranging from a need to
echo characters to supporting defining data rates and terminal size.

Implementing these options follows a pattern – they have a current value and react to
demands that the option be supported or not supported.

The reaction to a command varies depending on the state of that option. For example,
if an option’s status is to be supported, and the server sends a message to not use that
option, the client should send a return message that the option won’t be used. How-
ever, if the option was already turned off, no reply should be sent.

We could implement this with a set of objects that include the current state informa-
tion and procedures to report the contents. We could use one object for each option,
and use Tcl’s ability to nest namespaces to hold all the option namespaces with the tel-
net namespace.

If we were writing this in a true object-oriented language like C++ or Java, we might
have a base class for options and two derived classes for supported and unsupported
options.

We can implement the inheritance (or “is-a”) feature of true OO languages with the
namespace command by using a base command to initialize a namespace and another
set of commands to set the personality of the class.

In C++ terms, the script used to initialize the namespace is the base class, and the per-
sonality commands implement the methods in the derived class.

We can use the hex values of the commands to name the procedures in the option
namespaces, just as we did in the sniffer program. This makes the parsing simpler (let
Tcl do it). Because we have separate namespaces for the various procedures (fb, fd, 01,
etc.), they don’t conflict with each other or with the procedures sharing that name in
the telnet namespace.

We can define the names of the namespaces on the fly. To make the code easier to write
(if a bit more cryptic for reading), I’m using a naming convention of XX.TELOPT for
the option namespaces, where XX is the hex value of the option number.

The code to define namespace objects for unsupported features looks like this:

62

set baseClass {variable clientValue %s supported %s;}

foreach cant {00 05 21 22 23 24 25 26 27 } {
namespace eval $cant.TELOPT [format $baseClass "" 0]
namespace eval $cant.TELOPT [format "proc fb {} {return fffe%s}" $cant]
namespace eval $cant.TELOPT [format "proc fd {} {return fffc%s}" $cant]
namespace eval $cant.TELOPT "proc 01 {} {return {}}"
namespace eval $cant.TELOPT [format \

{proc fe {} {variable supported;
if {$supported} {

return fffc%s
} else {

set supported 0;
return {}}

}} $cant]
}

For supported options, it’s a bit more complex, since some options have data that must
be reported when requested. Here’s code that will create objects for the supported
options.

foreach {can initialVal} {18 "dumb"
1f "0x00500018"
20 "57000,57000"
03 "01"
01 "01"} {

namespace eval $can.TELOPT [format $baseClass $initialVal 1]
namespace eval $can.TELOPT [format "proc fd {} {return fffb%s}" $can]
namespace eval $can.TELOPT [format "proc fb {} {return fffd%s}" $can]

if {[string first 0x $initialVal] == 0} {
set hex [string range $initialVal 2 end]

} else {
binary scan $initialVal H* hex

}

proc $can.TELOPT::01 {dummy} [format "return fffa%s00%sfff0" $can $hex]

namespace eval $can.TELOPT {proc 00 {val} {variable serverValue;
set serverValue $val}}

namespace eval $can.TELOPT [format \
{proc fe {} {variable supported;

if {$supported} {
return fffc%s

} else {
set supported 0;
return {}}

}} $can]
}

The code to support the fb, fc, fd, and fe commands (WILL, WON’T, DO, and
DON’T) in the telnet namespace are fairly simple. They look like this:

WILL command fb : Reply DO(fd) or DONT(fe)
proc fb {subl textName oobName} {

variable Telnet
upvar $oobName oob

63October 2001 ;login:

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

THE TCLSH SPOT ●

Vol. 26, No. 6 ;login:

set opt [lindex $subl 0]
AddInfo $subl TELOPT_
append oob [eval $opt.TELOPT::fb]

return 1
}

The fa (SUBNEGOTIATION) command is a bit trickier, since the negotiation may be
a request for the value, or a value being supplied.

The format for this command is either

ff (IAC) fa (SB) 1 (request data) ff (IAC) f0 (SE)

or

ff (IAC) fa (SB) 0 (provide data) DATAVALUES ff (IAC) f0 (SE).

The code to implement the fa command is:

proc fa {subl text oobName} {
variable Telnet
upvar $oobName oob
Starts with character after the ‘fa’
Debugputs “Dealing with: [lrange $subl 0 20]”
set count 1
set type [lindex $subl 0]
set action [lindex $subl 1]
foreach {p2 data} [FindFFF0 $subl] {}

append oob [$type.TELOPT::$action $data]
AddInfo $subl TELOPT_
return $p2

}

That covers the interesting parts of this script. As usual, the full source code (about 450
lines) is available at
http://noucorp.com/cgi-bin/noucorp/generic.tcl?dir=/home/httpd/html/tcl/login.

64

http://noucorp.com/cgi-bin/noucorp/generic.tcl?dir=/home/httpd/html/tcl/login

65October 2001 ;login:

We’ve been looking at some of the features added to C9X, the recent stan-

dards update to C. In this column we’ll consider the use of variable length

arrays (VLAs).

Some Basics
Suppose that you need to allocate an array in your program, but when you’re writing
the program, you don’t know how long the array should be. What do you do in such a
case? An obvious answer is to use malloc() and dynamic allocation. This approach will
certainly work, but has a couple of problems. One is that you need to worry about
freeing up the storage when you’re done with it to avoid memory leaks, and another is
that dynamic allocation for multidimensional arrays gets complicated.

C9X offers another approach, the use of VLAs. Here’s an example of what such usage
looks like:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

if (argc != 2) {
fprintf(stderr, "Missing numeric argument\n");
return 1;

}

int n = atoi(argv[1]);

int x[n];

printf("sizeof = %d\n", sizeof(x));

return 0;
}

A numeric value representing an array length is passed to the program, and an array of
this length is allocated. When the array goes out of scope, its storage is automatically
reclaimed.

The size of the array is calculated at run time. For example, if you specify an argument
of 10, and the size of an int on your machine is 4, then 40 will be printed.

The array is of fixed size once it’s allocated, but its size is not fixed until the flow of
control passes the declaration.

Variable Length Arrays as Function Arguments
Here’s another example of how you can use VLAs, passing them as function argu-
ments:

#include <stdio.h>

typedef void (*fp)(int, int[*][*]);

void f(int, int[*][*]);

int main()
{

int n = 2;

variable length
arrays

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
ta-tion areas.

glenm@glenmccl.com

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

VARIABLE LENGTH ARRAYS ●

Vol. 26, No. 6 ;login:

int x[n][n];

x[0][0] = 1;
x[0][1] = 2;
x[1][0] = 3;
x[1][1] = 4;

fp fptr = &f;

(*fptr)(n, x);
fptr(n, x);

return 0;
}

void f(int n, int x[n][n])
{

printf("0,0 = %d\n", x[0][0]);
printf("0,1 = %d\n", x[0][1]);
printf("1,0 = %d\n", x[1][0]);
printf("1,1 = %d\n", x[1][1]);

}

In this example a 2 x 2 VLA is created and then passed as an argument to a function.
The called function is declared before use, along with a function pointer typedef. Note
how the [*] notation is used to specify VLA parameters.

Pointer Arithmetic
In the first example above, we showed how sizeof() returns a dynamic value, known
only at run time. This same consideration also applies to other calculations, such as
pointer arithmetic. Consider the following example:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

if (argc!=2) {
fprintf(stderr, "Missing numeric argument\n");
return 1;

}
int n = atoi(argv[1]);
int arr[10][n];
int (*p)[n] = arr;
arr[4][n-1] = 37;

p += 4;

printf("%d\n", p[0][n-1]);

return 0;
}

The VLA arr becomes a 10 x n array, with n set at run time. We initialize a pointer to
the array, store a value at [4][n-1] in the array, and then increment the pointer by 4. In
this situation, saying p += 4 means that four rows of the array should be skipped, but
the length of a row (the number of columns) is not known to the compiler and must
be dynamically evaluated.

66

The variable p in this example uses what is known as a “variably modified type.” The
line

int (*p)[n] = arr;

declares p to be of variably modified type and then initializes it with arr. p is a pointer
to an array of n integers, and the initialization sets p to point at the VLA. [n] is part of
the variably modified type.

VLAs are a subset of variably modified types. Such types must be declared at block or
function prototype scope. So, in this example:

int n = 5;
//int (*p)[n];
void f()
{

int x[n][n];
int (*p)[n] = x;

}

uncommenting the global declaration will trigger a compile error.

Restrictions on Variable Length Arrays
There are some things you can’t do with VLAs. One of them is to use {} initializers, like
this:

void f(int n)
{

int x[n] = {1, 2, 3}; /* can't do this */
}

One problem with allowing this usage is that the value of n is not known to the com-
piler, so it’s impossible to determine whether too many initializer values have been
specified.

Another thing you can’t do is to allocate a VLA using global or static storage:

int n = 3;
int x[n];
void f()
{

static int y[n]; /* can't do this */
}

There’s no way at compile time to determine how big these arrays will be.

A third example concerns the use of sizeof, like this:

void f()
{

int n = 3;
int x[n];
int y = 5;

switch (y) {
case sizeof(n):

break;
case sizeof(x): /* can't do this */

break;

67October 2001 ;login: VARIABLE LENGTH ARRAYS ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

}
}

The usage in the second case label is invalid because the size of x is not known to the
compiler.

Finally, it’s illegal to jump around the declaration of a variable length array:

void f()
{

int n = 3;
int y;
goto lab; /* can't jump around decl below */

int x[n];

lab:

y = x[0];
}

Static and Restrict
There’s another interesting aspect of VLAs that ties in with performance and optimiza-
tion. When you’re specifying variable array parameters to a function, you can use the
static and restrict keywords:

#include <stdio.h>

double f(int n, double x[static n])
{

double sum = 0.0;

for (int i = 0; i < n; i++)
sum += x[i];

return sum;
}

int main()
{

int n = 10;
double x[n];
for (int i = 0; i < n; i++)

x[i] = (double)(i + 1);

double sum = f(n, x);

printf("%g\n", sum);

return 0;
}

Using static tells the compiler that the underlying pointer used to hold the VLA argu-
ment (1) is not NULL, (2) points to elements of double type, and (3) points to at least
n elements which are guaranteed to be available.

This information can be used to initiate loads or prefetches of the arrays that are
accessed within the function. Another example uses both static and restrict:

#include <stdio.h>

68

void f(int n, double x[static restrict n],
double y[static restrict n])

{
for (int i = 0; i < n; i++)

x[i] += y[i];
}

int main()
{

int n = 10;
double x[n];
double y[n];
for (int i = 0; i < n; i++) {

x[i] = (double)(i + 1);
y[i] = (double)(i + 100);

}

f(n, x, y);

for (int i = 0; i < n; i++)
printf("%d %g\n", i, x[i]);

return 0;
}

In this example, the array parameters to f() are guaranteed to be (1) non-NULL, (2) of
type double, (3) at least of length n, and (4) unique and non-overlapping. Such infor-
mation can be used to generate optimized code.

Variable length arrays are especially useful in numerical programming, and also in sit-
uations where you don’t know the array size at compile time, and you don’t want to
deal with all the complications of dynamic allocation.

69October 2001 ;login: VARIABLE LENGTH ARRAYS ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

70 Vol. 26, No. 6 ;login:

I just got accused of being anti-open source. Because I had mentioned the

BIND weakness being exploited by the Lion worm, I was suddenly the

enemy. I know that I sometimes suffer from what I call “executive reading”

– the ability to read plain text and totally misunderstand important sections

of it. I invented this term in jest based on the responses I often get when

exchanging email with busy people. I thought this was a disease that comes

with age.

The executive-read seems to happen to me just when I am already on the edge of
exploding, and I read something that appears to be the most dubious thing ever.
Sometimes it is. And sometimes it makes better sense when I slow down enough to
really comprehend what the author was saying.

I’d like to set aside the notion that I am against open source. I consider open source,
including most of its variants, a wonderful idea. And, with that out of the way, I’d like
to rave for a few paragraphs.

Linux systems have been the most commonly exploited UNIX platforms for many
years now. And why is this? Is it because the open source community doesn’t examine
its own code? Or perhaps because the code wasn’t examined before it was released, so
that it could be exploited later? Maybe it is because the programmers are working at
Internet speeds, and a couple of little problems slipped past them.

The real issue with security problems in Linux has little to do with any of these things.
Certainly, better code review would help. The OpenBSD folk have made a serious
effort at this, and Web defacement statistic sites like attrition.org and alldas.de reflect
this, even though there are a LOT more Linux Web servers in the world than BSD-
based ones.

The security problems we face today go beyond code review, however. What we face
instead is a design crisis.

Out-of-the-Box
Just take any recent version of Linux and do a vanilla workstation install. And you
know what? You have just become a server, and you might not even know it. You will
have over a dozen listening TCP servers, so not only are you ready to rock and roll but
you also have just opened your system up for potential attacks on all of these ports.
And why?

Ease of use.

You can now perform DNS lookups without having to enter an IP address in
/etc/resolve.conf. You can have email sent directly to your system (if an MX record
already exists for your IP address, that is). The finger daemon is ready to reveal your
login name, and the r commands are just waiting to serve. At least Linux doesn’t come
with an /etc/hosts file with a lonely plus sign in it, welcoming all who might drop by,
the way Sun Microsystems did for so many years.

One of the simplest things that anyone can do to reduce the threat of network attacks
is to disable unnecessary network services. Shut off all the services, and your only net-
work footprint becomes the knee-jerk responsiveness of the IP stack to certain ICMP
messages and broadcasts.

musings
by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor’s Guide to System
V.

rik@spirit.com

But, from the perspective of a network-based attacker, you have just become invulner-
able. Nothing they can send you on the network will give them a shell prompt, execute
a command, delete a file, or divulge any information other than the identity of your
OS. Perhaps an attacker can convince you to do something dumb – social engineering
is a powerful mechanism, as old as fraud – but without your unwitting assistance, you
have configured the rock of Gibraltar.

If it is really that simple, why don’t more people do this? Even better, why don’t ven-
dors do this for them? The answer is that vendors know that operating systems pre-
configured to “just work” sell better than those that take a bit of tinkering to get them
to do anything. And you can buy or download operating systems that are set up cor-
rectly already. There are Linux distributions configured out-of-the-box for better secu-
rity. And, of course, there’s OpenBSD.

Feature Quest
The quest for ever more interesting features has a much more enthusiastic participant
than any open source group. I speak of Microsoft, which I will denote as MS.

While you can make a UNIX system invulnerable to network attacks pretty easily, the
same is definitely untrue about MS systems. One of the saddest things I have to say
when teaching security classes is that the easiest way to attack an MS box is with email.
MS, in its quest for features, first loaded its browser, Internet Explorer, up to its gun-
wales with features, making the remote execution of code on a targeted machine
child’s play. Or should I say script-kiddie play?

Then, by linking IE to Outlook and Outlook Express, you can now send email and
expect to have interesting things happen. Note that if you plan on updating every MS
platform in your organization every three months or so (or whenever the next gaping
hole is uncovered), you should be okay. Of course, everybody already does this, right?
A better way of looking at this problem is to realize that if you are using a year-old ver-
sion of IE, you should expect to have a Trojan installed on the system every couple of
weeks. Fortunately, you do have anti-virus software installed to detect the Trojans that
have now become endemic on MS platforms, don’t you?

Once upon a time, MS platforms weren’t considered interesting enough to bother
hacking. Now, when an $800 PC comes with an 800MHz processor, scads of disk
space, and may be connected full-time via cable modem or DSL, MS boxes have
become a lot more interesting. Last time I checked, you could download over 100 dif-
ferent variations of MS Trojans (the source code, I mean, so you can create your own
variation). A popular twist is to use private IRC channels for remote control. And the
people controlling these channels typically instruct the Trojan to upload a new version
every several days or so.

Wouldn’t want to have an out-of-date remote control Trojan running on victims’ sys-
tems.

MS XP
Speaking of remote control, MS has promised to “fix” the consumer marketplace. With
MS XP, Windows NT finally comes to the consumer desktop, with an announced
release date of October 25. Systems appearing in stores will no longer come with inse-
cure Windows 98, but instead with a security-enhanced Windows XP Home Edition.
Let’s check out some of the features.

71October 2001 ;login:

While you can make a UNIX

system invulnerable to

network attacks pretty easily,

the same is definitely untrue

about MS systems

MUSINGS ●

●

SE

C
U

RI
TY

|P
RO

G
RA

M
M

IN
G

|
C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

You can get an idea of what is in store for MS users by visiting
http://www.microsoft.com/windowsxp/home/guide/dependable.asp. Let’s try a short
quote:

“Using Remote Assistance, you can turn over control of your computer to a friend or
technician who can solve your technical problems – without visiting your home. Once
you give permission, the other person can control your computer remotely, over a net-
work. . . . For extra security, you can also set a password that the recipient must use to
connect to your computer.”

I like that. It is as if MS has built BO2K or SubSeven right into Windows XP. I wonder
if you can control the CD drawer too? And you can even set a password. I guess this is
what MS meant by “enhanced security.” Let’s look at the next feature.

“Network Setup Wizard makes it easier than ever to set up your own home network so
you can share printers, devices, files, and Internet connections among all the comput-
ers in your home.” Sounds like a great idea, making all of that unused disk space avail-
able for remote use.

“System Restore: If you experience system failure or another significant problem, you
can use the System Restore feature to roll back your computer to a previous state when
it was working normally.” Now this sounds really useful. The next time NTFS corrupts
a critical file, or installing a game overwrites a key .DLL with an older version, you
might actually recover without re-installing. This one feature alone sounds like a good
reason to upgrade, as it will pay for itself in days.

There is even an “Internet firewall” included. Too bad it won’t block email attach-
ments, VB Script, HTML, XML, JavaScript, and the dozen other things that have
proven dangerous for MS systems.

Lost
It is as if somehow the designers of operating systems got lost along the journey to the
future. They believed it is all fun and games, and hey, we trust everybody! When the
reality of it is that it only takes a tiny group of people to take remote control of Inter-
net connected systems designed with flexibility and features instead of reasonable
security.

Operating systems can be designed like ships, and I don’t mean the Titanic. The notion
of sandboxes, similar to the watertight compartments in Navy ships, would be a great
addition to operating systems, especially if it included real hardware support to facili-
tate a strong implementation. Instead, we have the Titanic, a poorly designed ship, but
boy, was it fast, and the accommodations (at least on the upper decks) were wonderful.

Back in 1982, when microprocessors were getting really cheap, I thought I saw the
writing on the wall. I was working as a consultant at Morrow Designs, and they were
designing disk controllers, and even serial port cards, with their own embedded
processors. You build a system with distributed intelligence instead of having a single
processor that has access to the entire system.

Let’s try an analogy from Star Trek (whatever generation). There is always a method
for self-destruct, to prevent the starship from falling into enemy hands. Enabling this
self-destruct mechanism takes key phrases provided by the command staff (and always
at least two members). Good security design, and quite appropriate given the serious-
ness of the occasion.

. . . the reality of it is that it

only takes a tiny group of

people to take remote control

of Internet connected

systems designed with

flexibility and features

instead of reasonable security

72

http://www.microsoft.com/windowsxp/home/guide/dependable.asp

Now, if the Enterprise were designed like a modern operating system and its underly-
ing hardware, self-destruct buttons would be sticking out of the walls, hanging from
the ceiling, located next to the “Flush” button, and of course, right where your hand
would reach to turn on the light in the middle of the night.

Our efforts to secure our existing systems resemble the crew of this sorry Enterprise
going around putting big warning signs next to all the self-destruct buttons, as well as
taping plastic cups over the ones little kids might press just for the heck of it (there are
always a few kids on Federation warships it seems).

WARNING!! DO NOT PRESS THIS BUTTON!! YOU HAVE BEEN WARNED!!

Okay, I do sound a little cynical. I really shouldn’t be complaining, as I don’t have a
ready solution for the problem.

Perhaps it is time to put on my Picard hat again, and make it so.

In the meantime, please remember to disable all unnecessary network services on
every UNIX/Linux system under your control. If you are running a public Web server,
set it up so it is ONLY a public Web server, and not a DNS server, POP server, IMAP
server, FTP server, print server, rsh server (AARGH!), and so on. PCs are cheap, even if
electricity is precious, so dedicate a system as a public Web server. And beware those
self-destruct buttons.

73October 2001 ;login:

In the meantime, please

remember to disable all

unnecessary network services

on every UNIX/Linux system

under your control

MUSINGS ●

●

SE

C
U

RI
TY

|P
RO

G
RA

M
M

IN
G

|
C

O
M

PU
TI

N
G

74 Vol. 26, No. 6 ;login:

DNS/IP Address Infrastructure
This installment of ISPadmin looks at ways ISPs design and implement their domain
name system (DNS) infrastructure. For any service provider who has a range (or
ranges) of IP addresses and/or domains allocated to it, DNS is at the core of the serv-
ices offered. Just imagine the Internet today without DNS! IP address management
and DNS are, by their very nature, intertwined.

Introduction
The domain name system’s job is to map names to IP addresses and IP addresses to
names. It works by delegating “zones” of data (namespace as well as IP space) out to
the organizations who use it. The delegated nature of DNS makes management easy as
the “owners” of the data are responsible for maintaining it. DNS is, by many accounts,
the single most successful implementation of a distributed database.

The DNS protocol is defined by a number of RFCs; see the DNS Resources Directory
for an excellent compilation of references (including RFCs) for DNS. The DNS-related
RFCs (draft and standard) are far too numerous to list here.

For a small provider, a DNS design is likely to be relatively straightforward. The inter-
esting DNS/IP address problem is for the larger provider, where more than two DNS
servers are required. Also, a larger provider will likely have a much larger pool of IP
addresses which require management.

The issue of DNS touches upon many areas, including:

■ Billing
■ NOC troubleshooting and maintenance
■ IP address allocation
■ Service delivery
■ IP routing

While I will touch briefly on each of the above areas, I will focus on DNS deployment
and architecture.

One might wonder what it takes to manage and support a typical DNS infrastructure.
At Ziplink, about 500 domains were hosted and approximately 80,000 IP addresses
(one per dial port) were managed by one staff member half-time. The server machines
required for this infrastructure included three Sun Ultra 10 class machines including
one shared master and two dedicated slaves/caches which handled both inbound and
outbound requests. The shared machine (which had other services besides BIND run-
ning on it) handled all of the data for the DNS records Ziplink was authoritative for,
feeding the two dedicated slaves/caches which responded to both internal and external
DNS requests. The slave machines seldom ran at a load average greater than 1, and the
load put on the shared machine by DNS was negligible.

Zone file record-keeping was a fully manual process at Ziplink, which accounted for
the relatively large amount of time spent managing the DNS database. Many providers
do not buy commercial tools or develop custom programs for managing their DNS
records. If the provider does develop tools, they will likely not be very sophisticated
and will require more manual data entry than a commercially available tool.

ISPadmin
by Robert Haskins

Robert Haskins is
currently employed
by WorldNET Inter-
net Services, an ISP
based in Norwood,
MA. After many
years of saying he
wouldn't work for a
telephone company,
he is now affiliated
with one.

rhaskins@usenix.org

75October 2001 ;login:

DNS Levels and Multiple Servers
There are several reasons why there are two classes or levels of DNS servers. The Inter-
nic requires two registered nameservers. Utilizing two DNS levels reduces the chance
of errors as data is entered only once instead of twice. Also, this design allows for mini-
mal impact to the “customer facing” (machines customers use for service) servers.
Under BIND, each time a zone file is updated, the nameserver must be restarted. Uti-
lizing a two-level design, the only time customer-facing servers are restarted is when a
domain is added or deleted (i.e, a change to the named.conf is required).

In a perfect world, the two DNS servers would be on separate subnets fed by different
routers in widely disparate geographical locations on the provider’s network. Doing so
would present the highest level of redundancy. This redundancy can be taken to very
high levels. Imagine having multiple machines across your network with identical IP
address(es), and by the magic of routing protocols be able to route to the closest one,
even to another machine entirely if the closest one is down.

DNS FOR A SMALLER PROVIDER
Once again, the biggest issue driving a smaller provider is cost. As a result (and by
virtue of the fact they are a small provider), at most, two DNS machines are usu-
ally deployed as depicted in (see Figure 1). In very small shops, they will be
shared machines, which perform other functions (mail and/or RADIUS seems to
be common).

One machine, labeled “primary DNS” in Figure 1, is where all changes are made
to the zone files. Often, the provider will have written a script to assist in man-
agement of the zone data, and will utilize CVS or other source management tools
as well. Some nameserver traffic will be pointed at this machine, but an effort
will be made to ensure most of the load gets pointed at the machine marked
“slave DNS.” The word “primary” indicates the machine where zone data origi-
nates.

The machine marked “slave DNS” will usually be set up as a DNS slave or
caching server, obtaining all of its authoritative data (zones about which the root
nameservers query it) from the machine labeled “primary DNS.” Doing so
ensures the data is always in sync with the primary server, so there is no differ-
ence between what the two servers report.

In this setup, all DNS queries (both on and off the provider’s network) are han-
dled by both of the nameservers. Once the network is larger, this setup will likely
change, and specific machines will be dedicated to inbound and outbound
requests as outlined in the next section.

DNS FOR A LARGER PROVIDER
A larger network operator is going to be more concerned about redundancy and relia-
bility than cost. As a result, they it will likely split their its DNS infrastructure into two
pieces: one servicing internal requests (i.e., dialup ports, cable modems, DSL cus-
tomers, etc.), and one servicing external requests (i.e., domains/IP addresses hosted by
the provider). A bigger ISP might utilize the design shown in Figure 2 for their its
external DNS traffic (requests originating outside the provider’s network for
domains/IP addresses hosted by the provider).

The machine marked “primary” in Figure 2 would be the single machine where all
changes are made for which the provider is authoritative. No external requests would,

primary
 DNS

slave
DNS

 Zone
Updates

 Internal and
external queries

Figure 1

ISP ADMIN ●

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|

C
O

M
PU

TI
N

G

Vol. 26, No. 6 ;login:

under normal circumstances, reach this machine. Its sole
purpose is to feed data to the machines identified as
“slave” which actually answer the queries coming in from
networks outside of the provider’s own networks. If you
did a query on the root nameservers for data this
provider is authoritative for, the machines labeled “slave”
would show up. These “slave” machines’ configuration
would point to the internal machine marked “primary”
in order to ensure they each reported consistent data.
The “slave” machines would probably not have a pointer
to the root nameservers, in order to encourage internal
clients to utilize the caching/slave servers engineered
expressly for this purpose.

Figure 3 illustrates how a larger provider might handle
internal requests (name-service requests coming from its
own “internal” network). Machines marked “slave”
would be simple nameserver slave boxes, in the case of a
dialup ISP deployed at the points of presence on the
provider’s network. The goal is to have the DNS servers
as close to the end subscriber as possible. Of course,
these caching servers would be like secondary servers in
the sense they would be allowed to query the ISP’s pri-
mary nameservers for zone data the ISP is authoritative
for. Engineering DNS in this fashion enables fast access
to all zones while reducing the load on the root name-
servers to the extent possible.

DNS Server Software
The vast majority of ISPs, both large and small, utilize
the Internet Software Consortium’s (ISC) Berkeley Inter-
net Name Domain (BIND) software. BIND has been
around for many years and has been the subject of many
security alerts. It would certainly be interesting to see
some statistics on the usage of BIND and its alternative
nameserver software, but I would guess the percentage of

all sites on the Internet today utilizing BIND (or its derivatives) would be above 90%.
If anyone has any pointers to such statistics, I’d love to hear from you.

BIND is considered the “reference implementation” for DNS, and the standard by
which other nameservers are judged. While it has had its security issues (I am not
aware of any security holes that have not been patched by the ISC), it does remain in
wide use by the service provider community and in the Internet at large. The latest
version of BIND is 9.1.2, which was released May 4, 2001. Quoting the ISC BIND Web
site, “BIND version 9 is a major rewrite of nearly all aspects of the underlying BIND
architecture.” Check the ISC Web site for more information on BIND 9.

Most providers are running BIND 8, as BIND 9 will take some time to be “certified”
and rolled into production. The process for certifying a new BIND version for produc-
tion use could be something like the following (applicable to just about any new appli-
cation in most information technology environments).

76

primary

slave

slave

External
requests

External
requests

Figure 2

slave

slave

root
nameserversprimary

outbound
customer
requests

zones ISP is
authoritative for

zones ISP is not
athoritative for

Figure 3

First, the provider will begin testing a new release of BIND in the lab for some period
of time, enabling the staff to get familiar with the new features, bugs, etc. Once they
are comfortable with the server and have come up with appropriate configurations for
the production environment, a handful of low-use servers are upgraded for a few
weeks. Finally, a complete rollout into all production machines is performed. All
through the process, a way to get back to the previous version is preserved.

A couple of other DNS implementations bear mentioning. Perhaps the most well
known is the djbdns server, by the author of qmail, Daniel J. Bernstein. Being aware of
the security issues of BIND, the author has offered $500 “to the first person to publicly
report a verifiable security hole in the latest version of djbdns.” A less known server is
Dents, an open source but not yet production-quality server. I am aware of a few
providers who use djbdns, but none who are using Dents.

Another option for providers is to allow someone else to host their name service. A
small provider might want to start by hosting their DNS records at a DNS provider
while they focus on the rest of their business. Over the long term, however, most
providers opt to host their own DNS as it is a critical part of providing Internet ser-
vice. Perhaps for this reason, there are few commercial DNS service providers, and
none whatsoever dedicated to the service provider market.

Namesecure is a commercial DNS service provider, but their initial focus was the name
to dynamic IP resolution (for example, cable modem or server which connected via
dialup for a few hours a day) resolution for end subscribers, not specifically hosting
DNS services for service providers. Namesecure has since morphed into primarily a
“value added” domain registrar similar to Verisign. Dynamic DNS is a free provider of
DNS services, but again, their focus is almost entirely end users.

Interaction with ISP Operations
Most commercial ISP billing/provisioning systems and at least one free one (Freeside)
I know of perform DNS provisioning by creating BIND-compatible configuration
(named.conf) and zone files as part of their respective systems. This automation makes
billing and provisioning DNS much more accurate and cost effective for the ISP.

The ISP’s NOC personnel usually have access to the various nameservers to perform
zone file updates and troubleshooting. This relieves engineering personnel from rou-
tine tasks and troubleshooting while giving the customer a better response time.

Network engineers at an ISP typically dictate how IP addresses are suballocated, once
American Registry of Internet Numbers (ARIN) allocates a network to the ISP. Net-
work engineering department input is usually required when provisioning new IP
numbers or when setting up DNS name entries for network equipment.

Many ISPs in the recent past have shied away from allocating static IP addresses to cus-
tomers due to the complexities of routing and managing this costly resource. Dialup
ISPs associated with competitive local exchange carriers (CLECs) who are receiving
reciprocol compensation from incumbant local exchange carriers (ILECs) encourage
the use of static IP addresses. Static IP address customers tend to spend many hours
online; the CLEC gets more money in the form of reciprocol compensation from the
ILEC! I may cover the topic of IP addresses and related issues (ARIN, rwhois, IP
address allocation/management, etc.) in a future column of ISPadmin.

77October 2001 ;login:

Many ISPs in the recent past

have shied away from

allocating static IP addresses

to customers due to the

complexities of routing and

managing this costly resource

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|

C
O

M
PU

TI
N

G

ISP ADMIN ●

Vol. 26, No. 6 ;login:

Miscellaneous DNS Related Topics
DNS entries for the ISP’s zone would vary depending upon the business plan and his-
tory of the ISP. Typical DNS entries for a dialup ISP owning the domain “isp.net”
would be the following:

■ www.isp.net – Web site for ~accounts
■ smtp.isp.net – where customer outbound mail points to
■ pop.isp.net – where customer POP clients point to
■ pop3.isp.net – points to same IP as pop.isp.net
■ mail.isp.net – points to same IP as pop.isp.net
■ ftp.isp.net – anonymous FTP service, if provided by ISP
■ news.isp.net – Usenet news machine(s)

Of course, using the magic of DNS round robin (or other load balancing mechanisms
such as a layer 4 switch), multiple IP addresses can be returned for several machines
providing duplicate services for redundancy or load purposes. A smaller provider
would probably not have a need to do load balancing.

For hosted domains, the customer would dictate what entries should be placed into
their DNS zone file. Of course, ISPs do not usually host DNS records unless the entity
requesting the hosting has some sort of a business relationship with the ISP. Even with
“secondarying” DNS records, usually the person requesting the secondary buys some
sort of service from the ISP. There is at least one free public provider of secondary
(and primary) DNS on the Internet called “The Public DNS Service” sponsored by
register.com.

Network Address Translation (NAT) is a technique used by many organizations (espe-
cially enterprises) to reduce the number of IP addresses used. Typically, traditional
ISPs are able to justify enough IP address space to cover their customer usage and do
not deploy NAT as an enterprise would. An ISP’s customer may need to deploy NAT
because they doesn’t want to pay the cost of additional IP address space, or the ISP
doesn’t have the space to allocate. Another way to reduce IP address usage is by utiliz-
ing Apache’s (or other Web server’s) virtual hosting capability. Name-based virtual
hosting is the Web server’s ability to serve multiple Web sites from one IP address. Uti-
lizing name-based virtual hosting will drastically reduce the number of IP addresses
required to serve large numbers of hosted Web sites.

Conclusion
DNS at the smaller scale is handled with two machines, a primary for making changes
and responding to external requests, and a secondary for internalrequests. A larger
network provider is likely to split up their DNS infrastructure: one machine to handle
internal requests originating on its network and one to answer external requests not
originating on its network, for from domains/IP addresses for which the ISP is author-
itative. There are some free as well as commercial DNS service providers, but none
aimed expressly at the service provider market. This requires most ISPs to implement
and manage their own infrastructure.

Next time, I’ll examine how ISPs large and small set up their Web hosting infrastruc-
ture. In the meantime, send your questions and comments regarding ISP infrastruc-
ture and system administration to me!

78

REFERENCES
DNS Resources Directory:
http://www.dns.net/dnsrd/

ISC’s BIND: http://www.isc.org/products/bind

Daniel J. Bernstein’s djbdns page:
http://cr.yp.to/djbdns.html

djbdns: http://www.djbdns.org/

qmail: http://www.qmail.org/

Dents: http://sourceforge.net/projects/dents/

Namesecure: http://www.namesecure.com/

Verisign: http://www.verisign.com/

Dynamic DNS: http://www.dyndns.org/

Freeside: http://www.sisd.com/freeside

ARIN: http://www.arin.net

The Public DNS Service:
http://soa.granitecanyon.com/

NAT starting point:
http://linas.org/linux/load.html

Apache virtual hosting page:
http://httpd.apache.org/docs/vhosts/

http://www.dns.net/dnsrd/
http://www.isc.org/products/bind
http://cr.yp.to/djbdns.html
http://www.djbdns.org/
http://www.qmail.org/
http://sourceforge.net/projects/dents/
http://www.namesecure.com/
http://www.verisign.com/
http://www.dyndns.org/
http://www.sisd.com/freeside
http://www.arin.net
http://soa.granitecanyon.com/
http://linas.org/linux/load.html
http://httpd.apache.org/docs/vhosts/

79October 2001 ;login:

Geeks at Umich [Sporadic, 4 - 6
msgs/week usually]. An informal clan,
centered loosely around the University
of Michigan but scattered everywhere
now. List topics include gadgets and
goodies, forwarded IP bits of particular
relevance to geeks, open source behind
the scenes tidbits and/or choice forwards
from the free software world. The latter
is especially useful for me, since other
than the occasional FreshMeat visit, I
don’t follow any dedicated news sites in
that area. Topics occasionally include
local events of interest in the Michigan
area. Recent headers include “Unisys
Apologizes for Creating Unintended
Consequences of the Computer Age,”
“GODZILLA -> In a can!,”“3-inch alu-
minum cube-o-fun,” and “the eunuchs
convention, june 20-29.” That last was
not about summer USENIX, it was a
link to an actual eunuchs’ convention in
India. No public archives; subscribe to
geeks-request@monkey.org, or via
majordomo@monkey.org

Keith Dawson’s “Tasty Bits from the
Technology Front.” [Updated frequently
by blog (weblog), more sporadically by
email]. A great source for breaking tech-
nology news, with a great deal of insider
commentary, especially on ICANN
atrocities, telecom policy, and major ISP
outages. Other frequent topics include-
cool gadgetry, science, and software
tools, along with various odd sound-
bites. I am part of a small group of folks
who have sent in tidbits to Keith, and we
exchange lots of info on a private list
associated with TBTF. All our really
good stuff makes it into the blog, so
you’re not missing anything important!
Recent topics included “An illegal prime
number,”“European Court of Justice
outlaws criticism of EU,”“When it
absolutely, positively must be zapped
overnight,” and “A Bell goes south.”
Archives and blogpage at
http://www.tbtf.com/

I share odd bits of news with various
folks, who often ask me, “Hey, where do
you find this stuff?” I definitely use “the
standard resources” that everybody uses,
such as SlashDot, FreshMeat, and vari-
ous OS-centric publications.

I’m also slightly tapped into the multi-
media community, as well as the Web
standards community, and it’s here that
I find a number of cool tools and inter-
esting bits. Late, admittedly, by the stan-
dards of those communities, but
perhaps early by the notice of the sysad-
min and IT communities.

I find it worthwhile to wade through
rather a lot of chaff to find the occa-
sional sysadmin-relevant grain in the
following places. They are NOT
arranged by any order of importance.

Dave Farber’s “Interesting People” (IP)
[1 - 3 msgs/day]. Some cool tech, not
restricted to computers, including inside
track and commentaries on telecomm
and privacy legislation, as well as for-
warded news stories/URLs on those top-
ics. Some very highpowered folks are on
this list, and while only Dave can post to
it, he frequently approves comments and
replies mailed to him. Also covers com-
puting history, usually in the first-per-
son. Recent headers (as of this writing)
include “UNIVAC turns 50,”“Why we
don’t use digital cash,” and “Feds will
data tap under CALEA.” Archives/page
at http://www.interesting-people.org/

a bit off the beaten track
by Strata Rose
Chalup

Founder, VirtualNet
Consulting; Strata
Rose Chalup special-
izes in large-scale
messaging deploy-
ment. A sysadmin
since 1983, she is
now enjoying a sab-
batical to scuba dive,
read sci-fi, fix her
house network, and
get enough sleep.

strata@virtual.net

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

A BIT OFF THE BEATEN TRACK ●

Phil Agre’s “Red Rock Eater News”
(RRE). [Sporadic, roughly weekly]. Pri-
marily lists of one-line annotated URLs,
labelled “pointers,” on topics ranging
from politics to science to technology to
social systems. Monthly or so there are
booklists of books, arranged by topic,
that Phil has read, referenced, or just
collected as relevant to the topic of the
booklist. I am in awe of the degree to
which Phil is well-read, and how many
issues he tracks. Being a tenured profes-
sor has some advantages! Also includes
occasional compelling forwards from
educational, tech-educational, and pub-
lic policy lists. The real gems, usually
every 2 or 3 months, are first drafts and
final versions of scholarly papers that
Phil (and occasionally, list members)
have authored on technology-and-soci-
ety, economic theories of technology
application, and the like. Fair warning:
these can be very stiff reading, but are
incredibly educational. Other content
includes polemics and rants on the
growing globalism, especially Davos and
the like, American politics, university
practices, lists of conferences, mostly on
technology, crypto, education, CS, AI,
and social sciences. Phil has a fetish for
good, cheap pens, and you’ll occasion-
ally find indepth reviews of pens sent to
him from odd places. Recent headers
include “pointers,”“Hague Conference:
effects on free speech, consumers,”
“Hierarchy and History in Simon’s
‘Architecture of Complexity’,” and “The
Information Society in Europe.”
Archives and Webpage at
http://dlis.gseis.ucla.edu/people/pagre/rre.html

Need to Know (NTK). [weekly, on Fri-
days], In their own words, “the weekly
high-tech sarcastic update for the UK.” I
love these guys! Lovely cryptic tidbits
about the UK computer scene, including
ISP foibles, legislation, and notably
embarrassing gaffes and Web deface-
ments, as well as updates on privacy and
crypto legislation in the EU and overseas
in general. Most issues feature a great

http://www.tbtf.com/
http://www.interesting-people.org/
http://dlis.gseis.ucla.edu/people/pagre/rre.html

Vol. 26, No. 6 ;login:

about articles in Release 1.0, Dyson’s
highly respected but expen$ive subscrip-
tion newsletter, and fascinating op-ed
and industry news pieces from a very
interesting perspective, namely mover-
and-shaker VC community folks engag-
ing in prolepsis trying to predict the
future of “the industry,” or at least new
trends and hotspots. Much of it seems
pointless or bizarre from here in the
quasi-trenches, but bear in mind that
your CTO and his/her buddies are prob-
ably reading Dyson’s for-pay newsletter,
and that Gartner is influenced by Dyson,
generating similar stuff in their “vision”
subscription sections. Fear. In some ways
it’s like watching a road accident, there’s
that same fascination and horror upon
watching tomorrow’s IT crises being cre-
ated out of air and dew by very savvy
and usually accurate business comput-
ing policy experts. Also serves up some
ICANN and related news/views since
Esther has been heavily involved there.
Recent topics included “ICANN Wants
You!!!,”“Triumph of the Weblogs
(teaser),”“Feedback and Further Con-
versation,” and a calendar of Upcoming
Technology Events. Archives and Web-
page at
http://www.edventure.com/conversation/.

There are a lot more, but these are just
the ones I make time to read every few
weeks, or more often. Then there are the
ones I save for a two or three months, or
when I have spare time (ha!) or when
I’m procrastinating.

Send me your favorites, and I’ll create a
page for the list and announce it to the
sage-members, and as an addendum to a
future column.

80

tool spotlight, mostly free software but
also commercial tools now and then.
Other regular columns within issues
include media updates, with info on UK
TV movies and shows (with capalert
links and highlights, and a popular new
“junkfood” section about new varieties
of nerdchow sighted and tried. Recent
topics include “Guardian/Observer plug-
ging ‘dot-com-no-hoper’ Moonfruit,
why?”, “Farewell to ORBS,”“Review of
ART DROIDS 2000AD museum exhibit,
now showing,”“Review of ‘Get Over It’
(Shakespeare in Love meets Bring It
On).” Archives and Webpage at
http://www.ntk.net/.

Dave Winer’s “Scripting News Update.”
[daily, sometimes highly prolific]. More
of interest to the Web world types, but I
work there and try to keep up on what’s
going on. Mostly XML, RSS, Web stan-
dards, and Web industry news, announ-
cements of related packages and tools,
interesting bits of overall computing
industry news, and opinion pieces by
Dave. The latter are usually either com-
pletely cryptic or utterly fascinating to
me, given that I don’t overlap with that
world very much. One interesting thing
that shows up frequently is first-person
quotes from industry luminaries on a
variety of topics, since Dave has been
around forever and knows everybody.
Recent topics included “Microsoft-Free
Fridays,” an announcement of new Perl
XML-RPC implementation, “Google
Buttons,” and many pointers to informa-
tive rants and amusing satires on Smart
Tags (by multimedia industry software
developers). Archives and Webpage at
http://scriptingnews.userland.com/ It’s
worth noting that UserLand is a freely
available scripting publishing environ-
ment that Dave is the primary author
of.– if Wiki or Blogger don’t quite do it
for you, try UserLand.

David Weinberg’s “Journal of the
Hyperlinked Organization.” (JOHO).
[monthly] Primarily Web development
and standards community news and tool
announcements, quite highly thought of
in that community, with quality and in-
depth writing. Recent topics included
“save the threads,”“Breaking the spine of
books,”“The three-strikes rule for PR,”
“Data spidering service,” and “Building a
fullsize Robbie the Robot replica”.
Archives and Webpage at
http://www.hyperorg.com/

Owen Thomas’ “DITHERATI.” [Daily,
weekdays]. In their own words, “see the
digerati dither, daily.” Pompous, ludi-
crous, and ridiculous quotes by “indus-
try luminaries” who ought to know
better, captured and usually poked at
with a verbal stick by the good Mr
Thomas. Includes the source of the
sighting and a brief, usually stinging,
comment on the disparity between the
quote and reality. Since I don’t follow
the “dot com world” or “the industry”
too closely, I find this to be a useful
remedial education as to the major play-
ers and companies, as well as highly
amusing. Recent topics included “A
FISH, A BARREL, AND A SMOKING
GUN,”“Internet: not free Phone
monopoly: free, Any questions?,”“Nei-
ther rain, nor snow, nor gloom of five-
hour compiling sessions,” and “JEWEL
IN DENIAL.” Archives and Webpage at
http://www.ditherati.com/.

Glen McCready’s “0xDEADBEEF.” [spo-
radic]. Moderated, primarily humor and
the occasional highly nifty scientific bits.
Some of the humor is not “family
friendly,” though it's usually technically
“clean.” Subscribe at 0xdeadbeef-request
@petting-zoo.net

The Conversation Continues.
[monthly] This is a free newsletter put
out by Esther Dyson and staff, and is one
of the few “pro” sources I receive. It’s a
combination of informative teasers

http://www.edventure.com/conversation/
http://www.ntk.net/
http://scriptingnews.userland.com/
http://www.hyperorg.com/
http://www.ditherati.com/

81October 2001 ;login:

Summary
Every company has policies and procedures designed to reduce mistakes,

increase the likelihood of consistent behavior and generally minimize risk.

The goal of this column is to list some of the policies that you and your

general counsel should work together to develop and maintain. In general,

your company should probably have the following policies: an Acceptable

Use Policy for internal users, a Terms of Service for any external users/cus-

tomers, a Monitoring Policy, a Data Retention Policy, an IT Risk Manage-

ment Policy, an Incident Response Policy, and a Privacy Policy. Each policy

should be tested/audited on a regular basis.1

Introduction
Corporate policies and procedures serve a number of functions – they are educational,
they increase the likelihood that processes will be performed consistently, they mini-
mize the number of mistakes made or steps skipped, and they provide the company
with a document that it can show the world to say “This is how we do ‘x’.” Developing
corporate policies also allows your company to figure out potential responses to situa-
tions ahead of time, decreasing the number of decisions that are made in the heat of
the moment.

In several other columns, I’ve discussed some of the policies that your company ought
to have in place: a Harassment Policy, an Acceptable Use Policy, a Monitoring Policy,
and a Security/Risk Evaluation Policy. The purpose of this column is to add to that list
and explain why this collection of policies is necessary and what they should look like.

Policies Your Company Should Have
As far as your company’s use of technology is concerned, your company should proba-
bly have, in some form or another, at least the following policies in place and under
regular testing and compliance review:

■ Acceptable Use Policy for internal users
■ Terms of Service for any external customers/users
■ Monitoring Policy
■ Data Retention Policy
■ Risk Management Policy
■ Incident Response Policy
■ Privacy Policy

ACCEPTABLE USE POLICY
The Acceptable Use Policy (AUP) is the terms of service by which all employees, con-
tractors, etc. (including executives and administrators) access and use your network
and internal systems. Your AUP should govern all of the systems that an internal user
might use, including corporate systems, email, intranets, corporate databases, peer-to-
peer applications such as Napster and Gnutella, PDAs, personal ISP accounts, instant
messaging software, and anything else they might be able to use or access via your net-
work.

An AUP educates users about what they can and cannot do, and informs them of any
penalties that may be associated with doing things they are not allowed to do (e.g.,
account termination, disciplinary action, termination of employment). An AUP
should include at least the following:

the corporate
policy web

by John
Nicholson

John Nicholson is an
attorney in the Technol-
ogy Group of the firm
of Shaw Pittman in
Washington, D.C. He
focuses on technology
outsourcing, application
development and sys-
tem implementation,

John.Nicholson@ShawPittman.com

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

THE CORPORATE PRIVACY WEB ●

Vol. 26, No. 6 ;login:

■ It should specify that your network and systems are for business purposes and
that personal use of the system is not permitted or is strictly limited (and if lim-
ited, how).

■ It should specify that all data on equipment provided by the company is the prop-
erty of the company and may be inspected at any time.2

■ It should reference your Monitoring Policy and state that, as a condition of access
to the network and systems, the users consent to such monitoring.

■ It should include a provision that specifies that even if your company does not
take disciplinary action regarding a particular unauthorized use of the network or
a system, such failure by the company to take any action should not be interpreted
as a change to the AUP or permitting such unauthorized use in the future.

■ It should prohibit the use of the network and systems for any illegal act or breach
of regulations (including those related to intellectual property, anti-hacking, anti-
fraud and/or data privacy) or company policies, including, in particular, your
Harassment Policy and your Privacy Policy.

If you provide services to external users and have a Terms of Service (TOS), your AUP
should specifically require your employees and contractors to comply with the TOS
when using those services in the way that a customer would.

From a legal perspective, an AUP can help limit the company’s exposure to harassment
or breach of confidentiality claims. The AUP also establishes the boundary for “lack of
authorization” for purposes of the Computer Fraud and Abuse Act.3

The AUP should be regularly updated to cover new technologies. Employees should
have the AUP explained to them as part of their orientation. The AUP should be
included as part of your employee handbook, and a condition specifying that contrac-
tors will abide by the AUP should be included as part of any contracts with consultants
or other third parties who might have access to your network or systems. Also, all
employees (and contractors who will have access to your network or systems) should
be required to sign a statement that they have received, read, understood, and agree to
comply with the AUP. It might also be a good idea to do something to regularly
remind people about the AUP such as posting it on physical and electronic bulletin
boards or including a message regarding compliance as part of login banners or as a
click-through screen as part of the login process.

TERMS OF SERVICE
The Terms of Service (TOS) governs the use of customers or external users of your
network or systems. Your TOS should:

■ Clearly describe the service provided
■ Claim ownership of the intellectual property included as part of the service
■ Grant users a license to the intellectual property necessary for them to use the

service
■ Grant a license from the user to you for your use of any intellectual property pro-

vided the user as part of the user’s using of the system
■ Prohibit users from violating laws or regulations or performing any other acts that

your company wishes to prohibit
■ Specify whether or not users are allowed to link to your service and, if so, any

restrictions on such linking
■ Explain your Monitoring Policy and specify that, as a condition of accessing your

network, systems, or services, the user consents to such monitoring

82

From a legal perspective, an

AUP can help limit the

company’s exposure to

harassment or breach of

confidentiality claims

■ Indicate that the user accepts the TOS and will use the service in accordance with
it

If users access your service via a Web page or some other type of login screen, the TOS
should be a click-through screen, preferably with the button at the bottom of the page.
That way, users at least have to scroll through the whole TOS before clicking the but-
ton to accept.

Your TOS may be subject to certain legal requirements. For example, under the Digital
Millennium Copyright Act, a Web site’s TOS should include a contact for copyright
violation claims. If your Web site, or any part of your Web site, is intended for children
under the age of 13, there are very specific rules governing how you provide those
services and what information you can collect. You should coordinate the develop-
ment of your TOS with your company’s general counsel.

MONITORING POLICY
Sections 2511 and 2520 of Title 18 of the US Code create criminal and civil liability for
improper interception of wire, oral, and electronic communications. Although there
are exceptions under both the US Code and under state laws for system providers,
relying on these exceptions is unnecessary if your company puts in place an appropri-
ate Monitoring Policy. By explicitly requiring user consent to monitoring, your com-
pany can make access to your network and systems conditional on users accepting
such monitoring. All users of your network and systems (whether employees, third-
party contractors or customers) should be required to consent to monitoring.

Your Monitoring Policy should specify that your company has the right to monitor all
network traffic and all data stored on equipment used for company purposes that is
provided to an employee or contractor by the company or by any third-party contrac-
tor. Both your AUP and your TOS should reference this policy and explain it. Login
banners should also reference the Monitoring Policy and state that access to the net-
work or system is subject to monitoring at any time and for any reason, and that by
accessing and using the network or system, the user is explicitly agreeing to such mon-
itoring.

Monitoring traffic and behavior on your systems can allow you to detect misconduct
in real time and can create logs that will be useful in an investigation and/or prosecu-
tion. Monitoring can also decrease employee Web surfing or other violations of the
AUP.

In the future, the increased use of personal technology (e.g., cell phones, PDAs, etc.) to
access corporate systems will require increased and more specific consents. If, for
example, you open up your document management system so that it is Web accessible,
an employee with a PDA and a wireless modem can download confidential informa-
tion. Access to that system could require explicit consent from the user to monitoring
of the activity and an agreement to provide access to the PDA on demand. (Note, such
access will be easier if your company owns the PDA and provides it to the employee.)

DATA RETENTION POLICY
Your Data Retention Policy (DRP) may already exist. Frequently, companies have poli-
cies that specify how long paper records will be retained, both on-site and off-site, and
what will be done with them after that period. They might be microfilmed, sent to a
warehouse or just destroyed. Depending on your industry, it’s even possible that your

83October 2001 ;login:

Your Monitoring Policy

should specify that your

company has the right to

monitor all network traffic

and all data stored on

equipment used for company

purposes

THE CORPORATE PRIVACY WEB ●

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

DRP is mandated by some regulatory agency. It’s also very likely, however, that any
existing DRP is already being violated by your computer users. If your DRP was devel-
oped prior to the widespread use of PCs, your DRP probably isn’t even suited to deal-
ing with electronic data.

Given the possible regulatory aspect of data retention, as well as the possible use of
stored data in litigation, your general counsel should be involved in the development
of your DRP.

Your DRP needs to deal with both paper and electronic data and must comply with
any regulatory requirements imposed on your industry. Given the ease with which
documents are now generated, you may even need to figure out how to deal with mul-
tiple copies or versions of both paper and electronic documents. Whatever policy your
company decides to impose, the DRP and its implementation procedures should be
clearly communicated to your users. The implementation of your DRP should also be
audited.

IT RISK MANAGEMENT4

Your IT Risk Management Policy should be part of your overall corporate Risk Man-
agement Policy (assuming you have one). Your IT Risk Management Policy should
include a procedure that tracks security risks (both external and internal) as they are
identified, evaluates their potential risk to your business, identifies the appropriate fix,
schedules a date for the implementation of the fix, and includes a follow-up procedure
to ensure that the fix was properly implemented. For example, your policy should
include:

1. Regular reviews of the relevant security vulnerability sources (i.e., Bugtraq,
NTBugtraq, security reports published by software vendors, virus reports, secu-
rity researchers, the various cracker Web sites, etc.) and, if appropriate, a proce-
dure to ensure that such reviews are performed

In a diverse environment, your company may have multiple people responsible for
various platforms and/or software packages, or your company may have various
administrators with responsibility divided by geography. It’s important to make it clear
who will have the ultimate responsibility for monitoring security issues related to each
platform or software package.

2. A determination of how the identified vulnerability applies to some aspect of
your business

For example, a security hole that lets a script kiddie put graffiti all over your Web page
can be embarrassing to your company or might result in your taking down the page
until you can plug the hole. If your Web page is just information about your company,
this might not be a big problem. If your Web page is the means by which your cus-
tomers order, that’s a different matter. It’s important to understand how the vulnera-
bility could impact your business if it were exploited.

3. A rating of the risk represented by the security issue (i.e., Critical, High,
Medium, or Low) based on the potential impact of the security issue to the busi-
ness (in terms of lost business, lost data (based on your DRP), public perception,
potential cost, etc.)

4. A schedule for the implementation of the relevant fix for the risk (i.e., all Critical
fixes will be implemented within one day, all Highs within one week, etc.)

84

Given the possible regulatory

aspect of data retention, as

well as the possible use of

stored data in litigation, your

general counsel should be

involved in the development

of your DRP

5. A follow-up procedure that checks whether fixes were actually installed and,
depending on the importance of the security issue, verifies whether the fix actu-
ally solves the problem

A follow-up procedure could vary depending on the rating of the issue. For example,
you might want to ensure that all fixes for critical issues are implemented, and use sta-
tistical sampling for the remaining fixes. Alternatively, you might want to ensure that,
regardless of rating, all fixes for a mission critical system are performed.

Finally, your policy should schedule regular audits of how your system stacks up
against the known threats. This might involve having a “white hat” security firm
attempt to penetrate your network. Such audits are an opportunity to test your prior-
ity ratings, as well. If a problem someone rated as “Low” allows the penetration team
to take control of your system, then you might need to reevaluate that rating.

Incident Response Policy
Your response to an incident should never be ad hoc. Depending on the nature of your
business and the type of incident, the personnel involved should have a clear plan for
how to respond and whom to (and not to) inform (both internally and externally).
Your Incident Response Policy (IRP) should be developed by a multidisciplinary team
that includes (1) knowledgeable representatives from IT, Security, Legal, PR/Market-
ing, and Insurance/Risk Management and (2) selected third parties, including forensic
experts, security consultants, and possibly law enforcement.

The IRP should identify initial indicators (“triggers”) of an incident (obviously these
must be updated regularly) so that those involved know when to initiate the response
plan. Different indicators may require notice to specific people or certain actions.
Regardless, such notice and actions should be precisely scripted. As part of the devel-
opment of the IRP, your team should think through various scenarios and plan first
responses to each of them. You should also identify in advance those external parties
(preferably specific individuals) who will provide support during different types of
incidents. For example, you might identify specific technical and forensic consultants,
certain local or federal law enforcement officers, individuals at your ISP, external legal
counsel, a crisis management firm, etc. These people should be included in the devel-
opment of relevant sections of your IRP.

In developing your IRP, your team should have regular meetings with IT staff. Mem-
bers of your incident response team should not be meeting each other for the first
time when you have an incident. It is important for your team to understand who has
access to your systems, what is the extent of their authorization (in particular and as
specified in your AUP), what type of logs or backup copies are available (as specified in
your DRP), what range of response and notice options are permitted by internal poli-
cies, and any external requirements.

ELEMENTS OF THE IRP

TRIGGER EVENTS

This section of the IRP should identify the triggers for initiating the IRP. Such triggers
might be based on particular networks or systems, data or events. Some triggers might
result in the IRP being implemented automatically, others might require evaluation by
designated parties. As part of identifying the triggers, your team should have a good
understanding of the steady state “background noise” of the network and systems. The
triggers should not be set so low that the IRP is always “crying wolf,” but, at the same

85October 2001 ;login:

Your response to an incident

should never be ad hoc

THE CORPORATE PRIVACY WEB ●

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:86

Your IRP should clearly

specify how evidence related

to an incident is to be

maintained and protected

time, they need to be sensitive enough to initiate the IRP when appropriate. One
approach when implementing a new IRP would be to set the triggers very low and
gradually raise them as the team and your company gain an understanding of which
events actually constitute threats.

INCIDENT EVALUATION

Once an incident has been identified, your IRP should specify how that incident
should be evaluated. The IRP should require those working the incident to prepare
answers to questions that will be relevant to decision-makers. For example:

■ Does the incident appear mischievous or malicious?
■ Does it appear to be an isolated incident or part of a larger pattern?
■ If the incident is network-based, is the upstream source more likely a victim or

the originator of the incident? If not network-based, what is the source?
■ What are the implications of contacting the source?
■ Has your system been compromised? If so, where and for how long?
■ What systems/files have been taken/tampered with?
■ What is the value/potential harm resulting from such tampering/taking?
■ From a legal perspective, does the incident create potential liability to customers,

shareholders, or other downstream entities? What level of due diligence is
required to avoid liability if the incident escalates?

■ If there is an investigation, should participation in the investigation be limited to
internal personnel? Should outside counsel be retained?

■ Does the company have reporting obligations related to incidents of this type? If
so, to whom?

EVIDENTIARY/FORENSIC REQUIREMENTS

Your IRP should clearly specify how evidence related to an incident is to be main-
tained and protected. You should work with your general counsel, law enforcement,
and external forensic consultants in advance to develop this portion of your IRP.
Proper evidentiary and forensic procedures will increase the likelihood that your com-
pany will be able to recover any damages and that an attacker will be prosecuted. These
procedures do not kick in until after an incident has been resolved. They are an inte-
gral part of the incident response process.

RESPONSES

Your possible responses to an incident range from ignoring it to immediately shutting
down the affected system. Your IRP should specify under what circumstances you will
ignore an incident, when and for how long you will allow it to continue while you
observe and gather evidence, when you will take immediate action and, if so, what
action you will take. Without the guidance of an IRP, the immediate response will
probably be “Shut it down.” Shutting it down lets an attacker know that you are aware
of the problem and allows the attacker to move on and attack you in another way or
attack someone else. Shutting it down might also compromise evidence, thereby pre-
venting you from prosecuting an attacker.

In the long run, your responses to an incident should be tied into your IT Risk Man-
agement Policy. The positive side of an incident (if there is one) is that an incident will
help you evaluate whether your rating of a particular vulnerability was correct.

REPORTING PROCEDURES

Your IRP should also specify what internal and external reporting will be done regard-
ing an incident, including if and/or how an incident should be reported to law
enforcement. The IRP should designate who has the authority to make any external
reports regarding an incident and to whom they are authorized to make such report.
For example, your risk manager or your general counsel may be authorized to call in
law enforcement, but only the CEO would be authorized to communicate with share-
holders and the media.

An important area to consider in the development of your IRP is under what circum-
stances you wish to involve law enforcement and at what level. Should it be the local
law enforcement, or should it be the FBI? Either way, you should have an established
relationship with whomever it will be. Bear in mind that once law enforcement is
involved, the handling of the incident may be out of your control. Law enforcement
may have a different agenda than you do.

TESTING

Once you have your IRP in place, you should test it on a regular (and occasionally
unexpected) schedule. You should also consider bringing in all of your external sup-
port for an exercise from time to time, so that you can see how your IT, legal, forensic,
PR, and other experts interact. The likelihood of a significant incident and the poten-
tial impact to your business of that incident should determine how frequently and to
what degree you conduct such tests. Such testing can be tied into testing of your IT
Risk Management Policy.

PRIVACY POLICY
These days, everyone is concerned about privacy. If you are in certain industries
(finance or health care) or if you provide services online to children under 13, you are
subject to very specific regulations regarding any information you collect online. If
your business operates in Europe, you may be subject to the European Data Privacy
regulations. Canada recently passed a data privacy act. And more privacy legislation,
both in the US and abroad, is coming.

If you collect and store any personal information from customers, members or anyone
else, you should have a Privacy Policy that clearly describes what data you collect, what
you do with it, how people can opt out of having you keep or use their data and how
they can contact you to correct any errors or opt out. If you have a Web site, there
should be a link on each page of your Web site to the Privacy Policy. The Privacy Policy
should clearly include a mailing address, email address, or phone number where peo-
ple can contact your company regarding privacy questions.

Your Privacy Policy should be tied into your DRP. You should also consider in your
IRP whether and/or how you will notify people if their data is compromised.

Once you have your Privacy Policy in place, your compliance should be audited on a
regular basis by both your internal audit staff (if you have one) and your external
auditors.

87October 2001 ;login:

If you collect and store any

personal information from

customers, members or

anyone else, you should have

a Privacy Policy

THE CORPORATE PRIVACY WEB ●

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

Conclusion
Developing and maintaining this collection of policies is a lot of work. It requires
coordination between technical and legal personnel, and the policies require testing.
It’s not enough to simply write a policy and then put it in a drawer. Once your draft
policies have been developed, have them audited on a regular basis by your internal
audit group (if you have one) and/or your external auditors. In order for your policies
to do their job, everyone whose behavior is governed by a particular policy needs to
understand and comply with it. Properly implemented, a good set of policies can sub-
stantially decrease both the operational and legal risks to your company. Doing it right
is expensive and resource intensive, but the risks associated with doing it wrong or not
doing it at all are too high.

88

NOTES
1. This article provides general information and
represents the author’s views. It does not consti-
tute legal advice and should not be used or
taken as legal advice relating to any specific sit-
uation.

2. Given the increasing capabilities of PDAs,
there is an increasing likelihood that a company
will, at some time, want to see the contents of
an employee’s PDA. If the PDA belongs to the
employee, the company may not have the right
to demand the contents of the PDA. If, on the
other hand, the company has provided the PDA
to the employee, then the company has the
right to look at the data on the PDA at any
time, just as if it were on a company-provided
computer.

3. 18 USC § 1030.

4. Note, this section repeats information pro-
vided in “You’ve Been Cracked. . . And Now
You’re Sued,” in the April 2001 issue of ;login:.

89October 2001 ;login:

This article continues the previous theme of highlighting the similarities

between organizations and other living organisms. Because we are pri-

mates, it is quite reasonable to expect that organizations made up of people

will behave, in some ways, like primates.

One of the most obvious similarities relates to marking and defending territory. Pri-
mates, and many other creatures, find some “turf” which they claim for their own.
They then mark this territory and defend it against encroachment. Organizations do
too.

This is often evident in the staff side of a company. The travel department goes ballis-
tic if you order your airline ticket on the Internet. The finance department wants to see
and approve every check. The facilities department is upset about nonstandard furni-
ture. MIS gets snooty about that “legacy” peripheral you want to connect.

We aren’t saying this is right or wrong. These responses may be quite rational, or
totally irrational. The point is that we are probably wired to have them, at least as indi-
viduals, and this means that organizations tend to have these responses as well.

Sometimes the territory wars are very obvious — who has the biggest office, the corner
office, the office across from the restrooms, the office with a pole in the middle and a
busted thermostat? Who is in a cube? Is it a tall-walled cube or a low-walled cube?
Does it have a new chair or a cast-off one? And so on...

We have a tendency to respond to territory emotionally, as anyone who has ever
planned a building move knows in spades. So how can we allocate space and keep our-
selves out of the “red zone” of irrational behavior. Sometimes space is allocated hierar-
chically — a company gets a building, each department has a floor, each group has a
separate corner, and then the groups allocate their own offices. This isn’t a bad way to
allocate space, although sometimes the fights over which floor and which corner can
blindside you by their virulence and irrationality.

We suggest a way to approach space planning that has worked well for us in many
diverse situations. In fact, we will give a couple of simple consistency proofs support-
ing this method.

The method is the following:

1. Rank the employees.
2. Pick the offices by rank. The highest-ranked employee gets the first pick, the sec-

ond-ranked employee the next pick, and so on.
3. Bend the rules a bit to account for those with special needs, doubled offices,

major telecommuters, and so on.

The two obvious ways of ranking are: “by seniority or experience” and “by random
draw.”

Before discussing this further, let’s assume that there are N people being put into N
offices. Further, let’s assume that everyone agrees on the desirability of the offices – 1 is
the best, down to N, which is the worst.

Now, the question we pose is: “What story do you tell the person who is put into office
N?” If you have used seniority or experience, the story you tell this person is “You have
the least seniority or experience, so you get this office.” If you have used a random
draw, you tell that person “You were very unlucky.”

turf
by Steve Johnson

Steve Johnson has
been a technical
manager on and off
for nearly two de-
cades. At AT&T, he’s
best known for
writing Yacc, Lint,
and the Portable
Compiler.

yaccman@earthlink.net

and Dusty White

Dusty White works
as a management
consultant in Silicon
Valley, where she
acts as a trainer,
coach, and trou-
bleshooter for tech-
nical companies.

dustywhite@earthlink.net

●

TH

E
W

O
RK

PL
A

C
E

|S
YS

A
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

TURF ●

Vol. 26, No. 6 ;login:

Almost every other scheme I am aware of sends a worse, and much more personal,
message to the employee in office N, namely: “A bunch of powerful people got
together and decided that you are the least deserving person here, so you get the worst
office.” Is that unmotivating, or what? There is no particular stigma over being inexpe-
rienced or unlucky, but the notion that your superiors consciously assigned you to a
black hole is not going to make your day.

Once the employees are ranked, it is possible to have a “party” with everyone present
to pick the rooms. It’s surprisingly pleasant, with much groaning and cheering. The
later pickers have a context and know who their neighbors will be, which helps offset
the less desirable choices.

We personally favor seniority, as being more deterministic than a random draw. In
fact, there is a simple argument that supports seniority. Suppose we have N offices as
before, but only N - 1 people. Then when the dust settles, office N, the worst one, will
be unoccupied. Now, suppose a new person is hired. The obvious place to put them to
minimize disruption is in office N. And this is just where the seniority scheme would
put them. So this scheme is stable when you hire people, which is a good thing.

Whichever scheme you use, remember that you are experiencing the organization as
primate, and get ready for some deep and irrational feelings to surface in yourself and
others.

90

91October 2001 ;login:

the bookworm
by Peter H. Salus

Peter H. Salus is a
member of the ACM,
the Early English Text
Society, and the Trol-
lope Society, and is a
life member of the
American Oriental
Society. He is Chief
Knowledge Officer at
Matrix.Net. He owns
neither a dog nor a
cat.

peter@matrix.net

BOOKS REVIEWED IN THIS COLUMN

The USENIX Conference in Boston
finally convinced me that folks read this
column. Oh, I’m not trying to be coy:
whenever there’s a glaring error, I hear
it. But as I walked the exhibit floor in
Boston, people I hardly knew (or didn’t
know) would ask me about this book
and that. It’s really flattering. So is the
response I’ve had to my call for more
reviewers. I now have a group of volun-
teers who will be doing reviews. Just
how many and how frequently will be a
function of the topics they have an inter-
est in and what gets sent in by the myr-
iad publishers.

I am especially pleased that I’ve found
volunteers in Canada, Germany, and
Italy, spreading our scope geographi-
cally.

And now for the autumn’s books.

Berkeley DB
Databases are important. Embedded sys-
tems are important. The Berkeley data-
base is the most widely used embedded
database system in the world. The more
we use embedded databases (as every
time you employ Netscape or order a
book from Amazon.com or use a hand-
held device), the more important under-
standing them becomes.

Berkeley DB is divided into two parts:
the first, pp. 1–242, is a reference manual
of great value; the second, pp. 243–632,
is the API manual. The latter details the
APIs for C, C++, Java, and Tcl. The book

BERKELEY DB
Sleepycat Software, Indianapolis, IN: New Rid-

ers, 2001. Pp. 664.

ISBN 0-7357-1064-3.

PEER-TO-PEER: HARNESSING THE
POWER OF DISRUPTIVE
TECHNOLOGIES

ANDY ORAM, ED.
Sebastopol, CA: O’Reilly, 2001. Pp. 432. ISBN

0-596-00110-X.

BEYOND CHAOS

LARRY L. CONSTANTINE, ED.
Boston, MA: Addison-Wesley, 2001.

Pp. 416. ISBN 0-201-71960-6.

CERT GUIDE TO SYSTEM AND NET-
WORK SECURITY PRACTICES

JULIA H. ALLEN

Boston, MA: Addison-Wesley, 2001.

Pp. 447. ISBN 0-201-73273-X.

A SYSTEM ADMINISTRATOR’S GUIDE
TO AUDITING

GEOFF HALPRIN

Short Topics In System Administration, 6.

Berkeley, CA: USENIX Association for SAGE,

2000. Pp. 52. ISBN 1-880446-21-9.

concludes with a section on supporting
utilities and an excellent index. (NB: If
you just want to use a database, this
book is not for you. If you are a pro-
grammer with at least some knowledge
of databases, this book is for you.)

Berkeley DB is a good book on a first-
rate, open source database. The only
criticisms I have are of the volume’s pro-
duction: first of all, the page numbers in
the table of contents bear only a tangen-
tial relationship to the actual chapters
(luckily, the index was done by reliable
software); secondly, two figures have
their labels reversed.

The folks at Sleepycat Software have
done a great job: Margo, Keith, Mike,
Mike, and whoever else was involved in
this, my compliments.

Being Disruptive
Over the past 5000 years, most media
have functioned on a one-to-many basis.
The massive temple inscriptions, the
imposing stelae of the Babylonian,
Egyptian, and Persian empires bear testi-
mony to the beginnings of this: “I, Dar-
ius, great king, king of kings...’’ begins
column 1 in Behistun (parodied by Shel-
ley in “Ozymandias” [1818]). The sacred
books of all religions are proclamations
from the few to the many. So, in more
recent centuries, the book, magazine or
newspaper publisher, the radio and the
TV broadcaster all operate on a one-to-
many basis.

From its very beginnings, the Internet
has broken this model: every machine
on the Net peers with every other. Even
when there were but a dozen or a few
hundred hosts, there was no notion of
publisher/source and passive receiver. As
we’re now at over 150 million machines
on the Net, “closing down’’ the publisher
or broadcaster (a popular pastime of
oppressive regimes) has become truly
impossible.

Vol. 26, No. 6 ;login:92

By and large viruses or worms or DDoS
attacks are just annoyances, pranks. But
for over 150 countries, the Internet has
become a road to news that does not
pass through government control, a
method for nearly anyone to both send
and receive at will.

Andy Oram has put together an anthol-
ogy of pieces on technological, legal,
financial, and social repercussions of
peer-to-peer Internet communication.
This goes far beyond SETI on the one
hand and Gnutella on the other. The
mere existence of anonymous remailers
(even after Julf Helsingius shut his
down) frightens the thought police.

Publius tells us about trust. Red Rover
tells us about really low-tech distribu-
tion. The book contains 19 essays and an
afterword.

Like any anthology, the quality is
uneven. But it’s worth reading (and
thinking) about.

Software Development
For four years, Larry Constantine
ran/edited/wrote a “forum’’ in Software
Development magazine. Forty-five of the
columns (by a large variety of folks)
have been collected in Beyond Chaos.
Most of the essays are interesting and,
thanks (I suspect) to editing by Larry
and the magazine’s staff, quite readable.
I found several very illuminating; a few
(in retrospect) seem just worthless; but
the just over 400 pages are great for
reading on a flight, at the beach, or
wherever. The essays are brief and thus
the volume can be read in snippets.

I found it heartening to realize that Aris-
totle is still relevant today. Larry states
(Chapter 31): “The artist learns how to
paint by painting.’’ Aristotle wrote: “He
who learns to play the harp learns to
play it by playing it’’ (Metaphysics
1049b31f). There’s something similar in
the Nicomachean Ethics 1103a32–34.

John Boddie’s Chapter 10 is a keeper.

CERT’s Practices
With input from a large number of folks
at the SEI and at CERT, Julia Allen has
produced a simple, practical guide to
protecting your system(s) from unau-
thorized intrusions. My guess is that
many readers of this column will find
the book too simple, but it seems to me
that with the Internet and systems grow-
ing at a furious rate, the number of
experienced sysadmins is waxing far too
slowly. There are thus a number of folks
who need a milder, more basic
approach. There are also a number of
people who work in environments
where the highest levels of management
don’t understand the details. Here is a
book that carries CERT’s authority to
hammer them with.

A Major Omission
I owe Geoff Halprin an apology. It’s a
year since his SAGE booklet appeared,
and I’ve neglected it. I could offer
excuses, but instead, I’ll just give him a
few flattering lines.

There are all sorts of jokes about how
dull auditors are. Computer auditing has
never, I admit, appeared a fascinating
topic to me. But Halprin’s 50 pages con-
vinced me that the “rigorous examina-
tion of a system’’ together with the
“identification of shortfalls in compli-
ance or practices’’ and the “organized
repair’’ of the system are indeed very
important. Good job, Geoff. And, again,
my apologies for taking so long to print
these few words.

93October 2001 ;login:

news

●

U
SE

N
IX

 N
EW

SUSENIX MEMBER BENEFITS
As a member of the USENIX Association,
you receive the following benefits:

FREE SUBSCRIPTION TO ;login:, the Association’s

magazine, published eight times a year, fea-

turing technical articles, system administra-

tion articles, tips and techniques, practical

columns on security, Tcl, Perl, Java, and

operating systems, book and software

reviews, summaries of sessions at USENIX

conferences, and reports on various stan-

dards activities.

ACCESS TO ;login: online from October 1997

to last month http://www.usenix.org/

publications/login/login.html.

ACCESS TO PAPERS from the USENIX Confer-

ences online starting with 1993

http://www.usenix.org/publications/library/

index.html.

THE RIGHT TO VOTE on matters affecting the

Association, its bylaws, election of its direc-

tors and officers.

OPTIONAL MEMBERSHIP in SAGE, the System

Administrators Guild.

DISCOUNTS on registration fees for all

USENIX conferences.

DISCOUNTS on the purchase of proceedings

and CD-ROMS from USENIX conferences.

SPECIAL DISCOUNTS on a variety of products,

books, software, and periodicals. See

http://www.usenix.org/membership/

specialdisc.html for details.

FOR MORE INFORMATION

REGARDING MEMBERSHIP OR

BENEFITS, PLEASE SEE

http://www.usenix.org/

membership/membership.html

OR CONTACT

office@usenix.org

Phone: 510 528 8649

ELECTRONIC PROPERTY ●

Electronic Property

The old advice about never discussing
religion or politics at family gatherings
notwithstanding, it is presumably unar-
guable that the percentage of the world’s
valuable things that are electronic in
form is increasing. The “market share” of
electronic goods is rising. Taking these
electronic goods as a form of wealth, we
here are some mix of creators, custodi-
ans, shepherds and guards. Those of us
specifically in security are also profes-
sional paranoids.

USENIX repeat customers, i.e., USENIX
members, tend to be in favor of sharing
information. Indeed, the old mission
slogan for USENIX, “Moving informa-
tion from where it is to where it isn’t”
remains in full force even if it is more
commonly practiced than recited (the
sign of a powerful idea, as ever). To use a
food analogy, USENIX lays on one of
the best tables of information in the
business. From that, we derive our abil-
ity to do it again. And again.

USENIX as an organization has a voice,
and just like an opera singer, our voice
needs to be used just enough to keep it
powerful but not too much. We are
asked, more often than you might think,
to support this or that cause with our
(your) voice and with our (your) money.
I’ve spoken gently in these pages before
about the use of (your) money and look
forward to the day I can debate the issue
of non-program expenditures of pro-

gram-derived funds at full vigor and
without regard to the diplomacy my
office requires. Today, however, I want to
speak about the use of our voice.

As you doubtless know, USENIX is by
the (US) tax code a so-called “501(c)3”
organization incorporated in the State of
Delaware. Such an organization is not
only non-profit and tax exempt in and
of itself, but gifts to it are tax deductible
to their donor. Such a designation is
non-trivial to get but trivial to lose – just
stop being non-profit, stop playing by
the myriad rules for non-profits, or use
tax exempt monies for purposes that are
officially forbidden. Such forbidden uses
include lobbying for legislation, endors-
ing candidates for public office, advocat-
ing positions that are unrelated to the
formal mission of the organization be it
a charitable organization, an educational
organization, or any of the other specific
sub-species of the “501(c)3” genus.

In the matter of information sharing, we
(USENIX) try very hard to make sure
that the information that we share is
with the permission of those who own
it. Note that I say “own” as information
is as much a valuable good and subject
to ownership as a pair of shoes, a movie
ticket, or a pint of Guinness. There is a
widespread, anthropomorphic, pseudo-
moralistic argument that “information
wants to be free.” Perhaps, but in that
sense fire wants to burn, rain wants to
fall, and entropy wants to work itself out
of a job.

No, “information wants to be free” is a
falsity but it is, and with abundant evi-
dence, more than true that in the elec-
tronic sphere the idea of property takes
on a whole new set of axioms that, in
many ways, simply confound all our
societal traditions and taboos. If, on a
bad day, I inadvertently leave my back
door open, that is not a license for you
to pee in my toilet, empty my refrigera-
tor, or install a wireless web cam. Even

by Daniel Geer

President, USENIX
Board of Directors

geer@usenix.org

Vol. 26, No. 6 ;login:94

having burglar tools is a crime in most
jurisdictions where there is anything
worth stealing. How does this apply in
the electronic sphere?

The idea of property that is most at issue
is “exclusion,” namely that if I have
something you don’t have it whereas if
you liberate it from my dining room
table you then have it whereas I no
longer do. An MP3 of a popular tune is
arguably like that, modulo a tendentious
reading of contract and license, but cer-
tainly my private correspondence is
something that you have no right to
even if I fail to encrypt it to modern
standards. The fact that an electronic
property can be copied at virtually zero
cost and yet with no exclusion to its
holder is what makes this space hard.

USENIX did, when asked, take a stand
on the publication of the Felten, et al.,
paper. As the entity with standing and
with the authors credibly willing and
able to share their information with our
members, we did what we did. We did
not, when asked, take a stand on the
matter of Mr. Sklyarov. We will, doubt-
less, be asked to take positions on who
owns what more and more since absent
(God forbid) world government, there
will always be jurisdictional diversity. If
you haven’t looked, the quantity of legis-
lation filed on the issue of electronic
ownership and affronts thereto is rising
steeply. Law enforcement agencies at all
levels are setting up electronic crimes
task forces. Threat models now inform
insurance rate setting and insurers will
be adding a significant digit of precision
to their estimates every time they can.
My own business life (security consult-
ing) is fundamentally built on maximing
electronic property’s value by minimiz-
ing its theft risk.

James Madison, in the Federalist papers,
said that for democracy to survive it
must avoid stable factions capable of
imposing the tyranny of the majority.

ness stop him from doing the things he
loved to do. He continued working full
time until only shortly before he passed
away. Even up to that point, he was pro-
ducing excellent results and was heavily
engaged in many projects. So successful
was he, that many people either did not
realize that he was ill at all, or did not
realize the depth of his illness. His death
came as a shock to many people within
Sun as they were “only working with
him just recently!”

Jim genuinely cared about people. He
went out of his way to help anyone he
could, and he never burdened people
with his problems. Even as a manager, he
would say, “I’ll give you an update on
how things are going, but you don’t need
to worry about this.” He had an amazing
ability to effect changes in projects with-
out anyone losing credibility — he could
engineer win-win situations in every-
thing he did.

If I had a team of Jim Ellises, we could
do amazing things. But, alas, there was
only one, and he now leaves behind a
legacy of what we should be doing. His
courage, skills, and compassion were a
true inspiration to us all, and he will be
missed for a very long time.

Jim Duncan
jnduncan@cisco.com

Jim was the consummate scientist and
gentleperson. There are others like him
both in USENIX and the network secu-
rity communities, but we need more.

At his funeral, as different folks talked
about Jim (or “Jamie” as he was known
to his family), it became obvious that his
style carried over into lots of other
things in his life. He and Carolyn were
active in the home schooling movement,
and he had the same profound yet subtle
impact on the folks he met there. The
same was true of their work with the
League of Women Voters, and also with
his family and friends, and his religion.
Much of his extended family really

He said that the surest way to unstable
factions is a differential ability to acquire
property. As the percentage of the
world’s wealth that is information in
electronic form grows, democracy will
be front and center on protecting that
property, or it will wither into tribalism.
Lead, follow, or get out of the way?

The next time you hear that information
wants to be free, or that some clever
reverse-engineer has beaten some big,
slow moving institution, think twice. Be
careful what you wish for. The rabble’s
call to crush all forms of digital rights
management in gladiatorial combat does
not bode well for privacy because if
information wants to be free, I’d like a
copy of your genome by return mail.

Obituary: Jim Ellis
Our community recently lost one of its
luminaries: Jim Ellis. Both Danny Smith
and Jim Duncan share some words
about his passing.

Danny Smith
danny.smith@sun.com

I worked with Jim Ellis for the last eight
years in the FIRST community. Jim and
I often exchanged technical thoughts
and ideas on security problems that
were current at the time, with the aim of
providing solutions for people to limit
the damage.

Jim and I performed a joint study to
examine the potential threat of a multi-
platform UNIX virus. We produced such
startling results that we destroyed all of
the material and ceased pursuing the
examination. The risk of harm if those
ideas leaked was just too great. Jim had
great ideas! I am glad he worked on the
defense side of the equation.

Jim’s illness would wear him down. So
he changed tactics: he rested when he
needed rest, and he worked when he was
able to work. He refused to let this ill-

95October 2001 ;login: BOARD MEETING SUMMARY ●

●

U
SE

N
IX

 N
EW

Sbership rate prohibitive. Membership
fees for each of these categories is $50
per year.

LISA 2001 CONFERENCE
REGISTRATION FEES
Conference registration fees for LISA
2001 will be increased by $15 to cover
the costs of providing all registered
attendees a copy of the forthcoming
book Selected Papers in System Adminis-
tration edited by Eric Anderson, Mark
Burgess, and Alva Couch. The Board
also voted to approve a $50.00 increase
for both tutorial fees and technical ses-
sion fees for those who do not use the
Web to register for the conference.

NEXT MEETING
The next meeting is scheduled to coin-
cide with the Annual Linux Showcase in
Oakland, CA, on Wednesday, November
7, 2001.

didn’t know about the details of his pro-
fessional life, and they asked us geek
types to fill them in with stories.

Through all of this, Carolyn and others
insist that he wasn’t afraid to die, and I
believe it. I’m sure he wanted to find out
all about it, and that attitude affected
everybody around him. At the close of
the church service, the minister
announced that since the sky had
cleared up again, we were all invited out-
side for the interment in the church
cemetery. In true Pennsylvania fashion,
the clouds abruptly opened up as the
pallbearers laid down his casket, and we
were all drenched. In cutting short his
remarks at the graveside, the minister
said that if he could, Jim would be
explaining at that very moment the
meteorological conditions that had
caused the rain to fall.

Report from the
USENIX Board of
Directors

The following is a summary of some of
the actions taken by the USENIX Board
of Directors between January and
August 2001.

The Board voted to allocate $50,000 for
2001, 2002, and 2003 to the Electronic
Frontier Foundation (EFF) for legal
costs associated with protecting copy-
right and fair use rights for DMCA legal
cases. USENIX Board member John
Gilmore and USENIX Executive Direc-
tor Ellie Young were appointed the rep-
resentatives of USENIX on the Felten, et
al. lawsuit against the RIAA, et al. The
Board also passed a resolution that
USENIX will indemnify the Program
Committee of the USENIX Security

Symposium from any legal action that
may be brought because of their deci-
sion to publish “Reading Between the
Lines: Lessons from the SDMI Chal-
lenge”.

The Board voted to allocate up to
$21,000 to conduct a virtual classroom
pilot project. The pilot project will assess
whether or not the technology is suffi-
cient, and gauge interest in the instruc-
tional modality. Proposals will also be
sought for Web-based training and uni-
versity program modules.

The Board voted to allocate $55,000 to
the Software Patent Institute (SPI).
These funds will be used for cleaning,
formatting, and loading documents dur-
ing 2001.

The Board voted to allocate $10,000 to
the Richard Tapia Celebration of
Minorities in Computing Symposium to
be held October 18-20, 2001 in Hous-
ton. The funds are to be used to support
students to attend the event.

The Board voted to allocate $5,000 to
the Middleware 2001 Conference to be
used for funding for students to attend
the event.

BYLAWS
A bylaws committee was constituted to
review the USENIX bylaws and policies.
The committee is comprised of Andrew
Hume and John Gilmore from the
USENIX Board of Directors, Attorney
Dan Appelman, and Jane-Ellen Long
from the USENIX staff.

NOMINATING COMMITTEE
Andrew Hume was voted to be Chair of
the Nominating Committee for the
USENIX Board of Directors.

MEMBERSHIP
Two special membership categories have
been formed, one for retired persons,
and another for persons with special cir-
cumstances that make the regular mem-

by Gale Berkowitz
and Ellie Young

Vol. 26, No. 6 ;login:96

2002 USENIX
Nominating
Committee

The biennial elections of USENIX’s
Board of Directors will be held in the
Spring of 2002.

Newly elected directors will take office at
the conclusion of the first regularly
scheduled meeting following the elec-
tion, or on July 1st, 2002, whichever
comes earlier.

There are eight board positions:

President, Vice President, Treasurer, Sec-
retary,and four Directors at Large.

The new Board is normally a combina-
tion of current Board members and
people new to the Board.

The vibrant health of USENIX and the
technical strength of its offerings stems
substantially from the vigor of its Board.
Accordingly, there is a Nominating
Committee whose charter is to present a
strong slate of candidates for the elec-
tion. (Candidates may also self nomi-
nate.) We are soliciting suggestions for
nominees who are enthusiastic, ener-
getic, responsible, and able to donate an
appreciable amount of time to USENIX.
Warning: this is a working Board, and
not a resume stuffer; while not onerous,
there is work to be done and failure to
deliver will not only reflect poorly on
the individual, but also negatively
impact USENIX as a whole.

Primarily, candidates should have a
strong interest in USENIX and its activi-
ties. Vision, passion, and the ability to
work and play well with others are nec-
essary. A sense of politics and manage-
ment experience are increasingly

that leverage the Internet-scale
publish/subscribe middleware frame-
work of Siena.

The Cryptographic Group of Applied
Statistical Unit in Indian Statistical Insti-
tute, Calcutta, India and the Department
of Information Technology at Lund Uni-
versity, Sweden, to develop software ori-
ented stream cipher for secure
communication over network.

Funding still remains for 2001. The sub-
mission deadline for ReX proposals is
November 1, 2001. For more informa-
tion about ReX, please see:
http://www.usenix.org/about/rex.html.

important assets. However, the para-
mount requirement is the desire to make
a difference and achieve something.

Please send suggestions for nominees
(you can suggest yourself) by October
29 to: nominate@usenix.org

We also invite feedback (which will be
kept strictly confidential) on the current
board members.

Update on ReX,
the International
Research
Exchange
Programme
ReX, the international research exchange
program co-sponsored by USENIX and
Stichting Nlnet of the Netherlands, has
recently funded four projects:

Delft University of Technology and
Berkeley Wireless Research Center (UC
Berkeley) to develop distributed local-
ization algorithms for wireless sensor
networks.

Tilburg University, The Netherlands and
the Natural Language and Information
Processing (NLIP) Group at the Com-
puter Laboratory, University of Cam-
bridge, UK to conduct research on the
automatic construction of electronic
dictionaries for use in text mining and
related applications using memory-
based learning techniques.

Universita’ dell’ Aquila, Italy and the
Department of Computer Science at the
University of Colorado in Boulder, USA,
to develop novel wireless applications

by Andrew Hume

Chair, Nominating Committee

http://www.usenix.org/about/rex.html

	motd
	apropos
	letters
	burgess
	babkin
	flynt
	mccluskey
	farrow
	haskins
	chalup
	nicholson
	johnson
	bookworm
	usenixnews

