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In my June 2011 Musings [1], I used the metaphor of an assembly line’s parts supply
for the hierarchy of storage used with modern processors: cache, memory, disk, and
network. I've always been amazed by both assembly lines, and how it is possible
that a CPU can get so much work done when it is so much faster than the devices
that supply it.

Modern assembly lines are less than a century old, and through the mechanism of
YouTube we can easily watch examples of assembly lines at work [2, 3]. In the first
example, you can watch a Chevrolet assembly line from 1936, and in the newer

one, a BMW line from 2010. One big difference between the two lines is that in

the BMW example, the only time you see a person appears to be accidental, just
someone walking past the line. In the older line, most people are simply positioning
parts, or performing a small set of tasks like several welds or tightening bolts. It is
pretty easy to see why owners of a modern line might want to replace people doing
boring, repetitive work—even if well-paying—with mindless machines.

Not an Assembly Line

My assembly line metaphor really falls short in a particular way that would have
annoyed Alan Turing. A Turing machine mandates having the ability to test
results and then branch, something assembly lines do not do. Much work has
been done by Intel and other CPU vendors on branch prediction, because CPUs

do include miniature assembly lines, called pipelines, which work best when kept
filled with both instructions and data. A missed branch invalidates all the work
already done by the pipeline, another cause of delay in our speedy processors.
These missed branches also mean changes stored in the fastest (L.1) cache, mean-
ing more delays waiting for the slower caches and much slower memory.

The inflexibility of real assembly lines is actually a problem for manufacturers.
Setting up an assembly line takes time and money, so manufacturers want to con-
tinue to use each line for as long as possible. Another problem, similar to the CPU’s
test and branch, occurs when one stage of the assembly line breaks down: the
entire line stops. I got to visit a truck frame assembly line once, while I was visiting
afactory that was investigating ways of manufacturing frames without using the
traditional assembly line. That company wanted a system that was both more flex-
ible and capable of keeping production going even if one stage breaks down or runs
out of supplies.



Locality of instructions is just as important as careful arrangement of data. You
are probably aware of several techniques that help with the locality of instructions.
Loop unrolling involves doing more work before the (potentially) terminating test
instruction. Function inlining replaces a function call with the set of instructions
that act on the calling arguments. Both make the code larger, but both reduce the
amount of jumping to other locations in memory.

Another technique, which evolved during the late *80s, I believe, was the use of
re-entrant libraries. Instead of statically linking libc into every binary, libc gets
shared among all programs that use it, through being dynamically linked. This
allows just one copy of libec to be present in memory, more likely just the parts of it
currently in use, instead of those same parts being loaded into many locations in
memory.

Kernel samepage merging [4] is a more recent development that also helps to avoid
having multiple copies of the same instructions in memory. Originally developed
to reduce the memory footprint of running multiple VMs, where you'd expect there
to be lots of duplicate pages if you are running the same OS in many VMs, KSM is
now recommended for use even on systems where you are not running VMs.

FlexSC [5] represents another advance in dealing with memory issues caused by
system calls. In almost all systems since the dawn of multiprocessing, a special
instruction triggers an exception that is handled by the kernel’s system call inter-
face. While the kernel executes, it uses its own instructions and data, necessitating
the replacement of cache lines used by the currently waiting program. Besides the
replacement of user mode instructions and data in various cache levels, other data
also gets flushed, such as entries in the data translation look-aside buffer (dTLB),
used to convert virtual to physical addresses. In the FlexSC paper, these side
effects of a system call exception can decrease the number of instructions com-
pleted per CPU clock cycle (IPC) by 20% to 60%.

To fit this into the assembly line metaphor, an exception-based system call is like
taking a portion of the parts supply for an assembly line and using it to support a
completely different assembly line. This analogy is a forced one, as system calls are
actually working on behalf of the program being executed. But it is as if a second
assembly line gets called into play, one that shares the same supply stream, and
that interference results in less work being completed overall.

The Lineup

We start this issue with an article about a tool for determining the correct balance
of memory, disk, and SSD for a server application. Madhyastha et al. explain how
their tool, scc, takes into account SLAs and the need for storing and access data,
and is able to both reduce cost while suggesting appropriate changes in the propor-
tions of storage devices used. Their implementation of scc is available for download
(http://www.cs.ucr.edu/~harsha/scc/).

David Slik describes Cloud Data Management Interface (CDMI), an open proto-
col for storage data transfer and management for cloud and object storage sys-
tems. David first explains the goals of the standard and then demonstrates how
its RESTful interface can be used (with curl). CDMI is designed so that storage
providers can supply just those portions of the interface that are applicable to the
services they provide, and the standard can be extended whenever support for a
new interface becomes sufficiently common.
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Yanpei Chen and his co-authors revisit work they did for a workshop paper on TCP
incast. TCP incast occurs when many servers attempt to reply with data simulta-
neously, resulting in much lower data transfer. In their article, they explain incast,
supply equations for modeling incast, demonstrate the fit of their equations to
experimental data, and show how a simple solution can reduce the effects of incast,
with several examples of popular distributed systems, including Hadoop.

Robert Escriva and his co-authors, having taken a hard look at current NoSQL
solutions, decided that another approach is warranted. They have created Hyper-
Dex, a system that provides consistency and reliability guarantees while outper-
forming popular systems such as Cassandra on benchmarks. In their article, they
explain how they use a multi-dimensional space for indexing and node assignment,
and how HyperDex manages to be both fast and consistent. Along the way, they
highlight issues involving NoSQL solutions.

In my interview with Nathan Milford of Outbrain, I get him to discuss his use of’
Cassandra. Nathan is both an architect and a sysadmin for his company, and I can
tell that he feels comfortable and secure in his decision to use Cassandra, along
with several other tools for distributed computing.

Doug Hughes wanted to write about a series of incidents that befell his organiza-
tion, including the near loss of almost a petabyte of data. Doug describes the diag-
nostics for several hardware and networking-related problems in terms that will
be familiar to most system administrators, and ends each story with some lessons
learned. Along the way he describes some useful hardware features.

David Blank-Edelman has decided to discuss the weather in his Perl column. Well,
perhaps it would be more accurate to say that he explains how to fetch weather
information for particular locations using three different APIs using two different
Perl modules for parsing the information. This is not just for weather junkies, but
for anyone with the need to pull information out of XML or JSON-encoded data.

David Beazley takes us beyond the basics of Python’s lists, sets, and dictionaries,
using libraries that will be included with any Python install after versions 2.7 and
3.3. David presents some useful techniques with collections. The Counter and
defaultdict objects are dictionaries but with special features, and David provides
examples of how to use them, including in analyzing Web logs.

Dave Josephsen begins by being mystified by a coworker who feels that “brothify-
ing” his food will make it more absorbable, but then goes on to tie this concept into
making it easier to scale Nagios to more hosts. The Check_MK tool makes collect-
ing multiple checks from a host appear as a single check to Nagios, while simplify-
ing the configuration on the host.

Robert Ferrell was intrigued with the multiple dimensions used in HyperDex and
decides to invent his own hyper-dimensional quantum computer. Then he worries
about keeping track of data in the cloud, and visualizes techniques for monitoring
data as it replicates.

While Elizabeth Zwicky takes a well-deserved break, six other book reviewers
tackle six different books. Mark Lamourine discusses Jenkins: The Definitive
Guide, covering a large book about an ever larger topic, an automated build system.
Brandon Ching covers Webbots, Spiders, and Screen Scrapers, a second edition
about collecting, storing, and processing data collected from the Web, whether
from a single page or a wide sweep. Jeff Berg really liked The Tangled Web, abook



for anyone who needs to secure Web applications. Evan Teran takes alook at A
Bug Hunter’s Diary, a book targeted at those interested in learning how to find and
exploit code vulnerabilities present in various popular software programs. Peter
Salus considers A Culture of Innovation, a collection of narratives by 19 individu-
als who have worked at BBN over the years. And, finally, I review D is for Digital,
certainly the easiest read of this lot, but also a useful book to give to any educated
person who wants to know more about computers and networking.

This issue concludes with summaries from the USENIX FAST conference. I've
always enjoyed FAST, possibly because it combines hardware and software,
academic and commercial research, into a single conference. The scc tool (Mad-
hyastha et al.) was presented as a FAST paper, and there are many other excellent
papers summarized in this issue.

Even though the authors of FlexSC have demonstrated that the effects of system
calls go well beyond the side-effects of a software interrupt—saving register and
other process state, performing the system call (potentially blocking), then restor-
ing process state and continuing to execute in user mode—not much has changed
since then. CiteSeerX shows only three citations, and FlexSC has certainly not
become a part of the Linux kernel. Yet Apache httpd runs twice as fast with
FlexSC, and there are few proposed system-level changes that have such strong,
positive effects. I am left wondering whether there are other, better methods for
avoiding cache pollution caused by system calls, or are there perhaps architecture
advances on the hardware side that will lead to a more efficient system call inter-
face?

Resources

[1] Musings, ;login:, June 2011, vol. 36, no. 3.

[2] Chevrolet Assembly line in 1936: http://youtu.be/HPpTK2ezxLO.
[3]1 BMW in 2010: http://youtu.be/ KEQdn57Kz1Q.

[4] Kernel samepage merging: http://www.linux-kvm.org/page/KSM.

[5] Livio Soares and Michael Stumm, “FlexSC: Flexible System Call Scheduling
with Exception-LessSystem Calls™ https://www.usenix.org/conference/osdil0/
flexsc-flexible-system-call-scheduling-exception-less-system-calls.
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Today, application providers can choose from a range of storage choices to provi-

sion their infrastructure for cluster-based applications. Each storage technol-

ogy presents a different point in a complex tradeoff space of cost, capacity, and

performance. To help application providers choose from these alternatives, we

developed scc [1] to automate the selection of cluster storage configurations based

on a formal specification of applications, hardware, and workloads. Our tool allows

administrators to understand how high-level workload characteristics influence

the cluster architecture, and in applying scc to several representative deployment

scenarios, we show how it can enable 2x-4.5x cost savings when compared to tra-

ditional scale-out techniques.

Identifying an appropriate cluster architecture to host alarge-scale service is

often not straightforward. Given a set of resources to choose from (e.g., as shown

in Table 1), an application provider has to answer several questions. What storage

technologies should be employed, and how should data be partitioned across them?

Where should caching be employed? What types of servers should be chosen to

house the selected storage units?



In addition, even if the application’s implementation is efficient and there is
coarse-grained parallelism in the underlying workload, how will algorithmic shifts
in the application or variations in workload affect the appropriate cluster architec-
ture? Our goal is to automate the process of answering these questions, rather than
relying solely on human judgment.

Resource MB/s 1I0PS Watts Cost
7.2K Disk 90 (R) 125 (R) 5 $213
(500 GB) 90 (W) 125 (W)
15K Disk 150 (R) 285 (R)
(146 GB) 150 (W) 185 (W) 23 3256
SSD 250 (R) 2500 (R)
4 4
(32GB) 80 (W) 1000 (W) 2 §456
DRAM 12.8K (R) 1.6B(R) . 535
1GB) 12.8K (W) 1.6B (W) '
CPU core — — 20 $137
Server type Resource Limits Cost
4 cores, 1 Gbps network

Serverl 12GB DRAM, 4 SAS slots §1400

16 cores, 10 Gbps network
Server? 48GBDRAM, 16 SAS slots $1850

32 cores, 10 Gbps network

’ $11000

Servers 512GB DRAM, 16 SAS slots

Table 1: Example set of hardware units input to scc. Cost is price plus energy costs for three
years.

In developing scc, we show how to systematically exploit storage diversity, i.e.,
select among different physical media, local and remote storage, and various
caching strategies. First, we determine how the characteristics of applications,
workloads, and hardware should be specified in order to automate the selection

of cluster configurations. To do so, we study several representative deployment
scenarios and identify a parsimonious yet sufficiently expressive set of parameters
that capture the tradeoffs offered by different types of storage devices and the
varying demands across application components. To characterize applications,

we leverage developer knowledge and standard techniques to trace the execu-

tion of applications, and, once developed, application models can be reused across
deployments. Second, we implement scc, a storage configuration compiler, to take
specifications of applications, workloads, and hardware as input, automatically
navigate the large space of storage configurations, and zero in on the configuration
that meets application SLAs at minimum cost.
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Figure 1: scc takes formal specifications of

applications, hardware, and SLA metrics as
input. It outputs a cost-versus-SLA distribu-
tion, while determining the minimum cost
cluster configuration for every SLA value.

Tasks Datasets
Photo Upload Oﬂ,
S Photos
Thumbnail :' 1 x 200KB, remot(e;pﬁ;lstent
Conversion
1 X5 Thumbnails
Writing Tags remo(lsbpgg;stenr
10 x 4KB
Viewing 1o x 1KB
Photos (Tag, Photos)
Mapping
Viewing remote,persistent
Tags o 1x 1KB (2GB)

Figure 2: Interaction between tasks and
datasets in example photo-sharing applica-
tion. Edges between tasks and datasets
represent |/O with direction differentiating
input and output. Dotted edges indicate task
dependencies.
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Specifying scc’s Inputs

As shown in Figure 1, scc takes three inputs: (1) a model of application behavior,
specified in part by the application’s developer and in part by the administrator
deploying the application; (2) characteristics of available hardware building blocks
specified by the infrastructure provider; and (3) application performance metrics,
i.e., aparameterized service level agreement (SLA) (e.g., a Web service SLA might
specify a peak query rate per second). Given these inputs, scc computes how cluster
cost varies as a function of the SLA and outputs a low-cost cluster configura-

tion that meets the SLA at each point in the space. scc’s output cost vs. SLA value
distribution helps administrators decide what performance can be supported cost
effectively.

While there has been prior work on similarly configuring storage based on formal
specifications of workloads and hardware [2, 3], these prior approaches take as
input the workload demands on every component of the application (e.g., the I/O
rates to be satisfied by a logical volume of data). In practice, application providers
seek to satisfy SLAs that are specified at a higher level. For example, in a photo-
sharing Web service, the target may be to cope with a certain rate of photo uploads
and downloads. To translate such SLA requirements into demands on individual
application components, we need a model of the application.

Our characterization of applications accounts for two aspects: its implementation
and the workload in its planned deployment. To capture an application’s implemen-
tation, we first ask the application’s developer to describe its decomposition into
compute and storage components, and the interaction between them. We account
for various characteristics of these components, such as whether the application
runs in multiple phases, the I/O operations it performs in response to particular
inputs, and the dependencies between different parts of the application.

For example, Figure 2 depicts the components, and the interaction between them,
for an example photo-sharing Web service. Although we place the onus on applica-
tion developers to formally specify the components of their application, an applica-
tion’s specification is reusable across deployments.

Second, we enable those who deploy an application to annotate the specification
of the application’s architecture with properties of the expected workload in their
deployment. To do so, we require that the compute and I/O characteristics of an
application’s components, when subjected to the target workload, be determined by
running small-scale application benchmarks. We characterize compute compo-
nents by their memory requirements and storage components by their storage
capacity and persistence needs. We also label I/O operations and inter-component
dependencies with properties such as the record size being read/written, and
whether these operations are synchronous or asynchronous. The former helps
differentiate between random and sequential I/O, while the latter determines

the application’s ability to trade off latency with throughput. Extracting these
properties requires tracing the application’s execution, now standard practice in
resource-intensive performance-critical applications. In the absence of built-in
tracing support, systems like Magpie [4] can be leveraged.

Automating the Navigation of the Configuration Space

scc determines the cost versus SLA distribution for a given application deployment
by considering the configuration for each point in the distribution independently.



To compute the cluster configuration for a target SLA, scc needs to determine the
architecture of the cluster (the types of storage media to be used for each dataset
and the types of servers used to host storage units and CPUs) and the scale at
which this architecture must be instantiated (the number of servers, storage units,
and CPUs, as well as the level of parallelism of each application task) to meet the
SLA.

Guiding Principles

Two key principles help scc identify the right cluster configuration. First, the
architecture and scale for every application component can be determined inde-
pendently when all operations are performed asynchronously, but not when some
operations are synchronous. The SLA for any task only specifies the rate at which
atask’s execution path must run. In the typical case, where a task’s execution path
contains some operations that block others, scc needs to determine the “division
of labor” across these operations that minimizes cost. For example, in a task that
reads from an input dataset and then writes to an output dataset, in order to meet
the task’s SLA it may suffice to provision fast storage for any one of the two data-
sets; provisioning fast storage for both datasets may unnecessarily result in higher
cost due to storage capacity requirements, whereas slow storage for both may incur
higher costs in satisfying I/O throughput needs. Hence, scc jointly determines
resource requirements across all application components.

Second, since scc provisions for peak load, it prevents over-provisioning by ensur-
ing that at least one resource is bottlenecked on every server at peak load. (If the
application provider wants to run the cluster at lower peak utilization, that can be
specified as input.) Based on our characterization of hardware, there are four pos-
sible bottlenecks on each server: (1) the number of slots, (2) the bandwidth on an
1/0 controller, (3) the number of CPU cores, (4) network bandwidth.

Algorithm

Driven by the need for joint optimization across components, scc represents

each point in the configuration space by the assignment of storage unit types to
datasets. This assignment suffices to represent each configuration because, given
this information, we can compute the number of storage units of each type and the
number of CPUs necessary to meet the SLA. We can then compute the number of
servers of each type required to accommodate these resources. As aresult, if Sis
the number of storage choices and D is the number of datasets, scc has to search
through a space of O(SP) configurations; for each dataset, scc can choose any one
of the S storage options.

In cases where the configuration space is too large to perform an exhaustive
search, scc performs a repeated gradient descent search. We start with a randomly
chosen configuration.

In each step, we consider all neighboring configurations—those which differ in
exactly one dataset’s storage-type assignment—and move to the configuration
that still meets the SLA with the maximum decrease in cost. We repeat this step
until we find a configuration where all neighbors have higher cost. Since gradient
descent can lead to alocal minimum, we repeat this procedure multiple times with
different randomly chosen initial configurations and settle on the minimum cost
output across the multiple attempts. In our evaluation, we have found that repeat-
ing the gradient descent 10 times is typically sufficient to find a solution close
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to the global minimum. Therefore, even when determining the configuration to
satisfy workloads of tens of thousands of queries per second, scc’s running time for
any particular SLA is within a minute.

S storage
options

P ;

. _J
~N

sPcandidate storage type assignments

Storage and compute costs

Compute 1) no. of
storage units of each
type, and 2) no. of

Start with random
storage type

CPUs to meet SLA assignment
A4
ILP formulation for Compute cost for every ‘ﬁ
server costs neighboring storage
Constraints: type assignment tShlfl to _storaget
1. I/O bus bandwidth cype ass@g.:‘e?
2. 1/0 slots orr?nsizon |tg 0
3. CPU cores in cost
configuration

4. Network bandwidth
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Figure 3: scc represents every configuration by the storage type assignments for each of the
application’s datasets, and searches through this space with gradient descent (with multiple

randomly chosen initial configurations) to find the minimum cost configuration.

At the heart of scc’s search of the configuration space (summarized in Figure

3) is a procedure that, given any particular assignment of storage types to data-
sets, determines a cost-effective set of resources to meet the target SLAs. In this
procedure, scc first determines for each remote dataset (i.e., not local to any task)
the number of storage units required of the type assigned to the dataset in the
configuration state. Second, scc determines the number of CPUs required by every
task and the number of storage units of the assigned type needed by the task’s local
datasets. Finally, it solves a linear integer program to determine the types of serv-
ers and number of each kind required to minimize overall cluster cost.

Heterogeneous Configurations Beat Scale-Out

We have applied scc to three distributed applications with distinctly different
workload characteristics: (1) a product search Web service modeled on Google
Merchant Center, (2) Terasort, a MapReduce job to sort large tuple collections, and
(3) a photo-sharing Web service modeled on Flickr. We validated scc by deploying
these applications on a range of cluster configurations and measuring application
performance on these configurations.
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Figure 4: lllustration of transition in minimum
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resources.

In applying scc to these diverse application workloads, we repeatedly find that
clusters with heterogeneity—rather than conventional homogeneity—across serv-
ers are necessary to optimize cost. The resources required differ across applica-
tion components due to the varying ratios of capacity, compute, and I/O throughput
needs across components. Figure 4 shows an example of how scc’s recommended
configuration for our example product search Web service changes when the input
workload is increased. First, we note that different application components are
hosted on servers equipped with different types of storage. Second, the types of
hardware resources allocated to the same application component radically change,
rather than resources simply being increased in quantity, when the workload is
increased.

Transitions in Cost-Optimal Storage Configurations

In applying scc to our exemplar applications, we also find that the most cost-effec-
tive cluster architecture depends not only on the application being provisioned

but also on the workload and performance requirements. Data that was initially
capacity-bound may become I/O-bound at higher loads, calling for shifts from high
capacity but slow storage, e.g., disks, to low capacity but fast storage, e.g., SSDs. As
aresult, cluster configurations output by scc for our exemplar photo-sharing and
product search applications result in 2x-4.5x average savings in cost compared to
similarly performant scale-out options.
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Figure 5: (a) Cost versus SLA distribution output by scc for example photo-sharing applica-
tion, with (b) the corresponding regimes in the cost-effective architecture. Simply scaling out
alternate configurations inflates cost by 3x-4.5x on average.
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As an example, Figure 5(a) shows the cost distribution output by scc across arange
of SLA values for our photo-sharing application. Perhaps surprisingly, no huge
spikes are observed in this distribution; this is because scc balances costs across
the kind of storage, the number of CPUs, and the number of machines provisioned.
Rather than adding more machines of the same type, the cluster architecture
transitions to faster storage as the SLA becomes more stringent, with transitions
in storage type for different datasets seen at different SLA values.

Figure 5(b) highlights these transitions. Note that the quantity in which different
types of resources are provisioned varies within each architecture regime speci-
fied by every row in the table.

We further compare the cost output by scc with the cost associated with a scale-
out approach. We compare the scc configuration to the cases where the building
block is based around: (1) storage servers with four 7.2k-RPM disks (the cost-
optimal storage type for all datasets at the lowest SLA), and (2) servers with four
15k-RPM disks. In either case, more storage servers are added as the required rates
increase. Figure 5(a) shows that the costs in both cases are significantly greater
than with sce, incurring between 3 and 4.5 times more cost (note the logarithmic
y-axis). Thus, simply scaling out a homogeneous configuration that is cost-effec-
tive at low loads can result in significant cost inflation at higher loads.

How Robust Are sce’s Recommendations?

scc’s output cluster configuration for a target SLA is a function of both the SLA
and the values specified for the various attributes in the application and hardware
specifications. In practice, an administrator may not have precise values for all
attributes due to incomplete knowledge of the application workload, uncertainty of
hardware costs, or measurement inaccuracy in benchmarking the application.

Range with same architecture

Attribute

Lowest value Input value Highest value
Avg. photo size 50 KB 200KB 850KB
Avg. thumbnail size 1KB 4 KB 30KB
SSD unit price $200 $450 $900
Dataset Most sensitive to what change in hardware costs?
Photos 20% drop in $ of 7.2K-RPM disk
Thumbnails 92% drop in $ of DRAM
Tags 31% drop in $ of 15K-RPM disk

Table 2: (a) Robustness of scc’s output with respect to input values for a sample set of at-
tributes; (b) the change in hardware costs to which scc's storage decision for each dataset is
most sensitive.

scc is naturally built to cope with such uncertainty. For every attribute in the input
specifications, scc varies the value of the attribute in the neighborhood of the ini-

tially specified value. For each attribute, it then outputs the range of values for that
attribute wherein the cost-effective cluster architecture, i.e., the types of resources



assigned to different application components, remains unchanged; variance of the
attribute’s value within this range can be handled by simply adding more resources
of the same type. Outside of that range, the cluster will need to be revamped with

a different type of resource for some application component, a more onerous under-
taking. For example, we consider our example photo-sharing service with an SLA
of 100 uploads/s, 300 photo views/s, and 100 tag views/s. Table 2(a) shows the
value ranges output by scc for a few attributes, within which the cluster architec-
ture is robust to change. For example, we see that as long as the average photo size
remains between 50 KB and 850 KB, the cluster architecture remains the same as
that obtained with the input value of 200 KB.

Furthermore, scc can also evaluate the sensitivity of its choice of storage configu-
ration for every dataset in the application. For example, consider our photo-sharing
Web service again with the same input SLA as above. Based on current hardware
costs, scc determines that photos be stored on 15k-RPM disks, thumbnails be
stored on SSDs, and tags be stored persistently on 7.2k-RPM disks and cached in
DRAM, in order to meet the SLA at minimum cost. However, these recommenda-
tions are likely to change as prices for storage units drop. scc can determine the
robustness of its storage option choice in response to such changes in hardware
prices. To do so, it varies the price of every type of storage unit from its input value
down to 0, and notes the inflection points at which the optimal storage choice for
some dataset changes. Based on this analysis, it can determine, for every dataset,
that change in hardware price to which the current storage choice for the dataset
is most sensitive. Table 2(b) shows that while the storage choices for photos and
tags are sensitive to relatively small reductions in the prices for 7.2k-RPM and 15k-
RPM disks, scc’s recommendation of storing thumbnails on SSDs is very robust to
price fluctuations.

Conclusion

The primary thesis of our work is that the choice of cluster hardware for an appli-
cation should be informed by the interaction between the application’s behavior
and the properties of hardware. Rather than relying on human judgment to do so,
we developed scc to compile formal specifications of these inputs into cost-effec-
tive cluster configurations. We have applied scc to a range of application workloads
and storage options to demonstrate that scc captures sufficient detail to identify
the appropriate hardware at any given scale. We find that scc often recommends
heterogeneous cluster architectures that result in significant cost savings com-
pared to traditional scale-out approaches.

Our implementation of scc is available for download at http://www.cs.ucr.edu/
~harsha/scc/.
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In early 2009, recognizing the growing importance of cloud storage, and build-
ing on top of the earlier XAM object storage standard [1], the Storage Networking
Industry Association (SNIA) [2] started a new technical working group with the
primary goal of creating an industry standard for cloud storage. The result was
the Cloud Data Management Interface (CDMI) [3], which was released as a formal
industry standard in 2011 and is currently in the process of becoming an ISO/TEC
standard.

The creation of the CDMI standard has been a collaborative effort, with contribu-
tions from over a hundred storage vendors, end users, and university researchers.
All of the major enterprise storage vendors contributed to the standard, including
Dell, Cisco, EMC, HP, Hitachi Data Systems, Huawei, IBM, Intel, LSI, NetApp,
Oracle, Symantec, and VMware [4]. This represents a unique cross-industry
endorsement of cloud storage, and the results are clearly visible in the breadth of
use cases that CDMI is able to address.

In the year following the initial publication of CDMI, the SNTA has published an
erratarelease of the standard and held four plugfests to demonstrate interoper-
ability and conformance of open source, research, and commercial implementa-
tions. In the coming year, additional milestones will be reached, with major storage
vendors bringing CDMI-compatible systems to market, and work ongoing to add
CDMI to open source platforms, including OpenStack [5].

Design Principles
The following principles guided the design of the CDMI protocol:

¢ Complementary—A key design principle is that CDMI is designed to comple-
ment, not replace, existing NAS, SAN, and object protocols. Traditional file
systems and LUNs can be managed out-of-band using CDMI, in conjunction
with access via NAS and SAN protocols. CDMI can also be used as a self-service
management and/or access protocol alongside other object protocols, such as
OpenStack’s Swift. CDMI adopts many best-practice designs from existing pro-
tocols, such as NFSv4 ACLs, XAM globally unique identifiers, RESTful HT TP,
and JSON structured metadata. Furthermore, as a protocol specification, CDMI
places minimal restrictions on how servers are implemented, allowing it to be
easily added to existing file, object, and cloud servers.

¢ Simple—In order to foster adoption and reduce the cost required to implement
CDM]I, the protocol is designed to be as simple as possible. By building on top
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Figure 1: CDMI requests and responses are
embedded in HTTP sessions.
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of HT'TP, standard libraries and language constructs can be used, reducing the
need for cloud libraries and allowing direct access by JavaScript browser-based
clients. Using standard HTTP authentication and security mechanisms avoids
complex header calculations. And providing the ability to start simple and add
complexity only when needed reduces the learning curve and simplifies client
code. Storing and retrieving your first CDMI object is as easy as:

demo$ curl -X PUT -d 'Hello CDMI World' -k http://127.0.0.1:18080/hello.txt
demo$ curl -X GET -v -k http://127.0.0.1:18080/hello.txt

This simplicity makes CDMI very script-friendly, allowing it to be easily used to
create structured data repositories. At a recent coding challenge, a distributed
CDMI-based temperature monitoring and reporting system was developed in
hours, complete with a Web-based JavaScript front-end that retrieved data
directly from the repository.

¢ Extensible—Recognizing that cloud storage is still in its infancy and that
custom features are often required and desired, CDMI was designed from the
ground up to allow functionality to be added to the standard without breaking
client interoperability. CDMI allows clients to dynamically discover what fea-
tures a server implements, and it allows clients to discover profiles of capabilities
required to perform common use cases. The SNIA also has defined a process by
which emerging extensions can be documented, and once multi-vendor imple-
mentations have been demonstrated, they can then be incorporated into the next
version of the standard.

CDMI as a Storage Protocol

CDMI is an encapsulation protocol based around RESTful HTTP. Representa-
tional State Transfer, or REST, was initially described by Roy Fielding in Chapter
five of his PhD dissertation [6], and codifies a series of architectural patterns

for the creation of Web-scale distributed systems. The key principles of REST-
ful architectures include stateless communication, idempotent operations with
minimal side effects resulting from repeating a given transaction, and the use of
negotiated “representations” for entities that are transferred between clients and

SEervers.

CDMI defines five basic representations (content-types), described in RFC 6208,
which are transferred between a client and a server in HT TP Request Bodies and
HTTP Response Bodies, as illustrated in Figure 1.

While CDMI 1.0 defines JSON-based representations, the standard is structured
such that XML representations can easily be added.

CDMI also defines “Non-CDMI” interactions, where the value is directly trans-
ferred in the HTTP request and response body. This provides the ability for a
CDMI server to act as a standard Web server to unmodified Web clients and
browsers.

A Non-CDMI Request for a stored data object returns a standard HTTP response:

demo$ curl -X GET -v -k http://127.0.0.1:18080/hello.txt

* Connected to 127.0.0.1 (127.0.0.1) port 18080 (#0)

> GET /hello.txt HTTP/1.1

> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7
OpenSSL/0.9.8r zlib/1.2.3


http://127.0.0.1:18080/hello.txt
http://127.0.0.1:18080/hello.txt
http://127.0.0.1:18080/hello.txt

> Host: 127.0.0.1:18080

> Accept: */*

< HTTP/1.1 200 0K

< Content-Type: text/plain
< Content-Length: 16

<

Hello CDMI World

* Closing connection #0

A CDMI Request for the same stored data object returns the CDMI JSON repre-
sentation, which includes additional information about the stored object:

demo$ curl -X GET -v --header 'Accept: application/cdmi-object'--header
'X-CDMI-Specification-Version: 1.0.1" -k http://127.0.0.1:18080/hello.txt
* Connected to 127.0.0.1 (127.0.0.1) port 18080 (#0)

> GET /hello.txt HTTP/1.1

> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7
OpensSSL/0.9.8r zlib/1.2.3

> Host: 127.0.0.1:18080

> Accept: */*

> Content-Type: application/cdmi-object

> X-CDMI-Specification-Version: 1.0.1

>

< HTTP/1.1 200 0K

< Content-Type: application/cdmi-object

< Content-Length: 1033

< Connection: close

< X-CDMI-Specification-Version: 1.0.1

"objectType": "application/cdmi-object",
"objectID": "O0007EDYOO12EQ2F466CT574746572736879",
"objectName": "hello.txt",
"parentURI": "/",
"parentID": "00007ED90010C2A44D4C503A46694D21",
"domainURI": "/cdmi_domains/",
"capabilitiesURI": "/cdmi_capabilities/dataobject/",
"completionStatus'": "Complete",
"mimetype": "text/plain”,
"metadata": {
"cdmi_ctime": "2012-03-20T18:53:46.238543",
"cdmi_mtime": "2012-03-20T718:53:46.238543",
"cdmi_mcount": "1",
"cdmi_owner": "root",
"cdmi_group": "root",
"cdmi_acl": [
{
"identifier": "OWNERQ",
"acetype'": "ALLOW",
"aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT, INHERITED",
"acemask": "ALL_PERMS"

;login:  JUNE 2012 AnIntroduction to CDMI


http://127.0.0.1:18080/hello.txt

18

Jlogin:

VOL. 37, NO. 3

"identifier": "AUTHENTICATEDQ",
"acetype": "ALLOW",
"aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT, INHERITED",

"acemask'": "READ"

}
1,

"cdmi_size": "16"

I

"valuerange'": "0-15",

"valuetransferencoding": "utf-8",
"value": "Hello CDMI World"

}

* Closing connection #0

In the above data object retrieval example, the meaning of the JSON fields in the
HTTP response body is listed in Table 1.

JSON Field Description
. Indicates the type of object described in the JSON
objectType ) . .
body. CDMI mimetypes are defined in RFC 6208.
. Every CDMI object has a globally unique identifier
objectID . . .
that remains constant over the life of the object.
. The name of the object. Present only if the object is
objectName . .
stored in a container.
The URI of the container where the object is stored.
parentURI . . . . .
Present only if the object is stored in a container.
The object ID of the parent container when stored in a
parentID i
container.
. The URI of a domain object corresponding to the
domainURI . . . .
administrative domain that owns the object.
. The URI to a capabilities object describing what can be
capabilitiesURI .
done to the object.
Indicates whether the object is complete or is in the
completionStatus process of being created. This is used for long-running
operations.
mimetype Indicates the mimetype of the value of the data object.
System and user-provided metadata, in JSON format.
Examples of metadata include system properties such
metadata . . . .
as creation time, size, owner, ACLs. Additional user-
specified metadata is also stored.




valuerange Indicates the byte range returned in the value field.

Indicates the encoding of the value field. CDMI

luet. f di
valuetransierencoding supports both UTF-8 and base64 encodings.

value The data stored in the object.

Table 1: JSON fields returned in an example CDMI Data Object retrieval

Each CDMI object type defines different JSON fields that, in turn, define how
objects are set and retrieved, with data objects defined in clause 8, containers
defined in clause 9, domains defined in clause 10, queues defined in clause 11, and
capabilities defined in clause 12.

Example Client Use Cases

To provide a real-world example, let us suppose that we have been tasked with
creating a distributed temperature monitoring system. Our requirements are to
sample the temperature of the processor of each of our servers, storing second
granular samples every minute to a repository, and providing a Web-based front-
end allowing users to visualize temperature across the datacenter.

Using CDMI, a small daemon would be written that runs on each server. This
daemon collects 60 samples of data aligned to a minute, and stores it as a CDMI
object, including user metadata for the start time, end time, server name, system
load average, and processor type.

A JavaScript-based Web page is also served from the CDMI server. When
accessed, the JavaScript program is run within the browser and performs a CDMI
query based on the user metadata stored in the objects. For example, if a user
wishes to see temperature for a given time range, the metadata is used to return
only the temperature values within those time ranges. Various visualizations are
then generated based on the temperature values returned in the query results.

A second example is a scalable cloud-based OCR system. Multiple scanning work-
stations scan documents and store them as a data objects. Once scanned, the object
ID for each data object is enqueued into a CDMI queue object.

Multiple OCR engines are then instantiated within one or more compute clouds,
with the number of instances dynamically varying based on the current size of the
CDMI queue. Each OCR engine checks out a scan from the queue, performs OCR
processing, and generates a new data object containing a PDF. Based on notifica-
tions of the creation of these PDFs, email notifications are then sent to the origina-
tor of the scan, or the PDF shows up in the user’s home directory.

CDMI Functionality

The following sections provide a survey of the functionality defined by the CDMI
standard. To learn more, additional details and examples can be found in the CDMI
standard document [3].

Client-to-Cloud Data Transfer

The first area of scope for the CDMI standard is providing standardized methods
for clients to exchange data for storage in clouds.
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CAPABILITIES DISCOVERY

The CDMI standard mandates that every CDMI server shall provide the abil-

ity for clients to discover what optional parts of the standard are implemented

in a given server. As the CDMI standard addresses many different cloud-related
use cases, allowing an implementer to select the subset of CDMTI’s functionality
specific to their target applications avoids imposing additional development costs
for unneeded functionality. For example, a read-only cloud service is free to only
implement functionality related to retrieval of stored data, whereas a cloud using
CDMI to manage block storage LUNs would only need to implement containers
and the ability to define exports.

Clients discover which parts of the CDMI standard are implemented by inspecting
published “capabilities.” Profiles are also defined to allow clients to determine if
logical sets of related capabilities are implemented.

DATA OBJECTS

CDMI data objects are similar to files, and store a value along with metadata. Data
objects can be accessed by ID and/or name and support partial retrievals and
updates.

CONTAINERS

CDMI container objects are similar to directories and contain named children that
can be listed, along with metadata. Containers can be accessed by ID and/or name
and support partial listing of children. Traditional hierarchies can be created
using sub-containers.

QUEUES

CDMI queue objects are similar to data objects, where multiple values can be
stored in a first-in/first-out manner. Queues are typically used to provide per-
sistent inter-process communication structures between distributed programs
running in the cloud, and are also used as a foundation for advanced CDMI func-
tionality such as query and notification.

NOTIFICATION

CDMI allows clients to request that when stored objects are created, retrieved,
updated, or deleted, notifications of these changes are enqueued into a client-cre-
ated CDMI queue. Clients can specify the characteristics of the objects for which
notifications are generated, based on metadata matching criteria, and can specify
which events are of interest and what information is to be returned in each gener-
ated notification. Notifications allow powerful workflows to be created, where
loosely coupled programs can react to events in the cloud, such as performing
transcoding, format conversion, sending notifications, and synchronizing between
multiple storage systems.

QUERY

CDMI allows clients to perform a query to find all stored objects that match a set
of client-specified metadata matching criteria. Clients can specify which objects
are included in the query results and what information from each object is to be

included for each query result found. Query allows clients to quickly locate stored



objects, which can be used for further processing or displayed as results to end
users.

ACCESS CONTROL

Access to CDMI objects is controlled by ACLs, which define the visibility, read,
write, and deletion privileges. The mapping of client credentials to the ACL
principal is managed via CDMI domains, which allows content administered by
different organizations to co-exist within a single namespace.

Client-to-Cloud Management

The second area of scope for the CDMI standard is providing standardized meth-
ods for clients to manage data stored in clouds.

ADMINISTRATIVE DOMAINS

CDMI introduces the concept of Cloud Domains, which permit clients to manage
credential to identity mapping (think nsswitch for the cloud) and provide account-
ing and summary usage information. Domains are hierarchical, which permits
tenant and subtenant models, along with delegated administration. Every stored
object belongs to a single domain, which controls how the object is accessed and
determines who has administrative control over the object.

DATA SYSTEM METADATA

In order to provide a channel that enables clients to express the data services they
desire for content stored in the cloud and to give cloud storage system feedback to a
client indicating which services are being offered, CDMI introduces a specialized
type of metadata known as Data System Metadata (DSM). Instead of providing
low-level details about storage, such as RAID level, DSM is expressed in terms of
service level objectives, such as desired throughput, latency, and protection.

A client specifies the desired DSM characteristics on individual objects or on con-
tainers of objects, which then propagate their DSM to all child containers and data
objects. This provides hints about how data should be stored internally within the
cloud, allowing a cloud to optimize its internal operations and to charge based on
services requested and thus delivered.

The cloud can then create corresponding DSM feedback items, known as “_pro-
vided” metadata items, that indicate to a client which actual service the client is
receiving. For example, if a client requests three-way replication by setting the
“cdmi_data_redundancy” DSM to the value “3”, but the system can only provide
two-way replication, the “cdmi_data_redundancy_provided” DSM would have the
value “2”.

A complete list of standardized DSM items can be found in clause 16.4 of the CDMI
standard.
RETENTION

CDMI defines a series of DSM that allow restrictions to be placed on stored objects
for compliance, eDiscovery, and regulatory purposes. Objects can be placed under
retention, meaning they cannot be altered or deleted; can be placed under legal hold
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(preventing deletion or modification); and can be automatically deleted when they
are no longer under retention periods or any holds.

SNAPSHOTS

CDMI allows clients to trigger the creation of snapshots on a container-based
granularity. Snapshots can be accessed through the CDMI interface, and provide
read-only access.

EXPORTS

DMI defines the ability to export CDMI containers via standard NAS or SAN
protocols. The same approach can be extended to export CDMI namespaces via
other cloud protocols, or export queues via other queuing protocols such as AMQP
[7]. When combined with cloud computing standards such as OCCI [8] and CIMI
[9], CDMI can provide full storage management services for both traditional block
and file services accessed by cloud computing resources.

LOGGING

CDMI defines a standardized queue-based mechanism by which clients can
receive cloud logging and audit data. This is especially important when a cloud acts
as a proxy or broker and logging data must be aggregated or translated. The CDMI
standard does not define the contents of log messages originating from clouds.

Cloud-to-Cloud Interactions

The third and final area of scope for the CDMI standard is providing standardized
methods for clouds to transfer data with other clouds, both as a result of client
requests and automatically.

GLOBALLY UNIQUE IDENTIFIERS

Every CDMI object has a globally unique identifier that remains constant for the
life of the object, even as objects are moved or replicated across systems provided
by different vendors. This enables location-independent access and allows content
to be migrated and replicated without requiring updates to the client’s knowledge
about how to access the stored data, as the identifier remains constant.

SERIALIZATION/DESERIALIZATION

CDMI objects can be serialized into a JSON format that can be used to

transport objects and their metadata between systems. This provides a portable
representation for backup and restore, as well as cloud-to-cloud transfer, even if it
entails shipping hard drives or tapes storing the data.

CLOUD-TO-CLOUD DATA MOVEMENT

CDMI defines primitives that allow a client to request that a new object be created
from an existing object in the same or a different cloud. This allows the destination
cloud to retrieve the object directly from the source cloud (using credentials from
the CDMI domain, or distributed authentication systems such as OAuth), avoiding
the need to transfer the data to and from the client. This also enables clouds to
provide transparent proxy and broker functions, while still allowing client access
to the underlying clouds themselves.



AUTHENTICATION DELEGATION

CDMI allows resolution of user credentials and mapping to ACL principals to be
delegated, allowing CDMI systems to be easily interfaced both with local identity
management systems such as AD and LDAP and with emerging federated identity
systems.

Future Directions

The SNIA Cloud Technical Working Group encourages interested parties to join
the group, participate in plugfests, and submit extensions to the CDMI protocol.
Following review by the technical working group, extensions are published for
public review. Once two interoperable implementations of an extension are demon-
strated at a plugfest, the extension can then be voted on for incorporation into the
next version of the CDMI standard.

CDMI extensions currently under public review can be found at the SNIA Web site
[10].
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TCP incastis arecently identified network transport pathology that affects many-
to-one communication patterns in datacenters. It is caused by a complex interplay
between datacenter applications, the underlying switches, network topology, and
TCP, which was originally designed for wide area networks. Incast increases the
queuing delay of flows, and decreases application level throughput to far below the
link bandwidth. The problem especially affects computing paradigms in which
distributed processing cannot progress until all parallel threads in a stage com-
plete. Examples of such paradigms include distributed file systems, Web search,
advertisement selection, and other applications with partition or aggregation
semantics [25, 18, 5].

There have been many proposed solutions for incast. Representative approaches
include modifying TCP parameters [27, 18] or its congestion control algorithm
[28], optimizing application level data transfer patterns [25, 21], switch level
modifications such as larger buffers [25] or explicit congestion notification (ECN)
capabilities [5], and link layer mechanisms such as Ethernet congestion control [3,
6]. Application level solutions are the least intrusive to deploy, but require modify-
ing each and every datacenter application. Switch and link level solutions require
modifying the underlying datacenter infrastructure and are likely to be logistically
feasible only during hardware upgrades.

Unfortunately, despite these solutions, we still have no quantitatively accurate and
empirically validated model to predict incast behavior. Similarly, despite many
studies demonstrating incast for micro-benchmarks, we still do not understand
how incast impacts application level performance subject to real life complexi-
ties in configuration, scheduling, data size, and other environmental and work-



load properties. These concerns create justified skepticism on whether we truly
understand incast at all, whether it is even an important problem for a wide class of
workloads, and whether it is worth the effort to deploy various incast solutions in
front-line, business-critical datacenters.

We seek to understand how incast impacts the emerging class of big data work-
loads. Canonical big data workloads help solve needle-in-a-haystack type prob-
lems and extract actionable insights from large-scale, potentially complex and
unformatted data. We do not propose in this article yet another solution for incast.
Rather, we focus on developing a deep understanding of one existing solution:
reducing the minimum length of TCP retransmission time out (RTO) from 200 ms
to 1 ms [27,18]. We believe TCP incast is fundamentally a transport layer problem;
thus, a solution at this level is best.

The first half of this article develops and validates a quantitative model that
accurately predicts the onset of incast and TCP behavior both before and after.
The second half of this article investigates how incast affects the Apache Hadoop
implementation of MapReduce, an important example of a big data application. We
close the article by reflecting on some technology and data analysis trends sur-
rounding big data, speculate on how these trends interact with incast, and make
recommendations for datacenter operators.

Toward an Analytical Model

We use a simple network topology and workload to develop an analytical model for
incast, shown in Figure 1. This is the same setup as that used in prior work [25, 27,
18]. We choose this topology and workload to make the analysis tractable.

Sender 1
Sender 2 Bottleneck

Receiver

Throughput drops to

SenderN 0 small % of link capacity

Figure 1: Simple setup to observe incast

The workload is as follows. The receiver requests k blocks of data from a set of

N storage servers—in our experiments k = 100 and N varies from 1 to 48. Each
block is striped across N storage servers. For each block request received, a server
responds with a fixed amount of data. Clients do not request block k+1 until all the
fragments of block k have been received. This leads to a synchronized read pattern
of data requests. We reuse the storage server and client code in [25, 27, 18]. The per-
formance metric for these experiments is application-level goodput, i.e., the total
bytes received from all senders divided by the finishing time of the last sender.

We conduct our experiments on the DETER Lab testbed [12], where we have full
control over the non-virtualized node OS, as well as the network topology and
speed. We used 3 GHz dual-core Intel Xeon machines with 1 Gbps network links.
The nodes run standard Linux 2.6.28.1. This was the most recent mainline Linux
distribution in late 2009, when we obtained our prior results [18]. We present
results using both a relatively shallow-buffered Nortel 5500 switch (4 KB per port)
and a more deeply buffered HP Procurve 5412 switch (64 KB per port).
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Flow Rate Models

The simplest model for incast is based on two competing behaviors as we increase
N, the number of concurrent senders. The first behavior occurs before the onset of
incast and reflects the intuition that goodput is the block size divided by the trans-
fer time. Ideal transfer time is just the sum of a round trip time (RTT) and the ideal
send time. Equation 1 captures this idea.

Goodputpeforeincast = idealGoodputPerSender X N

_ blockSize
" idealTransferTime

_ blockSize <N
RTT + blockSize

perSenderBandwidth

blockSize

blockSize X N
RTT + linkBandwidth

XN @

Incast occurs when there are some N > 1 concurrent senders, and the goodput drops
significantly. After the onset of incast, TCP retransmission time out (RTO) repre-
sents the dominant effect. Transfer time becomes RTT + RTO + ideal send time, as
captured in Equation 2. The goodput collapse represents a transition between the
two behavior modes.

Goodputiycqse = goodputPerSender X N

_ blockSize <N
" RTO + idealTransferTime

blockSize
= - X N

blockSize
RTO + RTT + perSenderBandwidth

_ blockSize <N @
blockSize x N
RTO + RIT + linkBandwidth

Figure 2 gives some intuition with regard to Equations 1 and 2. We substitute block-
Size =64KB, 256 KB, 1024 KB, and 64 MB, aswell as RTT =1 ms, and RTO =200
ms. Before the onset of incast (Equation 1), the goodput increases as N increases,
although with diminishing rate, asymptotically approaching the full link bandwidth.
The curves move vertically upwards as block size increases. This reflects the fact
that larger blocks result in a larger fraction of the ideal transfer time spent transmit-
ting data, versus waiting for an RTT to acknowledge that the transmission com-
pleted. After incast occurs (Equation 2), RTO dominates the transfer time for small
block sizes. Again, larger blocks lead to RTO forming a smaller ratio versus ideal
transmission time. The curves move vertically upwards as block size increases.

Goodput
(Mbps)
1000 | === 64KB blocks, ideal
800 —— 256KB blocks, ideal
_. —1024KB blocks, ideal
600 P — 64MB blocks, ideal
400 e 64KB blocks, 200ms RTO
POl -~ -256KB blocks, 200ms RTO

Ll e - == 1024KB blocks, 200ms RTO

0 1£hemT i e T L .64MB blocks, 200ms RTO

0 8 16 24 32 40 48
Number of concurrent senders, N
Figure 2: Flow rate model for incast, showing ideal behavior (solid lines, Equation 1) and incast
behavior caused by RTOs (dotted lines, Equation 2). The incast goodput collapse comes from
the transition between the two TCP operating modes.
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Empirical Verification

Goodput = 200ms RTO, measured
(Mbps) see22200ms RTO, model
1000 (1)- 100ms RTO, measured

800 (2).  ceee 100ms RTO, model

600

400

0 8 16 24 32 40 48
Number of concurrent senders, N
Figure 3: Empirical verification of flow rate incast model. Error bars represent 95% confidence

interval around the average of five repeated measurements. This shows that (1) incast goodput
collapse begins at N = 2 senders, and (2) behavior after goodput collapse verifies Equation 2.

This model matches well with our empirical measurements. Figure 3 superposi-
tions the model on our previously presented data in [18]. There, we fix block size at
256 KB and set RTO to 100 ms and 200 ms. The switch is a Nortel 5500 (4 KB per
port). For simplicity, we use RTT = 1 ms for the model. Goodput collapse begins at
N =2, and we observe behavior for Equation 2 only. The empirical measurements
(solid lines) match the model (dotted-lines) almost exactly.

Goodput (1). (2).
(Mbps)
1000
800 —16KB blocks, measured
——32KB blocks, measured
600
~———64KB blocks, measured
400
128KB blocks, measured
200
0+ T T T -
0 8 16 24 32

Number of concurrent senders, N

Figure 4: Empirical verification of flow rate TCP model before onset of incast. RTO is 200 ms.
Error bars represent 95% confidence interval around the average of five repeated measure-
ments. This shows (1) that behavior before goodput collapse verifies Equation 1, and (2) the
onset of incast goodput collapse predicted by switch buffer overflow during slow start (Equa-
tion 3).

We use a more deeply buffered switch to verify Equation 1. As we discuss later,
the switch buffer size determines the onset of incast. Figure 4 shows the behav-
ior using the HP Procurve 5412 switch (64 KB per port). Behavior before goodput
collapse qualitatively verifies Equation 1—the goodput increases as N increases,
although with diminishing rate; the curves move vertically upwards as block size
increases. We can see this graphically by comparing the curves in Figure 4 before
the goodput collapse to the corresponding curves in Figure 2.

Takeaway: Flow rate model captures behavior before onset of incast. TCP RTO domi-
nates behavior after onset of incast.
Predicting the Onset of Incast

Figure 4 also shows that goodput collapse occurs at different N for different block
sizes. We can predict the location of the onset of goodput collapse by detailed mod-
eling of TCP slow start and buffer occupancy. Table 1 shows the slow start conges-
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tion window sizes versus each packet round trip. For 16 KB blocks, 12 concurrent
senders of the largest congestion window of 5864 bytes would require 70368 bytes
of buffer, larger than the available buffer of 64 KB per port. Goodput collapse
begins after N = 13 concurrent senders. The discrepancy of 1 comes from the fact
that there is additional “buffer” on the network beyond the packet buffer on the
switch, e.g., packets in flight, buffer at the sender machines, etc. According to this
logic, goodput collapse should take place according to Equation 3. The equation
accurately predicts that for Figure 4, the goodput collapse for 16 KB, 32 KB, and 64
KB blocks begin at 13,7, and 4 concurrent senders, respectively, and for Figure 3,
the goodput collapse is well underway at 2 concurrent senders.

perSenderBuf fer

3

NinitialGoodputCollapse = largestSlowStartCwnd

Round trip | 16KBblocks | 32KB blocks | 64KB blocks | 128KB blocks

1 1,448 1,448 1,448 1,448
2 2,896 2.896 2.896 2.896
3 5,792 5,792 5,792 5,792
4 5,864 11,584 11,584 11,584

10,280 23,168 23,168
6 19,112 46,336
7 36,776

Table 1: TCP slow start congestion window size in bytes versus number of round trips. We veri-
fied using sysctl that Linux begins at 2x base MSS, which is 1448 bytes.

Takeaway: For small flows, the switch buffer space determines the onset of incast.

Second Order Effects

Figure 4 also suggests the presence of second-order effects not explained by Equa-
tions 1 to 3. Equation 3 predicts that goodput collapse for 128 KB blocks should
begin at N = 2 concurrent senders, while the empirically observed goodput collapse
begins at N = 4 concurrent senders. It turns out that block sizes of 128 KB represent
atransition point from RTO-during-slow-start to more complex modes of behavior.

We repeat the experiment for block size =128 KB, 256 KB, 512 KB, and 1024 KB.
Figure 5 shows the results, which includes several interesting effects.



Goodput
(Mbps) 3). @). ). 1024KB blocks, measured

1000 ~—512KB blocks, measured
/ —— 256KB blocks, measured
800 — 128KB blocks, measured

1024KB blocks, modeled, 0.6x RTO

1024KB blocks, modeled, 1.0x RTO
------ 512KB blocks, modeled, 0.8x RTO
----- 512KB blocks, modeled, 1.5x RTO
-===-256KB blocks, modeled, 1.0x RTO

0 8 16 24 32 40 48 ===-128KB blocks, modeled, 1.0x RTO
Number of concurrent senders, N

600

400

200

Figure 5: Second-order effects other than RTO during slow start. Measurements done on HP
Procurve 5412 switches (64 KB per port). RTO is 200 ms. Error bars represent 95% confidence
interval around the average of five repeated measurements. Showing (1) partial RTOs more
accurately modeling incast behavior for large blocks, (2) transition between single and multiple
partial RTOs, and (3) triple duplicate ACKs causing more gradual, block size-independent
onset of incast.

First, for block size = 512 KB and 1024 KB, the goodput immediately after the
onset of incast is given by Equation 4. It differs from Equation 2 by the multiplier
o for the RTO in the denominator. This o is an empirical constant and represents
a behavior that we call partial RTO. What happens is as follows. When RTO takes
place, TCP SACK (turned on by default in Linux) allows transmission of further
data, until the congestion window can no longer advance due to the lost packet.
Hence, the link is idle for a duration of less than the full RTO value. Hence we call
this effect partial RTO. For block size = 1024 KB, a.is 0.6, and for block size = 512
KB, ais 0.8.

blockSize
GUOdputheforel'nmst = blockSize X N XN (O]
a X RTO + RTT + 7—p—g—77
linkBandwidth

Second, beyond a certain number of concurrent senders, o transitions to
something that approximately doubles its initial value (0.6 to 1.0 for block size =
1024 KB, 0.8 to 1.5 for block size = 512 KB). This simply represents that two partial
RTOs have occurred.

Third, the goodput collapse for block size = 256 KB, 512 KB, and 1024 KB is more
gradual compared with the cliff-like behavior in Figure 4. Further, this gradual
goodput collapse has the same slope across different block size. Two factors
explain this behavior. First, flows with block size greater than 128 KB have a lot
more data to send even after the buffer space is filled with packets sent during
slow start (Equation 3 and Table 1). Second, even when the switch drops packets,
TCP can sometimes recover. Empirical evidence of this fact exists in Figure 4.
There, for block size = 16 KB and N = 13 to 16 concurrent senders, at least one of
five repeated measurements manages to get goodput close to 90% of link capacity.
Goodput collapse happens for other runs because the packets are dropped in a way
that a connection with little additional data to send would observe only a single

or double duplicate ACK and would go into RTO soon after. Larger blocks suffer
less from this problem because the ongoing data transfers trigger triple duplicate
ACK with higher probability. Thus, the connection retransmits, enters congestion
avoidance, and avoids RTO. Hence the gradual goodput collapse.
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We should point out that SACK semantics are independent of duplicate ACKs,
since SACK is layered on top of existing cumulative ACK semantics [23].

Takeaway: Second-order effects include partial RTO due to SACK, multiple partial
RTOs, and triple duplicate ACKs causing more gradual onset of incast.

Good Enough Model

Unfortunately, some parts of the model remain qualitative. We admit that the full
interaction between triple duplicate ACKs, slow start, and available buffer space
requires elaborate treatment far beyond the flow rate and buffer occupancy analy-
sis presented here.

That said, the models here represent the first time we quantitatively explain major
features of the incast goodput collapse. Comparable results in related work [28, 25]
can be explained by our models also. The analysis allows us to reason about the
significance of incast for future big data workloads later in the article.

Incast in Hadoop MapReduce

Hadoop represents an interesting case study of how incast affects application-level
behavior. Hadoop is an open source implementation of MapReduce, a distributed
computation paradigm that played a key part in popularizing the phrase “big data.”
Network traffic in Hadoop consists of small flows carrying control packets for var-
ious cluster coordination protocols, and larger flows carrying the actual data being
processed. Incast potentially affects Hadoop in complex ways. Further, Hadoop
may well mask incast behavior, because the network forms only a part of the over-
all computation and data flow. Our goal for this section is to answer whether incast
affects Hadoop, by how much, and under what circumstances.

We perform two sets of experiments. First, we run stand-alone, artificial Hadoop
jobs to find out how much incast impacts each component of the MapReduce data
flow. Second, we replay a scaled-down, real-life production workload using previ-
ously published tools [17] and cluster traces from Facebook, a leading Hadoop user,
to understand the extent to which incast affects whole workloads. These experi-
ments take place on the same DETER machines as those in the previous section.
We use only the large buffer Procurve switch for these experiments.

Stand-alone jobs

Table 2 lists the Hadoop cluster settings we considered. The actual stand-alone
Hadoop jobs are hdfsWrite, hdfsRead, shuffle, and sort. The first three jobs stress
one part of the Hadoop I/0O pipeline at a time. Sort represents a job with 1-1-1 ratio
between read, shuffled, and written data. We implement these jobs by modifying
the randomwriter and randomtextwriter examples that are pre-packaged with
recent Hadoop distributions. We set the jobs to write, read, shuffle, or sort 20 GB of
terasort format data on 20 machines.



EXPERIMENT SETUP

Parameter

Values

Hadoop jobs

hdfsWrite, hdfsRead, shuffle, sort

TCP version

Linux-2.6.28.1, Ims-min-RTO

Hadoop version

0.18.2,0.20.2

Switch model

HP Procurve 5412

Number of machines

20 workers and 1 master

fs.inmemory.size.mb

75,200

io.file.buffer.size 4096,131072

io.sort.mb 100, 200
io.sort.factor 10,100

dfs.block.size 67108864, 536870912
dfs.replication 3,1
mapred.reduce.parallel.copies 5,20

mapred.child. java.opts -Xmx200m, -Xmx512M

Table 2: Hadoop parameter values for experiments with stand-alone jobs

The TCP versions are the same as before—standard Linux 2.6.28.1, and modified
Linux 2.6.28.1 with tcp_rto_min set to 1 ms. We consider Hadoop versions 0.18.2
and 0.20.2. Hadoop 0.18.2 is considered a legacy, basic, but still relatively stable
and mature distribution. Hadoop 0.20.2 is a more fully featured distribution that
introduces some performance overhead for small jobs [17]. Subsequent Hadoop
improvements have appeared on several disjoint branches that are currently being
merged, and 0.20.2 represents the last time there was a single mainline Hadoop
distribution [30].

The rest of the parameters are detailed Hadoop configuration settings. Tuning
these parameters can considerably improve performance, but requires specialist
knowledge about the interaction between Hadoop and the cluster environment.
The first value for each configuration parameter in Table 2 represents the default
setting. The remaining values are tuned values, drawn from a combination of
Hadoop sort benchmarking [1], suggestions from enterprise Hadoop vendors [4],
and our own experiences. One configuration worth further explaining is dfs
.replication. It controls the degree of data replication in HDF'S. The default
setting is threefold data replication to achieve fault tolerance. For use cases
constrained by storage capacity, the preferred method is to use HDFS RAID [14],
which achieves fault tolerance with 1.4x overhead, much closer to the ideal onefold
replication.
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RESULTS
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Figure 6: Hadoop stand-alone job completion times and incast overhead. Measurements
done on HP Procurve 5412 switches (64 KB per port). The error bars show 95% confidence
intervals from 20 repeated measurements. The confidence intervals are not overlapping for
both settings.

Figure 6 shows the results for Hadoop 0.18.2. We consider two performance met-
rics: job completion time and incast overhead. We define incast overhead according
to Equation 5, i.e., the difference between job completion time under default and 1
ms-min-RTO TCP, normalized by the job completion time for 1 ms-min-RTO TCP.
The default Hadoop has very high incast overhead, while for tuned Hadoop, the
incast overhead is barely visible. However, the tuned Hadoop-0.18.2 setting leads
to considerably lower job completion times.

t = jobCompletionTime

taefauittce — tims—min—RTO

IncastOverhead =

tims—min-RTO 2
The results illustrate a subtle form of Amdahl’s Law, which explains overall
improvement to a system when only a part of the system is being improved. Here,
the amount of incast overhead depends on how much network data transfers
contribute to the overall job completion time. The default Hadoop configura-
tions result in network transfers contributing to a large fraction of the overall job
completion time. Thus, incast overhead is clearly visible. Conversely, for tuned
Hadoop overall job completion time is already low. Incast overhead is barely visible
because the network transfer time is low.

We repeat these measurements on Hadoop 0.20.2. Compared with Hadoop 0.18.2,
the more recent version of Hadoop sees a performance improvement for the default
configuration. For the optimized configuration, Hadoop 0.20.2 sees performance
overhead of around 10 seconds for all four job types. This result is in line with our
prior comparisons between Hadoop versions 0.18.2 and 0.20.2 [17]. Unfortunately,
10 seconds is also the performance improvement for using TCP with 1ms-min-
RTO. Hence, the performance overhead in Hadoop 0.20.2 masks the benefits of
addressing incast.



Takeaway: Incast does affect Hadoop. The performance impact depends on cluster
configurations, as well as data and compute patterns in the workload.

Real-life Production Workloads

The results in the above subsection indicate that to find out how much incast
really affects Hadoop, we must compare the default and 1 ms-min-RTO TCP while
replaying real-life production workloads.

Previously, such evaluation capabilities have been exclusive to enterprises that
run large-scale production clusters. Recent years have witnessed a slow but steady
growth of public knowledge about front-line production workloads [29, 10, 17, 15,
9], as well as emerging tools to replay such workloads in the absence of production
data, code, and hardware [17, 16].

WORKLOAD ANALYSIS

We obtained seven production Hadoop workload traces from five companies in
social networking, e-commerce, telecommunications, and retail. Among these
companies, only Facebook has so far allowed us to release their name and syn-
thetic versions of their workload. We do have permission to share some summary
statistics. The full analysis is under publication review.

Several observations are especially relevant to incast. Consider Figure 7, which
shows the distribution of per job input, shuffle, and output data for all workloads.
First, all workloads are dominated by jobs that involve data sizes of less than 1 GB.
For jobs so small, scheduling and coordination overhead dominate job completion
time. Therefore, incast will make a difference only if the workload intensity is high
enough that Hadoop control packets alone would overwhelm the network. Second,
all workloads do contain jobs at the 10s TB or even 100s TB scale. This compels the
operators to use Hadoop 0.20.2. This version of Hadoop is the first to incorporate
the Hadoop fair scheduler [29]. Without it, the small jobs arriving behind very
large jobs would see FIFO head of queue blocking and would suffer wait times of
hours or even days. This feature is so critical that cluster operators use it despite
the performance overhead for small jobs. Hence, it is likely that in Hadoop 0.20.2,
incast will be masked by the performance overhead.

WORKLOAD REPLAY

— CC- === CC-b
s CC-C == == == CC-d
1 CC-e
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Fraction of jobs
o
(2]
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Per-job input size Per-job shuffle size Per-job output size
=——FB-2009
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Fraction of jobs

o T 0
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Per-job input size Per-job shuffle size Per-job output size

Figure 7: Per job input, shuffle, and output size for each workload. FB-* workloads come from a
six-month cluster trace in 2009 and a 45-day trace in 2010. CC-* workloads come from traces of

up to two months long at various customers of Cloudera, which is a vendor of enterprise Hadoop.
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We replay a day-long Facebook 2009 workload on the default and 1 ms-min-RTO
versions of TCP. We synthesize this workload using the method in [17]. It captures
in arelatively short synthetic workload the representative job submission and
computation patterns for the entire six-month trace.

Our measurements confirm the hypothesis earlier. Figure 8 shows the distribution
of job completion times. We see that the distribution for 1 ms-min-RTO is 10-20
seconds right-shifted compared with the distribution for default TCP. This isin
line with the 10-20 seconds overhead we saw in the workload-level measurements
in [17], as well as the stand-alone job measurements earlier in the article. The
benefits of addressing incast are completely masked by overhead from other parts
of the system.

Fraction of jobs

0.8

0.6 ——1ms-min-RTO TCP
0.4 ——default TCP

0.2

0 60 120 180 240 300
Completion time (sec)

Figure 8: Distribution of job completion times for the FB-2009 workload.

Figure 9 offers another perspective on workload-level behavior. The graphs show
two sequences of 100 jobs, ordered by submission time, i.e., we take snapshots of
two continuous sequences of 100 jobs out of the total 6000+ jobs in a day. These
graphs indicate the behavior complexity once we look at the entire workload of
thousands of jobs and diverse interactions between concurrently running jobs. The
10-20 seconds performance difference on small jobs becomes insignificant noise
in the baseline. The few large jobs take significantly longer than the small jobs and
stand out visibly from the baseline. For these jobs, there are no clear patterns to the
performance of 1 ms-min-RTO versus standard TCP.
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Figure 9: Sequences of job completion times

The Hadoop community is aware of the performance overheads in Hadoop 0.20.2
for small jobs. Subsequent versions partially address these concerns [22]. It would
be worthwhile to repeat these experiments once the various active Hadoop code
branches merge back into the next mainline Hadoop [30].

Takeaway: Small jobs dominate several production Hadoop workloads. Non-network
overhead in present Hadoop versions masks incast behavior for these jobs.



Incast for Future Big Data Workloads

Hadoop is an example of the rising class of big data computing paradigms, which
almost always involve some amount of network communications. To understand
how incast affects future big data workloads, one needs to appreciate the tech-
nology trends that drive the rising prominence of big data, the computational
demands that result, and the countless design and mis-design opportunities, as
well as the root causes of incast.

We believe that the top technology trends driving the prominence of big data
include (1) increasingly easy and economical access to large-scale storage and
computation infrastructure [11, 7]; (2) ubiquitous ability to generate, collect, and
archive data about both technology systems and the physical world [19]; and (3)
growing desire and statistical literacy across many industries to understand and
derive value from large datasets [2, 13, 24, 20].

Several data analysis trends emerge, confirmed by the cluster operators who pro-
vided the traces in Figure 7:

1. Thereisincreasing desire to do interactive data analysis, as well as streaming
analysis. The goal is to have humans with non-specialist skills explore diverse
and evolving data sources, and once they discover a way to extract actionable
insights, such insights should be updated based on incoming data in a timely and
continuous fashion.

2. Bringing such data analytic capability to non-specialists requires high-level
computation frameworks built on top of common platforms such as MapReduce.
Examples of such frameworks in the Hadoop MapReduce ecosystem include
HBase, Hive, Pig, Sqoop, Oozie, and others.

3. Data sizes grow faster than the size per unit cost of storage and computation
infrastructure. Hence, efficiently using storage and computational capacity are
major concerns.

Incast plays into these trends as follows. The desire for interactive and stream-
ing analysis requires highly responsive systems. The data sizes required for

these computations are small compared with those required for computations on
historical data. We know that when incast occurs, the RTO penalty is especially
severe for small flows. Applications would be potentially forced to either delay the
analysis response or give answers based on partial data. Thus, incast could emerge
as a barrier for high quality interactive and streaming analysis.

The desire to have non-specialists use big data systems suggests that functionality
and usability should be the top design priorities. Incast affects performance, which
can be interpreted as a kind of usability. It becomes a priority only after we have
afunctional system. Also, as our Hadoop experiments demonstrate, performance
tuning for multi-layered software stacks would need to confront multiple layers of
complexity and overhead.

The need for storage capacity efficiency entails storing compressed data, perform-
ing data deduplication, or using RAID instead of data replication to achieve fault
tolerance. In such environments, memory locality becomes the top concern, and
disk or network locality becomes secondary [8]. If the workload characteristics
permit a high level of memory or disk locality, network traffic gets decreased, the
application performance increases, and incast becomes less of a concern.
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The need for computational capacity efficiency implies that computing infrastruc-
ture needs to be more highly utilized. Network demands will thus increase. Con-
solidating diverse applications and workloads multiplexes many network traffic
patterns. Incast will likely occur with greater frequency. Further, additional TCP
pathologies may be revealed, such as the similarly phrased TCP outcast problem,
which affects link share fairness for large flows [26].

Recommendations

Set TCP minimum RTO to 1 ms.

Future big data workloads likely reveal TCP pathologies other than incast. Incast
and similar behavior are fundamentally transport-level problems. It is not resource
effective to overhaul the entire TCP protocol, redesign switches, or replace the
datacenter network to address a single problem. Setting tcp_rto_min is a configu-
ration parameter change that produces low overhead, is immediately deployable,
and, as we hope our experiments show, does no harm inside the datacenter.

Deploy better tracing infrastructure.

Tt is not yet clear how much incast will impact future big data workloads. This
article discusses several contributing factors, but we need further information to
determine which factors dominate under what circumstances. Better tracing helps
remove the uncertainty. Where possible, such insights should be shared with the
general community. We hope the workload comparisons in this article encourage
similar, cross-organizational efforts elsewhere.

Apply a scientific design process.

We believe future big data systems demand a departure from some design
approaches that emphasize implementation over measurement and validation.
The complexity, diversity, scale, and rapid evolution of such systems imply that
mis-design opportunities proliferate, redesign costs increase, experiences rapidly
become obsolete, and intuitions become hard to develop. Our approach in this
article involves performing simplified experiments, developing models based on
first principles, empirically validating these models, then connecting the insights
to real life by introducing increasing levels of complexity. We hope our experiences
tackling the incast problem demonstrate the value of a design process rooted in
empirical measurement and evaluation.
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A new generation of data storage systems is now emerging to support high-
performance, large-scale Web services whose demands are ill-met by traditional
RDBMSes. Dubbed the NoSQL movement, this trend has produced systems char-
acterized by data stores that provide weak consistency guarantees and limit the
system interface. We argue that these systems have too aggressively capitulated,
that much stronger consistency, availability, and fault-tolerance properties are
possible, and, further, that it is possible to provide these properties while offering
arich API, although not as rich as full-blown SQL. We report on a recent system
called HyperDex, describe the new techniques it uses to combine strong consis-
tency and fault-tolerance guarantees with high-performance, and go through a
scenario to see how the system can be used by real applications.

ACID and BASE

During the golden age of databases, when the canonical database users were banks
and other financial institutions, providing strong guarantees of atomicity, consis-
tency, isolation, and durability (ACID) were of paramount concern. More recently,
however, the focus of data storage innovation has shifted away from supporting
financial transactions to enabling Web services, such as Google, Facebook, and
Amazon.com, that need to respond to queries efficiently, scale up to vast numbers
of users, and tolerate the server failures that are inescapable at Web scale.

The flagship for this shift away from traditional RDBMS concerns towards
properties that are better suited for Web services is a movement called NoSQL.
This movement represents a constellation of new data storage systems that forego
the traditional ACID guarantees of RDBMSs, along with their SQL interface, for
improvements along the dimensions that matter to scalable Web applications.
Although the NoSQL name suggests that the removal of SQL is the driving force
behind the movement, it is really just the focal point for an overhaul of the storage
system interface. For example, rather than having rigid schemas and support for
complex search queries, most NoSQL systems have relaxed schemas and favor key-
based operations whose implementation can be made scalable and efficient.

Yet the NoSQL movement has, in many ways, tossed the baby out with the bath-
water. Most NoSQL systems subscribe to an alternative to ACID called the BASE
approach, whose fundamental pillars are Basically Available service, Soft-State,
and Eventually Consistent data. It is true that achieving Web scale will require
hard tradeoffs between conflicting desires; yet the BASE approach represents a
capitulation across all fronts. It provides no fault-tolerance guarantee and achieves
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no longevity for data, and typical BASE systems struggle to always return up-to-
date results even with no failures. The name is catchy, but the resulting systems
are quite weak and are useful only to a small niche of applications that can accept
best-effort guarantees.

In this article, we provide a brief introduction to HyperDex, a second-generation
distributed key-value store that is fast, scalable, strongly consistent, and fault-
tolerant. By strongly consistent, we mean that a get will always return the latest
value placed in the system by a put, not just eventually, but always, even during
failures and reconfiguration. By fault-tolerant, we mean a system that can tolerate
up to f failures, whether they are node (server) failures or network partitions
affecting up to f hosts. And by fast, we mean a system with a streamlined
implementation that, on the industry-standard YCSB benchmark, outperforms
Cassandra [6] and MongoDB [1], two popular NoSQL systems, by a factor of 2 to
13. And above all, HyperDex supports a new lookup primitive by which objects
stored in the system can be recalled by their attributes. Thus HyperDex combines
the scalability and high performance properties of NoSQL systems with the
consistency and fault-tolerance properties of RDBMSs, while providing a rich API.
This unique combination of features is made possible by two novel techniques,
hyperspace hashing and value dependent chaining, that determine the way
HyperDex distributes its data.

Hyperspace Hashing

A key-value store, as its name suggests, provides users access to its data through
key-based operations, such as put and get. Most large-scale key-value stores that
support horizontal scaling either use a hashing function to map keys to nodes, such
as Cassandra [6] and Dynamo [4], or partition the keyspace into contiguous regions
that are assigned to different nodes by a centralized coordinator, such as BigTable
[3] or HBase [2].

In contrast, HyperDex uses a new object placement method, called hyperspace
hashing, that takes into account many object attributes when mapping objects to
servers. Hyperspace hashing creates a multidimensional Euclidean space, where
each dimension corresponds to one searchable attribute, that is, an attribute that
may be used as part of a search query. An object’s position in this space is specified
by its coordinate, which can be determined by hashing the object’s searchable
attribute values. Objects’ schemas are fixed, and different object types necessarily
reside in different hyperspaces. Of course, nothing prevents a HyperDex
deployment from having multiple spaces with the same hyperspace structure.

»

For example, a space of objects with “first name,” “last name,” and “phone number”
searchable attributes corresponds to a three-dimensional hyperspace where

each dimension corresponds to one attribute in the original object. Such a space

is depicted in Figure 1. There are three objects in this space. The circular point

is “John Smith” whose phone number is 555-8000. The square point is “John

Doe” whose phone number is 555-7000. The diamond point is “Jim Bob” whose
phone number is 555-2000. Anyone named “John” must map to somewhere in the
plane labeled “John.” Similarly, anyone with the last name “Smith” must map to
somewhere within the plane labeled “Smith.” Naturally, all people named “John

Smith” must map to somewhere along the line where these two planes intersect.



Phone Number

John
Smith
/
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Figure 1: Simple hyperspace hashing in three dimensions. Each plane passes through all points
corresponding to a specified query. Together the planes represent a line through all phone
numbers for a given first name and last name pair. The cubes show two of the eight zones in
this hyperspace each of which is handled by different servers.

For each space, HyperDex tessellates the hyperspace into disjoint pieces called
zones, and assigns nodes (servers) to each zone. Figure 1 shows two of these
assignments. Notice that the line for “John Smith” only intersects two out of the
eight assignments. Consequently, performing a search for all phone numbers of
“John Smith” requires contacting only two nodes. Furthermore, the search could
be made more specific by restricting it to all people named “John Smith” whose
phone number falls between 555-5000 and 555-9999. Such a search contacts only
one out of the eight servers in this hypothetical deployment.

This simple object-mapping technique is not without pitfalls. Objects with many
attributes translate to hyperspaces with many dimensions. The volume of the
resulting hyperspace grows exponentially in the number of dimensions/attributes.
A naive approach would be to restrict the number of searchable attributes, and
thus the size of the hyperspace. Such a technique limits the utility of hyperspace
hashing. HyperDex avoids exponential growth of the hyperspace while maintain-
ing the utility of hyperspace hashing by creating multiple independent and smaller
hyperspaces, called subspaces. A large object may be represented in constant-size
hyperspaces, the number of which is linear to the number of searchable attributes
in the object. Here, HyperDex trades storage efficiency for search efficiency.

An additional pitfall with naive hyperspace hashing is that key lookups would be
equivalent to single attribute searches, which would likely be inefficient compared
to key lookups in other key-value stores. Fortunately, using subspace partition-
ing, it is trivial to construct a subspace containing just the key of the object. This
ensures that a get operation will always contact exactly one server in this sub-
space.

Value-Dependent Chaining

In addition to providing good performance and scalability, a distributed storage
system must also provide fault tolerance. Much like other distributed storage sys-
tems, HyperDex achieves fault tolerance through data replication. However, Hyper-
Dex’s use of hyperspace hashing and subspace partitioning introduce additional
challenges, as the two features in combination force the same object to be stored
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at more than one server, which in turn presents problems of consistency between
these replicas. As the location of an object in each subspace can change with every
object update, the location of the replicas will also change. The replication scheme
must therefore be able to manage replica sets that change frequently.

One replication approach, used in NoSQL systems that preceded HyperDex, would
be to use an eventually consistent update mechanism. Such a mechanism would
allow each replica to accept updates, and at a later point, the updates would be
propagated to the rest of the replicas. However, changes to the replica set from mul-
tiple concurrent updates could result in inconsistency across subspaces. This type
of inconsistency can accumulate over time and result in significant divergence
between the contents of different subspaces. Furthermore, detecting such diver-
gences is non-trivial and likely involves some form of all-to-all communication.

Instead, HyperDex introduces a new replication protocol called value-depen-

dent chaining that efficiently provides total ordering on replica set updates.
Invalue-dependent chaining, each update is propagated to the affected server
nodes through a well-defined linear pipeline. Updates flow down the chain,

while acknowledgments flow back up the chain. The head of the chain is the node
responsible for that object’s key, called a point leader. Because all value dependent
chains for the same object have the same point leader, all updates to that object can
be fully ordered with respect to each other. Node failures lead to broken chains,
which are fixed automatically by shifting all nodes below the point of breakage up a
spot and adding a new spare node at the tail of the chain to restore the desired level
of fault tolerance. Failures of the point leader are handled the same way, with the
backup point leader becoming the new node responsible for that zone. This linear
ordering ensures the invariant that there is never any confusion about which nodes
have seen the most fresh updates; consequently, there is no need for expensive
mechanisms such as voting, leader election, or quorum writes.

Value-dependent chains also provide an additional property for free: all key opera-
tions are strongly consistent. The same chaining mechanisms that consistently
update the replica set ensure consistent updates to the objects, without any over-
head beyond what is required to maintain consistency of the replica set.

Tutorial

HyperDex has been fully implemented and is freely available for download. It
includes all of the features we have described in this article. It is also being actively
developed, with a small but growing development community that is eager to add
developer-friendly features and additional language bindings. In this section, we
will illustrate how a simple phonebook application uses HyperDex as its storage
back-end.

Creating a HyperDex Space

A phonebook application needs to, at a bare minimum, keep track of a person’s first
name, last name, and phone number. In order to distinguish unique users, it might
assign to each auser ID. We can instruct HyperDex to create a suitable space for
holding such objects with the following command:

hyperdex-coordinator-control
--host 127.0.0.1 --port 6970
add-space << EOF



space phonebook

dimensions username, first, last
phone (int64)

key username auto 13

subspace first, last, phone auto 3 3

EOF

This command creates a new space called phonebook that stores objects with the
following four searchable attributes: username, first name, last name, and phone
number. In this example, the space creation command instructs HyperDex to
create a 1-dimensional subspace for the key, and a 3-dimensional subspace for the
remaining attributes.

The replication level is specified by the “1 3” and “3 3” parameters at the end of the
key and subspace line. This instructs HyperDex to divide the key subspace into 21
zones and the subspace for the remaining attributes into 23 zones, and to replicate
each zone on to three nodes. As a general rule, a HyperDex administrator should
configure HyperDex to not have significantly more zones per subspace than the
number of nodes in the deployment.

Basic Operations

With a hyperspace defined, our phonebook application can connect to HyperDex
and begin issuing basic get and put requests. We illustrate the HyperDex API using
our Python client.

import hyperclient
¢ = hyperclient.Client(*'127.0.0.1', 1234)

This code snippet instructs the client bindings to talk to the HyperDex control-
ler and retrieve the current HyperDex configuration. The controller ensures that
the clients always receive the most up-to-date configuration. If the configuration
changes, say, due to failures, the servers will detect that a client is operating with
an out-of-date configuration and instruct it to retry with the updated HyperDex
configuration.

Now that our phone application has created a client, it can insert objects in the
system by issuing put requests:

c.put(‘phonebook’, 'jsmith1’,

{'first': 'John’, 'last’': 'Smith’', '‘phone’': 6075551024})
True
c.put(‘phonebook’, 'jd’,

{'first': 'John’, 'last’: 'Doe’, 'phone': 6075557878})

True

The client determines the unique location in the hyperspace for an object, contacts
the servers responsible, and issues the put request to these servers. Similarly, our
phone application can retrieve the jsmith1 object by issuing a get request.

c.get(‘phonebook’, 'jsmith1’)
{'first': "John', 'last': 'Smith', 'phone': 6075551024}
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Our phone application can also use HyperDex’s search primitive to retrieve objects
based on one or more secondary attributes.

[x for x in c.search(‘phonebook’,

{'first': 'John’, 'last': 'Smith’, ‘phone': 6075551024})1]
[{'first': "John', 'last': 'Smith’,

'‘phone': 6075551024,

'username': 'jsmith1'}]
[x for x in c.search(‘phonebook’, {'first’': 'John'})]
[{'first': "John', 'last': 'Smith', 'phone': 6075551024, 'username': 'jsmith1'},
{'first': "John', 'last': 'Doe', 'phone': 6075557878, 'username': 'jd'}]
[x for x in c.search(‘phonebook’, {'last': ‘Smith'})]
[{'first': "John', 'last': 'Smith', 'phone': 6075551024, 'username': 'jsmith1'}]
[x for x in c.search(‘phonebook’, {'last': '‘Doe'})]
[{'first': "John', 'last': 'Doe', 'phone': 6075557878, 'username': 'jd'}]

Should the user decide to remove “John Doe” from his/her phonebook, the phone-
book application can remove the object by issuing a delete request:

c.delete('‘phonebook’, 'jd")

True

[x for x in c.search(‘phonebook’, {'first’': 'John'})]

[{'first': "John', 'last': 'Smith', 'phone': 6075551024, 'username': 'jsmith1'}]

Finally, if the user wants to locate everyone named “John Smith” from Ithaca
(area code 607), the phonebook application can issue the following range query to
HyperDex:

[x for x in c.search(‘phonebook’,
{'last’': 'Smith’, '‘phone’': (6070000000, 6080000000)})1]
[{'first': "John', 'last': 'Smith', 'phone': 6075551024, 'username': 'jsmith1'}]

Atomic Read-Modify-Write Operations

HyperDex offers several atomic read-modify-write operations which are impos-
sible to implement in key-value stores with weaker consistency guarantees. These
operations, in turn, enable concurrent applications that would otherwise be impos-
sible to implement correctly using non-atomic operations. For instance, using
standard get and put operations, an application cannot ensure that its operations
will not be interleaved with operations from other clients.

The canonical example for needing atomic read-modify-write operations involves
two clients who are both trying to update a salary field. One is trying to deduct
taxes—let’s assume that they are hard-working academics being taxed at the maxi-
mum rate of 36%. The other client is trying to add a $1500 teaching award to the
yearly salary. So one client will be doing:

vi=get(salary), vl = v1 - 0.36*v1; put(salary, v1)

while the other client will be doing:

ve=get(salary), v2 += 1500; put(salary, v2)

where vl and v2 are variables local to each client. Since these get and put opera-
tions can be interleaved in any order, it is possible for the clients to succeed (so
both the deduction and the raise are issued) and yet for the salary to not reflect the



results! If the sequence is get from clientl, get from client2, put from client?2, put
from clientl, the raise will be overwritten—a most undesirable outcome.

Atomic read-modify-write operations provide a solution to this problem. Such
operations are guaranteed to execute without being interrupted by or interleaved
with any other operation.

The word “atomic” is often associated with poor performance; however, Hyper-
Dex’s atomic operations are inexpensive and virtually indistinguishable from a
put, thanks to the use of value-dependent chains. The head of each object’s value-
dependent chain is in a unique position to locally compute the result of the atomic
operation and, should it succeed, pass the operation down the chain as a normal
put. Should the operation fail, the remainder of the value-dependent chain does not
need to be involved at all.

HyperDex supports a few different atomic instructions, the most general of which
is a conditional_put. A conditional _put performs the specified put operation if and
only if the value being updated matches a specified condition.

Continuing with the sample phonebook application, consider extending the appli-
cation for use in login authentication. The phonebook table must then be extended
to include a password attribute. Intuitively, a user should only be able to change
his/her password when it matches the password that he/she used to log in. The
phonebook application can do this by using conditional _put:

c.conditional_put(‘phonebook’, ‘jsmith’,
{'password': 'currentpassword'},
{'password’': 'newpassword'})

True

c.get(‘phonebook’, 'jsmith1’)

{'first': "John', 'last': 'Smith', 'phone': 6075552048,

'password': 'newpassword'}

Although this toy example omits certain implementation details relating to secure
password storage, it is clear that the conditional_put operation enables behavior
that is otherwise impossible to achieve with normal get and put operations. Any

attempt to change the password without providing the previous password will fail:

c.conditional_put(‘phonebook’, ‘jsmith’,
{'password': 'wrongpassword'},
{'password’': 'newpassword'})

False

As expected, the conditional_put failed because the password is not, in fact,
“wrongpassword”.

HyperDex offers additional atomic operations. In many applications, the clients
will want to increment or decrement a numerical field in the style of Google +1 and
Reddit up/down votes. While implementing this is trivial with conditional_put, the
implementation may require multiple attempts as the conditional _put operations
fail in the face of contention. Atomic increment operations, in contrast, will not fail
spuriously, and do not require the user to have retrieved the old value before start-
ing the operation.

We further extend our sample phonebook application to track the number of times
each user’s information is viewed by adding a “lookups” attribute. The phonebook
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application can consistently manage this counter using the atomic_increment
operation:

c.atomic_increment('phonebook’, ‘jsmith1’, {'lookups’: 1})

True

The atomic increment is as inexpensive as a put operation. This enables our appli-
cation to log each lookup quickly and efficiently.

Asynchronous Operations

So far, we submitted synchronous operations to the key-value store, where the
client had just a single outstanding request and waited patiently for that request to
complete. In high-throughput applications, clients may have a batch of operations
they want to perform on the key-value store. The standard practice in such cases is
to issue asynchronous operations, where the client does not immediately wait for
each individual operation to complete. HyperDex has a very versatile interface for
supporting this use case.

Asynchronous operations allow a single client library to achieve higher through-
put by submitting multiple simultaneous requests in parallel. Each asynchronous
operation returns a small token that identifies the outstanding asynchronous
operation, which can then be used by the client, if and when needed, to wait for the
completion of selected asynchronous operations.

Every operation we’ve covered so far in the tutorials (e.g., get) has a corresponding
version prefixed with async_ for performing that operation asynchronously. The
basic pattern of usage for asynchronous operations is to initiate the asynchronous
operation, do some work, perhaps issue more operations, and then wait for selected
asynchronous operations to complete. This enables the application to continue to
do other work while HyperDex performs the requested operations.

Here’s how we could insert the “jsmith” user asynchronously:

d = c.async_put(‘phonebook’, 'jsmith1’,
{'first': 'John’, 'last': 'Smith",}
‘phone’: 6075551024})
d
<hyperclient.DeferredInsert object at Ox7f2bbc3252d8>
do_work()
d.wait()
True
d = c.async_get('phonebook’, ‘jsmith1')
d.wait()
{'first': "John', 'last': 'Smith', 'phone': 6075551024}

Notice that the return value of the first d.wait() is True. This is the same return
value that would have come from performing c.put(...), except the client was free to
do other computations while HyperDex servers were processing the put request.
Similarly, the second asynchronous operation, async_get, queues up the request on
the servers, frees the client to perform other work, and yields its results only when
walit is called.

This allows for powerful applications. For instance, it is possible to issue thou-
sands of requests and then wait for each one in turn without having to serialize the
round trips to the server. Note that HyperDex may choose to execute concurrent



asynchronous operations in any order. It’s up to the programmer to order requests
by calling wait appropriately.

Fault Tolerance

HyperDex provides a strong fault-tolerance guarantee to its clients. Anywhere
during the preceding tutorial, feel free to kill off up to two of the nodes in the sys-
tem. You will be able to continue the tutorial, as the value-dependent chains will
detect the failures and route around them. If you bring up new nodes, they will be
integrated into the chains seamlessly by the coordinator. The particular fault-tol-
erance level f, which determines the number of simultaneous failures a space can
withstand, is entirely up to the application to determine. Of course, there are trade-
offs; while a large f will yield a more robust system, it will also increase opera-
tion latencies, and the improvement in actual reliability is subject to diminishing
returns. The critical issue here is that this tradeoff'is not part of the HyperDex
substrate but is left up to applications to determine.

Performance

In an accompanying report [5], we carefully quantify HyperDex’s performance
using the industry-standard YCSB benchmark against Cassandra and MongoDB.
While a similar performance study is beyond the scope of this introduction to
HyperDex, we will report the major takeaway: HyperDex is very fast. It is approxi-
mately 2 to 13 times faster than the fastest of the other two NoSQL systems. There
are two reasons for this huge gap in performance, which is even more striking
because the other two systems are left in their preferred configurations, where
they provide weak fault-tolerance and consistency guarantees. First, hyperspace
hashing provides an enormous speedup for search-oriented operations. There

is a qualitative difference between systems that enumerate objects by iterating
through the keyspace and HyperDex, which can use the hyperspace to efficiently
pick the desired items, so the 13x improvement could have been even higher if the
benchmark’s dataset had been larger. Second, HyperDex has a more streamlined
implementation that is 2 to 4 times faster than Cassandra and MongoDB even at
traditional get/put workloads. The precise details of the comparisons are in the
technical report, and the beauty of open source is that there is tangible proofin a
public repository that anyone can trivially check out and execute.

Summary

The emergence of large-scale Web applications has significantly altered the
trajectory of distributed storage systems. From the radically different require-
ments of Web applications, NoSQL systems have emerged to fill the gap left by
traditional databases. Early NoSQL systems used simple techniques, such as
consistent hashing and parallel RPCs, to distribute their data, and thus were not
able to make nuanced tradeoffs between desirable properties. In this article we
presented HyperDex, a new high-performance key-value store that provides strong
consistency guarantees, fault-tolerance against failures whose maximum size can
be bounded, and high performance coupled with a rich API. These techniques are
made possible through the use of hyperspace hashing and value-dependent chain-
ing, two novel techniques for laying out and managing data. We hope that Hyper-
Dex, with its strong consistency and fault-tolerance guarantees, high performance,
and rich API, will enable a new class of applications that were not served well by
existing NoSQL systems.
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Nathan Milford on Cassandra

An Interview

RIK FARROW

Nathan Milford (@ Doug Hughes introduced me to Nathan Milford when he learned that I was looking
NathanMilford) is the US for someone who could talk about his experience using Cassandra. Before talk-
Operations Manager at ing with Nathan, I read his excellent slide deck about working with Cassandra [1],

Outbrain. Nathan is interested and watched part of his presentation of these slides [2] from the Cassandra NYC
in large data projects, scalable architectures, conference last December.

and open source. In his spare time, he is a . L. .
P ) p L After a short phone conversation over the noise in his datacenter, Nathan agreed to
photographer and practitioner of Jiu Jitsu and
Muay Thai. You can follow his blog at http://

blog.milford.io/. Rik: Could you tell us a little about what Outbrain does, to provide us with the

continue our talk by email.

nathan@milford.io background we need to understand why you chose to use Cassandra?
Nathan: I'll just hit you with what my marketing team would have me say:

Outbrain is the leading content discovery platform, helping publishers,
brands, and agencies reach a highly engaged audience through distribution
on leading media sites. Outbrain works with publishers like CNN, Fox News,
Hearst, Rolling Stone, and MSNBC as well as brands and agencies, including
American Express, P&G, General Electric, Media Contacts, and Starcom to
increase site traffic and generate new revenue through customized links to
recommended content.

In short, we're a content discovery and recommendation engine. We've got dozens
of paid and organic recommendation algorithms that dig into our Hadoop, Solr,
Cassandra, and other clusters and return, not only other content that is like what
you're reading, but other content that will likely be interesting to you.

Rik: That does sound interesting, but could you provide more detail?

Nathan: Gladly. We use Cassandra as a persistent cache of calculated recommen-
dations.

The (somewhat simplified) flow for our operation goes something like this:

¢ Auseropens up aan article on, say, CNN.com.

¢ Ourwidgetloads from a CDN and pings one of our three datacenters with the
site and document IDs.

¢ Abevy of Tomcat instances behind HAProxy grab the document info, then query
Memecached looking for pre-calculated recommendations for that document.

¢ IfMemecached doesn’t have it, Tomcat will ping another app we call the
CacheWarmer.

¢ Ifitis anew document, the CacheWarmer will send a request into ActiveMQ,
(a commonly used queue and message broker) to have various offline processes
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crawl, index, and calculate the recommendations for it. This process can (de-
pending on the algorithms involved) hit Solr, Hadoop/Hive, MogileF'S, MySQL,
Cassandra, and/or a bunch of other internal processes that our brilliant R&D
teams have concocted.

¢ The calculated recommendation data is then put into Memcached, where it will
eventually expire, and into Cassandra, where it lives for much longer but also will
eventually expire, thanks to Cassandra’s TTL feature.

¢ Ifitis adocument we know about, we hit up Cassandra for it and float it into
Memecached.

We're also building other Cassandra clusters for other uses. We have a large docu-
ment mapping table in MySQL that is essentially a key/value store, and a good fit
for Cassandra’s data model.

Before we started using data stores other than MySQL, we had a single-master
MySQL setup with slaves distributed across datacenters. Since we're read-heavy,
it makes sense. However, data and traffic keep on growing, and fixing replication
issues and managing a brittle topology requires more and more attention.

When not all of your data needs the features MySQL offers, you come to a place
where you weigh the advantages of federating your data out into appropriate data
stores and having to manage a menagerie of newfangled systems versus fitting all
your data into MySQL and dealing with the feature overhead and keeping a system
everyone already knows.

It’s not for everyone, but we chose to use the menagerie.

Rik: Why did you choose Cassandra over other NewSQL databases? Were others
in the running?

Nathan: We started using TokyoTyrant on SSDs, but at the time the project had a
small community, the developer was not always responsive, and it was a bit unpol-
ished operationally. It was not crash-safe, and managing replication was a chal-
lenge sometimes, in that the mechanism was pretty basic.

We looked into HBase, but we were turned off by the HDF'S append patches you
needed to mess with at the time (it has since gotten better and more reliable). Also,
we wanted something that would reduce operational complexity, so running mul-
tiple Hadoop clusters just to run HBase on top of it as well as keeping the clusters
in sync seemed like a lot of work.

Cassandra hit the sweet spot for performance and operational complexity. Dealing
with replication across multiple datacenters is pretty trivial.

The biggest difficulty is getting people to model data for it properly and not treat it
like MySQL. Once you model the data and have a query plan that suits it, Cassan-
drais pretty hands-off from an operational perspective.

We've been using Cassandra in production since version 0.5.0 (1.1 was just
released). We've had some rough patches, but nothing wildly discouraging, and, for
the most part, it just works.

Since 0.5.0 we've gotten a SQL-like query language called CQL, JDBC drivers, roll-
ing upgrades, live schema management, encryption, compression, TTLs, secondary
indexes, distributed counters, pluggable everything, performance parity between
reads and writes, and a wildly long list of other great work by all the committers
and community.



Ithink one of Cassandra’s strongest attributes is the Cassandra community, which
is very open and accepting of even people with the smallest, most trivial use cases.
You can even get commercial support from the guys at DataStax, all of whom are
pretty sharp folks.

You also have large players like Twitter and Netflix using it. [Ed.: Netflix is moving
away from Oracle to use Cassandra exclusively [3, 4].] Netflix actually showed how
linearly it scales by doing a stress test scaling from O to 288 nodes in EC2 [5].

Rik: When we talked earlier, you mentioned having a LAN party where everyone
got Cassandra set up and running in less than 20 minutes. Is it really that easy?

Nathan: Yes. I am one of the organizers of the NYC Cassandra Meetup group along
with Ed Capriolo, Jake Luciani, Levon Lloyd, and Eric Tamme. Ed had a wonderful
idea where we’d have everyone bring a laptop (Windows, Mac, and Linux) with a
recent JVM. We divided people into three groups, told them to plug into a different
switch representing a different “datacenter,” and had them install the Cassandra
binary package.

The hardest part was herding everyone into the respective areas and then onto the
network. It took ~30-40 minutes to get everyone set up with the right network set-
tings and maybe 10 minutes after that to get everyone on the cluster. Shortly after
that we were inserting a key in “New York” and watching it replicate to “France”
and “Tokyo” [6].

Cassandra is pretty complex, but the majority of that complexity exists to keep you
from having to worry about its complexity.

Ido atalk on how easy it is and what a boon it is to not have to deal with replication
and repair and other administrative junk.

Rik: How did you size up your requirements, that is, the number of Cassandra
nodes you needed for your application?

Nathan: We were not very scientific about it when we started 2-3 years ago. We do
30 billion impressions a month, about a billion a day. You can do all the speculation

and math and planning in the world, but at that scale, you just need to put traffic on
it and let it sink or swim.

For the most part we found it to be a good swimmer.

Ultimately, the first iteration of our cluster was just some spare nodes. Over
time our data, our traffic, and Cassandra’s performance profile changed and we
migrated to new hardware while we played with different file systems, disk con-
figs, row and key caching, heap sizes, garbage collectors, etc.

Our current hardware spec is in the slide deck [1], but we have more nodes and are
running 1.0.7 now.

Rik: How difficult is it to add new nodes?

Nathan: It is not difficult really, but it is a reasonably manual process. You need to
recalculate your ring [7], then start up the new nodes with the correct token (which
defines what part of the ring they own), then move each node’s token and let them
shuffle the data.
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Ttis all a background process and is only limited by your bandwidth. If you have a
multi-datacenter cluster, and slow transport between them . .. well, you’ll just have
to wait.

Cassandra is not for every use-case and certainly not for every type of data, but all
in all, 'm very happy we went with it. It fits a nice niche in our environment and
the community around it is a joy to participate in.
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Never in my career have I experienced as many things go wrong as I did back in late
January/early February of 2012. Strangely, not one of them was in any way related
to any of the others; they just happened at the same time! Harrowing doesn’t begin
to cover our feelings in the midst of this maelstrom. I rode out hurricane Opal, as it
ripped through Alabama, with less stress. We had four unrelated near-disasters in
the span of about four days, and nearly lost 800 TB of data. This is that story, plus a
few semi-interesting lessons.

Issuel

Our problems started with the network. We have monitors in place (e.g.,
SmokePing [1]) that monitor latency on our wide area network. Our nominal
latency is about 11 ms between our primary office site and our primary datacen-
ter site. The network between them is an OC-12 which is an optical, leased line

of about 640 Mbps traversing several carriers. We also have a 100 Mbps Internet
link which can act as a backup connection, via IPSEC VPN, when the OC-12 is
down. Occasionally, one of the OC-12 WAN providers has a maintenance or a
minor service-impacting event, and that latency will jump to around 60 ms as the
traffic takes an alternate path through the provider’s networks, maintaining the
same bandwidth. When this happens, the latency consistency (jitter) is relatively
consistent, meaning that all packets have a round trip time (RTT) tightly clustered
around 60 ms.

An example of a major event would be equipment failure on either end; this takes
down the OC-12 connection entirely. On the day of the incident, we saw latency in
the 20 ms range but very jittery, which is more characteristic of our backup link
on 100 Mbps service. This did not appear to be a standard provider-internal path
reroute. We managed to confirm this theory fairly quickly by running iperf [2]
between the two sites, yielding a paltry 50 Mbps instead of our more normal 300+
Mbps. We opened a ticket with the primary provider, the one to whom we send the
monthly check.

You may notice that the rerouted OC-12 path has much higher latency than the 100
megabit VPN path. We believe this is because the rerouted path is being directed
through a distant state before coming back to NYC, although it is difficult to say for
certain. There are several carriers who service the end-to-end circuit as we know
it. We've seen cases where the local loop can add a significant amount of latency
under pathological conditions. The high latency during provider maintenances is
puzzling and under active investigation.
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A further troubleshooting difficulty with our WAN situation is that we don’t
actually manage the routers containing the OC-12 linecards. We have a gigabit
handoff with a partner organization who manages them for us. This means that
when we have a non-trivial difficulty we need to engage this partner organization
and the carrier organizations in a coordinated fashion. Such was this case. The
carrier checked and re-checked the lines and could not find anything wrong. We've
had instances where the OC-12 failback took more than 24 hours, so at first we
assumed that this was one of those cases; a particular sub-carrier has been known
to close tickets claiming nothing is wrong many times previously. In turn, we've
repeatedly had to reopen and insist that “No, 60 milliseconds really isn’t normal,

1

there’ s definitely something wrong. Please check again!” For this failure, after
three days without OC-12, we were starting to worry. The worry was less directed
than it might have been because of three other incidents that all happened while

this one was occurring, but more on that later.

After many exchanges between carrier and partner, using loopback tests on both
sides to prove the circuit was up, we isolated the problem to the datacenter side of
the circuit. Upon further examination, we found that the link between the carrier-
provided OC-12 equipment and the partner-provided OC-12 router, only about 15
meters of fiber, was the likely culprit. On the carrier side was a long range (LR)
single-mode fiber-optical transceiver, and on the partner side was an intermediate
range (IR) fiber-optic transceiver. Going by the specifications, the dB losses for
both were mismatched. Also, IR transceivers have a range of about 15 km and LR
have arange of about 40 km. It might be considered good luck that it managed

to work for four years! We suggested that both sides adopt short range (SR)
transceivers for the 15 meter distance to avoid overpowering the optical receivers
on the other end. Neither organization had SR optics on hand. Both would have had
to order the parts, leading to 2-3 more weeks of running on the 100 megabit backup
link, which was clearly unacceptable. The local carrier, however, did have an IR
transceiver on hand. So, after four days and replacing the LR transceiver we were
up and running again on the primary link!

As a side note, the users were relatively unaffected by all of this because of some
appliances we use on both ends of our WAN link. Among other useful features, the
SilverPeak appliances that we use provide dynamic compression and optimization,
network memory, and QoS:

¢ Network memory is the capacity to collect streams of data, store the patterns
that haven’t been seen before on disk buffers on both ends (keyed with a strong
checksum algorithm), and, when that pattern is recognized on the sender side,
send the checksum key instead of the entire data stream. The remote side, seeing
the key on the WAN interface, pulls the data pattern corresponding to the key
from the local disk and feeds it to the requester over the LAN interface. This
works in both directions.

¢ Compression and optimization encompasses both TCP header compression
and a standard off-the-shelf data compression algorithm to compress the data
portion of the packets. It also performs optimization on TCP patterns such as
window and buffer sizes, retransmit rates, etc., to get better usage of the available
bandwidth. Obviously, compressibility of the data in question is an important
factor, but can result in significant bandwidth reductions.



¢ QoS allows one to prioritize:

¢  What streams get priority over others, by protocol (ssh, http, nfs, general
TCP traffic, etc.)

¢  What minimum bandwidth a given protocol is guaranteed in the face of
contention

¢  What maximum bandwidth rate a protocol can consume

¢  Whether a stream is compressed or not (e.g., it makes no sense to try to

compress ssh or https, nor to use network memory for either. If it were repeat-

able data, it wouldn’t be secure.).

For us, QoS was the most important feature for running over the lower bandwidth
connection, followed by network memory, which meant that patterns that had
been requested before and were able to be fed to the requester at gigabit speeds. We
prioritize ssh and VNC above all others, so interactive sessions were only mildly
impacted. Not a single complaint ticket was originated.

Ponderables:

¢ Make sure that your backup links work; do periodic testing.

¢ Having QoS is very useful.

¢ Make sure that your optical transceivers are appropriately matched and appro-
priate for the distance of the fiber run.

¢ Your carrier(s) is/are likely to have escalation protocols. Make sure you know
what these are for emergencies.

Issue 2

The second issue struck in the first day of the OC-12 outage. One of our 160 TB
(raw) backup storage servers running ZFS lost knowledge of a group of about eight
disks. We configured these servers with 6 by 10 disk Raidz2 stripes. This meant
that two of the stripes were down two disks. A third disk failure in either of the
Raidz?2 sets (down two disks already) would mean a very large amount of lost
backup data, because ZF'S stripes blocks across all six of the Raidz2 stripe sets.

We've experienced peculiarities with the RAID controllers in this system before.
Each controller puts a label on every disk to indicate what logical unit (LUN) the
disk is a part of. This logical unit can be a simple pass-through, or one of several
different hardware RAID configurations. A pass-through is the same as taking a
disk that sits behind the controller, stamping a label on it, and passing it through as
alogical unit to the host OS (1:1); RAID LUNSs are 1:n. The logical unit also includes
information such as whether read or write caching should be enabled, among other
things. This was the first time a controller had lost its capricious little memory of
eight disks at once. Suspiciously, they were all adjacent disks in the chassis, but we
could find no