
;login:
V O L . 4 0 , N O . 1F E B R U A R Y 2 0 1 5

File Systems
& Measuring the Elusive

Working Set in Storage
Jake Wires, Stephen Ingram, Zachary Drudi,
Nicholas J. A. Harvey, and Andrew Warfield

& Container Farms and Storage
Mark Lamourine

& Finding Faults with Error
Handlers to Avoid Catastrophic
Failures
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme
Renna Rodrigues, Xu Zhao, Yongle Zhang,
Pranay U. Jain, and Michael Stumm

& Nail, A Secure Parser/Generator
Julian Bangert and Nickolai Zeldovich

Columns
Practical Perl Tools: RESTful Clients
Using Perl
David N. Blank-Edelman

Python Tricks for Checking Function
Argument Types
David Beazley

iVoyeur: Using Graphite and Statsd to
Preserve Wide Data
Dave Josephsen

For Good Measure: Cyber-job Security
and Automation
Dan Geer

/dev/random: Smarter-Than-You Storage—
the Future of Storage
Robert G. Ferrell

Conference Reports
11th USENIX Symposium on Operating Systems
Design and Implementation

2014 Conference on Timely Results in
Operating Systems

10th Workshop on Hot Topics
in System Dependability

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

Real SolutionS
foR Real netwoRkS

Free
CD or DVD
in every Issue!

Order Online at: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 11/6/14 10:26:37 AM

U P C O M I N G E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

SRECon15
March 16–17, 2015, Santa Clara, CA, USA
www.usenix.org/srecon15

NSDI ’15: 12th USENIX Symposium on Networked
Systems Design and Implementation

May 4–6, 2015, Oakland, CA, USA
www.usenix.org/nsdi15

SREcon15 Europe
May 14–15, 2015, Dublin, Ireland

HotOS XV: 15th Workshop on Hot Topics in
Operating Systems

May 18–20, 2015, Kartause Ittingen, Switzerland
www.usenix.org/hotos15

USENIX ATC ’15: 2015 USENIX Annual Technical
Conference

July 8–10, 2015, Santa Clara, CA, USA
www.usenix.org/atc15

Co-located with USENIX ATC ’15 and taking place
July 6–7, 2015:

HotCloud ’15: 7th USENIX Workshop on Hot Topics in
Cloud Computing
Submissions due March 10, 2015
www.usenix.org/hotcloud15

HotStorage ’15: 7th USENIX Workshop on Hot Topics in
Storage and File Systems
Submissions due March 17, 2015
www.usenix.org/hotstorage15

USENIX Security ’15: 24th USENIX Security
Symposium

August 12–14, 2015, Washington, D.C., USA
www.usenix.org/usenixsecurity15

Co-located with USENIX Security ’15:

WOOT ’15: 9th USENIX Workshop on Offensive
Technologies
August 10–11, 2015
www.usenix.org/woot15

CSET ’15: 8th Workshop on Cyber Security
Experimentation and Test
August 10, 2015
Submissions due April 23, 2015

www.usenix.org/cset15

FOCI ’15: 5th USENIX Workshop on Free and Open
Communications on the Internet
August 10, 2015
Submissions due May 12, 2015
www.usenix.org/foci15

HealthTech ’15: 2015 USENIX Summit on Health
Information Technologies
Safety, Security, Privacy, and Interoperability
of Health Information Technologies
August 10, 2015
www.usenix.org/healthtech15

JETS ’15: 2015 USENIX Journal of Election Technology
and Systems Workshop
(Formerly EVT/WOTE)
August 11, 2015
www.jets-journal.org

HotSec ’15: 2015 USENIX Summit on Hot Topics
in Security
August 11, 2015
www.usenix.org/hotsec15

2015 USENIX Summit on Gaming, Games, and
Gamification in Security Education
August 11, 2015
Submissions due May 5, 2015
www.usenix.org/3gse15

LISA15
November 8–13, 2015, Washington, D.C., USA
Submissions due April 17, 2015
www.usenix.org/lisa15

Do you know about the USENIX Open Access Policy?
USENIX is the fi rst computing association to off er free and open access to all of our conferences proceedings and videos. We
stand by our mission to foster excellence and innovation while supporting research with a practical bias. Your membership
fees play a major role in making this endeavor successful.

Please help us support open access. Renew your USENIX membership and ask your colleagues to join or renew today!

www.usenix.org/membership

E D I T O R
Rik Farrow
rik@usenix.org

M A N A G I N G E D I T O R
Michele Nelson
michele@usenix.org

C O P Y E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type
startype@comcast.net

U S E N I X A S S O C I AT I O N
2560 Ninth Street, Suite 215
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2015 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

F E B R U A R Y 2 0 1 5 V O L . 4 0 , N O . 1

E D I T O R I A L
2 Musings Rik Farrow

F I L E S Y S T E M S A N D S T O R A G E
6 Counter Stacks and the Elusive Working Set 

Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey,
and Andrew Warfield

10 Storage Options for Software Containers Mark Lamourine

15 Interview with Steve Swanson Rik Farrow

P R O G R A M M I N G
18 Simple Testing Can Prevent Most Critical Failures: An Analysis

of Production Failures in Distributed Data-Intensive Systems
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm

24 Nail: A Practical Tool for Parsing and Generating Data Formats
Julian Bangert and Nickolai Zeldovich

S Y S A D M I N
32 Capacity Planning David Hixson and Kavita Guliani

39 /var/log/manager: Daily Perspectives for the Sysadmin
and the Manager Andrew Seely

C O L U M N S
42 Practical Perl Tools: Give it a REST David N. Blank-Edelman

47 Thinking about Type Checking David Beazley

52 iVoyeur: Spreading Dave Josephsen

56 For Good Measure: Cyberjobsecurity Dan Geer

58 /dev/random: Smarter-Than-You Storage Robert G. Ferrell

B O O K S
60 Book Reviews Mark Lamourine and Rik Farrow

C O N F E R E N C E R E P O R T S
62 11th USENIX Symposium on Operating Systems

Design and Implementation

86 2014 Conference on Timely Results in Operating Systems

93 10th Workshop on Hot Topics in System Dependability

2  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org Back in the late nineties, I found myself sharing a Silicon Valley hotel

Jacuzzi with a sales rep from a big hard-disk company. The sales rep
was telling me that they soon expected to be selling 10-gigabyte hard

drives to consumers, and I was astonished. Why in the world would people
need such large drives in their desktop systems?

Now we can buy six-terabyte consumer drives—600 times as much capacity as I found
un fathomable around 1999—for under $300. And similar technology, in the smaller 2.5-inch
form factor, fills server racks in many datacenters. Back when I thought that 10 gigabytes was
a ridiculous amount, I wondered how mere mortals would manage all that storage. Well, turns
out that I needn’t have worried. Not only do most home users (and many businesses) not man-
age their storage, they can now expand out into apparently unlimited clouds of storage as well.

Life in the Clouds
To be honest, the problems with the storage surfeit is not just a cloud problem. During the
presentation of one of my favorite storage papers [1], Dutch Meyer pointed out that many
files found on Microsoft employees’ desktops were “Write once, read never.” Of the files that
were modified, most were changed within one month of creation, then left alone. Forever. For
storage vendors, this is a wonderful situation, as people will use ever larger amounts of stor-
age since the supply appears endless. And now we can just store data “in the cloud,” and if we
forget about it, it is someone else’s problem.

That’s pretty nice compared to past methods for managing files that you or your organization
had stored in case you might need the data again, some day. You’ve contracted with compa-
nies who keep redundant copies of your data, along with vague guarantees about how safe
that is, but that’s still better than the old days.

In the “old days,” we managed our data by accident. Here’s how that worked. We would store
our data, carefully backing up what we considered important, until the hard drive (or RAID
array or storage server) catastrophically failed. Then we would get out our backups, and see
how well they worked when we tried to recover from the catastrophic failure.

Inevitably, much would be lost. But hey, that was storage management—the important data
was either restored from backups, recreated from scratch, or the business or research project
just failed. For home users, they’d just start over again with a brand new, mostly empty, and
larger hard drive. See, storage management by accident.

We do have very serious uses for data, and I am purposely exaggerating. But there is more than
a grain of truth in the problem of storage management, one that I believe still exists today.

The Lineup
We start out on the theme of storage with an article about measuring the size of the working
set. The working set represents your hot data, the data you want to have ready for processing,
within a relatively short interval. For programs working with big data, calculating the work-
ing set has been a real problem, as just collecting the block access data generates both a lot of
data while adding a huge workload to the system under measurement.

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 3

EDITORIAL
Musings

Wires et al. describe a method for sampling block accesses and
collecting enough information about those accesses to accu-
rately measure the working set. I was impressed by this work and
felt it was worth sharing with a larger audience than just those
who read OSDI papers. I also have a hunch that their techniques
will become ever more important as our storage requirements
continue to grow.

Mark Lamourine offered to explain just how containers will
complicate storage. When I read James Bottomley’s “Contain-
ers” [2] article, I marveled at how we could now share resources
safely without resorting to heavyweight VMs. I didn’t under-
stand the issues with long-term storage when containers are
spawned in a farm of managed hosts, much like we fire up VMs
in the cloud today.

I interviewed Steve Swanson about the past and future of non-
volatile memory. NVM has gone from being almost unused to
commonplace, mostly because of the work that has been done
with flash. Steve explains how he became involved with flash,
the problems vendors have needed to solve to make flash reliable,
as well as directions for future research.

Heading off in a different direction, I was intrigued by Ding
Yuan et al.’s work analyzing catastrophic failures of cluster
 software systems, like HBase and HDFS. Honestly, it was what
they found that was amazing: that empty, over catching, or non-
existent error handlers lead to most of the crashes in popular
cluster software. Ding and his co-authors also produced (and
shared) a tool, Aspirator, for finding bugs in error-handling.

Julian Bangert and Nicolai Zeldovich write about their tool, Nail,
designed to build secure parsers. Many exploitable vulnerabilities,
such as Heartbleed and bugs in the signature checking software
in Android and iOS, involve failures in parsing. Nail solves these
issues through being a tool for generating parsers, creating the
data structures used while working with parsed data, as well as
providing a method for correctly regenerating the processed data.
Where almost all programs parse data, only Nail uses the same
configuration for parsing, storing, and generating stored data.

Dave Hixson and Kavita Guliani continue the series of articles
written about the practice of Google Site Reliability Engineers
(SREs). Dave and Kavita have written about capacity planning,
providing a very thorough approach that obviously comes from
Hixson’s hard-earned experience.

Andy Seely contrasts the worlds of the sysadmin and the techni-
cal manager. As he’s worked in both positions, Andy does a great
job of comparing the two viewpoints through illustrative stories.

David Blank-Edelman takes another look at REST, defining it and
demonstrating several ways of making RESTful requests, in clud-
ing parsing the results, all with his trademark humorous style.

Dave Beazley takes a look at dynamic type handling. Python’s
flexibility can work against you because Python’s ability to auto-
matically convert types can cause unexpected behavior when
calling functions. Dave has examples, including several ways to
test that the expected types have been passed to functions.

Dave Josephsen continues on his theme of fat data. Dave doesn’t
want you to lose the richness of the data you are collecting
through inappropriate ways of storing that data. In this col-
umn, Dave shows how to use a combination of Nagios, Graphite,
StatsD, and Graphios to collect and save fat data.

Dan Geer takes on automation. While the future of computing
(and manufacturing, farming, stock trading, and everything
except service) appears to be automation, Dan questions the
appropriateness of automation for dealing with crafty, and often
state-sponsored, adversaries.

Robert Ferrell worked with the theme of storage and tells us
what he considers will be the future of smart storage.

We have several book reviews by Mark Lamourine and myself.
We also have summaries of OSDI ’14 and two of the associated
workshops.

Getting back to the topic of storage management, I believe that
perhaps I’ve uncovered a region of computer science that is
worthy of some serious research. Back when disk drive capaci-
ties were minuscule, another technique for storage management
consisted of using a find command to list all files not accessed
within the last chunk of time, say, six months. A bit of shell
scripting later, users would receive a list of these “aged” files by
email and need to request that they not be deleted. After these
email warnings were ignored, the system administrator could
then delete the files, then wait for the few frenzied requests for
restoration of the missing files. Ah, those were the days!

I like to imagine that cloud providers actually do storage man-
agement at scale. I know that Facebook does, because they had
a paper [3] about how they handle warm BLOBs (Binary Large
OBjects) by reducing the effective duplication factor. Note that
Facebook is not throwing away rarely watched cat videos, just
saving fewer copies of them. But how do you think Amazon,
Google, and Rackspace handle their customers’ warm, or cold,
storage? They bill their customers for them.

4  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

EDITORIAL
Musings

References
[1] D. Meyer, and W. Bolosky, “A Study of Practical Deduplica-
tion,” FAST ’11: https://www.usenix.org/legacy/event/fast11
/tech/full_papers/Meyer.pdf.

[2] J. Bottomley and P. Emelyanov, “Containers,” ;login:, vol. 39,
no. 5 (October 2014): https://www.usenix.org/publications
/login/oct14/bottomley.

[3] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy,
Cory Hill, Ernest Lin, Weiwen Liu, Satadru Pan, Shiva
Shankar, Viswanath Sivakumar, Linpeng Tang, Sanjeev
Kumar, “Facebook’s Warm BLOB Storage System”:
OSDI ’14: https://www.usenix.org/conference/osdi14
/technical-sessions/presentation/muralidhar.

XKCD

Announcing the USENIX Store!

www.usenix.org/store

Want to buy a subscription to ;login:, the latest short topics book, a USENIX or
conference shirt, or the box set from last year’s workshop? Now you can, via
the brand new USENIX Store!

Head over to www.usenix.org/store and check out the collection of t-shirts,
video box sets, ;login: magazines, short topics books, and other USENIX and
LISA gear. USENIX and LISA SIG members save, so make sure your membership
is up to date.

6  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGECounter Stacks and the Elusive Working Set
J A K E W I R E S , S T E P H E N I N G R A M , Z A C H A R Y D R U D I , N I C H O L A S J . A . H A R V E Y ,
A N D A N D R E W W A R F I E L D

Counter stacks are a compact and effective data structure for sum-
marizing access patterns in memory and storage workloads. They are
a stream abstraction that efficiently characterizes the uniqueness of

an access stream over time, and are sufficiently low overhead as to allow both
new approaches to online decision-making (such as replacement or prefetching
policies) and new applications of lightweight trace transmission and archiving.

A fascinating shift is currently taking place in the composition of datacenter memory hier-
archies. The advent of new, nonvolatile memories is resulting in larger tiers of fast random-
access storage that are much closer to the performance characteristics of processor caches
and RAM than they are to traditional bulk-capacity storage on spinning disks. There are two
very important consequences to this trend:

The I/O gap is narrowing. Historically, systems designers have been faced with a vast
and progressively widening gulf between the access latencies of RAM (~10 ns) and that of
spinning disks (~10 ms). Storage-class memories (SCMs) are changing this by providing
large, nonvolatile memories that are more similar to RAM than disk from a performance
perspective.

Memory hierarchies are stratifying. SCMs are being built using different types of media,
including different forms of NAND flash and also newer technologies such as Memristor and
PCM. These memories also attach to the host over different interfaces, including traditional
disk (SAS/SATA), PCIe/NVMe, and even the DIMM bus on which RAM itself is connected.
These offerings have a diverse range of available capacities and performance levels, and a
correlated range of prices. As a result, the memory hierarchy is likely to deepen as it becomes
sensible to compose multiple types of SCM to balance performance and cost.

The result of these two changes is that there is now a greater burden on system designers
to effectively design software to both determine the appropriate sizes and to manage data
placement in hierarchical memories. This is especially true in storage systems, where the
I/O gap has been especially profound: Fast memories used for caching data have historically
been small, because they have been built entirely in RAM. As such, relatively simple heuris-
tics (such as LRU and extensions such as ARC and CAR) could be used to keep a small and
obvious set of hot data available for speedy access. The availability of larger fast memories,
such as SCM-based caches, moves cached accesses farther out into the “tail” of the access
distribution, where both sizing and prediction are much more formidable challenges. Put
another way: a storage system has to work a lot harder to get value out of fast memories as it
moves further into the tail of an access distribution.

We faced exactly these problems in the design of an enterprise storage system that attempts
to balance performance and cost by composing a variety of memory types into a single coher-
ent file system. One challenge we encountered early on involved understanding exactly how
much high-performance storage is required to service a given workload. It turns out that
while many storage administrators have a good understanding of the raw volume of data
they’re dealing with, they’re often at a loss when it comes to predicting how much of that data
is hot—and they lack the tools to find out.

Jake Wires is a principal
software engineer at Coho Data
and a doctoral candidate at the
University of British Columbia.
He is broadly interested in the

design of storage systems and scalable data
processing. jake@cohodata.com

Stephen Ingram is a software
engineer at Coho Data. He
received his PhD from the
University of British Columbia
in 2013, his MSc from UBC in

2008, and his BSc Honors degree in computer
science from Georgia Tech in 2004. His
research interests are information visualization
and dimensionality reduction.
stephen@cohodata.com

Zachary Drudi is a software
engineer at Coho Data. He
completed his MSc in computer
science at the University of
British Columbia. Zach is

interested in placing streaming algorithms in
containers. zach@cohodata.com

Nick Harvey is a consultant at
Coho Data and an assistant
professor at the University
of British Columbia. His main
research area is algorithm

design. He completed his PhD in computer
science at MIT in 2008. nick@cohodata.com

Andrew Warfield is co-founder
and CTO of Coho Data and
an associate professor at the
University of British Columbia.
He is broadly interested in

software systems. andy@cohodata.com

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 7

FILE SYSTEMS AND STORAGE
The Elusive “Working Set”
The concept of a working set is well established within system
design [1]. A working set is the subset of a program’s memory that
is accessed over a period of execution. Working sets capture the
concept of access locality and are the intuition behind the bene-
fits of caching and hierarchical memories in general. A program’s
working set is expected to shift over time as it moves between
phases of execution or shifts to operate on different data, but the
core intuition is that if a program can fit its working set entirely
into fast memory, that it will run quickly and efficiently.

While the idea of a working set is relatively simple, it proves to
be a very challenging characteristic to measure and model. One
aspect of this is that working sets are very different depending
on the period of time that they are considered over. A processor
architect might consider working set phases to be the sort of
thing that distill value from L1 or L2 caches: possibly megabytes
of data over several thousand basic blocks of execution. In this
domain, working sets may (and do) shift tens or hundreds of
times a second. Conversely, a storage system may be concerned
with workload characteristics that span minutes, hours, or even
days of execution.

A second challenge in characterizing working sets is to measure
them at all, at any range in time. Identifying working sets requires
tracking the recency of access to addressable memory over time,
which is generally both hard and expensive to do. One longstand-
ing approach to this is Mattson’s stack algorithm, which is used
to model hit ratio curves (also more pessimistically referred to as
miss ratio curves in some of the literature) over an LRU replace-
ment policy.

Mattson’s stack algorithm [4] is a simple technique that provides
a really useful result: Given a stream of memory accesses over
time, and assuming that those accesses are sent through a cache
that is managed using an LRU replacement, Mattson’s algorithm
can be run once over the entire trace and will report the hit rate
at all sizes of the cache. The algorithm works by maintaining a
stack of all addresses that have been accessed and an accompa-
nying array of access counts at each possible depth within that
stack. For each access in the stream, the associated address is
located in the stack, the counter at that depth is incremented by
one, and then that address is pulled to the front of the stack. At
the end of the trace, the array is a histogram of reuse distances
that directly reports the hit ratio curve. For progressively larger
caches, it indicates the number of requests that would have hit in
a cache of that size.

The hit ratio curves produced by Mattson (by plotting cache size
on the x-axis and hit rate on the y-axis) are a useful way to iden-
tify working sets: Horizontal plateaus indicate a range of cache
allocation that will not assist workload performance, while sud-
den jumps in hit rate indicate the edges of working sets, where a
specified amount of cache is able to effectively serve a workload.

Unfortunately, calculating HRCs using Mattson is prohibitively
expensive, in both time and space, for production systems. Even
with optimizations that have been proposed over the decades
that the technique has been studied, its memory consumption
is linear with the amount of data being addressed, and lookups
require log complexity over that set of addresses. This is far too
heavyweight to perform at the granularity of every single access.
The offline calculation of HRCs is similarly challenging because
of the requirement that it carries for trace collection and storage:
The resulting I/O traces are very large and challenging to ship to
a central point of analysis.

So while modeling working sets has the potential to offer a great
deal of insight into storage workloads, especially in regard to
managing hierarchical memories, it is too expensive to run in
production and so cannot be used for online decisions. Moreover,
traces are prohibitively large to ship centrally, making it chal-
lenging for system designers to learn from and adapt products
to customer workloads. To take full advantage of SCMs in the
system, we wanted to achieve both of these things, and so needed
a better approach to characterizing working sets.

Counter Stacks
The counter stack [5] is a data structure designed to provide an
efficient measure of uniqueness over time. In the case of storage
workloads, we are interested in measuring the number of unique
block addresses accessed over a window of time. Mattson’s
original algorithm (and its subsequent optimizations) measure
this by tracking accesses to individual blocks, leading to high
memory overheads. Counter stacks have much lower overheads
because they do not bother recording accesses to individual
addresses, but instead track only the cardinality of the accessed
addresses. In other words, counter stacks measure how many
unique blocks are accessed during a given interval, but they do
not record the identity of those blocks. By making some relatively
simple comparisons of the cardinalities observed over different
intervals, we are able to compute approximate reuse distances
and, by extension, miss ratio curves.

8  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Counter Stacks and the Elusive Working Set

To see how this works, consider the sequence of requests for disk
addresses {a, b, c, a} shown in Figure 1. Imagine that we instan-
tiate a cardinality counter for each request we see. Cardinality
counters support two operations: update() accepts arbitrary
64-bit values, and count() returns the total number of unique
values passed to update(). Cardinality counters can be trivially
implemented with a hash table; in practice, probabilistic counters
like HyperLogLog (see sidebar) use approximation techniques to
provide fairly accurate estimates with very low overheads.

In a counter stack, each cardinality counter records the number
of unique addresses observed since that counter’s inception. For
each request, we update every existing counter and also instanti-
ate a new one. If a request increases the value of a given counter,
we know that the address has not been accessed at any time since
the start of the counter; likewise, if the request does not increase
a counter’s value, we know that the address must have been previ-
ously accessed some time after the start of that counter.

This property makes it easy to pinpoint the logical time at which
a requested address was last accessed. For every request, we
iterate through the counters from youngest to oldest, updating
each as we go. The first counter whose value does not change is
necessarily the youngest counter old enough to have observed
the last access to the address. Moreover, we know that the last
access occurred at exactly the time that this counter was instan-
tiated. If every counter’s value changes for a given request, we
know that address has never been observed before.

In the example from the diagram, the first matrix gives the
values of the counters started for each request. Each row shows
the sequence of values for a particular counter, and each column
gives the values of the counters at a particular time. We can see
that there are four requests for three unique addresses, and at
the end of the sequence, each counter has a value of three or less,
depending on how many requests it has observed.

We perform two transformations on the matrix to compute
reuse distances. First, we calculate ∆x, or the difference of

each counter’s value with its previous value. Each cell of ∆x will
have a value of 1 if the counter had not previously observed the
request seen at that time, or 0 if it had. Then we calculate ∆y, or
the difference between adjacent rows of ∆x. Each cell of ∆y will
have a value of 1 if and only if the corresponding request was not
previously observed by the younger counter but was observed by
the older counter.

A non-zero entry of ∆y marks the presence of a repeated address
in the request stream, and the row containing such an entry
represents the youngest counter to have observed the previous
access to the given address. We look up the cell’s coordinates in
the original matrix to obtain the cardinality value of the cor-
responding counter at the time of the repeated access, which
gives us the number of unique addresses observed since the last
access to the given address—in other words, the reuse distance
of that address. Similar to Mattson’s algorithm, we aggregate
these reuse distances in a histogram, which directly gives a miss
ratio curve.

Implementing counter stacks with a perfect counter (like a
hash table) would be many orders of magnitude more expensive
than Mattson’s algorithm. Probabilistic counters go a long way
towards making this approach feasible in practice, but at roughly
5 KB per counter, maintaining one per request for a workload
with billions of requests is still prohibitively expensive. But as
the diagram hints, the counter stack matrix is highly redundant
and readily compressible.

We employ two additional lossy compression techniques to
control the memory overheads of counter stacks. First, instead
of maintaining a counter for every request in a workload, we only
maintain counters for every kth request, and we only compute
counter values after every kth request. This downsampling
introduces uncertainty proportional to the value k. Second, we
periodically prune requests as their values converge on those of
their predecessors. Convergence occurs when younger counters
eventually observe all the same values their predecessors have
(it should be clear that counter values will never diverge). When
the difference in the value of two adjacent counters falls below
a pruning distance p, we can reap the younger counter since it
provides little to no additional information.

These compression techniques are quite effective in practice,
and they provide a means of lowering memory and storage
overheads at the cost of reduced accuracy. In our experiments,
we have observed that counter stacks require roughly 1200x
less memory than Mattson’s original algorithm while producing
miss ratio curves with mean absolute errors comparable to other
approximation techniques that have much higher overheads.
Moreover, counter stacks are fast enough to use on the hot path
in production deployments: we can process 2.3 million requests
per second, compared to about 600,000 requests per second with
a highly optimized implementation of Mattson’s algorithm.

(a, b, c, a,)
1 2 3 3

1 2 3
1 2

1

{ a, b, c, a }
1 1 1 0

1 1 1
1 1

1
∆ x

{ a, b, c, a }
0 0 0 1

0 0 0
0 0

0
∆ y

Figure 1: Using cardinality counters to characterize uniqueness over time

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 9

FILE SYSTEMS AND STORAGE
Counter Stacks and the Elusive Working Set

Strictly speaking, only the last two columns of the counter
matrix are needed to compute a miss ratio curve: The values pro-
duced by computing ∆x and ∆y can be incrementally aggregated
into a histogram as the algorithm works through the sequence
of requests, and older columns can be discarded. However, the
matrix provides a convenient record of workload history, and,
with a simple transformation (amounting in essence to a column
index shift), it can be used to compute miss ratio curves over
arbitrary sub-intervals of a given workload. This functionality
turns out to be very expensive with traditional techniques for
computing miss ratio curves, but it can be quite useful for tasks
like identifying workload anomalies and phase changes.

In fact, we’ve found that counter stacks can help to answer
a number of questions that extend beyond the original prob-
lems that led us to develop them. In particular, they provide an
extremely concise format for preserving workload histories in
the wild. We use counter stacks to record and transfer access
patterns in production deployments at the cost of only a few MB
per month; the next best compression technique we evaluated
had a roughly 50x overhead. The ability to retain extended work-
load histories—and ship them back for easy analysis—is invalu-
able for diagnosing performance problems and understanding
how our system is used in general, and it is enabling a new data-
driven approach to designing placement algorithms. As we learn
more about real-world workloads, we expect to augment counter
stacks with additional metadata, thereby providing a richer
representation of application behavior.

Probabilistic Counters
Probabilistic counters are a family of data structures that are
used to approximate the number of distinct elements within
a stream. HyperLogLogs [2] are a common example of such a
probabilistic cardinality estimator and have been characterized
as allowing cardinalities of over 109 elements to be estimated
in a single streaming scan within 2% accuracy using only 1.5 KB
of memory. As a result, these estimators are now being used
in the implementation of network monitoring, data mining,
and database systems [3]. Counter stacks [5] take advantage
of HyperLogLogs to efficiently count cardinality in individual
epochs during the request stream.

In many senses, HyperLogLogs are a data structure that is simi-
lar to, but more restrictive than, Bloom filters. An appropriately
sized Bloom filter can provide an accurate hint as to whether
or not a specific object has been inserted into it, but does not
encode how many objects have been inserted. By simply adding
an integer counter, Bloom filters can be extended to estimate
cardinality. A HyperLogLog summarizes just the total cardi-
nality of distinct objects, and cannot directly answer questions
about whether a given object has been inserted. The result

of sacrificing tests of membership is that HyperLogLogs can
accurately estimate cardinality with much lower space require-
ments than would be needed to achieve the same precision
using a Bloom filter-based counter.

A detailed explanation of how HyperLogLogs work would
require more space than is available here, but the core intuition
is relatively simple: If we were to consider a long series of coin
tosses, one approach to approximate the total number of flips
would be to observe the longest series of consecutive “heads”
over the entire stream. Probabilistically, it will take much
longer to have 10 heads in a row than it will to have 2; the longest
string of heads provides a rough approximation of the total
number of tosses. HyperLogLogs work similarly: They hash
each element in a stream and then count the number of leading
zero bits in the resulting hashed value. By aggregating counts of
leading zeros into a set of independently sampled buckets, and
then taking the harmonic mean across those resulting indepen-
dent counts, HyperLogLogs are able to provide a very accurate
(significantly better than the coin toss example above) and very
compact approximation of the total cardinality.

References

[1] Peter J. Denning, “The Working Set Model for Program
Behavior,” Communications of the ACM, vol. 11, no. 5 (May
1968), pp. 323–333.

[2] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyper-
LogLog: The Analysis of a Near-Optimal Cardinality Esti-
mation Algorithm,” in Proceedings of the 2007 International
Conference on Analysis of Algorithms (DMTCS, 2007),
pp. 127–146.

[3] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in
Practice: Algorithmic Engineering of a State of the Art
Cardinality Estimation Algorithm,” in Proceedings of the 16th
International Conference on Extending Database Technology
(EDBT ’13) (ACM, 2013), pp. 683–692.

[4] R. L. Mattson, J. Gecsei, J. D. R. Slutz, and I. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,” IBM-
Systems Journal, vol. 9, no. 2 (1970), pp. 78–117.

[5] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and
A.  Warfield, “Characterizing Storage Workloads with Coun-
ter Stacks,” in Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (OSDI ’14)
(USENIX Association, 2014), pp. 335–349.

10  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE

Storage Options for Software Containers
M A R K L A M O U R I N E

Software containers are likely to become a very important tool over the
next few years. While there is room to argue whether or not they are
a new tool, it is clear that they have certain elements that are clearly

immature. Storage is one of those elements.

The problem isn’t that we need new storage services. The new factors are due to the charac-
teristics of containers themselves and how they differ from traditional bare-metal hosts and
virtual machines (VMs). Also, storage isn’t an issue on single hosts where it can be mounted
manually for each individual container. Large container farms present problems that are
related to those for VM-based IaaS services but that are complicated by VMs’ lack of clean
boundaries.

There are two common container mechanisms in use today: LXC and Docker. LXC is the
older mechanism and requires careful crafting of the container environment, although it
also provides more control to the user. Creating LXC containers requires a significant level
of expertise. LXC also does not provide a simple means to copy and re-instantiate existing
containers.

Docker is the more recent container environment for Linux. It makes a set of simplifying
assumptions and provides tools and techniques that make creating, publishing, and consum-
ing containers much easier than it has ever been. This has made container technology much
more appealing than it was before, but current container systems only manage individual
containers on single hosts. As people begin trying to put containers and containerized appli-
cations to use at larger scales, the remaining problems, such as how to manage storage for
containers, are exposed.

In this article I’m going to use Docker as the model container system, but all of the observa-
tions apply as well to LXC and to container systems in general.

A Container Primer
The first thing to understand is that containers don’t contain [1]. A container is really a
special view of the host operating system that is imposed on one or more processes. The “con-
tainer” is really the definition of the view that the processes will see. In some senses they
are similar to chroot environments or BSD jails but the resemblance is superficial and the
mechanism is entirely different.

The enabling mechanism for Linux containers is kernel namespaces [2, 3]. Kernel name-
spaces allow the kernel to offer each process a different view of the host operating system.
For example, if a contained process asks for stat(3) for the root (/), the namespace will
map that to a different path (when seen by an uncontained process): for example, /var/lib

/docker/devicemapper/mnt/<ID>/rootfs/. Since the file system is hierarchical, requests for
information about files beneath the root node will return answers from inside the mapped
file tree.

Mark Lamourine is a senior
software developer at Red Hat.
He’s worked for the last few
years on the OpenShift project.
He’s a coder by training, a

sysadmin and toolsmith by trade, and an
advocate for the use of Raspberry Pi style
computers to teach computing and system
administration in schools. Mark has been a
frequent contributor to the ;login: book reviews.
markllama@gmail.com

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 11

FILE SYSTEMS AND STORAGE
Storage Options for Software Containers

In all *NIX operating systems, PID 1 is special. It’s the init
process that is the parent of all other processes on a host. In a
Docker container, there is a master process, but it is generally
not the system process. Rather, it may be a shell or a Web server.
But from inside the container, the master process will appear to
have PID 1.

There are six namespaces that allow the mapping of different
process resources [6]:

◆◆ mount—file systems

◆◆ UTS—nodename and domain name

◆◆ IPC—inter-process communication

◆◆ PID—process identification

◆◆ network—network isolation

◆◆ user—UID mapping

A process running “in a container” is, in fact, running directly on
the container host. All of the files it sees are actually files inside
the host file system. The “containment” of the process is an illu-
sion, but a useful one. This lack of the traditional boundaries is
what makes container storage management something new.

Software Container Farms and Orchestration
If all you want to do is run a single container on a single host
with some kind of storage imported, there’s no real problem. You
manually create or mount the storage you want, then import the
storage when you create the container. Both LXC and Docker
have means of indicating that some external file-system root
should be re-mapped to a new mount point inside the container.
When you want to create a container farm, where placement
of individual containers is up to the orchestration system, then
storage location becomes interesting. In a container farm, the
person who requests a new container only gets to specify the
characteristics, not the deployment location.

There are a number of container orchestration systems currently
under development. CoreOS is using a system called Fleet [3].
Google and Red Hat are working on Kubernetes [4]. Both have
slightly different focus and features but in the end they will both
have to create the environment necessary to run containers on
hosts that are members of a cluster. I think it’s too early to tell
what will happen in the area of container orchestration system
development even over the short term.

I’m not going to talk about how the orchestration systems will do
their work, I’m only going to talk about the flavors of storage they
will be called on to manage and the characteristics and implica-
tions of each. But first, let’s look at how Docker handles storage
without an orchestration system.

Docker Ephemeral Storage
When you ask Docker to create a container, it unpacks a collec-
tion of tar archives that together are known as the image. If no
external volumes are specified, then the only file tree mounted is
the unpacked image. Each of the running containers is unpacked
into /var/lib/docker/devicemapper/mnt/<ID>/rootfs where
<ID> is the container ID returned when the container is created
using the devicemapper driver. Different storage drivers will
have slightly different paths.

This is ephemeral storage in the sense that when the container
is deleted, the storage is reclaimed and the contents deleted (or
unmounted). This file tree is not shared with other containers.
Changes made by processes in the container are not visible to
other containers.

Docker Volumes—Shared and Persistent Storage
The Dockerfile VOLUME directive is used to define a mount
point in a container. It basically declares, “I may want to mount
something here or share something from here.” Docker can
mount different things at that point in response to arguments
when a container is created.

When you create a new Docker container from an image that
declares a volume, but you don’t provide an external mount point,
then the content below the volume mount point is placed in its
own directory within the Docker workspace (/var/lib/docker

/vfs/dir/).

Figure 1: The Docker VOLUME directive creates a mount point in the
container. The file tree below the mount point in the image is placed in a
separate space when the container is created. It can be exported to other
containers or imported either from a container or from external storage.

Figure 2: A container connected to an “internal” volume. This is created
by Docker as a default if no external volume is offered.

12  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Storage Options for Software Containers

You can share this storage between containers on the same host
with the docker --volumes-from command line option. This
causes the declared volumes from an existing container to be
mounted on any matching volumes in the new container.

Shared storage using what’s known as a data container can
be treated as persistent across restarts of an application. The
application container can be stopped and removed and then
recreated or even upgraded. The data container will be available
to remount when the application is restarted.

This volume sharing will also work with host storage.

External Host Storage
In this case “external” means “from outside the container.”
When you start a Docker container, you can indicate that you
want to mount a file or directory from the host to a point inside
the container.

Host storage is useful when you are creating individual contain-
ers on a single host. You can create and manage the space on
the host that you’re going to mount inside before you start the
container. This gives you more control over the initialization of
the storage, and you can view and modify it easily from the host
while the application is running.

This becomes more difficult, though, when you start working
with a large container farm. The whole idea of container farms is
that all of the hosts are identical and that the containers can be
placed and moved to maintain the balance of the load within the
cluster. The only way to do that practically is to move the storage
off the container host entirely.

Containers, the mount(8) Command and
 Container Orchestration
I’ve mentioned the lack of the host boundary when managing
containers. The mount(8) command is where this appears for
storage. You can’t run mount(8) from inside a container without
special privileges. Since a container is just a special view of the
host, any file system mounted into a container must be mounted
onto the host before the container is started. In general, pro-
cesses inside containers are not given the privileges to affect
anything on the host outside the container. (If they can, they’re
not very well contained, are they?)

For similar reasons, Docker cannot cause the host to mount new
file systems, whether local or remote. Docker restricts itself to
controlling how the container sees the resources that the host
already has available. Docker manages individual containers on
single hosts. For large numbers of containers spread across mul-
tiple hosts, the orchestration system will have to provide a way
to connect storage to containers within the cluster. In the rest of
this article, I’ll talk about where the storage will come from.

Docker and the Host Boundary
At this point you’ve seen everything that Docker can do with
storage. Docker limits itself to using the resources available on
a host. Its job is to provide those resources to the interior of con-
tainers while maintaining the limited view the containers have
of the host outside. This means that Docker itself is unaware
of any containers on other hosts or of any other resource that
has not been attached to the host when the container is created.
Docker can’t make changes to the host environment on behalf of
a container.

This is where orchestration systems come in. A good orchestra-
tion system will have a way to describe a set of containers and
their interactions to form a complete application. It will have the
knowledge and means to modify the host environment for new
containers as they are created.

Network Storage
Most machines have block storage mounted directly on the host.
Network storage extends the reach of individual hosts to a larger
space than is possible with direct storage, and it allows for the
possibility of sharing storage between multiple hosts.

Figure 4: A container with host storage. The host storage is bind mounted
onto the container volume mount point.

Figure 3: Two containers sharing a volume. The volume is created by
Docker when the first container is created. The second container mounts
from the first using the --volumes-from option.

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 13

FILE SYSTEMS AND STORAGE
Storage Options for Software Containers

I’m going to group all of the traditional off-host storage services
under the umbrella of “network storage.” These include NAS,
SAN, and more modern network storage services. There are a
few differences.

NAS services like NFS, CIFS, and AFS don’t appear on the host
as devices. They operate using IP protocols on the same net-
works that carry the other host traffic. Their unit of storage is a
file (or directory). They generally don’t tolerate latency very well.
In their original form, NAS services don’t support distributed
files or replication. In most cases they don’t require a service
running on the client host to manage the creation of connections
or the file traffic. NAS services can be provided by specialized
appliances or by ordinary hosts running the service software.

There is a new class of distributed network services that provide
replication and higher performance than single-point NAS does.
Gluster and Ceph are two leading distributed NAS services. Cli-
ents run special daemons that distribute and replicate copies of
the files across the entire cluster. The files can either be accessed
on the client hosts or be served out over NFS to other clients.

SAN systems include Fibre Channel, InfiniBand, and iSCSI.
Fibre Channel and InfiniBand require special hardware net-
works and connections to the host. iSCSI can run over IP net-
works and so does not require special hardware and networks,
although for the best performance, users often need to create
distinct IP networks to avoid conflicts with other data traffic.
SAN services usually require some additional software to map
the service end points to *NIX device files, which can be parti-
tioned, formatted, and mounted like ordinary attached storage.
SAN services provide very low latency and high throughput, to
the point where they can substitute for attached storage.

For container systems these all pose essentially the same prob-
lem. The orchestration system must locate and mount the file
system on the host. Then it must be able to import the storage
into the container when it is created.

File Ownership and UID Mapping
One major unsolved problem for Docker (at the time of this writ-
ing) is control of the ownership and access permissions on files.

*NIX file ownership is defined by UID and GID numbers. For
a process to access a file, the UID of a process must match the
file owner UID, and the user must have the correct permissions
or get access via group membership and permissions. With the
exception of the root user (UID 0, GID 0), the assignment of
UID/GID is arbitrary and by convention.

The UID assignment inside a container is defined by the /etc

/passwd file built into the container image. There’s no relation
to the UID assignment on the container host or on any network
storage.

When a process inside a container creates a file, it will be owned
by the UID of the process in the container even when seen from
the host. When using host, network, or cloud block storage, any
process on the host with the same UID will have the same access
as the processes inside the container.

Access in the other direction is also a problem. If files on shared
storage are created with a UID that does not match the process
UID inside the container, then the container process will fail
when accessing the storage.

This will also benefit developers trying to create generic con-
tainer images that are able to share storage between containers.
Currently, any two containers that mean to share storage must
have identical user maps.

The Linux kernel namespace system includes the ability to map
users from inside a container to a different one on the host. The
Docker developers are working on including user namespaces,
but they present a number of security issues that have to be
resolved in the process.

Container Hosts and Storage Drivers
Even before the introduction of Docker there was a movement to
redefine the way in which software is packaged and delivered.
CoreOS [5] and, more recently, Project Atomic [6] are projects
which aim to create a stripped down host image that contains
just the components needed to run container applications. Since
they just run containers, much of the general purpose software
normally installed on a host or VM isn’t needed. These lean
images do not need patching. Rather, the host image is replaced
and rebooted as a unit (hence, “Atomic”).

Although this simplifies the maintenance of both the host and
the containers, using “forklift updates,” the rigid image formats
make adding drivers or other customizations difficult. There is a
very strong pressure to keep the host images small and to include
only critical software. Everything that can be put into a con-
tainer is, even tools used to monitor and manage the container
host itself.

These purpose-made container hosts will need to provide a full
range of network storage drivers built into the image, or they will
have to be able to accept drivers running in containers if they
want to compete with general purpose hosts configured for con-
tainers. It’s not clear yet which drivers will be available for these
systems, but they are being actively developed.

Cloud Storage
Cloud services take a step further back. They disassociate the
different components of a computer system and make them
self-service. They can be managed through a user interface or
through an API.

14  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Storage Options for Software Containers

Cloud storage for applications usually takes one of two forms:
object storage and block storage. (The third form of cloud storage,
image storage, is used to provide bootable devices for VMs.)

Object Storage
All of the cloud services, public and private, offer some form of
object storage, called Swift in OpenStack. The AWS object store
is S3, and Google offers Google Cloud Storage (not to be confused
with Google Cloud Engine Storage; see “Block Storage,” below).

Object stores are different from the other storage systems.
Rather than mounting a file system, the data are retrieved
through a REST API directly by processes inside the container.
Each file is retrieved as a unit and is placed by the calling appli-
cation into an accessible file space. This means that object stor-
age doesn’t need any special treatment by either the container
system or the orchestration system.

Object stores do require some form of identification and authen-
tication to set and retrieve data objects. Managing sensitive
information in container systems is another area of current work.

Container images that want to use object stores must include
any required access software. This may be an API library for a
scripting language or, possibly, direct coding of the HTTP calls.

The push-pull nature of object stores makes them unsuitable
for uses that require fast read/write access to small fragments
of a file. Access can have very high latency, but the objects are
accessed as a unit, so they are unlikely to be corrupted during
the read/write operations. The most common uses are for con-
figuration files and for situations where data inconsistency from
access collisions can be accepted in the short term.

Block Storage
Cloud block storage appears on a (virtual) host as if it were
direct attached storage. Each cloud storage system has a differ-
ent name for its own form of block storage. OpenStack uses the
Cinder service. On Amazon Web Services it’s known as EBS.
Google calls it GCE Storage (not to be confused with Google
Cloud Storage).

Cloud block storage systems are controlled through a published
API. When a process requests access to cloud storage, a new
device file is created. Then the host can mount the device into
the file system. From there Docker can import the storage into
containers.

The challenge for an orchestration system is to mount each block
device onto a container host on-demand and make it available to
the container system. Since each cloud environment has a differ-
ent API, either they all must be hard-coded into the orchestra-
tion system or the orchestration system must provide a plugin
mechanism.

So far the only combination I’ve seen work is Kubernetes in
Google Cloud Engine, but developers on Kubernetes and oth-
ers all recognize the need for this feature and are actively
developing.

Summary
Container systems in general and Docker in particular are lim-
ited in scope to the host on which they run. They create contain-
ers by altering the view of the host that contained processes can
see. They can only manage the resources that already exist on
the host.

Orchestration systems manage multiple containers across a
cluster of container hosts. They allow users to define complex
applications composed of multiple containers. They must create
or configure the resources that the containers need, and then
trigger the container system, like Docker, to create the contain-
ers and bind them to the resources.

Currently, only Kubernetes can mount GCE Storage when run-
ning in the GCE environment.

For container systems to scale, the orchestration systems will
need to be extended to be able to communicate and manage the
various network and cloud storage systems. Docker and the
orchestration systems will need to be able to manage user map-
ping as well as file access controls.

In both Fleet and Kubernetes, the development teams are actively
working to address all of these issues, and I expect that there will
be ways to manage storage in large container farms very soon.
Once there are, containers will begin to fulfill their promise.

For a more detailed treatment of containers, see the article by
Bottomley and Emelyanov [7].

References
[1] Daniel Walsh, “Are Docker Containers Really Secure?”:
http://opensource.com/business/14/7/docker-security
-selinux.

[2] Linux kernel namespaces: http://lwn.net/Articles/531114/.

[3] CoreOS Fleet: https://github.com/coreos/fleet.

[4] Google Kubernetes: https://github.com/GoogleCloud
Platform/kubernetes.

[5] CoreOS container hosts: https://coreos.com/.

[6] Project Atomic: http://www.projectatomic.io/.

[7] James Bottomley and Pavel Emelyanov, “Containers,”
;login:, vol. 39, no. 5, Oct. 2014: https://www.usenix.org
/publications/login/october-2014-vol-39-no-5/containers.

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 15

FILE SYSTEMS AND STORAGE

Interview with Steve Swanson
R I K F A R R O W

W hile walking the poster session at OSDI ’14, I saw Steve Swanson.
I wanted to talk to him about the past and future of non-volatile
memory (NVM), since he and his students had produced many

papers about the topic that I’d heard presented. I also had some vague ideas
about a class for FAST ’15 on the history of NVM. Alas, Steve was moving so
quickly through the crowd that I never caught up to him in Broomfield.

However, Steve later agreed to an email interview.

Rik: How did you get interested in non-volatile storage?

Steve: I was a new professor and was talking to a colleague from industry who was working
on storage systems. He mentioned that flash memory was really beginning to shake things
up, so I took a look at it. It turned out to be a perfect research problem for me: It involved hard-
ware and system design (which is, broadly, what I did my PhD on), and it centered around
a huge disruption in the performance of a particular piece of the system. Those kinds of
changes always result in big challenges and open up all kinds of new areas for research. My
students and I dove in, and it’s been really exciting and has allowed us to do interesting work
on both the hardware and software side as well as at the application level.

Rik: I wanted to start off with some history, or at least try to better understand how we got
to where we are today with flash-based storage devices. Having heard many paper presen-
tations, it seems like there have been, and will continue to be, two big issues, both of them
interrelated.

These are the flash translation layer (FTL) and the disk-style interface for flash-based
 storage. Can you explain why vendors adopted these interfaces?

Steve: FTLs arose because SSD vendors needed to make it as easy as possible for customers
to use their new drives. It’s a much simpler proposition to sell something as a faster, drop-
in replacement for a hard drive. If you can make your flash drive look like a hard drive, you
immediately have support from all major operating systems, you can use existing file sys-
tems, etc. The alternative is to tell a customer that you have a new, fast storage device, but it
will require them to completely change the way their software interacts with storage. That’s
just a non-starter.

The disk-based interface that FTLs emulate emerged because it is a natural and reason-
ably efficient interface for talking to a disk drive. Indeed, just about everything about how
software interacts with storage has been built up around disk-based storage. It shows up
throughout the standard file-based interfaces that programmers use all the time.

The problem is that flash memory looks nothing like a disk. The most problematic difference
is that flash memory does not support in-place update. Inside an SSD, there are several flash
chips. Each flash chip is broken up into 1000s of “blocks” that are a few hundred kilobytes in
size. The blocks are, in turn, broken into pages that are between 2 and 16 KB.

Steven Swanson is an associate
professor in the Department
of Computer Science and
Engineering at the University
of California, San Diego and

the director of the Non-Volatile Systems
Laboratory. His research interests include the
systems, architecture, security, and reliability
issues surrounding non-volatile, solid-state
memories. He also co-leads projects to
develop low-power co-processors for irregular
applications and to devise software techniques
for using multiple processors to speed up
single-threaded computations. In previous
lives he has worked on scalable dataflow
architectures, ubiquitous computing, and
simultaneous multithreading. He received his
PhD from the University of Washington in
2006 and his undergraduate degree from the
University of Puget Sound.
swanson@eng.ucsd.edu

Rik is the editor of ;login:.
rik@usenix.org

16  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

FILE SYSTEMS AND STORAGE
Interview with Steve Swanson

Flash supports three main operations. First, you can “erase” a
block, that is, set it to all 1s. It seems like “erased” should be all
0s but the convention is that it’s all 1s. Erasing a block takes a
few milliseconds. Second, you can “program” a page in an erased
block, which means you can change some of the 1s to 0s. You have
to program the whole page at once, and you must program the
pages within a block in order. Programming takes hundreds of
microseconds. Third, you can read a page, and reading takes tens
of microseconds. The result of this is that if you want to change
a value in a particular page, you need to first erase the entire
block and then reprogram the entire block. This is enormously
inefficient.

The final wrinkle is that you can only erase each block a rela-
tively small number of times before it will become unreliable—
between 500 and 100,000 depending on the type of flash chip.
This means that even if erasing and reprogramming a block were
an efficient way to modify flash, performing an erase on every
modification of data would quickly wear out your flash.

So the FTL’s job is pretty daunting: It has to hide the asymme-
try between programs and erasures, ensure that erasures are
spread out relatively evenly across all the flash in the system so
that “hot spots” don’t cause a portion of the flash to wear out too
soon, present a disk-like interface, and do all this efficiently and
quickly. Meeting these challenges has turned out to be pretty dif-
ficult, but SSD manufacturers have done a remarkably good job
of producing fast, reliable SSDs.

The first SSDs looked exactly like small hard drives. They
were the same shape, and they connected to the computer via
standard hard drive interface protocols (i.e., SATA or SAS). But
those protocols were built for disks. Flash memory provided the
possibility of building much faster (in terms of both bandwidth
and latency) storage devices than SATA or SAS could support.
Importantly, SSD could also support much more concurrency
than hard drives, and they supported vastly more efficient ran-
dom accesses than hard drives.

The first company to take a crack at something better was
 FusionIO. They announced and demonstrated their ioDrive
product in September 2007. Instead of using a conventional form
factor and protocol, the ioDrive was a PCIe card (like a graphics
card) and used a customized interface that was tuned for flash-
based storage rather than disk-based storage. FusionIO also
began to experiment with new interfaces for storage, making
it look quite different from a disk. It’s not clear how successful
this has been. The disk-like interface has a heavy incumbent
advantage.

More recently, NVM Express has emerged as a standard for
communicating with the PCIe-attached SSDs. It supports lots of
concurrency and is built for low-latency, high-bandwidth drives.
Many vendors sell (or will sell shortly) NVMe drives.

Another set of systems has taken a different approach. Rather
than use NVMe to connect an SSD to a single system, they build
large boxes full of flash and expose them over a network-like
interconnect (usually Fibre Channel or iSCSI) to many serv-
ers. These network-attached storage (NAS) SSDs must solve all
the same problems NVMe or SATA SSDs must solve, but they
do address one puzzle that faces companies building high-end
SSDs: These new drives can deliver so much storage perfor-
mance that it’s hard for a single server to keep up. By exposing
one drive to many machines, NAS SSDs don’t have that problem.
Violin and Texas Memory Systems fall into this camp.

Rik: If vendors have done such a great job with flash, why has
there been so much academic research on it?

Steve: I think the main problem here is that most researchers
don’t know what industry is actually doing. The inner workings
of a company’s FTL are their crown jewels. Physically building
an SSD (i.e., assembling some flash chips next to a flash control-
ler on PCB) is not technically challenging. The real challenge
is in managing the flash so that performance is consistent and
managing errors so that they can meet or exceed the endurance
ratings provided by flash chip manufacturers. As a result, the
research community has very little visibility into what’s actually
going on inside companies. Some researchers may know, but the
information is hidden behind NDAs.

Of course, designing a good FTL is an interesting problem,
and there are many different approaches to take, so research-
ers write papers about them. However, it’s not clear how much
impact they will have. Maybe the techniques they are proposing
are cutting edge, extend the state of the art, and/or are adopted
by companies. Or maybe they aren’t. It’s hard to tell, since com-
panies don’t disclose how their FTLs work.

My personal opinion is that, on the basic nuts and bolts of man-
aging flash, the companies are probably ahead of the research-
ers, since that technology is directly marketable, the companies
are better funded, and they have better access to proprietary
information about flash chips, etc.

I think researchers have the upper hand in terms of rethinking
how SSD should appear to the rest of the system—for example,
adding programmability or getting away from the legacy block-
based interface, since this kind of fundamental rethinking of
how storage should work is more challenging in the commercial
environment. However, I think it’s probably the more interesting
part of SSD research and, in the long term, will have more impact
than, for example, a new proprietary wear-leveling scheme.

Rik: I’ve heard several paper presentations that cover aspects
of NVM when it has become byte addressable, instead of block
addressable, as it is today. That’s assuming, of course, that the
promises come true. Can you talk about future directions for
research?

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 17

FILE SYSTEMS AND STORAGE
Interview with Steve Swanson

Steve: I think the most pressing questions going forward lie along
four different lines:

Byte-addressable memories will probably first appear in small
quantities in flash-based SSD. One important question is how
can we use small amounts of byte-addressable NVM to improve
the performance of flash-based SSDs. This is the nearest-term
question, and there are already some answers out there. For
instance, it’s widely known that FusionIO (now SanDisk) uses a
form of byte-addressable NVM in its SSDs.

A second likely early application for NVM is in smartphones and
other mobile devices. You can imagine a system with a single
kind of memory that would serve the role of modern DRAM and
also serve as persistent data storage. Since it would have the
performance of DRAM, it could alter the programming model
for apps: Rather than interacting with key-value stores and other
rather clumsy interfaces to persistent storage, they could just
create data structures in persistent memory. This would, I think,
be a nice fit for lots of small, one-off apps. The main challenge
here is in making it easy for programmers to get the persistent
data structures right. It’s very hard to program a linked list or
tree so that, if power fails at an inopportune moment, you can
ensure that the data structure remains in a usable state. We have
done some work in this area recently as has Mike Swift’s group
at the University of Wisconsin in Madison, but there’s much left
to do.

If we solve the next problem, then many of the techniques that
we could use in mobile systems would be applicable in larger
systems too.

Third, if byte-addressable memories are going to be useful in
datacenter-scale storage systems, the data they hold must be
replicated, so that if the server hosting one copy goes down, the
data is still available. This is a challenge because the memories
have access times on the order of tens of nanoseconds, while
network latencies are on the order of (at least) a few microsec-
onds. How can we transmit updates to the backup copy without
squandering the performance of these new, fast, byte-address-
able memories? There are many possible solutions. We’ve done
work on a software-based solution, but it’s also possible that we
should integrate the network directly into the memory system.
This also raises the question of how to reconcile the large body
of work from the distributed systems community on distributed
replication with the equally large body of work from the archi-
tecture community on how to build scalable memory systems.
Both fields deal with issues of data consistency and how updates
at different nodes should interact with one another, but they do
so in very different ways.

The fourth area of interest is in how we can integrate I/O more
deeply into programming languages. In modern languages, I/O
is an afterthought, so the compiler really has no idea I/O is going
on and can’t do anything to optimize it. This was not a big deal
for disk-based systems, since disk I/O operates on time scales so
large (that is, they are so slow) that the compiler could not hope to
do anything to improve I/O performance. As storage performance
increases, it becomes very feasible that a compiler could, for
example, identify I/O operations and execute them a few micro-
seconds early so that the code that needs the results would not
have to wait for them. Doing this means we need to formalize the
semantics of I/O in a precise way that a compiler could deal with.

18  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMINGSimple Testing Can Prevent Most
Critical Failures
An Analysis of Production Failures in Distributed
Data-Intensive Systems

D I N G Y U A N , Y U L U O , X I N Z H U A N G , G U I L H E R M E R E N N A R O D R I G U E S ,
X U Z H A O , Y O N G L E Z H A N G , P R A N A Y U . J A I N , A N D M I C H A E L S T U M M

Ding Yuan is an assistant
professor in the Electrical
and Computer Engineering
Department of the University of
Toronto. He works in computer

systems, with a focus on their reliability and
performance. yuan@ece.toronto.edu

Yu (Jack) Luo is an under-
graduate student at the
University of Toronto studying
computer engineering. He has
interned at IBM working with

memory management and disaster recovery.
His research interests are in systems, failure
recovery, and log analysis. 
jack.luo@mail.utoronto.ca

Xin Zhuang is an undergraduate
at the University of Toronto
studying computer engineering.
His research interest is in
software systems.

xin.zhuang@mail.utoronto.ca

Guilherme Renna Rodrigues
is an exchange student at
the University of Toronto
and is an undergraduate at
CEFET-MG, Belo Horizonte,

Brazil. The research project at the University
of Toronto has led to his interest in practical
solutions for computing systems problems.
guilhermerenna@gmail.com

Xu Zhao is a graduate student
at the University of Toronto. He
received a B.Eng. in computer
science from Tsinghua
University, China. At U of

T, his research is focused on reliability and
performance of distributed systems.
nuk.zhao@mail.utoronto.ca

Large, production-quality distributed systems still fail periodically,
sometimes catastrophically where most or all users experience an
outage or data loss. Conventional wisdom has it that these failures

can only manifest themselves on large production clusters and are extremely
difficult to prevent a priori, because these systems are designed to be fault
tolerant and are well-tested. By investigating 198 user-reported failures that
occurred on production-quality distributed systems, we found that almost all
(92%) of the catastrophic system failures are the result of incorrect handling
of non-fatal errors, and, surprisingly, many of them are caused by trivial
mistakes such as error handlers that are empty or that contain expressions
like “FIXME” or “TODO” in the comments. We therefore developed a simple
static checker, Aspirator, capable of locating trivial bugs in error handlers; it
found 143 new bugs and bad practices that have been fixed or confirmed by
the developers.

Our study also includes a number of additional observations that may be helpful in improv-
ing testing and debugging strategies. We found that from a testing point of view, almost
all failures require only three or fewer nodes to reproduce, which is good news considering
that these services typically run on a very large number of nodes. In addition, we found that
a majority of the failures can simply be reproduced by unit tests even though conventional
wisdom has it that failures that occur on a distributed system in production are extremely
hard to reproduce offline. Nevertheless, we found the failure manifestations are generally
complex, typically requiring multiple input events occurring in a specific order.

The 198 randomly sampled, real world, user-reported failures we studied are from the issue
tracking databases of five popular distributed data-analytic and storage systems: Cassandra,
HBase, HDFS, Hadoop MapReduce, and Redis. We focused on distributed, data-intensive sys-
tems because they are the building blocks of many Internet software services, and we selected
the five systems because they are widely used and are considered production quality.

Software Language Failures
Total Sampled Catastrophic

Cassandra Java 3,923 40 2

HBase Java 5,804 41 21

HDFS Java 2,828 41 9

MapReduce Java 3,469 38 8

Redis C 1,192 38 8

Total – 17,216 198 48

Table 1: Number of reported and sampled failures for the systems we studied, and the catastrophic ones
from the sample set

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 19

Table 1 shows the distribution of the failure sets. For each sampled failure ticket, we care-
fully studied the failure report, the discussion between users and developers, related error
logs, the source code, and patches to understand the root cause and its propagation leading to
the failure.

We further studied the characteristics of a specific subset of failures—the catastrophic
failures, which we define as those failures that affect all or a majority of users instead of only
a subset of users. Catastrophic failures are of particular interest because they are the most
costly ones for the service providers, and they are not supposed to occur, considering these
distributed systems are designed to withstand and automatically recover from component
failures.

General Findings
What follows is a list of all of our general findings. Overall, our findings indicate that the fail-
ures are relatively complex, but they identify a number of opportunities for improved testing
and diagnosis. Note that we only discuss the first five of the general findings in this article.
Our OSDI paper [6] contains detailed discussions on the other general findings, and findings
for catastrophic failures are discussed below (Findings 11-13).

1. A majority (77%) of the failures require more than one input event to manifest.
2. A significant number (38%) of failures require input events that typically occur only on long

running systems.
3. The specific order of events is important in 88% of the failures that require multiple input

events.
4. Twenty-six percent of the failures are non-deterministic—they are not guaranteed to mani-

fest given the right input event sequences.
5. Almost all (98%) of the failures are guaranteed to manifest on no more than three nodes.
6. Among the non-deterministic failures, 53% have timing constraints only on the input

events.
7. Seventy-six percent of the failures print explicit failure-related error messages.
8. For a majority (84%) of the failures, all of their triggering events are logged.
9. Logs are noisy: the median of the number of log messages printed by each failure is 824.
10. A majority (77%) of the production failures can simply be reproduced by a unit test.

Finding 1: A majority (77%) of the failures require more than one input event to manifest, but
most of the failures (90%) require no more than three.

Figure 1 provides an example where two input events, a load balance event and a node crash,
are required to take down the cluster. Note that we consider the events to be “input events”
from a testing and diagnostic point of view—some of the events (e.g., “load balance” and
“node crash”) are not strictly user inputs but can easily be emulated in testing.

Finding 2: A significant number (38%) of failures require input events that typically occur
only on long running systems.

The load balance event in Figure 1 is such an example. This finding suggests that many of
these failures can be hard to expose during normal testing unless such events are intention-
ally exercised by testing tools.

Finding 3: The specific order of events is important in 88% of the failures that require multiple
input events.

Consider again the example shown in Figure 1. The failure only manifests when the load bal-
ance event occurs before the crash of slave B. A different event order will not lead to failure.

Yongle Zhang is a graduate
student in computer engineer-
ing at the University of Toronto.
His research interests are in
operating systems and log

analysis. He previously received an M.E. and
B.E. in computer science from the Institute of
Computing Technology of the Chinese Acad-
emy of Sciences and at Shandong University,
respectively.  yongle.zhang@mail.utoronto.ca

Pranay U. Jain is a final year
undergraduate in computer
engineering at the University of
Toronto. Previously, he interned
with the Amazon Web Services

team. pranay.ujain@mail.utoronto.ca

Michael Stumm is a professor
in the Electrical and Computer
Engineering Department of
the University of Toronto. He
works in the general area of

computer systems software with an emphasis
on operating systems for distributed systems
and multiprocessors. He co-founded two
companies, SOMA Networks and OANDA, a
currency trading company.
stumm@ece.utoronto.ca

PROGRAMMING
Simple Testing Can Prevent Most Critical Failures

20  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING
Simple Testing Can Prevent Most Critical Failures

In many cases, even with the right combination and sequence of
input events the failure is not guaranteed to manifest:

Finding 4: Twenty-six percent of the failures are non-determin-
istic—they are not guaranteed to manifest given the right input
event sequences.

In these cases, additional timing relationships are required for
the failures to manifest. For example, the failure in Figure 1 can
only manifest when slave B crashes after the znode is deleted.
If it crashes before the HMaster deletes the znode, the failure
would not be triggered.

Findings 1–4 show the complexity of failures in large distrib-
uted systems. To expose the failures in testing, we need to not
only explore the combination of multiple input events from an
exceedingly large event space with many only occurring on long
running systems, we also need to explore different permutations.
Some further require additional timing relationships.

The production failures we studied typically manifested them-
selves on configurations with a large number of nodes. This
raises the question of how many nodes are required for an effec-
tive testing and debugging system.

Finding 5: Almost all (98%) of the failures are guaranteed to
manifest on no more than three nodes.

The number is similar for catastrophic failures, where 98% of
them manifest on no more than three nodes. Finding 5 implies
that it is not necessary to have a large cluster to
test for and reproduce failures.

Note that Finding 5 does not contradict the
conventional wisdom that distributed system
failures are more likely to manifest on large clus-
ters. In the end, testing is a probabilistic exercise.
A large cluster usually involves more diverse
workloads and fault modes, thus increasing the
chances for failures to manifest. However, what

our finding suggests is that it is not necessary
to have a large cluster of machines to expose
bugs, as long as the specific sequence of input
events occurs.

Catastrophic Failures
Table 1 shows that 48 failures in our failure set
have catastrophic consequences. We classify
a failure to be catastrophic when it prevents
all or a majority of the users from their normal
access to the system. In practice, these fail-
ures result in a cluster-wide outage, a hung
cluster, or a loss to all or to a majority of the
user data.

The fact that there are so many catastrophic failures is per-
haps surprising given that the systems considered all have high
availability (HA) mechanisms designed to prevent component
failures from taking down the entire service. For example, all of
the four systems with a master-slave design—namely, HBase,
HDFS, MapReduce, and Redis—are designed to, on a master
node failure, automatically elect a new master node and fail
over to it. Cassandra is a peer-to-peer system and thus by design
avoids single points of failure. Then why do catastrophic failures
still occur?

Finding 11: Almost all catastrophic failures (92%) are the result
of incorrect handling of non-fatal errors explicitly signaled in
software (see Figure 2).

These catastrophic failures are the result of more than one fault
triggering, where the initial fault, whether due to hardware,
misconfiguration, or bug, first manifests itself explicitly as a
non-fatal error—for example, by throwing an exception or hav-
ing a system call return an error. This error need not be cata-
strophic; however, in the vast majority of cases, the handling of
the explicit error was faulty, resulting in an error manifesting
itself as a catastrophic failure.

Overall, we found that the developers are good at anticipating
possible errors. In all but one case, the errors were properly
checked for in the software. However, we found the developers
were often negligent in handling these errors. This is further

Figure 1: A failure in HBase that requires two input events to trigger. A load balance event first
causes a region R to be transferred from an overloaded slave A to a more idle slave B. After B
opens R, HMaster deletes the ZooKeeper znode that is used to indicate R is being opened. If
slave B crashes at this moment, another slave C is assigned to serve the region. After C opens R,
HMaster tries to delete the same ZooKeeper znode again, but deleteOpenedZNode() throws an
exception because the znode is already deleted. This exception takes down the entire cluster.

Figure 2: Breakdown of all catastrophic failures by their error handling

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 21

PROGRAMMING
Simple Testing Can Prevent Most Critical Failures

corroborated in Findings 12 and 13, below. To be fair, we should
point out that our findings are skewed in the sense that our study
did not expose the many errors that are correctly caught and
handled (as evidenced by the long uptime of these systems).

Nevertheless, the correctness of error handling code is particu-
larly important given their impact. Previous studies [4, 5] show
that the initial faults in distributed system failures are highly
diversified (e.g., bugs, misconfigurations, node crashes, hard-
ware faults), and in practice it is simply impossible to eliminate
all of them [1]. It is therefore unavoidable that some of these
faults will manifest themselves into errors, and error handling
then becomes the last line of defense [3].

Trivial Mistakes in Error Handlers
Finding 12: Thirty-five percent of the catastrophic failures are
caused by trivial mistakes in error handling logic—ones that sim-
ply violate best programming practices, and that can be detected
without system-specific knowledge.

Figure 2 breaks down the trivial mistakes into three categories:
(1) the error handler ignores explicit errors; (2) the error handler
over-catches an exception and aborts the system; and (3) the
error handler contains “TODO” or “FIXME” comments.

Twenty-five percent of the catastrophic failures were caused by
ignoring explicit errors. (An error handler that only logs the error
is also considered to be ignoring the error.) For systems written
in Java, the exceptions were all explicitly thrown, whereas in
Redis they were system call error returns.

Another 8% of the catastrophic failures were caused by devel-
opers prematurely aborting the entire cluster on a non-fatal
exception. While in principle one would need system-specific
knowledge to determine when to bring down the entire cluster,
the aborts we observed were all within exception over-catches,
where a higher level exception is used to catch multiple differ-
ent lower-level exceptions. Figure 3 shows such an example.
The exit() was intended only for IncorrectVersionException.
However, the developers catch a high-level exception: Throw-
able. Consequently, when a glitch in the namenode caused reg-

isterDatanode() to throw RemoteException, it was over-caught
by Throwable and brought down every datanode. The fix is to
handle RemoteException explicitly.

Figure 4 shows an even more obvious mistake, where the devel-
opers only left a “TODO” comment in the handler in addition to
a logging statement. While this error would only occur rarely, it
took down a production cluster of 4,000 nodes.

System-Specific Bugs
Fifty-seven percent of catastrophic failures are caused by incor-
rect error handling where system-specific knowledge is required
to detect the bugs (see Figure 2).

Finding 13: In 23% of the catastrophic failures, the mistakes in
error handling were system specific, but were still easily detect-
able. More formally, the incorrect error handling in these cases
would be exposed by 100% statement coverage testing on the error
handling logic.

In other words, once the problematic basic block in the error
handling code is triggered, the failure is guaranteed to be
exposed. This suggests that these basic blocks were faulty and
simply never tested. The failure shown in Figure 1 belongs to
this category. Once a test case can deterministically trigger the
catch block, the failure will manifest with 100% certainty.

Hence, a good strategy to prevent these failures is to start from
existing error handling logic and try to reverse-engineer test
cases that trigger them. While high statement coverage on error
handling code might seem difficult to achieve, aiming for higher
statement coverage in testing might still be a better strategy
than a strategy of applying random fault injections. Our finding
suggests that a “bottom-up” approach could be more effective:
start from the error handling logic and reverse-engineer a test
case to expose errors there.

The remaining 34% of catastrophic failures involve complex
bugs in the error handling logic. While our study cannot provide
constructive suggestions on how to identify such bugs, we found
they only account for one third of the catastrophic failures.

Aspirator: A Simple Checker
In the subsection “Trivial Mistakes in Error Handlers,” we
observed that some of the most catastrophic failures are caused
by trivial mistakes that fall into three simple categories: (1) error
handlers that are empty or only contain log printing statements;

Figure 4: A catastrophic failure in MapReduce where developers left a
“TODO” in the error handler

Figure 3: An entire HDFS cluster brought down by an over-catch

22  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING
Simple Testing Can Prevent Most Critical Failures

(2) error handlers that over-catch exceptions and abort; and (3)
error handlers that contain phrases like “TODO” and “FIXME.”
We built a rule-based static checker, Aspirator, capable of locat-
ing these bug patterns. We provided two implementations of
Aspirator: one as a stand-alone tool that analyzes Java bytecode,
and another version that can be integrated with the Java build
system to catch these bugs at compile-time. The implementation
details of Aspirator can be found in our OSDI paper [6].

Checking Real-World Systems
We first evaluated Aspirator on the set of catastrophic failures
used in our study. If Aspirator had been used and the identi-
fied bugs fixed, 33% of the Cassandra, HBase, HDFS, and
MapReduce’s catastrophic failures we studied would have been
prevented. We then used Aspirator to check the latest stable ver-
sions of these four systems plus five other systems: Cloudstack,
Hive, Tomcat, Spark, and ZooKeeper.

We categorized each warning generated by Aspirator into one of
three categories: bug, bad practice, and false positive. Bugs are
the cases where the error handling logic will clearly lead to unex-
pected failures. False positives are those that clearly would not
lead to a failure. Bad practices are cases that the error handling
logic is suspicious of, but we could not definitively infer the con-
sequences without domain knowledge. For example, if deleting a
temporary file throws an exception and is subsequently ignored,
it may be inconsequential. However, it is nevertheless considered
a bad practice because it may indicate a more serious problem in
the file system.

Overall, Aspirator detected 121 new bugs and 379 bad practices
along with 115 false positives. Aspirator found new bugs in every
system we checked.

Many bugs detected by Aspirator could indeed lead to cata-
strophic failures. For example, all four bugs caught by the
abort-in-over-catch checker could bring down the cluster on an
unexpected exception similar to the one in Figure 3. They have
all been fixed by the developers of the respective systems.

Some bugs can also cause the cluster to hang. Aspirator detected
five bugs in HBase and Hive that have a pattern similar to the
one depicted in Figure 5(a). In this example, when tableLock
cannot be released, HBase only outputs an error message and
continues executing, which can deadlock all servers accessing

the table. The developers fixed this bug by immediately cleaning
up the states and aborting the problematic server.

Figure 5(b) shows a bug that could lead to data loss. An IOExcep-
tion could be thrown when HDFS is recovering the updates from
the edit log. Ignoring this exception could cause a silent data loss.

Experience
Interaction with developers: We reported 171 bugs and bad
practices to the developers of the respective systems: 143 have
already been confirmed or fixed by the developers, 17 were
rejected, and developers never responded to the other 11 reports.

We received mixed feedback from developers. On the one hand,
positive comments include: “I really want to fix issues in this
line, because I really want us to use exceptions properly and never
ignore them”; “No one would have looked at this hidden feature;
ignoring exceptions is bad precisely for this reason”; and “Catch-
ing Throwable [i.e., exception over-catch] is bad; we should fix
these.” On the other hand, we received negative comments like:
“I fail to see the reason to handle every exception.”

There are a few reasons why developers may be oblivious to the
handling of errors. First, some errors are ignored because they
are not regarded as critical at the time, and the importance of the
error handling is realized only when the system suffers a serious
failure. We hope to raise developers’ awareness by showing that
many of the most catastrophic failures today are caused precisely
by such obliviousness to the correctness of error handling logic.

Second, developers may believe the errors would never (or only
very rarely) occur. Consider the following code snippet detected
by Aspirator from HBase:

 try {

 t = new TimeRange(timestamp, timestamp+1);

 } catch (IOException e) {

 // Will never happen

 }

In this case, the developers thought the constructor could never
throw an exception, so they ignored it (as per the comment in the
code). We observed many empty error handlers containing simi-
lar comments in the systems we checked. We argue that errors
that “can never happen” should be handled defensively to prevent
them from propagating. This is because developers’ judgment
could be wrong, later code evolutions may enable the error, and
allowing such unexpected errors to propagate can be deadly.
In the HBase example above, developers’ judgment was indeed
wrong. The constructor is implemented as follows:

 public TimeRange (long min, long max)

 throws IOException {

 if (max < min)

 throw new IOException(“max < min”);

 }
Figure 5: Two new bugs found by Aspirator

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 23

PROGRAMMING
Simple Testing Can Prevent Most Critical Failures

where an IOException is thrown on an integer overflow; yet
swallowing this exception could lead to a data loss. The develop-
ers later fixed this by handling the IOException properly.

Third, proper handling of the errors can be difficult. It is often
much harder to reason about the correctness of a system’s abnor-
mal execution path than its normal execution path. The problem
is further exacerbated by the reality that many of the exceptions
are thrown by poorly documented third-party components. We
surmise that in many cases, even the developers may not fully
understand the possible causes or the potential consequences
of an exception. This is evidenced by the following code snippet
from Cloudstack:

 } catch (NoTransitionException ne) {

 / Why this can happen? Ask God not me. /

 }

We observed similar comments from empty exception handlers
in other systems as well.

Finally, feature development is often prioritized over exception
handler coding when release deadlines loom. We embarrassingly
experienced this ourselves when we ran Aspirator on Aspirator’s
code: We found five empty exception handlers, all of them for the
purpose of catching exceptions thrown by the underlying librar-
ies and put there only so that the code would compile.

Good practice in Cassandra: Among the nine systems we
checked, Cassandra has the lowest bug-to-handler-block ratio,
indicating that Cassandra developers are careful in following
good programming practices in exception handling. In particu-
lar, the vast majority of the exceptions are handled by recursively
propagating them to the callers, and are handled by top level
methods in the call graphs. Interestingly, among the five systems
we studied, Cassandra also has the lowest rate of catastrophic
failures in its randomly sampled failure set (see Table 1).

Reactions from HBase developers: Our OSDI paper
prompted HBase developers to start the initiative to fix all the
existing bad practices. They intend to use Aspirator as their
compile-time checker [2].

Conclusions
We presented an in-depth analysis of 198 user-reported failures
in five widely used, data-intensive distributed systems. We
found that the error-manifestation sequences leading to the fail-
ures to be relatively complex. However, we also found that almost
all of the most catastrophic failures are caused by incorrect error
handling, and more than half of them are trivial mistakes or can
be exposed by statement coverage testing.

Existing testing techniques will find it difficult to successfully
uncover many of these error-handling bugs. They all use a “top-
down” approach: start the system using generic inputs and actively

inject errors at different stages. However, the size of the input and
state space makes the problem of exposing these bugs intractable.

Instead, we suggest a three-pronged approach to expose these
bugs: (1) use a tool similar to the Aspirator that is capable of
identifying a number of trivial bugs; (2) enforce code reviews
on error-handling code, since the error-handling logic is often
simply wrong; and (3) purposefully construct test cases that can
reach each error-handling code block.

Our detailed analysis of the failures and the source code of
 Aspirator are publicly available at: http://www.eecg.toronto
.edu/failureAnalysis/.

Acknowledgments
We greatly appreciate the anonymous OSDI reviewers, Jason
Flinn, Leonid Ryzhyk, Ashvin Goel, David Lie, and Rik Far-
row for their insightful feedback. We thank Dongcai Shen for
help with reproducing five bugs. This research is supported by
an NSERC Discovery grant, NetApp Faculty Fellowship, and
 Connaught New Researcher Award.

References
[1] J. Dean, “Underneath the Covers at Google: Current
 Systems and Future Directions,” in Google I/O, 2008.

[2] HBase-12187: review in source the paper “Simple Testing
Can Prevent Most Critical Failures”: https://issues.apache.
org/jira/browse/HBASE-12187.

[3] P.D. Marinescu and G. Candea, “Efficient Testing of
Recovery Code Using Fault Injection,” ACM Transaction on
Computer Systems, vol. 29, no. 4, Dec. 2011.

[4] D. Oppenheimer, A. Ganapathi, and D.A. Patterson, “Why
Do Internet Services Fail, and What Can Be Done About It?”
in Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems, USITS ’03, 2003, pp. 1–15.

[5] A. Rabkin and R. Katz, “How Hadoop Clusters Break,”
 Software, IEEE, vol. 30, no. 4, 2013, pp. 88–94.

[6] D. Yuan, Y. Luo, X. Zhuang, G.R. Rodrigues, X. Zhao, Y.
Zhang, P.U. Jain, and M. Stumm, “Simple Testing Can Pre-
vent Most Critical Failures: An Analysis of Production Fail-
ures in Distributed Data-Intensive Systems,” in Proceedings
of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’14, 2014, pp. 249–265.

24  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING

Nail
A Practical Tool for Parsing and Generating Data Formats

J U L I A N B A N G E R T A N D N I C K O L A I Z E L D O V I C H

I am ZIP, file of files. Parse me, ye mighty and drop a shell.

 —Edward Shelley on the Android Master Key

Binary file formats and network protocols are hard to parse safely:
The libpng image decompression library had 24 remotely exploitable
vulnerabilities from 2007 to 2013. According to CVEdetails, Adobe’s

PDF and Flash viewers have been notoriously plagued by input processing
vulnerabilities, and even the zlib compression library had input processing
vulnerabilities in the past. Most of these attacks involve memory corruption—
therefore, it is easy to assume that solving memory corruption will end all
our woes when handling untrusted inputs.

However, as memory-safe languages and exploit mitigation tricks are becoming more
prevalent, attackers are moving to a new class of attack—parser differentials. Many appli-
cations use handwritten input processing code, which is often mixed with the rest of the
application—e.g., by passing a pointer to the raw input through the application. This (anti-)
pattern makes it impossible to figure out whether two implementations of the same format or
protocol are identical, and input handling code can’t be easily reused between applications.
As a result, different applications often disagree in the corner cases of a protocol, which can
have fatal security consequences. For example, Android has two parsers for ZIP archives
involved in securely installing applications. First, a Java program checks the signatures of
files contained within an app archive and then another tool extracts them to the file system.
Because the two ZIP parsers disagree in multiple places, attackers can modify a valid file
so that the verifier will see the original contents, but attacker-controlled files will be
extracted to the file system, bypassing Android’s code signing. Similar issues showed up on
iOS [3] and SSL [4].

Instead of attempting to parse inputs by hand and failing, a promising approach is to specify
a precise grammar for the input data format and automatically generate parsing code from
that with tools like yacc. As long as the parser generator is bug-free, the application will be
safe from many input processing vulnerabilities. Grammars can also be reused between
applications, further reducing effort and eliminating inconsistencies.

This approach is typical in compiler design and in other applications handling text-based
inputs, but not common for binary inputs. The Hammer framework [5] and data description
languages such as PADS [2] have been developing generated parsers for binary protocols.

However, if you wanted to use existing tools to parse PDF or ZIP, you would soon find that
they cannot handle the complicated—and therefore most error-prone—aspects of such
formats, so you’d still have to handwrite the riskiest bits of code. For example, existing parser
generators cannot conveniently represent size or offset fields, and more complex features,
such as data compression or checksums, cannot be expressed at all.

Julian Bangert is a second
year PhD student working
on computer security at
MIT. When he is not building
parsers for complicated

formats, he is interested is building exploit
mitigation techniques, side-channel resistant
cryptography, and finding Turing-complete
weird machines in unexpected places, such
as your processor’s virtual memory system.
julian@csail.mit.edu.

Nickolai Zeldovich is an
associate professor at MIT’s
Department of Electrical
Engineering and Computer
Science and a member

of the Computer Science and Artificial
Intelligence Laboratory. His research interests
are in building practical secure systems,
from operating systems and hardware to
programming languages and security analysis
tools. He received his PhD from Stanford
University in 2008, where he developed HiStar,
an operating system designed to minimize
the amount of trusted code by controlling
information flow. In 2005, he co-founded
MokaFive, a company focused on improving
desktop management and mobility using x86
virtualization. Professor Zeldovich received
a Sloan Fellowship (2010), an NSF CAREER
Award (2011), the MIT EECS Spira Teaching
Award (2013), and the MIT Edgerton Faculty
Achievement Award (2014).
nickolai@csail.mit.edu

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 25

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

Furthermore, some parser generators are cumbersome to use
when parsing binary data for several reasons. First, many
parser generators don’t produce convenient data structures, but
call semantic actions that you have to write to build up a data
structure your program can use. Therefore, you must describe
the format up to three times—in the grammar, the data struc-
ture, and the semantic actions. Second, most parser generators
only address parsing inputs, so you have to manually construct
outputs. Some parser generators, such as Boost.Spirit, allow

 generating output but require you to write another set of seman-
tic actions.

We address these challenges with Nail, a new parser generator
for binary formats. First, Nail grammars describe not only a
format, but also a data type to represent it within the program.
Therefore, you don’t have to write semantic actions and type
declarations, and you can no longer combine syntactic validation
and semantic processing. Second, Nail will also generate output
from this data type without requiring you to write more risky
code or giving you a chance to introduce ambiguity.

Third, Nail introduces two abstractions, dependent fields and
transformations, to elegantly handle problematic structures,
such as offset fields or checksums. Dependent fields capture
fields in a protocol whose value depends in some way on the
value or layout of other parts of the format; for example, offset
or length fields, which specify the position or length of another
data structure, fall into this category. Transformations allow you
to write plugins, allowing your programs to handle complicated
structures, while keeping Nail itself small, yet flexible.

In the rest of this article, we will show some tricky features of
real-world formats and how to handle them with Nail.

Design by Example
In this section, we will explain how to handle basic data for-
mats in Nail, how to handle redundancies in the format with
dependent fields, and how Nail parsers can be extended with
transformations.

As a motivating example, we will parse DNS packets, as defined
in RFC 1035. Each DNS packet consists of a header, a set of
question records, and a set of answer records. Domain names in
both queries and answers are encoded as a sequence of labels,
terminated by a zero byte. Labels are Pascal-style strings, con-
sisting of a length field followed by that many bytes comprising
the label.

Basic Data Formats
Let’s step through a simplified Nail grammar for DNS packets,
shown in Figure 1. For this grammar, Nail produces the type
declarations shown in Figure 2 and the parser and generator
functions shown in Figure 3. Nail grammars are reusable
between applications, and we will use this grammar to imple-
ment both a DNS server and a client, which previously would
have had two separate handwritten parsers, leading to bugs
such as the Android Master Key.

A Nail grammar file consists of rule definitions—for example,
lines 1–20 of Figure 1 assign a name (dnspacket) to a grammar
production (lines 2–20). If you are not familiar with other pars-
ers, you can imagine rules as C type declarations on steroids
(although our syntax is inspired by Go).

1 dnspacket =

2 {

3 id uint16

4 qr uint1

5 opcode uint4

6 aa uint1

7 tc uint1

8 rd uint1

9 ra uint1

10 uint3 = 0

11 rcode uint4

12 @qc uint16

13 @ac uint16

14 @ns uint16

15 @ar uint16

16 questions n_of @qc question

17 responses n_of @ac answer

18 authority n_of @ns answer

19 additional n_of @ar answer

20 }

21 question = {

22 labels compressed_labels

23 qtype uint16 | 1..16

24 qclass uint16 | [1,255]

25 }

26 answer = {

27 labels compressed_labels

28 rtype uint16 | 1..16

29 class uint16 | [1]

30 ttl uint32

31 @rlength uint16

32 rdata n_of @rlength uint8

33 }

34 compressed_labels = {

35 $decompressed transform dnscompress ($current)

36 labels apply $decompressed labels

37 }

38 label = { @length uint8 | 1..64

39 label n_of @length uint8 }

40 labels = <many label; uint8 = 0>

Figure 1: Nail grammar for DNS packets, used by our prototype DNS server

26  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

Just as C supports various constructs to build up types, such as
structures and unions from pointers and elemental types, Nail
supports various combinators to represent features of a file or
protocol. We will present the features we used in implement-
ing DNS. A more complete reference can be found in [4], with a
detailed rationale in [1].

Integers and Constraints. Because Nail is designed to cope
with binary formats, it handles not only common integer types
(e.g., uint16) but bit fields of any length, such as uint1. These
integers are exposed to the programmer as an appropriately
sized machine integer (e.g., uint8_t). Nail also supports con-
straints on integer values, limiting the values to either a range
(line 23, |1..16), which can optionally be half open or a fixed set
(line 24, |[1,255]). Both types of constraint can be combined,
e.g., | [1..16,255]. Constant values are also supported—e.g.,
line 10: uint3=0 represents three reserved bits that must be
0. Because constant values carry no information, they are not
represented in the data type.

Structures. The body of the dnspacket rule is a structure,
which contains any number of fields enclosed between curly
braces. Each field in the structure is parsed in sequence and
represented as a structure to the programmer. Contrary to other
programming languages, Nail does not have a special keyword
for structs. We also reverse the usual structure-field syntax: id

uint1 is a field called id with type uint1. Often, Nail grammars
have structures with just one non-constant field—for example,
when parsing a fixed header. Nail supports this with an alterna-
tive form of structures, using angle brackets, that contains one

unnamed, non-constant field, which is represented directly in
the datatype, without introducing another layer of indirection,
as shown on line 40.

Arrays. Nail supports various forms of arrays. Line 40 shows
how to parse a domain in a DNS packet with many, which keeps
repeating the label rule until it fails. In the next section, we will
explain how to handle count fields, and our full paper describes
how to handle various array representations (such as delimiters
or non-empty arrays).

Redundant Data
Data formats often contain values that are determined by other
values or the layout of information, such as checksums, dupli-
cated information, or offset and length fields. Exposing such
values risks inconsistencies that could trick the program into
unsafe behavior. Therefore, we represent such values using
dependent fields and handle them transparently during pars-
ing and generation without exposing them to the application.
Dependent fields are handled like other fields when parsing
input but are only stored temporarily instead of in the data type.
Their value can be referenced by other parsers until it goes out
of scope. When generating output, Nail inserts the correct value.

In DNS packets, the packet header contains count fields (qc, ac,

ns, and ar), which contain the number of questions and answers
that follow the header and which we represent by dependent
fields (lines 12–15). Dependent fields are defined within a struc-
ture like normal fields, but their name starts with an @ symbol.
A dependent field is in scope and can be referred to by the defini-
tion of all subsequent fields in the same structure. Dependent
fields can be passed to rule invocations as parameters.

Nail allows handling count fields with n_of, which parses an
exact number of repetitions of a rule. Lines 16–19 in Figure 1
show how to use n_of to parse the question and answer records
in a DNS packet. Other dependencies, such as offset fields or
checksums, are not handled directly by combinators but through
transformations, as we describe next.

Input Streams and Transformations

So far, we have described a parser that consumes input a byte
at a time from beginning to end. However, real-world formats
often require nonlinear parsing. Offset fields require a parser
to move to a different position in the input, possibly backwards.
Size fields require the parser to stop processing before the end
of input has been reached. Other cases, such as compressed data
and checksums, require more complicated processing on parts of
the input before it can be handled.

For a parser to be useful, it needs to support all these ways of
structuring a format. This is why data description languages
like PADS [2] contain not just a kitchen sink, but a kitchen store

struct dnspacket {

 uint16_t id;

 uint8_t qr;

 /* ... */

 struct {

 struct question *elem;

 size_t count;

 } questions;

 };

Figure 2: Portions of the C data structures defined by Nail for the DNS
grammar shown in Figure 1

 struct dnspacket *parse_dnspacket(NailArena *arena,

 const uint8_t *data,

 size_t size);

 int gen_dnspacket(NailArena *tmp_arena,

 NailStream *out,

 struct dnspacket *val);

Figure 3: The API functions generated by Nail for parsing inputs and
generating outputs for the DNS grammar shown in Figure 1

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 27

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

full of features, and a language that can handle all possible
 formats will be a general purpose programming language.
Instead, we keep Nail itself small and introduce an interface
that allows complicated format structures to be handled by
 plugin transformations in a general purpose language. Of
course, we ship Nail with a handy library of common trans-
formations to handle common format features, such as offsets,
sizes, and checksums.

These transformations consume and produce streams—sequences
of bytes—which can be further passed to other transformations
and eventually parsed by a Nail rule. Transformations can also
access values in dependent fields. Streams can be subsets of
other streams: for example, the substream starting at an offset
given in a dependent field to handle pointer fields, or computed
at runtime, such as by decompressing another stream with zlib.

Figure 4: Syntax of Nail parser declarations and the formats and data types they describe

Nail Grammar External Format Internal Data Type in C
uint4 4-bit unsigned integer uint8_t

int32 | [1,5..255,512] Signed 32-bit integer x ∈{1,5..255,512} int32_t

uint8 = 0 8-bit constant with value 0 /* empty */

optional int8 | 16.. 8-bit integer ≥ 16 or nothing int8_t *

many int8 | ![0] A NULL-terminated string struct {

 size_t N_count;

 int_t *elem;

};

{

 hours uint8

 minutes uint8

}

Structure with two fields struct {

 uint8_t hours;

 uint8_t minutes;

};

<int8=’”’; p; int8=’”’> A value described by parser p, in quotes The data type of p

choose {

 A = uint8 | 1..8

 B = uint16 | 256..

}

Either an 8-bit integer between 1 and 8,
or a 16-bit integer larger than 256

struct {

 enum {A, B} N_type;

 union {

 uint8_t a;

 uint16_t b;

 };

};

@valuelen uint16

value n_of @valuelen uint8

A 16-bit length field, followed by that many bytes struct {

 size_t N_count;

 uint8_t *elem;

};

$data transform

 deflate($current @method)

Applies programmer-specified function to
create new stream

/* empty */

apply $stream p Apply parser p to stream $stream The data type of p

foo = p Define rule foo as parser p typedef /* type of p */ foo;

* p Apply parser p Pointer to the data type of p

28  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

Transformations are two arbitrary functions called during pars-
ing and output generation. The parsing function consumes any
number of streams and dependent field values, and produces any
number of temporary streams. This function may reposition and
read from the input streams and read the values of dependent
fields, but not change their contents and values. The generating
function has to be an inverse of the parsing function, consuming
streams and producing dependent field values and other streams.

As a concrete example, we will show a grammar for ProtoZIP, a
very simple archive format inspired by ZIP in Figure 5. ProtoZIP
consists of a variable-length end-of-file directory, which is a
magic number followed by an array of filenames and pointers to
compressed files. A grammar for the real ZIP format, which has
more layers of indirection, is presented in the full paper.

In Figure 5, the grammar first calls the zipdir transform on
line 2, which finds the magic number and splits the file into
two streams, one containing the compressed files, the other the
directory. Streams are referred to with $identifiers, similar to
dependent fields. A C prototype of the zipdir transform is shown
in Figure 6.

When parsing input, this will call zipdir_parse, which takes
$current—an implicit identifier always referring to the stream
currently being handled—and returns $files and $header. When
generating output, this will call zipdir_generate, which appends
$files and $header to $current.

Line 3 of Figure 5 then applies the dir rule to the $header

stream, passing it the $files stream. Within dir, $current is
now $header and input is parsed from and output generated to
that stream. The dir rule in turn describes the structure of the
directory—a magic number and a count field, followed by that
many file descriptors. Each file descriptor is then parsed with
two transformations: the standard-library slice, which describes
an offset and a size within another stream, and the custom zlib,
which compresses a stream using zlib. Finally, we apply a trivial
grammar (line 14) to the contents.

In a more complicated example, such as an Office document, we
could now specify grammars for each entry within an archive.

Transformations need to be carefully written, because they can
violate Nail’s safety properties and introduce bugs. However, as
we will show below (see Applications), Nail transformations are
much shorter than handwritten parsers, and many formats can
be represented with just the transformations in Nail’s standard
library. For example, our Zip transformations are 78 lines of
code, compared to 1600 lines of code for a handwritten parser.
Additionally, Nail provides convenient and safe interfaces for
allocating memory and accessing streams that address the most
common occurrences of buffer overflow vulnerabilities.

Using Nail
Real-World Formats
We used Nail to implement grammars for seven protocols with a
range of challenging features. Figure 7 summarizes our results.
Despite the challenging aspects of these protocols, Nail is able to
capture them by relying on its novel features: dependent fields,
streams, and transforms. In contrast, state-of-the-art parser
generators would be unable to fully handle five out of the seven
data formats.

DNS. Previously, we used a grammar for DNS packets shown
in Figure 1 to show how to write Nail grammars. This example
grammar corresponds almost directly to the diagrams in RFC
1035, which defines DNS. Nail’s dependent fields handle DNS’s
count fields, and transformations represent label compression.
At best, both of these features are awkward to handle with exist-
ing tools.

ZIP. An especially tricky data format is the ZIP compressed
archive format, as specified by PKWARE. At the end of each
ZIP file is an end-of-directory header. This header contains a
variable-length comment, so it has to be located by scanning
backwards from the end of the file until a magic number and a
valid length field are found. Many ZIP implementations disagree

1 protozip = {

2 $files, $header transform zipdir($current)

3 contents apply $header dir($files)

4 }

5 dir ($files) = {

6 uint32 = 0x00034b50

7 @count uint32

8 files n_of @count {

9 @off uint32

10 @size uint32

11 filename many (uint8 | ![0])

12 $compr transform slice_u32($files @off @size)

13 $decomp transform zlib($compr)

14 contents apply $decomp (many uint8)

15 }

16 }

Figure 5: Nail grammar for ZIP files. Various fields have been cut for brevity.

 int zip_end_of_directory_parse(

 NailArena *tmp, NailStream *out_files,

 NailStream *out_dir, NailStream *in_current);

 int zip_end_of_directory_generate(

 NailArena *tmp, NailStream *in_files,

 NailStream *in_dir, NailStream *out_current);

Figure 6: Signatures of stream transform functions for handling the
end-to-beginning structure of ProtoZIP files

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 29

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

on the exact semantics of this, such as when the comment con-
tains the magic number [6]. This header contains the offset and
the size of the ZIP directory, which is an array of directory entry
headers, one for every file in the archive. Each entry stores file
metadata in addition to the offset of a local file header. The local
file header duplicates most information from the directory entry
header and is followed immediately by the compressed archive
entry. Duplicating information made sense when ZIP files were
stored on floppy disks with slow seek times and high fault rates,
but nowadays it leads to parsers being confused, such as in the
recent Android Master Key bug.

Nail captures these redundancies with dependent fields, elimi-
nating the ambiguities. It also decompresses archive contents
transparently with transformations, which allows parsing the
contents of an archive file—allowing formats based on ZIP, such
as Microsoft Office documents, to be handled with one grammar.

Applications
We implemented two applications—a DNS server and an unzip
program—based on the above grammars, and will compare the
effort involved and the resulting security to similar applications
with handwritten parsers and with other parser generators.
We will use lines of code as a proxy for programmer effort. To
evaluate security, we will argue how our design avoids classes of
vulnerabilities and fuzz-test one of our applications.

DNS. Our DNS server parses a zone file, listens to incom-
ing DNS requests, parses them, and generates appropriate
responses. The DNS server is implemented in 183 lines of C,
together with 48 lines of Nail grammar and 64 lines of C code
implementing stream transforms for DNS label compression.
In comparison, Hammer [5] ships with a toy DNS server that
responds to any valid DNS query with a CNAME record to the
domain “spargelze.it”. Their server consists of 683 lines of C,
mostly custom validators, semantic actions, and data structure

definitions, with 52 lines of code defining the grammar with
Hammer’s combinators. Their DNS server does not implement
label compression, zone files, etc.

To evaluate whether Nail-based parsers are compatible with
good performance, we compare the performance of our DNS
server to that of ISC BIND 9 release 9.9.5, a mature and widely
used DNS server. We simulate a load resembling that of an
authoritative name server, generating a random zone file and a
random sequence of queries, with 10% non-existent domains. We
repeated this sequence of queries for one minute against both
DNS servers. We found that our DNS server is approximately
three times faster than BIND. Although BIND is a more sophis-
ticated DNS server and implements many features that are not
present in our Nail-based DNS server and that allow it to be
used in more complicated configurations, we believe our results
demonstrate that Nail’s parsers are not a barrier to achieving
good performance.

ZIP. We implemented a ZIP file extractor in 50 lines of C code,
together with 92 lines of Nail grammar and 78 lines of C code
implementing two stream transforms (one for the DEFLATE
compression algorithm with the help of the zlib library, and
one for finding the end-of-directory header). The unzip utility
contains a file extract.c, which parses ZIP metadata and calls
various decompression routines in other files. This file measures
over 1,600 lines of C, which suggests that Nail is highly effective
at reducing manual input parsing code, even for the complex ZIP
file format.

In our full paper [1], we present a study of 15 ZIP parsing bugs.
Eleven of these vulnerabilities involved memory corruption dur-
ing input handling, which Nail’s generated code is immune to by
design. We also fuzz-tested our DNS server. More interestingly,
Nail also protects against parsing inconsistency vulnerabilities
like the four others we studied. Nail grammars explicitly encode
duplicated information such as the redundant length fields in
ZIP that caused a vulnerability in the Python ZIP library. The
other three vulnerabilities exist because multiple implementa-
tions of the same protocol disagree on some inputs. Handwritten
protocol parsers are not very reusable, as they build application-
specific data structures and are tightly coupled to the rest of the
code. Nail grammars, however, can be reused between applica-
tions, avoiding protocol misunderstandings.

Protocol LoC Challenging Features

DNS packets 48+64 Label compression, count fields

ZIP archives 92+78
Checksums, offsets, variable
length trailer, compression

Ethernet 16+0 —

ARP 10+0 —

IP 25+0 Total length field, options

UDP 7+0 Checksum, length field

ICMP 5+0 Checksum

Figure 8: Comparison of code size for two applications written in Nail, and
a comparable existing implementation without Nail

Figure 7: Protocols, sizes of their Nail grammars, and challenging aspects
of the protocol that cannot be expressed in existing grammar languages.
A + symbol counts lines of Nail grammar code (before the +) and lines of
C code for protocol-specific transforms (after the +).

Application LoC w/ Nail LoC w/o Nail

DNS server 295 683 (Hammer parser)

unzip 220 1,600 (Info-Zip)

30  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

PROGRAMMING
Nail: A Practical Tool for Parsing and Generating Data Formats

Conclusion
We presented the design and implementation of Nail, a tool for
parsing and generating complex data formats based on a precise
grammar. This helps programmers avoid memory corruption
and inconsistency vulnerabilities while reducing effort in pars-
ing and generating real-world protocols and file formats. Nail
captures complex data formats by introducing dependent fields,
streams, and transforms. Using these techniques, Nail is able to
support DNS packet and ZIP file formats, and enables applica-
tions to handle these data formats in many fewer lines of code.

Nail and all of the applications and grammars developed in this
paper are released as open-source software, available at https://
github.com/jbangert/nail. A more detailed discussion of our
design and our results is available in [1].

Acknowledgments
We thank M. Frans Kaashoek, the OSDI reviewers, and K.
Park for their feedback. This research was supported by the
DARPA Clean-slate design of Resilient, Adaptive, Secure Hosts
(CRASH) program under contract #N66001-10-2-4089, and by
NSF award CNS-1053143.

References
[1] J. Bangert and N. Zeldovich, “Nail: A Practical Tool for
Parsing and Generating Data Formats,” in 11th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI ’14), pp. 615–628, Broomfield, CO, Oct. 2014,
USENIX Association: https://www.usenix.org/conference
/osdi14/technical-sessions/presentation/bangert.

[2] K. Fisher and R. Gruber, “PADS: A Domain-Specific
Language for Processing Ad Hoc Data,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 295–304, Chicago,
IL, June 2005.

[3] G. Hotz, evasi0n 7 writeup, 2013: http://geohot.com
/e7writeup.html.

[4] D. Kaminsky, M.L. Patterson, and L. Sassaman, “PKI
Layer Cake: New Collision Attacks against the Global X.509
Infrastructure,” in Proceedings of the 2010 Conference on
Financial Cryptography and Data Security, pp. 289–303, Jan.
2010.

[5] M. Patterson and D. Hirsch, Hammer parser generator,
March 2014: https://github.com/UpstandingHackers
/hammer.

[6] J. Wolf, “Stupid ZIP file tricks!” in BerlinSides 0x7DD,
2013.

USENIX Security ’15: 24th USENIX Security Symposium
August 12–14, 2015, Washington, D.C.
Paper titles and abstracts, as well as invited talk and panel
proposals due: February 16, 2015
The USENIX Security Symposium brings together researchers, practitioners,
system administrators, system programmers, and others interested in the
latest advances in the security and privacy of computer systems and net-
works. All researchers are encouraged to submit papers covering novel and
scientifically significant practical works in computer security. USENIX Secu-
rity ’15 papers may be submitted for consideration for the Internet Defense
Prize. The Symposium also seeks Poster and Work-in-Progress (WiP) sub-
missions as well as proposals for invited talks and panel discussions.

HotCloud ’15: 7th USENIX Workshop on Hot Topics
in Cloud Computing
July 6–7, 2015, Santa Clara, CA
Submissions due: March 10, 2015
HotCloud brings together researchers and practitioners from academia
and industry working on cloud computing technologies to share their
perspectives, report on recent developments, discuss research in prog-
ress, and identify new/emerging “hot” trends in this important area. While
cloud computing has gained traction over the past few years, many chal-
lenges remain in the design, implementation, and deployment of cloud
computing.

HotStorage ’15: 7th USENIX Workshop on Hot Topics in Storage
and File Systems
July 6–7, 2015, Santa Clara, CA
Submissions due: March 17, 2015
The purpose of the HotStorage workshop is to provide a forum for the
cutting edge in storage research, where researchers can exchange ideas
and engage in discussions with their colleagues. The workshop seeks
submissions that explore long term challenges and opportunities for the
storage research community. Submissions should propose new research
directions, advocate non-traditional approaches, or report on noteworthy
actual experience in an emerging area. We particularly value submissions
that effectively advocate fresh, unorthodox, unexpected, controversial, or
counterintuitive ideas for advancing the state of the art.

LISA15
November 8–13, 2015, Washington, D.C.
Submissions due: April 17, 2015
The LISA conference is the premier conference for IT operations, where
systems engineers, operations professionals, and academic researchers
share real-world knowledge about designing, building, and maintaining
the critical systems of our interconnected world. LISA invites submissions
of proposals from industry leaders for talks, mini-tutorials, tutorials, panels
and workshops. LISA is also interested in research related to the fields of
system administration and engineering. We welcome submissions for both
research papers and posters.

CSET ’15: 8th Workshop on Cyber Security
Experimentation and Test
August 10, 2015, Washington, D.C.
Submissions due: April 23, 2015
CSET invites submissions on the science of cyber security evalu-
ation as well as experimentation, measurement, metrics, data, and
simulations, as those subjects relate to computer and network
security and privacy. The “science” of cyber security poses sig-
nificant challenges: very little data are available for research use,
and little is understood about what good data would look like if it
were obtained. Experiments must recreate relevant, realistic fea-
tures—including human behavior—in order to be meaningful, yet
identifying those features and modeling them is hard. Repeatability
and measurement accuracy are essential in any scientific experi-
ment, yet hard to achieve in practice. Cyber security experiments
carry significant legal and ethical risks if not properly contained
and controlled, yet often require some degree of interaction with
the larger world in order to be useful. Meeting these challenges
requires transformational advances, including understanding the
relationship between scientific method and cyber security evalua-
tion, advancing capabilities of underlying experimental infrastruc-
ture, and improving data usability.

3GSE ’15: 2015 USENIX Summit on Gaming, Games and
Gamification in Security Education
August 10, 2015, Washington, D.C.
Submissions due: May 5, 2015
3GSE ’15 is designed to bring together educators and game de-
signers working in the growing field of digital games, non-digital
games, pervasive games, gamification, contests, and competi-
tions for computer security education. The summit will attempt to
represent, through invited talks, paper presentations, panels, and
tutorials, a variety of approaches and issues related to using games
for security education.

FOCI ’15: 5th USENIX Workshop on Free and Open
Communications on the Internet
August 10, 2015, Washington, D.C.
Submissions due: May 12, 2015
Internet communications drive political and social change around
the world. Governments and other actors seek to control, moni-
tor, manipulate and block Internet communications for a variety
of reasons, ranging from extending copyright law to suppressing
free speech and assembly. Methods for controlling what content
people post and view online are also multifarious. Whether it’s
traffic throttling by ISPs or man-in-the-middle attacks by coun-
tries seeking to identify those organizing protests, threats to free
and open communications on the Internet raise a wide range of
research challenges.

Publish and Present Your Work
at USENIX Conferences
The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX Conference Proceedings
among the top ten highest-impact publication venues for computer science.

Get more details about these Calls at www.usenix.org/cfp.

32  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

SYSADMINCapacity Planning
D A V I D H I X S O N A N D K A V I T A G U L I A N I

Capacity planning can be a torturous exercise in spreadsheets and
meetings that drains the life out of junior engineers, provides little
value to the company, leads to ongoing recriminations for everyone

involved, and results in little planning or capacity.

Alternatively, it can be used to hone the understanding of the core services being offered,
to work across the company to understand risks, and to make thoughtful choices for the
business.

Let’s focus on this second approach and talk about how three different parts of the company
can play an active role in capacity planning. The more the players understand their part in
the greater scheme, the better they can communicate and make tradeoffs that benefit the
company.

Figure 1 represents three different perspectives. They may all be the same person thinking
about the problem differently or they might be three vast organizations that rarely manage
to get people into the same room. Even within a company, some products might need to be
evaluated at different levels based upon their potential impact. The thought process is much
more important than the job title associated with it.

What Is Capacity?
Before we get too far, let us define what capacity is. Very simply, capacity consists of the
resources required to run your service or services in the context you have chosen to run
them. The very core of this may be subject to debate or change, but the key things to predict
are the resources you are constrained by. Depending on your scale or architecture, this could
be gigs of RAM on a machine in your bedroom, cloud VMs, physical computers at your colo,
bandwidth on a CDN, or megawatts of power.

As you increase in scale and complexity, you probably start to experience pressure in several
dimensions, perhaps network capacity as well as storage or compute. And you may have
different scaling limitations based upon your choices, either in terms of flexibility or timing
around growth.

Engineering
Traditionally, the engineering organization would own the technical complexity and have
the best understanding of how the system works right now, what choices were made to get
here, and what things might be done in the future.

Depending on the organization, this might require cooperation across different teams, but
the starting premise is that someone knows how things work and the resources required for
the system to function today. This is far from trivial, but definitely a starting point when
planning for the future.

Bottom-Up Capacity
The first step is to map out current system capacity. What resources does it use in order to
get the work done? Identify all the large parts of the system: things that are material to your
capacity-planning needs. Materiality will depend upon your organization, but there is a huge

David Hixson is a technical
project manager in Site
Reliability Engineering at
Google, where he has been for
eight years. He currently spends

his time predicting how social products at
Google will grow and trying to make the reality
better than the plan. He previously worked
as a system administrator on high availability
systems and has an MBA from Arizona State.
https://plus.google.com/+DavidHixson,
dhixson@google.com

Kavita Guliani is a technical
writer for Technical
Infrastructure and Site
Reliability Engineering at
Google, Mountain View.

Before working at Google, Kavita worked for
companies like Symantec, Cisco, and Lam
Research Corporation. She holds a degree
in English from Delhi University and studied
technical writing at San Jose State University.
kguliani@google.com

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 33

SYSADMIN
Capacity Planning

value in simplicity, so if you can reduce the number of things you
need to worry about, it will make everyone’s life easier.

So, here we assume that you know how much you are using today
in the resource dimensions that make sense for your service.

PRIMARY DRIVERS
The next step is to figure out why you are using the resources
you are using today and what would make those numbers
change. Metrics like “gigs of data uploaded by users today”
are likely to impact your storage and bandwidth directly. Web
queries per second (QPS) are likely to impact compute and,
possibly, networking. Finding the fewest number of drivers
(QPS, gigs uploaded, etc.) that capture the vast majority of the
demand on your system is a challenge that should be reasonably
thought-provoking.

If you have different types of queries or page views, you may
want to look at a “costed” metric as a way to normalize the work
and make it easier to understand. For example, a database read
may be extremely cheap, but a write may be very costly in terms
of CPU consumed and disk I/O required. So if you measure your
database just in terms of QPS, you may make poor assumptions
about scalability. If you can assign different “costs” to different
actions, you can normalize them and make them better predic-
tors of your ability to scale. Ideally, this is automated and con-
stantly recalculated. However, even a gross estimate is useful.
You may also realize that something like “bandwidth” is a better
estimator than QPS and want to use that instead. Understand-
ing these “costed” metrics can provide value in explaining the
system as well as predicting future usage.

Popular metrics for product reporting include 30-day active or
seven-day active users, which almost definitely do not determine
the resources required to support your product. Similarly, you
need to aggregate the data finely enough to be able to provision
your system for peaks in demand. A queries-per-day metric is
unlikely to be helpful here. Instead, you want QPS over a short

interval (~minutes, hopefully) so that you can identify the peaks
and be prepared to survive them.

Once you uncover the likely drivers for growth within the sys-
tem, start collecting data. You will need to understand how these
change over time as well as how the system load changes. The
combination of these is the key to your bottom-up plan.

THEORETICAL MINIMUM CAPACITY
Finding correlations (and, hopefully, causality) between your
identified growth metrics and observed capacity is a bit of a holy
grail. For a complex system, it can be surprisingly difficult to get
the two of them to line up nicely. You may never get perfection,
but a thought model around “theoretical minimum blow-up” is a
good way to start looking at it, and it has a nice side effect that we
will get to in a minute. The “blow-up” that we are looking for is
the inflation of either data or work that is inherent in the design.

Step back from your measurements and drivers and think about
what your system is really trying to accomplish. The simplest
example might be backing up bytes for users. If a user gives you a
byte of data and you promise to give it back upon request, you’ve
got a really clear understanding of the product. At no point will
you need to store less than that byte (probably).

So how many bytes of disk do you use to store that byte?

1 for the original byte * 1.2 for RAID5 * 1.3 for “overhead” (file
system, metadata, caching, backups, operational slack), then
* 2 the whole mess for our second site. So we used a total of 3.12
bytes to store the byte that user gave us.

The same kind of thing can be done for the CPU required to
update your database. How many replicas, stored procedures,
and other things have to happen? You almost invariably do a lot
of work many times over in order to make a write. Reads prob-
ably have a different set of factors.

With this kind of model in mind, you can go down two very inter-
esting paths:

◆◆ You might tie together your capacity drivers and observed
growth in a more natural way. Using the disk example, it might
be better to explain why you grow disk capacity 3x as fast as
users are uploading bytes.

◆◆ You could identify a bunch of questions around how you
engineered your product. If you now seek to drive all of your
multiples to 1, you will go out of business shortly because it
isn’t about optimizing without thinking. Instead, you need to
evaluate each of them and see whether they are doing what you
intend. Is that 6-disk RAID configuration the one you wanted
for availability? Do you need that second site, or should you
have more than two? Should you be doubling your investment
in caching, or is it no longer providing the value you expected?

Figure 1: Three forces that impact capacity planning

34  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

SYSADMIN
Capacity Planning

You can also use this blow-up model to look at the engineering
changes that you have planned for the future, and account for
them more clearly. A wise engineer will also check in regularly
to make sure that these blow-up factors and assumptions remain
accurate. It may help you spot when your system is drifting away
from how it was intended to operate.

Although it is possible to make this kind of model as complicated
as you have time to work on it, the key thing is to pull out the
large drivers of relevant capacity and to highlight the engineer-
ing tradeoffs. You get the largest benefit if you ignore all the little
things, letting everyone involved focus their attention on the
choices that matter.

PAST PREDICTS FUTURE
The best starting point for predicting the future is observing the
past. It is far from perfect, but the alternatives all involve signifi-
cantly more made-up numbers.

Using the theoretical minimum blow-up factors, extract out your
historical growth, then project it into the future. Is it a curve, is
it a line, is it some complicated pattern too deep for the human
mind to comprehend? Maybe. But in the vast majority of cases,
you can assume that it is a line that extends out since the last
time you made a significant product change.

Growth is frequently broken into two categories: organic growth
and inorganic growth.

Organic growth comes from the natural adoption and usage of
your product by customers. It may change over time, but it should
change comparatively gradually and not as a step function.
Examples of organic growth in an image-serving system might
include uploading more photos, resulting in more bytes that need
to be stored, and having more people view the photos resulting in
more network load and larger serving capacity.

Inorganic growth refers to those step changes, likely the result
of a feature launch, a marketing campaign, or business-driven
change to how your product is being used (e.g., acquired another
company and redirected traffic, bundled with another product,
changed pricing, etc.)

Then you can layer on expectations about future inorganic
changes. Perhaps it is the next advertising campaign or an
upcoming change in the business strategy, or just a change of
the background color for your app to a really soothing shade of
teal. Estimate the impact and layer that into your plans, but keep
them itemized because that gives you room to learn as you repeat
the process and a place to begin discussions with the product
and finance representatives. You should also consider how
quickly you start to treat past launches as part of the organic
line. As you start to observe the actual behavior, you will have a
more accurate understanding of the impact on your service than
before you made the change.

Assumptions
The final responsibility of engineering in the capacity-planning
process is to highlight the design assumptions and any risks
that are being taken with the product. It is very difficult to ship a
product. It is even more difficult to get it out the door if you don’t
have any fundamental assumptions about how it will be used.

Did you build in caching at any level? Does it assume that traf-
fic will be distributed in a certain way? Does the system break
down if your assumptions become incorrect? Can you survive
with 90% of your traffic going to a single Web page? What if it is
evenly distributed over your entire corpus?

Did you assume a readers-to-writers ratio for your system? What
if it suddenly flips and all of your traffic surges towards the more
expensive of the two?

Did you assume that load would be distributed evenly over the
day? What if you get a traffic spike from a media event or suc-
cessful advertising?

One great thing about these assumptions is that clearly stating
answers to them provides a warning for your product managers.
However, if we take actions to invalidate these assumptions,
we first need to do the engineering to survive it or consciously
accept the risk it entails.

Risks
Through this analysis, we have identified a couple areas of
risk that should be mitigated or accepted as part of the plan-
ning process. Any risk that is mitigated by capacity planning
is an explicit tradeoff against money (or alternate uses for the
resources aka opportunity cost). So the goal should never be to
eliminate or even reduce risk. The goal should be to drive the
system to the appropriate level of risk for the lowest cost.Figure 2: Examples of organic and inorganic growth over time

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 35

SYSADMIN
Capacity Planning

Each of the theoretical minimum blow-up factors makes for a
good place to start itemizing the places where you are spending
money to avoid risk. What does that second datacenter buy you?
How about your disk configuration or even the vendor for your
hardware or cloud service? What problem are you avoiding, and
how much are you avoiding it by? These problems and costs will
be extremely specific to the service and might involve reliability,
durability, performance, or even developer velocity. Or they could
easily include all of them.

The other area of risk mitigation is around future growth: the
thing that we are traditionally trying to estimate in capacity
planning. You should plan at least as far ahead as the order time
for your resources. This could be five years if you erect your own
buildings, or 10 minutes if you run a small service in a cloud
and have good automation and a credit card on file. Within that
horizon, you must understand the risk of spending too much
money, or of running out of capacity to handle your growth. That
tolerance should define how aggressively you provision your
service for growth.

PLAN B
Where would you be without a solid backup plan? Living in fear
of a “success disaster” and failing to get a good night’s sleep. Suc-
cess disaster can occur when your product becomes so popular
that the number of users who show up overwhelms your ability
to actually provide the service they seek. It is great to be wanted,
but this can squander your one opportunity to make a good
impression.

As part of this process, always take time to understand what
would happen when your demand for capacity exceeds what is
available. What if the service fails and there is no way to save
it? You might want to highlight that clearly in the process. On
the other hand, if you can come up with some ideas for either
graceful failure modes or improvements to efficiency and esti-
mate the time required to implement them, then you can sleep
more soundly. You just need to be able to build and deploy those
solutions quickly enough to help. I’d suggest setting some alert
thresholds to signal when you really should start to panic.

Product
The job of the product managers in the capacity-planning pro-
cess is simple: Create a product that users love so much that it
completely obliterates the planning and, after a brief period of
panic, brings tears of joy to the finance team and the rest of the
company. No pressure.

But that isn’t the part of the job we are focusing on right now.
This is about communication of the practical costs and risks that
the engineers either have built or plan to build into the product,
the needs of the users, and making sure those are aligned.

Alignment with Engineering
PROVIDE INFORMATION TO ENGINEERING
Start with the information you can provide to engineering. The
big items are growth estimates, user behavior changes, and real
product requirements. Attempt to understand how users will use
the service in the future, with as much lead time as your capac-
ity planning requires and in the growth dimensions used by
the engineering model. These estimates will form the basis for
future growth if you want to predict anything more complicated
than an extrapolation from the past. You can pull the numbers
out of thin air or dive deeply into the metrics of similar products,
or survey your customers—whatever will provide you with num-
bers you can confidently use to drive planning far enough into
the future that it makes a difference.

Second, you should help identify changes in user behavior,
particularly when they conflict with any assumptions that have
been made in the product design. Did you plan on building a sys-
tem for sharing photos publicly, but people are using it to back up
their receipts and keeping everything private? If so, you probably
want to rethink that caching strategy. These kinds of changes
can be critical to the success of your product but also need to be
accounted for in the planning.

Third, product requirements should come from someone rep-
resenting the customer. Is availability critical? Two nines or
five? How fast does the system need to be? And if your answer is
“all the nines” and “instant,” then you probably need to rethink
how you see the product. The goal should be to identify at least
a minimum level of quality (i.e., the minimum level before it
slows adoption), or better yet, a range of requirements that can
be tied to how customers will feel about the product. For many
products, it is possible to run experiments, making changes to
the performance of the system, and observing the behavior of
users in order to get firm numbers around what the real require-
ments are. For example, you can increase latency artificially or
decrease it by moving the user to a less loaded copy of your infra-
structure and measure differences in how they use the product.

An example would be latency requirements and establishing
their impact on customers. We should understand how users
perceive our service based on different levels of responsiveness.
This might let us learn that anything faster than 250 ms is indis-
tinguishable to the user and that anything slower than 750 ms
conveys a sense of low product quality. This would let us target
between 250 and 750 ms as an ideal range for our planning.

You can use this kind of information to drive engineering and
finance decisions, potentially making your product much less
expensive to operate or much easier to develop and deploy. The
earlier you can create and refine these numbers and feed them
into the design process, the more potential you have to build the
product you need at the lowest cost.

36  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

SYSADMIN
Capacity Planning

RECEIVE INFORMATION FROM ENGINEERING
The engineering assumptions about the product should provide
extremely valuable information about how it is being designed
and deployed. In a negative sense, it should highlight the parts
of the product that are either expensive or particularly risky if
the consumer behavior changes dramatically. So it is important
to keep these in mind either while marketing or while designing
upcoming features because these are likely to increase the risk
in the system.

On a more positive note, you may discover functionality that is
particularly inexpensive or trivial to implement in the product,
and this may help you come up with features for the future. Or
you might gain a better understanding of how your competitors
may have designed their infrastructure, letting you focus on
features that will be difficult for them to quickly emulate.

Finance
“Finance” is shorthand for people responsible for keeping the
business funded and growing. At the end of the day, this is every-
one’s responsibility, but most companies have people that focus
on these types of things to the exclusion of developing new prod-
ucts or talking with users. Most importantly, this is the role that
looks across the entire company and not just your product.

Asking Hard Questions
So the defining characteristic of Finance is actually that of
scope, and with that comes the ability to make tradeoffs across
multiple products and across time.

Working through these questions in a small well-funded com-
pany with a single product is a difficult task. As the size and
complexity of the products offered by the company increase,
doing holistic capacity planning becomes increasingly difficult.
The goal should be to gain the advantages of scale and risk pool-
ing to offset this increased challenge.

TIMELINES
Start by filling out a small table (Table 1). We can assume that
we have a good resource model in place and this has been done
before, but invite the engineering and product people to help
generate these numbers.

Sum up those dates, and if any part of this can only be done at
specific times of the month, quarter, or year, add that in as well.
Specifically, if your organization has budgets that are only flex-
ible at quarterly or annual boundaries, it leads to a substantial
increase in your lead time. This lead time is critical for anyone
doing capacity-planning to be familiar with.

One of the most valuable things that a company can do to drive
down capacity-planning risk and cost is to shorten that cycle.
So over time, each step should be evaluated to see whether it
provides value to offset the cost of the additional delay.

CONFIDENCE AND PRECISION
For each growth estimate that you receive from each product,
you need to understand more than just the bottom-line number
around the resources required. The first thing to do is ignore the
precision. Precise numbers are easy to generate since they just
require the multiplication of two or three made-up numbers and
very little rounding, but they trick almost everyone into thinking
that they are “better” than a person who just writes down a 10
and moves on with their life.

Dig deeper. Check out the confidence associated with both the
capacity model as well as the growth predictions that went into
turning that model into a future-growth forecast. Check out the
sensitivity that those estimates have to their time horizon and
how far into the future people are being asked to forecast. There
is a very natural tendency to overstate the potential upside of
a launch. The people involved are likely very excited about the
changes, and that may make it difficult for them to remain objec-
tive. Challenge these assumptions and make sure they aren’t
unnecessarily keeping you from spending resources seeking out
other opportunities.

Finally, look across the products and see whether they appear to
be correlated with each other in terms of growth and cost. You
may be able to collapse the “upside” of several products together
and plan on having only some of them succeed. This is a very
specific way to trade increased risk for the organization against
lowered cost. It assumes that the resources you are under-plan-
ning are fungible across products and that someone is in a posi-
tion to resolve conflicts if your demand outstrips your resources
because of this choice.

Alternatively, there may be two forms of synergy that make this
particularly dangerous. The first is technical coupling, where
the success of one product forces work on the other products,
so they aren’t actually independent. The second is that if one
product is successful and is able to pull along the other products

Lead Time Topic Description

Generate planning
numbers

Create the numbers that
drive the process

Estimate resources
Turn growth estimates
into specific resource
requests

Request resources Ask for budget and
equipment

Approve resources Complete budget and
ordering process

Provision resources Deliver and set up

Ready to serve Provide service to users

Table 1: Timeline for resource delivery

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 37

SYSADMIN
Capacity Planning

indirectly, then growth may be correlated, again increasing the
risk of a bundled approach to planning. Brand recognition, news
coverage, cross-promotion between products, or any other ideas
you have can tie together the growth rates of various products. In
cases where you desire more traffic, these are great problems to
have, but you must consider the potential in your planning.

PORTFOLIO RISK MANAGEMENT
The risks of each product and their growth scenarios must be
understood in the context of the larger portfolio of the company.
These risks come in two general forms: the specific product risks
and the organizational risks.

The specific product risks should largely be as explained by the
engineers. What happens if growth exceeds the capacity that is
planned for the service? Do we have legal liabilities or customer
dissatisfaction that will be particularly harmful to the company?
Options may be available to mitigate these risks if it is not pos-
sible to provide the required resources, but they should be fairly
explicit.

The second class is more difficult. Identify the risks that cross
product boundaries and that may be less obvious to the specific
product teams. If you have a company with multiple products
that have dependencies on each other, this is where you need to
look for those and highlight them specifically. Make sure that
failure (or success) of one product doesn’t do anything surprising
and harmful to other products. This is when help from leaders
within engineering will be very helpful to identify linkages and
make them explicit. It may provide a sort of transitive priority or
mutual dependencies between different products that need to be
evaluated.

SUPPLY CHAIN AND LOGISTICS
Very specific to the table at the beginning of this section, it is
important to understand what can be done to drive down the
time required to go from having the desire to fund a product
to having the ability to make that product functional with the
resources in hand. With a cloud-provisioning model and a small-
scale relative to your cloud provider, this may be trivial. But as
your resource requirements increase in size or complexity, this
may be about shaving months or even years off the system.

The rule of thumb here should be that if you know what you
are going to do in the future, you probably shouldn’t get
hung up on the paperwork. This is much more difficult than
it sounds and will likely present a challenge for any company
that tries to implement it, but the goal is simple: shrink the time
horizon between taking estimates and providing capacity. If the
resources used by different products are fungible, you can pool
them and manage their provisioning much more quickly than
their full lead time.

Alternatively, if you spend the money before the customer arrives
and you have reasonable fungibility between resources, you may
be able to greatly reduce the time from request to provision-
ing, by ordering the resources in advance and scheduling the
capacity plans to arrive in time for provisioning rather than for
ordering the resources. An example of this would be building out
datacenter space based on past growth trends for the company,
but not deciding which product you would fund until right before
the machines landed.

Fungibility is obviously very helpful: letting tradeoffs be delayed
until the last moment, having resources shifted as necessary
between different products, or keeping pooled resources avail-
able to manage risks on short notice.

RELIABILITY AND OTHER METRICS
The final valuable questions center around the metrics that each
product is attempting to achieve. Understanding what these
mean and the choices made by engineering to achieve them, as
well as the value provided to the customer, is critical to providing
the “best” experience possible at the lowest cost.

Reliability is the easiest example, since it is fairly straightfor-
ward to buy reliability with increasingly large piles of money as
you request more “nines” of availability. However, in most cases,
it actually has diminishing returns to your users. Take the time
to dive into this for the big products, find commonalities around
how you are reaching your targets, and look for the things that
cost the most. The cost could be in buying Tier-4 vs. Tier-1
datacenter space, fault-tolerant hardware, licensed software
solutions, or through engineering and operational complexity
that slows down your rate of development. Don’t underestimate
the cost or value of having reliability designed into your software
stack and your operational practices. It may be a much more
effective investment than hardware. Having common solutions
across the company and regular investigations into each of these
choices can provide opportunities to improve products and save
money at the same time.

Prioritization
The most difficult task that will come up at the company level is
that of prioritization. In most organizations, it will almost cer-
tainly be impossible to fund the capacity requested of each prod-
uct at its most optimistic growth rate without any improvements
in efficiency. And over any reasonable period of time, it prob-
ably isn’t a wise investment either. On the other hand, in case of
small companies or startups, the cost of resources is probably
small relative to other expenses. As a result, the limiting factors
around prioritization won’t be around capacity planning but
engineering time or management attention.

What is important is having a full understanding of the risks of
underfunding each product relative to its actual growth. This

38  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

SYSADMIN
Capacity Planning

risk is likely an “opportunity cost” in many cases as well as some
more “real” costs in the places where customers are negatively
impacted by the underfunded products. Prioritization, then, is
about making clear choices between products so that they can
operate with certainty, and doing it in a clear and timely man-
ner. Timeliness is particularly critical in systems that have long
cycle times since time spent in analysis is actually costly in
terms of the accuracy of estimates and planning that fed into the
process.

Conclusion
More than just drawing graphs of how services will grow in the
future, capacity planning should ideally be a process that pulls
together different parts of the organization to determine how
resources should be allocated to maximize their benefit to the
company. Out of this will flow improvements in engineering,
product, and process in a virtuous cycle.

Calling All ;login: Readers!

We’re looking for:
* Programmers * Testers
* Researchers * Tech Writers
* Anyone Who Wants to Get Involved

Find out more by:

-- Checking out our Web site:
http://www.freebsd.org/projects/newbies.html

http://www.freebsd.org/where.html

We’re a welcoming community looking for
people like you to help continue developing this
robust operating system. Join us!

FreeBSD is internationally recognized as an innovative leader in
providing a high-performance, secure, and stable operating system.

Not only is FreeBSD easy to install, but it runs a huge number of
applications, offers powerful solutions, and cutting edge features.
The best part? It’s FREE of charge and comes with full source code.

Did you know that working with a mature, open source project is an
excellent way to gain new skills, network with other professionals,
and differentiate yourself in a competitive job market? Don’t miss
this opportunity to work with a diverse and committed community
bringing about a better world powered by FreeBSD.

proudly supported by:

Help Create the Future
Join the FreeBSD Project!

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 39

SYSADMIN

/var/log/manager
Daily Perspectives for the Sysadmin and the Manager

A N D R E W S E E L Y

Consider a city zoo on a clear blue-skies summer day. Animals to tend
and children’s field trip groups to marshal. Line up to pet the goats,
then stop for a juice break. Underneath the zoo, a subway switching

station. Full commuter trains barreling past at 80 miles per hour. Red lights,
green lights, timing trains and tracks and stops and people and go-go-go in
the pitch-dark tunnels and klieg-bright platforms. You can walk up the steps
from the train platform and be at the zoo.

Two worlds in the same place. There’s a connection between them, but these two worlds
have very different functions and operate with different senses of priority and purpose. They
function in different ways, but in the end they are part of the same system, and both have to
work correctly for that system to be healthy.

Consider the IT workplace. Instead of zoo and subway station, there are sysadmins and
technical managers. I’ll leave it to the reader to decide which is best mapped onto which, but
the same idea applies: different purposes and vastly different senses of pressure, yet both
have to function correctly for the overall system to perform.

It’s a Normal Day for a Sysadmin
Sysadmins are different everywhere you go. And good sysadmins are different from everyone
around them. But they have some things in common. A sysadmin might start the day early,
might start late, might work all day and all night, or might work for 48 straight hours and
then sleep until the pager rings. The work flow probably looks like this: You have a ticket
queue in RT, you have a mailbox full of alerts, or you have a list of all the things you have to
do to keep everything running. If something’s down, you work on that first. If someone’s
complaining, you work on that first. If someone’s complaining and telling you in exceptional
detail how they know how to do your job better than you, you work on that last. If you’ve
got a lot of things to work on and they’re all about the same priority, you work on the things
you enjoy most, the things you can get done fastest, or you just alphabetize and start with
whatever begins with “A.” If you’re a truly elite sysadmin, you might alphabetize in Klingon
and work from there.

You might find yourself spending a day writing a shell script for 12 hours, just for fun. I
remember a particular day very well back in 1997 when I spent 12 hours on a Solaris 2.5.1
box writing arrays, queues, and other such functions in pure /sbin/sh Bourne script. I even
figured out an effective approach to do job control for subprocesses before I discovered
/bin/jsh. Yes, I had csh, bash, and Perl handy and knew how to use them. But I had a project
to finish and a reputation to uphold, and if you can’t figure out how to write a decent
associative array in Bourne, then what kind of sysadmin are you? Along the way, I rebooted
servers, cleared file systems, restarted print queues, reset passwords, and took care of all
the annoying little jobs as if I was waving flies off my Jello. It was a pretty typical day: long
hours, lots of work, but I was achieving things no one else on my team was even close to
capable of doing.

Andy Seely is the chief engineer
and division manager for an IT
enterprise services contract,
and an adjunct instructor in the
Information and Technology

Department at the University of Tampa. His
wife Heather is his PXE Boot and his sons
Marek and Ivo are always challenging his thin-
provisioning strategy. andy@yankeetown.com

40  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

SYSADMIN
/var/log/manager: Daily Perspectives for the Sysadmin and the Manager

It’s a Normal Day for a Technical Manager
Managers are the same everywhere, and I’m no different. On any
random day: A high-profile internal user wants to know why his
BlackBerry email takes an extra minute to sync, and demands
an answer now. The quote for the new monitoring system is 50%
over budget, and a project manager needs guidance (and a vendor
needs to get put on notice). No fewer than three employees
have had grandparents die this week and need to take time
off, oh, and I need to arrange to send flowers to funerals. Vice
presidents are demanding a report on why customer surveys are
down five points in the last month and want to know whether
this represents the trend of a failing team. I can predict that in
six months I’m going to get asked to make a particular miracle
happen, so I ask the team to do some preparatory work so that
it won’t have to be done in crisis-mode. Then I struggle for five
and a half months to get anyone to do anything without force and
ultimately face an operational disaster that I knew was coming.
I’ve got budget to pay for all of 15 minutes of training for every
employee for the year, if spread out “fairly,” and I’ll get to hear
how the company doesn’t “take care of people” when I have to
politely and regrettably deny training that isn’t directly related
to our core task.

And I’ve got this sysadmin kid in love with esoteric tools
spending 12 hours on what I know is only a two-hour job, waving
me off like I’m a fly on Jello when I’m talking to him because he’s
“in the zone” with his Bourne shell “magic” that no one else will
understand when he’s done with it. At the end of any given day, I
might have long hours, lots of work, and feel like I did nothing of
any substance at all.

Crisis Day for a Sysadmin
It’s all-hands-on-deck. Major system failure. The best
sysadmins know their systems to the core. They understand the
applications, the protocols, the operating systems (especially the
operating systems!), the networks, and the security controls and
boundary protections. Understanding what’s going on, knowing
where to look for the hung process, the full log file, the protocol
error, the expired certificate, the incompatible peripheral device,
the wonky DNS server that’s giving a slow answer, but only for
25% of queries: a true sysadmin is like a magician when there’s a
major problem.

I fondly remember the time, back in 2007 or so, when I had a
serious problem with machine-to-machine communications
between servers A and B. Nothing had changed in the
environment, yet the systems weren’t communicating and
the service was failing in very odd ways. I traced it down to a
corrupt drift file on server C. I don’t even remember the details,
other than the fact that the overall system turned out to be very

sensitive to timing, and my Nagios had alerted on what turned
out to be a second-order effect of a weird and really subtle NTP
problem on a secondary host. When it’s a serious problem,
everything else stops and a sysadmin is the only one who can
save the day.

Crisis Day for a Technical Manager
Keep the VP informed every hour. Keep the customer-facing
group updated every 30 minutes. Coordinate people being
called in. Prevent people from duplicating effort. Wait, don’t we
have to pay some of these people time-and-a-half? Do I have
approval for that? Take the phone call from finance about the
lost revenue while the service is down. Our reportable metrics
are going to suffer. Did we get an RT ticket in? The other guys on
the team aren’t answering their phones and pagers, and we need
reinforcements. I don’t mean to say I told you so, but didn’t I ask for
a status report on this subsystem six months ago? Have to start on
the briefing I’ll have to give tomorrow to the VP or higher, maybe a
briefing I’ll give while standing up in front of his desk.

Ask the sysadmin for an update, and get waved off because this is
hard stuff, you know, and I need to quit bothering him so he can
focus. He’s pounding away in four xterms at once and seems like
he’s chasing down a rabbit hole on a server that’s not even part of
the outage, and he seems completely unable to tell me what he’s
thinking. I really don’t think he’s looking in the right place, but
there’s no one else on the team who can match his skills. So…step
back and hope.

We’re Working Together—Really, We Are
If you’re a rock-star sysadmin with a technical manager asking
you for a status update on the fix-action, take a moment to
consider that that manager might have been a rock star in
his own right and is now having to depend on you. If you’re a
manager just trying to survive the day and keep your sysadmins
in line and out of trouble, just remember, you were once just like
them.

Both sides of this story have a role to play and both bring value
to the situation. The lesson is to understand the motivations and
the perspectives and to value the good and help each other work
through the difficult as a team. This is true in both directions,
but it’s easy to lose patience, and then respect, for each other
in a tense situation. Remembering where you came from and
providing the right mix of understanding and guidance to
others is not easy, but that’s what makes an organization work
effectively. I’m the manager, and that’s my job.

Special thanks to my good friend Hugh Brown at OpenDNS for
his suggestions on this column.

Buy the Box Set!
Whether you had to miss a conference or just didn’t make it to all of the sessions, here’s your chance to watch
(and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive containing the
high-resolution videos from the technical sessions. This is perfect for folks on the go or those without consistent
Internet access.

Box Sets are available for:
 LISA14: 27th Large Installation System Administration Conference

 OSDI ’14: 11th USENIX Symposium on Operating Systems Design and Implementation

 TRIOS ’14: 2014 Conference on Timely Results in Operating Systems

 USENIX Security ’14: 23rd USENIX Security Symposium

 3GSE ’14: 2014 USENIX Summit on Gaming, Games, and Gamification in Security Education

 FOCI ’14: 4th USENIX Workshop on Free and Open Communications on the Internet

 HealthTech ’14: 2014 USENIX Summit on Health Information Technologies

 WOOT ’14: 8th USENIX Workshop on Offensive Technologies

 URES ’14: 2014 USENIX Release Engineering Summit

 USENIX ATC ’14: 2014 USENIX Annual Technical Conference

 UCMS ’14: 2014 USENIX Configuration Management Summit

 HotStorage ’14: 6th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’14: 6th USENIX Workshop on Hot Topics in Cloud Computing

 NSDI ’14: 11th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’14: 12th USENIX Conference on File and Storage Technologies

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Management Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at: www.usenix.org/boxsets

42  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNSPractical Perl Tools
Give it a REST

D A V I D N . B L A N K - E D E L M A N

Believe it or not, there’s a good reason that this column returns to the
subject of Web API programming on a fairly regular basis. As time
goes on, much of the work of your average, ordinary, run-of-the-mill

sysadmin/devops/SRE person involves interacting/integrating with and
incorporating services other people have built as part of the infrastructure
we run. I think it is safe to say that a goodly number of these interactions take
place or will take place via a REST-based API. Given this, I thought it might
be a good idea to take a quick look at some of the current Perl modules that
can make this process easier.

Nice Thesis, Pal
Before we get into the actual Perl code, it is probably a good idea to take a brief moment to
discuss what REST is. People used to argue about what is and what isn’t REST, but I haven’t
heard those arguments in years. (I suspect enough people abused the term over the years that
those who cared just threw up their hands.) Back in 2012 I wrote a column that included an
intro description about REST; let me quote from myself now:

REST stands for “Representational State Transfer.” The Wikipedia article on REST at http://
en.wikipedia.org/wiki/Representational_State_Transfer is decent (or was on the day I read it).
Let me quote from it:

“REST-style architectures consist of clients and servers. Clients initiate requests to servers;
servers process requests and return appropriate responses. Requests and responses are built
around the transfer of representations of resources. A resource can be essentially any coherent
and meaningful concept that may be addressed. A representation of a resource is typically a
document that captures the current or intended state of a resource....

Representational State Transfer is intended to evoke an image of how a well-designed Web
application behaves: presented with a network of Web pages (a virtual state-machine), where
the user progresses through an application by selecting links (state transitions), resulting in
the next page (representing the next state of the application) being transferred to the user and
rendered for their use.”

(That last quote comes from Roy Fielding’s dissertation, which actually defined the REST
architecture and changed Web services forever as a result.)

That’s a pure description of REST. In practice, people tend to think about REST APIs as
those that use a combination of HTTP operations (GET/PUT/DELETE) aimed at URLs that
represent the objects in the service. Here’s an overly simplified example just for demonstra-
tion purposes:

 GET /api/shoes - return a list of available shoes

 GET /api/shoes/shoeid - return more detailed info on that shoe

 DELETE /api/shoes/shoeid - delete that kind of shoe

 PUT /api/shoes/shoeid - update inventory of that kind of shoe

David N. Blank-Edelman is
the Director of Technology at
the Northeastern University
College of Computer and
Information Science and the

author of the O’Reilly book Automating System
Administration with Perl (the second edition of
the Otter book), available at purveyors of fine
dead trees everywhere. He has spent the past
29+ years as a system/network administrator
in large multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He was
the program chair of the LISA ‘05 conference
and one of the LISA ‘06 Invited Talks co-chairs.
David is honored to have been the recipient
of the 2009 SAGE Outstanding Achievement
Award and to serve on the USENIX Board of
Directors beginning in June of 2010.  
dnb@ccs.neu.edu

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 43

COLUMNS
Practical Perl Tools: Give it a REST

This just gives you a fleeting glance at the idea of using HTTP
operations as the verb and intentionally constructed URLs as
the direct objects for these operations. But to quote the Barbie
doll, “APIs are hard, let’s go shopping!”

What Do We Need
As a good segue to the modules that are out there, let’s chat about
what sort of things we might like in a module that will assist
with REST programming. I’m focusing on REST clients in this
column, but who knows, we might get crazy in a later column and
talk about the server side of things as well.

The first thing we’ll clearly need is an easy way to construct
HTTP requests. The messages being passed to and fro over these
requests is likely to be in JSON format (the current lingua franca
for this sort of thing) or XML format, so it would be great if that
didn’t cause the module to break a sweat. Beyond this, it can be
helpful to have the module understand the usual request-reply-
request more workflow and perhaps add a little syntactic sugar
to the process to make the code easier to read. Okay, let’s see
what Perl can offer us.

HTTP Me
We are going to be looking at modules that do lots more hand-
holding than this category, but I feel compelled to start with
something a little lower level. Sometimes you will want to
whip out a very small script that makes a few HTTP calls.
The classic module for this sort of thing was LWP::Simple or
LWP::UserAgent (as part of the libwww package). Recently I’ve
found myself using two other modules instead.

The first is one of the ::Tiny modules. You may recall from a
previous column that I love that genre of modules. These are
the relatively recent trend in Perl modules to produce a set of
modules that are mean and lean and do one thing well with a
minimum of code. The ::Tiny module in play for this column is
HTTP::Tiny. Here’s a small excerpt from the doc:

 use HTTP::Tiny;

 my $response = HTTP::Tiny->new->get(‘http://example.com/’);

 die “Failed!\n” unless $response->{success};

 print “$response->{status} $response->{reason}\n”;

 …

 print $response->{content} if length $response->{content};

As you can see, performing a GET operation with HTTP::Tiny
is super easy (the same goes for a HEAD, DELETE, or POST) as
is getting the results back. HTTP::Tiny will also handle SSL for
you if the required external modules are also available. I’d also
recommend you check out the small ecosystem of available mod-
ules that attempt to build on HTTP::Tiny (e.g., HTTP::Tiny::UA,
HTTP::Tiny::SPDY, HTTP::Retry, and HTTP::Tiny::Paranoid).

Besides using HTTP::Tiny, I’ve also been enjoying using some of
the fun stuff that comes with Mojolicious, the Web programming
framework we’ve seen in past columns. For simple operations, it
can look a lot like LWP::UserAgent:

 use Mojo::UserAgent;

 $ua = Mojo::UserAgent->new;

 print $ua->get(‘www.google.com’)->res->body

That’s not all that exciting. More exciting is when you combine
this with some of the great Mojolicious DOM processing tools.
Even more fun is when you use the “ojo” module to construct
one-liners. (Quick explanatory aside: The module is called “ojo”
because it gets used with the Perl runtime flag -M used to load a
module from the command line. So that means you get to write
Mojo on the command line.) Once again, let me borrow from
the Mojolicious documentation to show you a couple of cool
one-liners:

 $ perl -Mojo -E ‘say g(“mojolicio.us”)->dom->at(“title”)->text’

 Mojolicious - Perl real-time web framework

This uses the g() alias to get the Web page at http://mojolicio.us,
find the title element in the DOM, and print the text in that ele-
ment (i.e., the title of the page).

 $ perl -Mojo -E ‘say r(g(“google.com”)->headers->to_hash)’

This code performs a GET of google.com, returns the headers it
gets back as a hash, and then performs a data dump (r()) of them.
The end result looks something like this:

 {

 “Alternate-Protocol” => “80:quic,p=0.002”,

 “Cache-Control” => “private, max-age=0”,

 “Content-Length” => 19702,

 “Content-Type” => “text/html; charset=ISO-8859-1”,

 “Date” => “Fri, 28 Nov 2014 03:56:53 GMT”,

 “Expires” => -1,

 “P3P” => “CP=\”This is not a P3P policy! See

 http://www.google.com/support/accounts/bin/answer.py?hl=en

&answer=151657 for more info.\””,

 “Server” => “gws”,

 “Set-Cookie” =>

 “PREF=ID=fdfedfe972efadfb:FF=0:TM=1417147013:LM=141714701

3:S=hy1EI4K1BJDEX3to; expires=Sun, 27-Nov-2016 03:56:53 GMT;

path=/; domain=.google.com, NID=67=kC0tIKopoOmStqWp3xSj7

nMOiQkt-GoL9D3Ena9y8EcAm95Z2Ki-c7-NGjWYG878nHQ6tVE-Y3

JkqAM68YR1B6IsGuDL2Cd4UCYI2N35VMM66RcywTTGo6hAH8_Al8Wq

; expires=Sat, 30-May-2015 03:56:53 GMT; path=/; domain

=.google.com; HttpOnly”,

 “X-Frame-Options” => “SAMEORIGIN”,

 “X-XSS-Protection” => “1; mode=block”

 }

44  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: Give it a REST

I find the ease of working with the structure of the page (via the
DOM or CSS selectors) to be particularly handy, but do check
out the rest of the documentation for the many other neat tricks
Mojolicious can perform.

Get On with the REST
So let’s start looking at the sorts of modules that are trying to
help us with our REST work. We’ll take this in the order of least
hand-holdy (is that a word?) to most hand-holdy. You’ll find that
the earlier modules look very much like the HTTP request mod-
ules we’ve already seen. For example, let’s see some sample code
that uses REST::Client. For almost all of the examples in this
column, we are going to use the handy sample REST service the
developer Thomas Bayer has been kind enough to provide
(as a demo for his sqlREST package found at http://sqlrest
.sourceforge.net).

 use REST::Client;

 my $rc = REST::Client->new(

 host => ‘www.thomas-bayer.com’,

 timeout => 10,);

 $rc->GET(‘/sqlrest/CUSTOMER/’);

 print $rc->responseContent(),”\n---\n”;

 $rc->GET(‘/sqlrest/CUSTOMER/3’);

 print $rc->responseContent();

The result of running this code looks something like this:

 <?xml version=”1.0”?><CUSTOMERList xmlns:xlink=

 ”http://www.w3.org/1999/xlink”>

 <CUSTOMER xlink:href=”http://www.thomas-bayer.com/sqlrest

/CUSTOMER/0/”>0</CUSTOMER>

 <CUSTOMER xlink:href=”http://www.thomas-bayer.com/sqlrest

/CUSTOMER/1/”>1</CUSTOMER>

 <CUSTOMER xlink:href=”http://www.thomas-bayer.com/sqlrest

/CUSTOMER/2/”>2</CUSTOMER>

 <CUSTOMER xlink:href=”http://www.thomas-bayer.com/sqlrest

/CUSTOMER/3/”>3</CUSTOMER>

 …

 <?xml version=”1.0”?><CUSTOMER xmlns:xlink=

 ”http://www.w3.org/1999/xlink”>

 <ID>3</ID>

 <FIRSTNAME>Michael</FIRSTNAME>

 <LASTNAME>Clancy</LASTNAME>

 <STREET>542 Upland Pl.</STREET>

 <CITY>San Francisco</CITY>

We’ve performed a GET to receive a set of URLs in XML format
that represent the available customer list and then performed a
second GET to pull information for the customer with ID 3. This
second step was all manually done (i.e., I picked #3 at random),

but you can easily imagine using something like XML::LibXML
or XML::Simple to parse the initial list that was returned, and
then use some complicated process to determine which cus-
tomer ID (or all of them) for the second step.

So I bet you are wondering why REST::Client is any better than
HTTP::Tiny in this case. It is only a hair more helpful. The help-
ful part comes largely in the new() call where we could set a
default host (meaning we only have to put the path into the GET
requests), a timeout, and settings for SSL/redirects (which we
didn’t use). Responses are a little easier to retrieve, but on the
whole, nothing exciting.

A step up from this is something like WebService::CRUST. This
module is a step further in the direction of “more hand-holdy” for
a few reasons:

◆◆ It can take more “default” settings in the object constructor,
so the actual query lines only have to contain the parameters
explicit to the query.

◆◆ It knows how to hand the results back to a parser of some sort
(i.e., to decode the XML or the JSON we get back).

◆◆ It adds some syntactic sugar, which makes the actual queries
look more intuitive.

Let’s do a quick rewrite of the REST::Client code to use
WebService::Crust instead:

 use WebService::Crust;

 use Data::Dumper;

 my $wc = new WebService::CRUST(

 base => ‘http://www.thomas-bayer.com/sqlrest/’,

 timeout => 10,

 # params => { appid => ‘SomeID’ },

);

 # same as $wc->get(‘CUSTOMER’)

 # same as $wc->get_CUSTOMER();

 my $reply = $wc->CUSTOMER;

 print Dumper $reply->result;

 print “\n---\n”;

 my $reply = $wc->get(‘CUSTOMER/3’);

 print Dumper $reply->result;

The first thing to note in this code is the constructor takes a base
for the API so we never have to repeat the URL in our code. It
also can take a params hash that will be used to add parameters
to every call. For example, if your API required you to send along
some API-specific key in each call, you could easily do it here.
Our test service doesn’t call for this, so I placed a commented-
out version there instead. And, in the spirit of making the actual
API calls easier, you can see that WebService::CRUST lets us
write things as a method call (->CUSTOMER or get_CUSTOMER),
which makes the code even more readable.

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 45

COLUMNS
Practical Perl Tools: Give it a REST

Now on to the more interesting part. If we were to actually
dump out the contents of $reply at this point, we’d find it con-
tained not the XML that the call returned, but a Perl data struc-
ture that represented the parsed version of that XML, hence
the use of Data::Dumper to display it. The actual data structure
looks like this:

DB<1> x $reply->result

0 HASH(0x7fb96cbedbe0)

 ‘CUSTOMER’ => ARRAY(0x7fa1abd96e40)

 0 HASH(0x7fa1abc674b8)

 ‘content’ => 0

 ‘xlink:href’ => ‘http://www.thomas-bayer.com/sqlrest

 /CUSTOMER/0/’

 1 HASH(0x7fa1abd82cc0)

 ‘content’ => 1

 ‘xlink:href’ => ‘http://www.thomas-bayer.com/sqlrest

 /CUSTOMER/1/’

 2 HASH(0x7fa1abb29570)

 ‘content’ => 2

 ‘xlink:href’ => ‘http://www.thomas-bayer.com/sqlrest

 /CUSTOMER/2/’

 3 HASH(0x7fa1a9ee7848)

 ‘content’ => 3

 ‘xlink:href’ => ‘http://www.thomas-bayer.com/sqlrest

 /CUSTOMER/3/’

 ...

There’s a hash with a single key called “result”. The value
of this key is a reference to a hash that contains a single key
(CUSTOMER). That key has a reference to an array of hashes,
each containing the XML elements we’ll need to access. If you
think this particular data structure is kind of icky, I’m in your
corner. What you are seeing here is the default parse rules from
XML::Simple at work. Sometimes they work well given a hunk
of XML, sometimes not as well. They work better for the second
query (the one where we request the info for customer #3):

 {

 ‘LASTNAME’ => ‘Clancy’,

 ‘FIRSTNAME’ => ‘Michael’,

 ‘ID’ => ‘3’,

 ‘xmlns:xlink’ => ‘http://www.w3.org/1999/xlink’,

 ‘CITY’ => ‘San Francisco’,

 ‘STREET’ => ‘542 Upland Pl.’

 };

The two ways to deal with the icky data structure takes us too
far afield to look at in depth, but just to give you a head start on
the problem, you could either:

◆◆ write a subroutine that takes in the unpleasant data structure
and returns one that is easier to use, or

◆◆ use the “opts” constructor option in the new() call to pass along
options to XML::Simple. XML::Simple is quite willing to do
your bidding, you’ll just have to tell it exactly what you need.

Now, just so we don’t lose track of one of the desired qualities
of REST modules we mentioned earlier, I want to make sure
JSON gets at least a brief mention. So far our test code has
talked to APIs that return XML; what would we do if we had
to talk to something that spoke only JSON? A couple of pos-
sibilities leap right to mind. First, we could switch modules.
There are modules like REST::Consumer that behave similarly
to WebService::CRUST. REST::Consumer offers a little less
syntactic sugar than WebService::CRUST, but it does expect
to receive (and send) JSON data as a default. Since I have a
sweet tooth sometimes that craves the sugar (for readability
purposes, I assure you), a second possibility is to continue using
WebService::CRUST. It allows you to write:

 my $wc = new WebService::CRUST(

 format => [‘JSON::XS’, ‘decode’, ‘encode’, ‘decode’]);

and from now on WebService::CRUST will speak JSON by using
the JSON::XS (the faster JSON module) to decode and encode
messages for you.

By the Way
As a way of winding down this column, I want to point out two
other REST-related module types that may be interesting to you.
The first takes the sugar part of the last section a wee bit further.
There are modules like Rest::Client::Builder that let you inherit
from them the capability to build OOP modules. In your module
you spend a little time mapping out the API in your code and in
return you get to write code that uses the API operations as if
they were native calls. This is like the ->CUSTOMER stuff from
above only a little cleaner because you’ve been explicit up front.

The last module I want to show you is some combination of
fun and debugging (or maybe debugging fun). The module
App::Presto installs a command line tool called “presto” that
provides an interactive shell for working with REST services.
If you are used to debugging them using CURL, you may find
that presto will make your life a little easier. Let’s see a couple of
quick sessions using it:

 $ presto http://www.thomas-bayer.com/sqlrest/CUSTOMER/

 http://www.thomas-bayer.com/sqlrest/CUSTOMER/> GET 3

 {

 “STREET” : “542 Upland Pl.”,

 “ID” : “3”,

 “FIRSTNAME” : “Michael”,

 “CITY” : “San Francisco”,

 “xmlns:xlink” : “http://www.w3.org/1999/xlink”,

 “LASTNAME” : “Clancy”

 }

 http://www.thomas-bayer.com/sqlrest/CUSTOMER/> quit

46  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNS
Practical Perl Tools: Give it a REST

Here’s a JSON-based API session:

 $ presto http://date.jsontest.com

 http://date.jsontest.com> GET /

 {

 “time” : “04:02:11 AM”,

 “milliseconds_since_epoch” : 1417320131828,

 “date” : “11-30-2014”

 }

Having a tool that lets you walk around an API like this can be
mighty handy at times. And with that, let’s bring this column to a
close. Take care and I’ll see you next time.

NSDI ’15 will focus on the design principles, implementation, and practical evaluation

of networked and distributed systems. Our goal is to bring together researchers from

across the networking and systems community to foster a broad approach to address-

ing overlapping research challenges.

The program at this year’s Symposium includes 42 refereed paper presentations on

data centers, software-defined networking, wireless, data analytics, protocol design

and implementation, virtualization, and much more.

The Eleventh ACM/IEEE Symposium on Architectures for Networking and Communica-

tions Systems (ANCS 2015), taking place May 7–8, will be co-located with NSDI ’15.

Register by April 13 and save!

www.usenix.org/nsdi15

12th USENIX Symposium on
Networked Systems
Design and Implementation

May 4–6, 2015 • Oakland, CA

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 47

COLUMNS

Thinking about Type Checking
D A V I D B E A Z L E Y

A common complaint levied against Python (and other similar lan-
guages) is the dynamic nature of its type handling. Dynamic typing
makes it difficult to optimize performance because code can’t be

compiled in the same way that it is in languages like C or Java. The lack of
explicitly stated types can also make it difficult to figure out how the parts
of a large application might fit together if you’re simply looking at them in
isolation. This difficulty also applies to tools that might analyze or try to
check your program for correctness.

If you’re using Python to write simple scripts, dynamic typing is not something you’re likely
to spend much time worrying about (if anything, not having to worry about types is a nice
feature). However, if you’re using Python to write a larger application, type-related issues
might cause headaches. Sometimes programmers assume that these headaches are just part
of using Python and that there isn’t much that they can do about it. Not true. As an application
developer, you actually have a variety of techniques that can be used to better control what’s
happening with types in a program. In this installment, we explore some of these techniques.

Dynamic Typing
To start, consider the following function:

 def add(x, y):

 return x + y

In this function, there is nothing to indicate the expected types of the inputs. In fact, it will
work with any inputs that happen to be compatible with the + operator used inside. This is
dynamic typing in action. For example:

 >>> add(2, 3)

 5

 >>> add(‘two’, ‘three’)

 ‘twothree’

 >>> add([1,2], [3,4,5])

 [1, 2, 3, 4, 5]

 >>>

This kind of flexibility is both a blessing and curse. On one hand, you have the power to write
very general-purpose code that works with almost anything. On the other hand, flexibility
can introduce all sorts of strange bugs and usability problems. For instance, a function might
accidentally “work” in situations where it might have been better to raise an error. Suppose, for
example, you were expecting a mathematical operation, but strings got passed in by accident:

 >>> add(‘2’, ‘3’)

 ‘23’

 >>>

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

48  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNS
Thinking about Type Checking

You might look at something like that and say “but I would never
do that!” Perhaps, but if you’re working with a bunch of Web cod-
ers, you might never know what they’re going to pass into your
program. Frankly, it could probably be just about anything, so it’s
probably best to plan for the worst. I digress.

The lack of types in the source may make it difficult for someone
else to understand code—especially as it grows in size and you
start to think about the interconnections between components.
As such, much of the burden is placed on writing good documen-
tation strings—at least you can describe your intent to someone
reading the source and hope for the best:

 def add(x, y):

 ‘’’

 Adds the numbers x and y

 ‘’’

 return x + y

You might be inclined to explicitly enforce or check types using
isinstance(). For example:

 def add(x, y):

 ‘’’

 Adds the numbers x and y

 ‘’’

 assert isinstance(x, (int, float)), ‘expected number’

 assert isinstance(y, (int, float)), ‘expected number’

 return x + y

However, doing so typically leads to ugly non-idiomatic code
and may make the code unnecessarily inflexible. For example,
what if someone wants to use the above function with Decimal
objects? Is that allowed?

 >>> from decimal import Decimal

 >>> x = Decimal(‘2’)

 >>> y = Decimal(‘3’)

 >>> add(x, y)

 Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 File “<stdin>”, line 5, in add

 AssertionError: expected number

 >>>

Alternatively, you might see a function written like this:

 def add(x, y):

 ‘’’

 Adds the integers x and y

 ‘’’

 return int(x) + int(y)

This function will attempt to coerce whatever you give it into a
specific type. For example:

 >>> add(2, 3)

 5

 >>> add(‘2’, ‘3’)

 5

 >>> add(‘two’, ‘three’)

 Traceback (most recent call last):

 ...

 ValueError: invalid literal for int() with base 10: ‘two’

 >>>

This too might have bizarre problems. For example, what if
floats are given?

 >>> add(2.5, 3.2)

 5

 >>>

Alas, the function runs but silently throws away the fractional
part of the inputs. If that’s what you expected, great, but if not,
then you have a whole new set of problems to worry about. Need-
less to say, it can get complicated.

Do type-related issues really matter in real applications? Based
on my own experience, I’d answer yes. As a developer, you often
try to do your best in writing accurate code and in writing tests.
However, if you’re working on a team, you might not know every
possible way that someone will interact with your program. As
such, it can often pay to take a defensive posture in order to iden-
tify problems earlier rather than later. Frankly, I often think about
such matters solely as a way to prevent myself from creating bugs.

Having better control over type handling in Python is mostly
solved through techniques that add layers to objects and func-
tions. For example, using properties to wrap instance attributes
or using a decorator to wrap functions [4]. The next few sections
have a few examples.

Managing Attribute Types on Instances
Suppose you have a class definition like this:

 class Stock(object):

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

By default, the attributes of Stock can be anything. For example:

 >>> s = Stock(‘IBM’, 50, 91.1)

 >>> s.shares = 75

 >>> s.shares = ‘75’

 >>> s.shares = ‘seventyfive’

 >>>

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 49

COLUMNS
Thinking about Type Checking

However, suppose you wanted to enforce some controls on the
shares attribute. One approach is to define shares as a property.
For example:

 class Stock(object):

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

 @property

 def shares(self):

 ‘Getter function. Return the shares attribute’

 return self.__dict__[‘shares’]

 @shares.setter

 def shares(self, value):

 ‘Setter function. Set the shares attribute’

 assert isinstance(value, int), ‘Expected int’

 self.__dict__[‘shares’] = value

A property is a pair of get/set functions that captures the dot (.)
operator for a specific attribute. In this case, all access to the
shares attribute routes through the two functions provided.
These two functions merely access the underlying instance
dictionary, but the setter has been programmed to make sure the
value is a proper integer. The resulting class works in exactly the
same way as it did before except that there is now type checking
on shares:

 >>> s = Stock(‘IBM’, 50, 91.1)

 >>> s.shares = 75

 >>> s.shares = ‘75’

 Traceback (most recent call last):

 ...

 AssertionError: Expected int

 >>>

The verbose nature of writing out code for a property is a bit
annoying if you have to do it a lot. Thus, if type checking is some-
thing you might reuse in different contexts, you can actually
make a utility function to generate the property code for you. For
example:

 def Integer(name):

 @property

 def intvalue(self):

 return self.__dict__[name]

 @intvalue.setter

 def intvalue(self, value):

 assert isinstance(value, int), ‘Expected int’

 self.__dict__[name] = value

 return intvalue

 # Example

 class Point(object):

 x = Integer(‘x’)

 y = Integer(‘y’)

 def __init__(self, x, y):

 self.x = x

 self.y = y

Here is an example of using the type-checked attribute:

 >>> p = Point(2,3)

 >>> p.x = 4

 >>> p.x = ‘4’

 Traceback (most recent call last):

 ...

 AssertionError: Expected int

 >>>

Alternatively, you can implement special type-checked attri-
butes directly using a “descriptor” like this:

 class Integer(object):

 def __init__(self, name):

 self.name = name

 def __get__(self, instance, cls):

 if instance is None:

 return self

 else:

 return instance.__dict__[self.name]

 def __set__(self, instance, value):

 assert isinstance(value, int), ‘Expected int’

 instance.__dict__[self.name] = value

A descriptor is similar to a property in that it captures the dot (.)
operation on selected attributes. Basically, if you add an instance
of a descriptor to a class, access to the attribute will route
through the __get__() and __set__() methods. You would use
the descriptor in exactly the same way the Integer() function
was used in the above example.

Managing Types in Function Arguments
You can manage the types passed to a function, but doing so usu-
ally involves putting a wrapper around it using a decorator. Here
is an example that forces all of the arguments to integers:

 from functools import wraps

 def intargs(func):

 @wraps(func)

 def wrapper(*args, **kwargs):

 iargs = [int(arg) for arg in args]

 ikwargs = { name: int(val) for name, val in kwargs.items() }

 return func(*iargs, **ikwargs)

 return wrapper

 # Example use

 @intargs

 def add(x, y):

 return x + y

50  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNS
Thinking about Type Checking

If you try the resulting decorator, you’ll get this behavior:

 >>> add(2,3)

 5

 >>> add(‘2’, ‘3’)

 5

 >>> add(‘two’, ‘three’)

 Traceback (most recent call last):

 ...

 ValueError: invalid literal for int() with base 10: ‘two’

 >>>

In practice, you might want to define a decorator that is a bit
more selective in its type checking. Here is an example of apply-
ing type checks selectively to only some of the arguments. Note:
This example relies on the use of the inspect.signature(), which
was only introduced in Python 3.3 [1]. It will probably require a
bit of careful study.

 from functools import wraps

 from inspect import signature

 def enforce(**types):

 def decorate(func):

 sig = signature(func)

 @wraps(func)

 def wrapper(*args, **kwargs):

 bound_values = sig.bind(*args, **kwargs)

 for name, value in bound_values.arguments.items():

 if name in types:

 expected_type = types[name]

 assert isinstance(bound_values.

arguments[name], \

 expected_type), ‘%s expected %s’ \

 % (name, expected_type.__name__)

 return func(*args, **kwargs)

 return wrapper

 return decorate

 # Example use

 @enforce(x=int, z=str)

 def spam(x, y, z):

 pass

In this example, the decorator works by obtaining the function’s
calling signature. In the wrapper, the sig.bind() operation binds
the supplied arguments to argument names in the signature.
The code that follows then iterates over the supplied arguments,
looks up their expected type (if any), and asserts that it is cor-
rect. Here is an example of how the function would work:

 >>> spam(1, 2, ‘hello’)

 >>> spam(1, ‘hello’, ‘world’)

 >>> spam(‘1’, ‘hello’, ‘world’)

 Traceback (most recent call last):

 ...

 AssertionError: x expected int

 >>> spam(1, ‘hello’, 3)

 Traceback (most recent call last):

 ...

 AssertionError: z expected str

 >>>

A Word on Assertions
In these examples, the assert statement has been used to enforce
type checks. One special feature of assert is that it can be easily
disabled if you run Python with the -O option. For example:

 bash % python -O someprogram.py

When you do this, all of the asserts simply get stripped from the
program—resulting in faster performance because all of the
extra checking will be gone. This actually opens up an interest-
ing spin on the type-checking problem. If you have an application
that executes in both a staging and production environment, you
can do things like enable type checks in staging (where you hope
all of the code is properly tested and errors would be caught), but
turn them off in production.

There is also a global __debug__ variable that is normally set to
True, but it changes to False when -O is given. You might use this
to selectively disable properties. For example:

 class Point(object):

 if __debug__:

 x = Integer(‘x’)

 y = Integer(‘y’)

 def __init__(self, x, y):

 self.x = x

 self.y = y

The Future: Function Annotations?
The future of type checking may lie in the use of function anno-
tations. First introduced in Python 3, functions can be annotated
with additional metadata. For example:

 def add(x:int, y:int) -> int:

 return x + y

These annotations are merely stored as additional information.
For example:

 >>> add.__annotations__

 {‘return’: <class ‘int’>, ‘x’: <class ‘int’>, ‘y’: <class ‘int’>}

 >>>

To date, the use of function annotations in practice has been
somewhat scanty. However, projects such as mypy [2] have
renewed interest in their possible use for type checking. For
example, here is a sample function annotated in the style of mypy:

 def average(values: List[float]) -> float:

 total = sum(values)

 return total / len(values)

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 51

COLUMNS
Thinking about Type Checking

A recent email posting from Guido van Rossum indicated a
renewed interest in using annotations for type checking and in
adopting the mypy annotation style in particular [3]. Standard-
izing the use of annotations for types would be an interesting
development. It’s definitely something worth watching in the
future.

References
[1] https://www.python.org/dev/peps/pep-0362 (Function
Signature Object).

[2] http://mypy-lang.org.

[3] https://mail.python.org/pipermail/python-ideas/2014
-August/028618.html.

[4] “Python 3: The Good, the Bad, and the Ugly” explains
decorators and function wrappers: https://www.usenix
.org/publications/login/april-2009-volume-34-number-2
/python-3-good-bad-and-ugly.

Do you know about the USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our
conferences proceedings and videos. We stand by our mission to foster excellence and
innovation while supporting research with a practical bias. Your financial support plays a
major role in making this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX
Annual Fund, renew your membership, and ask your colleagues to join or renew today.

52  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNS

iVoyeur
Spreading

B Y D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato
.com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

In engineering, we are told to avoid repeating ourselves [1], but as a blogo-
vangelizer (or whatever it is I’m doing now), I find it an increasingly
burdensome and self-defeating mantra. It’d be great if I could give one

talk and consider the subject of that talk closed. However, over the course of
my first year as a developer evangelist, wherein I’ve delivered 12 conference
talks, I’ve slowly begun to realize two very interesting facts.

First, most of the people who came to the conference don’t see my talk. Even if the conference
is a single-track, many attendees are consumed by a fire at work or by some really interest-
ing “problem solving” (read: cat gifs), or they’re in the hallway talking to the speaker from the
last session. Whatever the reason, only a fraction of the attendees actually attempt to parse
my one-two punch of words and slides.

Second, I very often fail to convey what I intend to the fraction of attendees who actually lis-
ten to me. I know this because when I talk to people who attend my talks, our conversations
often go something like this:

Attendee: “Hey, I really enjoyed your talk.”

Me: “Awesome, thanks! I hope it helped.”

Attendee: “It did! I’m going straight home to <do horrifyingly wrong thing>.”

Me: “Good god, why?!”

Attendee: “Well, silly, because you said <understandable but horrifyingly wrong interpreta-
tion of thing I said that would take me days to unravel and correct>.”

Me: “Yeah, I can’t take the credit for that. I actually copied it from <person who works at
Microsoft>.”

My point is, repeating yourself in an education context is not a bad thing (especially if you
can’t seem to get it right the first time). Many tech speakers riff on variations of the same
talk over and over again for years. I used to suspect this was laziness, or that they’d gotten
trapped by their own cult-of-personality, but now I’m realizing that you have to repeat your-
self a lot to actually reach a critical-mass of mind-share in this medium. This is good news
for me, because it’s pretty often the case when I find myself belaboring a point—writing and
talking a lot about the same subject—that it’s because I’m trying to share something I wish I
would have understood years ago.

Lately, I’ve been writing a lot about fat data points, which is the data storage format employed
by Librato in our metrics product, and it’s certainly the case that I wish I’d have understood
them years ago. At Librato, a common use case for us is that of service-side aggregation.
This is the practice of customers emitting measurements to us directly from inside worker
threads running across lots and lots of geographically dispersed computers.

If a customer spawns ten thousand worker threads, and each of them emits a few measure-
ments, we can easily wind up with upwards of fifty thousand in-bound data points in the

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 53

COLUMNS
iVoyeur: Spreading

space of a second, which we then need to aggregate in a statisti-
cally significant way. Taking the average of a set this size almost
certainly destroys the truth hidden within the data, so for this,
and many other reasons [2], we use fat data points to preserve
the truth.

When writing about fat data points became talking about
them at LISA14 [3], I got a pretty awesome question from Doug
Hughes. It was simple, direct, and conveyed a deeply satisfy-
ing sense that I’d managed to successfully communicate the
concept. Specifically, Doug’s question was: “Okay, but how can
WE use this?”

Avoiding the obvious (and correct) answer, that you should
replace whatever you’re currently using with Librato as soon as
possible, it’s actually possible to preserve spread data today with
systems like RRDtool and Graphite. So in the interest of giving
a meaningful answer to Doug’s question, I’d like to show you
how you’d configure Graphite to preserve spread data—the sum,
count, min, max, average, and etc.

For the purposes of this how-to, I’m using a Nagios system that’s
emitting metrics to Graphite by way of StatsD. The metrics-
extraction from Nagios is being performed by Graphios [4]. I’m
going to use the one-minute CPU load metric as my example
since I’m lazy and unimaginative. Figure 1 is a quick-and-dirty
sketch of my setup.

Graphite controls rollups with the storage-aggregations.conf file.
When a new metric is discovered for which there is no existing
Whisper database, Carbon attempts to match the metric name
against the rules in storage-aggregations.conf, beginning at the
top and continuing to the bottom. The first line that matches the
metric name wins, and no further lines are parsed once a match
is found. If you’re really paying attention, then you’ve probably
realized that these rules make it impossible to assign different
consolidation functions to different archives inside a Whisper file.

In order to maintain, for example, both the min and max values
for a series in Graphite, therefore, we need to feed Graphite
the same metric with two different names. That way we can
match each variation of the metric name to a different rule in
storage-aggregations.conf.

One simple way to do this is via StatsD’s *timer* data type [5].
StatsD timers are intended to time things like function calls, to
see how long they take to execute, but in practice you can use a
timer to measure anything you might otherwise use a *gauge* to
measure. The primary difference is that where passing a gauge
into StatsD will merely result in a single value, a timer will cause
StatsD to compute and emit a whole slew of interesting sum-
mary metrics, including the min, max, sum, count, and even
percentiles for the StatsD flush interval.

So my strategy here is to emit the one-minute CPU load as
measured by Nagios into StatsD as a timer. Then I’ll configure
storage-aggregation rules in Graphite to match the min, max,
sum, and count for the summary statistics emitted by StatsD.
When I’m done, I’ll have different Whisper databases for this
metric for each of the summary types I want.

Beginning in the Nagios configs, I’ll configure a custom object
variable called *metrictype* in the service definition of the met-
ric I want to preserve spread data for:

define service{

 use generic-service

 host_name awacs

 service_description LOAD

 check_command check_load!50,60,70!80,90,100

 _graphiteprefix Piegan-Nagios

 _metrictype timer

}

Graphios will parse out the _graphiteprefix and _metrictype
custom variables, appending my prefix to the metric name, and
translating the “timer” keyword into the associated StatsD
wire-protocol [6]. On my system (hostname: awacs), this is what
Graphios puts on the wire for StatsD:

Piegan-Nagios.awacs.load1:0.080|ms

No special configuration is required for StatsD. By default, StatsD
will prepend two additional prefixes to my metric name: stats
and timers. Here’s what StatsD puts on the wire for Carbon:

stats.timers.Piegan-Nagios.awacs.load1.sum 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.sum_90 0.080

1416803719

stats.timers.Piegan-Nagios.awacs.load1.lower 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.upper 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.upper_90 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.sum 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.sum_90 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.count 1 1416803719

stats.timers.Piegan-Nagios.awacs.load1.count_ps 1 1416803719

stats.timers.Piegan-Nagios.awacs.load1.mean 0.080 1416803719

stats.timers.Piegan-Nagios.awacs.load1.median 0.080 1416803719

Figure 1: My tool-chain for the purposes of this article

54  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNS
iVoyeur: Spreading

To be clear, what’s happening here is StatsD is accepting the
load1 metric, and, because we’ve specified that it is a timer (the
“|ms” suffix emitted by Graphios), StatsD automatically computes
all of these summarization metrics across its flush interval. Most
of these are self-explanatory; the metrics that look like thing_90
are the 90th percentile for thing (i.e., it is a number that 90
percent of the measurements in the flush interval are less than).
Count_ps is the count divided by the number of seconds in
StatsD’s flush interval (literally, ps here stands for per second).

Moving to the Graphite side, I’ve added rules to match each of
these StatsD summary metrics to my /opt/graphite/conf/storage
-aggregations.conf file:

[min]

pattern = stats.timers.*lower$

xFilesFactor = 0.9

aggregationMethod = min

[max]

pattern = stats.timers.*(upper|upper_90)$

xFilesFactor = 0.9

aggregationMethod = max

[sum]

pattern = stats.timers.*sum$

xFilesFactor = 0.9

aggregationMethod = sum

<snip>

Carbon will use this file to properly create the Whisper data-
bases for these metrics in a way that properly aggregates the data
over time, preserving what’s important to us. I can verify it’s
working by checking the creation log:

23/11/2014 04:43:26 :: new metric

 stats.timers.Piegan-Nagios.awacs.

 load15.upper_90 matched aggregation schema max

Or by running whisper_info directly against the DBs:

root@precise64# for i in *; do

> echo ${i}: $(whisper-info ${i} | grep aggre) ; done

count_ps.wsp: aggregationMethod: count

count.wsp: aggregationMethod: count

lower.wsp: aggregationMethod: min

mean_90.wsp: aggregationMethod: average

mean.wsp: aggregationMethod: average

median.wsp: aggregationMethod: average

std.wsp: aggregationMethod: max

sum_90.wsp: aggregationMethod: sum

sum.wsp: aggregationMethod: sum

upper_90.wsp: aggregationMethod: max

upper.wsp: aggregationMethod: max

At this point, perhaps obviously, I can craft a graph depicting the
difference between the average and max rollups (Figure 2).

Figure 2: Plotting average vs. max for the same metric

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 55

COLUMNS
iVoyeur: Spreading

An interesting side effect of using StatsD timers this way is that
you can also set up custom storage schemas for different types
of spread data. For example, you could keep 10-second resolution
on the mean and median values for 24 hours, and toss them after
that while preserving the count and sum metrics at 10-minute
and one-hour resolutions for years (since those rollups are effec-
tively lossless and enable you to accurately compute the average
at display time using the divide() function).

With a little thought, you’ll wind up with a metrics storage
system that far more accurately reflects your data, while making
very effective use of space on disk. As always, I hope you found
this useful in your quantification endeavors, and I highly recom-
mend the use of spread data to protect the long-term fidelity of
your beloved measurements.

Take it easy.

References
[1] “Don’t Repeat Yourself”: http://en.wikipedia.org/wiki
/Don%27t_repeat_yourself.

[2] “Sensical Summarization for Time-Series”: http://blog
.librato.com/posts/time-series-data.

[3] LISA14: https://www.usenix.org/conference/lisa14.

[4] Graphios: https://github.com/shawn-sterling/graphios.

[5] StatsD Metric Types: https://github.com/etsy/statsd
/blob/master/docs/metric_types.md.

[6] StatsD Line Protocol: https://github.com/etsy/statsd/.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you promote your
organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we offer key
outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our multiple conference
sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation in neutral
forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholarships for students,
equal representation of women and minorities in the computing research community, and the development of
open source technology.

Learn more at:
www.usenix.org/supporter

56  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNS

When you see something that is technically sweet, you go ahead and do it and you
argue about what to do about it only after you have had your technical success. That
is the way it was with the atomic bomb.—Julius Robert Oppenheimer

A utomation exists to remove costs. Some costs are measured in money
lost. Some costs are measured in inaccurate results. Some costs are
measured in risk taken on. For any cost, however, the first question

to ask is, from whose vantage point is such and such a cost a cost? Is it the
person shelling out money that could have been saved? Is it the person receiv-
ing inaccurate outputs that drove needlessly poor decisions? Is it the person
trading short-term convenience for long-term risk? Or is it the counterparties
to each of those persons?

The best, most careful observers are now singing the same chorus, that automation is mov-
ing beyond the routinizable to the non-routine by way of the tsunami of ever bigger data. As
such, it is not the fraction of people who are unemployed that matters; it is the fraction of
people who will soon be unemployable. Machines that are cheaper than you, that make fewer
mistakes than you, that can accept any drudgery that risk avoidance imposes are coming.

What does that have to do with cybersecurity and its measurement? Cybersecurity is
perhaps the most challenging intellectual profession on the planet both because of the rate
of change and because your failure is the intentional work product of sentient opponents.
Can automation help with that? Of course and it already is, as you well know regardless of
your misgivings about whether anomaly detection will work in an ever more “personalized”
 Internet—one man’s personalization is another man’s targeting.

The U.S. Bureau of Labor Statistics reports [1] that the five occupations with the best outlook
for new jobs over the next 10 years are personal care aides, registered nurses, retail salesper-
sons, home health aides, and food preparers/servers, with an aggregate 10-year employment
growth of 2,388,400 at $30,048 average income. Accepting that it takes 125,000 new jobs/
month to hold unemployment steady, those five occupations can cover 19 of the next 120
months. On the world scale, those are good jobs—$30,048 and you’re in the world’s top 6% [2].

High-paying jobs are precisely the ones that automation wants to take. Turning to BLS
data for “information security analysts” [3], there are 75,000 of those with mean income of
$86,070 per year, putting ISAs in the top 0.5% on the world scale. The growth in that occupa-
tion for the coming decade is 37% (3.5% per year, the 16th best of all U.S. occupations), and
of the 20 jobs with the fastest growth, only physicians’ assistants have a higher mean salary
than ISAs. Computerworld’s survey [4] confirms the pinnacle status of information security
practitioners, putting a CSO in the world top 0.2%.

So is automation gunning for the ISA role? If not, is it because ISAs are too few to bother
with or is it that the job is too hard to automate (yet)? Shosana Zuboff’s [5] three laws bear
repeating:

For Good Measure
Cyberjobsecurity

D A N G E E R

Dan Geer is the CISO for
In-Q-Tel and a security
researcher with a quantitative
bent. He has a long history
with the USENIX Association,

including officer positions, program
committees, etc. dan@geer.org

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 57

COLUMNS
For Good Measure: Cyberjobsecurity

◆◆ Everything that can be automated will be automated.

◆◆ Everything that can be informated will be informated.

◆◆ Every digital application that can be used for surveillance and
control will be used for surveillance and control.

Universities and the White House argue that as machines take
over existing jobs, new opportunities are created for those who
“invest in themselves.” As Federico Pistono argues [6] with clear
numbers, that is not true. Ranking U.S. jobs by how many people
hold them, computer software engineer is the only job created in
the last 50 years with over a million job holders. It is #33 on the
list; there are twice as many janitors. The most numerous job,
delivery driver, is being automated out of existence as we speak.
If cybersecurity jobs are safe from automation, should we be
retraining all the truck drivers who are about to be unemployed
as information security analysts? Are we lucky that our jobs
come with sentient opponents? Are sentient opponents our job
security—the source of both our pain and our power?

We cybersecurity folk are not the best paid. All but one of the 15
best paying jobs are in medicine (that one is CEO at #11), but as
C.G.P. Grey [7] points out, once electronic health records really
take hold, most of health care can be automated—at least the
parts for diagnosis, prescribing, monitoring, timing, and keeping
up with the literature.

But if it is true that all cybersecurity technology is dual use, then
what about offense? Chris Inglis, recently retired NSA deputy
director, remarked that if we were to score cyber the way we
score soccer, the tally would be 462-456 twenty minutes into
the game [8], i.e., all offense. I will take his remark as confirming
at the highest level not only the dual use nature of cybersecu-
rity but also confirming that offense is where the innovations
that only Nation States can afford is going on. Put differently, is
cybersecurity as a job moving away from defense toward offense
insofar as the defense side is easier to automate? That won’t
show up in any statistics that you or I are likely to find; offense
does not publish.

In sum, everything I see in the security literature and/or the
blogosphere argues for automating cybersecurity. One must then
ask if, in truth, our job description is to work ourselves out of a
job. Or do we say that with a wink and a nod [9]?

References
[1] Occupational Outlook Handbook: www.bls.gov/ooh
/most-new-jobs.htm.

[2] Wealth calculator (adjusted for purchasing parity) http://
www.worldwealthcalculator.org/results.

[3] Information Security Analysts: www.bls.gov/ooh
/computer-and-information-technology/information
-security-analysts.htm.

[4] IT Salary Survey: www.computerworld.com/category
/salarysurvey2014/.

[5] “Skilled workers historically have been ambivalent toward
automation, knowing that the bodies it would augment or
replace were the occasion for both their pain and their power.”
In the Age of the Smart Machine (Basic Books, 1988), p. 56.

[6] Robots Will Steal Your Job, But That’s OK (CreateSpace,
2012), Chapter 9: www.robotswillstealyourjob.com/read
/part1/ch9-unemployment-tomorrow.

[7] “Humans Need Not Apply”: www.youtube.com/watch?v
=7Pq-S557XQU.

[8] Chris Inglis, confirmed by personal communication.

[9] “Never write if you can speak; never speak if you can nod;
never nod if you can wink.”—Martin Lomasney, Ward Boss,
Boston.

58  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

COLUMNS

/dev/random
Smarter-Than-You Storage

R O B E R T G . F E R R E L L

R ecently I had the honor of serving as a member of a teaching and
volunteer examiner team for an amateur radio licensing class/exam.
One of the lessons in the class went over exponent prefixes, from

yocto- to yotta-. I mentioned to the students that giga-, tera-, peta-, and exa-,
while virtually unknown to non-scientists two decades ago, had now entered
into the general parlance as a result of developments in digital memory and
storage technologies.

Heretical though it may sound, I have begun to question the requirement for these absurdly
capacious storage devices. Do we really need enough storage, eventually, to house the com-
plete thermodynamic history of every atom on Earth? The problem, as I see it, is that we’ve
been seduced by the availability of cheap storage and so have lost any filters for what we
deem worthy of retention. Why delete something when you can save it, just in case it
might be useful to someone somewhere within the next 50 years? We have become, as a
society, data hoarders.

You know what a hoarder is, right? That usually elderly lady or gentlemen who lives at the end
of the block and who can’t bear to throw anything away, with the result that their house is so
completely filled with every conceivable item of useless junk that even first responders can’t
get in to rescue them when the need arises? I know about hoarders firsthand because there is
a borderline example in my own family.

What makes hoarding a pathological condition is the complete and utter lack of discrimina-
tion. No filters whatever. I can see that same disease state germinating in the storage industry.
Even Google Mail asks you, “Why delete anything?” Why, indeed. You certainly don’t want
to part with the 250 megabytes of ads that you receive annually for products that have no
conceivable role in your life. And all those emails you got notifying you that people you’ve
never even met in person have labeled you a moron in an online forum for taking a position
on some current event topic that differs from their own? Keepers, for sure.

Now, if the only wildly extraneous crap being retained was by individuals with no sense of
what actually matters in life that would be one thing, but I strongly suspect the affliction
has overtaken corporations and governments, as well. If not, we wouldn’t need exabytes of
storage. Exabytes. Think about it. One with 18 zeroes. 1,000,000,000,000,000,000 bytes.
The Earth itself contains roughly 9 x 1049 atoms. The way we’re going, it probably won’t
be too long before we can store the spin state for every one of those fermions, bosons, and
atomic nuclei (which of course would include the atoms of the storage system itself. Hello,
 recursion). But, why would we need to do that? “Just because we can” is a spurious, if not
bordering on insane, rationale.

I wrote a fantasy novel in which mage-scientists had worked out a way to store a complete
mental template for a human being in a crystal kept in a region of temporal stasis until
needed. When you’ve grown tired of your body and its attendant aches and pains, or have

Robert G. Ferrell is a humorist,
fantasy and science fiction
novelist, and owner of the last
two cats in the known universe
who have never been featured

on Youtube. rgferrell@gmail.com

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 59

COLUMNS
/dev/random: Smarter-Than-You Storage

made some serious mistakes and want to take a Mulligan, you
just grow an empty shell and dump that image into it. Presto!
Back to being 25 again. Works well in a fantasy novel, not so
much in the real world.

In that (varicose) vein, let’s say for the sake of discussion that the
human brain contains 1026 atoms. Most of that is hydrogen and
oxygen, i.e., water, however, so we’ll just stick with the 86 billion
or so neurons themselves. There are 10 times as many glial cells,
but we aren’t entirely certain what role they play in cognition and
memory, so we’ll ignore them, too. All in all, there are at least 100
trillion (1014) synapses present in a typical brain because each
neuron can form thousands of links with other neurons. Every
possible synapse, again simplifying for the sake of argument, can
be either on or off, so we can represent that condition in a binary
format. It would therefore require about 12 terabytes to store
a snapshot of a human brain’s wiring (presuming 8 bits to the
byte). This process is complicated by the fact that human neural
topology is plastic, making any attempt to capture it merely a
discrete representation of a continuous process, but it’s what we
have to work with in this thought experiment (which has probably
used up a few million synapses itself, if you’re paying attention).

An exabyte, then, contains ten thousand times more information
than a human brain could process at any given moment, even
presuming that every single neuron could be devoted to the task,
which is of course not a realistic proposition given that we need
some not-insignificant number of CPU cycles for consciousness
and sending each other lolcats. So, why do we experience this
deep compulsion to have that much data thousands or millions
of times over at our calloused fingertips? Is this a rhetorical
question? What is the sound of one bit flopping?

“Big Data” is quickly evolving into “Incomprehensibly Huge
Data.” The day will come in the not-too-distant future when we
will be completely removed from data processing, by necessity.
Only computers will be able to access, munge (Hi, munge), and
spit out this unimaginably huge pool of ones and zeroes. They
won’t even need us around to input anything with all of the
SCADA and other automatic data-gathering mechanisms in
place. I, Robot; you, extraneous.

My personal adaptation of artificial intelligence to this problem
would be what I will dub “Smarter-than-you Storage.” By this
I mean storage devices that understand what actually matters
and quietly discard everything else. You’ll never know what data
got tossed, of course, because the devices are programmed to do
their thing without notifying anyone on the presumption that
you, the human, are simply incapable of making those decisions
rationally. I think we as a species have already demonstrated
that. We archive everything, no matter how asinine or puerile:
even data that an alien prosecuting attorney might well use as
evidence of our non-sentience in some galactic competency
hearing. The insane popularity enjoyed by videos of celebrities
with no known talent wriggling their exposed posteriors leaps
to mind. Most of the time what is trending on the Internet is
cumulative idiocy.

Incidentally, if you take issue with my numbers or premise in
the above diatribe, guess what? I got them from the Internet, our
collective non-discriminatory storage farm. Thanks for bolstering
my argument. I owe you one. Give me your email address and I’ll
send you a video of my cat chasing an invisible bug.*

*Offer not valid in Newtonian space.

60  F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Becoming a Better Programmer
Pete Goodliffe
2014, O’Reilly Media Inc., 2014; 432 pages
ISBN 978-1-491-90553-1
Reviewed by Mark Lamourine

Peter Goodliffe subtitles his book “A handbook for people who
care about code.” It’s obvious that he is passionate about writing
with a clear and concise style. The book is a collection of tips
and advice that I might give to new coders, and there’s certainly
nothing I would disagree with (although I looked for a section on
suppressing the urge to cleverness and didn’t find it).

He doesn’t stop at code, and this is also good. He goes on to talk
about the process and the personal side of a life of software
development. The final section is more about interacting with
the people who surround us than about any technical skills.

While I didn’t find anything I disagree with, I also didn’t find
anything really actionable for me. This is a really good book to
help someone who’s just started coding get a perspective on the
process as a whole. It’s very easy for a junior person to focus on
the language features and the rest of the tech. Goodliffe reminds
them that there’s more to the software development life than the
editor and the compiler.

Ethernet: The Definitive Guide, 2nd ed.
Charles E. Spurgeon and Joann Zimmerman
Copyright 2014 O’Reilly Media, 2014; 484 pages
ISBN 978-1-449-36184-6
Reviewed by Mark Lamourine

I’m actually not sure to whom I’d offer this book; part history,
part technical reference, part deployment guide, it’s hard to cat-
egorize. I guess I’ll have to talk through it and see.

Someone just beginning to work with Ethernet, either physically
or by programming network protocol interactions, would be
interested in the first section. Here, the authors tell the story of
the initial development and then the evolution of Ethernet speci-
fications and implementations. They spend a fair amount of time
on CSMA/CD, which, while interesting, is unlikely to be found
in production these days (I hope). More common will be the full-
duplex twisted pair that follows, and the auto-negotiation pro-
tocols. The authors also cover the evolution of Layer 2 signaling,
which introduces and makes up an Ethernet frame on the wire.

The second section is definitely for the reader who expects to
handle Ethernet cabling and interface devices. In this section

Spurgeon and Zimmerman detail each of the existing Ethernet
specs, although only the IEEE specs are still relevant. Again, the
history is a useful base for understanding the current state. They
also talk about the 10BASE40G and 100G specs that are not yet
in production and which certainly will be limited to datacenters
or to short-haul links between datacenters in an organization.

In the third section, they talk about the issues you’d face if you
were building out an office or cube space as well as the struc-
tured cabling and termination within a datacenter.

The authors move on to a treatment of the networking hardware
that binds the physical and logical networks together and then
close with a section on network troubleshooting concepts and tips.

I enjoyed reading this book and would recommend it to anyone
who expected to start supporting a datacenter network or a large
desktop network space. Although I’d be hesitant to hire someone
to do this work for me if I knew their only source of knowledge
was a chapter from a book, this is certainly a good guide for
someone learning under supervision. It also contains good infor-
mation for someone trying to evaluate a set of proposals.

In the end, I’d say this is a good general reference. It has rel-
evance for people working in or with Ethernet networks at any
scale. I don’t do that kind of work anymore, but I might still keep
this book handy.

The Book of PF, 3rd ed.
Peter N. M. Hansteen
No Starch Press, 2014; 221 pages
ISBN 978-1-59327-589-1
Reviewed by Rik Farrow

PF is the packet filtering language used by OpenBSD, as well as
FreeBSD, NetBSD, and Dragonfly BSD. I have the second edition
of this book, but software and operating systems continue to
evolve. There are now more shortcuts in the PF rules, including
helpful ones, like including passing of packets in the same state-
ment containing a redirect rule. ALTQ, the BSD traffic queueing
system, has been replaced with a new traffic shaping system.
Bridging has been added, allowing you to build firewalls with no
IP addresses.

Hansteen has an easy-to-read style, and I can say his writing has
improved over time. His explanations of example firewall rule
sets are clearer than I recall from the second edition.

I’ve used PF for my home firewall for many years and plan to
build a new firewall appliance (using an APU1D4), which will

www.usenix.org F EB RUA RY 20 1 5 VO L . 4 0, N O. 1 61

BOOKS

also use PF. While some people might ask why not use Linux, PF
has the advantages of a single rule set for both IPv4 and IPv6, the
BSD license, and not having the same IP stack as the majority of
servers and home routers. Diversity is good for security, and PF
has a nicer syntax than Linux IP tables. Hansteen does a great
job of explaining all you can do with PF.

Alan Turing: The Enigma
Andrew Hodges
Princeton Press, 1983; 736 pages
ISBN 978-0-691-16472-4
Reviewed by Rik Farrow

I got a surprise in the mail while recovering from working at
LISA14: a new, paperback edition of the biography of Alan Tur-
ing. I’ve never read biographies, but I found myself with some
time on my hands when I couldn’t read anything deeply techni-
cal, while also being curious about Alan Turing.

Hodges spends the first hundred pages moving Turing to the
point of creating his seminal research paper, “On Computable
Numbers.” Just at that point, Hodges appeared to take a tremen-
dous detour, by describing in detail some points of mathematical
philosophy that Turing found important around 1938. I almost
stopped reading, but after 10 pages, I discovered that Hilbert’s
conjectures were actually key to Turing’s idea for what we today
call a Turing machine.

Hodges actually adds a lot of context about the events surround-
ing Turing’s short professional life. You’ve likely heard about
Bletchley Park, bombes, and the German Enigma, and how
important cracking German encrypted communications was
to ending the war with Germany. Hodges makes these ideas
concrete by explaining that England could not have survived
without importing thousands of tons of goods each month, goods
which had previously come from Europe. If U-boats had suc-
ceeded in sinking 50% of the cargo ships connecting America
with England, England would not have had enough supplies
to feed its people, much less continue fighting an air war and
preparing to invade Europe. When decryption of German naval
communications failed because of changes in the German sys-
tem, U-boats had reached the level of starving out England. The
tide of war hung on the success or failure of cryptanalysis.

While Turing did start out as an Oxford fellow, he quickly
became interested in applied mathematics. He spent time at
the Princeton Institute for Advanced Study, and he and von
Neumann read each other’s papers. Turing developed the idea
of using tubes for memory and logic circuits, although others
did the electronics design. And after the war, Turing helped to
design the first real electronic computers.

Hodges doesn’t skimp on the more troubling side of Turing.
Turing was a homosexual in England at a time where just being

homosexual (not practicing) was illegal. Hodges deftly handles
how difficult being attracted to men, and having to hide this, was
for an intellectual who bristled at any untruths. Turing didn’t
suffer fools lightly, and this also led to many problems with mili-
tary and institutional hierarchies. Hodges explains that Turing
couldn’t understand why anyone would ever avoid telling the
truth, even while he himself spent most of his life hiding a basic
truth about himself.

In the end, I found the context of Turing’s story as important as
the telling of his life through letters, papers, and the other paper
trails that people leave behind. The “halting problem” went from
some ideas I had about “undecidability” to the actual solution
of Hilbert’s conjecture. I learned about many of the early design
decisions that have shaped the field of computer architecture,
all by plowing through what I first thought were meanderings. If
you want to better understand the context of computer science
today, reading Hodges’ book can certainly help you.

USENIX Board of Directors
Communicate directly with the USENIX Board of Directors by
writing to board@usenix.org.

P R E S I D E N T

Brian Noble, University of Michigan
noble@usenix.org

V I C E P R E S I D E N T

John Arrasjid, EMC
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier Foundation

D I R E C T O R S

Cat Allman, Google

David N. Blank-Edelman, Northeastern University

Daniel V. Klein, Google

Hakim Weatherspoon, Cornell University

E X E C U T I V E D I R E C T O R

Casey Henderson
casey@usenix.org

62  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTSConference Reports

11th USENIX Symposium on Operating Systems Design and
Implementation
October 6–8, 2014, Broomfield, CO
Summarized by Radu Banabic, Lucian Carata, Rik Farrow, Rohan Gandhi, Mainak Ghosh, Yanqin Jin, Giorgos Kappes,
Yang Liu, Haonan Lu, Yu Luo, Amirsaman Memaripour, Alexander Merritt, Sankaranarayana Pillai, Ioan Stefanovici,
Alexey Tumanov, Jonas Wagner, David Williams-King, and Xu Zhao

Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)

OSDI ’14 started with a beautiful, sunny day outside of Boulder, Colorado. The nice weather lasted
the entire conference, which was also brightened by record attendance.

The program chairs, Jason Flinn (University of Michigan) and Hank Levy (University of Wash-
ington), told the crowd that they had moved to shorter presentations, just 22 minutes, so they could
fit four presentations into each session. By doing this, they raised the acceptance rate from the old
range of 12–14% to 18%. There were 242 submissions, with 42 papers accepted. The PC spent one-
and-a-half days in meetings in Seattle and used an External Review Committee to help reduce the
workload on the PC. Each PC member reviewed 30 papers (on average), down from 45.

USENIX and OSDI ’14 sponsors made it possible for 108 students to attend the conference via
grants. Overall attendance was also at record levels.

The Jay Lepreau Best Paper Awards were given to the authors of three papers: “Arrakis: The Oper-
ating System Is the Control Plane” (Peter et al.), “IX: A Protected Dataplane Operating System for
High Throughput and Low Latency” (Belay et al.), and “Shielding Applications from an Untrusted
Cloud with Haven” (Baumann et al.). There was no Test of Time award this year.

Who Put the Kernel in My OS Conference?
Summarized by Giorgos Kappes (gkappes@cs.uoi.gr) and Jonas Wagner (jonas.wagner@epfl.ch)

Arrakis: The Operating System Is the Control Plane
Simon Peter, Jialin Li, Irene Zhang, Dan R.K. Ports, Doug Woos,
Arvind Krishnamurthy, and Thomas Anderson, University of Washington; Timothy Roscoe, ETH Zürich

Jay Lepreau Best Paper Award

Simon began his talk by explaining that traditional operating systems like Linux do not take advan-
tage of modern hardware that supports I/O virtualization, and they impose significant overheads
because the kernel mediates all data accesses.

Simon introduced Arrakis, a server OS that splits the role of the kernel into the control and the data
plane. The control plane lies in the kernel and is responsible for functionalities like naming, access
control, and resource limits. These functionalities are used infrequently, to set up a data plane, for
example. On the other hand, the functionality of the data plane is moved into applications. Applica-
tions perform I/O processing themselves by taking advantage of hardware I/O virtualization, while
protection, multiplexing, and I/O scheduling are directly performed by the hardware. The copying
of data between the kernel and the user space is no longer needed. A per application dynamically
linked library implements the data plane interfaces which are tailored to the application. The
network data plane interface allows applications to directly talk with the hardware in order to send
and receive packets. The storage data plane interface allows the applications to asynchronously
read, write, and flush data into its assigned virtual storage area (VSA). The storage controllers map
this virtual area to the underlying physical disks.

There is also a virtual file system (VFS) in the kernel that performs global naming. In fact, the
application has the responsibility to map data onto its VSA and register names to the VFS. The
storage data plane also provides two persistent data structures: a log and a queue. These allow

In this issue:
62 11th USENIX Symposium

on Operating Systems
Design and
Implementation

86 2014 Conference on Timely
Results in Operating
Systems

93 10th Workshop on
Hot Topics in System
Dependability

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 63

REPORTS

operations to be immediately persistent, protect data against
crash failures, and reduce the operations’ latency.

To evaluate Arrakis, the authors implemented it in Barrelfish
OS and compared its performance with Linux. By using several
typical server workloads and well-known key-value stores, they
show that Arrakis significantly reduces the latency of set and
get operations while increasing the write throughput 9x. Arrakis
also scales better than Linux to multiple cores, because I/O
stacks are local to applications and are application specialized.

John Criswell (University of Rochester) asked what would
happen if the Linux kernel made the hardware devices directly
available to applications. Simon replied that there is a lot of
related work that does try to keep the Linux kernel intact. How-
ever, it does not provide the same performance as Arrakis, since
the kernel has to be called eventually. System call batching can
mitigate this, however this trades off latency for higher through-
put. Geoff Kuenning (Harvey Mudd College) asked whether
Redis must be running in order to mediate disk I/O through
its dedicated library and what would happen if someone dam-
aged the Redis config file preventing it from starting up. Simon
answered that the idea behind the indirection interface is pro-
vided by the libIO stack in Redis’s dedicated library. The stack
includes a server that receives I/O operations and directs them
to the config file. Aaron Carol (NICTA) first pointed out that it
seems that Arrakis designates a process as a host for a collection
of files, and then asked what performance implications would
come with accessing these files from a different process. Simon
replied that the process to which the file belongs will have faster
access. Different processes need to perform IPC, which typi-
cally has some costs, but Barrelfish introduced fast IPC. Finally,
Peter Desnoyers (Northeastern University) asked how Arrakis
performs for very high connection rate applications, e.g., a large
Web server. Simon said that not every connect operation needs a
control-plane call. For example, a range of port numbers can be
allocated to a server with a single control-plane call.

Decoupling Cores, Kernels, and Operating Systems
Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe,
ETH Zürich

Gerd motivated his work with current hardware and software
trends: In an era of Turbo Boost, core fusion, and dark silicon,
power management is crucial. Tomorrow’s OSes need to switch
between specialized cores based on their workload. They should
be able to dynamically reconfigure or update themselves. All this
is possible in Barrelfish/DC, a multikernel architecture where
OS state has been carefully factored per CPU. This allows a
separate kernel to control each CPU and to treat CPUs as plug-
gable devices.

The main challenge is to cleanly and quickly shut down a core.
Barrelfish/DC’s solution is to move CPU state out of the way
quickly, then dismantle it lazily, if needed. State is encapsulated
in an “OSnode” containing capabilities that represent applica-
tion and OS state, as well as a Kernel Control Block representing

hardware state. OSnodes can be moved to another CPU, where
they are “parked” until dismantled or restarted.

Experiments show that Barrelfish/DC can shut down nodes very
quickly (in <1 ms). Moreover, the time to do so does not depend on
the system load. The Barrelfish/DC team has demonstrated that
their system enables various new use cases, e.g., live updates of
the OS kernel or temporarily switching to a real-time kernel for a
specific task.

Chris Frost (Google) asked how interrupts interacted with
moving cores. Gerd explained that Barrelfish/DC handles three
types of interrupts: for timers, inter-process communication,
and devices. When a device driver is moved to another core,
device interrupts must be disabled on the source core before the
move, and the driver must poll the device state once it is running
on the destination core. Srivatsa Bhat (MIT) asked whether Bar-
relfish/DC’s energy savings could also be achieved by the power
modes in today’s CPUs. Gerd answered that this is possible,
but that his work goes beyond power savings to explore com-
pletely new ideas. Someone from Stanford asked about the cost
of dismantling a state. Gerd explained that this depends on the
application (e.g., whether it uses shared message channels) and
that it was impossible to give a specific number. Malte Schwarz-
kopf (Cambridge) asked whether this would work on non-cache-
coherent architectures. We don’t know, said Gerd, because such
a system has not yet been built.

Jitk: A Trustworthy In-Kernel Interpreter Infrastructure
Xi Wang, David Lazar, Nickolai Zeldovich, and Adam Chlipala, MIT CSAIL;
Zachary Tatlock, University of Washington

Today’s kernels execute untrusted user-provided code in several
places: BSD Packet Filter (BPF) programs to filter packets
or system calls, DTrace programs for profiling, etc. Xi Wang
started his talk by showing how hard it is to build correct and
secure interpreters for such user-provided code. He and his col-
leagues created Jitk, a verified JIT compiler for programs in the
BPF language, to eradicate interpreter bugs and security vulner-
abilities once and for all.

Jitk models both a BPF program and the CPU as state machines
and comes with a proof that, whenever Jitk successfully trans-
lates a BPF program to machine code, all its state transitions
correspond to transitions at the machine code level. Jitk’s proof
builds on the CPU model and an intermediate language, Cminor,
from the CompCert project. The main proof is complemented by
a proof that decoding BPF bytecode is the inverse operation of
encoding it, and by a high-level specification language that sim-
plifies the creation of BPF programs. Putting these components
together, users can have confidence that the semantics of well-
understood, high-level programs are exactly preserved down to
the machine code level.

Jitk consists of 3510 lines of code, two thirds of them proof code.
The JIT’s performance is comparable to the interpreter that
ships with Linux. Due to the use of optimizations from Comp-
Cert, it often generates code that is smaller.

64  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

Rich Draves (Microsoft) enquired how Jitk compares to proof-
carrying code. Xi Wang answered that Jitk proves strong
correctness properties, whereas proof-carrying code usually
demonstrates only its memory safety. Also, Jitk’s proof holds for
any translated program. Malte Schwarzkopf (Cambridge) won-
dered about the value of Jitk’s proof, given the large trusted code
base. Xi Wang answered that all theorem proofing techniques
share this problem. The trusted code base consists of layers that
build on each other, and we can gain confidence by analyzing
layers in isolation and trusting that errors would not propagate.
Volodymyr Kuznetsov (EPFL) asked whether proven code could
be isolated from untrusted code. Xi Wang pointed to the related
Reflex project (PLDI 2014) where, for example, isolation between
different browser tabs has been proven.

IX: A Protected Dataplane Operating System for High
Throughput and Low Latency
Adam Belay, Stanford University; George Prekas, École Polytechnique
Fédérale de Lausanne (EPFL); Ana Klimovic, Samuel Grossman, and
Christos Kozyrakis, Stanford University; Edouard Bugnion, École
Polytechnique Fédérale de Lausanne (EPFL)

Jay Lepreau Best Paper Award

Adam started by mentioning the increasing mismatch between
modern hardware and traditional operating systems. While
the hardware is very fast, the OS becomes the bottleneck. This
results from the complexity of the kernel and its interface, while
interrupts and scheduling complicate things even further.
Instead, today’s datacenters require scalable API designs in
order to support a large number of connections, high request
rates, and low tail latency.

To achieve these goals, the authors designed IX, a data-plane
OS that splits the kernel into a control plane and multiple data
planes. The control plane consists of the full Linux kernel. It
multiplexes and schedules resources among multiple data planes
and performs configuration. Each data plane runs on dedicated
cores and has direct hardware access by utilizing hardware
virtualization. Additionally, IX leverages VTX virtualization
extensions and Dune (OSDI ’12) to isolate the control plane and
the data planes as well as to divide each data plane in half. The
first half includes the IX data-plane kernel and runs in the high-
est privilege ring (ring 0), while the other half comprises the user
application and libIX and runs in the lowest privilege ring (ring 3).

libIX is a user-level library that provides a libevent-like pro-
gramming model and includes new interfaces for native zero-
copy read and write operations. Describing the IX design, Adam
briefly presented the IX execution pipeline and mentioned its
core characteristics. The IX data plane makes extensive use of
adaptive batching, which is applied on every stage of the network
stack. Batching is size-bounded and only used in the presence
of congestion. This technique decreases latency and improves
instruction cache locality, branch prediction, and prefetching,
and it leads to higher packet rates. Additionally, the IX data plane
runs to completion of all stages needed to receive and transmit
a batch of packets, which improves data cache locality. It also

removes scheduling unpredictability and jitter, and it enables
the use of polling.

The authors evaluated a prototype implementation of IX against
a Linux kernel and mTCP, and showed that IX outperforms both
in terms of throughput and latency. Additionally, IX achieves
better core scalability. The authors also tested memcached and
showed that IX reduces tail latency 2x for Linux clients and by up
to 6x for IX clients. It can also processes 3.6 times more requests.

Brad Karp (UCL) asked whether the technique used to achieve
data cache locality affects instruction cache locality. He also
asked whether integrated layer processing conflicts with the
techniques used in IX. Adam answered that they didn’t observe
that data cache locality adversely affects instruction cache
locality. If the amount of data that accumulates between pro-
cessing phases fits in data cache, then the instruction cache
is not a bottleneck. An upper limit on the batch size also helps.
Simon Peter (University of Washington) asked how the batch-
ing used in IX affects tail latency, especially with future, faster
network cards. Adam said that batch limits have no impact at
low throughputs because batching is not used. But even at high
throughputs, batching leads to low latency because it reduces
head-of-line blocking. The next question was about the run-to-
completion model. Michael Condict (NetApp) asked whether no
one is listening on the NIC when the core is in the application
processing stage. Adam replied that while the application per-
forms processing, the NIC queue is not being polled. Michael
also asked whether this technique can be used on servers that
have high variability in processing time. Adam said that IX dis-
tinguishes between I/O and background threads. Applications
could use background threads for longer-duration work. They
also want to use interrupts to ensure that packets are not unnec-
essarily dropped. However, interrupts should only be a fallback.
Steve Young (Comcast) asked whether they encountered depen-
dencies between consecutive operations due to batching. Adam
answered that this was a big issue when they designed their API,
but careful API design can prevent such problems. They also use a
heuristic: the batch is a set of consolidated network requests from
a single flow. If one fails, they skip the other requests in the flow.

Data in the Abstract
Summarized by Yang Liu (yal036@cs.ucsd.edu) and Yanqin Jin
(y7jin@cs.ucsd.edu)

Willow: A User-Programmable SSD
Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson, University of California,
San Diego

Steve Swanson first highlighted that Willow aims to make pro-
grammability a central feature of storage devices and to provide
a more flexible interface. Then he gave a retrospective view of
the evolution of storage technology, starting from slow hard
disks to emerging PCIe attached SSDs backed by flash or phase
change memory (PCM). Unlike conventional storage, these new
SSDs promise much better performance as well as more flexibil-
ity, urging people to rethink the interface between storage soft-

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 65

REPORTS

ware and storage device. Previously, SSDs had been connected
to the host via rigid interfaces such as SATA, SAS, etc., while
SSDs have flexible internal components. Thus the challenge is to
expose the programmability to application developers who want
to build efficient and safe systems.

Steve presented Willow, a system that (1) provides a f lexible
interface that makes it easy to define new operations using the
C programming language, (2) enforces file system permissions,
(3) allows execution of untrusted code, and (4) provides OS bypass
so that applications can invoke operations without system calls.

Willow is especially suitable for three types of applications: data-
dependent logic, semantic extensions, and privileged execution.
Intensive and complex data analytics is not the sweet spot for
Willow’s design, mainly because of the wimpy CPUs inside the
SSD, limited by power and manufacturing cost.

Steve then presented Willow’s system architecture. Willow,
which is implemented on a BEE3 FPGA board, has similar com-
ponents to a conventional SSD: It contains eight storage proces-
sor units (SPUs), each of which includes a microprocessor, an
interface to an inter-SPU interconnect, and access to an array of
non-volatile memory. Each SPU runs a small SPU-OS, providing
basic functionality such as protection. Willow is connected with
the host machine via NVM Express (NVMe) over PCIe.

Willow allows application programmers to download SSD apps to
the storage device. An SSD app has three components: a host-side
user-space library, the SPU code, and an optional kernel module.
Willow’s interface is very different from that of a conventional
SSD. Host threads and SPUs rely on a RPC mechanism to com-
municate with each other. The RPC mechanism is sufficiently
flexible so that adding new interface is easy. There is nothing
storage-centric about the RPC since SPUs and host can send
RPCs in any direction, from host to storage and vice versa.

Steve also introduced the trust and protection model adopted
by Willow in which a file system sets protection policy while
Willow firmware enforces it. In particular, he pointed out that,
thanks to hardware-written processID information in the mes-
sage headers, RPCs cannot be forged.

To demonstrate the usefulness of Willow, Steve guided the audi-
ence through a case study and invited them to read the paper
for further details. In the talk, he showed that by implementing
moderate amount of transaction support inside Willow, some
applications become easy to write, with a noticeable perfor-
mance gain. He also emphasized that the programmability of
Willow actually makes tweaking and tuning the system faster
and more convenient.

Pankaj Mehra (SanDisk) asked whether future programmable
SSD can work with the new NVMe standard, given the evolution
of non-volatile memory. Steve said that they are actually doing
some work to answer that question, and the simple answer is yes.
One of the possible ways to do that is to go through the NVMe
standard and add some extensions, such as allowing generic

calls from the device to the host, which will fit in the NVMe
framework. Peter Chen (University of Michigan) asked whether
Steve saw any technological trends that could reduce the need
for programmable SSDs, when faster buses emerge. Steve said
that he doesn’t see trends in that direction because latency
doesn’t decrease much even though PCIe bandwidth continues
to grow. Thus, it is still a problem if there is too much back-and-
forth communication between the host and the SSD. In addition,
the programming environment on the SSD is much simpler than
that on the host, making the SSD more reliable and predictable.
He said he can see a consistent trend towards pushing more
capable processors on SSDs, and similar trends on GPUs and
network cards as well. In his opinion, this is a broad trend.

Physical Disentanglement in a Container-Based
File System
Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin-Madison

Isolation is vital for both reliability and performance, and is
widely used in various computer systems. Lanyue Lu pointed
out current system design does not have isolation in the physical
on-disk structures of file systems, resulting in poor reliability
and performance. He further showed several problems caused
by such physical entanglement, and then proposed a novel file
system called IceFS to solve the problem.

Without isolation of the on-disk structures, logically distinct
files may well use co-located metadata, thus the corruption of
one file can affect another unrelated file or even lead to global
errors, such as marking a file system as read-only. File systems
also use bundled transactions to commit changes of multiple
files, causing the performance of independent processes to be
entangled.

IceFS introduces a new abstraction called cubes, which are
implemented as special isolated directories in a file system. The
abstraction of cubes enables applications to specify which files
and directories are logically related. Multiple cubes do not share
the same physical resources. Any cube does not contain refer-
ences to any other cube. Lanyue showed that IceFS offers up to
eight times faster localized recovery and up to 50 times higher
performance. He also told the audience that IceFS can reduce
downtime of virtualized systems and improve recovery effi-
ciency of HDFS.

The design of IceFS follows three core principles: (1) no shared
physical resource across cubes, (2) no access dependency (one
cube will not cross-reference other cubes), and (3) no bundled
transactions. IceFS uses a scheme called “transaction splitting”
to disentangle transactions belonging to different cubes. Lanyue
demonstrated the benefits within a VMware virtualized envi-
ronment and a Hadoop distributed file system, achieving as
much as orders of magnitude performance gain.

Bill Bolosky (MS Research) was curious to know how block
group allocation is done in IceFS and was mainly concerned
about whether IceFS really got rid of global metadata. Lanyue

66  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

said that each block group is self-defined with its own bitmap
and does not share metadata with other block groups. Then Bill
asked how block groups themselves are assigned and suggested
that there might be some global metadata at a higher level to
indicate the allocation status of each block group. Lanyue agreed
with him in that for each block group they store a cube ID that
needs to be examined when traversing the block groups, but such
information is not shared.

Shen Yang (Penn State University) asked how IceFS handled a
case when there is a link across cubes—for example, hard links.
Lanyue replied that first IceFS doesn’t support hard links. And
IceFS can detect many other cases of cross reference. When I/O
is performed at runtime, IceFS can check whether source and
destination belong to the same cube. Another person thought
that the practice of isolation was nice, but that performance
tweaks might violate POSIX security checks under failures.
Lanyue responded that they store the most strict permission at
the root directory, which has to be examined to access any sub-
directory. This can enforce the original protection. Yang Tang
(Columbia University) suggested that ideally he would want a
separate cube for each file. He was curious to know whether this
would work in IceFS. If not, is it better to just have partitions for
complete isolation? Lanyue replied that partitions would lead
to wasted space, and if one file system on one of the partitions
panics, it might lead to a global crash. Partitions cannot solve the
problem of slow recovery either. Finally, in the case of HDFS, it is
hard to make partitions on a local node.

Ziling Huang (NetApp) wondered what the performance would
be like atop an HDD where jumping across different cubes might
incur more disk seek operations. Lanyue confirmed that running
Varmail and SQLite on HDD with IceFS would lead to worse
performance. Although their system would also work for HDD,
it would be more likely to yield better performance on faster
devices such as SSDs.

Customizable and Extensible Deployment for
Mobile/Cloud Applications
Irene Zhang, Adriana Szekeres, Dana Van Aken, and Isaac Ackerman,
University of Washington; Steven D. Gribble, Google and University of
Washington; Arvind Krishnamurthy and Henry M. Levy, University of
Washington

Modern applications have to handle deploying code across dif-
ferent environments from mobile devices to cloud backends.
Such heterogeneity requires application programmers to make
numerous distributed deployment decisions, such as how to
coordinate data and computation across nodes and platforms,
how to hide performance limitations and failures, and how to
manage different programming environments and hardware
resources. In addition, application programmers have differing
requirements: for example, some ask for reliable RPC, while oth-
ers demand caching, etc. All of these contribute to complicating
the development and deployment of applications. Irene Zhang
introduced a system called Sapphire, aiming to free application
developers from such complex but tedious tasks. Sapphire is a
distributed programming platform, which separates application

logic from deployment code. Furthermore, it makes it easy to
choose and change application deployment.

Sapphire has a hierarchical structure and three layers. The top
layer is the distributed Sapphire application. The bottom layer is
the deployment kernel (DK), which provides as basic functional-
ity as possible. DK provides only best-effort communication and
is not fault-tolerant. The key part of Sapphire architecture is
the middle layer, which is a library of deployment managers and
offers control over placement, RPC semantics, fault-tolerance,
load balancing and scaling, etc.

An important entity in Sapphire is a Sapphire Object (SO). The
SO abstraction is key to managing data locality, and provides a
unit of distribution for deployment managers (DM). A Sapphire
application is composed of one or more SOs in communication
with each other using remote procedure calls (RPCs).

Each SO can optionally have an attached DM. Sapphire also
provides a DM library. The programmers select a DM to man-
age each SO, providing features such as failure handling and
data cache among many others. Thus, programmers can easily
compose and extend DMs to further choose, change, and build
deployment.

Kaoutar El Maghraoui (IBM Research) asked how flexible Sap-
phire is for programmers to specify what kind of deployment
they want. In addition, programmers sometimes don’t really
know the correct deployment requirements for their applica-
tions. Irene replied by giving an example of how code offloading
can work with the DM. The code offloading DM is adaptive, and
it can measure the latency of the RPC to figure out the best place
to place the application. Sapphire only asks the programmer to
tell whether the piece of code is computationally intensive, and it
will do the rest. In contrast, the current practice is either imple-
menting the code twice, once for the mobile side and once for the
cloud side, or using some code offloading systems to do pretty
complicated code/program analysis to just figure out what por-
tion of the code can or should be partitioned out. Sapphire gets
a little bit of information from the application programmer and
then does something really powerful.

Howie Huang (George Washington University), asked whether
Sapphire also deals with other issues such as security, scal-
ability, and energy consumption, which are important to mobile
applications. Irene replied that they haven’t looked at energy yet
and encouraged the building of a DM that could take energy into
account. That would require the DK to monitor energy consump-
tion of the system; right now the DK can only provide latency
information. As for privacy and security issues, Irene revealed
that they are actually looking at a similar system that provides
the user with improved data privacy.

Phil Bernstein (Microsoft Research) asked whether Irene could
give the audience an idea of how Sapphire would scale out in a
cluster environment, given that the experiment was done on a
single server. He noted, in addition, that the DM is centralized

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 67

REPORTS

and may become a bottleneck. Irene replied that there are actu-
ally some evaluation results in the paper in which they tested
scalability with multiple servers and DMs. DMs themselves are
not centralized: instead, there is another rarely used but central-
ized service to track SOs when they move or fail.

Phil then asked about multi-player games with hundreds of
thousands of gamers coming and going: Can Sapphire handle
the creation and destruction rate scaling up from there? Irene
thought it would definitely be a problem if this happens a lot.
The other thing she imagined is that Sapphire objects are shared
virtual nodes, and most of them are created on cloud servers as
files, just like you would for most of the games today.

Pebbles: Fine-Grained Data Management Abstractions
for Modern Operating Systems
Riley Spahn and Jonathan Bell, Columbia University; Michael Lee,
The University of Texas at Austin; Sravan Bhamidipati, Roxana Geambasu,
and Gail Kaiser, Columbia University

Riley Spahn first used an interesting email deletion as an
example to motivate this work. In the example, he showed the
audience how an email app can perform unexpectedly in manag-
ing user data: Although a user may believe that the email has
been deleted, it is actually not and is still sitting somewhere in
persistent storage and prone to malicious manipulations. Riley
pointed out that this is a prevailing problem because a number of
popular Android apps suffer from this. Conventional OSes lack
the ability to understand high-level user data abstraction and
understand plain files instead. Such a mismatch between the OS
and the user’s perception of data can lead to difficulty in building
data protection systems on smartphones. To address this prob-
lem, Riley and his colleagues built and proposed Pebbles.

Pebbles is a system-level tool designed to recognize and manage
fine-grained user data. It does not require program change, because
the authors don’t expect application programmers to change
their code. This may seem impossible at first glance, but they
made the amazing discovery that in real life, user data on smart-
phones have quite good uniformity, making it feasible to detect.

Logical Data Objects (LDOs) are different from ordinary files in
that they can be hierarchical and span multiple data stores: e.g.,
plain file, key-value store, and SQLite database. To address the
aforementioned problem, they made several important assump-
tions. First, protection tools are trusted. Second, applications
which produce LDOs will not maliciously act against Pebbles
by manually obfuscating them. Finally, they limit their scope
to persistent data, leaving main memory aside. Given these
assumptions, they want Pebbles to be able to hide some data,
audit access to data, and restrict access to some data.

Pebbles is plugged into Android and modifies Android in three
ways: (1) Dalvik with TaintDroid to track dataflows and dis-
cover relationships, (2) three modified storage APIs to gener-
ate relationships between them, and (3) a new system service
called Pebbles Registrar to record all the relationships and
create object graphs. This graph of LDOs, or object graph, is the

most significant piece of Pebbles since it represents Pebbles’
understanding of application data. They used several mecha-
nisms to build the graph, with details presented in the paper.
They also built four different applications leveraging the service
provided by Pebbles. Evaluation results show that Pebbles is
quite accurate in constructing LDOs without supervision. The
performance overhead is relatively low, and Pebbles provides
reasonably good performance to application users.

Ashvin Goel (University of Toronto) was curious about whether
relations other than foreign key relations and file name relation-
ships could be detected. Riley pointed out that basically all rela-
tions that can be found are dataflow relationships. By tracking
data being written to a certain file that generates a bi-directional
relationship because of data sharing, Pebbles could detect a uni-
directional relationship from there based on the access. Jonas
Wagner (EPFL) commented that many applications want to
encrypt their storage. Riley said they didn’t evaluate applications
that used encryption, although several hundred use a library to
encrypt their SQL storage.

My Insecurities
Summarized by Radu Banabic (radu.banabic@epfl.ch) and David Williams-
King (dwk@cs.columbia.edu)

Protecting Users by Confining JavaScript with COWL
Deian Stefan and Edward Z. Yang, Stanford University; Petr Marchenko,
Google; Alejandro Russo, Chalmers University of Technology; Dave Herman,
Mozilla; Brad Karp, University College London; David Mazières, Stanford
University

Deian Stefan began by observing that today’s Web apps entrust
third-party code with the user’s sensitive data, leaving brows-
ers to prevent mistreatment of that data. Basic protection is
provided by Web browsers’ same-origin policy (SOP), where
content from different sites is separated into browsing contexts
(like tabs and iframes), and scripts can only access data within
their own context. But SOP has two problems: (1) it is not strict
enough, since a site (or libraries like jQuery) can arbitrarily
exfiltrate its data, and (2) it is not flexible enough, because third-
party mashup sites are prevented from combining information
from multiple source Web sites. So browsers have extended SOP
with discretionary access control: The Content Security Policy
(CSP) allows a page to communicate with a whitelist of sites,
and Cross-Origin Resource Sharing (CORS) allows a server to
whitelist sites that can access its data. However, this is still not
a satisfactory solution. Taking CORS as an example, if a bank
grants access to a mashup site, that site can still do anything
with the data (e.g., leak it through buggy or malicious software).
So the bank will be unlikely to whitelist such a site, and the
mashup may instead fall back on the dangerous practice of
requesting the user’s bank login credentials.

Deian explained that the challenge addressed by COWL is to
allow untrusted third-party code to operate on sensitive data.
His motivating example is an untrusted password strength
checker. Ideally, the code should be able to fetch lists of com-
mon passwords from the Internet to compare against the user’s

68  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

password, but as soon as the code gains access to the real user’s
password, it should no longer be able to interact with the net-
work. This is a form of mandatory access control (MAC) known
as confinement, for which there exists prior work, but existing
confinement systems (Hails, Jif, JSFlow) are overly complex for
a Web environment. COWL’s design goal is to avoid changing the
JavaScript language runtime and Web security model to avoid
alienating Web developers.

COWL adds confinement to the existing model of the Web in
a natural way. Just as browsers enforce separate execution
contexts by different origins (source domains), COWL intro-
duces data protection through labels that specify the origins
which care about the data. COWL tracks labels across contexts
(iframes, workers, servers). Any context may add a new origin
to its label in order to read data labeled with some origin, but
then can only communicate with that origin (and cannot com-
municate at all if its label contains two or more origins). COWL
enforces label semantics for outgoing HTTP requests as well as
for communication between browser contexts.

For evaluation, Deian mentioned four applications implemented
on COWL (including a mashup like mint.com which summa-
rizes banking info). COWL itself is implemented for Firefox and
Chromium (by modifying 4k lines of code in each), changing
the gecko and blink layout engines, and adding parameters to
communications infrastructure like postMessage() and XML-
HttpRequest. In terms of performance, there is no additional
overhead for sites that do not use COWL (it is only enabled the
first time the COWL API is called), while the overhead for the
mashup example, excluding network latency, is 16% (16 millisec-
onds). Deian claimed that COWL can be easily deployed, given
its backwards compatibility, reuse of existing Web concepts,
and implementation in real Web browsers. One limitation of
COWL is that it does not deal with covert channels. In addition,
apps must be partially redesigned with compartmentalization
in mind (simply adding labels to sensitive variables is insuf-
ficient). Some related work includes (1) BFlow, a coarse-grained
confinement system for the Web which does not handle the case
where two parties mutually distrust each other, and (2) JSFlow,
which does fine-grained confinement, is better suited for tightly
coupled libraries, and has high overhead (100x). Deian concluded
by saying that today we give up privacy for flexibility to allow
apps to compute on sensitive data, but the mandatory access
control provided by COWL—a natural extension of the existing
Web model—allows developers to do better.

The first question was about covert channels: Couldn’t informa-
tion be leaked by sending labeled data to another context and
having it respond with one of two messages, leaking one bit of the
protected data, and couldn’t this process be repeated to leak the
entire data? Deian answered that the intent of COWL is to close
off all overt communication channels, and while covert chan-
nels might still be possible, COWL’s approach is better than the
current approach where a site is given all-or-nothing access to
the data through discretionary access control. Mike Freedman

(Princeton) mentioned that mandatory access control systems
often have trouble with declassification, and was this ever
necessary with COWL, or are browsers essentially stateless?
Deian answered that a site can read its own data labeled with
its own origin, and this is a sufficient form of declassification.
Another attendee asked about the ramifications of defaulting to
open access instead of defaulting to closed access before COWL
becomes universally deployed. The answer is that a site must
opt-in to COWL’s mandatory access control by adding a label to
some data in order to loosen mechanisms like CORS, and clients
that do not support COWL would fall back on the default discre-
tionary access control as deployed today.

Code-Pointer Integrity
Volodymyr Kuznetsov, École Polytechnique Fédérale de Lausanne (EPFL);
László Szekeres, Stony Brook University; Mathias Payer, Purdue University;
George Candea, École Polytechnique Fédérale de Lausanne (EPFL); R. Sekar,
Stony Brook University; Dawn Song, University of California, Berkeley

Volodymyr started by explaining control-flow hijack vulner-
abilities: By exploiting a memory safety error in a program, an
attacker can overwrite function pointers in program memory
and divert the control-flow of the program to execute any code
the attacker wants. Despite this being a known problem for 50
years, it is still relevant today; there are more and more control-
flow hijack vulnerability reports in the CVE database every year.
Code written in high-level languages avoids this problem, but
such code often requires millions of lines of C/C++ code to run
(language runtimes, native libraries, etc.). There are techniques
to retrofit precise memory safety in unsafe languages, but the
overhead of such techniques is too high for practical deployment.
The control-flow integrity technique provides control-flow
hijack protection at lower overhead, but many of control-flow
integrity implementations were recently shown to be bypassable.

The authors proposed Code-Pointer Integrity as a technique
to eliminate control-flow hijack vulnerabilities from C/C++
programs, while still keeping the overhead low. The key insight
is to only protect code pointers in the program; as these are only
a minority of all the pointers in the program, the overhead due to
the memory safety instrumentation for just these pointers is low.

The implementation of the technique separates memory into two
regions: safe and regular memory. The isolation between the two
is enforced through instruction-level isolation and type-based
static analysis. Instructions that manipulate program data
pointers are not allowed to change values in the safe memory
region, even if compromised by an attacker. This ensures that
attackers will not be able to exploit memory safety errors in
order to forge new code pointers. This protection mechanism is
called code-pointer separation (CPS). However, this still leaves
the potential of an attack, where attackers manipulate pointers
that indirectly point to code pointers (such as through a struct)
and are thus able to swap valid code pointers in memory, causing
a program to call a different function (only a function whose
address was previously taken by the program). In order to protect
against this type of attack, the authors also propose the code-
pointer integrity (CPI) mechanism, which also puts in the safe

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 69

REPORTS

memory region all sensitive pointers, i.e., all pointers that are
used to indirectly access other sensitive pointers (essentially, the
transitive closure of all direct and indirect code pointers). CPI
has a bit more overhead than CPS but has guaranteed protection
against control-flow hijacks.

In the evaluation, the authors showed that both CPS and CPI
protect against all vulnerabilities in the RIPE benchmark and
that CPI has a formal proof of correctness. The authors com-
pared CPS and CPI to existing techniques, such as CFI (both
coarse- and fine-grained) and ASLR, DEP, and stack cookies,
showing that CPS and CPI compare favorably to all: The pro-
posed techniques have either lower overhead, higher guarantees,
or both. CPS provides practical protection against all existing
control-flow hijack attack and has an average overhead of 0.5%–
1.9%, depending on the benchmark, while CPI provides guaran-
teed protection at an average overhead of 8.4%–10.5%, depending
on the benchmark. The stack protection (a component of both
CPS and CPI that protects the stack) has an average overhead
of 0.03%. The authors released an open-source implementation
of their techniques; the protection can be enabled using a single
flag in the LLVM compiler.

Jon Howell (MSR) commented that the overhead of CPI is still
relatively high, at 10%, but that the attacks against CPS cannot
easily be dismissed, since ROP attacks are known. Volodymyr
answered that CPS still protects against ROP attacks, since the
attacker cannot manipulate the return addresses in any way, and
can only change function pointers to point to a function whose
address was already taken by the program (and not to any func-
tion in a library used by the program). Úlfar Erlingsson (Google)
commented that the authors misrepresented prior work. He
argued that there is no principled attack against fine-grained
CFI and that the cited overheads were true 10 years ago, but a
current implementation in GCC has an overhead of 4% (instead
of 10% as was cited). Finally, Úlfar asked how the proposed tech-
nique is not affected by conversions between pointers and inte-
gers, which affected PointGuard several years ago. Volodymyr
answered that the analysis handles such cases, and the authors
successfully ran the tool on all SPEC benchmarks, which shows
the robustness of the analysis.

The next question was about switch statements: Some compilers
generate jump tables for such code; is this case handled by the
tool? Volodymyr answered that compilers add bound checks for
the generated jump table, and they are fully covered by the tool.
David Williams-King (Columbia) asked about the 64-bit imple-
mentation of the tool, where the lack of hardware support for
segmentation forced the authors to use alternative techniques.
David asked whether OS or future HW support would help avoid
any information leak attacks. Volodymyr answered that the
authors have two mechanisms that work on 64-bit, one stronger
and one faster. The faster support relies on randomization that is
not vulnerable to information leaks, while the stronger approach
relies on software fault isolation. Joe Ducek (HP Labs) asked
how much of the performance overhead in CPI is due to the

imprecision in the analysis and how much to the actual instru-
mentation. Volodymyr answered that most overhead comes
from handling of char* and void* pointers, which in C/C++ are
universal, but char* is also used for strings; the tool needs to
protect all occurrences of these types of pointers, which leads to
the majority of the overhead.

Ironclad Apps: End-to-End Security via Automated
Full-System Verification
Chris Hawblitzel, Jon Howell, and Jacob R. Lorch, Microsoft Research;
Arjun Narayan, University of Pennsylvania; Bryan Parno, Microsoft Research;
Danfeng Zhang, Cornell University; Brian Zill, Microsoft Research

Bryan Parno started by pointing out the very weak guarantees
that users have today when submitting private data online. The
only guarantees come in the form of a promise from service
providers that they will use good security practices, but a single
mistake in their software can lead to a data breach. In contrast,
Ironclad, the approach proposed by the authors, guarantees that
every low-level instruction in the service adheres to a high-
level security specification. Ironclad relies on HW support to
run the entire software stack in a trusted environment and on
software verification to ensure that the software respects a
high-level specification. The hardest part is software verifica-
tion of complex software; in Ironclad, the authors managed to
go a step beyond the verification of a kernel (the seL4 work), by
verifying an entire software stack with a reasonable amount of
effort (without trusting OS, drivers, compiler, runtime, libraries,
etc.). To allow this, the authors had to abandon the verification
of existing code and rely on developers to specifically write their
software with verification in mind.

First, developers write a trusted high-level specification for the
application. Then they write an untrusted implementation of the
application. Both the specification and implementation are writ-
ten in a high-level language called Dafny. The implementation
looks like an imperative program, except that it has annotations,
such as contracts and invariants. The specification is translated
by Ironclad to a low-level specification that handles the low-
level details of the hardware on which the application will run.
Similarly, the implementation is compiled to a low-level assem-
bly language, where both code and annotations handle registers,
instead of high-level variables; the compiler can also insert some
additional invariants. Finally, a verifier checks whether the low-
level implementation matches the low-level specification, and
then the app can be stripped of annotations and assembled into
an executable.

Bryan gave a live demo of how the system works. The demo
showed that Ironclad provides constant, rich feedback to the
developer, significantly simplifying the process of writing
 verifiable code.

The system relies on accurate specifications of the low-level
behavior of the hardware that is used. Writing such specifica-
tions seems like a daunting task; the Intel manual, for instance,
has 3439 pages. The authors bypassed this issue by only specify-
ing a small subset of the instructions, and enforcing the rule that

70  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

the system only use those instructions. Similarly, the authors
developed specifications for the OS functionality and for librar-
ies. In order to prevent information leaks, Ironclad uses a Declas-
sifier component, which checks whether any data output by the
implementation to the outside world (e.g., over the network)
would also be output by the abstract representation of the app in
its current state.

When discussing the evaluation of Ironclad, Bryan first pointed
out that the development overhead for writing a verifiable
system wasn’t too bad: The authors wrote 4.8 lines of “proof
hints” for every 1 line of code in the system. Moreover, part of
this effort will be amortized further over time, since a bulk of
the proof hints were in reusable components, like the math and
standard library. Even as it is now, the ratio of 4.8:1 is signifi-
cantly better than previously reported ratios of 25:1. In terms
of total number of lines of code, the trusted specification of the
system has ~3,500 lines of code, split just about evenly between
hardware and software, and ~7,000 lines of code of high-level
implementation. The latter get compiled automatically to over
41,000 assembly instructions, which means that the ratio of
low-level code to high-level spec is 23:1. In terms of performance,
initial versions of the implementation were much slower than
their non-verifiable counterparts but are amenable to signifi-
cant manual optimizations; in the case of SHA-256 OpenSSL,
the verifiable application is within 30% of the performance of
the native, unsafe OpenSSL. The code, specification, and tools of
Ironclad will be made available online.

One attendee asked the presenter to say a few words on concur-
rency. Bryan answered that the authors are currently working
on a single processor model; some colleagues are working on
multicore, but the state of the art in verification for multicore
processors is way behind that for single-threaded programs. The
next question was whether the authors have any experience with
more complex data structures, such as doubly linked lists. The
answer was that the data structures used so far were fairly sim-
ple, and most of the time was spent on number-theoretic proofs.
Someone from Stanford asked whether the verification could be
extended to handle timing-based attacks. Bryan answered that
they have not looked into that yet, but there are other groups that
are considering timing: for example, the seL4 project. Gernot
Heiser (NICTA and UNSW) commented that the entire verifica-
tion relies on the correctness of the specification and that the
authors’ approach to ensure correctness is a traditional top-
down approach, which is known not to work for real software.
He then asked how it is possible to ensure specification correct-
ness for software that uses more modern software development
approaches. Bryan answered that there is always a human aspect
in the process and that the authors found spec reviews particu-
larly useful. Also, one can pick a particular property of interest,
such as information flow, and prove that property against the
specification. Finally, Kent Williams-King (University of British
Columbia) asked what happens if an annotation is wrong. Bryan
replied that the annotations are only used by the verifier as

hints. If an annotation is invalid, the verifier will complain to the
user and discard the annotation for the rest of the proof.

SHILL: A Secure Shell Scripting Language
Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong, Harvard
University

Scott Moore opened by describing how difficult it can be to
figure out what a shell script does. Such comprehension requires
fully reading the script’s code and understanding its execution
environment. Yet, going against the Principle of Least Privilege,
every script runs with far broader privileges than it needs to do
its job. This has security implications since, as in the case of
the Shellshock vulnerability, every instance of bash that runs a
malicious script can open network connections and execute with
the full privileges of its invoking user. Scott then asked two ques-
tions: How can the authority of scripts be limited, and how can
the authority necessary for a script’s operation be determined?
To answer these questions, Scott presented Shill, a scripting
language where every script comes with its own declarative
security policy. In addition to enforcing runtime restrictions,
the policy can also be examined by the user to decide whether
the script seems safe. Shill scripts can recursively call other
Shill scripts if the policy allows, or invoke native executables,
which are run inside a sandbox to ensure end-to-end enforce-
ment of the original security policy.

Besides sandboxing, Shill’s implementation relies on capabili-
ties, which make the script’s authority explicit rather than an
artifact of its environment, and contracts, which are the declara-
tions describing how capabilities can be used. Capabilities are
an unforgeable token of authority, the possession of which grants
the right to perform some action (like keys open doors). This
contrasts with existing mandatory access control mechanisms,
like UNIX file permissions, which are a property of the environ-
ment. There has been a great deal of related work on capabili-
ties. In Shill, functions take capabilities as parameters: files,
directories, pipes, sockets are each represented as a capability.
Operations like opening or reading a file require privileges on the
capability (and “opening” a file in a directory returns a derived
capability for the file). All resources are represented as capabili-
ties, and the only capabilities a script has are the ones passed in,
making it easy to reason about a script’s effects; this is termed
“capability safety.”

Software contracts in general essentially specify pre- and post-
conditions that can be executed to verify that a program runs as
it should. In Shill, every function has a grammatically compat-
ible specification written before it; the Shill interpreter checks
for contract violations at runtime, and if any are found, termi-
nates the script. The contracts may list the privileges required by
the script for each capability (e.g., list files in directory). A callee
may assume it has these privileges; the caller can use the privi-
leges to reason about the possible side effects of the call. This
aids in reasoning about composing scripts together. This reason-
ing can extend to any native binaries the Shill script invokes,
because Shill sandboxes binaries (without modifying them) to

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 71

REPORTS

continue checking for contract violations. In the presentation,
Scott gave an example of a sandboxed program opening a file in
another directory, and all the privilege checks that occur. Since
running most programs requires a large number of (file) capa-
bilities, Shill supports capability wallets, which are composite
capabilities necessary to perform common tasks. Bootstrap-
ping—providing the capabilities necessary to run the original
script—is achieved with ambient scripts, which are limited and
can only create capabilities to pass to Shill scripts.

Shill is implemented in a capability-safe subset of the Racket
programming language, and Shill’s sandbox is implemented in
TrustedBSD’s MAC framework. Scott described several case
studies for Shill, including an Emacs installer script (which
can only create/remove files in certain directories), a modi-
fied Apache server (which can only read its configuration and
content directories), find-and-grep, and a grading script. In the
last case, a TA is tasked with grading programming assignments
from many different students using a test suite. The TA might
create a script to automate the compiling, running, and test veri-
fication process; but it is difficult to ensure that each student’s
assignment doesn’t corrupt other files, leak the test suite, or
interact with other students’ code. When the script is written in
Shill, the security policy allows the TA to reason that the stu-
dents’ assignments will behave themselves, even if the TA’s own
script is buggy. In terms of performance, Shill generally has less
than 20% overhead on these four examples, except find-and-grep
which may spawn many sandboxes, leading to 6x overhead. The
overhead is proportional to the security guarantees. In sum-
mary, Shill allows the Principle of Least Privilege to be applied
to scripting, using a combination of capabilities, contracts, and
sandboxing. The code and a VM with Shill are available online.

Xu Zhao (University of Toronto) asked about the motivating
example of downloading a large untrusted script from the Inter-
net, because such a script might have a very complex security
policy. Scott’s answer was that with existing scripts, the whole
script must be scrutinized along with its execution environment,
whereas the security policy provides a single place to focus one’s
attention. A student-attendee from Columbia University asked
why use capabilities instead of access control, and how does
Shill compare with SELinux. Scott answered that SELinux cre-
ates system-wide policies, while Shill allows more fine-grained
control, and Shill turns the question about whether a script is
safe to run into a local decision instead of a question about the
environment

Brian Ford (Yale) asked about confused deputy attacks on the
sandbox, where an incorrect capability is used to gain access
to a resource. Scott answered that to mitigate such attacks,
components could be rewritten in Shill to leverage its security
checks. Stefan Bucur (EPFL) asked about the development time
overhead for programmers writing Shill (since many scripting
languages are used for quick prototyping). Scott answered that
it is similar to writing in Python instead of in bash; one has to
think in terms of data types instead of paths. But it is possible to

start with broad, permissive security policies and refine them
later. Someone from UC San Diego asked whether the authors
had applied security policies to existing scripts to see how many
misbehave. Scott replied that the closest they got was translat-
ing some of their own bash scripts into Shill. Someone from CU
Boulder asked about enforcing security policies across multiple
machines through ssh. Scott explained that Shill will not make
guarantees about the remote machine, but it will control whether
a script is allowed to create ssh connections in the first place.

Variety Pack
GPUnet: Networking Abstractions for GPU Programs
Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, and Emmett Witchel,
The University of Texas at Austin; Amir Wated and Mark Silberstein,
Technion—Israel Institute of Technology
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Mark Silberstein presented GPUnet, a socket API for GPGPU
applications. The aim is to target the development efforts of
server-based GPGPU applications: Due to both their complex
designs and the burden of manually managing data flow between
the GPGPU, network, and host memory, such systems require
more time and effort to develop and make efficient. Costs arise
from the coordination of data movement between the GPGPU,
DRAM, and NIC using only low-level interfaces and abstractions
(e.g., CUDA). As is the nature of modern GPGPUs, a host CPU is
required to hand off data or work between the GPGPU and other
devices, adding complexity and overhead. Mark argues that such
a CPU-centric design is not optimal, and that GPGPUs should be
viewed as peer processors instead of as co-processors. The lack
of I/O abstractions for GPGPU applications, however, makes this
challenging.

To avoid costs of data movement and synchronization com-
plexity placed on developers, GPUnet provides a socket API for
GPGPU-native applications. Additional contributions include a
variety of optimizations enabling GPGPU-based network serv-
ers to efficiently manipulate network traffic, and the develop-
ment and evaluation of three workloads using GPUnet: a face
verification server, a GPGPU-based MapReduce application, and
a matrix product workload.

Underlying their interface are two example designs that evalu-
ate where one can place the execution of the network stack. The
first resembles modern approaches where the CPU processes
network packets, utilizing the GPGPU for accelerated parallel
processing of received data, and scheduling data movements
between the NIC and the GPGPU. A second design exports the
network stack to execute natively on the GPGPU itself, where
most of the effort involved was in porting the CPU code to the
GPGPU. The latter design removes CPU-GPGPU memory cop-
ies, as the host CPU can schedule peer-to-peer DMA transfers
using NVIDIA’s GPUDirect. Their implementation provides two
libraries exporting a socket API, one for CPU-based code and the
other for GPGPU-based codes.

72  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

The design of an in-GPGPU-memory MapReduce application
uses GPUfs (prior work) to load image and other data from the
host disk to GPGPU-resident memory buffers. Experiments
were performed using both one and four GPGPUs each, showing
speedups of 3.5x for a K-means workload, and 2.9x for a word-
count workload. The latter has a lower performance gain due to
its I/O-intensive nature, leaving little room for opportunities
from the use of GPUnet. A second application was implemented
representing a face verification workload. One machine hosts
the client code, a second an instance of memcached, and a third
the server implementation. Three implementations for the server
were compared: CPU-only, CUDA, and GPUnet. Results show
the GPUnet implementation to provide less variable and overall
lower response latencies.

Their code has been published on GitHub at https://github.com
/ut-osa/gpunet.

Rodrigo Fonseco (Brown University) questioned the use of
GPUnet over something like RDMA, which already bypasses
the socket interface. Mark responded that there is a usability vs.
performance tradeoff, and that they are currently working on a
socket-compatible zero-copy API. Pramod Bhatotia (Max Planck
Institute for Software Systems) asked for a comparison of this
work with the use of GPUDirect. Mark clarified that their work
leverages GPUDirect for registering GPGPU memory directly
with the InfiniBand network device. Another attendee asked for
thoughts on obtaining speedup for the more general case of appli-
cations, as opposed to the event-driven, asynchronous workload
designs presented. It is a more philosophical discussion, Mark
responded; GPUnet gives the freedom to choose where to host
the network API. If a workload is parallel and suited for execu-
tion on a GPGPU, then you are likely to achieve speedups.

The Mystery Machine: End-to-End Performance Analysis
of Large-Scale Internet Services
Michael Chow, University of Michigan; David Meisner, Facebook, Inc.;
Jason Flinn, University of Michigan; Daniel Peek, Facebook, Inc.;
Thomas F. Wenisch, University of Michigan
Summarized by Yu Luo (jack.luo@mail.utoronto.ca)

Michael Chow presented a technique (the Mystery Machine) to
scale familiar performance analysis techniques such as criti-
cal path analysis on complex Web sites such as Facebook. The
approach to deriving a causal relationship between different
components is divided into four steps: identifying segments,
inferring a causal model, analyzing individual requests, and
aggregating results. Identifying segments refers to coming out
with a waterfall diagram of segments executed in a request.
Existing logs are aggregated and components are identified.
To infer a causal model from the waterfall diagram, we can
automatically analyze a large number of traces to find relation-
ships such as happens-before, mutual exclusion, and pipelines.
Through the generated causal model, we then apply it to the indi-
vidual traces. The final step aggregates the results and builds
up statistics about the end-to-end system. An earlier method to
derive a causal model is through instrumentation of the entire

system. Another method is to have every engineer on the team
draw up a model of the entire system. Both methods do not scale
well. The Mystery Machine applies the four-step approach to
provide a scalable performance analysis on large complex Web
sites such as Facebook, which allows it to do daily performance
refinements.

Greg Hill (Stanford) asked how to deal with clock drifts between
machines. Michael answered that there are techniques out-
lined in the paper. A short answer is that the Mystery Machine
assumes the round-trip time (RTT) is symmetric between client
and server. It then looks at repeated requests and calculates the
clock drift. Someone from the University of Chicago asked how
to deal with request failure. Michael answered that this is a
natural variation in the server processing time and is taken into
consideration. Ryan (University of San Diego) asked how to deal
with inaccurate lower level logging messages. Michael replied
that we cannot do anything about it.

End-to-End Performance Isolation through Virtual
Datacenters
Sebastian Angel, The University of Texas at Austin; Hitesh Ballani,
Thomas Karagiannis, Greg O’Shea, and Eno Thereska, Microsoft Research
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Sebastian Angel began by stating that tenants are moving away
from enterprise datacenters into multi-tenanted cloud datacen-
ters. The key benefits are cost saving and elasticity. Datacen-
ters offer services implemented via appliances. Because these
appliances are shared among the tenants, the performance is
degraded and unpredictable at times. Aggressive tenants tend to
consume a majority of resources. Tenants should get end-to-end
guarantees regardless of any bottleneck resources. To achieve
the end-to-end guarantees, Sebastian introduced the virtual
datacenter (VDC) abstraction and associated virtual capacities.
The VDC abstraction is implemented by an architecture called
Pulsar. It requires no modification to appliances, switches, guest
OSes, and applications. Pulsar can allocate virtual resources
based on policies from both tenants and provider. Tenants may
specify how VDC resources are divided to VMs. The provider
may specify the distribution of resources to maximize profit or
to attain fair distribution. The VDC data plane overhead is 2%
(15% for small requests) and 256 bytes/sec in the control plane
for each VM.

The first questioner (Stanford University) asked how often the
application needs to reevaluate relationships between tokens
and requests. Sebastian answered that cost functions are fixed.
The same person then asked if VDC offers latency guarantees.
Sebastian answered that VDC does not offer latency guaran-
tees. Tim Wood (George Washington University) asked how to
map performance to tokens. Sebastian answered that tenants
can use research tools to take high-level requirements, such as
job completion time, and map them to tokens. Henry (Stanford
University) asked when there are a lot of short-lived applications,
have they considered what would happen during the dip in per-
formance during the initial Pulsar capacity estimation phase?

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 73

REPORTS

Sebastian answered that the estimation phase time is configu-
rable and thus the dip in performance can be adjusted.

Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed
Data-Intensive Systems
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, and Michael Stumm, University of Toronto
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Ding Yuan presented a study of the most common failures found
within distributed services. The key finding was that failures
are a result of a complex sequence of events between a small
number of machines, mostly attributed to incorrect error han-
dling within the source code.

The group developed a tool called Aspirator, a simple rule-based
static checker, that uncovered 143 confirmed bugs in systems
evaluated by the study, such as HBase, HDFS, and Redis. Ding
illustrated the severity of failures in current systems; some can
even be catastrophic. As an example, when Amazon’s AWS expe-
rienced a brief outage, it took down many unrelated Web sites
during that time. Why would such services fail like this? They
studied end-to-end failure propagation sequences between ele-
ments composing such services, as prior studies had examined
failures of elements individually in isolation, such as correla-
tions between failures and configuration file mistakes. This
study examined interactions between elements themselves.

The findings were very interesting. Starting with 198 user-
reported failures, they studied the discussions between develop-
ers and users via the mailing lists and were able to reproduce
73. Of these, 48 were catastrophic—those which led to system
instability or downtime affecting at least a large majority of
users; 92% of the catastrophic failures were a result of largely
trivial bugs, such as incorrect error handling of non-fatal errors
in Java code (try/catch blocks). An example of such was given in
the use of ZooKeeper, where a race condition caused two events
to signal the removal of a ZooKeeper node. One attempt resulted
in an error, the handling of which led to an abort. Seventy-seven
percent of failures required more than one input event, leading to
very complex scenarios mostly found on long-running systems.
Other interesting results uncovered included: 88% of failures
were due to the specific order of events in multi-event sequences,
and 26% were non-deterministic (the ZooKeeper example falls
into this classification).

By focusing on the 92% of failures that were a result of bad error
handling, Ding said, they built a static checker to detect such
bugs by feeding it the Java bytecode. Three rules were employed
by the checker to signal a possible bug: the error handler was
empty, aborted, or had some comment such as “TODO” or
“FIXME”. The checker was run on nine real-world systems and
uncovered a multitude of bugs. Developers gave mixed feedback
after having been notified of the group’s findings: 17 patches
were rejected, but 143 confirmed fixes were adopted. Responses
included, “Nobody would have looked at such a hidden feature”

and “I fail to see why every exception should be handled.” The
reason for mixed responses is due to prioritization of developer
responsibilities, among other things, such as developers thinking
errors will not happen, evolving code, and bad judgment.

Many audience members praised this work prior to asking their
questions. A researcher from IBM Research asked whether the
problem of ignoring exceptions could be solved through static
analysis. Ding asked in return whether she thought she meant to
remove the burden of handling all exceptions from the develop-
ers. She clarified to mean just the gaps should be filled. Ding
responded with skepticism. Error handling is messy, as seen
from the examples. Doing so is definitely burdensome for devel-
opers, but automating this may lead to even more catastrophic
failures. A researcher at NC State asked Ding to explain the
8% of the bugs that were not caused by mishandled exceptions.
Ding replied that this 8% represented silent errors not seen by
developers. An example in Redis was a failure that resulted from
too many file descriptors, a scenario not verified by developers.
The researcher followed up with a thought that error masking
at the lower levels in the software stack may affect this. Ding
suggested that it is hard to suggest more generally which layer
in the stack is responsible for handling any given error, except to
suggest that an error should be returned to the layer that is most
apt to deal with it. He said he was unsure if either silent handling
or masking are appropriate techniques in the general case. It
might be best to just return the error to the developers, but it is
a profound question to which he really can’t provide a definite
answer. Finally, a researcher (John) asked Ding to compare the
tool against something like FindBugs. Ding replied that FindBugs
has checks for around 400 scenarios but not for the specific pat-
terns they looked for in this study.

Posters I
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Unit Testing Framework for Operating System Kernels
Maxwell Walter, Sven Karlsson, Technical University of Denmark

New operating system kernels need to be tested as they are being
developed, before hardware becomes available, and across mul-
tiple hardware setups. To make this process more streamlined
and manageable for kernel developers, Maxwell’s proposed sys-
tem leverages system virtualization with a new testing API. A
kernel is booted inside a virtualized environment using QEMU
and is presented as virtual hardware configurations, or devices
configured as pass-through, e.g., using IOMMUs. A kernel test-
ing API they develop enables a client to use their framework to
specify means for creating and executing tests. Capturing state
for post-analysis is accomplished via Virtual Machine Intro-
spection (VMI), enabling users to inspect kernel and virtual
machine state to locate sources of bugs or race conditions. One
limitation is that the virtual implementation of devices and
hardware presented to kernels within QEMU behave ideally,
unlike real hardware.

74  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

Head in the Cloud
Summarized by Alexey Tumanov (atumanov@cmu.edu) and Rohan Gandhi
(gandhir@purdue.edu)

Shielding Applications from an Untrusted Cloud
with Haven
Andrew Baumann, Marcus Peinado, and Galen Hunt, Microsoft Research

Jay Lepreau Best Paper Award

Andrew Baumann introduced Haven, a prototype to provide
shielded execution of an application on an untrusted OS and
hardware (except CPU). The motivation for Haven stems from
limitations of existing cloud platforms to support trusted com-
puting, where the cloud user has to trust the cloud provider’s
software, including privileged software (the hypervisor, firm-
ware, etc.), the management stack, which could be malicious,
administrative personnel or support staff who can potentially
have access to the cloud user’s data, and law enforcement. The
existing alternatives to this problem are also severely limited
for general purpose computing, e.g., hardware security modules
(HSMs) that are expensive and have a limited set of APIs.

Haven aims to provide similar guarantees as guarantees pro-
vided by “secure collocation of data,” where the only way for
an outsider to access the data is through the network and not
through other hardware and software. In this environment, the
cloud provider only provides resources and untrusted I/O chan-
nels. Haven ensures confidentiality and integrity of the unmodi-
fied application throughout its execution.

Haven makes several key contributions. First, it provides
shielded execution using Intel’s SGX that offers a process with a
secure address space called an “enclave.” Intel SGX protects the
execution of code in the enclave from malicious code and hard-
ware. SGX was introduced for protecting execution of a small
part of the code and not large unmodified applications. Haven
extends the original intent of SGX to shield entire applications,
which requires Haven to address numerous challenges, includ-
ing dynamic memory allocation and exception handling. Second,
Haven protects the applications from Iago attacks where even
the OS can be malicious and the syscalls can provide incorrect
results. Haven uses an in-enclave library to address this chal-
lenge. Third, Haven presents the limitations of the SGX as well
as a small set of suggestions to improve shielded execution.

Haven was evaluated based on the functional emulator, as the
authors don’t have any access to the current SGX implementa-
tion. The authors constructed a model for SGX performance
considering TLB flush latencies, variable delay in instruction
executions, and a penalty for accessing encrypted memory. In the
pessimistic case, Haven can slow down execution by 1.5x to 3x.

John Stalworth asked whether they used a public key for attesta-
tion and who owns the key. Andrew replied that Intel provides
attestation through a group signature scheme and suggested an
Intel workshop paper for details. The owner of the key will be the
processor manufacturer (Intel). Nicky Dunworth (UIUC) asked
about the programming model and about legacy applications.

Andrew again redirected the questioner to the Intel workshop
paper with a remark that they still need to support legacy appli-
cations due to their large number. Another questioner wondered
about Haven’s limitations, especially about the memory size/
swapping. Andrew said that the size of the memory is fixed, and
paging is supported in hardware. John Griswald (University of
Rochester) asked about the impact of the cloud provider dis-
abling the SGX. Andrew responded that applications can still
run but the attestation will fail.

Apollo: Scalable and Coordinated Scheduling for
Cloud-Scale Computing
Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, and Jingren Zhou, Microsoft;
Zhengping Qian, Ming Wu, and Lidong Zhou, Microsoft Research

Eric Boutin introduced Apollo as a cluster scheduler deployed at
Microsoft to schedule cloud-scale big data jobs. These jobs are
typically specified in a higher-level (SCOPE) SQL-like language
that compiles to a DAG of tasks. Apollo sets the goal to minimize
job latency while maximizing cluster utilization given the chal-
lenges of scale and heterogeneous workloads. Specifically, the
target scale of this system is 170k tasks over 20k servers with
100k scheduling requests per second.

First, Apollo adopts a distributed coordinated architecture
approach, with one independent scheduler per job making inde-
pendent decisions but with access to global cluster information,
aggregated and provided by the Resource Monitor (RM). Second,
Apollo introduces the abstraction of the wait-time matrix, which
captures estimated wait time for a given <CPU, Mem> resource
request. It masks the underlying heterogeneity of the hardware
by grouping servers of the same capacity (e.g., quad-core, 8 GB
nodes) and reporting the estimated wait time to acquire that
type of server. The wait-time matrix allows Apollo to minimize
the total task completion time, simultaneously considering both
the queueing delay and the effect of a given node on execu-
tion runtime of the scheduled task. The authors refer to this as
estimation-based scheduling.

Apollo has the ability to reevaluate prior scheduling decisions.
When the scheduler’s updated placement decision differs from
the one previously made, or there’s a conflict, Apollo issues a
duplicate task to the more desired server. Lastly, Apollo uses
opportunistic scheduling to allow currently running jobs to
allocate additional tasks above their allowed quota. This helps
Apollo reach their desired goal of maximizing cluster utilization.

Christos Kozyrakis (Stanford) asked about interference of
tasks co-located on the same node, sharing cache, disk/flash
bandwidth, etc. Christos was specifically interested in whether
the problem of interference was measured. The answer was no;
Apollo depends on robust local resource management to isolate
performance, like JVM and Linux Containers. Henry (Temple
University) asked whether the authors considered utilization
for other resource types, like disk I/O or memory. Eric replied
that the CPU was the primary resource they optimized for in
their particular environment. Memory utilization was recog-
nized as important, but no numbers for memory utilization were

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 75

REPORTS

published in the paper. Lastly, disk I/O was also recognized as
important for good performance, but Christos repeated that
Apollo, relied on the local node performance isolation mecha-
nisms “to do their job.”

Malte Schwarzkopf (University of Cambridge) pointed out that
the formulation used for the wait-time and runtime assumed
batch jobs. Related work (Omega) looked at placing other types
of jobs, such as service tasks. The question was whether Apollo
had support for that or could be extended to support it. At a first
approximation, Eric argued that long-running services could be
modeled as infinite batch jobs. It would simply block out the cor-
responding rows and columns of the wait-time matrix. Malte’s
follow-up concern was that it would not lead to a good schedule,
as there are no tradeoffs to be made if tasks are assumed to be
running forever. Additionally, the quality of service task place-
ment also varies. Eric responded that Apollo was targeted at
cloud-scale big data analytics, with the architecture generally
supportive of other schedulers, such as a service scheduler.

Vijay (Twitter) asked about dealing with discrepancies in load
across clusters, wondering whether Apollo could make consid-
erations across multiple cluster cells, based on load. The answer
was no, as Apollo’s workload is such that data locality dominates
the decision about which cluster the job would run in.

The Power of Choice in Data-Aware Cluster Scheduling
Shivaram Venkataraman and Aurojit Panda, University of California,
Berkeley; Ganesh Ananthanarayanan, Microsoft Research; Michael J. Franklin
and Ion Stoica, University of California, Berkeley

Shivaram Venkataraman stated that the context for this work is
that the volume of data and jobs that consume it grows, while job
latency is expected to drop, down to the near-interactive range
of seconds. One specific feature of jobs exploited by this work is
the ability to work with a subset or a sample of the data instead
of the whole data set. Applications that exhibit these proper-
ties include approximate query processing and ML algorithms.
The key insight is that the scheduler should be able to leverage
the choices afforded by the combinatorial number of K-samples
out of N units of data. In this work, the authors’ goal is to build
a scheduler that’s choice-aware. Shivaram presented KMN
Scheduler, which is built to leverage the choices that result from
choosing subsets of data blocks to operate on.

Making systems aware of application semantics, finding a way
to express application specifics to the scheduler, in other words,
is shown to be highly beneficial for this narrow class of applica-
tions that benefit from operating on the subset of their data. The
authors explore ways to propagate the choices available to the
applications to the scheduler and thus leverage the flexibility
that is present. Using such a system was shown to improve local-
ity and also balance network transfer, with evaluation evidence
that it benefits this emerging class of applications.

Bill Bolosky (Microsoft Research) pointed out that statistical
theorems about sampling assume random sampling. Data local-
ity makes that pseudo-random, but particularly concerning is

the fact that the data-dependency in the execution time of map
tasks coupled with picking first map finishers could really skew
results. The authors found no discernible difference between
picking the first finishers versus waiting for all map tasks to fin-
ish. The data skew is likely the one that exhibits the most amount
of determinism. System effects on stragglers are otherwise
mostly non-deterministic, as also supported by prior literature.
Non-determinism allegedly helps the authors get away from the
issues that arise as a result of map task duration skew.

Callas (VMware) was happy to see a DB talk at OSDI. He had a
follow-up question about randomness and sampling based on
random distributions. The issue is that depending on the parti-
tioning of data across racks (range partitioning) may also skew
results. Shivaram pointed out that KMN only counts the number
of blocks that are coming from each rack, not their size, which
was left for future work. Being agnostic to size gives KMN the
advantage that partition size differences do not bear as much of
an effect.

Malte Schwarzkopf (University of Cambridge) pointed out that
Quincy may yield better results. A major fraction of this work is
about trading off locality and minimizing cross-rack transfers.
Quincy is actually very closely related to this work, taking the
approach of modeling this problem as an optimization problem,
instead of using heuristics. Quincy does not support “n choose k”
in the general case, because it does not support combinatorial
constraints. In the KMN scheduler, however, getting m > k out
of n is allowed, and Quincy does have the ability to model this,
by carefully assigning increasing costs. The question is how
well does Quincy compare to the KMN scheduler, given that
Quincy’s optimization approach may actually yield better results
than KMN Scheduler? Shivaram admitted that the authors
haven’t tried to apply optimization on top of their solution. No
 comparison with Quincy was made. The starting point was the
“n choose k” property, which was subsequently relaxed to help
with cross-rack transfers. This discussion was taken offline.

Heading Off Correlated Failures through
Independence-as-a-Service
Ennan Zhai, Yale University; Ruichuan Chen, Bell Labs and Alcatel-Lucent;
David Isaac Wolinsky and Bryan Ford, Yale University

Ennan presented work on providing independence-as-a-service.
Previously, reliability against failures was provided through
redundancy, but seemingly independent systems may share deep
and hidden dependencies that may lead to correlated failures.
Ennan highlighted multiple examples of correlated failures, e.g.,
racks connected to the same aggregation switch, the EBS glitch
that brought multiple physical machines down in Amazon, the
correlated failures across Amazon and Microsoft clouds due to
lightning.

The focus of this work is to prevent unexpected co-related fail-
ures before they happen. The authors propose INDaaS (indepen-
dence-as-a-service) that tells which redundancy configurations
are most independent. INDaaS calculates an independence score
based on the notion of the data-sources (servers/VMs or even

76  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

cloud providers) that hold the copy of the data. INDaaS auto-
matically collects dependency data from different data-sources
and produces a dependency representation to evaluate the inde-
pendence of the redundancy configuration. However, collecting
data-sources might not be possible across cloud service provid-
ers, as cloud service providers won’t share all the details about
the sources in their infrastructure. To address this, INDaaS
offers a privacy preserving approach to privately calculate inde-
pendence. Each data source can privately calculate the indepen-
dence score and relay it to the INDaaS.

INDaaS faces several non-trivial challenges including: (1) how to
collect dependency data, (2) how to represent collected data, (3)
how to efficiently audit the data to calculate independence score,
and (4) how to do it privately, when dependency data cannot be
obtained. INDaaS calculates dependency data using existing
hooks provided by the cloud provider (details in paper). Depen-
dency representation uses fault graphs that consist of DAG
and logic gates (AND/OR gates). To efficiently audit the data,
INDaaS provides two algorithms with the tradeoff between cost
and accuracy. Lastly, INDaaS privately calculates the indepen-
dence score using Jaccard similarity.

INDaaS was evaluated using (1) case studies based on its deploy-
ment at Yale (detailed in paper); (2) efficiency and accuracy trad-
eoffs between the two algorithms (minimum fault set, failure
sampling) using the fat tree network topology, in which the fail-
ure sampling algorithm detected important fault sets in 1 million
sampling runs in 200 minutes; and (3) network and computation
overhead compared to the KS protocol (details in paper).

Mark Lillibridge (HP Labs) asked about other (ill) uses of the
system. Amazon can use INDaaS to see what infrastructure
and dependencies they have in common with Microsoft. Ennan
answered that might be hard since INDaaS only provides
the independence score and not any specifics. Someone from
Columbia University asked about handling the failure probabil-
ity of each individual component. Ennan said that in practice
it is hard to get correct probability numbers. INDaaS relies on
the numbers provided by the cloud service provider. Another
questioner wondered how to find configuration that achieves
99.9999% uptime. Ennan noted that it might not be straightfor-
ward because INDaaS ranks different configurations based on
their independence score.

Storage Runs Hot and Cold
Summarized by Amirsaman Memaripour (amemarip@eng.ucsd.edu)
and Haonan Lu (haonanlu@usc.edu)

Characterizing Storage Workloads with Counter Stacks
Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas Harvey,
and Andrew Warfield (Coho Data)

Jake started his presentation with a demonstration of storage
hierarchy and how it has changed over the years, with the aim
of better performance for lower cost. We have been adding
more layers to this hierarchy in order to bridge the latency gap
between different technologies, making provisioning of storage

systems challenging and not-optimized. A major problem in this
area is data placement that requires knowledge about future
accesses, which is speculated based on previous data access pat-
terns. An example of such speculation techniques is LRU, which
tries to move least recently accessed data to lower layers of the
storage hierarchy. However, it does not always result in optimum
placement decisions. Additionally, its accuracy is time-variant
and varies from application to application. Jake then posed the
question, “Can we do reuse-distance computing for each request
in a more efficient way?” and answered with a “Yes.”

He proposed a new data structure, called Counter Stacks, and a
set of matrix calculations that will be applied to this structure to
compute reuse-distance. The basic idea is to have a good approxi-
mation of miss ratio curves with less memory usage. The initial
version of the algorithm was quite expensive, so he went through
a set of optimizations, including down sampling, pruning, and
approximate counting, to make the algorithm run online. He also
introduced a method to reduce the memory usage of the algo-
rithm, making it possible to keep traces of three terabytes of mem-
ory within a 80 megabytes region. He concluded his talk by going
over a list of applications and pointing out that the accuracy of
their algorithm is related to the shape of the miss ratio curve.

Michael Condit (NetApp) asked about their memory usage and
how they can perform computation while only keeping a portion
of the access matrix. Jake pointed out that the algorithm only
requires non-zero elements to do the required computations.
Scott Kaplan (Amherst) asked about how the proposed method
compares to the previous work in this area. Jake pointed out that
those methods only maintain workload histories over a short
period, not for the entire workload. Consequently, those methods
will not be applicable to their cases. Tim Wood (George Wash-
ington University) suggested using the elbows in the miss ratio
curve to improve the effectiveness of the proposed algorithm.

Pelican: A Building Block for Exa-Scale Cloud Data Storage
Shobana Balakrishnan, Richard Black, Austin Donnelly, Paul England,
Adam Glass, Dave Harper, and Sergey Legtchenko, Microsoft Research;
Aaron Ogus, Microsoft; Eric Peterson and Antony Rowstron, Microsoft
Research

Starting his presentation with a chart comparing different stor-
age technologies in terms of latency and cost, Sergey argued that
we need to have a new storage abstraction to efficiently store
cold data, which is written once and read rarely. Currently, we
are storing cold data on hard disk drives, where we are accus-
tomed to storing warm data. Pelican is going to fill this gap by
providing better performance than tape but with similar cost.
Their prototype provides 5+ PB of storage connected to two
 servers with no top-rack switch.

Due to power, cooling, bandwidth, and vibration constraints,
only 8% of disks can be active at any given time. In this archi-
tecture, disks are grouped into conflict domains where only one
domain can be active at a time. Having these conflict domains,
they designed data placement mechanisms to maximize concur-
rency while keeping conflict probability minimized at the same

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 77

REPORTS

time. Applying a set of optimizations such as request batching,
Pelican can provide a throughput close to having all disks active
concurrently. In terms of performance, Pelican consumes 70%
less power on average compared to the case that all disks are
active concurrently. However, it will add 14.2 seconds overhead
for accessing the first byte of an inactive group.

Someone pointed out that there are more recent works that they
have not considered in their related works. He mentioned that a
startup (Copan Systems) had actually built a similar system a
couple of years ago. They decided to take the conversation offline.
Someone from Cornell pointed out that most disks die after switch-
ing on and off hundreds of times. In response, Sergey mentioned
that they have optimized disks for this process but due to confi-
dentiality, he cannot disclose the changes they have made.

A Self-Configurable Geo-Replicated Cloud Storage System
Masoud Saeida Ardekani, INRIA and Sorbonne Universités; Douglas B. Terry,
Microsoft Research

Doug Terry presented Tuba, a geo-replicated key-value store
that can reconfigure the sets of replicas when facing changes
like access rate, user locations, etc., so as to provide better
overall services. It’s an extension work from Azure with several
consistency model choices.

Doug started his presentation with a funny point about the
recent shutdown of one of Microsoft Research’s labs (in Sili-
con Valley, where he had been working). He posed the question,
“What if someone decides to get rid of the data stored in Califor-
nia without any warning?” which would result in wrong configu-
rations on all other clusters outside California. He proposed a
solution based on a configuration service for such situations.

The aim of this service is to choose a better configuration for
better overall utility, and to install a new configuration while
clients continue reading and writing data. He presented Tuba,
which extends Microsoft’s Azure Storage and provides a wide
range of consistency levels and supports consistency-based
SLAs. Tuba’s design is based on Pileus and maintains two sets
of replicas: primaries and secondaries. Primaries are mutually
consistent and completely updated at all times, while secondar-
ies are lazily updated from primary replicas.

Doug then talked about how configuration selection and instal-
lation work. For instance, to select a configuration, it takes as
input SLAs, read/write rate, latencies, constraints, cost, and the
results of a configuration generator module. Applications can
declare their acceptable level of consistency or latency and Tuba
will generate all possible configurations satisfying the requested
service, which is reasonable as the number of datacenters is usually
small. Based on constraints defined by the application, such as
cost model or data placement policies, the configuration man-
ager will try to pick a configuration and put primary replicas for
maximized consistency. Next, it will start moving data based on
the new configuration. In this system, clients run in either Slow
or Fast mode. Running in the Fast mode, clients read from the
best replica and write data to all primaries. Running in the Slow

mode, clients do speculation for reading and then check the con-
figuration to make sure data is read from a primary. In order to
write data in Slow mode, clients should acquire a lock that guar-
antees no reconfiguration is in progress. He showed an example
to demonstrate how to move the primary datacenter with Tuba.

Doug provided a quick evaluation setup. One cluster in the U.S.,
one in Europe, and one in Asia, and they used the YCSB bench-
mark to evaluate their system. He showed that the results on
latency and utility were promising, and he also showed that
Tuba can increase the overall number of strongly consistent
reads by 63%.

A questioner asked about the way that Tuba takes into account
future changes in client workloads. Doug mentioned this as the
reason that reconfiguration improvements fade after some time.
Another reconfiguration can solve the issue and its cost can be
amortized.

f4: Facebook’s Warm BLOB Storage System
Subramanian Muralidhar, Facebook; Wyatt Lloyd, University of Southern
California and Facebook; Sabyasachi Roy, Cory Hill, Ernest Lin, Weiwen Liu,
Satadru Pan, Shiva Shankar, and Viswanath Sivakumar, Facebook;
Linpeng Tang, Princeton University and Facebook; Sanjeev Kumar, Facebook

Sabyasachi Roy presented f4, an efficient warm BLOB storage
system. Based on access patterns, warm BLOB content is isolated
from hot content and f4 is used to store these contents. By being
efficient, f4 lowers effective-replication-factor significantly and
also provides fault tolerance in disk, host, rack, and datacenter
levels. It’s been deployed at Facebook and hosts a large amount of
warm BLOB data.

Sabyasachi started his presentation with the definition of BLOB
content, mentioning that most of the data stored in Facebook
are photos and videos, which are immutable and unstructured.
Moreover, these types of data cool down over time, making
existing systems like Haystack less efficient for storing them.
Basically, they split data into two rough categories, hot and
warm. They do replication in various tiers to handle failures of
disks, hosts, and racks. In order to make data access and recov-
ery fast, their previous system stores 3.6 bytes for each byte of
data. As this level of replication is too much for warm data, they
tried to build a system that reduces space without compromis-
ing reliability. Using Reed-Solomon error correction coding and
a decoder node to retrieve data and handle rack failures, they
reduced the replication cost to 2.8x. Additionally, applying XOR
on two BLOBs and storing the result in a third datacenter allows
them to reduce the overhead down to 2.1x. In production, they
consider hot data to be warm after three months or below the
querying threshold of 80 reads/sec, then move it to a designated
cluster designed for storing warm data.

Doug Terry highlighted the amount of data that would be trans-
ferred between datacenters when a failure happens. Sabyasachi
mentioned that it would be a very rare event, but it might happen
and they have already considered the bandwidth required for
such situations. Someone from NetApp mentioned that one

78  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

of the charts in the paper does not make sense as 15 disks can
saturate 10 Gb connections. They preferred to discuss this ques-
tion offline. Finally, Jonas Wagner (EPFL) asked how f4 handles
deletes. Sabyasachi replied that writes are handled by their old
Haystack system, but a different system will take care of deletes.

Pest Control
Summarized by Jonas Wagner (jonas.wagner@epfl.ch)

SAMC: Semantic-Aware Model Checking for Fast
Discovery of Deep Bugs in Cloud Systems
Tanakorn Leesatapornwongsa and Mingzhe Hao, University of Chicago;
Pallavi Joshi, NEC Labs America; Jeffrey F. Lukman, Surya University;
Haryadi S. Gunawi, University of Chicago

Tanakorn Leesatapornwongsa pointed out that serious bugs hide
deep within today’s distributed systems and are triggered only
by combinations of multiple messages and a specific ordering
of events. Model checking has been proposed as a systematic
solution for bug finding, but it cannot find the critical event
interleavings in an exponentially large search space. Tanakorn
presented SAMC, a tool that exponentially reduces the size of
the search space through semantic knowledge about which event
orderings matter for the application.

SAMC’s users need to specify a set of rules (~35 lines of code for
the protocols in SAMC’s evaluation) that describe conditions
where event order matters. SAMC evaluates these rules to prune
unnecessary interleavings. Experiments show that this leads to
speedups of 2–400x compared to state-of-the-art model check-
ers with partial order reduction. SAMC reproduces known bugs
in Cassandra, Hadoop, and ZooKeeper, and also found two previ-
ously unknown bugs.

Ivan Beschastnikh (U. of British Columbia) asked whether
relying on semantic information could cause bugs to be missed.
Tanakorn replied that SAMC could not find those bugs that
depended on non-deterministic behavior. SAMC also requires
the developer-provided policies to be correct. Jonas Wagner
wondered why SAMC did not find more previously unknown
bugs. Tanakorn answered that this was because each bug
requires a specific initial environment to be triggered, and this
needs to be set up before running SAMC.

SKI: Exposing Kernel Concurrency Bugs through
Systematic Schedule Exploration
Pedro Fonseca, Max Planck Institute for Software Systems (MPI-SWS);
Rodrigo Rodrigues, CITI/NOVA University of Lisbon; Bjørn B. Brandenburg,
Max Planck Institute for Software Systems (MPI-SWS)

Concurrency bugs are hard to find and reproduce, because they
need specific event interleavings to be triggered. Existing tools
can explore possible interleavings for user-mode programs, but
not in the kernel. Pedro Fonseca presented SKI, the first system-
atic approach for finding concurrency bugs in unmodified OS
kernels. It runs the kernel and guest applications in a modified
VMM, where each thread is pinned to a virtual CPU. By throt-
tling these CPUs, SKI can exercise a diverse range of schedules.

SKI detects which CPUs/threads are schedulable by analyzing
their instruction stream and memory access patterns. It uses

the PCT algorithm (ASPLOS 2010) to assign priorities to CPUs
and systematically explore schedules. A number of heuristics
and optimizations speed this up and are described in the paper.
SKI supports several existing bug detectors to find data races,
crashes, assertion violations, or semantic errors such as disk
corruption.

SKI’s authors used it to successfully reproduce four known bugs
on several different kernels. This only takes seconds, because
SKI explores 169k–500k schedules per second. SKI also found 11
new concurrency bugs in Linux file system implementations.

Stefan Bucur (EPFL) asked whether SKI could detect deadlocks.
Pedro replied that they did not try this, although it is supported
in a number of OSes that run on top of SKI. Bucur also asked
how the effort of building SKI compares to the effort needed
to instrument the kernel scheduler. Pedro pointed to related
work, DataCollider, that, like SKI, avoided modifying the kernel
because this was presumed to be very complicated. Srivatsa Bhat
(MIT) asked about the maximum number of threads, to which
Pedro replied that the number of virtual CPUs in QEMU (and
thus SKI) is not limited.

All File Systems Are Not Created Equal: On the Complexity
of Crafting Crash-Consistent Applications
Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan
Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of Wisconsin—Madison

Many applications, like databases and version control systems,
employ techniques such as journaling, copy-on-write, or soft
updates to keep their data consistent in the presence of system
crashes. Yet their implementation is often incorrect. Thanuma-
layan Sankaranarayana Pillai identified file systems as the main
cause for this, because they provide very weak guarantees that
differ subtly for various configuration settings. He presented
a study on file system guarantees and how these are used by
applications.

Thanumalayan’s tool, BOB (Block-Order Breaker), stress-tests
a file system to produce an Abstract Persistence Model (APM),
a compact representation of all the guarantees that have been
observed not to hold. The companion tool ALICE (Application-
Level Intelligent Crash Explorer) runs a user-provided workload,
collects a system call trace, and uses the APM to enumerate pos-
sible intermediate states at various instants in this trace. If one
of these states leads to inconsistent data after crash recovery, a
bug has been found.

Alice found 60 such bugs, many of which lead to data loss. About
half of these vulnerabilities are possible even for common file
system configurations like btrfs.

Stephane Belmon (Google) asked what it meant for a “rename”
system call to not be atomic. Thanumalayan explained that one
can end up in a state where the destination file is already deleted
but the source file is still present. Geoff Kuenning (Harvey Mudd
College) asked for ideas for a better API that would make consis-
tency easier for developers. Thanumalayan said related work had

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 79

REPORTS

attempted this, but no API other than POSIX is actually being
used. POSIX is hard to use because there is no good description
of the possible states after an API call. Emery Berger (Amherst)
compared the situation to weak memory models. He asked if this
is an API issue or a file system issue. Thanumalayan believes
it’s a combination of both. The current API is comparable to
assembly language; a higher-level API would help. David Holland
(Harvard) asked whether databases were more robust than other
types of applications. Thanumalayan affirmed and said that
databases in general fared better than version control systems.

Torturing Databases for Fun and Profit
Mai Zheng, Ohio State University; Joseph Tucek, HP Labs; Dachuan Huang
and Feng Qin, Ohio State University; Mark Lillibridge, Elizabeth S. Yang, and
Bill W Zhao, HP Labs; Shashank Singh, Ohio State University

Mai Zheng presented a system to test the ACID properties that
we expect our database systems to provide. He showed that all
examined database systems fail to guarantee these properties
under some cases. At the heart of his work is a high-fidelity
testing infrastructure that enforces a simple fault model: clean
termination of the I/O stream at a block boundary. Because this
model is simple (it does not consider packet reordering or cor-
ruptions), the errors it exposes are very relevant.

The system generates a workload that stresses a specific ACID
property. It records the resulting disk I/O at the iSCSI interface
level. It then truncates the iSCSI command stream at various
instants to simulate an outage, performs database recovery, and
scans the result for violations of an ACID property. The system
augments the iSCSI command trace with timestamps, system
calls, file names etc., and it uses this information to select fault
points that are likely to lead to ACID violations. Such points are
tried first to increase the rate at which problems are found. Once
a bug is found, a delta debugging approach minimizes the com-
mand trace to narrow down the root cause of the problem.

The system was applied to four commercial and four open-source
databases running on three file systems and four operating sys-
tems. It found ACID violations in all of them, especially durabil-
ity violations. The speedups from using pattern-based fault point
selection were instrumental for finding some of these bugs.

The first question concerned the configuration of the tested
databases. Mai Zheng said that, whenever they were aware of
options, his team configured the databases for maximum cor-
rectness. When asked why the work found mostly durability
violations and few isolation violations, Mai Zheng explained
that, although their workloads were designed to catch all types
of violations, it is possible that isolation violations went unde-
tected. Philip Bernstein (Microsoft Research) asked how likely
the found bugs were to happen in practice. Mai Zheng replied
that, in their traces, about 10–20% of the fault points led to a bug.

Award Announcements
Summarized by Rik Farrow (rik@usenix.org)

Rather than attempt to announce more awards while people
were conversing during an outdoor luncheon, annual awards,
as opposed to the ones specific to this particular OSDI, were
announced before the afternoon break. Mona Attariyan (Univer-
sity of Michigan) received the SIGOPS Dennis Ritchie Doctoral
Dissertation Award for her work on improving the troubleshoot-
ing and management of complex software. An ACM DMC Doc-
toral Dissertation Award went to Austin Clements of MIT for his
work on improving database performance on multicore systems.

Steven Hand said that there would be no SIGOPS Hall of Fame
awards this year. Instead, a committee will elect a large number
of papers into the Hall of Fame at SOSP in 2015. Franz Kaashoek
and Hank Levy will be committee chairs. At OSDI ’16, they will
focus on papers from 10–11 years previous to make things sim-
pler. SOSP 2015 will be in Monterey and include an extra day for
history. The first SOSP was in 1965.

Eddie Kohler won the Weiser Award for his prolific, impactful
work on Asbestos, routing, and performing improvements in
multicore databases among other things. Mark Weiser had asked
that people make their code available, and Eddie has certainly
done this, said Stefan Savage, who presented the award. Eddie
also maintains HotCRP. Kohler, who wasn’t present, had pre-
pared a short video in which he said that what might not be obvi-
ous to people who know how cranky he is is that this community
means a lot to him. Kohler thanked various people and the places
where he had worked, like MIT, ICSI (Sally Ford), UCSD, Meraki
(please use their systems). Kohler, now at Harvard, thanked
everybody there, including Franz Kazakh, whom he described as
close to an overlord, adding that it’s lucky that he is so benevo-
lent. Kohler ended by saying there are “a lot of white men on the
Weiser award list. I am perhaps the only one that is gay. I hope we
get a more diverse group of winners for the Weiser award.”

Transaction Action
Summarized by Mainak Ghosh (mghosh4@illinois.edu)

Fast Databases with Fast Durability and Recovery
through Multicore Parallelism
Wenting Zheng and Stephen Tu, Massachusetts Institute of Technology;
Eddie Kohler, Harvard University; Barbara Liskov, Massachusetts Institute
of Technology

Wenting motivated the problem by pointing to the popularity of
in-memory databases due to their low latency. Unfortunately,
they are not durable. Thus the goal of the work was to make
an in-memory database durable with little impact on runtime
throughput and latency. In addition, failure recovery should be
fast. Wenting identified interference from ongoing transactions
and slow serial disk-based recovery techniques as a major chal-
lenge. She proposed SiloR, which builds on top of Silo (a high per-
formance in-memory database) and described how it achieves
durability using logging, checkpointing, and fast disk recovery.

80  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

To make logging and checkpointing fast, SiloR uses multiple
disks and multiple threads to parallel write. Wenting pointed out
that SiloR logs values as opposed to operations because it enables
parallel writes. SiloR also facilitates fast recovery because the
need to preserve order among different log versions in operation
logging is obviated. Recovery can be done in parallel as well. In
the evaluation, Wenting showed the achieved throughput for
SiloR to be less than vanilla Silo since some cores are dedicated
for persistence. Checkpointing adds minimal overhead to the sys-
tem. Recovery is also fast because SiloR can consume gigabytes
of log and checkpoint data to recover a database in a few minutes.

Mark Lillibridge (HP Labs) asked about SiloR’s performance if
the system replicates logs and checkpoints. Wenting replied by
admitting that replication is something that they are hoping to
address in the future. Brad Morrey (HP Labs) asked about the
lower per-core performance of SiloR in comparison to Silo. Wen-
ting pointed out that SiloR does some additional work during
logging and checkpointing which creates that difference. Brad’s
second question was about bottleneck during recovery. Went-
ing replied that SiloR tries to avoid being I/O bound by having
multiple disk-based architecture.

Salt: Combining ACID and BASE in a Distributed Database
Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,
Lorenzo Alvisi, and Prince Mahajan, University of Texas at Austin

Chao started his talk by pointing out how transaction abstrac-
tion eases programming and is easy to reason about in ACID
databases. Unfortunately, they are slow because providing
isolation requires concurrency-control techniques like locks. In
a distributed setting, complex protocols like 2PC make it even
worse. The alternative, BASE, which does away with transac-
tions for weaker forms of consistency, provides performance at
the cost of code complexity. To bridge this gap, Chao proposed
a new abstraction, Salt, which provides the best of both worlds.
At this point, Chao made a key observation: following the
Pareto principle, in a modern day application only a small set
of transactions lead to performance limitation. This is because
many transactions are not run frequently and a lot of them are
lightweight. Their solution tries to BASE-ify this small set after
identifying them.

Chao discussed the tradeoff between performance and complex-
ity by using a bank transfer balance as an example. Splitting the
transfer balance transaction such that deduction is in one half
and addition is in another will lead to an inconsistent state being
exposed for any transaction that tries to read the balance after
the first transaction completes but before the second one begins.
Since these transactions are critical, parallelizing them will
lead to a lot of gains. Chao proposed BASE transactions, which
consist of smaller alkaline transactions. Alkaline transactions
can interleave with other alkaline transactions, but an ACID
transaction cannot. This guarantees that the critical transac-
tion provides the performance improvement without exposing
inconsistent state to other transactions. The multiple granulari-
ties are provided by Salt isolation. Chao introduced three types

of locks: ACID, alkaline, and saline, which together provide the
Salt isolation.

For evaluation, the whole abstraction was implemented on
top of a MySQL cluster, and three workloads were used. Chao
reported a 6.5x improvement in transaction throughput with
just a single transaction BASE-ified. Thus, their goal for achiev-
ing per formance with minimal effort while ensuring developer
ease was met.

Marcos (Microsoft Research) asked about guidelines for devel-
opers on which transaction to BASE-ify. To identify a long-run-
ning, high-contention transaction, Chao proposed running the
transaction with larger workloads and spot those whose latency
increases. Marcos followed up by asking how to ensure BASE-
ifying a transaction will not affect invariants like replication.
To that Chao put the responsibility on the developer for ensuring
this consistency. Henry (Stanford University) sought a clarifica-
tion on the “Performance Gain” slide datapoints. Chao said it rep-
resented number of clients. Dave Andersen (CMU) asked about
the future of their solution. Chao said he was very optimistic.

Play It Again, Sam
Summarized by Lucian Carata (lucian.carata@cl.cam.ac.uk)

Eidetic Systems
David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and
Peter M. Chen, University of Michigan

David Devecsery introduced the concept of eidetic systems:
systems that can “remember” all the computations they have
performed (recording things like past memory states, network
inputs and communications between processes), together with
the relationships between the different pieces of data involved
in those computations (provenance, or how data came to be—
i.e., what inputs or data sources were involved in creating a
given output).

David presented Arnold, an implementation of such a system
based on deterministic record and replay techniques. During
normal process execution, Arnold records sufficient infor-
mation to allow for later replay at the granularity of a replay
group (where a group is the set of threads/processes that share
memory). At the same time, it maintains a dependency graph
of inter-group data flows in order to support the tracking of
provenance across replay groups. The more expensive operation
of tracking the provenance of a piece of data within a group is left
for the replay stage, when processes are instrumented using PIN
to perform fine-grained taint tracking.

To reduce the storage overhead of recorded data, Arnold employs
multiple data reduction and compression techniques (model-
based compression, semi-deterministic time recording, and
gzip). With those in place, the storage overhead for the typical
utilization scenario (desktop or workstation machines) is pre-
dicted to be below 4 TB for four years.

Two motivating use cases were detailed, the first referring to
tracking what data might have been leaked on a system with the

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 81

REPORTS

Heartbleed vulnerability, and the second covering the backward
tracing for the source of an incorrect bibliographical citation
(through the PDF viewer, LaTeX/BiBteX processes and eventu-
ally to the browser window from where the data was copied).
Forward tracing from the point of the mistake (in what other
places was this wrong citation used?) is also possible using the
same underlying mechanisms.

Fred Douglis (EMC) asked whether the system does anything
to avoid duplication of data, such as copy-on-write techniques.
David answered affirmatively. Arnold employs a copy-on-read-
after-write optimization. As a follow-up, Fred asked whether
the replay continues to work if the original inputs to a process
are deleted. David replied that Arnold will continue to store
those inputs for replay, employing deduplication and caches to
reduce overheads. Ethan Miller (UC Santa Cruz) asked what
happens when Arnold encounters programs that exhibit inher-
ent randomness. David answered that they haven’t found lots of
programs with this behavior, but that such randomness would
be treated as any other non-deterministic input that needs to
be recorded in order to assure correct replay. Someone asked
what happens if the users don’t want provenance tracking for
some pieces of data. David noted that Arnold itself can be used
to determine all the places where a piece of data was used—and
subsequently use that information to remove any trace of that
data. Gilles Muller (INRIA) asked whether temporary files
are kept, whether they are useful or a problem when trying to
understand the source of information. David answered that
temporary files are something like intermediate states (written
out and read later). So Arnold will cache them in the file cache or
regenerate them if needed.

Detecting Covert Timing Channels with Time-
Deterministic Replay
Ang Chen, University of Pennsylvania; W. Brad Moore, Georgetown
University; Hanjun Xiao, Andreas Haeberlen, and Linh Thi Xuan Phan,
University of Pennsylvania; Micah Sherr and Wenchao Zhou, Georgetown
University

Ang Chen presented the general idea behind covert timing
channels, with an example of a compromised application send-
ing normal packets over the network but encoding some sensi-
tive data in the timing of those packets. The motivation behind
the work in the paper is that existing state-of-art systems for
detecting such covert timing channels look for specific statisti-
cal deviations in timing. However, those can be circumvented by
attackers creating new encoding schemes or by altering the tim-
ing of just one packet in the whole encoding so that no statistical
deviation exists.

The proposed solution relies on determining the expected timing
of events and then detecting deviations from it. The insight is
that instead of predicting the expected timing (a hard problem),
one can just reproduce it using record and replay techniques:
recording the inputs to an application on one machine and
replaying them on a different one.

However, Ang explained that existing deterministic replay sys-
tems are not sufficient for the stated purpose, as they reproduce
functional behavior of an application, but not its timing behavior
(e.g., XenTT shows large time differences between actual pro-
gram execution and replay). In this context, time-deterministic
replay is needed. To achieve this, various sources of “time noise”
must be handled.

During the presentation, the focus was placed on time noise
generated by different memory allocations and cache behavior.
The solution presented for that problem aims to maintain the
same access patterns across record and replay. This is achieved
by flushing caches before record and replay and by managing all
memory allocations to place all variables in the same locations
in both cases.

A prototype of time-deterministic replay, Sanity, was imple-
mented as a combination of a Java VM with limited features and
a Linux kernel module. The evaluation of this prototype shows
that Sanity managed to achieve a very small timing variance
across multiple runs of a computation-intensive benchmark
(max 1.2%) and provided accurate timing reproduction (largest
timing deviation of 1.9%) on a separate workload. Sanity was
also able to detect timing channels without any false positives or
false negatives.

John Howell (Microsoft Research) asked about the scope of
attacks being considered, and in particular, whether an attack
payload present in the input stream wouldn’t still be replayed
by Sanity on the reference machine. Ang answered that for the
replay, the system has to assume that the implementation of
the system is correct. One of the creators of XenTT noted that
XenTT provided a fairly accurate time model (in the microsec-
ond range): Was that model used for the XenTT results? Ang
answered that the same type of replay was used, and the results
were the ones shown during the presentation. Gernot Heiser
(University of New South Wales and NICTA) questioned the
 feasibility of the given solution in realistic scenarios since it
relies on the existence of a reference (trusted) machine that
is identical to the machine running the normal application. In
this case, the application could be run directly on the trusted
machine. Ang acknowledged that the current solution requires
a correct software implementation and an identical machine
but pointed out that there are still multiple situations where the
solution might be feasible and where such identical machines
exist (e.g., a datacenter).

Identifying Information Disclosure in Web Applications
with Retroactive Auditing
Haogang Chen, Taesoo Kim, Xi Wang, Nickolai Zeldovich, and
M. Frans Kaashoek, MIT CSAIL

Haogang Chen started his presentation by highlighting the
recurrent cases of data breaches leading to user data being
 compromised as a result of Web site vulnerabilities. Multiple
solutions deal with preventing such breaches, but not with
 damage control solutions after a breach occurs.

82  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

However, Haogang observed that even if vulnerabilities exist,
they might not be exploited, or the attackers might not actually
steal all the data they obtain access to. Therefore, an important
goal would be to precisely identify breached data items.

The state-of-the-art in this respect requires logging all accesses
to sensitive data, and careful inspection after an intrusion, but
this is often impractical. An alternative is presented in Rail, a
system that aims to identify previously breached data after a
vulnerability is fixed. The insight used is that Web application
requests/responses can be recorded during normal execution
and then replayed after an administrator fixes a vulnerability.
The difference in data being sent can be attributed to the infor-
mation that was leaked due to that vulnerability.

Compared to other record/replay systems, the challenge in
implementing Rail is minimizing the state divergence on replay as
that might lead to the reporting of false positives. The proposed
solution assumes that the software stack below the application
is trusted, and consists of an API for Web application developers
facilitating deterministic record/replay and data identification
at the object level.

The design revolves around the notion of action history graphs:
An action is generated for each external application event (e.g.,
user request, timer), and all application code triggered by that
event is executed in the context of the action. Any objects used
in that code are connected to the action, resulting in a history
graph. This is then used to replay each action in time order,
whenever one of its inputs/outputs has changed.

Haogang also discussed the case of replay in the presence of
application code changes and non-deterministic inputs. The
chosen example involved changes in the components of an array
(list of admins), which in turn invalidated replay data associ-
ated with particular indexes in the array (e.g., password assign-
ments). Rail provides an input context object that can be used for
associating such data with particular stable object keys.

In the evaluation of Rails, Haogang highlighted that it performed
better than log-inspection approaches, giving no false negatives
and (for the tested workloads) only one false positive, the result
of a malicious account created by the attacker. In terms of replay,
Rails needed to do so only for the fraction of requests related to
the attack (max 10.7%). Overall throughput overhead varied
between 5% and 22%.

Stefan (Google) raised the issue of the threat model being con-
sidered; in particular, the fact that the application must trust the
Web framework and other software stack components. If one
manages to inject random code into the process, logging might
be bypassed. Haogang acknowledged that that is the case, as the
assumption is that the framework is trusted.

Help Me Learn
Summarized by Xu Zhao (nuk.zhao@mail.utoronto.ca) and
Sankaranarayana Pillai (madthanu@gmail.com)

Building an Efficient and Scalable Deep Learning
Training System
Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, Karthik Kalyanaraman,
Microsoft Research

Trishul began by introducing machine learning and deep learn-
ing. Deep learning differs from other kinds of machine learning
by not requiring a human to extract the features of the training
data. Deep learning can automatically learn complex representa-
tions (without requiring humans); an example utility is computer
vision. Deep learning algorithms can be thought of as a network
of multiple levels of neurons that work level-by-level. For exam-
ple, in computer vision, initial levels identify simple representa-
tions such as color and edges, while higher levels automatically
learn complex representations such as edges and textures. The
accuracy of deep learning can be improved by increasing the size
of the model (such as the number of levels in the deep learning
network) and by increasing the amount of data used for training
the model. Both of these require better, scalable systems.

The authors proposed Adam, a scalable deep learning system.
Adam contains three parts: a data server (that supplies data to
the models), a model training system (where multiple models
learn), and a model parameter server (where all models store
their learned weights). The overall design aims at data parallel-
ism and model parallelism: a large data set is divided, and each
part is simultaneously used for training, with multiple models
also trained at the same time. Adam uses an asynchronized
weight update technique, where learned weights are propagated
to the model-parameter server slowly (the weight update opera-
tion is both commutative and associative). To make the models
distributed, Adam partitions the models to fit a single machine;
the working version of the model is fit into the L3 cache, so that
memory is not a bottleneck. Furthermore, Adam optimizes com-
munication with the model-parameter server by asynchronous
batching.

The authors evaluated the accuracy of Adam using MNIST as
a baseline. By turning on asynchronization, Adam gets tre-
mendous improvement; asynchronization can help the system
jump out of local minimum. On a computer vision task, Adam
has twice the accuracy of the world’s best photograph classifier,
because it can use bigger models and a larger training data set.

John Ousterhout (Stanford) asked about the size of the model
in terms of bytes and how much data is shared among how
many models. Trishul answered that, usually, 20 to 30 models
share terabytes of data. A student from Rice University asked
how hardware improvements can help (can bigger models be
combated with bigger hardware?). Trishul answered that bigger
models are harder to train; hence, hardware improvement does
not simply solve the problem. Another question concerned the
number of machines assigned for the model replica and how a
replica fits into the L3 cache. Trishul answered that there are

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 83

REPORTS

four machines assigned to model replicas and only the working
set of the model needs to fit into the L3 cache.

Scaling Distributed Machine Learning with the
Parameter Server
Mu Li, Carnegie Mellon University and Baidu; David G. Andersen and
Jun Woo Park, Carnegie Mellon University; Alexander J. Smola, Carnegie
Mellon University and Google, Inc.; Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su, Google, Inc.

Mu began by showing users a real-world example of machine
learning: ad-click analysis, similar to Google’s advertisements
on its search results. While machine-learning accuracy can be
improved by increasing the size of the model and by increas-
ing the amount of data, dealing with huge model sizes and data
requires distributing the work among multiple machines.

In the presented system, the training data is fit into worker
machines, while the model is fit into server machines. Worker
machines compute gradients and push them to the servers,
which compute and update the model; the model is then pulled
by the worker machines. The authors found that accessing the
shared model is costly because of barriers and the network
communication. To reduce the cost, the authors introduce the
concept of a Task. Each Task contains separate CPU-intensive
and network-intensive stages, and performance can be increased
by running the stages asynchronously. The system also allows
users to trade off consistency for reduced network traffic; wait-
ing time is eliminated by relaxing consistency requirements.
Mu also briefly talked about other features like user-defined
filters, explained further in the paper. Apart from performance,
the system achieves practical fault tolerance using consistent
hashing on model partitions. By only replicating the aggregating
gradient, the system reduces network traffic (while, however,
introducing CPU overhead). Also, the system exposes the output
using a key-value API.

For the evaluation, the authors ran sparse logistic regression
with 636 terabytes of real data on 1,000 machines with 16,000
cores in total. The system outperformed two baselines; further-
more, the waiting time of training can be eliminated by relaxing
the consistency requirement. Mu also presented the result of
running another application, Topic Model LDA: increasing the
number of machines from 1,000 to 6,000 provided a 4x speedup.
Finally, Mu showed the results with 104 cores; the key here is the
tradeoff between network communication and consistency.

A student from NYU asked about more quantitative details of
the tradeoff between consistency and accuracy. Mu answered
that it really depends on the model and the training algorithm,
and that he authored an NIPS paper showing the theoretical
upper-bound. Kimberly Keeton (HP Labs) asked why the authors
chose Boundary Delay instead of other consistency models; Mu
answered that Boundary Delay was just one of the consistency
models they used; they actually used different consistency
models for different applications. A questioner from Microsoft
Research asked what accuracy meant in the y-axis of the accu-
racy graph; Mu answered that when the model gets the accuracy
quantity needed, they will stop training.

GraphX: Graph Processing in a Distributed
Dataflow Framework
Joseph E. Gonzalez, University of California, Berkeley; Reynold S. Xin,
University of California, Berkeley and Databricks; Ankur Dave, Daniel
Crankshaw, and Michael J. Franklin, University of California, Berkeley;
Ion Stoica, University of California, Berkeley and Databricks

Joseph began the talk by explaining how, in modern machine
learning, combining two representations of the data, tables and
graphs, is difficult. For tables, there are already many existing
solutions, like Hadoop and Spark. For graphs, we have GraphLab
and Apache Graph. However, users have to learn both table and
graph solutions, and migrating data between them is difficult.
GraphX unifies tables and graphs; the authors show that there is
a performance gap between Hadoop/Spark and GraphX, indicat-
ing GraphX is really needed.

Joseph showed how GraphX converts graphs into table repre-
sentation, and how it represents graph operations (like gather and
scatter) into table operations (like Triplet and mrTriplet). The
authors did many optimizations on the system, such as remote
caching, local aggregation, join elimination, and active set tracking.

The authors evaluated GraphX by calculating connected
components on the Twitter-following graph; with active vertex
tracking, GraphX got better performance, while with join elimi-
nation, GraphX decreased data transmission in the combining
stage. The evaluation was done by comparing the performance
between GraphX, GraphLab, Giraph, and naive Spark. GraphX is
comparable to state-of-the-art graph-processing systems.

Greg Hill (Stanford University) asked how a graph can be
updated in GraphX; Joseph answered that, currently, GraphX
doesn’t support updating. Schwarzkopf (Cambridge) asked why
there are no evaluations and comparisons between GraphX and
Naiad; Joseph answered that the authors found it difficult to
express application details in Naiad. The third questioner asked
whether ideas in GraphX can be backported into existing sys-
tems; Joseph answered that some techniques can be backported,
but many techniques are tied to GraphX’s particular design.

Hammers and Saws
Summarized by Ioan Stefanovici (ioan@cs.toronto.edu)

Nail: A Practical Tool for Parsing and Generating
Data Formats
Julian Bangert and Nickolai Zeldovich, MIT CSAIL

Julian motivated Nail by describing the problems of binary
data parsers today: Most of them are handwritten and highly
error-prone (indeed, a number of recent parsing bugs generated
high-profile security vulnerabilities in SSL certification, and
code signing on iOS and Android applications). One option is to
employ parser generators like Bison to generate a parser, but this
would still involve extra handwritten code by the programmer to
manipulate the parsed data in the application, and output it back
to the binary format. In addition, this approach cannot handle
non-linear data formats (such as ZIP archives). With Nail, pro-
grammers write a single grammar that specifies both the format
of the data and the C data type to represent it, and Nail will cre-

84  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

ate a parser, associated C structure definitions, and a generator
(to turn the parsed data back into a string of bytes).

The Nail grammar supports standard data properties (size, value
constraints, etc.), but it also reduces redundancy introduced
by having multiple copies of the same data by including the
notion of dependent fields (values that depend on other values).
Non-linear parsing (e.g., parsing a ZIP archive backwards from
the header field) is supported using “streams”: multiple paths
that can each be parsed linearly. For unforeseen stream encod-
ings (e.g., parsing dependent on arbitrary offset and size fields),
Nail provides a plugin interface for arbitrary programmer code
(which would be much smaller than an entire parser). Output
generation back to binary format is not a pure bijection but,
rather, preserves only the semantics of the specification, allow-
ing Nail to discard things like padding and other redundant data.

Nail is implemented for C data types. The code generator is imple-
mented using Nail itself (100 lines of Nail + 1800 lines of C++). To
evaluate Nail’s ability to handle real formats, Julian implemented
various grammars: Ethernet stack (supporting UDP, ARP, ICMP),
DNS packets, and ZIP archives. In all cases, the implementa-
tion with Nail consisted of many fewer lines of code than a
handwritten alternative, and captured all the complexities of
each respective data format. A Nail-generated DNS server also
outperformed the Bind 9 DNS server in queries/sec. Nail builds
on previous work in the area (e.g., the basic parsing algorithm is
the Packrat algorithm described in Bryan Ford’s MSc thesis).

Eddie Kohler (Harvard University) remarked that memory
usage is a known disadvantage of Packrat parsers, and asked
whether that was a valid reason to continue using handwritten
parsers instead. Julian replied that for most parsing that does
not involve backtracking (such as DNS packet parsing), memory
usage and performance is not a concern.

lprof: A Non-Intrusive Request Flow Profiler for
Distributed Systems
Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo,
Ding Yuan, and Michael Stumm, University of Toronto

Yongle opened by discussing a critical problem of distributed
systems: performance anomalies. Such anomalies increase
user latency and are very hard to understand and diagnose,
since they typically involve understanding the flow of a request
across many nodes in a distributed system. Existing solutions
for distributed request profiling (MagPie, X-Trace, Dapper,
etc.) typically involve intrusive, system-specific instrumenta-
tion. A key observation is that most distributed systems today
already generate TBs of log data per day, much of which consists
of information about the flow of requests through the system
(since developers rely on this information for post-mortem,
manual debugging). lprof is a non-intrusive profiler that infers
request control flow by combining information generated from
static analysis of source code with parsing of runtime-generated
system logs. Yongle presented a sample “latency over time”
graph generated by lprof that showed unusually high latency for
a writeBlock request in HDFS. Combined with per-node latency

information (also generated by lprof), the problem can conclu-
sively be attributed to unnecessary network communication.

lprof generates a model by performing static analysis on applica-
tion byte code. This model is then used while performing log
analysis at runtime (using a MapReduce job) to profile request
flow and save the information into a database (e.g., for use later
in visualization). Challenges involved in log analysis include:
interleaved messages from different request types, lack of per-
fect request identifiers, and log entries generated by the same
request spread across several machines. In order to trace the
flow of a request, lprof needs to identify a top-level method (that
starts to process the request) and a request identifier (that is not
modified during the request) and maintain log temporal order.
The model generated by static byte code analysis is used during
the log analysis to solve all these problems. The key intuition is
that unique request identifiers are already included by devel-
opers in logs for manual post-mortem debugging. Cross-node
communication pairs are identified as socket or RPC serialize/
deserialize methods. Temporal order is inferred by comparing
the output generated for a specific request with the order of the
corresponding source code that generated it.

lprof was evaluated on logs from HDFS, Yarn, HBase, and Cas-
sandra using HiBench and YCSB as workloads. lprof grouped
90.4% of log messages correctly; 5.7% of messages involved
request identifiers that were too complicated for lprof to handle,
while 3% of logs could not be parsed, and 1% of log messages were
incorrectly grouped. lprof was also helpful in identifying the root
cause of 65% of 23 real-world performance anomalies (the 35%
where it was not helpful was due to insufficient log messages).

Rodrigo Fonseca (Brown University) asked what developers
could add to their logging messages to help lprof work better.
Yongle replied that better request identifiers would help. Rodrigo
further asked how this could be extended to combine informa-
tion across multiple applications. This remains as future work.
A developer of HDFS mentioned that they log per-node metrics
(e.g., bytes processed/sec) at runtime, and was wondering how
lprof can be used with this information for performance debug-
ging. Yongle replied that lprof would provide the cross-node
request tracing, while the per-node metrics could complemen-
tarily be used for finer-grained debugging. Someone from North
Carolina State University wondered how block replication in
HDFS would affect the analysis performed by lprof, but the
discussion was taken offline.

Pydron: Semi-Automatic Parallelization for Multi-Core
and the Cloud
Stefan C. Müller, ETH Zürich and University of Applied Sciences
Northwestern Switzerland; Gustavo Alonso and Adam Amara, ETH Zürich;
André Csillaghy, University of Applied Sciences Northwestern Switzerland

Stefan began by describing the motivation for their work: large-
scale astronomy data processing. Astronomers enjoy coding in
Python due to its simplicity and great support for numeric and
graphing libraries. Pydron takes single-threaded code written by
astronomers and semi-automatically parallelizes it, deploys it on
EC2 or private clusters, and returns the output to the astronomer.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 85

REPORTS

Astronomers can’t just use MapReduce (or similar big-data
“solutions”). Compared to the large-scale commercial systems
for big-data processing with thousands of deployments and
millions of users, astronomy projects typically have just a single
deployment, and fewer than 10 people. Furthermore, that single
deployment involves never-seen-before data processing and
analysis on never-seen-before kinds and volumes of data. Code
reusability across such projects is very limited. Astronomers are
also developers, not users: They continuously iterate the logic in
the analysis code and rerun experiments until they obtain pub-
lishable results and never run the code again. The goal of Pydron
is not only to reduce total execution time, but also decrease the
amount of time spent by astronomers writing code (i.e., writing
sequential code involves much less effort than a highly parallel
MPI program).

Most astronomy code is broken up into two types of functions:
those that “orchestrate” the overall analysis and those called
from the orchestrator function to compute on data, with no
global side-effects. Pydron only requires “orchestrator” func-
tions to be annotated with a “@schedule” decorator, and compute
functions with a “@functional” decorator. At runtime, upon
encountering a @schedule decorator, Pydron will start up EC2
instances and Python processes, transfer over all the code and
libraries, schedule the execution, and return the results back to
the user’s workstation (as if the code had been executed locally).

A random forest machine learning training example shows
almost-linear speedup in execution time with an increasing
number of cores using Pydron. Pydron generates data-flow
graphs for functions annotated with the “@schedule” decorator,
and dynamically updates the data flow graph at runtime with
information that is unknown statically in Python (data-depen-
dent control flow, dynamic type information, invoked functions,
etc.). The changing data flow graph then informs decisions about
the degree of parallelization possible from the code. The runtime
of exo-planet detection code parallelized with Pydron decreased
from 8.5 hours on a single EC2 instance down to 20 minutes on
32 instances, significantly reducing the turnaround time for
astronomer tasks. Future work includes better scheduling algo-
rithms, data-specific optimizations, pre-fetching, and dynamic
resource allocation.

Brad Morrey (HP Labs) complimented the effort of improving
the workflow of non-computer scientists by doing good systems
work, but wondered where Pydron’s approach of graph-based
decomposition fails (and where performance is poor). Stefan
answered by admitting that some algorithms are inherently
sequential (and parallelization is not possible), and the system
is designed for coarse-grained parallelization (where compute-
intensive tasks take seconds/minutes), so that’s where it sees the
most benefit. Another limitation is that the system is currently
designed for functional algorithms (that don’t require changes
to global mutable state). Stefan (Google) wondered whether the
images in the example (specified by paths) were stored as files
somewhere, and whether large data sets would limit the use of

Pydron. Stefan admitted that Pydron currently uses Python’s
native serialization library (pickle) and sends objects over
TCP, and there is room for future work. Scott Moore (Harvard
University) asked whether the authors had looked into validat-
ing functional annotations dynamically (using graph updates).
Stefan said that at the moment, no checks take place, but that
it would be useful for developers to find bugs as well. Someone
from Stanford clarified Pydron’s assumption that each function
must be able to run independently (no side-effects) in order for
it to be parallelized and wondered how Pydron would work with
stencil functions. Stefan replied that the inputs to the function
would need to be passed as arguments (respecting the “no side-
effects” rule).

User-Guided Device Driver Synthesis
Leonid Ryzhyk, University of Toronto, NICTA, and University of New South
Wales; Adam Walker, NICTA and University of New South Wales; John Keys,
Intel Corporation; Alexander Legg, NICTA and University of New South
Wales; Arun Raghunath, Intel Corporation; Michael Stumm, University of
Toronto; Mona Vij, Intel Corporation

Leonid began by remarking that device drivers are hard to write
correctly, hard to debug, and often delay product delivery (as
well as being a common source of OS failures). A key observation
motivating the work is that device driver development is a very
mechanical task: It boils down to taking an OS interface spec
and a device spec and proceeding to generate the driver without
much freedom into how the driver can interact with the device.
In principle, this task should be amenable to automation. Leonid
approached the device driver synthesis problem as a two-player
game: driver vs. (device + OS). The driver is the controller for
the device, and the device is a finite state machine where some
transitions are controllable (triggered by the driver), while others
are not controllable (e.g., packet arriving on the network, error
conditions). The problem can be seen as a game, where the driver
plays by making controllable actions, and the device plays by
making uncontrollable actions. A winning strategy for the driver
guarantees that it will satisfy a given OS request regardless of
the device’s possible uncontrollable actions.

Leonid used a LED display clock as an example. A driver that
wants to set a new time on the clock to an arbitrary time must
first turn off the internal oscillator of the clock to guarantee an
atomic change of all the hour, minute, and second values (with-
out oscillator-induced clock ticks changing the time in between
operations). All the possible strategies are considered, and by
backtracking from the winning goal (in which the new time is set
correctly on the clock) to the current, initial state, you can find
all the winning states in the game. Leonid proceeded to demo his
device driver synthesis tool (called Termite) and showed how the
tool generated code to change the time on the clock according to
the winning strategy.

Crucially, Termite is a “user-guided” synthesis tool (in con-
trast to “push-button” synthesis tools, that generate the entire
implementation automatically). The rationale is to keep devel-
opers in charge of important implementation decisions (e.g.,
polling vs. interrupt). The driver synthesis tool then works as

86  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

a very smart auto-complete-like tool (smart enough to gener-
ate the entire driver for you!), but maintains correctness in the
face of arbitrary user code changes (and will inform the user if
their proposed code changes cannot lead to a winning strategy).
Termite also serves as a driver verification tool for a manually
written driver.

Leonid then addressed the problem of specification generation
for OS and devices: If developing the specifications for synthe-
sis takes longer than writing the driver by hand, is it worth it?
Two important observations are that OS specs are generic (i.e.,
made for a class of devices) and can often be reused, and device
specs from the hardware development cycle can be obtained
from hardware developers and used for synthesis. Some drivers
synthesized to evaluate Termite include drivers for: a real-time
clock, a Webcam, and a hard disk. Leonid then addressed the
limitations of the work: the focus is currently on synthesizing
control code (none of the boilerplate resource allocation code), it
is single-threaded (current work-in-progress focuses on multi-
threading the generated code), and it does not currently provide
DMA support (also work-in-progress).

Ardalan Amiri Sani (Rice University) wanted to know how
difficult it would be to figure out what the code that Termite
generated is doing. Leonid explained that the kind of expertise
you need to use Termite is the same you need to write a driver.
There are tools that can help you make sense of what instruc-
tions are doing to the device, but at the end of the day you need to
understand what you’re doing. Someone from INRIA wondered
whether it would be interesting for the tool to generate a Devil
specification that described what the device does instead of
generated code. Leonid replied that a better strategy would be to
change the Termite specification language to include Devil-style
syntax. Joe Ducek (HP Labs) wondered about the difficulty in
getting DMA support and whether it would be possible to have
the developer handle the DMA bits and let Termite do the rest.
Leonid replied that Termite currently supports user-written
DMA code in addition to the Termite-generated code. Auto-
matically generating driver code for DMA is difficult because it
generates a state explosion in the game-based framework. Brad
Morrey (HP Labs) asked how exploring the state space to solve
the two-player game scales. Leonid replied that a big part of the
whole project was implementing a scalable game solver, and the
results are published in a separate publication.

2014 Conference on Timely Results in
Operating Systems
October 5, 2014, Broomfield, CO
Summarized by Timo Hönig, Alexander Merritt, Andy Sayler, Ennan Zhai,
and Xu Zhang

Memory Management
Working Set Model for Multithreaded Programs
Kishore Kumar Pusukuri, Oracle Inc.
Summarized by Xu Zhang (xzhang@cs.uic.edu)

Kishore opened his talk with the definition of working set size
(WSS) of multithreaded programs, which is the measure of the
number of pages referenced by the program during a certain
period of time multiplied by the page size. Knowing the WSS
helps provide insight into application memory demand and
is useful for dynamic resource allocation: for example, the
page replacement algorithm in operating systems. Various
approaches for approximating WSS exist, including simulation-
based and program traces-based techniques. However, they only
work on single-threaded programs, and more importantly, such
measurements are too expensive to be applicable for effective
resource management.

Characterizing WSS is also non-trivial. Not only does WSS vary
from application to application, it is also affected by several
factors. The author collected data from running 20 CPU-bound
multithreaded programs on large scale multicore machines and
identified four factors—what he denotes as “predictors”—that
correlate to WSS: resident set size (RSS), the number of threads,
TLB miss rate, and last-level cache (LLC) miss rate. To increase
prediction accuracy and reduce the cost of approximation, Kishore
further refined the predictors by pruning the ones of less
importance using Akaike information criterion (AIC), avoiding
overfitting and multicollinearity at the same time.

The resulting major predictors are RSS and TLB miss per
instruction. Based on them, three statistical models were
developed using supervised learning: linear regression (LR),
K nearest neighbor (KNN), and regression tree (RT). These
models are further selected using cross-validation tests, with
KNN being the most accurate, which enjoys an approximation
accuracy of 93% and 88% by normalized root mean squared
error (NRMSE) on memcached and SPECjbb05. Notably, the
developed model has very little overhead, which is in granularity
of microseconds compared to hours.

Kishore also briefly talked about their ongoing work for WSS-
aware thread scheduling on large scale multicore systems. He
explained two existing scheduling algorithms, grouping and
spreading, both using the number of threads as a scheduling
metric. Grouping gangs threads together on a few cores initially
and spreads them out if the number of threads exceeds the limit.
By contrast, spreading distributes all threads uniformly across
all cores and sockets at the start of the day. The author argued
that using the number of threads for thread scheduling is not
sufficient on the target system and illustrated this with two
examples.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 87

REPORTS

Ken Birman (Cornell) noted that approximating WSS is less
important as memory has become larger and asked whether
there were other contexts where such a machine-learning
approach might be usable. Kishore replied yes and pointed out
an application in virtual machine allocation, scheduling, find-
ing failures, and providing high availability in the cloud. Ken
followed up asking whether the author had the same findings in
those cases where a small subset of the available metrics become
dominant and are adequate for training. Kishore replied yes.
The second questioner asked whether the errors are under- or
overestimated. The author said it doesn’t matter since WSS
varies greatly from app to app. Someone asked what accuracy
is acceptable for an application using such models. Based on his
understanding of the literature, Kishore noted that above 80%
is considered good. The final question was architecture related:
Why not use a translation storage buffer (TSB) in the SPARC
architecture, which caches the most recently used memory
mappings, for WSS or data migration decisions? Kishore said
their work is based on the proc file system without any kernel
modifications.

MLB: A Memory-Aware Load Balancing for Mitigating
Memory Contention
Dongyou Seo, Hyeonsang Eom, and Heon Y. Yeom, Seoul National University
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Dongyou Seo began by illustrating how modern CPUs are
manycore and that future chips are envisioned to continue this
trend; he referred to a forward-looking statement made by Intel
for 1,000-core chips. To maximize the use of all cores, many
systems accept more work by becoming multi-tenant, as is the
case in server systems. Such scenarios, however, expose applica-
tions to possible contention on resources shared by cores, such
as the last-level cache, and the limited bus bandwidth to local
DRAM. A challenge, then, is to efficiently manage these shared
resources to limit the effects of contention on applications, e.g.,
prolonged execution times. Existing OS task schedulers, such as
in Linux, manage multicore chips by migrating tasks between
cores, using the measured CPU load that a task places on a core
as an important metric for load-balancing, while not prioritizing,
or fully ignoring, the impact of memory bandwidth contention on
task performance. The authors argue that memory bandwidth is
one of the most important shared resources to understand, since
the ratio between the number of cores and available bandwidth
per core is increasing across generations of processors.

To address this challenge, their work presents a memory
contention-aware task load balancer, “MLB,” which performs
task migration based on an understanding of a task’s mem-
ory-bandwidth pressure. Their work contributes a memory-
bandwidth load model to characterize tasks, a task scheduling
algorithm using this model to influence when/where tasks are
migrated among all processors, and an implementation of the
first two contributions in the Linux CFS scheduler. An analysis
was extended to compare against Vector Balancing and Sorted
Co-scheduling (VBSC) and systems hosting a mix of CPU- and
GPU-based applications.

Their contention model is defined by the amount of retired mem-
ory traffic measured by memory request events from last-level
cache misses and prefetcher requests. Because each application’s
performance may be differently affected by the same level of
contention, a sensitivity metric is defined for each application.
Together, both metrics are used by an implementation of MLB
in the Linux CFS scheduler. Tasks are grouped based on those
that are highly memory intensive and those that are not. Two
task run-queue lists are used (one for each category of task), with
a single run queue assigned to a given core. Tasks are migrated
between cores via the run queues when indicated by the memory
contention model. An evaluation of their methods included a
comparison with a port of the VBSC model into a modern version
of Linux for a variety of applications from the SPEC benchmark
suite as well as TPC-B and TPC-C. An extension of their work
supports multithreaded applications. NUMA platforms, how-
ever, were not examined in this work.

Someone asked when their task migration mechanisms are trig-
gered. Dongyou replied that a burn-in time is required to collect
sufficient information for the model to stabilize (to distinguish
memory intensive vs. non-memory intensive tasks). A second
questioner addressed the extension of MLB to multithreaded
tasks, asking whether the techniques in the paper would still
apply. Dongyou responded that their methods can increase the
hit rates of the last-level cache and that he plans to optimize
them further. Following up, the questioner suggested it would
be interesting to compare MLB to a manually optimized task-
pinning arrangement to illustrate the gains provided by models
presented in the paper.

A final question similarly addressed the lack of analysis on
NUMA platforms, asking what modifications would be neces-
sary. The response suggested that they would need to observe
accesses to pages to understand page migration strategies, as
just migrating the task would not move the memory bandwidth
contention away from that socket.

Cosh: Clear OS Data Sharing in an Incoherent World
Andrew Baumann and Chris Hawblitzel, Microsoft Research; Kornilios Kourtis,
ETH Zürich; Tim Harris, Oracle Labs; Timothy Roscoe, ETH Zürich
Summarized by Xu Zhang (xzhang@cs.uic.edu)

Kornilios started the talk by justifying the multikernel model—
treating the multicore system as a distributed system of inde-
pendent cores and using message passing for inter-process
communication—a useful abstraction to support machines that
have multiple heterogeneous processors. He illustrated with an
example of their target platform—the Intel MIC prototype on
which the Intel Xeon Phi processor is based. It has four NUMA
domains or three cache-coherent islands, and transfers data
with DMA between islands. Such heterogeneity breaks existing
OS assumptions of core uniformity and global cache-coherent
shared memory in hardware architecture. Multikernel models
fit nicely since they treat the operating system as a distributed
system.

88  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

One problem with the multikernel model, however, as Kornilios
pointed out, is that there is no easy way to share bulk data, either
for I/O or for large computation. Lacking support for shared
memory, the multikernel model forces data copying to achieve
message passing. This is the gap that coherence-oblivious
sharing (Cosh) tries to close—to share large data with the aid
of specific knowledge of underlying hardware. Cosh is based
on three primitive transfers: move—exclusive read and write
transfer from sender to receiver; share—read sharing among
sender and receiver; and copy—share plus exclusive receiver
write. And no read-write sharing is allowed by design. To make
bulk sharing practical, two additional features—weak transfer
and aggregate—are built on top of the primitives. Weak trans-
fer allows the sender to retain write permission and to defer or
even neglect permission changes. It is based on the observation
that changing memory permission is costly and is not always
necessary—for example, if the transfer is initiated from a trusted
service. Aggregate provides byte granularity buffer access since
page granularity doesn’t work for everything, particularly han-
dling byte data. Aggregate exports a byte API by maintaining an
aggregate structure on top of page buffers. Kornilios illustrated
the API with examples resembling UNIX pipes and file systems.

A prototype of Cosh was implemented on top of the Barrelfish
operating system, which is an instance of the multikernel model.
The prototype supports MIC cores natively. Kornilios showed
weak transfer being a useful optimization for host-core trans-
fers. And although pipelining helps, host-to-MIC transfers are
bogged down with high latency. Kornilios also demonstrated
results of an “end-to-end” evaluation of replaying panorama
stitching from traces captured on Linux. While Cosh enjoys
the same latency of Barrelfish’s native file system on host-core
transfers, the Cosh prototype still suffers from the high-latency
of DMA transfers between MIC and host cores. With the help of
perfect cache, the latency is reduced by a factor of 20 but is still
17 times greater than host-to-host copying latency. The major
bottleneck is due to slow DMA transfers and slow co-processors.

Someone asked how the performance improved by using cache in
host-to-MIC core transfers. Kornilios explained that the cache
they implemented was a perfect cache and could be as large as
possible, which reduced the number of DMA operations. The sec-
ond questioner asked whether they are planning to support GPU.
Kornilios said they haven’t looked at GPU particularly because
of the lack of support for access permissions. But GPUs are
becoming more general purpose, so he is personally optimistic.
Another question was whether they had explored the multiple
writer concurrency model. Kornilios replied no, because there is
no read-write sharing in Cosh by design. He further commented
that write sharing is difficult for programmers to reason about,
and cache-coherent and shared memory is hard to think about.
He brainstormed that it might be feasible if data partitioning
was provided or if versioning was available. The last questioner
asked whether the Cosh model is used for synchronization.
Kornilios answered no, since the multikernel is based on mes-
sage passing and there is no shared memory.

System Structuring
Summarized by Andy Sayler (andy.sayler@colorado.edu)

Fractured Processes: Adaptive, Fine-Grained Process
Abstractions
Thanumalayan Sankaranarayana Pillai, Remzi H. Arpaci-Dusseau,
Andrea C. Arpaci-Dusseau, University of Wisconsin—Madison

Pillai opened by discussing the traditional OS process abstrac-
tion and noting that most applications are monolithic (single
process). This poses problems when managing or debugging
applications: for example, we are unable to restart just part of a
process if it crashes or is upgraded but must restart the whole
thing (potentially affecting GUIs and other components). Like-
wise, many existing debugging tools like Valgrind produce too
much overhead when run on a large process, making such tools
unfeasible to use in production (e.g., to monitor sensitive parts
of an application for memory leaks). To counter these issues, the
authors propose Fracture, a mechanism for subdividing applica-
tions into an isolated set of processes communicating via RPC.
Fracture is designed to work with C programs and allows the
user to flexibly isolate only the parts of the program that require
it, minimizing the overhead incurred by splitting a monolithic
program into multiple processes.

Using Fracture, a developer divides their program into logically
organized modules (collections of functions) using annotations
in the code. The developer then defines a mapping of each mod-
ule into an associated FMP (fractured mini-process) that will
run as an isolated process. Each FMP can accommodate one or
more modules. Developers can dynamically reconfigure their
applications to run in a single FMP (i.e., as they would have run
without Fracture), or they can split the application into multiple
FMPs to troubleshoot specific bugs, isolate sensitive code, etc.
Fracture is also capable of using a min-cut algorithm and a list
of developer-defined rules regarding which module must be
isolated from which other modules to automatically partition a
program into an optimal set of FMPs. Each FMP acts as a micro-
server, responding to RPC requests from other FMPs. In order
to facilitate this, the developer must adhere to certain rules: no
sharing of global state between modules, annotation of pointers
so the data they point to may be appropriately serialized, etc.

The authors tested Fracture against a handful of existing appli-
cations: Null-httpd, NTFS-3G, SSHFS, and Pidgin, the univer-
sal chat client. The overhead imposed by using Fracture depends
on the specific mapping of modules to FMPs chosen by the devel-
oper. In the base case where all modules map to a single FMP,
Fracture obtains effectively native performance. At the other
extreme, where each module is mapped to its own FMP, perfor-
mance degrades significantly, from 10% of native performance to
80% of native performance depending on the application. Using
Fracture’s intelligent partitioning to automatically produce
an optimal map of modules to FMPs minimizes performance
degradation while also supporting the isolation of application
components into easy to monitor, test, and debug components.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 89

REPORTS

Liuba Shrira (session chair, Brandeis University) asked whether
developers leveraging Fracture must manually define inter-
module interaction in order for Fracture to compute an optimal
partitioning. Pillai answered that no, a developer must only
specify which modules must be kept isolated and provide the
necessary annotations. Tomas Hruby (Vrije Universiteit) asked
whether Fracture must maintain significant state in order to
facilitate restarting FMPs, etc. Pillai answered that Fracture
doesn’t maintain significant internal state, but only requests
state between module RPCs. This has some memory cost but
does not impose significant computational overhead. Another
attendee asked how correctness was affected when a program is
split into multiple FMPs, e.g., when a single FMP crashes and is
restarted. Pillai answered that Fracture requires the developer
to build/divide modules in a manner that supports being safely
restarted. Ken Birman (program chair, Cornell University)
asked whether Fracture’s concepts apply to languages like Java
that have some existing tools for purposes similar to Fracture’s.
Pillai answered that there might still be value in porting the
Fracture ideas to higher level languages, but that it is primarily
designed for C, where no such tools exist.

Leo: A Profile-Driven Dynamic Optimization Framework
for GPU Applications
Naila Farooqui, Georgia Institute of Technology; Christopher Rossbach,
Yuan Yu, Microsoft Research; Karsten Schwan, Georgia Institute of
Technology

Farooqui opened by introducing the audience to the basics of
general purpose GPU computing, including presenting the GPU
as a SIMD machine with a tiered memory hierarchy. GPU per-
formance is often limited by two main factors: irregular control
flow and non-sequential memory access patterns. Tradition-
ally, optimizing GPU code to overcome these factors is difficult,
requiring many manually applied architecture-specific tweaks.
High level frameworks (i.e., Dandelion, Delite, etc.) exist to
reduce the manual optimizing burden, but these frameworks
still fail to capture the performance quirks of specific architec-
tures, especially in terms of dynamically manifested perfor-
mance bottlenecks. Farooqui et al. created Leo as an attempt to
automate this performance-tuning process.

Leo automates performance tuning for GPUs by using profiling
to optimize code for dynamic runtime behaviors. Farooqui pre-
sented a standard manual GPU performance optimization: Data
Layout Transformation (DLT)—e.g., switching from row major
to column major ordering to promote sequential memory access.
To demonstrate the value Leo provides, Farooqui explained the
challenge of applying the DLT optimization to an example pro-
gram: SkyServer. In some cases the DLT optimization improves
SkyServer performance, but in other cases performance is
reduced. SkyServer requires dynamic optimization via a system
like Leo to properly apply DLT when it helps while also forgoing
it when it does not.

Leo employs dynamic instrumentation to drive runtime opti-
mization. First, Leo generates a GPU kernel, then it analyzes,

instruments, and executes this kernel. Next, Leo extracts profil-
ing results and identifies candidate data structures for optimi-
zation. Finally, Leo applies the identified optimizations. Leo
iteratively repeats this process, regressing to the previous state
if no benefits occur. Leo leverages GPU Lynx for instrumenta-
tion and Dandelion for GPU cross-compilation. Leo’s perfor-
mance approaches that of an “oracle”-derived solution (e.g., one
that is hand-optimized for a known input) with gains from 9% to
53% over the unoptimized version. And since Leo’s optimization
is fully automated, these speedups are effectively “free.”

Kishore Papineni (Google) asked whether optimization chal-
lenges in SkyServer were only related to cache misses. Farooqui
answered that there were also likely other factors at play (e.g.,
control flow). Ken Birman asked whether compile-time analy-
sis can provide better layout predictions than Leo’s dynamic
analysis. Farooqui answered that it may be possible, but there
are many challenges since compile-time optimizations can’t,
for example, see cache impacts. Kornilios Kourtis (ETH Zürich)
asked Farooqui to comment on data-flow models vs. other mod-
els (e.g., which are easier to optimize). Farooqui answered that
you can profile and optimize using non-data-flow models, but
that data-flow models make generating multiple code versions
easier. John Reiser asked the bit width at which data coalesc-
ing happens and whether the number of workers affects per-
formance. Farooqui tentatively answered that the width was 8
bytes, but needed to verify that. The optimal number of worker
threads is hardware dependent. Liuba Shrira asked how Leo
handles multiple independent optimizations while avoiding a
combinatorial explosion of profiling results. Farooqui answered
that applying multiple independent optimizations is complicated
and that they are working on how best to handle such optimiza-
tions in Leo.

Proactive Energy-Aware Programming with PEEK
Timo Hönig, Heiko Janker, Christopher Eibel, Wolfgang Schröder-Preikschat,
Friedrich-Alexander-Universität Erlangen-Nürnberg; Oliver Mihelic,
Rüdiger Kapitza, Technische Universität Braunschweig

Hönig opened by highlighting the challenges developers face
today trying to optimize their code for minimal power consump-
tion. Modern hardware has many power-related levers (e.g.,
sleep states, toggling peripherals, processor throttling, etc.), but
developers don’t have good tools for creating code that optimally
utilizes these levers. Instead, developers are limited to infinite
iteration loops, requiring them to hand-tweak code for power
consumption and then manually measure power consumption
using either the limited built-in measurement systems or tradi-
tional tools like oscilloscopes and multimeters. The process of
optimizing code for power consumption today involves (1) writ-
ing and compiling code, (2) running code with a well-defined set
of inputs, (3) performing a manual energy usage analysis, and
(4) optimizing code and repeating the cycle. This is a very time-
consuming process for the developer.

Hönig et al. set out to improve this situation by integrating
energy measurement and optimization suggestion support into

90  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

modern IDEs. They proposed a system for doing this called
PEEK, a proactive energy-aware development kit. The PEEK
framework is split into three parts: the front-end UI (e.g., Eclipse
plugin, or CLI), the middleware that handles data storage and
tracking, and the back-end energy analysis system and optimiza-
tion hint engine. PEEK leverages the Git version control system
to snapshot copies of code to be analyzed as well as various
build-parameters. This allows developers to separate potential
enhancements into separate Git branches and then use PEEK
to analyze and compare the respective energy performance of
each branch. Completed PEEK analysis results and potential
energy optimization tips are also saved via Git. The front-end UI
extracts these data and can automatically generate a source code
patch that the developer may then choose to apply.

In addition to building the PEEK framework, the authors
created a novel dedicated energy measurement device. Exist-
ing energy measurement devices tend to lack programmable
control interfaces and the necessary measurement capabilities
to produce accurate results. The authors’ solution leverages a
current- mirror to produce accurate energy measurements even
at limited sampling rates. Their system uses an ARM Cortex-M4
MCU and contains a USB-based programmable control inter-
face for fully automated energy measurement. Using the PEEK
framework and their custom hardware, the authors were able to
reduce developer energy optimization time by a factor of 8 while
also reducing code energy consumption by about 25%.

Naila Farooqui (Georgia Institute of Technology) referenced
some of Hönig’s result graphs and asked why performance did
not always map to power. Why do slower programs not always
use less power? Hönig answered that they would have to look
more closely at specific situations to know for sure. Kornilios
Kourtis (ETH Zürich) commented that the optimality search
base for power-use tweaks must be huge, including compiler
flags, scheduling options, etc. Kourtis then asked whether there
is additional support PEEK can provide to make it simpler for
the developer to select the ideal set of optimizations. Hönig
answered that future work will aim to tackle this problem
and provide better developer hints. Jay York asked how PEEK
synchronizes hardware measurements with code execution.
Hönig answered that the system uses GPIO signals and relies
on minimal overhead/cycles in the GPIO loop to keep measure-
ments synchronized with code. Liuba Shrira asked whether
PEEK can take advantage of common sections of the code across
multiple snapshots to avoid extra analysis. Hönig answered that
although their previous work explores that, PEEK’s snapshot
batching capabilities are primarily aimed at allowing developers
to logically group potential changes, not at minimizing back-end
analysis effort.

System Structuring
Summarized by Timo Hönig (thoenig@cs.fau.de)

From Feast to Famine: Managing Mobile Network
Resources Across Environments and Preferences
Robert Kiefer, Erik Nordstrom, and Michael J. Freedman, Princeton University

Robert Kiefer presented Tango, a platform that manages network
resource usage through a programmatic model.

Kiefer motivated his talk by demonstrating that network usage
of today’s mobile devices impact other system resources (i.e.,
data cap, battery, performance). Network resources should be
allocated in different ways depending on dynamic conditions
(e.g., if a user changes location) that cause different network
technology (i.e., WiFi, 3G/LTE) to become available. Users’
interests may also change over time (foreground vs. background
applications), and network usage may depend on usage char-
acteristics (e.g., interactive vs. streaming). Divergent goals
between user and application trigger resource conflicts that
have to be moderated by the user.

Using the example of a streaming music app, Kiefer further
illustrated various conflicts between applications and between
applications and users. He showed that one of today’s mobile
systems (Android) only exposes “all or nothing” controls that
are unsuitable for efficiently managing resources. The available
configuration options are application-specific, and the naming
of the configuration options differs between applications. Users
usually cannot control resource usage on their mobile phones as
they want to.

In Tango, user and application configurations are encoded as
policies. With these policies, user configurations have top prior-
ity, while application configurations have some flexibility. Kiefer
further introduced the architecture of their framework (mea-
sure and control primitives, controller, user and application poli-
cies). Policies are actually programs that turn states into actions.
A state of the system is used as input for a policy program to
transform the system into a new state. Actions may impact net-
work interfaces or network flows, where user policies may affect
actions at interface level and flow level, but application policies
may only affect actions at (their own) flow level.

With constraints and hints, Tango detects conflicts regarding
resource usage at the user and application level. Hints for “future
rounds” (e.g., higher network bandwidth) are matched with
existing constraints.

The evaluation of Tango was demonstrated by a streaming music
application used across a campus WiFi with unreliable data
connection. They used this scenario to analyze when to switch
between WiFi and the mobile network (3G/LTE). The evaluation
scenario revealed certain switching problems and demonstrated
which user policies to apply to optimize the 3G usage.

Gilles Muller (INRIA) asked how Kiefer would optimize applica-
tions with two competing policies. Kiefer replied that because
of hierarchies (different classes of applications), his framework

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 91

REPORTS

does not have to know each single application. If an application’s
policy does not fit into a user policy, the user may either change
the constraints or find a different application that fits the user’s
policy. Someone commented on the campus use case that showed
areas of “good” and “bad” WiFi, and asked why a “good” WiFi
actually is good and a “bad” WiFi actually is bad. Kiefer replied
that “good” WiFi meant the user was close to the WiFi access
point. Bad WiFi was usually when noise and transmission errors
increased as the user moved out of reach. Ken Birman asked
whether there was a policy that should say, “Don’t use my cell
connection if my buffer is under x percent.” Kiefer explained
that they have implemented this with a policy that restricts the
amount of data that may be consumed during a specific amount
of time. With this, Kiefer et al. were able to reduce cell usage by
about 30%.

On Sockets and System Calls: Minimizing Context
Switches for the Socket API
Tomas Hruby, Teodor Crivat, Herbert Bos, and Andrew S. Tanenbaum,
Vrije Universität Amsterdam

Tomas Hruby motivated his talk by giving a quick overview
on the problems of the POSIX Sockets API. While the POSIX
 Sockets API is well understood and portable across different
operating systems, Hruby raised the concern that (1) each API
call requires its own system call, (2) system calls are disruptive,
(3) OS execution interleaves with applications, and (4) non-
blocking system calls are expensive. Hruby further outlined how
current solutions address issues of POSIX sockets. In contrast,
Hruby et al. believe that the socket API itself is not broken.
Instead, it is the underlying implementations that are broken.
The system call itself is the key problem.

The approach presented by Hruby tackles the challenge of elimi-
nating system calls from sockets while keeping the API intact.
Their proposed solution is so-called exposed socket buffers,
which allow applications to inspect socket buffer data directly
without going through system calls. This way, most system calls
could be handled in user space. An exposed socket buffer con-
sists of a piece of shared memory between the OS and the appli-
cation, two queues, and two memory areas for allocating data.
With this data structure, an application can test in user space
whether a socket is empty or full. Further, Hruby gave details
on how signaling is implemented in their system. As a result of
the system design, the network stack cannot easily poll without
disturbing the applications. This is why the authors decided to
move the network stack to a dedicated core.

The implementation is based on NewtOS, a multiserver system
based on MINIX 3. Hruby gave numbers on the amount of mes-
sages required to complete a recvfrom() call that returns from
EAGAIN on the modified NewtOS (137 messages) and compared
it to Linux (478 messages). Hruby emphasized the improvement
over the original NewtOS implementation (>19,000 messages).

For the evaluation, the authors used lighttpd (single process)
serving static files cached in memory on a 12-core AMD 1.9 GHz
system with a 10 Gigabit/sec network interface. During the pre-

sentation, Hruby showed numbers on the instruction cache miss
rate of lighttpd where NewtOS (1.5 %) was performing better
than Linux (8.5 %) and the unmodified NewtOS (4.5 %). Before
concluding his talk, Hruby discussed the limitations of the
presented approach (e.g., fork() is not supported) and presented
related work.

Jie Liao (Rice University) asked how much more effort it takes
to adopt applications to the programming model of the pre-
sented approach. Hruby replied that the application remained
unchanged since the programming model is not changed at all.
Jon A. Solworth (University of Illinois at Chicago) asked what
would happen when you have large reads (i.e., megabyte reads)
since caching and shared memory would be affected. Hruby
replied that it really depends on the application and how the
application processes the data. Kishore Pusukuri (Oracle Inc.)
wanted to know how the system handles multithreaded applica-
tions such as memcached. Hruby referred to previous work and
said that their system can run multithreaded applications just
fine. Kishore inquired about the underutilization of available
resources. Hruby answered that this is not an issue. Xinyang Ge
(Pennsylvania State University) asked whether the presented
design impacts the performance of applications which do not use
the network. Hruby answered that this is not a problem because
they use hyper-threading for the network stack and so the core is
not lost for other operations.

Lightning in the Cloud: A Study of Transient Bottlenecks
on n-Tier Web Application Performance
Qingyang Wang, Georgia Institute of Technology; Yasuhiko Kanemasa,
Fujitsu Laboratories Ltd.; Jack Li, Chien-An Lai, and Chien-An Cho, Georgia
Institute of Technology; Yuji Nomura, Fujitsu Laboratories Ltd.; Calton Pu,
Georgia Institute of Technology

Qingyang Wang presented their study analyzing very short
bottlenecks that are also bottlenecks with a very short life span
(~ tens of milliseconds) and their impact on the overall system.
According to Wang, very short bottlenecks are causing large
response-time fluctuations for Web applications (10 millisec-
onds to 10 seconds).

Their study analyzed the reasons for very short bottlenecks in
different system layers (system software, application, architec-
ture) and investigated how such short bottlenecks can lead to
delayed processing, dropped requests, and TCP retransmissions.
Common for the analysis of all three system layers is a four-tier
Web server (Apache/Tomcat/OJDBC/MySQL) running the
RUBBoS benchmark, which emulates the workload of 24 users.
Wang presented results that the Java Garbage Collector of the
evaluation system caused very short bottlenecks in Tomcat.
These short bottlenecks eventually lead to a push-back wave of
queued clients of the Apache Web server. (Wang acknowledged
that the Java Garbage Collector was fixed in JDK 1.7 and no longer
suffers from the very short bottlenecks of Tomcat running with
JDK 1.6.) Wang further demonstrated results of very short bottle-
necks caused by bursty workloads in virtual machines, which
eventually led to dropped requests and TCP retransmissions.

92  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

Someone asked whether there are generic solutions to avoid
push-back waves caused by very short bottlenecks. Wang
answered that there are two different solutions to address very
short bottlenecks for the presented evaluation. First, very short
bottlenecks in the first evaluation scenario can be avoided by
upgrading the Java version. Second, very short bottlenecks in
the second evaluation scenario can be avoided by migrating the
affected virtual machine to a different machine. However, the
authors are still working on a generic solution that addresses the
problem by breaking up the push-back wave. Landon Cox (Duke
University) asked how to generally diagnose the cause of very
short bottlenecks. Wang replied that it is not easy to diagnose
the cause and that it helps to apply fine-grained monitoring tools
that collect as much data as possible. However, Wang admitted
that there is no generic way to diagnose very short bottlenecks.

Security
Summarized by Ennan Zhai (ennan.zhai@yale.edu)

Custos: Increasing Security with Secret Storage as a Service
Andy Sayler and Dirk Grunwald, University of Colorado, Boulder

Andy presented Custos, an SSaaS prototype that can preserve
encryption keys if customers store any encrypted data on the
remote cloud side. Andy first described the Dropbox and Google
Drive storage background: For current cloud providers, custom-
ers either trust the providers or store encrypted data on the cloud
side but keep the key themselves or on other cloud storage pro-
viders. Both cases introduce privacy risks. Custos can provide
the ability to securely store keys, and its goals are: (1) centralized
secret storage, (2) flexible access control, and (3) auditing and
revocation.

For each of the three goals, Andy showed a corresponding
architecture graphic that was very illustrative. For centralized
storage, Custos manages the key between different devices and
sends the key to a centralized server. In addition, the authors
leveraged a scalable SSL processor and multiple providers to
maintain key shares. About this part, Andy said they applied
an n-threshold cryptographic primitive to combine key shares,
finally generating the desired key. For the flexible access con-
trol property, Custos allows the customers to write the access
control specifications and ensure the security of the stored keys.
Using this mechanism, customers can control the access time of
the keys and have time-limited access capability. For the final
property of Custos, i.e., auditing and revocation, the system can
audit logs and keep track of key access, thus offering auditing
and revocation capability.

Ennan Zhai (Yale) asked where the maintainers hold key shares
in practice, and who produces the access control specification.
Andy said in practice there are many individual companies that
offer services maintaining such shares, so Custos can distrib-
ute the shares to them. For the second question, Andy thought
the customers can use existing tools or experts to achieve their
goals; in practice it is not so hard to do. Someone noted that since

Dropbox can share data with some mobile devices, it is harder
for random third-party mobile applications to handle that. Andy
said in principle it is not a concern for Custos, since the Custos
system can flexibly handle such things.

Managing NymBoxes for Identity and Tracking Protection
David Wolinsky, Daniel Jackowitz, and Bryan Ford, Yale University

David Wolinsky began by noting that current anonymity tools
(Tor) still cannot provide perfect privacy protection, and there
have been many examples of an adversary focusing on breaking
the user environment and not the tool. From this observation,
the authors proposed Nymix, an operating system that can offer
isolation for each browser task or session. Each browser or ses-
sion is running in a virtual machine called Nym.

David used three interesting examples to describe the three
target problems, including application-level attacks, correlation
attacks, and confiscation attacks, which can expose users’ pri-
vacy even if they use Tor. David then presented Nymix architec-
ture design: In general, each Nym has two components: AnonVM
and CommVM. AnonVM is mainly responsible for running the
actual applications the user wants to run, while CommVM com-
municates with the outside environment. Since Nymix offers
virtual machine isolations, the user environment cannot be
compromised by the three types of attacks described above.

In the evaluation, David showed how the prototype can be set up
as well as covering CPU overhead, memory usage, and network-
ing overhead. Finally, David talked a lot about future improve-
ments on Nymix, including fingerprintable CPU, VMM timing
channels, accessing local hardware, and storing data retrieved
from the Internet.

Someone asked about a fingerprintable CPUm and whether the
authors had tried any experiments on this level. David thought
in principle the results were not hard to anticipate, but it was
still an interesting direction. The session chair asked about
malicious virtual machines that can communicate with each
other, compromising privacy defenses. David said that basically
the paper does not need to consider such a case, the assumption
being that the virtual machine manager is trusted.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 93

REPORTS

10th Workshop on Hot Topics in System
Dependability
October 5, 2014, Broomfield, CO
Summarized by Martin Küttler, Florian Pester, and Tobias Stumpf

Paper Session 1
Summarized by Florian Pester (florian.pester@tu-dresden.de) and
Tobias Stumpf (tobias.stumpf@tu-dresden.de)

Compute Globally, Act Locally: Protecting Federated
Systems from Systemic Threats
Arjun Narayan, Antonis Papadimitriou, and Andreas Haeberlen, University of
Pennsylvania

Cascading failures can bring down whole systems, and in a world
of critical systems, this should be avoided. However, privacy con-
cerns often prevent the global view necessary to detect impeding
catastrophic cascades. The authors studied this problem using
the example of the financial crisis of 2008.

Banks usually have financial risks that are greater than their
capital, therefore the surplus risk—the difference between their
risk and their capital—is offloaded to other banks. This creates
a network of dependencies between banks that results in a very
large dependency graph. However, each bank only has its local
view of the situation.

System-wide stress tests could be a solution to the problem;
unfortunately, a lot of the input needed for such a test produces
privacy issues for the banks. Therefore, economists do not know
how to compute a system-wide stress test—although they do
know what to compute. A regulator is not an option, because a
regulating entity would require too much access. Secure multi-
party computation, on the other hand, does not scale well enough.

A workable solution must deal with two main challenges: privacy
and scalability. In order to provide scalability, a graph-based
computation is used instead of matrix multiplication. Each bank
is assigned a node and performs what the authors call limited
multi-party computation.

In order to solve the privacy problem, the authors use differential
privacy, which provides strong, provable privacy guarantees.
This works by adding a small amount of imprecision to the
output of the computations, which can be tolerated because the
aim of the computation is detection of early warnings of large
problems. Limited multi-party computation is essentially mul-
tiple multi-party computations with k parties. Each party gets
another party’s output as input for their own computation; in
this way, no party has access to the other party’s secrets.

Implementation was left as future work.

Someone commented that this work could also be applied for
the power grid and other dependable systems. Additionally, the
question was raised whether it is a realistic assumption that the
banks will follow the protocol. The answer was that the regula-
tors get localized data and can enforce the protocol.

Running ZooKeeper Coordination Services in
Untrusted Clouds
Stefan Brenner, Colin Wulf, and Rüdiger Kapitza, Technische Universität
Braunschweig

Privacy issues and insufficient trust in cloud providers slow
down the adoption of cloud technologies. However, computa-
tion of data is tricky if that data is encrypted. Trusted Execution
Environments (TEE) can help to mitigate the problem.

Apache ZooKeeper provides coordination for cloud applications.
The authors added an encryption layer to ZooKeeper in order to
gain trusted coordination.

This encryption layer is provided in the form of the ZooKeeper
privacy proxy, which runs inside a TEE. Communication from
the client to the ZooKeeper privacy proxy is encrypted by SSL,
while communication between ZooKeeper and the ZooKeeper
privacy proxy is encrypted using a shared key between these
two. Name-clashing problems are solved by a dictionary node.

Someone asked the presenter to clarify whose signing key needs
to be trusted ultimately. The answer was the hardware signing
key. A second questioner wanted to know more about the applica-
tions that can be used with the system. The presenter answered
that the system needs specific applications. The final questioner
wondered why the system was implemented as a proxy. The
reason is so that this solution is completely transparent to the
server and the client.

Who Writes What Checkers?—Learning from
Bug Repositories
Takeshi Yoshimura and Kenji Kono, Keio University

Takeshi and Kenji presented a tool that learns from bug reposito-
ries to help developers eliminate bugs. The tool uses static code
analysis to find typical bugs—e.g., not freed memory or infinite
polling—and is based on the Clang analyzer. During analysis
Takeshi figured out that bugs coming from humans are mainly
domain specific. Their tool uses machine-learning techniques
to extract bug patterns from documentations written in English
and the corresponding patches. The tool works in two steps:
First, it uses natural-language processing to extract keywords
from the documentation. Second, their tool extracts bug pat-
terns based on topic. For the paper, Takeshi analyzed 370,000
patch documentations and sorted them into 66 groups called
“clusters.” They also found subclasses by using keywords; for
instance, around 300 patches contain the keyword “free.” They
use the known free-semantic to check patches and see whether a
free statement is missing. The presented tool is useful for detect-
ing typical bugs. In his conclusion, Takeshi mentioned that find-
ing unknown bugs is more complicated but possible.

Someone asked about the documentation used. Takeshi clarified
that they used only the commit messages and not information
from the bug repository. Further questions were related to lan-
guage processing. Takeshi explained that they used techniques
to reduce language noise from developers’ commit messages.

94  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

The last questioner wanted to know which kind of bug patterns
they could find and which not. The presenters clarified that their
tool is limited to known bugs which are already documented.

Leveraging Trusted Computing and Model Checking to
Build Dependable Virtual Machines
Nuno Santos, INESC-ID and Instituto Superior Técnico, Universidade
de Lisboa; Nuno P. Lopes, INESC-ID and Instituto Superior Técnico,
Universidade de Lisboa and Microsoft Research

Nuno Santos and Nuno Lopes developed an approach based on
trusted booting and model checking to ensure that a virtual
machine (VM) in the cloud runs the software that a customer
expects. The basic approach to launch a VM is quite easy. Some-
one creates a VM image and sends it into the cloud, and someone
(maybe the image creator) launches the VM. Previous studies
showed that this approach includes risks for the creator as well
as for the user. For instance, a misconfigured VM image can
contain creator-specific data (e.g., passwords, IDs) or include
obsolete or unlicensed software. To overcome these problems,
Nuno proposed model checking to ensure that a VM image
matches the specifications before it is launched. The specifica-
tion includes all necessary information (e.g., configurations,
applications) to ensure a specification behavior of the VM. After
a VM is checked, a trusted computing environment is used to
ensure that the checked image is launched.

Someone wanted to know how to identify passwords. Nuno
answered that it is done by annotations. A second questioner
asked who he has to trust (machine, cloud provider) to launch a
VM. The software integration can be done outside the cloud, and
therefore it is not necessary to trust any cloud provider. Another
question related to software specification in general. Nuno
answered that their work does not focus on software verification
but on checking the properties of a given instance. Finally, to
the question of how much work it takes to write a specification,
Nuno said the workload depends on the level of fine tuning. It is
simple to write a running specification, but the tuning part can
be quite expensive.

Paper Session 2
Summarized by Martin Küttler (martin.kuettler@os.inf.tu-dresden.de)

Erasure Code with Shingled Local Parity Groups for
Efficient Recovery from Multiple Disk Failures
Takeshi Miyamae, Takanori Nakao, and Kensuke Shiozawa, Fujitsu
Laboratories Ltd.

Takeshi Miyamae began by noting the need for erasure codes
with high durability and an efficient recovery. He presented a
Shingled Erasure Code (SHEC) that targets fast recovery and
correctness in the presence of multiple disk failures.

He discussed the three-way tradeoff between space efficiency,
durability, and recovery efficiency. SHEC targets recovery
efficiency foremost by minimizing the read sizes necessary for
recovery. Compared to Reed Solomon, MS-LRC, and Xorbas,
SHEC has substantially better theoretical recovery speed for
multiple disk failures.

Next, Takeshi showed that SHEC is comparable to MS-LRC in
terms of durability for double disk failures, but is more customiz-
able and offers more fine-grained tradeoffs in efficiency. He then
briefly explained the implementation of SHEC, which is a plugin
for the free storage platform Ceph.

Takeshi presented an experiment comparing SHEC to Reed
Solomon for double disk failures. He found that SHEC’s recov-
ery was 18.6% faster and read 26% less data from disk. Then
he showed that there was 35% more room for recovery time
improvement because the disks were the bottleneck only 65% of
the time.

Someone asked why the disks were not always the bottleneck
during the experiment. Takeshi explained that other resources
can be the bottleneck too, but in their experiment only the disk
was a bottleneck. He was not sure what acted as bottleneck dur-
ing the remaining 35% of the experiment, but it was not the CPU
or the network.

The second questioner wondered how common it is to have mul-
tiple disk failures. Takeshi answered that the probability for that
is higher in practice than in theory.

Providing High Availability in Cloud Storage by
Decreasing Virtual Machine Reboot Time
Shehbaz Jaffer, Mangesh Chitnis, and Ameya Usgaonkar, NetApp Inc.

Shehbaz Jaffer presented work on providing high availability
in cloud storage. Virtual storage architectures (VSA)—storage
servers that run as virtual machines on actual hardware serv-
ers—are considerably cheaper and more flexible than hardware
servers. But they suffer from lower availability, because in case
of failures they need to be rebooted, which introduces long wait
times. The typical solution for hardware servers is to deploy high
availability (HA) pairs, i.e., two servers that both serve requests,
so that one can keep working when the other reboots.

To achieve the goal of this work, reducing the VSA reboot time
in order to increase availability, Shehbaz presented multiple
steps. The first was to cache VM metadata in the host RAM and
provide access to that data on reboot. This improved boot time by
5%, which was less than was expected.

Next the authors tried to improve the SEDA architecture to
improve performance. In particular, synchronously returning
cached file-system information, instead of performing an asyn-
chronous call, reduced boot time by 15%.

Finally, they improved block-fetching time during a reboot.
Turning read-ahead during reboot decreased the boot time by
another 18%.

The time breakdown showed that consistent checkpointing
takes a lot of time. The authors left replacing consistent check-
pointing with a faster technique as an open problem, which they
want to look at in follow-up work.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 95

REPORTS

Somebody asked how often VSA failures, and subsequent
reboots, happen in practice. Shehbaz answered that about
85–90% of the failures are software failures, such as OS bugs
or mishandled client requests. But he had no absolute numbers.
Another questioner asked why not use multiple replicated VMs,
which can take over when one fails. Shehbaz answered that in
deploying a VSA at some datacenter, there is no way to ensure
that the VMs are going to be near each other, and maintaining
consistency is much harder when they aren’t.

Understanding Reliability Implication of Hardware
Error in Virtualization Infrastructure
Xin Xu and H. Howie Huang, George Washington University

As motivation for their work, Xin Xu pointed out that hardware
failures are a common problem in the cloud: If a server has one
failure in three years, a datacenter with 10,000 servers has an
average of nine failures per day. Still, the datacenter provider
needs to handle these incidents to provide a reliable service.

In his work, Xin focused on soft errors such as transient bit flips,
which are not reproducible and are hard to detect. With smaller
process technologies, the probability for transient failures is
expected to increase greatly, which is a major reliability concern
in datacenters.

He also pointed out that hypervisors are a single point of failure
and do not isolate hardware errors. They studied this problem by
doing fault injections into virtualized systems. For these experi-
ments, the authors analyzed the hypervisor to find the most used
functions and found that by injecting errors in them, they could
find more crashes than by doing random injections. Using this
analysis, they also found more errors that propagated into the VMs.

In addition, they categorized the injected faults based on the
crash latency, which is the number of instructions between fault
injection and detection of the crash. Most crashes have a short
latency of fewer than 100 instructions, but some are signifi-
cantly longer and are thus likely to propagate into a VM. To study
this they also analyzed failure location. In many cases, crashes
happen in the C-function where a fault was injected. A small
percentage (up to 5%) leave the hypervisor, meaning there is no
fault-isolation.

Comparing his work to previous approaches, Xin highlighted
two new contributions: a simulation-based fault injection frame-
work, and analysis of error propagation.

Somebody asked whether they considered bit flips in opcodes as
well as in program data. Xin answered that they only injected
bit flips into registers, because injecting errors into memory is
more difficult to track. He was then asked whether he consid-
ered storage more reliable. He responded that he did not, but
that memory is protected by ECC, and that errors in the CPU
are more difficult to detect. Somebody asked how Xin would go
about making the hypervisor more robust, and what implications
their framework had on performance. For the first question, Xin
referred the questioner to another paper on ICPP about detect-

ing failures early, before they propagate to dom0. Regarding the
performance, he said that the overhead was generally less than
1% because they used a lot of hardware support such as perf
counters.

Towards General-Purpose Resource Management in
Shared Cloud Services
Jonathan Mace, Brown University; Peter Bodik, Microsoft Research;
Rodrigo Fonseca, Brown University; Madanlal Musuvathi, Microsoft Research

Jonathan Mace presented the motivation of the work, describ-
ing how performance problems can arise in shared-tenant cloud
services. Requests can drain resources needed by others. The
system typically does not know who generates requests, nor
which requests might interfere, and therefore it can give no per-
formance guarantees to users. Ideally, one would like quality-of-
service guarantees similar to those provided by hypervisors.

To address these issues, Jonathan proposed design principles for
resource policies in shared-tenant systems. He then presented
Retro, a prototype framework for resource instrumentation and
tracking designed according to these principles.

He started by discussing interferences of various file-system
operations on an HDFS installation. He presented measured
throughput rates of random 8k writes with different background
loads. Even tasks like listing or creating directories inter-
fered significantly with the writer task. From that the authors
inferred the first principle: Consider all request types and all
resources in the system.

Jonathan motivated the second principle by discussing latency
requirements of specific tasks. He provided an example where a
high priority tenant required a low latency, and two tenants with
lower priority were running. Throttling one of them could sig-
nificantly decrease the latency of the high priority tenant, while
throttling the other did not change the latency at all. Therefore
only the correct tenant should be throttled, which led to the
second principle: Distinguish between tenants.

Jonathan discussed long requests and the problems they pose
for giving guarantees to other tenants, which generated the third
principle: Schedule early and often. This avoids having long-
running requests taking up resources that should be available
for high priority tenants.

Finally, Jonathan presented Retro, a framework for shared-
tenant systems that can monitor resource accesses by each
request. The framework tracks which tenant issued each
request and resource access, aggregates statistics (thus provid-
ing a global view of all tenants), and allows a controller to make
smart scheduling decisions. He revisited the example of the high
priority tenant interfering with one of two low priority tenants.
Retro figures out which low priority tenant it has to throttle to
improve the latency of the higher priority tenant. Jonathan also
presented measurements showing that Retro introduced less
than 2% overhead.

96  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

Somebody asked about the level of isolation that Retro provides
and whether crashes were considered. Jonathan answered that
Retro can provide performance isolation but no strong guaran-
tees, as only averages can be guaranteed. He also said that they
did not consider crashes.

Scalable BFT for Multi-Cores: Actor-Based Decomposition
and Consensus-Oriented Parallelization
Johannes Behl, Technische Universität Braunschweig; Tobias Distler,
Friedrich-Alexander-Universität Erlangen-Nürnberg; Rüdiger Kapitza,
Technische Universität Braunschweig

Johannes Behl presented a scalable Byzantine fault tolerance
implementation for multicore systems. He motivated this work
by saying that many systems targeting dependability only
consider crashes, which is not enough. To be able to handle more
subtle faults, Byzantine fault tolerance (BFT) is needed. But it
is not common, because current BFT systems do not scale well
with multiple cores, which is required to run efficiently on mod-
ern hardware.

Johannes talked about state-of-the-art BFT systems and their
parallelization. The BFT protocol consists of an agreement
stage and an execution stage, which need to be parallelized. The
parallelization of the second stage depends on the service char-
acteristics. For the agreement stage, Johannes briefly presented
the current method of parallelization. The agreement is split
into multiple tasks, each running in a different thread. Thus,
finding a consensus involves all threads, which has a number
of disadvantages. The number of threads is determined by the
BFT-implementation and is therefore not well aligned with the
number of cores. In addition the slowest task inside the agree-
ment phase dictates the performance. And the need for frequent
synchronization between threads further increases the time to
find consensus.

Johannes presented consensus-oriented parallelization, which
involves vertical parallelization, i.e., having each thread serve
a complete agreement request. That way throughput rates can
scale with the number of CPU cores, and synchronization is
much less frequent.

In the evaluation, Jonathan compared his implementation to a
state-of-the-art implementation of BFT. His implementation
scales much better, and it is already about three times faster
for a single core, because it does not have any synchronization
overhead there.

Someone asked how the logging inside the agreement stage was
parallelized. Johannes answered that they did not log to disk
but only to memory. For disk logging he proposed using multiple
disks or SSDs. The next question was how dependencies across
requests were handled. Johannes answered that they made no
assumptions about dependencies. Somebody asked whether the
evaluation was done in the presence of faults so that non-trivial
agreements had to be found. Jonathan answered that there were
no faults or disagreements in the evaluation. The last question
was whether batching was used in the evaluation. Jonathan said
no and noted that batching can improve performance.

Learn the latest
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,
Solaris, and popular
varieties of Unix.

Each issue delivers
technical solutions
to the real-world
problems you face
every day.

Real SolutionS
foR Real netwoRkS

Free
CD or DVD
in every Issue!

Order Online at: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd 1 11/6/14 10:26:37 AM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

SREcon15
MARCH 16–17, 2015

SANTA CLARA, CALIFORNIA, USA
www.usenix.org/srecon15

SREcon15 EUROPE
MAY 14–15, 2015
DUBLIN, IRELAND

www.usenix.org/srecon15europe

Following 2014’s inaugural sold-out conference, SREcon has expanded to two venues for 2015.

If you already work in an SRE environment—or want to learn how it’s being used by many of the largest
companies today—take advantage of this rare opportunity to meet with other engineers and discuss
tricks of the trade.

Register today at www.usenix.org

SREcon is back!
Interested in Site Reliability Engineering?

	Cover
	Upcoming Events
	Contents
	Musings
	Counter Stacks and the Elusive Working Set
	Storage Options for Software Containers
	Interview with Steve Swanson
	Simple Testing Can Prevent Most Critical Failures
	Nail: A Practical Tool for Parsing and Generating Data Formats
	Capacity Planning
	/var/log/manager: Daily Perspectives for the Sysadmin and the Manager
	Practical Perl Tools: Give it a REST
	Thinking about Type Checking
	iVoyeur: Spreading
	For Good Measure: Cyberjobsecurity
	/dev/random: Smarter-Than-You Storage
	Book Reviews
	Conference Reports: 11th USENIX Symposium on Operating Systems Design andImplementation
	Conference Reports: 2014 Conference on Timely Results inOperating Systems
	Conference Reports: 10th Workshop on Hot Topics in SystemDependability

