
;login:
V O L .  4 0 ,  N O .  2A P R I L  2 0 1 5

Sysadmin and Distributed 
Computing
&  Jumping the Queue with Qjump

Matthew P. Grosvenor, Malte Schwarzkopf,  
Ionel Gog, and Andrew  Moore

& Interview with Andy Tanenbaum
Rik Farrow

&  Working with Zombies
Tim Bradshaw

& Testing Shell Scripts
Adam Moskowitz

Columns
Practical Perl Tools: Using Selenium from Perl
David N. Blank-Edelman

Proper Exception Handling in Python
David Beazley

iVoyeur: Using Graphios with Nagios
Dave Josephsen

For Good Measure: Measure the Success  
of Patching
Dan Geer

/dev/random: Distributed Systems and 
 Sysadmins
Robert G. Ferrell

History
UNIX News from 1975, and the (now ancient) 
UNIX Wars

Conference Reports
LISA14
Advanced Topics Workshop at LISA14



If You Use Linux, You Should Be
Reading LINUX JOURNAL

áá In-depth information 
providing a full 360-
degree look at featured 
topics relating to Linux

áá Tools, tips and tricks you 
will use today as well as 
relevant information for 
the future

áá Advice and inspiration for 
getting the most out of 
your Linux system

áá Instructional how-tos will 
save you time and money

Subscribe now for instant access! 
For only $29.50 per year—less 
than $2.50 per issue—you’ll have 
access to Linux Journal each month 
as a PDF, in ePub format, in Mobi 
format, on-line and through our 
Android and iOS apps. Wherever 
you go, Linux Journal goes with you.

SUBSCRIBE NOW AT:
www.LinuxJournal.com/subscribe

™

IfYouUseLinux_FP2015-8.5x11-gray_Layout 1  3/2/15  10:17 AM  Page 1

U P C O M I N G  E V E N T S

Stay Connected...
  

www.usenix.org/facebook

  
twitter.com/usenix

  
www.usenix.org/youtube

  
www.usenix.org/linkedin

  
www.usenix.org/blog

  
www.usenix.org/gplus

Do you know about the
USENIX Open Access Policy?

USENIX is the fi rst computing association to  off er free 
and open access to all of our conferences proceedings 
and videos. We stand by our mission to foster excel-
lence and innovation while supporting research with 
a practical bias. Your membership fees play a major 
role in making this endeavor successful.

Please help us support open access. Renew your 
 USENIX membership and ask your colleagues to 
join or renew today!

www.usenix.org/membership

NSDI ’15: 12th USENIX Symposium 
on Networked Systems Design and 
Implementation

May 4–6, 2015, Oakland, CA, USA
www.usenix.org/nsdi15

SREcon15 Europe
May 14–15, 2015, Dublin, Ireland
www.usenix.org/srecon15europe

HotOS XV: 15th Workshop on Hot Topics in 
Operating Systems

May 18–20, 2015, Kartause Ittingen, Switzerland
www.usenix.org/hotos15

USENIX ATC ’15: 2015 USENIX Annual Technical 
Conference

July 8–10, 2015, Santa Clara, CA, USA
www.usenix.org/atc15

Co-located with USENIX ATC ’15 and taking place 
July 6–7, 2015:

HotCloud ’15: 7th USENIX Workshop on Hot 
Topics in Cloud Computing
www.usenix.org/hotcloud15

HotStorage ’15: 7th USENIX Workshop on Hot 
Topics in Storage and File Systems
www.usenix.org/hotstorage15

USENIX Security ’15: 24th USENIX Security 
Symposium

August 12–14, 2015, Washington, D.C., USA
www.usenix.org/usenixsecurity15

Co-located with USENIX Security ’15:

WOOT ’15: 9th USENIX Workshop on Offensive 
Technologies
August 10–11, 2015
www.usenix.org/woot15

CSET ’15: 8th Workshop on Cyber Security 
Experimentation and Test
August 10, 2015
Submissions due April 23, 2015
www.usenix.org/cset15

FOCI ’15: 5th USENIX Workshop on Free and 
Open Communications on the Internet
August 10, 2015
Submissions due May 12, 2015
www.usenix.org/foci15

HealthTech ’15: 2015 USENIX Summit on Health 
Information Technologies
Safety, Security, Privacy, and Interoperability 
of Health Information Technologies
August 10, 2015
www.usenix.org/healthtech15

JETS ’15: 2015 USENIX Journal of Election 
Technology and Systems Workshop
(Formerly EVT/WOTE)
August 11, 2015
www.jets-journal.org

HotSec ’15: 2015 USENIX Summit on Hot Topics 
in Security
August 11, 2015
www.usenix.org/hotsec15

3GSE ’15: 2015 USENIX Summit on Gaming, 
Games, and Gamification in Security Education
August 11, 2015
Submissions due May 5, 2015
www.usenix.org/3gse15

LISA15
November 8–13, 2015, Washington, D.C., USA
Submissions due April 17, 2015
www.usenix.org/lisa15



E D I T O R
Rik Farrow 
rik@usenix.org

M A N A G I N G  E D I T O R
Michele Nelson 
michele@usenix.org

C O P Y  E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type 
startype@comcast.net

U S E N I X  A S S O C I AT I O N
2560 Ninth Street, Suite 215  
Berkeley, California 94710 
Phone: (510) 528-8649 
FAX: (510) 548-5738 

www.usenix.org

;login: is the official magazine of the USENIX 
Association. ;login: (ISSN 1044-6397) 
is published bi-monthly by the USENIX 
Association, 2560 Ninth Street, Suite 215, 
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a 
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage 
paid at  Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to 
;login:, USENIX Association, 2560 Ninth Street, 
Suite 215, Berkeley, CA 94710.

©2015 USENIX Association 
USENIX is a registered trademark of the 
USENIX Association. Many of the designa-
tions used by manufacturers and sellers 
to distinguish their products are claimed 
as trademarks. USENIX acknowledges all 
trademarks herein. Where those desig-
nations appear in this publication and 
USENIX is aware of a trademark claim,  
the designations have been printed in caps  
or initial caps.

A P R I L  2 0 1 5 V O L .  4 0 ,  N O .  2

E D I T O R I A L
2 Musings Rik Farrow

D I S T R I B U T E D  S Y S T E M S
6  Jump the Queue to Lower Latency Matthew P. Grosvenor,  

Malte Schwarzkopf, Ionel Gog, and Andrew Moore

12  The Design and Implementation of Open vSwitch Ben Pfaff, 
Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou,  
Jarno Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer,  
Pravin Shelar, Keith Amidon, and Martin Casado

18 Interview with Andrew Tanenbaum Rik Farrow

S Y S A D M I N
22 The Living Dead Tim Bradshaw

26 Software Testing for Sysadmin Programs Adam Moskowitz

31 Managing Incidents Andrew Stribblehill and Kavita Guliani

34  /var/log/manager: A Generational Theory of Sysadmins Andy Seely

C O L U M N S
36  Practical Perl Tools: Dance, Browser, Dance! David N. Blank-Edelman

40 Raising Hell, Catching Errors David Beazley

46 iVoyeur: Graphios Dave Josephsen

50 For Good Measure: The Undiscovered Dan Geer

54 /dev/random: Distributed System Administration Robert G. Ferrell

B O O K S
56 Book Reviews Mark Lamourine

U S E N I X  N O T E S
58 The State of the USENIX Casey Henderson

H I S T O R Y
60 Introducing UNIX News

66 Dueling UNIXes and the UNIX Wars Peter H. Salus

69 Invisible Intruders: Rootkits in Practice David Brumley

C O N F E R E N C E  R E P O R T S
72  LISA14 

75  Advanced Topics Workshop at LISA14



2   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org A frontal attack on idleness. That’s how I see distributed systems: a 

way to keep systems as busy as possible. Decades ago, computers 
were much too expensive to be allowed to sit idle. Today, computers 

are immensely more powerful, less expensive, and often set up in enormous 
clusters, but we still need to keep them busy.

Letting a modern system sit idle wastes resources, even if CPUs have gotten more efficient at 
doing nothing. Hard disks will continue to spin, DRAM will still require dynamic refreshing, 
and the power supplies and other hardware will continue to turn electricity into heat, whether 
a system is busy or not. Certainly a busy system will use more energy, but not a lot more.

And all the while a system is sitting there idle, it’s becoming obsolete. No wonder there has 
been such a focus on distributed systems.

History
While researching for this issue, I took a look at the table of contents for Andy Tanenbaum’s 
1994 edition of Distributed Systems. I was quickly reminded that the distributed systems that 
come to mind today have their roots in the past, going back as far as the diode and tube-based 
DYSEAC in 1954. The DYSEAC not was actually distributed, but the potential was there and 
was discussed. The DYSEAC was perhaps the first mobile computer, housed inside a truck.

We need to skip ahead many years before we begin to see functioning distributed systems. 
While there were parallel systems built earlier, the earliest commercial distributed system 
was the Apollo AEGIS operating system in 1982, later Apollo Domain. Apollo used Ethernet 
to share storage and provide security, processing, and even signed software updates. Sun’s 
“the network is the computer” occurred because Sun was attempting to build an Apollo-like 
system on top of BSD UNIX.

By the end of the 1980s, two well-known research distributed systems had been  implemented: 
Amoeba and Sprite. Both presented single system images, in that a person sitting at any 
 terminal could be using resources on any of the connected systems transparently. Sprite 
could even migrate processes from one system to another, while both systems used network 
file systems.

In the early 1990s, largely as a result of the UNIX wars [1] that began when Sun and AT&T 
decided to unite SunOS (BSD 4.2 to 4.3) and System V UNIX, the Distributed Computing 
Environment (DCE [2]) was born. The bastard offspring of Apollo Domain (then owned 
by HP) and the Andrew File System, DCE was designed to provide many of the features of 
Apollo Domain, but be able to do so across a network consisting of systems from different 
vendors. Although the Wikipedia page mentions just three major components, getting DCE  
to run required running six different services, starting them in the correct order, and was not 
easy to do. And there was no single reference implementation, so with each vendor writing its 
own version, interoperability was only experimentally achieved.

The Common Object Request Broker Architecture (CORBA [3]) actually has been more 
 successful than DCE. CORBA supports data sharing and remote processing using an 
interface definition language (IDL) to create abstractions of objects or data structure in 



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 3

EDITORIAL
Musings

many  programming languages. The use of an IDL goes back to 
work Sun did on remote procedure calls (and likely earlier) as 
a mechanism for sharing data portably. And each participating 
host needs to run just one service, the request broker, making it 
simpler to operate than DCE.

Today, we have truly massive distributed systems. These sys-
tems use Java programs as their middleware, something that 
really puzzled me when I first heard of this. Why Java, I thought, 
when earlier distributed systems, like Amoeba and Sprite, were 
microkernel-based for performance and efficiency? 

MapReduce focuses on the processing of bulk, line-oriented 
data, where the latency of disk I/O is the big limiting factor, 
not the processor. The ease of programming in Java greatly 
outweighed any performance issues through the use of Java. 
Systems like Cassandra are very successful, and stable, partially 
because of their reliance on Java.

Idleness
And what does any of this have to do with idleness? In the cases 
of Amoeba and Sprite, a workstation user could enter a  command 
that would be executed on any available system. Amoeba included 
a parallel Make (Amake) for compiling in parallel, the better to 
use resources. 

For datacenters, the cost of power and cooling are second only to 
the costs of servers [4], so keeping those servers busy maximizes 
efficiency. As servers will only last three to five years before being 
replaced, letting them sit idle is another form of waste.

There are other ways of using idle servers, the most  popular 
being clouds running VMs. In some ways these too are distributed 
systems, as they are relying on distributed storage, authoriza-
tion, and control systems. But cloud systems are not considered 
distributed systems.

The Lineup
We begin this issue with two articles related to distributed com-
puting. Matthew Grosvenor, Malte Schwarzkopf, Ionel Gog, and 
Andrew Moore preview their NSDI paper [5] about a technique 
and software they’ve developed to reduce network latency for 
latency-sensitive applications. They first explain the problems 
caused by queueing, examine other solutions, explain how their 
simple solution works, then provide some data to back this up. I 
think their software may be a hit in datacenters.

Ben Pfaff and a large group of people from VMware write about 
some software that is already a hit. Open vSwitch [6] is the most 
widely used virtual switch in cloud environments, and runs 
on all major hypervisor platforms. The authors describe the 
 architecture of vSwitch and techniques that have been used to 
both improve performance and increase efficiency of this open 
source software.

I decided to interview Andy Tanenbaum for this issue. Andy has 
published two editions of his very successful book about distrib-
uted systems, but what I was initially interested in was Amoeba, 
a distributed system designed by Andy and his students in the 
late ’80s. I also wanted to take advantage of the interview to ask 
some questions about some of his other projects, and to get his 
opinion on the acceptance of microkernels.

We also have four articles focused on aspects of system admin-
istration. Tim Bradshaw leads off with an article about the living 
dead. These zombies are old systems that you cannot stop sup-
porting even when the official support for the platform has long 
been deceased. Tim contrasts nimble and fast-growing organi-
zations with ones burdened with decaying body parts, and what 
this means for system administrators and security.

I convinced Adam Moskowitz to write about his experience 
creating a testing framework for shell scripts. Adam does a great 
job making clear why you don’t just want, but need, testing for all 
your scripts. Adam also shares the framework he built for auto-
mating script testing as much as possible. If you find yourself 
disturbed at the thought of having to add testing to your scripts,  
I suggest you read Adam’s article. Perhaps you will see the light, 
as well as appreciate the toolset Adam recommends.

Andrew Stribblehill and Kavita Guliani take on the topic of 
managing incidents. Quite simply, you get to manage incidents, 
instead of managing crises, when you have previously prepared 
and practiced how to do so. Stribblehill and Guliani contrast 
unmanaged incidents (crises management) with managed inci-
dents, and provide the elements of a managed incident process.

Andy Seely shares his own generational theory of sysadmins. I 
fit into the category that his father does (the first generation of 
explorers), but I do see his point. Like any system of categori-
zation, Andy’s system will not be a perfect fit for anyone, but I 
found his system to be a useful way of understanding the differ-
ent types of sysadmins you will encounter.

David Blank-Edelman makes browsers dance in his column. 
David describes how to use the Selenium framework to remotely 
control a browser from Perl, allowing you to create repeatable 
tests for software that will be interacting with Web browsers.

Dave Beazley takes issue with how too many Python program-
mers handle exceptions. Dave criticizes much of the extreme 
coding he sees, from over-catching exceptions to ignoring them, 
while providing really practical advice.

Dave Josephsen expands his discussion of Graphios, a tool that 
he brief ly mentioned in his February 2015 column. Dave has 
been working with the creator of Graphios (Shawn Sterling) to 
replace Graphios’ Graphite-specific backend with a modular 
framework, so Graphios can extract data from Nagios and share 
it with other tools.



4   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

EDITORIAL
Musings

Dan Geer borrows from biological survey techniques to suggest 
analysis techniques that can help us decide whether patching is 
really improving software over time. While most of us wonder 
how patching cannot be helping (by removing exploitable code), 
Dan’s focus is on whether the patching is making any difference 
to the overall security of a specimen of software.

Robert Ferrell takes a humorous look at both system administra-
tion and distributed systems. While you might imagine these 
would be difficult topics for humor, Robert manages to do a good 
job of it.

USENIX is celebrating its fortieth year, and we are adding 
some new features to ;login:. Peter Salus will be writing for 
;login: again, reviving his history column with the story of the 
UNIX wars. We also have the very first issue of UNIX News, the 
predecessor of ;login:. Finally, we have included another article 
from our archives. David Brumley, now an associate professor at 
CMU, wrote about the rootkits he encountered while working at 
Stanford University.

We have just two book reviews this month, both by Mark Lamou-
rine. We also have a handful of reports from LISA14. 

Conference Reports
Speaking of reports, we, the USENIX Board and staff, have 
decided that we are going to handle reports differently in the 
future. In the past, we have worked hard in an attempt to cover 
every session of every conference, symposium, or workshop that 
USENIX runs, and have done a fairly good job. While we occa-
sionally managed to cover all sessions—for example, at a well-
attended, single-track conference like OSDI—conferences like 
LISA, with its five tracks, have always been difficult to cover.

We also found ourselves competing with the sound and video 
recordings made of the sessions. USENIX has been recording 
sessions for many years now, and providing those recordings 
to anyone interested as part of our commitment to open access 
to research. Actual recordings of a presentation are much more 
accurate than reports, as they reproduce what actually hap-
pened instead of the summarizer’s version of the presentation. 
While I personally attended many sessions, I lacked the ability 
to be in many places at once, no matter how many tracks were 
happening concurrently. I would use my notes to improve some 
of the reports I received, but will confess that by the end of 
two (or three or more) days of note taking, my notes were getting 
a bit sketchy.

In the future, we will continue to solicit and publish reports 
that we receive when they meet our standards. We will not go to 
the lengths we have in the past to round up summarizers in an 
attempt to cover every session, including those (the majority) 
that are being recorded. As a result, future issues of ;login: may 

be a bit thinner. But USENIX will continue to provide audio and 
video recordings of as many sessions as possible.

The attack on idleness continues to this day, with even smart-
phones getting into the act. Most any Web program expects to 
execute code (JavaScript) with the browser, as well as code on 
the server. Bitcoin mining malware authors have been using dis-
tributed systems since 2011, and in 2014, five apps were removed 
from Google Play because they were attempting to use the 
comparatively puny processing power of smartphones to mine 
Bitcoins [7]. Malware that targets desktops with power to spare 
has been modestly more successful as conscripted miners.

The Internet of Things will continue the movement toward 
distributed systems, with each Thing doing more than simply 
collecting and forwarding data, like a FitBit or a Nike shoe. 
To help with this process, and to leverage the large number of 
programmers at home in Windows environments, Microsoft has 
announced that they will be releasing a version of Windows 10 
for the Pi 2 [8]. While I welcome the news, I do feel a bit of trepi-
dation, and hope that this is a securely stripped-down version of 
Windows. In the future, even Things will be kept busy.



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 5

EDITORIAL
Musings

References
[1] UNIX wars: http://en.wikipedia.org/wiki/Unix_wars.

[2] DCE, pretty decent reference: http://en.wikipedia.org 
/wiki/Distributed_Computing_Environment.

[3] CORBA: http://en.wikipedia.org/wiki/Common_Object 
_Request_Broker_Architecture.

[4] James Hamilton’s blog, Perspectives, September 18, 2010: 
http://perspectives.mvdirona.com/2010/09/18/OverallData 
CenterCosts.aspx.

[5] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, 
Robert N. M. Watson, Andrew W. Moore, Steven Hand,  
and Jon Crowcroft, University of Cambridge, “Queues  
Don’t  Matter When You Can JUMP Them!”; NSDI ’15: 
 https://www.usenix.org/conference/nsdi15/technical- 
sessions/presentation/grosvenor.

[6] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan  Jackson, 
Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe 
Stringer, Pravin Shelar, Keith Amidon, Martin Casado, 
VMware, Inc., “The Design and Implementation of Open 
vSwitch”; NSDI ‘15: https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/pfaff.

[7] http://www.theregister.co.uk/2014/04/25/yes_there_is 
_now_bitcoinmining_malware_for_android/.

[8] Windows 10 for Raspberry Pi 2: https://dev.windows.com 
/en-us/featured/raspberrypi2support.

Letter to the Editor
I read with great interest your interview with Dan Farmer. 
A strong character, who loves to create things, but wants 
no part of “productizing”! His tale about Symantec and 
outsourcing security products made me wonder how that 
company assesses the honesty of its wares and brought 
to mind the genre of spam that offers to help rid one’s 
machine of malware.

The piece also brought to mind some bits of ancient 
history:

COPS definitely wasn’t the earliest vulnerability scanner, 
though it may have been the earliest to be publicly distrib-
uted. In fact the README file that comes with COPS says 
that sysadmins had been in the habit of rolling their own 
bits and pieces of it before. For one, Fred Grampp—who 
together with Robert Morris senior wrote a classic paper 
on UNIX security—had distributed a quite comprehensive 
security-sniffing suite within Bell Labs; unfortunately, I 
can’t remember its name. The company’s first computer-
security task force, which I chaired in 1982, was able to 
back up its warnings with real data, thanks much to Fred.

I well remember the Morris worm. A bunch of people 
gathered in the research UNIX lab, watching it beat on 
the gate as we followed its progress by phone contact with 
other sites across the country. Peter Weinberger, in par-
ticular, spent much of the time on the phone with CMU’s 
Software Engineering Institute, whose CERT division 
today proudly says, “We were there for the first Internet 
security incident and we’re still here 25 years later.” That 
incident led to the formalization of CERT’s national role, 
which in turn provided Dan’s first job.

The worm didn’t get into Bell Labs, because Dave Presotto 
recoiled from installing the inscrutable Sendmail system 
and decided to roll his own. Then, in a reverse twist, he 
named it after a poison tree. If Dave put into Upas any-
thing like Sendmail’s trojan horse (a back door intended 
for diagnosing troubles reported by confused sysadmins), 
nobody has found it yet.

Doug McIlroy 
doug@cs.dartmouth.edu



6   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

DISTRIBUTEDJump the Queue to Lower Latency
M A T T H E W  P .  G R O S V E N O R ,  M A L T E  S C H W A R Z K O P F ,  I O N E L  G O G ,  A N D  A N D R E W  M O O R E

Matthew P. Grosvenor is a 
PhD student at the University 
of Cambridge Computer 
Laboratory. His interests lie in 
cross-layer optimizations of 

networks, with a particular focus on network 
latency. He has completed research internships 
at NICTA (Sydney), Microsoft Research Silicon 
Valley, and Microsoft Research Cambridge, 
and he maintains strong ties to the high-speed 
networking vendor Exablaze. 
matthew.grosvenor@cl.cam.ac.uk

Malte Schwarzkopf is 
currently finishing his PhD at 
the University of Cambridge 
Computer Laboratory. 
His research is primarily 

on operating systems and scheduling for 
datacenters, but he dallies in many a trade. He 
completed a research internship in Google’s 
cluster management group and will join the 
PDOS group at MIT after graduating. 
malte.schwarzkopf@cl.cam.ac.uk

Ionel Gog is a PhD student in 
the University of Cambridge 
Computer Laboratory. His 
research interests include 
distributed systems, data 

processing systems, and scheduling. He 
received his MEng in computing from Imperial 
College London and has done internships at 
Google, Facebook, and Microsoft Research. 
ionel.gog@cl.cam.ac.uk

In this article, we show that it is possible and practical to achieve 
bounded latency in datacenter networks using QJump, an open-source 
tool that we’ve been building at the University of Cambridge. Further-

more, we show how QJump can concurrently support a range of network 
service levels, from strictly bounded latency through to line-rate throughput 
using the prioritization features found in any datacenter switch. 

Bringing Back Determinism
In a statistically multiplexed network, packets share network resources in a first come,  
first served manner. A packet arriving at a statistically multiplexed (“stat-mux”) switch  
(or router) is either forwarded immediately or forced to wait until the link is free. This makes 
it hard to determine how long the packet will take to cross the network. In other words, 
stat-mux networks do not provide latency determinism. 

The desire to retrofit latency determinism onto Internet Protocol (IP) stat-mux networks 
sparked a glut of research in the mid-90s on “Quality of Service” (QoS) schemes. QoS tech-
nologies like DiffServ demonstrated that coarse-grained classification and rate-limiting 
could be used to control Internet network latencies. However, these schemes were complex 
to deploy and often required cooperation between multiple competing entities. For these 
reasons (and many others) Internet QoS struggled for widespread deployment, and hence 
provided limited benefits [1]. 

Today, the muscle behind the Internet is found in datacenters, with tens of thousands of 
networked compute nodes in each. Datacenter networks are constructed using the same 
 fundamental building blocks as the Internet. Like the Internet, they use statistical multi-
plexing and Internet Protocol (IP) communication. Also like the Internet, datacenter 
networks suffer from lack of latency determinism, or “tail latency” problems. Worse still,  
the close coupling of applications in datacenters magnifies tail-latency effects. Barroso and 
Dean showed that, if as few as one machine in 10,000 is a straggler, up to 18% of user requests 
can experience long tail latencies [2]. 

Unsurprisingly, the culprit for these tail latencies is once again statistical multiplexing. More 
precisely, congestion from some applications causes queueing that delays traffic from other 
applications. We call the ability of networked applications to affect each others’ latencies 
network interference. For example, Hadoop MapReduce can cause queueing that interferes 
with memcached request latencies, causing latency increases of up to 85x. 

The good news is that datacenters are also unlike the Internet. They have well-known 
network structures, and the bulk of the network is under the control of a single authority. 
The differences between datacenters and the Internet allow us to apply QoS schemes in new 
ways, different and simpler than the Internet does. In datacenters, we can enforce a system-
wide policy, and, using known host counts and link rates, we can calculate specific rate 
limits that allow us to provide a guaranteed bound on network latency. 

We have implemented these ideas in QJump. QJump is a simple and immediately deployable 
approach to controlling network interference in datacenter networks. QJump is open source 



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 7

DISTRIBUTED SYSTEMS

Figure 1a shows a timeline of PTPd synchro-
nization offset. Figure 1b has a CDF of mem-
cached request latency, and Figure 1c has a 
CDF of Naiad synchronization time.

300 400 500
Time since start [sec]

-400
-200

0
200
400
600

C
lo

ck
of

fs
et

[�
s]

alone
+ Hadoop
+ Had. w/ QJ

1a

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

Latency in �s

1b

0 500 1000 1500 2000
Latency in �s

0.0

0.2

0.4

0.6

0.8

1.0

alone
+ Hadoop
+ Had. w/ QJ

1c

and runs on unmodified hardware and software. A full paper describing QJump will appear 
in the 12th USENIX Symposium on Networked System Design and Implementation 
(NSDI ’15) [3]. Additional information including source code and data is available from our 
accompanying Web site: http://www.cl.cam.ac.uk/research/srg/netos/qjump. 

QJump in Action
To illustrate how bad network interference can get and how well QJump fixes it, we show the 
results from a collection of experiments with latency-sensitive datacenter applications (see 
Figure 1). In each experiment, the application: (1) runs alone on the network, (2) shares the 
network with Hadoop MapReduce, and (3) shares the network with Hadoop, but has QJump 
enabled. A complete evaluation of QJump, including full details of these experiments (and 
many others), is available in the full paper.

1. Clock Synchronization. Precise clock synchronization is important to distributed sys-
tems such as Google’s Spanner. PTPd offers microsecond-granularity time synchronization 
from a time server to machines on a local network. However, it assumes roughly constant 
network delay. In Figure 1a, we show a timeline of PTPd synchronizing a host clock on both 
an idle network and when sharing the network with Hadoop. In the shared case, Hadoop 
causes queueing which delays PTPd’s synchronization packets. This causes PTPd to tem-
porarily fall 200–500 s out of synchronization, 50x worse than on an idle network. With 
QJump enabled, the PTPd synchronization remains unaffected by Hadoop’s traffic. 

2. Key-Value Stores. Memcached is a popular in-memory key-value store used by Facebook 
and others to store small objects for quick retrieval. We benchmark memcached using the 
memaslap load generator and measure the request latency. Figure 1b shows the distribution 
of request latencies on an idle network and a network shared with Hadoop. With Hadoop 
running, the 99th percentile request latency degrades by 1.5x from 779 s to 1196 s. Further-
more, around 1 in 6,000 requests takes over 200 ms to complete, over 85x worse than the 
maximum latency on an idle network. With QJump enabled, these effects are mitigated. 

3. Big Data Computation. Naiad [4] is a framework for big data computation. In some 
computations, Naiad’s performance depends on low-latency synchronization between worker 
nodes. To test Naiad’s sensitivity to network interference, we execute a synchronization 
benchmark (provided by the Naiad authors) with and without Hadoop running. Figure 1c 
shows the distribution of Naiad synchronization latencies in both situations. On an idle 
network, Naiad takes around 500 s at the 99th percentile to perform a four-way synchro-
nization. With interference, this grows to 1.1–1.5 ms, a 2–3x performance degradation. With 
QJump running, the performance nearly exactly conforms to the interference-free situation. 

These experiments cover just a small set of applications, but there are many others that can 
also benefit from using QJump. Examples include coordination traffic for Software Defined 
Networking (SDN), distributed locking/consensus services, and fast failure detectors.

Scheduling and Queueing Latency
To understand how QJump works, we first need to understand the two main sources of 
latency nondeterminism in statistically multiplexed (stat-mux) networks: scheduling latency 
and queueing latency. In Figure 2a, a collection of packets (P) arrive at an idle switch S0. At 

Andrew W. Moore is a Senior 
Lecturer at the University 
of Cambridge Computer 
Laboratory in England, where 
he is part of the Systems 

Research Group working on issues of network 
and systems architecture. His research 
interests include enabling open-network 
research and education using the NetFPGA 
platform. Other research pursuits include 
low-power energy-aware networking and novel 
network and systems datacenter architectures. 
andrew.moore@cl.cam.ac.uk



8   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

Figure 2: Latency causes (a) fan-in, packets waiting to be serviced by the 
switch scheduler, or (b) queueing, packets waiting behind many other 
packets.

S0 S1

LPP P

L

P

P

P

queueing
latency

scheduling latency

1 2 3 4

2

3

4

1

L

P

P

P

DISTRIBUTED SYSTEMS
Jump the Queue to Lower Latency

the same time, a latency sensitive packet (L) also arrives. The 
L packet experiences scheduling latency as it waits for other 
P packets to be serviced by the switch scheduler. Scheduling 
latency is a consequence of fan-in, which happens when mul-
tiple packets contend for the same output port on the switch. If 
the switch takes too long to output packets, then new packets 
can queue behind existing ones. Figure 2b shows two latency 
sensitive packets (L) queued behind many other waiting packets 
(P). This is a kind of head-of-line blocking that we call queue-
ing latency. Queuing latency is caused by excessive scheduling 
latency. We cannot eliminate scheduling latency in a stat-mux 
network. However, using some simple math, we can put a bound 
on it. By doing so, we can ensure that packets are issued into the 
network at a rate that prevents them from queueing up behind 
each other, thus also control queueing latency. 

Bounded Queues—Bounded Latency
Considering Figure 2a, in the worst case the L packet will need 
to wait for the switch scheduler to service all preceding P pack-
ets before it is serviced. For a switch with n ports, the worst-case 
waiting time is n - 1 (approximately n) packets. As the number of 
ports on the switch grows, the worst-case latency grows with it. 

We can easily expand this understanding to cover multi-hop net-
works by treating the whole network as a single “big switch” (this 
is an application of the “hose-constraint” [4] model). Hence we 
can apply the same calculation as above. Knowing that a packet 
of size P will take P/R seconds to transmit at link-rate R, we can 
therefore bound the maximum interference delay at:

where n is the number of hosts, P is the maximum packet size 
(in bits), and R is the rate of the slowest link in bits per second. 
Equation 1 assumes that hosts have only one (active) link to the 
network and that the speed at the core of the network is never 
slower than the speed at the edge. We think that these are both 
safe assumptions for any reasonable datacenter network.

We refer to the worst-case delay as a network epoch. A network 
epoch is the maximum time that an initially idle network will 
take to service one packet from every sending host, regardless of 
the source, destination, or timing of those packets. Intuitively, if 
we imagine the network as a funnel, the network epoch repre-
sents the time that the funnel will take to drain when it is filled 
to the top. If all hosts are rate-limited so that they cannot issue 
more than one packet per epoch, no permanent queues can build 
up, and the end-to-end network delay bound will be maintained 
forever. That is, we rate-limit hosts so that the funnel will never 
overflow. 

The problem with a network epoch is that it is a global concept. 
To maintain it, all hosts need to agree on when an epoch begins 
and when it ends. It would seem that this requires all hosts 
in the network to have tightly synchronized clocks. In fact, 
network epochs can work even without clock synchronization. 
If we assume that network epochs occur at the same frequency, 
but not necessarily in the same phase, the network becomes 
mesochronous. This requires us to double the latency bound, but 
all other properties hold (see [3] for further details). The network 
epoch thus becomes:

Equation 2 is the basis for QJump. QJump is based on the principle 
that, if we rate-limit all hosts so that they can only issue one 
packet every network epoch, then no packet will take more than 
one network epoch to be delivered to the destination even in the 
worst case.

Latency Variance vs. Throughput
Although the equation derived above provides an absolute upper 
bound on in-network delay, it also aggressively restricts through-
put. Formulating Equation 2 for throughput, we obtain:

For example, with 1,000 hosts and a 10 Gb/s edge, we obtain 
an effective throughput of 5 Mb/s per host. Clearly, this is not 
ideal. We can improve this situation by making two observa-
tions. First, Equation 2 is pessimistic: it assumes that all hosts 
transmit to one destination at the worst time, which is unlikely 
given a realistic network and traffic distribution. Second, some 
applications, like PTPd, are more sensitive to interference than 
others—for example, memcached and Naiad—whereas still 
other applications, like Hadoop, are more sensitive to through-
put restrictions. From the first observation, we can relax the 
throughput constraints in Equation 2 by assuming that fewer 
than n hosts send to a single destination at the worst time. For 
example, if we guess that only 500 of the 1,000 hosts concur-



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 9

Ideal
Contended

Eth. Flow Ctrl. ECN
DCTCP

QJump
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

R
M

S
ap

p.
m

et
ric

31
8

12
61

4

Hadoop
runtime

PTPd sync.
offset

memcached
req. latency

Figure 3: Comparison of QJump to several available congestion control 
alternatives

DISTRIBUTED SYSTEMS
Jump the Queue to Lower Latency

rently send to a single destination, then those 500 hosts can send 
at twice the rate and maintain the same network delay if our 
assumption holds. More generally, we define a scaling factor f so 
that the assumed number of senders n′ is given by:

Intuitively, f is a “throughput factor”: as the value of f grows, so 
does the available bandwidth. 

From the second observation, some (but not all) applications 
can tolerate some degree of latency variance. Instead, for these 
applications we aim for a statistical reduction in latency vari-
ance. This reintroduces a degree of statistical multiplexing to 
the network, albeit one that is more tightly controlled. When 
the guess for f is too optimistic (the actual number of senders is 
greater than n′), some queueing occurs, causing interference.

The probability that interference occurs increases with increas-
ing values of f. At the upper bound ( f = n), latency variance is 
similar to existing networks and full network throughput is 
available. At the lower bound ( f = 1), latency is guaranteed, albeit 
with reduced throughput. In essence, f quantifies the latency 
variance vs. throughput tradeoff.

Jump the Queue with Prioritization
We would like to use multiple values of f concurrently, so that 
different applications can benefit from the latency variance 
vs. throughput tradeoff that suits them best. To achieve this, 
we partition the network so that traffic from latency-sensitive 
applications, like PTPd, memcached, and Naiad can “jump-the-
queue” over traffic from throughput-intensive applications like 
Hadoop. Ethernet switches support the IEEE 802.1Q standard, 
which provides eight (0–7) hardware enforced “service classes” 
or “priorities.” 

The problem with using priorities is that they can become 
a “race to the top.” For example, memcached developers may 
assume that memcached traffic is the most important and 
should receive the highest priority to minimize latency. Mean-
while, Hadoop developers may assume that Hadoop traffic is the 
most important and should similarly receive the highest priority 
to maximize throughput. Since there are a limited number of 
priorities, neither can achieve an advantage and prioritization 
loses its value. QJump is different: it intentionally binds priority 
values to rate-limits. High priorities are given aggressive rate 
limits (small f values), and priorities thus become useful because 
they are no longer “free.” QJump users must choose between 
low latency variance at low throughput (high priority) and high 
latency variance at high throughput (low priority). We call the 
assignment of an f value to a priority a “QJump level.” The latency 
variance of a given QJump level depends on the number of QJump 
levels above it and their traffic patterns. 

Implementation
QJump has two components: a rate-limiter to provide admission 
control to the network, and an application utility to configure 
unmodified applications to use QJump levels. Our full paper 
describes the rate limiter and application utility in detail, and 
the source code for both is available from our Web site. 

In our prototype, we use our own high-performance rate limiter 
built upon the queueing discipline (qdisc) mechanism offered by 
the Linux kernel traffic control (TC). TC modules do not require 
kernel modifications and can be inserted and removed at run-
time, making them flexible and easy to deploy. 

To support unmodified applications, we implemented a utility 
that dynamically intercepts socket setup system calls and alters 
their options. We inject the utility into unmodified executables 
via the Linux dynamic linker’s LD_PRELOAD support.

Performance Comparison
We have already demonstrated that QJump can resolve network 
interference, but how does it compare to existing congestion 
control mechanisms? To find out, we have tested QJump against 
several readily deployable congestion control schemes. In these 
experiments, PTPd, memcached, and Hadoop are configured to 
run on the same network for a 10-minute period. Since interfer-
ence is transient in these experiments, we measure the degree to 
which it affects applications using the root mean square (RMS) 
of each application-specific metric. For Hadoop, the metric of 
interest is the job runtime, for PTPd it is the time synchroniza-
tion offset, and for memcached it is the request latency. Figure 3 
shows six cases: an ideal case, a contended case, and one for each 
of the four comparison schemes. All cases are normalized to the 
ideal case, which has each application running alone on an idle 
network. 



10   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

DISTRIBUTED SYSTEMS
Jump the Queue to Lower Latency

Ethernet Flow Control 
Like QJump, Ethernet Flow Control is a data link layer conges-
tion control mechanism. Hosts and switches issue special pause 
messages when their queues are nearly full, alerting  senders 
to slow down. Figure 3 shows that Ethernet Flow Control 
(Pause frames) has a limited positive impact on memcached 
but increases the RMS offset for PTPd. Hadoop’s performance 
remains unaffected.

Early Congestion Notification (ECN) 
ECN is a network-layer mechanism in which switches indicate 
queueing to end hosts by marking TCP packets. Our Arista 7050 
switches implement ECN with weighted random early detection 
(WRED). The effectiveness of WRED depends on an administra-
tor correctly configuring upper and lower marking thresholds. 
We investigated 10 different marking threshold pairs,  ranging 
between [5, 10] and [2560, 5120], in packets. None of these 
settings achieved ideal performance for all three applications, 
but the best compromise was [40, 80]. With this configuration, 
ECN very effectively resolves the interference experienced by 
PTPd and memcached. However, this comes at the expense of 
increased Hadoop job runtimes.

Datacenter TCP (DCTCP) 
DCTCP uses the rate at which ECN markings are received to 
build an estimate of network congestion. It applies this to a new 
TCP congestion avoidance algorithm to achieve lower queue-
ing delays. We configured DCTCP with the recommended ECN 
marking thresholds of [65, 65]. Figure 3 shows that DCTCP 
reduces the variance in PTPd synchronization and memcached 
latency compared to the contended case. However, this comes 
at an increase in Hadoop job runtimes, as Hadoop’s bulk data 
transfers are affected by DCTCP’s congestion avoidance.

QJump

Figure 3 shows that QJump achieves the best results. The vari-
ance in Hadoop, PTPd, and memcached performance is close to 
the uncontended ideal case.

Conclusion
QJump applies QoS-inspired concepts to datacenter applications 
to mitigate network interference. It offers multiple QJump levels 
with different latency variance vs. throughput tradeoffs, includ-
ing bounded latency (at low rate) and full utilization (at high 
latency variance). QJump is readily deployable, open source, and 
requires no hardware, protocol, or application changes. 

Our source code and all experimental data sets are available at 
http://www.cl.cam.ac.uk/research/srg/netos/qjump.

References
[1] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. War field, 
“QoS’s Downfall: At the Bottom, or Not at All!” in Proceedings 
of the ACM SIGCOMM Workshop on Revisiting IP QoS, 2003, 
pp. 109–114.

[2] J. Dean and L. A. Barroso, “The Tail at Scale: Managing 
Latency Variability in Large-Scale Online Services,” Commu-
nications of the ACM, vol. 56, no. 2 (Feb. 2013), pp. 74–80.

[3] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, 
A. W. Moore, S. Hand, and J. Crowcroft, “Queues Don’t Matter 
if You Can JUMP Them!” forthcoming in Proceedings of the 
12th USENIX Symposium on Networked Systems Design and 
Implementation (NSDI ’15), May 2015.

[4] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, and P. Bar-
ham, “Naiad: A Timely Dataflow System,” in Proceedings of 
the ACM Symposium on Operating Systems Principles (SOSP), 
2013, pp. 439–455.

[5] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. 
Ramakrishnan, and J. E. van der Merive, “A Flexible Model for 
Resource Management in Virtual Private Networks,” in Pro-
ceedings of the ACM Conference on Applications, Technologies, 
Architectures, and Protocols for Computer Communication 
(SIGCOMM), Aug. 1999, pp. 95–108.

Acknowledgments
The full paper version of this work includes contributions from 
Jon Crowcroft, Steven Hand, and Robert N. M. Watson. This 
work was jointly supported by a Google Fellowship, EPSRC 
INTERNET Project EP/H040536/1, the Defense Advanced 
Research Projects Agency (DARPA), and the Air Force Research 
Laboratory (AFRL), under contract FA8750-11-C-0249. The 
views, opinions, and/or findings contained in this article are 
those of the authors and should not be interpreted as represent-
ing the official views or policies, either expressed or implied, of 
the Defense Advanced Research Projects Agency or the Depart-
ment of Defense. 



USENIX Awards
USENIX honors members of the community with three prestigious annual awards 
which recognize public service and technical excellence. The winners of these 
awards are selected by the USENIX Awards Committee. The USENIX membership 
may submit nominations for any or all three of the awards to the committee.

The USENIX Lifetime Achievement (Flame) Award
The USENIX Lifetime Achievement Award recognizes and celebrates singular contri-
butions to the UNIX community in both intellectual achievement and service that 
are not recognized in any other forum. The award itself is in the form of an original 
glass sculpture called “The Flame,” and in the case of a team based at a single place, 
a plaque for the team office.

Details and a list of past recipients are available at www.usenix.org/about/flame.

The Software Tools Users Group (STUG) Award
The Software Tools Users Group Award recognizes significant contributions to 
the general community that reflect the spirit and character of those who came 
together to form the Software Tools Users Group (STUG). This is a cash award.

STUG and the Software Tools effort were characterized by two important tenets. 
The first was an extraordinary focus on building portable, reusable libraries of code 
shared among multiple applications on wildly disparate systems. The other tenet, 
shared with the UNIX community, is “renegade empowerment.”

The Software Tools Users Group gave users the power to improve their environment 
when their platform provider proved inadequate, even when local management 
sided with the platform provider. Therefore, nominees for the STUG Award should exhibit one or both of these traits in a conspicuous 
manner: a contribution to the reusable code-base available to all or the provision of a significant enabling technology directly to users 
in a widely available form.

Details and a list of past recipients are available at www.usenix.org/about/stug.

The LISA Award for Outstanding Achievement in System Administration
This annual award goes to someone whose professional contributions to the system administration community over a number of 
years merit special recognition.

Details and a list of past recipients are available at www.usenix.org/lisa/awards/outstanding.

www.usenix.org/about/usenix-awards

Call for Award Nominations
USENIX requests nominations for these 
three awards; they may be from any 
member of the community. Nominations 
should be sent to the Chair of the Awards 
Committee via awards@usenix.org by 
May 1 each year. A nomination should 
include:

1.  Name and contact information of 
the person making the nomination

2.  Name(s) and contact information of 
the nominee(s)

3.  A citation, approximately 100 words 
long

4.  A statement, at most one page long, 
on why the candidate(s) should receive 
the award

5.  Between two and four supporting 
letters, no longer than one page each

NOMINATIONS DUE MAY 1



12   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

DISTRIBUTED SYSTEMS

The Design and Implementation of Open vSwitch 
B E N  P F A F F ,  J U S T I N  P E T T I T ,  T E E M U  K O P O N E N ,  E T H A N  J .  J A C K S O N ,  A N D Y  Z H O U , 
J A R N O  R A J A H A L M E ,  J E S S E  G R O S S ,  A L E X  W A N G ,  J O N A T H A N  S T R I N G E R ,  P R A V I N 
S H E L A R ,  K E I T H  A M I D O N ,  A N D  M A R T I N  C A S A D O

Open vSwitch is the most widely used virtual switch in cloud environ-
ments. Open vSwitch is a multi-layer, open source virtual switch  
for all major hypervisor platforms. It was designed de novo for  

networking in virtual environments, resulting in major design departures 
from traditional soft switching architectures. We detail the advanced flow 
classification and caching techniques that Open vSwitch uses to optimize  
its operations and conserve hypervisor resources. These implementation 
details will benefit anyone who uses Open vSwitch.

Virtualization has changed the way we do computing over the past 15 years; for instance, 
many datacenters are entirely virtualized to provide quick provisioning, spillover to the 
cloud, and improved availability during periods of disaster recovery. While virtualization 
has yet to reach all types of workloads, the number of virtual machines has already exceeded 
the number of servers and shows no signs of stopping [1].

The rise of server virtualization has brought with it a fundamental shift in datacenter net-
working. A new network access layer has emerged in which most network ports are virtual, 
not physical [2], and the first hop switch for workloads, therefore, increasingly resides within 
the hypervisor. In the early days, these hypervisor “vswitches” were primarily concerned 
with providing basic network connectivity. In effect, they simply mimicked their ToR (top-of-
rack) cousins by extending physical L2 networks to resident virtual machines. As virtual-
ized workloads proliferated, the limits of this approach became evident: reconfiguring and 
preparing a physical network for new workloads slows their provisioning, and coupling 
workloads with physical L2 segments severely limits their mobility and scalability to that of 
the underlying network.

These pressures resulted in the emergence of network virtualization [3]. In network virtual-
ization, virtual switches become the primary provider of network services for VMs, leaving 
physical datacenter networks with transportation of IP tunneled packets between hyper-
visors. This approach allows the virtual networks to be decoupled from their underlying 
physical networks, and by leveraging the flexibility of general purpose processors, virtual 
switches can provide VMs, their tenants, and administrators with logical network abstrac-
tions, services, and tools identical to dedicated physical networks.

Network virtualization demands a capable virtual switch—forwarding functionality must 
be wired on a per-virtual-port basis to match logical network abstractions configured by 
administrators. Implementation of these abstractions, across hypervisors, also greatly ben-
efits from fine-grained centralized coordination. This approach starkly contrasts with early 
virtual switches for which static, mostly hardcoded forwarding pipelines had been com-
pletely sufficient to provide virtual machines with L2 connectivity to physical networks.

It was this context—the increasing complexity of virtual networking, emergence of network 
virtualization, and the limitations of existing virtual switches—that allowed Open vSwitch 
to quickly gain popularity. Today, on Linux, its original platform, Open vSwitch works with 
most hypervisors and container systems, including Xen, KVM, and Docker. Open vSwitch 

Ben Pfaff is a Lead Developer 
of the Open vSwitch project. 
He was a founding employee 
at Nicira and is currently at 
VMware. He received his PhD 
from Stanford University in 

2007. blp@cs.stanford.edu

Justin Pettit is a Lead Developer 
on the Open vSwitch project. 
He was a founding employee at 
Nicira and previously worked 
at three successful startups 
focused on network security. 

He received his master’s degree in computer 
science at Stanford University.  
jpettit@cs.stanford.edu

Teemu Koponen was the Chief 
Architect at Nicira before 
joining VMware. Teemu 
received his PhD from Helsinki 
University of Technology in 
2008 and ever since has been 

indecisive enough to remain active within the 
network research community while working for 
the industry. He received the ACM SIGCOMM 
Rising Star Award 2012 for his contributions  
on network architectures.  
tkoponen@vmware.com

Ethan Jackson is a Staff 
Engineer at VMware and a 
researcher at UC Berkeley. 
His primary focus is on SDN, 
Network Function Virtualiza-
tion, and high performance 

software switching. ejj@ej2.org

Before joining the Open vSwitch 
team, Andy Zhou worked on 
many networking and network 
security products using 
multicore NPUs. His other 
interests include embedded 

system, kernel, and computer architectures. 
He received his MSCS from Carnegie Mellon 
University. azhou@nicira.com



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 13

also works “out of the box” on the FreeBSD and NetBSD operating systems, and ports to the 
VMware ESXi and Microsoft Hyper-V hypervisors are underway.

In this article, we give a brief overview of the design and implementation of Open vSwitch 
[4]. The key elements of its design revolve around the performance required by the produc-
tion environments in which Open vSwitch is commonly deployed, and the programmability 
demanded by network virtualization. Unlike traditional network appliances, whether soft-
ware or hardware, which achieve high performance through specialization, Open vSwitch is 
designed for flexibility and general-purpose use. It must achieve high performance without 
the luxury of specialization, adapting to differences in platforms supported, all while sharing 
resources with the hypervisor and its workloads. For a more complete description of Open 
vSwitch and its performance evaluation, see our upcoming paper in the proceedings of the 
USENIX NSDI ’15 conference [6].

Design
In Open vSwitch, two major components direct packet forwarding. The first, and larger, 
component is ovs-vswitchd, a userspace daemon that is essentially the same from one oper-
ating system and operating environment to another. The other major component, a datapath 
kernel module, is usually written specially for the host operating system for performance.

Figure 1 depicts how the two main OVS components work together to forward packets. It is 
the kernel datapath module that receives the packets first, from a physical NIC or a VM’s 
virtual NIC. There are then two possibilities: either ovs-vswitchd has given the datapath 
instructions on how to handle packets of this type or it has not. In the former case, the 
datapath module simply follows the instructions, called actions, which list physical ports 
or tunnels on which to transmit the packet. Actions may also specify packet modifications, 
packet sampling, or instructions to drop the packet. In the other case, where the datapath 
has not been told what to do with the packet, it delivers it to ovs-vswitchd. In userspace, ovs-

vswitchd determines how the packet should be handled, then it passes the packet back to the 
datapath with the desired handling. Usually, ovs-vswitchd also tells the datapath to cache 
the actions, for handling similar future packets.

Jarno Rajahalme is part of the 
Open vSwitch team at VMware 
and has specialized in the OVS 
flow classifier algorithms. He 
received his doctor of science 
in technology degree from 

Aalto University in 2012, and is the author 
or co-author of tens of patents and several 
conference and journal papers. 
jrajahalme@nicira.com

Jesse Gross works on the Open 
vSwitch team at VMware where 
he has led the development 
of several protocols used for 
network virtualization. Jesse 
was also the original maintainer 

of the kernel components of Open vSwitch in 
Linux. He holds a degree in computer science 
from Stanford. jgross@vmware.com

Alex Wang is a developer on 
Open vSwitch. He received his 
master’s degree in electrical 
engineering from UC San Diego.  
ee07b291@gmail.com

Jonathan Stringer hails from 
New Zealand, where he studied 
computer science specializing 
in networks. He’s previously 
been involved in SDN 
deployments in New Zealand 

and now actively works on the Open vSwitch 
team at VMware. joe@wand.net.nz

Pravin Shelar is an Open 
vSwitch developer. He is 
currently the OVS kernel 
module maintainer. His most 
recent focus has been on 
tunneling. pshelar@nicira.com

Keith Amidon has spent 20+ 
years building high performance 
networks and networking 
software for forwarding and 
security. He managed the Open 
vSwitch development team at 

Nicira/VMware and recently co-founded a 
stealth-mode network security startup.  
keith@awakenetworks.com

Martin Casado is a Fellow 
and the SVP and GM of the 
Networking & Security Business 
Unit at VMware. He was the 
co-founder and CTO of Nicira 
Networks. He received his PhD 

from Stanford University where he remains a 
Consulting Assistant Professor.  
mcasado@vmware.com

Figure 1: The components and interfaces of Open vSwitch. The first packet of a flow results in a miss, and 
the kernel module directs the packet to the userspace component, which caches the forwarding decision 
for subsequent packets into the kernel.

DISTRIBUTED SYSTEMS
The Design and Implementation of Open vSwitch



14   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

DISTRIBUTED SYSTEMS
The Design and Implementation of Open vSwitch

Open vSwitch is commonly used as an SDN switch, and the main 
way to control forwarding is OpenFlow [5]. It is the responsibil-
ity of ovs-vswitchd to receive OpenFlow flow tables from an 
SDN controller, match any packets received from the datapath 
module against these OpenFlow tables, gather the actions 
applied, and finally cache the result in the kernel datapath. This 
allows the datapath module to remain unaware of the particu-
lars of the OpenFlow wire protocol, further simplifying it. From 
the OpenFlow controller’s point of view, the  caching and separa-
tion into user and kernel components are invisible implementa-
tion details; in the controller’s view, each packet visits a series of 
OpenFlow flow tables, and the switch finds the highest-priority 
flow whose conditions are satisfied by the packet and executes 
its OpenFlow actions.

Flow Cache Design
Algorithmic packet classification is expensive on general purpose 
processors, and packet classification in the context of OpenFlow 
is especially costly because of the generality of the form of the 
match, which may test any combination of Ethernet addresses, 
IPv4 and IPv6 addresses, TCP and UDP ports, and many other 
fields, including packet metadata such as the switch ingress 
port. This cost is amplified by the large number of flow tables 
used by sophisticated SDN controllers: for example, VMware 
NSX [3] uses about 15 classifications per packet at minimum.

Open vSwitch uses two strategies to maximize performance in 
the face of expensive packet classification. The first strategy is 
to optimize the classification itself, by refining the classification 
algorithms and our implementations of them over time. The sec-
ond strategy is to perform fewer classifications through effective 
use of caching. This section introduces the flow cache design, 
and the following section delves into the details.

Open vSwitch’s kernel datapath initially cached microflows, that 
is, each cache entry had to match on all of the fields supported 
by OpenFlow. Microflow caching is very fine-grained: each 
cache entry matches, roughly, one stream of packets in a single 
transport connection. A microflow cache can be implemented as 
a hash table, which allows the kernel module to be very simple.

Microflow caching is effective with the most common network 
traffic patterns, but it seriously degrades when faced with large 
numbers of short-lived connections. In such cases, many packets 
miss the cache and must not only cross the kernel-userspace 
boundary, but also execute a long series of expensive packet 
classifications. In production, this kind of traffic can be caused 
by port scans, network management tools, P2P applications, 
malware, and other sources. None of these is common, but they 
happen often enough that customers notice the issue.

To improve performance under those traffic patterns, we aug-
mented the microflow cache with a megaflow cache. The mega-

flow cache is a single flow lookup table that supports generic 
matching, i.e., it supports caching forwarding decisions for 
larger aggregates of traffic than connections through wildcard-
ing. The megaflow cache somewhat resembles a general-purpose 
OpenFlow table, but it is simpler in two ways: it does not have 
priorities, which speeds up packet classification because any 
match is a “best match,” and there is only one megaflow table, 
instead of a pipeline of them, so any packet needs only one clas-
sification rather than a series. In the common case, a megaflow 
lookup remains more expensive than a microflow cache lookup, 
so we retained the microflow cache as a first-level “exact-match 
cache,” consulted before the megaflow cache. This reduces the 
cost of megaflows from per-packet to per-microflow.

Caching-Aware Packet Classification
Open vSwitch uses a tuple space search classifier [7] for all of its 
packet classifications, both kernel and userspace. To understand 
how tuple space search works, imagine that all the flows in an 
Open vSwitch flow table matched on the same fields in the same 
way: for example, all flows match the source and destination 
Ethernet address but no other fields. A tuple search classifier 
implements such a flow table as a single hash table. If the con-
troller then adds new flows with a different form of match, the 
classifier creates a second hash table that hashes on the fields 
matched in those flows. With two hash tables, a search must 
look in both hash tables. If there are no matches, the flow table 
doesn’t contain a match; if there is a match in one hash table, 
that flow is the result; if there is a match in both, then the result 
is the flow with the higher priority. As the controller continues to 
add more flows with new forms of match, the classifier similarly 
expands to include a hash table for each unique match, and a 
search of the classifier must look in every hash table.

As Open vSwitch userspace processes a packet through its 
OpenFlow tables, it tracks the packet field bits that were con-
sulted as part of the forwarding decision. This technique con-
structs an effective megaflow cache from simple OpenFlow flow 
tables. For example, if the OpenFlow table only looks at Ethernet 
addresses (as would a flow table based on L2 MAC learning), 
then its megaflows will also look only at Ethernet addresses. On 
the other hand, if even one flow entry in the table matches on the 
TCP destination port, tuple space search examines TCP destina-
tion port of every packet, so that every packet in, for example, a 
port scan must go to userspace, and performance drops.

However, in the latter case, a more sophisticated classifier may 
be able to notice cases where the match on TCP destination can 
be omitted. Thus, after introduction of megaflows, much of our 
performance work on Open vSwitch has centered around mak-
ing userspace generate megaflows that match on fewer fields. 
The following sections describe improvements of this type that 
we have integrated into Open vSwitch.



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 15

DISTRIBUTED SYSTEMS
The Design and Implementation of Open vSwitch

Tuple Priority Sorting
Lookup in a tuple space search classifier ordinarily requires 
searching every tuple. Even if a search of an early tuple finds a 
match, the search must still look in the other tuples because one 
of them might contain a matching flow with a higher priority. 
We improved on this by searching the hash tables from largest 
to smallest maximum priority. Then a successful search can 
often terminate early because the current match is known to be 
higher-priority than any possible later match.

Staged Lookup 
Even if a tuple includes many fields, a single field might be 
enough to tell that a search must fail: for example, if all the flows 
match on a destination IP that is different from the one in the 
packet we are looking up, then it suffices to just examine the des-
tination IP field. The staged lookup optimization makes use of 
this observation by adding to a generated megaflow only match 
fields actually needed to determine that the tuple’s flows did not 
match.

The tuple implementation as a hash table over all its fields made 
such an optimization difficult. One cannot search a hash table 
on a subset of its key. We considered other data structures, such 
as tries or per-field hash tables, but these increased search time 
or space requirements unacceptably.

The solution we implemented statically divides fields into four 
groups, in decreasing order of traffic granularity: metadata (e.g., 
the switch ingress port), L2, L3, and L4. We changed each tuple 
from a single hash table to an array of four hash tables, called 
stages: one over metadata fields only; one over metadata and 
L2 fields; one over metadata, L2, and L3 fields; and one over all 
fields. A lookup in a tuple searches each of its stages in order. 
If any search turns up no match, then the overall search of the 
tuple also fails, and only the fields included in the stage last 
searched must be added to the megaflow match.

Prefix Tracking 
Flows in OpenFlow often match IPv4 and IPv6 subnets to imple-
ment routing. When all the flows that match on such a field use 
the same subnet size, for example, all match /16 subnets, this 
works out fine for constructing megaflows. If, on the other hand, 
different flows match different subnet sizes, like any standard 
routing table does, the constructed megaflows match the longest 
subnet prefix: for example, any host route (/32) forces all the 
megaflows to match full addresses. Suppose, for example, Open 
vSwitch is constructing a megaflow for a packet addressed to 
10.5.6.7. If flows match subnet 10/8 and host 10.1.2.3/32, one 
could safely install a megaflow for 10.5/16 (because 10.5/16 is 
completely inside 10/8 and does not include 10.1.2.3), but without 
additional optimization Open vSwitch installs 10.5.6.7/32.

We implemented optimization of prefixes for IPv4 and IPv6 
fields using a trie structure. If a flow table matches over an IP 
address, the classifier executes an LPM lookup for any such field 
before the tuple space search, both to determine the maximum 
megaflow prefix length required, as well as to determine which 
tuples can be skipped entirely without affecting correctness.

We also adopted prefix tracking for L4 transport port numbers. 
This prevents high-priority ACLs that match specific ports from 
forcing all megaflows to match the entire port field.

Cache Invalidation 
The flip side of caching is the complexity of managing the cache. 
Ideally, Open vSwitch could precisely identify the megaflows 
that need to change in response to some event. For some kinds of 
events, this is straightforward, but the generality of the Open-
Flow model makes precise identification difficult in other cases. 
One example is adding a new flow to an OpenFlow table. Any 
megaflow that matches a flow in that OpenFlow table whose pri-
ority is less than the new flow’s priority should potentially now 
exhibit different behavior, but we do not know how to efficiently 
(in time and space) identify precisely those flows. The problem is 
worsened by long sequences of OpenFlow flow table lookups. We 
concluded that precision is not practical in the general case.

To revalidate the cached flows, Open vSwitch has to examine 
every datapath flow for possible changes. Each flow has to be 
passed through the OpenFlow flow table in the same way as it 
was originally constructed so that the generated actions can be 
compared against the ones currently installed in the datapath. 
This is time-consuming if there are many datapath flows or if 
the OpenFlow flow tables are complicated. Older versions of 
Open vSwitch were single-threaded, which meant that the time 
spent reexamining all of the datapath flows blocked setting up 
new flows for arriving packets that did not match any existing 
datapath flow. This added high latency to flow setup for those 
packets, greatly increased the overall variability of flow setup 
latency, and limited the overall flow setup rate. Therefore, Open 
vSwitch had to limit the maximum number of cached flows 
installed in the datapath to around 1,000. When Open vSwitch 
2.1 introduced multiple dedicated threads for cache revalidation, 
we were able to scale the revalidation performance to match the 
flow setup performance, as well as greatly increase the maxi-
mum kernel cache size, to about 200,000 entries.

Open vSwitch userspace obtains datapath cache statistics by 
periodically (about once per second) polling the kernel module 
for every flow’s packet and byte counters. The core use of data-
path flow statistics is to determine which datapath flows are 
useful and should remain installed in the kernel and which ones 
are not processing a significant number of packets and should 
be evicted. Short of the table’s maximum size, flows remain in 
the datapath until they have been idle for a configurable amount 



16   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

DISTRIBUTED SYSTEMS
The Design and Implementation of Open vSwitch

of time, which now defaults to 10 seconds. Above the maximum 
size, Open vSwitch drops this idle time to force the table to 
shrink. The threads that periodically poll the kernel for per-flow 
statistics also use those statistics to implement OpenFlow’s 
per-flow packet and byte count statistics and flow idle timeout 
features. This means that OpenFlow statistics are themselves 
only periodically updated.

The above description covers the invalidation strategy of the 
megaflow cache. The invalidation of the first-level microflow 
cache (discussed in the Flow Cache Design section) is much 
simpler. The kernel only opportunistically invalidates microflow 
entries: when a microflow cache results in a miss and the mega-
flow cache is about to insert a new microflow entry, an existing 
microflow entry is replaced if the entry hashes to a hash table 
bucket already in use.

Conclusion 
We described the design and implementation of Open vSwitch, 
an open source, multi-platform OpenFlow virtual switch. 
Open vSwitch has simple origins, but its performance has been 
gradually optimized to match the requirements of multi-tenant 
data center workloads, which has necessitated a more  complex 
design. Given its operating environment, we anticipate no 
change of course but expect its design only to become more dis-
tinct from traditional network appliances over time.

References
[1] T. J. Bittman, G. J. Weiss, M. A. Margevicius, and P. Dawson, 
“Magic Quadrant for x86 Server Virtualization Infrastruc-
ture,” Gartner, June 2013. 

[2] Crehan Research Inc. and VMware Estimate, March 2013. 

[3] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, 
B. Fulton, I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. 
Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. 
Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P. 
Thakkar, D. Wendlandt, A. Yip, and R. Zhang, “Network Virtu-
alization in Multi-Tenant Datacenters,” in Proceedings of the 
11th  USENIX Symposium on Networked Systems Design and 
Implementation (NSDI ’14), Seattle, WA, April 2014.

[4] Open vSwitch: http://www.openvswitch.org, September 
2014.

[5] OpenFlow: https://www.opennetworking.org/sdn-resources 
/openflow, January 2014. 

[6] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, 
J.  Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, K. 
 Amidon, and M. Casado, “The Design and Implementation 
of Open vSwitch,” in Proceedings of the 12th USENIX Sym-
posium on Networked Systems Design and Implementation 
(NSDI ’15), Oakland, CA, May 2015. 

[7] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classifica-
tion Using Tuple Space Search,” in Proceedings of the ACM 
SIGCOMM ‘99 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, 1999.



The USENIX Store is Open for Business!

www.usenix.org/store

Want to buy a subscription to ;login:, the latest short topics book, a USENIX or 
conference shirt, or the box set from last year’s workshop? Now you can, via 
the brand new USENIX Store!

Head over to www.usenix.org/store and check out the collection of t-shirts, 
video box sets, ;login: magazines, short topics books, and other USENIX and 
LISA gear.  USENIX and LISA SIG members save, so make sure your membership 
is up to date.



18   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

DISTRIBUTED SYSTEMS

Interview with Andrew Tanenbaum
R I K  F A R R O W

A lthough I had certainly encountered Andrew Tanenbaum at other 
conferences, the first time I remember talking to him was in a 
“terminal” room at USENIX Annual Tech in 2004. By that time, a 

terminal room was a place where you could have a hardwired connection to 
the Internet, and Andy showed me www.electoral-vote.com, a political Web 
site which he was working on that analyzes polling data. For someone who 
focuses on working with PhD students, and writing books and operating 
 systems, building such a useful political site seemed a bit far afield to me. 
But the more you know about Andy, the more you learn just how broad his 
interests are.

After that meeting, we would usually spend some time talking at the systems conferences 
that we both attended. While we mostly discussed MINIX 3 (www.minix3.org), we also 
talked about other things, such as his current position within Vrije Universiteit in The 
Netherlands. If you are wondering how Andy wound up there, you should read his FAQ [1]. 
But given the brief meetings, there were some things I didn’t get to ask him, and with his past 
experience in distributed systems, I thought that now would be a good time to interview him.

Rik: While at the OSDI conference (2014), I heard someone mention that people have forgotten 
about all the work that was done on building distributed or parallel systems in the 1980s and 
early ’90s. Could you explain why there was such strong interest in systems like Amoeba [2, 3], 
and Sprite?

Andy: There wasn’t a lot of commercial interest in parallel or distributed systems in the 
1980s, but there was some in academia from people who try to stay ahead of the curve. 
Already then, cheap workstations and PCs existed, and it occurred to some people that you 
could harness them together and get a bigger bang for the buck than buying a supercomputer. 
At the University of Wisconsin, for example, there was work on harvesting the power of idle 
workstations to form an ad hoc supercomputer.

My work consisted of putting sixteen Motorola 68000s in a rack and letting people start jobs 
there from their desktop machines without having to worry too much about the details. We 
called the rack the “processor pool” and built an operating system (Amoeba) to control it. We 
published some papers about it, but it didn’t get much attention in commercial circles. Nowa-
days it is called “cloud computing” and gets a lot of attention.

Rik: I think people often forget just how slow processors were in the ’80s, right into the early 
’90s. My first UNIX system, a 68010, had a blistering clock rate of 10 MHz (1983). A 1987 
Sun-4/260 ran at 16.67 MHz, and was noticeably faster than the 68030s it replaced. Having 
a rack of systems, where a user could run programs on the least busy one, surely must have 
seemed like a great idea.

Andrew S. Tanenbaum was 
born in New York City and 
raised in White Plains, NY. He 
has a BS from MIT and a PhD 
from the University of California 

at Berkeley. He is currently a Professor of 
Computer Science at the Vrije Universiteit 
in Amsterdam. Professor Tanenbaum is the 
principal designer of three operating systems: 
TSS-11, Amoeba, and MINIX. In addition, he 
is the author or coauthor of five books, which 
together have been translated into more than 
20 languages. In 2004 Tanenbaum became 
an Academy Professor, which carried with it 
a five-year grant totaling one million euro to 
do research on reliable operating systems. 
His university matched this amount. In 2008 
he received a prestigious European Research 
Council grant of 2.5 million euro to continue 
this research. Tanenbaum is a Fellow of the 
ACM, a Fellow of the IEEE, and a member 
of the Netherlands Royal Academy of Arts 
and Sciences. In 1994 he was the recipient 
of the ACM Karl V. Karlstrom Outstanding 
Educator Award. In 1997 he won the ACM 
SIGCSE Award for Outstanding Contribution 
to Computer Science Education. In 2007 he 
won the IEEE James H. Mulligan, Jr. Education 
Medal. ast@cs.vu.nl

Rik is the editor of ;login:.  
rik@usenix.org



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 19

DISTRIBUTED SYSTEMS
Interview with Andrew Tanenbaum

Andy: What the Amoeba processor pool did was create a shared 
resource, which is more efficient than dedicated ones. If all the 
money available for computing resources was spent to give each 
user the most powerful computer you could buy for that amount, 
you would often have the situation that one user needed a lot of 
computing power for a short time, for example, to run “make” 
to compile a big program, while all the other computers were 
idle but unavailable to the one who needed the power. By having 
a processor pool available to everyone, if one user needed the 
whole thing and nobody else needed any computing, the one user 
could get all of it. If two users needed a lot of computing, they 
would each get half. So the model was to put most of the power 
in the processor pool and just give users simple terminals. This 
whole model foreshadowed cloud computing, which also cen-
tralizes the computing power and lets you take as much as you 
need for a short period and nothing when you are sitting around 
scratching your head deciding what to do next.

Rik: Did the work on Amoeba have anything to do with the 
development of MINIX, the operating system you wrote to help 
students learn about operating systems?

Andy: Amoeba didn’t influence the development of MINIX much 
as Amoeba was intended as a research vehicle and not as a UNIX 
clone. For example, the Amoeba file system, the bullet server, 
wrote files onto the disk as consecutive sectors so they could 
be read back at very high speed (basically one disk command to 
read a whole file). Files were also immutable. The system was 
based on cryptographically secure capabilities managed directly 
by user programs. It was an attempt to push the envelope on 
research and was completely different from MINIX, which was 
initially intended for teaching students how a UNIX-like system 
worked inside.

Rik: MINIX started out as a microkernel, moving away from the 
generally accepted design of monolithic kernels, which are still 
dominant today. What were the advantages of using a microker-
nel for MINIX?

Andy: Since my initial goal in writing MINIX was to have stu-
dents learn from it, I thought that breaking it into a number of 
smaller chunks that interacted in very well defined ways would 
make it easier to understand. Generally speaking, for example, 
six programs of 2000 lines are easier to understand than one 
program of 12,000 lines.

But also from the beginning, I was aware that putting most 
of the operating system in “user mode” as multiple processes 
would make it more reliable and more secure against attempts 
to hack it. Now the 8088 didn’t have kernel and user modes, but I 
assumed that some future version of the 8088 would have them, 
and that is what happened, of course.

Rik: So why don’t we see more microkernels used today?

Andy: Because they are mostly used in embedded systems, where 
reliability matters. In mission-critical embedded systems, 
microkernels like QNX are widely used but they are invisible to 
the user. Also, L4 is used in the radio chip inside over a billion 
smartphones. I think monolithic kernels are mostly used due to 
inertia, whereas for each new embedded system the designers 
look around and see what is best right now without worrying 
too much about legacy. Performance used to be a problem with 
microkernels, but L4 showed this is not inherent. In many other 
areas legacy systems dominate, even though they are inferior to 
other ones.

For example, I have never heard an argument why the furlong-
stone-fortnight system used in the UK and US is better than 
the metric system other than “We’ve always done it that way.” 
Consider Fahrenheit vs. Celsius. Try arguing that the NTSC 
(Never Twice the Same Color) television system is better than 
the alternatives. What about point-and-shoot cameras that have 
an aspect ratio of 4:3, like 1950s TV sets? C is still widely used 
even though it is not type safe, and C programs are subject to 
buffer overflow attacks and more. COBOL is horrible but lasted 
for decades. In general, once some technology gets established, it 
is very hard to dislodge.

I think the research community is too fixated on Linux, and any 
monoculture is bad. Even a stable, mature, open-source system 
like FreeBSD hardly gets any attention.

Rik: I’ve written many times that running microkernels on 
current CPU architectures cannot work well, as microkernels 
and monolithic kernels rely on very different designs for system 
communication. Monolithic kernels keep all modules in one 
privileged address space, which is convenient, fast, as well as 
considerably less secure. Microkernels minimize the amount of 
code running within the privileged address space, but at the cost 
of having to make context changes when communicating with 
or between system modules. Also, unprivileged modules need 
privileged access for many of the tasks they perform.

Do system architecture changes like the IOMMU [4], as well as 
others I either don’t know about or haven’t imagined yet, help 
microkernels run as fast or faster than monolithic ones, but with 
a much higher level of security?

Andy: Better hardware certainly helps but I don’t think IOMMUs 
are necessarily the answer. One thing that may help is multicore 
architectures. One of my PhD students has been doing research 
on a prototype system in which the major server components each 
run on their own core. This way when it is needed, there is no con-
text switching, the cache is warm, and the server is ready to run 
with no overhead. As we move toward a world in which all chips 



20   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

DISTRIBUTED SYSTEMS
Interview with Andrew Tanenbaum

have cores to spare, this could make microkernels more competi-
tive since people won’t worry about “wasting” cores, just as no 
one worries about “wasting” RAM on bloated software now.

Rik: Now that you’ve been retired [5] from Vrije Universiteit, 
what do you plan on doing? You’ve always stayed busy, much 
more so than most people.

Andy: For one thing, I will continue teaching one course I give in 
our masters program (on how to write a grant proposal). I also 
still have five PhD students to supervise.

For another, I want to continue publicizing MINIX 3. It is more 
popular than many people realize. According to the statistics 
from the log, visible at minix3.org/stats, we had over 60,000 
downloads of the .iso file in 2014 and over 600,000 since 2007. 
The minix3.org site has had over 3 million visits since I put the 
counter on there about five years ago.

Still, I would like to build a more active community. One thing 
I will probably do in that respect is sign up for the ACM Distin-
guished Speakers Program and give lectures about MINIX at 
universities. I need to maintain my Platinum Medallion status 
on Delta Airlines somehow :-)

Furthermore, I have five books that are current and in constant 
need of new editions. Fortunately, I have excellent coauthors to 
help me out.

In addition, I had about 50,000 of my negatives and slides 
scanned in, and I want to organize, label, and clean them up with 
Photoshop. I also have a couple hundred hours of video that need 
work. I recently bought a Mac Pro (garbage can model) to handle 
the video processing.

So I don’t think I’ll be bored, for a few months, anyway.

References
[1] Andrew S. Tanenbaum’s FAQ: http://www.cs.vu.nl/~ast 
/home/faq.html. 

[2] A. Tanenbaum et al, “The Amoeba Distributed Operating 
System”: http://www.cs.vu.nl/pub/amoeba/Intro.pdf. 

[3] This page has links to papers, as well as a good descrip  tion of 
Amoeba: http://en.wikipedia.org/wiki/Amoeba_%28operating 
_system%29.

[4] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug 
Woos, Arvind Krishnamurthy, Thomas Anderson, and Timo-
thy Roscoe, “Arrakis: The Operating System Is the Control 
Plane,” OSDI ’14. 

[5] Retirement: http://www.few.vu.nl/~ast/afscheid/.



Buy the Box Set!
Whether you had to miss a conference or just didn’t make it to all of the sessions, here’s your chance to watch 
(and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive  containing the 
high-resolution videos from the technical sessions. This is perfect for folks on the go or those without consistent 
Internet access. 

Box Sets are available for:
 SREcon15

 FAST ’15: 13th USENIX Conference on File and Storage Technologies

 LISA14: 27th Large Installation System Administration Conference

 OSDI ’14: 11th USENIX Symposium on Operating Systems Design and Implementation

 TRIOS ’14: 2014 Conference on Timely Results in Operating Systems

 USENIX Security ’14: 23rd USENIX Security Symposium

 3GSE ’14: 2014 USENIX Summit on Gaming, Games, and Gamification in Security Education

 FOCI ’14: 4th USENIX Workshop on Free and Open Communications on the Internet

 HealthTech ’14: 2014 USENIX Summit on Health Information Technologies

 WOOT ’14: 8th USENIX Workshop on Offensive Technologies

 URES ’14: 2014 USENIX Release Engineering Summit

 USENIX ATC ’14: 2014 USENIX Annual Technical Conference

 UCMS ’14: 2014 USENIX Configuration Management Summit

 HotStorage ’14: 6th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’14: 6th USENIX Workshop on Hot Topics in Cloud Computing

 NSDI ’14: 11th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’14: 12th USENIX Conference on File and Storage Technologies

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Management Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at: www.usenix.org/boxsets



22   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

SYSADMINThe Living Dead
T I M  B R A D S H A W

Tim Bradshaw was going to 
be a physicist before getting 
side-tracked by computers, in 
the form of UNIX and Lisp. He’s 
worked on the border between 

programming and system administration for 
about 25 years. He worked in a large British 
retail bank during and after the crisis of 
2007–2008 and is hoping not to be anywhere 
near one next time around. tfb@tfeb.org

It has been claimed [1] that system administration is dead: that may be 
so, but if you think that the dead are not a problem, you have been watch-
ing the wrong kind of movies. System administration may be dead, but it 

still walks.

The kind of system administration we’d like to be dead is manual system administration: the 
management of computing systems by people, rather than by programs. Not only is this very 
expensive but people are not up to the task: they make mistakes and forget things, so incon-
sistencies accumulate over time, leading to a slow collapse of the system. Long before the 
final collapse, it becomes impossible to deal with performance and security problems. These 
problems slowly kill organizations that try to run large systems using traditional approaches.

Why should we care? If we know how to do better now, then why not let organizations that 
cannot or will not learn fail? That’s a solution only if we don’t care about those organizations 
collapsing, and if we really do know how to do better.

I Walked with a Zombie
Consider an example of an organization that has solved the problem and one that hasn’t: I’ll 
pick Google for the former and a large retail bank of your choice for the latter. How bad would 
a week-long outage to each of these organizations be?

Google. This would be reasonably bad: search itself is a solved problem now—there are other 
adequate providers—but a lot of people have built their lives and businesses around products 
like Gmail without much thought. They’d have a bad week, and some businesses would die.

The Bank. This would be rather worse. If it was your bank, you would have no access to 
money at all other than cash you were carrying, and you would be hungry when that ran out. 
This may not be the end: banks are real-time organizations and can only be down for so long 
before they cannot recover, whether or not they have lost data. Opinions vary on how long 
this is but it’s around a couple of days; your bank might never come back, and you would have 
to pick up the pieces of your financial affairs over months. This too may not be the end: the 
banking system is heavily interlinked, and the failure of a large retail bank could easily cause 
a cascade failure of other banks. The correct defense against that involves canned food, 
firearms, and growing a beard: you do not want a banking collapse to happen.

A failure like this is not easy to fix: you can bail out a bank that has run out of money by 
pouring money into it, but you can’t bail out a bank whose computer systems have failed by 
pouring computers into it. We also should not assume that “someone else” will magically 
fix it for us. If the people who regulate banks were not competent [2] to see a rather obvious 
financial crisis coming in 2007–2008 until it was too late, they certainly are not competent 
to spot crises in computer systems, let alone fix them. And crises do happen. The 2012 RBS 
batch problem [3] was a damned near-run thing, and there is every reason to believe that 
something like it will happen again in a bank or some other equally critical organization.



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 23

SYSADMIN
The Living Dead

Perhaps a banking collapse is not very likely, but it is definitely 
possible, and even a fairly small risk of the apocalypse is a thing 
to be avoided. Poor system administration practices matter, and 
it is not enough to declare them dead. We actually have to do 
something to stop them lurching around eating us.

Bone Sickness
We understand and can solve many of the roots of this malaise. 
Structural and funding problems and organizations outsourcing 
their own brains result from incompetent management. 
Administrators who do not program and programmers 
(“developers”) who do not administrate lead to the problems you 
would expect, the solution to which is some variant of DevOps. 
Additionally, the people who build and deliver systems should 
be the same people who later maintain them; throwing rubbish 
over the wall is less appealing if you know you will have to clean 
it up later.

But these are not the only difficulties.

Old. The organizations I’m worrying about are old, which 
means they are not growing exponentially. All exponentially 
growing organizations are, effectively, young (although not 
all young organizations grow exponentially). Exponential 
growth famously kills companies, but there’s a converse: if 
you can handle it, then all other problems are easy because 
all your mistakes get inflated away. Organizations growing 
exponentially can simply ignore old systems. Unfortunately, and 
despite what economists pretend to believe, exponential growth 
is necessarily ephemeral.

Contracts. If you have contracts with teeth, then you can’t just 
turn off the system that is supporting a contract when it suits 
you. Dealing with this requires either applications and languages 
that are compatible for many years or physically supporting very 
old machines. The “Cascade of Attention-Deficit Teenagers” 
development model [4] means that the second option is often 
less bad, and we should be ashamed of this. Exponential growth 
inflates this problem away as well, while it goes on, but avoiding 
meaningful contracts is a clever trick if you can do it. Banks, 
sadly, are entirely made of contracts.

It is interesting that the canonical “good” organizations are 
exponentially growing, have avoided contracts with any real bite, 
and indeed do simply turn off services [5] when it suits them. 
Whether they really have solved the system administration 
problem will become more clear as their growth slows and 
contracts start to bite in the coming few years.

Power and Safety. To solve the system administration 
problem, you need powerful tools: tools that can influence 
very many machines, and tools that may themselves be 
computationally powerful and, hence, have behavior that is hard 

to reason about. Name services are an example of the former, and 
systems that can run arbitrary code on many machines, such as 
configuration management or patch deployment systems, are 
examples of the latter.

Such tools have inherent safety problems.

To start with, you need to be sure that whatever you are 
doing is either correct, does no harm if it is not correct, or, if 
harm is done, is fully reversible. Related to this are questions 
about authority and auditability: if you work for the sort of 
organizations we’re discussing, you need to be able to show 
that you have authority to do something and later demonstrate 
convincingly to auditors that you had authority, that you actually 
did the thing you had authority to do, and so on.

Both of these problems exist already: a very powerful system 
simply makes them enormously more serious. It’s the difference 
between the precautions you would take handling a stick of 
dynamite and handling an MK-53. These problems are mostly 
solvable in principle, although I don’t think they are very close to 
being solved in practice. One non-solution is to divide the system 
up by some security mechanism so that large changes can’t be 
made; well, yes, but then you will need lots of administrators for 
all the divided chunks, which is where we came in.

There is a graph that describes control and authority in 
a system: root nodes and nodes near them are extremely 
sensitive, as a compromise of them is a compromise of the 
system. Understanding the graph and working a lot harder 
on the security of the programs and protocols that sit at or 
near the roots of it would be a good start at dealing with this. 
Unfortunately, understanding the graph tells you one enormous 
thing: the roots are people and buildings, all of which can be 
attacked in very traditional ways, and the 2014 Sony attack [6] 
seems to be an example of that.

There are parts of the graph beyond any given organization that 
can themselves be compromised. For instance, the kernel.org 
compromise [7] was only not serious because it was discovered 
quickly and because of good engineering practices. Generally, 
there is blind faith that “vendor code,” while probably buggy, 
won’t be intentionally compromised or, if it is, only by the good 
guys [8]: why do we think that, since that code is right at the 
roots of the graph?

Banks are forced to care about these questions, and they are 
encrusted with auditors whose job is to make them care. They 
only have answers to some of them, and their answers tend to 
involve a deeply hideous bureaucracy. That very bureaucracy 
makes it extremely hard for them to think clearly about 
underlying problems such as the control and authority graph. 
This is particularly alarming given the sorts of configuration-
management tools that they are being sold.



24   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

SYSADMIN
The Living Dead

Warm Bodies
It is not just banks that are vulnerable, but utility companies, 
air traffic control, and governments: every organization whose 
failure would be most damaging. And bludgeoning the zombies 
isn’t enough, since the problem is not really solved at all, other 
than in some rather special and almost certainly ephemeral 
cases. Do we really know how to manage large systems in 
general in a way that is demonstrably safe? Do we know how 
to build large systems that are safe at all? I don’t think we do, 
not least because really general solutions do not exist. And 
claiming that we have solved problems that we, in fact, have not 
solved at all will simply suppress efforts to find answers that 
might be good enough. The obituary of system administration 
has been written prematurely.

References
[1] Todd Underwood, “The Death of System Administration,” 
;login:, April 2014: https://www.usenix.org/publications/login 
/apr14/underwood.

[2] Sewell Chan, “Financial Crisis Was Avoidable, Inquiry 
Finds,” The New York Times, January 25, 2011: http://www 
.nytimes.com/2011/01/26/business/economy/26inquiry.html.

[3] John Campbell, “Ulster Bank IT Problems: What Went 
Wrong,” BBC News, November 20, 2014: http://www.bbc.co.uk 
/news/uk-northern-ireland-30127164.

[4] Jamie Zawinski, “The CADT Model,” 2003: http://www 
.jwz.org/doc/cadt.html.

[5] “A Second Spring of Cleaning,” Google, March 13, 2013:  
http://googleblog.blogspot.com/2013/03/a-second-spring-of 
-cleaning.html.

[6] Bruce Schneier, “Comments on the Sony Hack,” December 
11, 2014: https://www.schneier.com/blog/archives/2014/12 
/comments_on_the.html.

[7] Jonathan Corbet, “The Cracking of kernel.org,” August 31, 
2011: http://www.linuxfoundation.org/news-media/blogs 
/browse/2011/08/cracking-kernelorg.

[8] Bruce Schneier, “More About the NSA’s Tailored Access 
Operations Unit,” December 31, 2013: https://www.schneier 
.com/blog/archives/2013/12/more_about_the.html.



More craft.
Less cruft.

Nov. 8 – 13, 2015  |  Washington, D.C.
usenix.org/lisa15

Sponsored by USENIX in cooperation with LOPSA

The LISA conference is where IT operations professionals, 
site-reliability engineers, system administrators, architects, 
software engineers, and researchers come together, discuss, 
and gain real-world knowledge about designing, building, and 
maintaining the critical systems of our interconnected world.

Submit your ideas for talks, tutorials, panels, paper 
presentations, and workshops by April 17, 2015.

Topics of particular interest at this year’s conference 
include systems and network engineering, monitoring 
and metrics, SRE/software engineering, and culture.



26   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

SYSADMIN

Software Testing for Sysadmin Programs
A D A M  M O S K O W I T Z

Testing is a common practice in modern software development, but the 
mere mention of it tends to raise hackles in the sysadmin community. 
To me, this is disappointing because testing produces better code and 

makes it easier to safely implement changes in your code. Too many articles 
about testing just argue its merits or excoriate people who don’t use it, so 
instead I’m going to show you how easy it is to start testing your code and 
introduce you to a simple testing framework that is suitable for use with the 
kinds of programs sysadmins tend to write.

Before I go any further, let me explain exactly what I mean by testing. Good programs include 
defensive code—things like validating input, checking for errors, etc.; that is not testing. 
Rather, testing is writing a separate program that exercises your “real” code and proves it 
actually works. Typical test programs run your real program with a representative sample of 
valid and invalid inputs and verify that the responses from your program are correct. By hav-
ing a separate program, you can make changes to your real code, and if all the tests still pass, 
it’s likely that you didn’t break anything.

System Administration Meets Software Development
Infrastructure as Code. You’ve all heard it before, and you probably have an idea of what 
it means. To me, one aspect of Infrastructure as Code is bringing the discipline of software 
engineering to bear on system administration. Software engineering covers a lot of ground, 
so let’s focus on just three practices used by software engineers: version control, code reviews, 
and testing.

Pretty much everyone agrees version control is a good idea. You can use Git, Subversion, 
Perforce, or something else—just pick one and use it; all of them are better than not using any 
of them.

If you’re doing code reviews, great; if not, they’re trivial to start when you decide you’re ready. 
I’m betting you can figure out how to do them without much help. You don’t need a tool to do 
code reviews but using one can make the job easier. I like the tool ReviewBoard [4] but, again, 
there are plenty of other good tools.

Testing is where it gets interesting. Some of you may be testing your Puppet modules and 
Chef recipes, but what about all those other programs you wind up writing; do you write tests 
for those? To quote Yosemite Sam, “Dem’s fight’n words!” Over the years, I’ve seen more and 
more sysadmins embrace the idea of using version control, and some are slowly embracing 
code reviews, but testing still seems to meet plenty of resistance.

As a software developer, my day looks something like this: Pick a task off the backlog (typi-
cally a task that needs to be automated), write some code and some tests (in either order or 
in parallel), keep working at it until the task is completed and all the tests pass, then submit 
a code review. Assuming my reviewer(s) liked what I wrote, I commit the code into our ver-
sion control system. For the past year I’ve been writing most of my code in Groovy [2], using 

Adam Moskowitz is a Senior 
Tools Engineer at MathWorks 
and was the program chair of 
the LISA 2009 conference. 
Since entering the field in 

1978, he has been a computer operator (what 
sysadmins were called in The Good Old 
Days), an application developer, a system 
administrator, and a teacher of all of those 
things. At MathWorks he is building a system 
to manage VMs in both production and 
ephemeral testing environments (and quietly 
take over the world). When he’s not writing 
code, you will find him judging barbecue 
contests or riding a tandem bicycle with his 
wife. adamm@menlo.com



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 27

SYSADMIN
Software Testing for Sysadmin Programs

Maven [3] to build my projects, and testing everything with 
Spock [5]; these were chosen as standards for my group before I 
was hired, and so far I haven’t had any reason to change. All that 
was fine until one day I had to write a very “sysadmin-y” pro-
gram in Bash, and the person reviewing my code said, “Where 
are your tests?”

Now, at my company, code reviews are pretty much required, 
but as the developer I have the option of choosing which changes 
requested by the reviewer I implement, including not implement-
ing any at all. I would have been on solid ground to have said 
something like “No one writes unit tests for shell programs” or 
“It’s too hard to write tests for shell,” but that just didn’t feel right 
to me. “Would it really be that hard to come up with some mean-
ingful tests for this shell script?” I asked myself. I couldn’t shake 
the feeling that I could come up with something that wouldn’t 
feel like Rube Goldberg invented it, so I decided to spend a few 
hours on the problem.

By the end of the day I had enough of a skeleton developed that I 
believed I had found a viable solution; by the end of the next day 
I had a fully fleshed-out system, and the next morning (48 hours 
after the first code review), I submitted a second review with 
the comment, “Full tests for the Bash code are now included.” 
Because I’m lucky enough to have time to take small detours 
when I find something that may be useful for my colleagues, I 
took a third day to build an example Bash program and set of 
tests to see just how far I could reduce the framework code. In 
the end I got it down to 57 lines and a very simple directory hier-
archy. I’ll show it to you in just a moment.

Arguments Against Software Testing
The most common reasons I’ve heard for not doing software 
testing fall into one of the following categories:

◆◆ Test harnesses are too hard to understand and too difficult to 
set up.

◆◆ It’s too hard to test the kind of programs I write.

◆◆ It takes too much time.

Rather than get all preachy about it, I’m going to take the rest of 
this article to show you a technique I’ve been using for the past 
year that I believe will address at least the first two objections; 
I’ll deal with the third objection later. Let’s get to it, shall we?

Introducing a Testing Framework
There are more unit test frameworks than I can count. The 
Wikipedia article lists over 400 of them; Java alone has 35 dif-
ferent frameworks; Perl, Python, Ruby, and even Shell each have 
around eight. No wonder folks don’t know where to start. As I 
wrote above, my solution is based on Groovy (which requires the 
Java JDK), Maven, and Spock; all are quite powerful and, in their 

full depth, are somewhat complicated, but I’m going to stick to a 
very small subset to keep things simple.

The setup is trivially easy: download the Java JDK gzipped tar 
file, unpack it somewhere (I like /opt/<thing>-<version> but 
you can do this all in $HOME if you prefer), make an optional 
symbolic link, and add one environment variable to your pre-
ferred shell’s start-up file. Repeat for Groovy (a zip file) and 
Maven (requires two environment variables). When you’re done, 
update your path. That’s it: no installing dozens of packages, no 
dependency hell, no spending hours getting lots of little pieces 
all in the right places. The first time you test a program, Maven 
will automatically download Spock for you. A full set of detailed 
instructions can be found on my Web site [1].

The next step is to lay out your program source code, your test 
code, and tie it all together with a Maven pom.xml file. There’s a 
link to these steps at [1], so I’ll just show you what files go where:

-rw-r--r--  example/pom.xml

-rwxr-xr-x  example/src/main/bash/example 

drwxr-xr-x  example/src/main/resources 

-rw-r--r--  example/src/test/groovy/Test_example.groovy 

drwxr-xr-x  example/src/test/resources

The file example/src/main/bash/example contains the program 
to be tested, and example/src/test/groovy/Test_example.

groovy contains the test code; the former is written in Bash, the 
latter in Groovy. The two resource directories are there to keep 
Maven from complaining that they don’t exist.

“Wait, Groovy?!?! I have to learn yet another programming lan-
guage? Is this guy for real?” Please, there’s no need to shout. No, 
you don’t have to learn a new language, just a few constructs, and 
most of those are identical to Perl (which you probably already 
know); I’ll give you enough examples of the new bits that I’m bet-
ting you’ll be able to pick it up with very little work.

Here’s our example program:

#!/bin/bash

if [ $1 = yes ] ; then

    echo hello, world 

    exit 0 

else 

    echo goodbye, cruel world 1>&2 

    exit 1 

fi 

As you can see it doesn’t do anything useful, but it does just 
enough to let me demonstrate the three most basic Spock tests: 
testing the exit value of a program, examining standard out, and 
examining standard error. Here’s the file example/src/test/

groovy/Test_example.groovy:



28   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

SYSADMIN
Software Testing for Sysadmin Programs

1 package com.menlo.example 

2 

3  import spock.lang.* 

4 

5  class Test_example extends Specification { 

6      static String here = System.getProperty(“user.dir”)

7      static String prog = “${here}/src/main/bash/example” 

8 

9      def “exits with 0”() { 

10          when: 

11              Process p = “${prog} yes”.execute() 

12              p.waitFor() 

13 

14          then: 

15              p.exitValue() == 0 

16              p.text.contains(“hello, world”) 

17      } 

18 

19      def “exits with 1”() { 

20          when: 

21              Process p = “${prog} no”.execute() 

22              p.waitFor() 

23 

24          then: 

25              p.exitValue() == 1 

26              p.err.text.contains(“goodbye, cruel world”) 

27      } 

28  } // Test_example 

For now, skip over lines 1–8; I’ll cover them in the next para-
graph. The first test is lines 9–17: line 10 defines the “stimulus” 
block, and line 14 defines the “response” block; that is, “given cer-
tain actions, confirm that certain results are true.” In this case, 
run our program with the argument “yes” (line 11), then check 
that the exit value is zero (line 15) and that we get “hello, world” 
on standard out (line 16); you can ignore line 12 even though it’s 
required. The second test (lines 19–27) is nearly identical to the 
first, the main difference being that we examine standard error 
instead of standard out (line 26).

For our purposes, that is, when testing programs written in any-
thing other than Java or Groovy, lines 1–5 don’t matter as long 
as they exist; it won’t hurt anything if they’re identical for every 
test file you ever write. Lines 6 and 7 define two variables that let 
us find our Bash program in a portable way; in other test files the 
only thing you’ll need to change is example in line 7 to the name 
of the program being tested. (Obviously, if you’re testing a Perl 
program, you’ll also need to change bash to perl.)

To run the tests, just type mvn test and watch a few hundred 
lines of output go scrolling by; don’t try to read it all, the impor-
tant bits will be at the very end. You should see lines that look 
like this:

Running com.menlo.example.Test_example

. . . 

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0 

. . . 

[INFO] BUILD SUCCESS 

What I haven’t shown you, and what I’m going to ask you to take 
on faith, is how Maven knows what to do. It’s all contained in 
the file pom.xml, and the example you can download from my 
Web site has everything you need; there’s no need to modify the 
file or even look inside it; just put a copy in the top directory of 
each Maven project and you’ll be fine. My Web site also contains 
a small shell script, new-testing-project, that will create new 
Maven project directories for you, populate them with skeleton 
files, and drop a fully formed pom.xml into place.

Testing Scripts
For this next bit, let’s agree to call the programs that sysad-
mins write “scripts,” only because it will provide a convenient 
shorthand; also, let’s agree to call things like mount and ifconfig 
“system programs,” again, for convenience.

One of the challenges with testing scripts is they often rely 
heavily on system programs; a typical script takes an argument 
or two from the command line, uses it to call a system program, 
captures the output of that program, manipulates it, then passes 
it to a second system program. Most of the tricky code in the 
script is dedicated to parsing the output of the system programs, 
trying to extract the desired pieces or detect an error. In many 
cases, actually running the system programs is destructive or 
produces an undesirable result, or there’s no easy way to cause 
the system program to fail (so the script’s error-checking code 
can be, um, checked). Fortunately, there’s a technique common 
in modern software development that can be used, after a fash-
ion, for testing scripts as well; this technique is often known as 
“mocks” or “stubs.”

USING MOCKS IN PLACE OF SYSTEM COMMANDS
The idea behind a mock is simple: rather than run /bin/mount, 
we run our own private imitation of mount that emits whatever 
output we need for our tests but doesn’t affect the state of the 
system. Some scripts call system programs via an explicit path—
for example, /bin/mount -l -t ext3—instead of relying on mount 
being somewhere in $PATH. There’s something to be said for that 
style but it makes testing impossible. While you could depend on 
$PATH, making sure to set it at the top of every script you write, 
the alternative I prefer is to use variables for each system pro-
gram I call. By doing it like this:

MOUNT=${TESTBIN:-/bin}/mount 

you’re still protected from an incorrectly set $PATH while, at the 
same time, having the flexibility to run a mock during testing.



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 29

SYSADMIN
Software Testing for Sysadmin Programs

Here’s a second example that uses mocks:

-rw-r--r--  example2/pom.xml 

-rwxr-xr-x  example2/src/main/bash/example2 

drwxr-xr-x  example2/src/main/resources 

-rw-r--r--  example2/src/test/groovy/Test_example2.groovy 

drwxr-xr-x  example2/src/test/resources 

drwxr-xr-x  example2/src/test/resources/bin 

-rwxr-xr-x  example2/src/test/resources/bin/mount 

drwxr-xr-x  example2/src/test/resources/data 

-rw-r--r--  example2/src/test/resources/data/mount.error 

-rw-r--r--  example2/src/test/resources/data/mount.single 

-rw-r--r--  example2/src/test/resources/data/mount.separate 

The files mount.single and mount.separate contain the output 
from mount on systems with everything on a single partition and 
with /, /home, /tmp, /usr, and /var on separate partitions.

Our mock mount command is trivially short:

#!/bin/bash 

cat $MOCK_MOUNT_FILE 

exit $MOCK_MOUNT_EXIT 

Obviously, if your script calls mount more than once in a single 
run, a more sophisticated mock is needed. Finally, here’s how we 
tie all this together inside Test_example2.groovy:

package com.menlo.example2

import spock.lang.*

class Test_example2 extends Specification { 

    static String here    = System.getProperty(“user.dir”) 

    static String bin     = “${here}/src/test/resources/bin” 

    static String data    = “${here}/src/test/resources/data” 

    static String prog    = “${here}/src/main/bash/example2” 

    static String wrapper = “${here}/target/example2”

    def “test all on one partition”() { 

    setup:

        File f = new File(wrapper) 

        f.delete() // make sure we start with a new file 

        f << “#!/bin/bash\n” 

        f << “export MOCK_MOUNT_FILE=${data}/mount.single\n” 

        f << “export MOCK_MOUNT_EXIT=0\n” 

        f << “export TESTBIN=${bin}\n” 

        f << “${prog}\n” 

        f.setExecutable(true, false)

    when: 

        Process p = “${wrapper}”.execute() 

        p.waitFor()

    then: 

        // your tests here

    cleanup: 

        assert new File(wrapper).delete()

    }

} // Test_example2

Each subsequent test would have to duplicate the setup and 
cleanup stanzas, substituting values for MOCK_MOUNT_FILE and 
MOCK_MOUNT_EXIT as appropriate.

You may have noticed the directory target in the definition of 
wrapper; this is where Maven puts all temporary files. When 
you’re done testing a particular script, run the command mvn 

clean to clean up.

Mocks can be quite complicated, and I could probably fill an 
entire article on how to get fancy with them; for now I think I’ve 
left you with enough to get started.

“It Takes Too Long”
The last reason people give for not writing tests—“it takes too 
much time”—is often the most difficult to respond to, but I hope 
by now I’ve established enough credibility that you’ll at least read 
my argument.

To me, testing is kind of like insurance: if you never need it 
then the money you spend on it is “wasted,” but it takes only one 
accident (or failure or whatever) for every dollar you’ve paid in 
premiums to be returned ten-fold (or more). But software will 
inevitably fail, and writing software is hard. There are far more 
variables, edge cases, and unknowns involved in software than 
any one person can understand, and even the best developers are 
far from perfect. Put together, it’s not a question of whether any 
given piece of software will fail but, rather, when it will fail and 
how much damage the failure will cause.

Of course, tests are themselves software and thus will fail, but 
my 30+ years of experience tells me that the time typically put 
into writing tests catches at least 80% of the bugs; I also know 
that writing tests makes you approach software development 
differently and results in more correct (or, at least, more robust) 
software. To me, producing better software far outweighs the 
fact that testing is not a “silver bullet” and that your software 
may still fail. In other words, apply the Pareto Principle (aka 
“the 80-20 rule”) and avoid letting perfection get in the way of 
improving your work.

The other big benefit to testing is that it lets you make changes 
to your software; not only can you tell that the new code works, 
you can be confident that you haven’t broken your old code. For 
example, if you wrote a program to run under CentOS but now 
want it to work on Ubuntu as well, you can run the tests to prove 
it works on CentOS, modify the code, and add tests for Ubuntu. 
Once the new stuff is working, go back and run the old tests on 
CentOS to see that your program still works there.



30   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

So there you have it: I’ve shown you how to install and configure 
a simple test harness, and how to write basic tests; I’ve given you 
a brief introduction to mocks; and I’ve offered an argument to 
justify spending the extra time to write tests for your programs. 
Now it’s up to you to decide whether to apply what I’ve shown you 
the next time you have to write a program as part of your job as a 
system administrator.

Resources
[1] http://menlo.com/tdd4sa/.

[2] http://groovy.codehaus.org/.

[3] https://maven.apache.org/.

[4] https://www.reviewboard.org/.

[5] https://code.google.com/p/spock/.

XKCD

SYSADMIN
Software Testing for Sysadmin Programs



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 31

SYSADMIN

Managing Incidents
A N D R E W  S T R I B B L E H I L L  A N D  K A V I T A  G U L I A N I

Effective incident management is key to limiting the disruption caused 
by an incident and restoring normal business operations as quickly 
as possible. Without gaming it out in advance, and with adrenalin 

running through the veins, principled incident management can go out of the 
window in real-life situations.

This article walks you through a pen portrait of an incident that spirals out of control due to 
ad hoc incident management practices, outlines a well-managed approach, and reviews how 
the same incident might have looked with well-functioning incident management.

Unmanaged Incidents
Put yourself in the shoes of Mary, the on-call engineer for The Firm. It’s 2 p.m. on a  Friday 
and your pager has just exploded. Black-box monitoring tells you that your service has 
stopped serving any traffic in an entire datacenter. With a sigh, you put down your coffee and 
set about the job of fixing it. A few minutes into the task, another alert tells you that a second 
datacenter has stopped serving. And then a third, out of five. Worse, there is more traffic 
than the remaining two datacenters can handle; they start to overload. Before you know it, 
your service is overloaded and unable to serve any requests.

You stare at the logs for what seems like an eternity. There are thousands of lines that 
suggest there’s an error in one of the recently updated modules, so you decide to revert the 
servers to the previous release. When you see that this hasn’t helped, you call Josephine, who 
wrote most of the code for the now-hemorrhaging service. Reminding you that it’s 3:30 a.m. 
in her time zone, she blearily agrees to log in and take a look. Your colleagues Sabrina and 
Robin start poking around from their own terminals. “Just looking,” they tell you.

Now one of the suits has phoned your boss and is angrily demanding to know why he wasn’t 
informed about this “business-critical service’s total meltdown.” Independently, the vice 
presidents are nagging you for an ETA and to understand “How could this possibly have hap-
pened?” You would sympathize but that takes cognitive effort that you are holding in reserve 
for your job. They call on their prior engineering experience and make irrelevant but hard-to-
refute comments: “Increase the page size” sticks in the mind.

Time passes and the two remaining datacenters fail completely. Unbeknown to you, the 
sleep-addled Josephine had called Malcolm. He had a brainwave: something about CPU 
affinity. He felt certain that he could optimize your remaining server processes if he could 
just deploy this one simple change to the production environment, so he tried it. Within sec-
onds, the servers restarted, picking up the change. And died.

The Anatomy of an Unmanaged Incident
Note that everybody in the above picture was doing their job, as they saw it. How could things 
go so wrong? Here are some hazards to watch out for:

Andrew Stribblehill has been 
a Site Reliability Engineer 
at Google since 2006 and 
has worked on ad serving, 
database, billing pipeline, and 

fraud detection teams. Before joining Google, 
he studied theoretical physics at Durham 
University after which he specialized in high-
performance computing for the university. 
stribb@google.com

Kavita Guliani is a Technical 
Writer for Technical Infra-
structure and Site Reliability 
Engineering at Google Mountain 
View. Before working at Google, 

Kavita worked for companies like Symantec, 
Cisco, and Lam Research Corporation. She 
holds a degree in English from Delhi University 
and studied technical writing at San Jose State 
University. kguliani@google.com



32   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

SYSADMIN
Managing Incidents

Sharp Focus on the Technical Problem
We tend to hire people like Mary for their technical prowess. So 
it’s unsurprising that she was busy making operational changes 
to the system, trying valiantly to solve the problem. She wasn’t in 
a position to think about how to mitigate the problem: the techni-
cal task at hand was overwhelming.

Poor Communication
For the same reason, she was far too busy to communicate 
clearly. Nobody knew what others were doing. Business leaders 
were angered; customers frustrated; the would-be volunteers 
switched off or, at any rate, were not used effectively.

Freelancing
Malcolm was making changes to the system with the best of 
intentions. But Malcolm hadn’t coordinated his actions with 
anyone, perhaps because no one, not even Mary, was actually in 
charge of troubleshooting. Whatever the case, his changes made 
a bad situation far worse.

Elements of Incident-Management Process
Incident-management skills and practices exist to channel the 
energies of enthusiastic individuals. Google’s incident-man-
agement system is based on the Incident Command System [1], 
known for its clarity and scalability.

A well-designed incident-management process has the following 
features:

Recursive Separation of Responsibilities
It’s important to make sure that everybody involved in the inci-
dent knows their role and doesn’t stray onto someone else’s turf. 
Somewhat counterintuitively, this allows people more autonomy 
than they might otherwise have since they need not second-
guess their colleagues.

If the load on a given member becomes excessive, they need to 
ask the planning lead for more staff, then delegate work, up to 
and including the creation of sub-incidents. Less extreme delega-
tion involves role leaders factoring out noisy components to col-
leagues who report high-level information back up to them.

There are several distinct roles that are both easy to identify and 
sufficiently separable that they can be worked on by different 
people:

Incident Command: The incident commander holds the 
high-level state about the incident. They structure the incident 
response task force, assigning responsibilities according to the 
need. De facto, they hold all positions that they have not del-
egated. If appropriate, they can suggest ways around problems to 
Ops, thus helping them to avoid fixating on unhelpful parts of the 
problem space.

Operational Work: The Ops lead works with the incident com-
mander to respond to the incident by applying operational tools 
to the task at hand.

Communication: People filling this role are to be the public 
face of the incident-response task force. They might take on the 
synopsis-writing component of maintaining the incident docu-
ment; they almost certainly send emails periodically to keep 
others aware of the progress made.

Planning: Dealing with longer-term issues than Ops, people 
in the Planning role support Ops, match offers of support with 
roles, file bugs, and track how the system has diverged from the 
norm so that it can be reverted once the trouble is over.

A Recognized Command Post
Interested parties need to understand where they can interact 
with the incident commander. In many situations, taking the 
incident task force members into a known room is effective; 
scrawl “War Room” on the door if that helps. Others may prefer 
to remain at their desk but keep a weather eye on email and IRC.

We have found IRC to be a huge boon in incident response. It 
is very reliable and can be used as a log to scroll back through, 
which is invaluable in keeping detailed state changes in mind. 
We’ve written bots that log the traffic (helpful for postmortem 
analysis) and others that report interesting events such as alerts 
to the channel. IRC is also a convenient medium over which 
geographically distributed teams can coordinate.

Live Incident State Document
The most important responsibility of the incident commander 
is to keep a living incident document. This can be in a wiki but it 
helps if it’s editable by several people concurrently. Most teams 
at Google use Google Docs for this, although Google Docs SREs 
use Google Sites: after all, depending on the software you are 
trying to fix as part of your incident-management system is 
unlikely to end well.

See Appendix 1 for a sample incident document. They can be 
messy but they must be functional, so be sure to make a template 
first so that it’s easy to start your incident documents. Keep the 
most important information at the top. Retain them for postmor-
tem analysis and, if necessary, meta-analysis.

Clear, Live Handoff
It’s essential that the post of incident commander be clearly 
handed off at the end of the working day. If outgoing and new 
people are not both in the same location, a simple and safe way is 
to update the new incident commander over the phone or video 
call. Once the new incident commander is fully apprised, the 
outgoing commander should explicitly make the handoff (“You’re 
now the incident commander; okay?”) and not leave the call until 
there is firm acknowledgment.



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 33

SYSADMIN
Managing Incidents

A Managed Incident
Mary is into her third coffee of the day: it’s 2 p.m. The pager’s 
harsh tone surprises her and she gulps the drink down. Problem. 
A datacenter has stopped serving traffic. She starts to investi-
gate. Shortly another alert fires and the second datacenter out 
of five is out of order. Since this is a rapidly growing issue, she 
knows that she’ll benefit from the structure of her incident-man-
agement framework.

Mary snags Sabrina. “Can you take command?” Nodding her 
agreement, Sabrina quickly gets a rundown of the story so far, 
writes it up as an email, and sends it to the prearranged mailing 
list. Sabrina recognizes that she doesn’t know the impact yet, so 
she asks Mary. “None so far. Let’s just hope we don’t lose a third 
datacenter.” She copies it into a live incident document, marking 
it as the summary.

When the third alert fires, Sabrina sees it among the debug-
ging chatter on IRC and quickly follows up to the email thread 
with an update: the VPs are being informed about the high-level 
status of the incident without being bothered with the minutiae. 
She seeks out an external communications repre sentative so 
they can start drafting their messaging. “How’s it going, Mary?” 
asks Sabrina. “Want me to find the developer on call?” “Sure.”

By the time Josephine logs in, Robin has already volunteered to 
help out. Sabrina reminds him and Josephine that they are to 
keep Mary informed of any actions they are taking unless Mary 
delegates to them. They quickly learn the current situation by 
reading the incident document.

Mary has, by now, tried the old binary release and found it want-
ing: she mutters this and Robin updates IRC to say that it didn’t 
work. Sabrina pastes it into the document.

At 5 p.m., Sabrina starts finding replacement staff to take on the 
incident: she and her colleagues are about to go home. Sabrina 
updates the incident document. At 5:45 she holds a brief phone 
conference to make sure that everyone’s aware of the current 
situation. By 6 p.m., they’re all tired, and they hand off their 
responsibilities to their colleagues in the remote office.

When to Declare an Incident
It is better to declare an incident early and then find a simple fix 
and shut it down than to have to spin up the incident-management 
framework hours into a burgeoning problem. Set clear conditions 
for declaring an incident. My team follows these broad guidelines. 
If any of the following is true, it’s an incident:

◆◆ Do you need to involve a second team in fixing the problem?

◆◆ Is it a customer-visible outage?

◆◆ Is it an unsolved issue even after an hour’s concentrated 
 analysis?

Incident-management proficiency atrophies quickly. So what is 
an engineer supposed to do? Have more incidents? Fortunately, 
the incident-management framework can be followed for other 
operational changes that need to span time zones and/or teams. 
If you use it frequently as a regular part of your change-man-
agement procedures, it’ll be easy to pick up when needed. If your 
organization performs disaster-recovery testing (you should: 
it’s fun), incident-management should be part of that process. 
We often game out the response to an on-call issue to further 
familiarize ourselves.

Resource
[1] https://www.osha.gov/SLTC/etools/ics/what_is_ics.html.

Appendix 1: Incident Template
Incident <WRITE TITLE HERE>: yyyy-mm-dd

Incident management info: http://<your-internal-site>/
incident-management-cheat-sheet 

~TWO-LINE SUMMARY; COMMS-LEAD TO MAINTAIN 
CONTINUALLY.

Status: active 
Command post(s): #incident on IRC

Command Hierarchy (all responders)
 • Current Incident Commander: XXX

 ° Operations lead: XXX
 ° Planning lead: role filled by Command
 ° Communications lead: role filled by Command

 • Next Incident Commander: undefined

Detailed Status (updated at yyyy-mm-dd hh:mm UTC by 
$user)
UPDATE EVERY 4 HOURS AND AT HANDOFF

Exit Criteria

TODO list and bugs filed

Incident timeline, most recent first: times are in UTC
yyyy-mm-dd 
hh:mm        USERNAME: XXX



34   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

SYSADMIN

/var/log/manager 
A Generational Theory of Sysadmins

A N D Y  S E E L Y

System administrators start from someplace. They’re born to it, they’re 
trained for it, or maybe they just fall into it. Regardless of the origin 
story, each sysadmin brings a certain something, a fire in the belly, 

an approach that is creative and inquisitive, and a motivation that is oddly 
tough to pin down. Over the past few years of hiring technical staff, I started 
getting a feeling that the type of sysadmin I was used to finding just wasn’t 
as common any more. I felt like something was changing in the work force, 
which led me to develop my own “theory” of generations of sysadmins and 
ultimately to change how I approach hiring and managing sysadmins who 
don’t fit into just one model.

The Explorer
Before my own career logs were being written into /var/log/manager, I was a pure and 
serious sysadmin. I wasn’t just the master of esoterica, I was frequently the only person in 
the whole operation who knew certain things. I was the only one who knew what a “magic 
number” was. I was the only sysadmin who could write code in FORTH, and I applied that 
skill to write custom boot orders for Sun servers. I saw operating systems, databases, HTTP, 
SMTP, NNTP, IRC, TCL/TK/Expect, Perl, and Motif as all dialects of the same underlying 
language, and I spent incredible amounts of time burrowing into the oddest little artifacts of 
an operating system and gaining the most intimate understanding of every system and how 
it interacted. 

My own electricity bill was a monthly casualty of these explorations. I didn’t do all this 
exploring and tinkering on company time, although I didn’t not do it on company time either; 
I spent considerable home time and personal expense building out servers and labs and fill-
ing rooms with boxes and cables. It’s remarkable that my wife is still with me after I spent 
the first decade of our marriage duct-taping Ethernet cables across the floor. I was incredibly 
personally invested.

I was the young guy on the team. The older folks, my mentors and managers, didn’t seem to 
have had my type of personal, home investment when they were younger. Something about 
needing whole power substations to run a home lab made out of Honeywell gear, or the 
expense of buying your own PDP-11. Apparently, a nine-track tape cabinet is a serious spouse 
irritant. That didn’t stop them from being brilliant contributors on the job and fine mentors 
to young kids like me, but they had obviously learned the trade differently than I was doing.

The Wall of Certs
Today, I’m the old guy, and I interview young people looking for jobs. I’ll find people who have 
home labs, but it’s usually to build out an environment in order to study for a certification 
exam. This means that a home lab is constructed to install a trial version Microsoft Win-
dows Server 2008R2 with SQL Server and Active Directory. It’s a good drill and has a posi-
tive result when it comes to test time, but you don’t find as many young people today running 
a half-dozen different operating systems at a time just to see which one is the most “fun.” To 

Andy Seely is the Chief Engineer 
and Division Manager for an IT 
enterprise services contract, 
and an adjunct instructor in the 
Information and Technology 

Department at the University of Tampa. His 
wife Heather is his PXE Boot and his sons 
Marek and Ivo are always challenging his thin-
provisioning strategy. andy@yankeetown.com



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 35

SYSADMIN
/var/log/manager: A Generational Theory of Sysadmins

a non-sysadmin, that kind of activity probably seems wasteful 
and more than a little useless, but to me the benefits of under-
standing how an OS performs can’t be replicated easily in other 
ways. “Fun” is a feature of the learning.

Generations of Sysadmins
This slow change in the type of applicants I see has had me 
thinking about what’s changed. Perhaps there are distinct gen-
erations of sysadmins. Making a notional model of something 
poorly understood helps with the understanding; we do this all 
the time at the whiteboard when troubleshooting. A little bit of 
time at my manager’s whiteboard produced an informal “Gen-
erational Theory of Sysadmins.”

1. The Baby Boomers learned about computing in college, were 
trained as electrical or mechanical engineers, or happened to be 
serious workshop hobbyists. Being a sysadmin meant having a 
soldering iron and an oscilloscope. They bought kits or built ru-
dimentary computers in garages and helped spark the personal 
computing market. These are the senior sysadmins and manag-
ers who are starting to retire. I think of them as “Builders.”

2. Generation Xers grew up with those Boomers. This was the 
first generation to be exposed as kids to personal computing. 
There were commercial boxes you could buy and games to 
play, but it was still in the “some assembly required” space. 
A kid might have to type in a thousand lines of BASIC from a 
magazine in order to play a game, but ultimately there was a 
computer and a computer game in the home, and that pushed 
the kid into typing it in and, eventually, figuring it out. These 
are today’s mid-career sysadmins and managers who are hiring 
and mentoring the next generation. I started out thinking of 
them as “Hackers,” but that’s a word that means too many dif-
ferent things to people for it to be the best word. “Explorers” is 
a better word.

3. Millennials, aka Generation Y, are in the early stages of their 
careers. They’re college graduates and certification-holders, 
and they grew up in households where computers were bought 
but not built, and where software was bought or downloaded 
and installed, but not necessarily written and certainly never 
typed in from a magazine. Even the more technical Gen-Y 
people still see computing as something to assemble and use 
rather than something to build and figure out. I think of them as 
“Users of Tools.” 

4. Generation Z is expert with modern technology. I can install a 
new game app on my smartphone and hand it to my four year 
old, and with zero training he can be up and running in barely 
minutes (“Dad, this is awesome!” said the boy two minutes 
after I handed him “Cut the Rope”). Yet it’s misguided to think 
of these youngsters as technologically savvy. What they have 
is the ability to intuitively grasp today’s well-designed UIs 
and easily approach communications as an abstract concept. 

They’ve grown up hearing grandma’s voice coming out of the 
ether of a vehicle’s Bluetooth connection to the mobile phone, 
and they’re perfectly comfortable with things happening to and 
for them, but they don’t necessarily gain any understanding of 
how these things happen. I think of them as “Customers of the 
Future.”

There’s a danger in creating any labeling system for people. It 
dehumanizes. It pigeonholes and silos. It creates friction points 
and us-versus-them scenarios. And it allows a manager to take 
an easy view of things and assume understanding of a person 
simply based on a label, which is dangerous ground. In my sysad-
min generational theory, there’s a lot of overlap and slop around 
the edges. It’s simply a way of thinking about people’s skills in 
order to help guide them, and nothing more.

The Future of Sysadmin
As a manager, I look for traits in prospective employees that I 
see in myself: personal investment in the sysadmin profession, 
drive, motivation, curiosity, and a burning need to understand how 
something works behind the UI. I’m seeing less and less of that in 
younger applicants, and I’m concerned. I’m also growing as a man-
ager and learning how to see different kinds of value in people. 

As the manager, it’s my job to understand the capabilities of my 
employees and play up the strengths while avoiding the weak-
nesses. My generational model helps me find the value in people 
who don’t have the same mindset I do. I’m the manager, and orga-
nizing people of different skills and generations into effective 
and efficient teams is my job.

A Tribute
Where do I fit and how did I get here? I’m a pure Gen-X 
“Explorer” sysadmin. I grew up with a Builder-type dad, 
who brought home what may have been the first person-
ally owned computer in my hometown in 1980. He was 
never a computing professional, but he always kept the 
latest in our house and always made sure that we were 
growing up with technology at our fingertips. The timing 
was perfect, as the technology was raw enough that I 
needed to tinker to make anything work. Thanks to a good 
10 years of my father’s Boomer-style hobbyist obsession 
with computing, I was able to make an easy jump into an 
entry-level computing job, and then I took off and never 
slowed down. 

This sidebar is a tribute to my father, Ray Seely, who died 
too young on December 17, 2014. 



36   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNSPractical Perl Tools
Dance, Browser, Dance!

D A V I D  N .  B L A N K - E D E L M A N

In past columns, we’ve written code together that contacted Web sites 
that didn’t have an API per se and queried information from them. Tools 
like HTTP::Tiny, LWP::Simple, Mojo::UserAgent, and WWW::Mechanize 

have made an appearance in this column (some as recently as the previous 
column). These are all fantastic tools (some of them more fantastic than oth-
ers), but if you have felt something was lacking, I can’t blame you. With all of 
these modules, we’ve sidestepped, for better or worse, the Web browser. This 
has also meant giving up certain functionality found in the browser—the big-
gest elephant being JavaScript. People have written code to glue JavaScript 
engines to WWW::Mechanize (e.g., WWW::Mechanize::PhantomJS) or to 
drive browsers from these kinds of modules, but they haven’t been particu-
larly widespread in their implementation or adoption. In this column, we’re 
going to look at how to use Perl with a framework that lots of people use to 
drive browsers in a whole range of languages.

The framework we’ll be exploring in brief today is called Selenium. It originated from work 
that people have done to create testing frameworks that used real browsers to construct real 
tests of Web applications. Let’s say you built a Web app and you’d like to make sure that your 
automated test suite (you have a test suite, right?) actually tests the app’s functionality using 
the same browsers humans will be using when you finally make it available on the Web. 
Enter Selenium (http://www.seleniumhq.org). But, testing is just one thing you could use 
this for; driving your browsers (both desktop and mobile) using a script could be applied to all 
sorts of things.

Before we dive into how to set all this up and get it to rock from Perl, there is a piece of Sele-
nium history worth mentioning so that you don’t take a wrong turn while learning about this 
stuff. Once upon a time, as in version 1, Selenium offered something called Selenium Remote 
Control (or Selenium RC as you will see it written) as one of its main interfaces. 

There were a number of Perl modules written for Selenium 1, and we’re not going to touch any 
of them. Selenium 1 was a bit of a hack (basically it injected JavaScript code that manipu-
lated the browser), so at some point Selenium 2 (sometimes called Selenium WebDriver 
because that was the name of the other project that merged with Selenium) was born. In this 
column, we are going to be using a Perl module that works with Selenium 2 only. If you want 
to dive deeper into this subject by searching the Web for more information, be sure to pay 
attention to which version of Selenium the resources you find are describing.

Wait, Was that Java I Just Saw Zoom By?
Let’s talk about how we get set up to start using Selenium. While there are ways to directly 
talk to a browser using the WebDriver stuff, the Perl module we’re going to be using expects 
to talk to a standalone Selenium server. That server is written in Java. But, besides needing the 
JDK installed and running one command, you can pretend I never mentioned that language. 
Actually, let me be a little bit of a tease and mention that there are companies like Sauce Labs 
(https://saucelabs.com) that actually provide Selenium as a service so that you could connect 

David N. Blank-Edelman is 
the Director of Technology at 
the Northeastern University 
College of Computer and 
Information Science and the 

author of the O’Reilly book Automating System 
Administration with Perl (the second edition of 
the Otter book), available at purveyors of fine 
dead trees everywhere. He has spent the past 
24+ years as a system/network administrator 
in large multi-platform environments, including 
Brandeis University, Cambridge Technology 
Group, and the MIT Media Laboratory. He was 
the program chair of the LISA ‘05 conference 
and one of the LISA ‘06 Invited Talks co-chairs. 
David is honored to have been the recipient 
of the 2009 SAGE Outstanding Achievement 
Award and to serve on the USENIX Board of 
Directors beginning in June of 2010.   
dnb@pobox.com



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 37

COLUMNS
Practical Perl Tools: Dance, Browser, Dance!

to their hosted Selenium infrastructure instead of bringing up 
your own server. But for our purposes, bringing up a standalone 
server (vs. an industrial-strength service) is pretty trivial.

First step (providing you have the JDK installed): go to http://
www.seleniumhq.org and download the latest stable Selenium 
server release.

Step 2: start it up like so:

 java -jar {name of jar file}

See, that wasn’t so bad. The Java app will produce output that 
will look roughly like this:

   21:52:09.373 INFO - Launching a standalone server

   21:52:09.437 INFO - Java: Apple Inc. 20.65-b04-466.1

   21:52:09.437 INFO - OS: Mac OS X 10.10.1 x86\_64

   21:52:09.458 INFO - v2.44.0, with Core v2.44.0. Built from 

revision 76d78cf

   21:52:09.574 INFO - Default driver org.openqa.selenium.

ie.InternetExplorerDriver registration is skipped: 

registration capabilities Capabilities \[{platform=WINDOWS, 

ensureCleanSession=true, browserName=internet explorer, 

version=}] does not match with current platform: MAC

   21:52:09.643 INFO - RemoteWebDriver instances should connect 

to: http://127.0.0.1:4444/wd/hub

   21:52:09.644 INFO - Version Jetty/5.1.x

   21:52:09.645 INFO - Started HttpContext\[/selenium-server 

/driver,/selenium-server/driver]

   21:52:09.646 INFO - Started HttpContext\[/selenium-server 

,/selenium-server]

   21:52:09.646 INFO - Started HttpContext\[/,/]

   21:52:09.717 INFO - Started org.openqa.jetty.jetty.servlet 

.ServletHandler@3b6f0be8

   21:52:09.717 INFO - Started HttpContext\[/wd,/wd]

   21:52:09.727 INFO - Started SocketListener on 0.0.0.0:4444

   21:52:09.728 INFO - Started 657576922 org.openqa.jetty.jetty 

.Server@7a3570b0

This output will be primarily useful to us if we want to check 
some of the values in use (e.g., what port it is listening on). A 
number of values can be set on start; to see what is supported, 
run the following:

   java -jar {name of jar file} -help

Back to Cool, Refreshing Perl
Once you have a Selenium standalone server running, it is time 
to bring Perl into the picture. The module we are going use is 
called Selenium::Remote::Driver. It can be a little dependency 
heavy (48 other modules if installing into a fresh Perl instance—
I checked), but with the help of the cpanm command mentioned 
here in a past column, it is installed with a single command 
(cpanm Selenium::Remote::Driver) and a bit of thumb-twiddling. 

Let’s start with a simple script that uses it to tell a browser to 
fetch a Web page:

   use Selenium::Remote::Driver;

   my $driver = new Selenium::Remote::Driver;

   $driver->get(‘http://www.usenix.org’);

   print $driver->get_title(),”\n”;

   $driver->quit();

This script can be so bare bones because it is using all of the 
defaults; we’ll talk about modifying them shortly. When we run 
this script, it is a little creepy because Firefox pops open, loads 
this page, quits, and then the script prints:

   Home | USENIX

We can see what is going on because the window where we 
started the standalone server is providing some play-by-play 
debug output: 

   11:36:19.871 INFO - Executing: [new session: 

   Capabilities [{acceptSslCerts=true, 

   browserName=firefox, javascriptEnabled=true, version=, 

   platform=ANY}]])

   11:36:19.894 INFO - Creating a new session for Capabilities 

   [{acceptSslCerts=true, browserName=firefox, 

   javascriptEnabled=true, version=, platform=ANY}]

   11:36:26.008 INFO - Done: [new session: Capabilities 

   [{acceptSslCerts=true, browserName=firefox, 

   javascriptEnabled=true, version=, platform=ANY}]]

   11:36:26.018 INFO - Executing: [get: http://www.usenix.org])

   11:36:28.186 INFO - Done: [get: http://www.usenix.org]

   11:36:28.192 INFO - Executing: [get title])

   11:36:28.536 INFO - Done: [get title]

   11:36:28.542 INFO - Executing: [delete session: 1abb3d91 

-ce4a-426d-8096-b4853cf94197])

   11:36:28.646 INFO - Done: [delete session: 1abb3d91-ce4a 

-426d-8096-b4853cf94197]

You Can Seek, But First You Have to Find First
Retrieving the title of the page you opened in the browser via 
Selenium magic is probably not the most useful thing you will 
want to do (although it can be helpful as part of a larger test suite 
to make sure the rest of the code’s assumptions about which 
page you’re on are correct). Most of the time, you will want to be 
working with elements on that page, either retrieving them or 
interacting with them (e.g., filling in forms, performing some 
kind of navigation).

More often than not, the very first thing you have to do is grab 
hold of part of the page using one of these two find_ commands: 

 find_element 
 find_elements



38   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS
Practical Perl Tools: Dance, Browser, Dance!

There are other similar commands (e.g., get_active_element, 
which returns the element that has focus), but I find almost all 
of my scripts include one of those two as the first action after 
pulling up the page.

Here’s where things get a little interesting and where one of the 
defaults mentioned before comes into play. find_element(s) gives 
you three different “strategies” (that’s the term from the docs) 
for locating elements:

1. HTML specification (my term). This lets you find an element 
by id (id = something in the source)), class (class = something), 
link, etc.

2. CSS specification. This lets you find an element using the 
standard CSS selectors as the browser implements them. So, 
for example, you could specify “div#feature3”.

3. XPath specification. Faithful readers of this column know I ♥ 
XPath for its concision and eloquence. They will also recall that 
we spent an entire column looking at the XPath syntax and like. 
So that we don’t have to do an entire context swap-in of that 
info, I’m going to simply say that one can use XPath expressions 
as another way of selecting elements on a page but not provide 
other examples of this that need to be explained.

By default, find_element will use #3, XPath. To change that 
default, each find_element can take a second argument specify-
ing the strategy, or better yet, we can change the default:

   my $driver = 

     Selenium::Remote::Driver->new(‘default_finder’ => ‘css’);

The docs recommend using HTML selectors (#1) by default, as in:

   my $Webelement = find_element(‘search-bar’,’id’);

because it is the most efficient kind of search, but that assumes 
you are dealing with Web pages that have well-structured code. 
I tend to hope for that but expect to have to use one of the other 
kinds of finders.

Now we know ways to find things, but what happens when we suc-
ceed? find_element() will return a WebElement object (or more 
precisely, a Selenium::Remote::WebElement object) representing 
the first thing it finds, and find_elements returns an array of 
them for all of the matches. With this object, we can do a number 
of things (documented in the Selenium::Remote::WebElement 
module documentation). Here’s some code that will display the 
names of the main tabs on the page:

   my (@elements) = 

    $driver->find_elements(‘ul#main-menu-links li a’,’css’);

   foreach my $element (@elements){

    print $element->get_text(),”\n”;

   }

It queries for all of the elements that match a particular CSS 
selector (finds all of the links in the list items of the unordered 
list with the ID of “main-menu-links”) and then displays the text 
associated with each.

Let’s Do Stuff
Selenium has launched a browser for us, so let’s start doing 
browse-y things. First off, we might want to start navigating 
around the page and clicking on stuff. One thing we could do 
would be to click on all of the main menu tabs and retrieve the 
page title for each page we land on. Let’s start with code that 
does not work, because it will illustrate an important point:

   # this does not work!

   my (@elements) = 

     $driver->findelements(‘ul#main-menu-links li a’,’css’);

   # the first link is to the current page, skip it

   shift @elements;

   foreach my $element (@elements){

    $element->click();

    print $driver->gettitle(),”\n”;

    $driver->goback();

   }

This would seem to be the right thing. Find all of the links, click 
on a link, hit the back button, click on the next link, easy, right? 
Here’s what happens when we run the code:

   About USENIX | USENIX

   Error while executing command: An element command failed 

because the referenced element is no longer attached to the 

DOM.: Element not found in the cache - perhaps the page has 

changed since it was looked up

   ...

It gets the first click/title print right, but bites the dust on the 
second one. Why is that? In this case, we’ve clicked to another 
page before coming back to the home page. When we return to 
the home page, there’s no guarantee that the structure of the 
page (the DOM to be precise) we return to is exactly the same as 
the way we left it. Lots of stuff could happen—the source of the 
page could have been changed, JavaScript could have altered 
the structure, and so on. Selenium knows we are dealing with 
essentially a new page, so the references to parts of the old page 
aren’t viable anymore. The best we can do is rerun the find_ele-
ments() and pick the next item in a list whose index we retain. 
Here’s code that does work:

   my (@elements) = 

    $driver->find_elements(‘ul#main-menu-links li a’,’css’);



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 39

COLUMNS
Practical Perl Tools: Dance, Browser, Dance!

   for (my $tab = 1; $tab <= $#elements;$tab++){

    $elements[$tab]->click();

    print $driver->get_title(),”\n”;

    $driver->goback();

    @elements = 

   $driver->find_elements(‘ul#main-menu-links li a’,’css’);

   }

If we run it, we get the following output:

   About USENIX | USENIX

   Conferences | USENIX

   Publications | USENIX

   LISA Special Interest Group for Sysadmins | USENIX

   Membership & Services | USENIX

   Student Programs | USENIX

   USENIX | The Advanced Computing Systems Association

Basically, we do another find each time we return to the home 
page and then click on the next tab in the sequence. Long-time 
programmers are probably reaching for their pitchforks because 
they can smell a race condition when they see one, so let me cop 
to it right now. Yup, this code could potentially lead to a race con-
dition. As in the vaudeville skit where the patient says, “Doctor, 
Doctor, please help me, it hurts when I move my arm like this,” 
the response is “Don’t move your arm like that.”

Go Forth and Do Cool Stuff
As you can probably guess, Selenium has lots of other actions 
you can take on a page. You can select elements, you can send key 
presses, drag and drop, move the mouse around, select different 
windows, and so on. In addition to the documentation, there are 
two good tutorials at http://www.slideshare.net/vroom/testing 
-your-Website-with-selenium-perl and http://desmoines.pm.org 
/meetings/selenium_july2013.html worth checking out. Enjoy, 
and we’ll see you next time.



40   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS

Raising Hell, Catching Errors
D A V I D  B E A Z L E Y

One of my favorite Python topics to talk about is error handling— 
specifically, how to use and not use exceptions. Error handling is 
hard and tricky. Error handling can mean the difference between an 

application that can be debugged and one that can’t. Error handling can blow 
your business up in the middle of the night if you aren’t careful. So, yes, how 
you handle errors is important. In this article, I’ll dig into some of the details 
of exceptions, some surefire techniques for shooting yourself in the foot, and 
some ways to avoid it.

Exception Handling Basics
To signal errors, Python almost always uses exceptions. For example:

  >>> int('42') 

  42 

  >>> int('fortytwo') 

  Traceback (most recent call last):

    File "<stdin>", line 1, in <module> 

  ValueError: invalid literal for int() with base 10: 'fortytwo' 

  >>>  

If you want to catch an exception, use the try-except statement to enclose a block of code 
where a failure might occur. For example:

  def spam(s):

      try:

          x = int(s)

          print('Value is', x)

      except ValueError as e:

          print('Failed: Reason %s' % e)

  >>> spam('42')

  Value is 42

  >>> spam('fortytwo')

  Failed: Reason invalid literal for int() with base 10: 'fortytwo'

  >>>  

Exceptions always have an associated value that is an instance of the exception type. The “as 

e” clause on the except captures this instance and puts it into a local variable e. If you print 
out the value, you’ll usually just get the error message.

If you want to catch different kinds of errors, you can have multiple except blocks. For 
example:

  try:

      ...

David Beazley is an open 
source developer and author of 
the Python Essential Reference 
(4th Edition, Addison-Wesley, 
2009). He is also known as the 

creator of Swig (http://www.swig.org) and 
Python Lex-Yacc (http://www.dabeaz.com 
/ply.html). Beazley is based in Chicago, where 
he also teaches a variety of Python courses. 
dave@dabeaz.com



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 41

COLUMNS
Raising Hell, Catching Errors

  except ValueError as e:

      ...

  except TypeError as e:

      ... 

Or, if you want to group the exceptions together so that they’re 
handled by the same except block, use a tuple:

  try:

      ...

  except (ValueError, TypeError) as e:

      ... 

Certain functions in Python don’t raise exceptions but rely on 
return codes instead. Such functions are rare, but one such 
example is the find() method of strings, which returns -1 if no 
match can be found:

  >>> s = 'Hello World'

  >>> s.find('Hell')

  0

  >>> s.find('Cruel')    # No match

  -1

  >>>  

The end-of-file condition on files and sockets is also signaled by 
returning an empty string instead of raising an exception. For 
example:

  >>> f = open('somefile.txt', 'r')

  >>> data = f.read()       # Read all of the data

  >>> f.read()              # Read at EOF 

  ‘’

  >>> 

Again, such examples of using return codes are rare. Most of the 
time errors are indicated through exceptions, and catching an 
exception is a straightforward process using try-except.

How to Indicate an Error
In your own code, don’t be shy about raising exceptions. If there 
is some kind of problem, use the raise statement to announce it:

  def spam(x):

      if x < 0:

           raise ValueError('x must be >= 0')

      ... 

A common mistake made by newcomers is to indicate errors in 
some other way. For example, with a print statement and maybe 
a special return code:

  def spam(x):

      if x < 0:

          print('x must be >= 0')

          return None

      ... 

There are all sorts of problems with such an approach. First, the 
output of the print() is easily lost or overlooked. Moreover, it’s 
pretty likely that other code won’t be expecting the None return 
code and won’t check for it. Thus, the error might just disappear 
into the void. This can make for an interesting debugging session 
later. No, it is almost always better to loudly announce errors 
with the raise statement. That is the Python way—embrace it.

Another immediate problem with raising an exception concerns 
the exception type that you’re supposed to use. Python pre-
defines about two dozen built-in exception types that are always 
available (i.e., NameError, ArithmeticError, IOError, etc.). Most 
of these errors are most applicable to Python itself, but a few spe-
cific exceptions might be useful in application code. A ValueEr-

ror is commonly used to indicate a bad value as shown. Raise a 
TypeError if you want to signal an error related to bad types (e.g., 
a list was expected, but the caller passed in a tuple). A generic 
RuntimeError is available to indicate other kinds of problems.

In larger applications, it may make more sense to define your 
own hierarchy of exceptions instead of relying on the built-ins. 
This is easily done using classes and inheritance. For example, 
you start by making a new top-level exception like this:

  class MyError(Exception):

      pass 

You can then make more specific kinds of errors that inherit 
from MyError:

  class MyAuthenticationError(MyError):

      pass

  class MyIntegrityError(MyError):

      pass

  class MyTimeoutError(MyError):

      pass

  class MyBadValueError(MyError):

      pass 

Use the raise statement as before to indicate the exact error that 
you want:

  def spam(x):

      if x < 0:

           raise MyBadValueError('x must be >= 0')

      ... 

One advantage of defining your own hierarchy of exceptions is 
that you can more easily isolate errors originating from your 
application as opposed to those from Python itself or any third-
party libraries you might have installed. You simply catch the 
top-level exception like this:



42   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS
Raising Hell, Catching Errors

  try:

       ...

  except MyError as e:

       # Catches any exception that subclasses MyError

       ... 

Isolating your exceptions can be a useful tactic for debugging. 
For example, if the code dies from a built-in exception, it might 
indicate a bug in your code, whereas code that dies due to one of 
your custom exceptions might indicate a bug in someone else’s 
code (e.g., whoever is calling your code). By being more precise 
about exceptions, you can more easily assign blame when things 
go wrong—you want that.

What Exceptions Should You Catch?
Given that exceptions are the preferred way of indicating errors, 
what exceptions are you supposed to catch in your code anyway? 
It might seem counterintuitive, but I almost never write code to 
catch exceptions—instead, I simply let them propagate out, pos-
sibly causing the program to crash. As an example, consider this 
code fragment:

  def parse_file(filename):

      f = open(filename)

      ... 

Now, suppose that the user passes a bad filename and the open() 
function fails with an IOError exception. You could write the 
code to account for that possibility by wrapping the open() with 
a try-except like this:

  def parse_file(filename):

      try:

           f = open(filename)

      except IOError as e:

           # Handle the error in some way  ???

           ...

      ... 

However, if you do this, it suddenly raises all sorts of questions. 
For example, what are you supposed to do in the except block? 
Do you print a message? Do you raise an exception? If you raise 
an exception, how is it any different from open() raising an IOEr-

ror? Last but not least, even if the code catches the error, is there 
any way that the function can proceed afterwards? If there is no 
file, there is nothing to parse. How would it work?

As a rule of thumb, you should probably never catch exceptions 
unless your code can sensibly recover and take action in some 
way. Just to illustrate, a much more likely scenario would be a 
parsing function that needed to account for bad values:

  def parse_file(filename):

      f = open(filename)

      for line in f:

          fields = line.split()

          try:

              x = float(fields[0])

          except ValueError:

              x = float('nan')

          ... 

Here, catching a possible exception and using it to take correc-
tive action makes sense. These are the kinds of errors you should 
be concerned with—not errors for which there is no hope of sane 
recovery. Put another way, if something is going to fail spectacu-
larly and there’s no hope, it’s often better to step back and let it 
fail. Don’t let your code get mixed up in the middle of the mess.

Beware the Diaper Pattern
Now wait just a minute—surely I can’t be advocating a coding 
style where you never catch errors. Python code might be run-
ning some kind of important service where it can’t just crash and 
disappear with a traceback. It’s important to catch the nuance 
of the previous section. Basically, you shouldn’t be writing code 
that attempts to catch exceptions for which no recovery is possi-
ble at that point. The possibility of a sane recovery really depends 
on context. For example, a parsing function clearly can’t con-
tinue if it can’t read data. However, if that function was invoked 
from within a larger framework executing a request on behalf of 
a client in a distributed system, there might be code that broadly 
catches failures and reports them back to the client.

A common technique for broad exception handling is to enclose 
code in a try-except block like this:

  try:

      ...

      statements

      ...

  except Exception as e:         # Catch any error

      # Handle the failure

      ... 

Exception is the root of all error-related exceptions in Python 
(note: certain exceptions such as SystemExit derive from 
 BaseException and won’t be caught here). Thus, this code will 
catch any programming error that might occur.

This is the so-called “diaper pattern” in action—code that 
catches anything. It’s also one of the most dangerous exception-
handling approaches to be using. Don’t be the programmer that 
writes code like this:



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 43

COLUMNS
Raising Hell, Catching Errors

  try:

      ...

      statements

      ...

  except Exception as e:

      print('Computer says no')

      return  

Or worse yet:

  try:

      ...

      statements

      ...

  except Exception as e:

      # TODO: Whoops, it failed.

      pass 

Such code is the fastest way to create an undebuggable program. 
Any failure whatsoever, including common programming errors 
such as a misspelled variable name, will simply result in a vague 
error message. You’ll never be able to figure out what’s wrong.

If you’re going to catch all errors, it is imperative that you report 
the actual reason for the failure. At a minimum, you might do 
this:

  try:

      ...

      statements

      ...

  except Exception as e:

      print('Computer says no. Reason %s' % e)

      return  

A much better alternative is to make the full traceback avail-
able somewhere. If it’s not going to be reported directly to the 
end-user for some reason, it can be written to a log file using the 
logging module and the inclusion of the exc_info=True option to 
logging functions. For example:

  import logging

  log = logging.getLogger('mylog')

  ...

  try:

      ...

      statements

      ...

  except Exception as e:

      print('Computer says no.')

      log.error('FAILURE: %s', e, exc_info=True)

      return  

Alternatively, you can produce the traceback message yourself 
and obtain it as a string using the traceback module. This can 
be useful if you want to do something with the traceback such as 
redirect it elsewhere (e.g., to an email message, a database, etc.). 
For example:

  import traceback

  try:

      ...

      statements

      ...

  except Exception as e:

      print('Computer says no.')

      tb = traceback.format_exc()    # Create the traceback message

      # Do something with tb

      ...

      return  

It should be noted that the traceback module has additional 
functions for pulling apart stack traces and formatting them. 
Consult the online documentation [1] for more information.

If your intent is to merely log the error while allowing it to propa-
gate, you can use a bare raise statement to re-raise the excep-
tion. For example:

  try:

      ...

  except Exception as e:

      log.error('FAILURE: %s', e, exc_info=True)

      raise    # Reraise the exception 

You, Yes You Did It!
As much as you might try to sanely handle errors in your code, 
dealing with errors in large systems is still tricky. One particu-
larly nasty problem arises if you capture exceptions and then 
raise a different kind of exception to encapsulate the “failure” in 
some broad way. For example, consider the following code:

  class OperationalError(Exception):

      pass

  def run_function(func, *args, **kwargs):

      try:

          return func(*args, **kwargs)

      except Exception as e:

          raise OperationalError('Function failed. Reason %s' % e) 

Now, watch what happens in Python 2:

  >>> def add(x, y):

  ...     return x + y

  ...  

  >>> run_function(add, 2, 3)

  5



44   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS
Raising Hell, Catching Errors

  >>> run_function(add, 2, '3')

  Traceback (most recent call last):

    File "<stdin>", line 1, in <module>

    File "<stdin>", line 5, in run_function

  __main__.OperationalError: Function failed. Reason 

unsupported operand type(s) for +: 'int' and 'str'

  >>>  

Here, you get an error message and it has some details about the 
failure, but the information is woefully incomplete. In particular, 
the traceback contains no useful information about what actu-
ally happened in the add() function itself.

Chained exceptions [2] is one area where Python 3 shines. If you 
try this same code on Python 3, you get two tracebacks:

  >>> run_function(add, 2, '3')

  Traceback (most recent call last):

    File "<stdin>", line 3, in run_function

    File "<stdin>", line 2, in add

  TypeError: unsupported operand type(s) for +: 'int' and 'str'

  During handling of the above exception, another exception 

occurred:

  Traceback (most recent call last):

    File "<stdin>", line 1, in <module>

    File "<stdin>", line 5, in run_function

  __main__.OperationalError: Function failed. Reason 

unsupported operand type(s) for +: 'int' and 'str'

>>>  

This is exception chaining in action. You can further refine the 
exact error message by adding a from modifier to the raise state-
ment like this:

  class OperationalError(Exception):

      pass

   def run_function(func, *args, **kwargs):

      try:

          return func(*args, **kwargs)

      except Exception as e:

          raise OperationalError('Function failed') from e 

Now, the error message changes to the following:

  >>> run_function(add, 2, '3')

  Traceback (most recent call last):

    File "<stdin>", line 3, in run_function

    File "<stdin>", line 2, in add

  TypeError: unsupported operand type(s) for +: 'int' and 'str'

  The above exception was the direct cause of the following 

exception:

  Traceback (most recent call last):

    File "<stdin>", line 1, in <module>

    File "<stdin>", line 5, in run_function

  __main__.OperationalError: Function failed

  >>>  

In this case, you’re seeing a chain of exceptions and information 
about causation. That’s pretty nice.

Final Thoughts (and Advice)
Proper handling of errors is an important aspect of any appli-
cation. However, you want to make sure you do it in a way that 
allows you to maintain your sanity. The following rules of thumb 
provide a summary of some of the ideas in this article:

◆◆ Prefer the use of exceptions to indicate errors. It is the most 
common Python style and will be less error prone than alterna-
tives such as returning special codes from functions.

◆◆ Don’t write code that catches exceptions from which no sen-
sible recovery is possible. It’s better to simply let the exception 
propagate to some other code that knows how to deal with the 
error.

◆◆ Be extremely careful when writing code that catches all errors. 
Make sure you always report diagnostic information some-
where where it can be found by developers. Otherwise, you’ll 
quickly end up with undebuggable Python code.

As an aside, a recent article in ;login: about catastrophic failures in 
distributed systems [3] reported that nearly 35% of these problems 
were caused by trivial mistakes in exception handling. Although 
not specific to Python, that article is definitely worth a read.

References
[1] https://docs.python.org/2/library/traceback.html (Trace-
back Module).

[2] https://www.python.org/dev/peps/pep-3134/ (Exception 
Chaining).

[3] D. Yuan et al., “Simple Testing Can Prevent Most Critical 
Failures: An Analysis of Production Failures in Distributed 
Data-Intensive Systems,” ;login:, vol. 40, no. 1, February 2015 
(USENIX).



Donate Today: The USENIX Annual Fund
Many USENIX supporters have joined us in recognizing the importance of open access over the years. We are thrilled 
to see many more folks speaking out about this issue every day. If you also believe that research should remain open 
and available to all, you can help by making a donation to the USENIX Annual Fund at www.usenix.org/annual-fund. 

With a tax-deductible donation to the USENIX Annual Fund, you can show that you value our Open Access Policy and 
all our programs that champion diversity and innovation.

The USENIX Annual Fund was created to supplement our annual budget so that our commitment to open access and 
our other good works programs can continue into the next generation. In addition to supporting open access, your 
donation to the Annual Fund will help support:

• USENIX Grant Program for Students and Underrepresented Groups

• Special Conference Pricing and Reduced Membership Dues for Students

• Women in Advanced Computing (WiAC) Summit and Networking Events

• Updating and Improving Our Digital Library

With your help, USENIX can continue to offer these programs—and expand our offerings—in support of the many 
 communities within advanced computing that we are so happy to serve. Join us! 

We extend our gratitude to everyone that has donated thus far, and to our USENIX and LISA SIG members; annual 
 membership dues helped to allay a portion of the costs to establish our Open Access initiative. 

www.usenix.org/annual-fund



46   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS

iVoyeur
Graphios

D A V E  J O S E P H S E N

Dave Josephsen is the 
sometime book-authoring 
developer evangelist at Librato.
com. His continuing mission: to 
help engineers worldwide close 

the feedback loop. dave-usenix@skeptech.org

Hello again, intrepid reader. It seems like only yesterday that we were 
talking about implementing spread data in Graphite [1]. In that 
article I alluded to a tool called Graphios, with which you may not be 

familiar. More specifically, I was using it to collect metrics data from Nagios 
and inject it into Graphite, but I was a little short on the details surround-
ing that particular tool. This month I thought I’d correct that by taking some 
time to elucidate on Graphios.

Really, there are two very good reasons I want to talk about Graphios. The first is that 
although Graphios is not very widely used today (compared, to say, PNP4Nagios), it is 
certainly the easiest way to connect Nagios to systems like StatsD, Graphite, and Librato. 
Indeed, if you need to emit metric data from Nagios to one of the newer time-series analysis 
systems like InfluxDB or OpenTSDB, Graphios (via StatsD) is pretty much your only option 
besides coding up something yourself.

The second reason I want to talk about Graphios is that its creator Shawn Sterling and I 
recently spent the better part of several months ripping out its Graphite-specific backend 
and replacing it with a modular framework into which any sort of graphing system can be 
plugged. And I think you’ll agree that tooting one’s own horn is an excellent and time-hon-
ored reason to talk about anything in general.

As a result, Graphios works as a glue layer between Nagios and any Metrics System that 
supports the Carbon, StatsD, or Librato API protocols (which is to say, pretty much every 
metrics system today). As depicted in Figure 1, Graphios uses the host_perfdata and 
 service_perfdata hooks (defined in your nagios.cfg) to read metric data from your perfdata 
log, and handles formatting and sending it to systems like Librato, StatsD, and collectd.

Figure 1: Graphios is a glue layer between Nagios and many different metrics systems.



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 47

COLUMNS
iVoyeur: Graphios

Installation
Graphios is a Python program, so the easiest way to install it is 
with pip:

pip install graphios

It’s also pretty easy to install Graphios manually. First, get the 
most recent version from Git with the following:

git clone https://github.com/shawn-sterling/graphios.git

Then copy the various files to the appropriate locations:

mkdir -p /etc/graphios

cp graphios*.py /usr/local/bin 

cp graphios.cfg /etc/graphios/ 

Configuration Requirements
To get Graphios up and running, you’ll need to manually config-
ure three things:

◆◆ The Nagios config files that deal with host and service checks 

◆◆ The nagios.cfg file

◆◆ The graphios.cfg file

If you use pip install graphios, the setup.py script will attempt 
to detect and automatically add a commented-out configura-
tion to your nagios.cfg. The setup script does a pretty good job of 
this on all but the most bespoke Nagios setups (simply uncom-
ment and restart Nagios), but given the configuration flexibility 
of Nagios, it’s possible you’ll need to manually intervene and 
modify the nagios.cfg yourself.

What’s in a Name?
Nagios is a standalone monolithic system in that it assumes its 
check-command output will never be exported, that no sys-
tem but Nagios will ever need to process it. So Nagios services 
generally have very simple names like PING or LOAD. In Nagios, 
it should be obvious to the operator what those names refer to 
because all of the context is inside the Nagios UI.

Graphing systems like Graphite, however, are not monolithic; 
they’re designed to work alongside other monitoring systems 
and data collectors. Therefore they necessarily assume that all 
data is sourced externally (everything comes from some other 
monitoring system), and as a result they use dot-delineated, 
hierarchical metric names like Nagios.dc4.dbserver12.LOAD. In 
Graphite, a name like LOAD doesn’t tell the operator anything 
about what system the metric refers to, much less how it was 
collected.

To be an effective glue layer, Graphios gives you a simple, trans-
parent means to translate Nagios’s simple, monolithic service 
names into context-rich hierarchical names that can be used by 
systems like Librato and Graphite. Specifically, Graphios can 

read metric prefixes and suffixes out of your Nagios service and 
host definitions using custom attributes. For example, a typical 
Nagios service description, excluding the minutiae normally 
packed into upper-level templates, looks like this:

define service{

   use                           generic-service

   hostname                    box1,box2,box3

   service_description      SSH

   check_command            check_ssh }

The output of the check_ssh plugin looks like this:

SSH OK - OpenSSH_5.9p1 Debian-5ubuntu1 (protocol 2.0) | 

time=0.009549s;;;0.000000;10.

Everything after the pipe is performance data [2]; these are the 
metrics Graphios exports. In this case, we have a single metric 
called time, which measures the response time of the SSH port 
(in this case, the SSH port responded to the check_ssh plugin in 
0.009549 seconds). Graphios automatically prefixes the metric 
name with the hostname, so without doing anything at all, our 
metric name becomes:

box1.time

As I’ve already observed above, box1.time isn’t a particularly mean-
ingful metric name, so we can tell Graphios to put some additional 
context in front of this metric name by inserting a _graphite 

prefix custom attribute into the service definition like so:

define service{

   use                          generic-service

   hostname                   box1,box2,box3

   service_description     SSH

   check_command           check_ssh

          _graphiteprefix               nagios.dc1 }

Graphios will now prepend this prefix to the metric name, 
 making it:

nagios.dc1.box1.time

This is a little bit better, but we can insert some additional 
context about the service between the hostname and the metric 
name using a _graphitepostfix custom attribute in our service 
configuration like so:

define service{

   use                       generic-service

   hostname                box1,box2,box3

   service_description  SSH

   check_command        check_ssh

          _graphiteprefix            nagios.dc1

          _graphitepostfix                      sshd.rt }



48   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS
iVoyeur: Graphios

Graphios will now insert this string between the host and metric 
name, making it:

nagios.dc1.box1.sshd.rt.time

Now we have a pretty decent metric name for use with systems 
like Graphite and StatsD.

Configuring Nagios Perfdata Hooks
Next we need to configure Nagios to export performance data 
to a log file in a format that Graphios can understand. If you 
installed Graphios using pip install graphios, check the  
bottom of your nagios.cfg file for a block of configuration that 
begins:

# ###### AUTO-GENERATED GRAPHIOS CONFIGS 

If you aren’t already using Nagios perfdata hooks for something 
else, that is, if your currently running Nagios configuration 
contains  process_performance_data=0, then you can simply 
uncomment this configuration block and restart Nagios.

If you’re already using Nagios perfdata hooks for something 
like PNP4Nagios, or one of the other RRDtool-based graphing 
systems, chances are you can safely run both Graphios and your 
current tool set at the same time. Refer to the Graphios docu-
mentation [2] for instructions on how to set this up. You should 

also consult the Graphios setup docs if you don’t see the auto-
generated Graphios config at the bottom of your nagios.cfg, or if 
you didn’t use pip to install.

Once you’ve configured Nagios to emit performance data, restart 
the Nagios daemon and verify that it’s writing a log file to the 
Graphios spool directory (named by the service_perfdata_file 
attribute in your nagios.cfg) with a name like service-perfdata 
.1418637947. The file should contain lines that look like this:

(Finally) Configure Graphios
Graphios installs its config file in /etc/graphios/graphios.cfg 
by default. This file is very well commented and, by and large, 
self-explanatory. There is a global configuration section and 
one section for each backend plugin that Graphios can write to. 
Plugins are generally enabled by setting their enable line to True 
and configuring the required attributes for the plugin. Here, for 
example. is a working configuration for Librato:

DATATYPE::SERVICEPERFDATA   TIMET::1418637938   HOSTNAME::box1

SERVICEDESC::SSH   SERVICEPERFDATA::time=0.066863s;;;0.000000;10.000000

SERVICECHECKCOMMAND::check_ssh   HOSTSTATE::U   HOSTSTATETYPE::HARD

SERVICESTATE::OK   SERVICESTATETYPE::HARD    GRAPHITEPREFIX::nagios.dc1

        GRAPHITEPOSTFIX::sshd.rta

Figure 2: Lovely data, as if from heaven



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 49

COLUMNS
iVoyeur: Graphios

References
[1] Dave Josephsen, “iVoyeur: Spreading,” ;login:, vol. 40, no. 1, 
February 2015 (USENIX): https://www.usenix.org/publications 
/login/feb15/josephsen.

[2] https://github.com/shawn-sterling/graphios/blob/master 
/README.md.

enable_librato=True 

librato_email = dave@librato.com 

librato_token = 

ecb79ff8a82areallylonggreatbigstringtokenything6b8cb77e8b5

librato_whitelist=[“load”,”rta”,”swap”]

The whitelist attribute bears mentioning since, without it, 
Graphios would emit all performance data measured by Nagios 
to Librato, which could become expensive. As configured above, 
only metrics matching the regular expressions “load”, “rta”, and 
“swap” will be emitted to Librato. Here’s a working configuration 
for StatsD:

enable_statsd=True 

statsd_servers = 192.168.1.87:8125

You may enable multiple backend plugins (Librato AND StatsD) 
and even multiple comma-separated instances of the same back-
end plugin (four different StatsD servers and a carbon server), 
and Graphios will happily parse out and emit your Nagios Met-
rics to each backend system in turn. At this point you can run 
Graphios from the command line and see whether everything 
works as expected:

graphios.py --verbose

Now you should start seeing something like what’s found in 
Figure 2, beautiful metrics data magically appearing in your 
metrics backend of choice.

Daemonizing Graphios
Graphios ships with init scripts for Debian and RPM-based 
systems, and these were installed automatically if you ran pip 

install graphios on a compatible system.

So How Does This Work Again? 
Although its configuration necessarily borders on complex, 
Graphios is conceptually a very simple special-purpose log 
parser. It runs as a daemon, waking up on a configurable inter-
val, checking for new performance data logs exported by Nagios, 
and processing them.

As I’ve already quite proudly mentioned, Graphios has a modular 
backend model that allows it to write to multiple metrics 
systems. When Graphios finds a new performance data file, it 
parses metrics out of it, computes appropriate metric names for 
the enabled backend plugins, and then it emits the metrics to 
each backend metrics system as required.

If you’re running Nagios today, and you’re still trapped in the 
RRDtool era, you owe it to yourself to install Graphios and 
experience the future of scalable metrics analysis systems like 
Graphite, InfluxDB, and OpenTSDB. One of the nicest features 
of Graphios for me has been its support for running multiple 
backends in parallel. Graphios makes it painless and simple 
to spin up and test new metrics systems, or combinations of 
metrics systems, without interrupting your production metric 
streams. I hope you find it as useful as I have.

Take it easy.



50   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS

Do not become the slave of your model. 
—Vincent Van Gogh

Précis: Security metricians must steal all the techniques we can—we 
don’t have the time to invent everything we need from scratch. This 
column does just that, motivated by the question of whether patching 

matters, a question that just will not go away.

A common problem in wildlife biology is simply this: “How many X are there in Y?” as in 
“How many frogs are there in the pond?” The most common method is “capture-recapture.” 
The technique is simple and has been long applied not just to biology but also to things as 
disparate as how to adjust the US Census for undercount [1] to how many streetwalkers there 
are in Glasgow [2]. As with any statistical technique, there are assumptions, which we come 
to in a moment. First, this is the core process for estimating N, the number of frogs in the 
pond:

1. Take a sample of size n1 and mark them.

2. Release the sample back into the wild.

3. Wait a short time, a week perhaps.

4. Take another sample of size n2, counting the m2 of the second sample that are found to be 
marked.

5. As m2
n2

 should be the same as
n1

N

, conclude N = n1n2
m2

That formulation is called the “Lincoln Index.” As an example: catch 41 frogs and band them, 
then, a week later, catch 62 frogs and find that six are banded; we therefore estimate that 
there are

frogs in the pond. (Note: it is better to actually calculate ((n1 + 1)(n2 + 1)/(m2 + 1)) − 1  
which yields an estimate of  377 frogs in the pond.)

The assumptions behind capture-recapture studies are that catching and marking the frogs 
does not change their behavior, that marked frogs completely mix into the pond’s population, 
that any one frog, marked or not, is equally likely to be caught, that sampling is quick (prefer-
ably all at once), and that the population did not change between captures.

A second method, called “removal-capture,” follows this process:

1. Catch n1 frogs during a fixed-duration hunt and remove them.

2. Wait a short time, a week perhaps.

3. Catch n2 frogs during a second fixed-duration hunt.

For Good Measure
The Undiscovered

D A N  G E E R

Dan Geer is the CISO for  
In-Q-Tel and a security 
researcher with a quantitative 
bent. He has a long history 
with the USENIX Association, 

including officer positions, program 
committees, etc. dan@geer.org



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 51

COLUMNS
For Good Measure: The Undiscovered

4. Calling N0 the number of frogs on day 0, if

As an example: the first catch finds 78 frogs and the second 57; 
we therefore estimate that there were

frogs in the pond on day 0.

The assumptions behind removal-capture studies are that the 
population is reasonably static, large enough for a significant 
catch in each subsequent sample yet small enough that a reduc-
tion in catch will be noticed, and that within a constant time 
interval a constant fraction of the frogs will be caught.

So why am I mentioning all this? In a May 2014 article in The 
Atlantic [3], Bruce Schneier asked a cogent, first-principles ques-
tion: “Are vulnerabilities in software dense or sparse?” If they 
are sparse, then every vulnerability you find and fix meaning-
fully lowers the number of vulnerabilities that are extant. If 
they are dense, then finding and fixing one more is essentially 
irrelevant to security and a waste of the resources spent finding 
it. Six-take-away-one is a 15% improvement. Six-thousand-take-
away-one has no detectable value. Eric Rescorla asked a similar 
question in 2004: “Is finding security holes a good idea?” [4] 
Rescorla established that it is a non-trivial question, as perhaps 
confirmed by our still not having The Answer.

In other words, we want to know how many frogs (vulnerabili-
ties) there are in some pond (a software product). One might 
then ask whether either or both of the capture-recapture and 
removal-capture techniques might help us answer Schneier’s 
and Rescorla’s challenge, the challenge of picking a policy direc-
tion based on whether vulnerabilities are sparse or dense. Do we 
want a policy that skips patching in favor of rolling software fast 
enough to make it a moving target? [5] If we decide to keep patch-
ing, are we better off disclosing or keeping the repairs secret?

Starting at what may be the beginning, in a 1993 paper Vander 
Wiel & Votta [6] gave capture-recapture for software engineer-
ing a good airing. Their body of study was on latent errors of 
design in software projects and whether multiple, parallel design 
reviews might be structured so as not only to find design flaws 
but to also estimate how many further design flaws were as yet 
undiscovered. In other words, their frog is a design flaw and 
their pond is the design of a software project. The context of 
their work was an attempt to improve on what had been a quota 
system for design reviews at Bell Labs—a design reviewer had to 
find between a fixed minimum and a fixed maximum number of 
faults per page of the design document.

The Vander Wiel & Votta paper is worth a read if you want early 
statistical details. Their basic result was to assess how violat-
ing the assumptions (that are appropriate for wildlife biology) 
affected using the capture-recapture technique to estimate the 
number of design flaws in a software project. Quoting from their 
paper:

Our approach treats the faults found by reviewers 
preparing for a design review as data from a capture-
recapture sampling scheme. We use a Monte Carlo 
simulation to investigate the inaccuracies of the 
capture-recapture estimators due to assumption 
violations when faults have varying detection 
probabilities and reviewers have different capture 
probabilities. Although we would like to use data from 
real world design reviews to perform this study, it is 
impossible. We can not control the fault detection and 
reviewer capture probabilities in design reviews, nor 
could we ever hope to obtain the number of reviews 
required to perform a statistically significant study.

The problem at hand for security metricians is parallel—we 
cannot do controlled experiments, our vulnerability finders have 
broad ranges of skills (plus the most skilled ones are not talk-
ing), and vulnerabilities range from trivial to find to the kind of 
impossible that wins the “Underhanded C” [7] contest.

Their simulations enabled Vander Wiel & Votta to make some 
general recommendations for mitigating violations of the 
statistical assumptions. One is for when faults are not equally 
easy to find—we have that problem with respect to vulnerabili-
ties, and they tell us that if we can group faults such that those 
within a group are equally easy to find, then we can do capture-
recapture for individual groups of faults so long as the groups are 
large enough “that some faults in each group are discovered by 
more than 1 reviewer.” Another is for when fault finders are not 
equally skilled. We have that problem, too, and they tell us that 
grouping fault finders by skill level might be worthy of study. 
(They did not pursue that option, but perhaps “we” should.)

The two decades since 1993 have seen a lot of experimentation 
with capture-recapture in the software engineering litera-
ture. Petersson et al. [8] reviewed that history, classifying the 
assumptions (and their violation) as:

M0 the probability of a fault being found is the same for 
all faults as is the ability of each inspector to find each 
fault

Mh the probability of a fault being found is the same for 
all faults, but detection ability can vary from inspector 
to inspector

Mt the probability of faults being found varies, but 
inspectors all have the same ability to find each fault



52   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS
For Good Measure: The Undiscovered

Mth the probability of faults being found can vary and 
so can the ability to find a fault can vary from inspector 
to inspector

and, yes, each of these four needs a different modeling regime.

In any case, I am not aware of anyone approaching the issue of 
latent zero-day vulnerabilities, per se, with these techniques, 
techniques that software engineering has adapted from the biol-
ogy world. Certainly, papers as early as Ozment & Schechter’s 
“Milk or Wine: Does Software Security Improve with Age?” [9] 
looked at the declining rate of flaw finding within a software 
project under consistent management (OpenBSD), but that is 
subtly different and, in any case, should probably be evaluated 
as an example of removal-capture rather than an example of 
capture-recapture.

It seems to me that the most straightforward way to make a first 
quantitative effort here is to employ three or more independent 
penetration tests against the same target. Or have your software 
looked over by three or more firms offering static analysis. Scott 
& Wohlin’s case study [10] with the KDE Open Source project 
and UIQ Technology might be worth copying.

Perhaps we can take a large body of code and look at the patches 
that have been issued against it over time. If you take a patch as a 
marker for a previously undiscovered flaw, then the rate at which 
patches issue is a removal-capture process. Were that process 
to maintain a relatively constant hum, then it might imply that 
software flaws are indeed dense—too dense to diminish with 
removals. Of course, patches for a commercial software system 
are not necessarily unitary—one apparent patch may actually fix 
several flaws. Rescorla concluded that fixing without disclosure 
is better than fixing with disclosure (and thus was “an advantage 
for closed source over open source”), but such a policy certainly 
doesn’t help us do quantitative research with real data.

There is something here to work with for those who test or who 
can closely observe those who do. Be in touch; I’d like to work 
with you.

References
[1] Multiple articles in Statistical Science, vol. 9 no. 4, 1994.

[2] N. McKeganey et al., “Female Streetworking Prostitution 
and HIV Infection in Glasgow,” British Medical Journal (1992), 
vol. 305, pp. 801–804.

[3] “Should U.S. Hackers Fix Cybersecurity Holes or Exploit 
Them?”: www.theatlantic.com/technology/archive/2014/05/
should-hackers-fix-cybersecurity-holes-or-exploit-them 
/371197.

[4] E. Rescorla, “Is Finding Security Holes a Good Idea?” 
 Workshop on the Economics of Information Security, 2004.

[5] S. Clark, S. Collis, M. Blaze, and J. M. Smith, “Moving 
 Target: Security and Rapid-Release in Firefox,” in Proceedings 
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security (ACM, 2014) pp. 1256–1266: dl.acm.org 
/citation.cfm?id=2660320.

[6] S. A. Vander Wiel and L. G. Votta, “Assessing Software 
Designs Using Capture-Recapture Methods,” IEEE Trans-
actions on Software Engineering (1993), vol. 19, no. 11, pp. 
1045–1054.

[7] http://www.underhanded-c.org/: “The goal of the contest is 
to write code that is as readable, clear, innocent and straight-
forward as possible, and yet it must fail to perform its apparent 
function. To be more specific, it should do something subtly 
evil.”

[8] H. Petersson, T. Thelin, P. Runeson, and C. Wohlin, 
“ Capture-Recapture in Software Inspections after 10 Years  
of Research,” Journal of Systems and Software (July 2004),  
vol. 72, no. 2, pp. 249–264.

[9] A. Ozment and S. E. Schechter, “Milk or Wine: Does Soft-
ware Security Improve with Age?” in Proceedings of the 15th 
Conference on USENIX Security Symposium (2006), pp. 93–104.

[10] H. Scott and C. Wohlin, “Capture-Recapture in Software 
Unit Testing—A Case Study,” Blekinge Institute of Technology, 
2004: www.wohlin.eu/esem08-1.pdf.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages 
to help you  promote your organization, programs, and products to our membership 
and con ference attendees. 

Whether you are interested in sales, recruiting top talent, or branding to a highly 
 targeted audience, we offer key outreach for our sponsors. To learn more about 
 becoming a  USENIX Supporter, as well as our multiple conference sponsorship 
 packages, please contact  sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our  conferences 
affordable for all and supports scholarships for students, equal representation of women 
and minorities in the computing research community, and the development of open 
source technology.

Learn more at:
www.usenix.org/supporter



Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages 
to help you  promote your organization, programs, and products to our membership 
and con ference attendees. 

Whether you are interested in sales, recruiting top talent, or branding to a highly 
 targeted audience, we offer key outreach for our sponsors. To learn more about 
 becoming a  USENIX Supporter, as well as our multiple conference sponsorship 
 packages, please contact  sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excel-
lence and innovation in neutral forums. Sponsorship of USENIX keeps our  conferences 
affordable for all and supports scholarships for students, equal representation of women 
and minorities in the computing research community, and the development of open 
source technology.

Learn more at:
www.usenix.org/supporter



54   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

COLUMNS

/dev/random
Distributed System Administration

R O B E R T  G .  F E R R E L L

Usually when we have an issue with multiple themes I pick one or the 
other to mock/expound upon/reveal my gross ignorance about, but 
on this occasion I’ve decided to combine them. I spent years as a 

system administrator, and, in common with most of you, what I laughingly 
refer to as my earnings are distributed amongst a wide variety of government 
agencies via taxation (and more taxation, and then some additional taxation 
after that in case there’s anything left over), so I feel as qualified as anyone 
with similar qualifications to address both of this issue’s topics.

Now, the problem with sysadmins is that they have not kept their image modern. By that 
I mean that while computing was evolving by leaps and bounds around them, the system 
administrator was stuck in 1998. I picked that year because that was probably the high point 
of my sysadmin career, if it can be said to have experienced a high point at all. It was shortly 
after that I wrote “Chasing the Wind” for Security Focus. When I look back at that fictional 
account now, it seems quaint: a relic of a bygone era. It was a product of a more innocent time 
and a more innocent author with a constant need to generate income. I’m not so innocent 
now. The sysadmin as a species hasn’t changed much, either.

Before I proceed any further along the primrose path (pausing every so often to pluck out the 
primrose thorns), I want to take a brief side trip to that rising star of technological ubiquity, 
the much-vaunted Internet of Things. Most of the non-technical public, or so it seems to me, 
think of the IoT (when they think of it at all) as just a nifty way to control their refrigerator, 
air conditioner, cigar humidor, and basement sump pump via smartphone from the bar or 
airport (or airport bar). 

But as my readers all know, IoT is far more than that. Once every macroscopic object in your 
household has its own wireless network interface and IP address, the possibilities for both 
utility and mayhem are virtually endless. But, uncharacteristically getting to the point, is the 
Internet of Things composed merely of things, or are traditional network devices included? 
Is your wireless router part of IoT, or just something to which the IoT connects? The reason 
this makes a difference is that nasty ol’ bugbear of connectivity, security.

I had a dream recently (last night, actually, which as we’ve covered many times would be like 
back in the day for you), where the IoT played a major role. Instead of household appliances 
and smartphone-operated audiovisual devices, the network nodes were implanted in clones 
of “Things One and Two” from Dr. Seuss, “Thing” from the Addams Family, Ben Grimm, and 
an uncomfortably hideous grotesque humanoid from The Thing. It was one of my patented 
nocturnal excursions into self-induced insanity where I can’t decide whether to laugh or 
scream in horror. This began when, as a child, I noticed that “laughter” is not only embedded 
in but constitutes almost 90 percent of “slaughter.” That kind of thing takes its toll.

How is this relevant to security? My, aren’t we the impatient one today? Other than child-
hood monsters that never left, the underlying trigger for this dream was my fear that, as with 
every other aspect of this worldwide meta-neural rete to which we are all now surgically 

Robert G. Ferrell is a fourth-
generation Texan, literary 
techno-geek, and finalist  
for the 2011 Robert Benchley 
Society Humor Writing  

Award. rgferrell@gmail.com



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 55

COLUMNS
/dev/random: Distributed System Administration

attached, security would be pasted onto the finished product 
with tape and paperclips, rather than designed into the funda-
mental infrastructure.

A few months ago I retired from many years of clubbing the US 
federal government over their pointy but durable heads—for the 
most part fruitlessly—with the hardwood 2x4 of infosec. I am, as 
happens to me frequently, simultaneously appalled and amused 
that cybersecurity is suddenly a major buzzword in the hallowed 
halls of executive and legislative governance. I and many others 
have been waving that brightly colored banner in their faces for 
two decades or more. They just patted us on the heads and said, 
“That’s nice, little Jimmy: now run and play outside while the 
grownups drink their morning Kool-Aid.”

Adrift on my tiny raft in a turgid sea of I-told-you-so, I find little 
comfort or triumph in the destination. I can’t help but reflect 
on what a different world it might be had any of those elected 
talking heads actually listened to us, but there’s really not much 
to be gained by what-ifs except weeds in the verdant lawn of the 
subconscious. Let’s wend our way back to the titular topic now, 
shall we? Did anyone remember to leave breadcrumbs?

Distributed systems are all the rage these days, so it’s only natu-
ral that we should also distribute the administration thereof, 
right? System Administration as a Service (SAaaS, which 
sounds like Frankenstein’s monster before coffee) no doubt 
already exists in the cloud, although the idea that an unspecified 
collection of disbursed electronics and code could effectively 
be managed by an equally but separately disbursed unspecified 
collection of human neurons rather beggars the imagination. 
Of course, some are now calling for a total cessation to human 

intervention in this architecture, which proposal might well 
form the basis for my next terrifyingly jocular oneiric misadven-
ture. Hopefully this time there will be snacks.

What would distributed system administration entail, pre-
cisely? Well, one relatively sane application I can see would be 
for systems that require around-the-clock (human) monitoring 
and tweaking. In that scenario the sysadmin duties could simply 
move along with the terminator (I’ll be back in 24 hours). A 
somewhat trivial implementation, admittedly, but triviality has 
more or less been my hallmark as a humorist, so there you go.

Which brings me, willy-nilly, to my final point. Over the past 
nine years I have made a number of proposals in this space that 
ranged from the marginally sublime to the out-and-out ridicu-
lous. That’s because I am the, or rather a, humor columnist for 
this magazine. The number of readers who fail to pick up on 
that critically salient point is a source of continual amazement 
for me. I’ve been asked to present my, um, “engineering” ideas 
at some fairly high-profile conferences and meetings. I’m not 
sure whether this stems from my failure to be funny or just from 
the “nothing-is-too-stupid-to-try” entrepreneurial spirit of the 
interwebs these days. Most likely, both.

Regardless, if any of the systems or techniques or processes I 
propose seem as though they might be technically sound and 
implementable, I strongly encourage you to chart them out in 
your favorite graphics program or spreadsheet and then stare at 
them for a few minutes. I’m pretty sure the resulting representa-
tion of silly will scare you away, but if not and you decide to forge 
ahead to certain doom, please remember one thing: it’s not my 
fault. You were warned.



56   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

BOOKSBook Reviews
M A R K  L A M O U R I N E

Test-Driven Development with Python
Harry J. W. Percival
O’Reilly Media, Inc., 2014, 449 pages
ISBN 978-1-449-36482-3
Harry Percival is a convert to test-driven development (TDD) 
and he wants you to be one, too. Usually I have a real problem 
with this kind of enthusiast, but Percival’s easy tone and a touch 
of quirky humor kept me reading.

Percival’s chosen tools for writing about TDD are Python 3, 
Django, Git, and Selenium. He does assume experience coding 
and recommends several other texts for the reader who might 
not be ready. It would be good to brace yourself because it’s quite 
a ride. At the end of the first chapter, he has the reader viewing a 
browser page popped up by Selenium from the first test page.

You might be forgiven if, after leafing through the body of the 
text, you thought that the book was really about Web development 
with Django. Percival touches on object relational mapping and 
persisting objects into a database in one chapter and on REST ser-
vice behavior in the next. He treats Web forms and input validation 
and backend automation methods. When he comes to the content 
and behavior of the pages themselves, he includes some JavaScript 
(along with suggestions for testing). A closer look shows that he’s 
applying TDD throughout the process. The application always 
drives the development (and hence the testing) activity.

In the final sections he covers advanced topics like mocking and 
continuous integration with Jenkins. Here the focus is back on 
the testing proper, and he closes by revisiting the Testing Goat. 
(Go ahead, Google it.)

With the breadth of tools and techniques here, Percival could fill a 
book much larger than this. Instead, he gives judicious references 
to other books and documents, inviting the reader to take a side 
trip and come back. He manages to instill the narrative with an 
invitation to try a new way of working while avoiding much of the 
preachiness that methodology books often have. If you’re plan-
ning to learn or, better, to try TDD, this is a great place to start.

The Theoretical Minimum: What You Need to Know 
to Start Learning Physics
Leonard Susskind and George Hrabovsky
Basic Books, 2013, 238 pages
ISBN 978-0-465-0758-3
This isn’t a programming or sysadmin book. It’s a guide for the 
serious autodidact who is unsatisfied with typical whitewashed 
popularized books on physics. I’m presenting it here because its 
underlying premise, “the theoretical minimum,” appeals to me.

The book is actually the result of a series of adult education 
courses that Susskind has run at Stanford University. It’s the 
first of a series of serious physics courses for people who are 
curious nonprofessionals. The lectures are online and free at 
http://theoreticalminimum.com/courses. Susskind noted that 
his typical undergraduate students were often less than enthu-
siastic about actually learning physics. By contrast, the students 
who came to the adult ed courses were all motivated by their 
personal curiosity. Teaching them was more fun.

Susskind’s idea is to pare down the ideas and the mathemat-
ics of classical physics so that an intelligent nonacademic can 
understand them in the terms a professional would recognize. 
This means glossing over many of the side routes and much of 
the theoretical depth that would be included in a two- or three-
semester undergraduate course in classical physics. At the same 
time, he doesn’t skimp on the depth and rigor in his discussion of 
the ideas he presents.

In the course of eleven chapters (corresponding to the eleven 
lectures of the classroom course), Susskind presents the theory 
and mathematics of classical physics. The first chapter would be 
familiar to anyone who has taken a high-school course: vectors. 
In the second chapter, the reader has to tackle the concepts of 
integral calculus and the symbolic language needed to express 
them. Susskind progresses rapidly through dynamics, energy, 
and one of the best discussions of the relationship between sym-
metry and conservation that I’ve read.

One of the things I like most about this book is that the math-
ematics is explained in terms of the physics and vice versa. 
I’ve always had difficulty understanding why college math and 
physics departments insist on treating the two topics separately. 
The mathematicians seem not to want to sully themselves with 
physics, and the physicists insist they can’t begin work unless 
the students come in already fluent in calculus. When the two 
are combined, they produce a unified comprehensible whole that 
is impossible to capture separately.

I’m reviewing this book here for two reasons. The first is that 
many of us are inveterate geeks who love learning for its own 
sake, and if you’re one of those, The Theoretical Minimum is 
an excellent read. The other is a proposition to the community 
of coders and system administrators: Is this something we can 
do? Is it possible to strip away the trivia and minutiae that each 
of us holds dear and leave something useful? What would The 
Theoretical Minimum mean for us?



Learn the latest  
techniques for better:

• network security
• system management
• troubleshooting
• performance tuning
• virtualization
• cloud computing

on Windows, Linux,  
Solaris, and popular 
varieties of Unix.

Each issue delivers 
technical solutions 
to the real-world 
problems you face 
every day.

Real SolutionS 
foR Real netwoRkS

Free 
CD or DVD 
in every Issue!

Order Online at: shop.linuxnewmedia.com6 issues per year!

ad_login_admin.indd   1 3/3/15   1:20:50 PM



NOTES

58   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

The State of the USENIX
by Casey Henderson, 
USENIX Executive Director

I’m writing this just over a 
year after taking the  USENIX 
helm solo as Executive 

Director, after 12 years as a USENIX staff 
member. It’s been an exciting time of rapid 
change and growth, building on the founda-
tion that Anne Dickison and I constructed 
as Co-Executive Directors. Although I 
interact with many of you at our events and 
we provide some snippets in our news-
letter, I’d like to take the opportunity that 
our magazine, ;login:, gives us to go into 
more detail about where USENIX is today. 
Although it’s been a challenging ride follow-
ing the recession, I’m delighted to report 
that USENIX is climbing onto solid ground 
both financially and programmatically.

USENIX’s 40th anniversary arrives at a 
time when our year-end finances for 2014 
are in the black for the first time since 2008. 
USENIX is fortunate to have a reserve fund 
built on generous donations, which allowed 
us to survive these past few years. While it 
has been disheartening for those of us on 
the staff and on the Board of Directors to 
withdraw on average half a million dollars 
a year to stay afloat during the aftermath of 
the 2008 financial crisis, we are proud to 
have stabilized this situation.

Our excellent investment portfolio manage-
ment team helped minimize losses as the 
market took deep dives, and we have kept 
a tight rein on our financial commitments. 
It’s a challenging way to live, although it’s 
a better situation than that of many other 
non-profit organizations that exist without 
the cushion of a reserve fund. This position 
provided the optimal time to question what 
was truly essential to our mission, what 
should be jettisoned, and what should be 
pursued not only in the name of survival, 
but also in the name of growth. I personally 

we’re trying to emulate in other conferences 
more effectively.

NSDI will have two major co-locations  
in 2015 and 2016, with the ACM/IEEE 
Symposium on Architectures for Network-
ing and Communications Systems this 
May and with the Open Networking Sum-
mit and the ACM SIGCOMM Symposium 
on SDN Research in 2016. These comple-
mentary events will enhance the existing 
programs while maintaining NSDI’s focus 
on addressing research challenges within 
the networked systems field.

2015 marks the first USENIX Annual 
Technical Conference that isn’t wrapped in 
a Federated Conferences Week in several 
years. The FCW concept of gathering mul-
tiple events together and allowing attendees 
to float among them, cross-pollinating in 
the hallway track, was a great idea but, in 
practice, it didn’t draw enough attendees 
and drained precious resources. USENIX 
ATC ’15 doesn’t stand alone; HotCloud and 
HotStorage will keep it company and enrich 
the week. 

We received a record-high 430 USENIX 
Security complete paper submissions for 
2015—a significant jump from last year, 
which was also the highest-ever at that 
time. The papers portion of the program has 
grown so much that we now have two tracks 
of refereed papers and will expand to three 
tracks in order to keep invited talks as part 
of the program. We partnered with Face-
book to establish the Internet Defense Prize 
in 2014, driving more interest in participat-
ing in the event. 

OSDI in 2014 was the largest in history, 
with 584 attendees. It continued our recent 
trend of shorter paper presentations, which 
allows us to accept more papers to publish. 
It’s a good example of our not doing things 
the way we’ve always done them—I can’t tell 
you how many programs I’ve curated with 

didn’t see much point in USENIX emerging 
from a financial crisis in a similar posi-
tion to the way it went in. Thus rather than 
doing things as we’ve always done, we are 
now actively honoring the agility of our own 
technology-centric community to bend and 
flex with new ideas and information.

When I began working at USENIX in 2002, 
we were in the process of establishing some 
of the conferences for which we’re now 
celebrated—for example, FAST and NSDI—
and once again, we are taking similar leaps 
to build major events for emerging com-
munities. As gratifying as it is to see these 
well-established conferences celebrate Test 
of Time Awards to showcase the work that 
was presented at conferences where I first 
updated the USENIX Web site, it’s been even 
cooler to begin again to create new events to 
respond to trends in the field. The inaugural 
SREcon, focused on Site Reliability Engi-
neering, sold out last year and is set to be 
even larger this year. We’ve created a sister 
event in Europe, and the talk proposals are 
flooding in. We have more new events in the 
pipeline that I look forward to sharing with 
you soon.

USENIX excels at running conferences 
logistically so that our volunteers can focus 
on the most important aspect: the programs. 
We now offer our event services, such as 
publishing open access proceedings, to 
other conferences. We’ve also become a 
grantee of the National Science Founda-
tion, providing logistics for the Secure and 
Trustworthy Cyberspace (SaTC) Principal 
Investigators Meeting in January and the 
Big Data Regional Innovation Hubs in April. 
These events fit within the USENIX mis-
sion and also serve to broaden the scope of 
our community.

FAST has celebrated the highest attendance 
ever for the past two years. Bridging the gap 
between industry and academia has always 
been the key to its success, a feature that 



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 59

NOTES

USENIX Member Benefits
Members of the USENIX Association 
 receive the following benefits:

Free subscription to ;login:, the Associa-
tion’s magazine, published six times a year, 
featuring technical articles, system admin-
istration articles, tips and techniques, prac-
tical columns on such topics as security, 
Perl, networks, an d operating systems, book 
reviews, and reports of sessions at USENIX 
conferences.

Access to ;login: online from December 
1997 to the current month: 
www.usenix.org/publications/login/

Access to videos from USENIX events in 
the first six months after the event: 
www.usenix.org/publications/multimedia/

Discounts on registration fees for all 
 USENIX conferences.

Special discounts on a variety of products, 
books, software, and periodicals: www.
usenix.org/member-services/discount-
instructions

The right to vote on matters affecting the 
Association, its bylaws, and election of its 
directors and officers.

For more information regarding member-
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org. 
Phone: 510-528-8649

three papers per 90-minute session—and 
it’s delightful to work with program chairs 
who approach program construction with 
creativity.

LISA13 and LISA14 marked our first major 
restructuring of the conference in a decade. 
The system administration field is in the 
midst of a sea change. DevOps and Site 
Reliability Engineering are emerging while 
managing systems at scale is now as much 
about the software and organizational col-
laboration as it ever was about the hardware. 
Many conferences serve this segment of our 
community, but ours is the original, the one 
created by sysadmins for sysadmins, and it’s 
important to USENIX that LISA serve them 
well as a must-attend venue. We began to re-
focus the content and to weave learning and 
practice together in 2013. Building on that 
momentum, LISA14 was the largest and 
liveliest in many years. LISA15 will build 
on their success. Help us drive the field and 
the conference forward: submit a proposal 
for the program by April 17.

There is much more on our to-do list. 
USENIX is a membership organization in 
an era when fewer people join associations. 
We are a nonprofit that seeks the support 
of its constituents via its Annual Fund, but 

understands that folks are already paying 
dues and may not even realize that we are 
a non-profit. We are proud to be the only 
major computing association to offer truly 
open access publications, but are chal-
lenged by our business model, which is not 
designed to support the costs associated 
with free access. We have had to reduce the 
number of Good Works projects we support 
and we must determine how to move toward 
restored funding. We’ve established our 
Women in Advanced Computing (WiAC) 
initiative, but need to hear more from the 
community about how to be most effective 
in this arena. We have more students inter-
ested in attending our conferences than  
we have grant money to dispense. We our-
selves have a hard time describing every-
thing we do here at USENIX in one breath, 
which makes it difficult to tell people why  
we matter. We have come this far, though,  
and we are finally in a place where we 
genuinely believe that we will conquer  
these  challenges—and move forward  
with the support of our members and  
the broader community.

Thanks to my colleagues on the Board, 
the staff, and our hundreds of volunteers 
for partnering with me on what has been 

USENIX Board of Directors
Communicate directly with the  USENIX Board of Directors by writing to 
board@usenix.org.
P R E S I D E N T

Brian Noble, University of Michigan 
noble@usenix.org

V I C E  P R E S I D E N T

John Arrasjid, EMC 
johna@usenix.org

S E C R E T A R Y

Carolyn Rowland, National Institute of 
 Standards and Technology 
carolyn@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier 
 Foundation 
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google 
cat@usenix.org

David N. Blank-Edelman, Apcera 
dnb@usenix.org

Daniel V. Klein, Google 
dan.klein@usenix.org

Hakim Weatherspoon, Cornell University 
hakim@usenix.org

E X E C U T I V E  D I R E C T O R

Casey Henderson 
casey@usenix.org

a monumental effort to reinvent USENIX 
while remaining true to our roots. In par-
ticular, I thank past and current USENIX 
presidents Clem Cole, Margo Seltzer, and 
Brian Noble for pushing the boundaries of 
what we thought we could achieve and 
never giving up on this amazing organiza-
tion. I look forward to working with all of 
you in the coming years to help USENIX 
reach a point of absolute stability and con-
stant growth.



60   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

HISTORY

1975–2015

Introducing UNIX News

UNIX News, July 20, 1975
This mailing is the first “permanent” issue of the UNIX 
NEWS. As previously announced, this will be a bimonthly, 
mailed at the end of each odd month. Where a special 
issue is warranted, we will include its contents in the next 
regularly numbered issue. Preceding this issue, there were 
three mailings. The first was the invitation to be placed on 
the mailing list which is reproduced in this issue. The sec-
ond was a notice of the June 18th New York meeting and 
the Harvard software. The third was the  “special issue” 
dated July 16 announcing the new edition of UNIX.

There were no objections to publishing the mailing list 
and so we are including it in this issue. The integer part of 
the sequence number on the first line corresponds to a list 
of licenses that Ken Thompson keeps. The fractional part 
designates multiple installations under a single license. 
Since we now have several such, we will mail a copy of the 
newsletter to each, provided we receive a returned copy of 
the coupon on the invitation to subscribe.

The original letter went to approximately 76 people, all but 
6 of whom responded. Subsequent letters recently went to 
20 new installations and, to date the mailing list contains 
37 names. Our only communications problems are with 
locations where the only name is a contracts officer and 
with multiple installations. I would ask each of you to scan 
the list of names and let me know of any installations you 
know of which are not on the list.

User Software Exchange
It is apparent that there is lots of user software under 
UNIX that is of general use and this newsletter’s greatest 
utility is probably in announcing availability of software. 
We invite discussion in this newsletter of general philoso-
phy with respect to licensing, distribution, costs, and the 
relation of commercial licenses to software exchange.

New York Meeting
The meeting on June 18 at the City University of New York was attended by over 40 people 
from 20 installations. Each installation described briefly the function and idiosyncrasies. 
We will not try to reproduce them here since we expect one page write-ups for subsequent 
inclusion from each installation. (Several such are included in this issue.) There was unani-
mous sentiment for keeping the users’ group and its newsletter as informal as possible.

The next meeting in the East will be October 6 at the City University of New York and the 
 following meeting in early spring at Harvard. By October there should be considerable 

The first issue of UNIX News was published by Mel Ferentz of Brooklyn College in July 1975. Two years later, 
UNIX News became ;login: the UNIX Newsletter. To celebrate our 40th anniversary, we are reprinting some issues 
of UNIX News and early ;login: newsletters. We are also reprinting some of the more popular articles that have 
appeared in ;login: the USENIX magazine.

The first issue of UNIX News. We have reproduced the text exactly as it appeared in 
the original, including any typographic errors. Note from the editor: “Printed on an 
LA36 from NROFF directly to Hectomaster. Great fun! MF”



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 61

HISTORY HISTORY
Introducing UNIX News

a heavy-use student environment and they expect to have some 
documentation by the end of the summer. For details write:

Lewis A. Law 
Director of Technical Services 
Science Center, Harvard University 
1 Oxford Street 
Cambridge, Mass. 02138

Requests for Software
From P. De Souza, Heriot-Watt University:

We are interested in getting in touch with UNIX users who 
may have developed a BCPL compiler/interpreter, a driver for 
Vector General display, or a software link to a PDP-10.

Installation Descriptions
University of Saskatchewan

PDP11/40 with 40Kw of core (expanding to 64Kw) 
3 terminals (2 more on order) 
1 DC11 dial-up interface and a CDI Teleterm 1030 
2 RK11 disk drives (1 on order) 
1 DH11 on order to replace current line interfaces

We also have a PDP11/20 with TTY, high speed paper tape 
and a VT01 display scope. This is currently connecting to the 
PDP11/40 by a DL11-E serial line but will soon be replaced by a 
DR11-C parallel interface. One current project is to write a moni-
tor for the PDP11/20 so that its peripherals become available to 
UNIX users.

 experience with the new system, and by spring general experi-
ence with the Harvard system.

Ken Thompson described some of the features of the new system 
and some benchmarks run on the 11/70. He estimates the raw 
cpu gives a factor of 2.5 improvement in performance for UNIX, 
and that with the new peripherals the factor is about 3.0.

New System Available
The Sixth Edition—June 1975 of the UNIX system is now avail-
able for distribution to licensees. Commercial users should 
contact Western Electric for details. Academics can receive the 
new system for a service fee of $150.00. Normal distribution is 
on 800 bpi - 9 track tape. You need not send a tape. Just a check 
for $150.00 made out to Bell Laboratories, Inc. and sent to: 
 I. B. Biren, Room 2c-548 
 Bell Laboratories, Inc. 
 Computing Information Services Group 
 Murray Hill, NJ 07974

The tape contains a single file which extracts to 3 RK-packs or 
equivalent. These contain:

 Pack 0 The system except for /usr/source 
 Pack 1 /usr/source 
 Pack 2 Documentation in machine readable form

Those who require distribution on RK-packs should send two or 
three packs along with their checks. The package also includes 
one hard-copy of each of the 19 documents.

Among the new “goodies” are:

1. Separate I and II space for the resident monitor on 11/45s and 
11/70s

2. Huge files (up to 16 megabytes)

3. A preprocessor for structured Fortran

4. TMG

5. A preprocessor for DC, with arbitrary precision

6. Many fixes and rewrites of system programs from “as” to “c”

7. Much improved comments embedded in system source

8. More graceful death on running out of resources and other 
crashes

Other Software Available
The MUNIX paper which starts on page 4 announces the avail-
ability of their system. I have a recent note from professor Allen 
saying he expects to have it available in the very near future.

Harvard has announced the availability in the near future of 
their software. It will be available to other academic institutions 
for the nominal cost of reproducing it. The system is running in 

1975–2015



62   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

HISTORY
Introducing UNIX News

MUNIX—A Multiprocessor UNIX
B. E. Allen and G. L. Barksdale, Jr. 
Computer Science Group, Naval Postgraduate School 
Monterey, California 93940

The Naval Postgraduate School Signal Processing and Display 
Laboratory is a university laboratory engaged in research efforts 
in computer graphics, signal processing, operating systems, and 
hybrid computing. The laboratory is used for student instruction 
as well as for student and faculty research.

The configuration of the Signal Processing and Display Labora-
tory is shown in Figure 1. The system can be viewed as a three 
bus ensemble, with the respective functions of data acquisition, 
signal processing, and display. When bus cycles are not required 
by real-time processes, the data acquisition and display busses 
support program development activities. The display system 
includes a 256K word fixed head disk, a Ramtek color display, a 
Tektronix 4014 display with enhanced graphics, a Vector Gen-
eral 3D system, a Hughes Conographic console, a data tablet, a 
Versatek printer/plotter, and an EPC graphic recorder. Peripher-
als for the Data Acquisition controller include both large (96M 
words) and small (2.5M words) disk systems, magnetic tapes, 
a card reader, a line printer, and a sixteen line programmable 
terminal multiplexer. Dual ported core memory (88K words) is 
accessible from either UNIBUS. The signal processing subsys-
tem consists of a CSP 125 controller with 4K words of 125 nano-
second memory, an array processor,  and two 16K word banks of 

three ported memory. UNIX compatible device drivers have been 
developed for each of these peripherals.

To control this diverse hardware suite, we have evolved MUNIX, 
a tightly-coupled symmetric multiprocessor version of UNIX. A 
single copy of the system residing in shared memory is executed 
by both processors independently. P and V operators are used for 
synchronization. In order to provide the increased address space 
necessary to support the multiprocessor system, UNIX was 
modified to separate kernel I and D space. In support of the sig-
nal acquisition research, a new process classification, real-time, 
has been added. When a process is granted real-time status, it is 
locked in memory, given the highest priority possible, and pre-
emptively allocated a processor whenever it comes ready.

Other completed work includes the development of a dynamic 
symbolic debugging tool having breakpoint capability, a rather 
basic PDP II virtual machine monitor which executes under 
MUNIX, several on-line diagnostic packages, a line editor which 
facilitates correction of typing mistakes, system calls which 
gracefully stop or bootstrap the system, and enhancements to 
the text editor, the text processor, the C compiler, and the loader. 
Work presently underway includes a performance measure-
ment subsystem, several adaptive schedulers, a demand paged 
memory manager, and a hardened file system.

NPS developed software is available as a nine track tp tape to 
any Bell Labs approved site.

1975–2015



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 63

HISTORY
Introducing UNIX News

Toronto UNIX System
1) Hardware

Device Existence Driver

a) PDP11/45
– floating point
– 80+K core

Yes

b) SI 9500-I Disk Soon No

c) Diva dd14 Disk Soon No

d) 3-Rivers Graphic Wonder Yes Yes and No

e) GT-40 Leaving Soon Yes

f) Versateck D1200A  
        Printer/Plotter - DMA

Soon No

g) Colour Video System Being Built No

h) Summagraphic  
         Data Tablet

Yes Yes

i) Calcomp Microfilm 
           Plotter

Yes No

j) line printer Yes Yes

k) card reader Yes No

l) 1600 BPI tape drive Yes Yes

2) Software Already Developed

a) GT-40 driver

b) New improved mag tape driver
– allows seeks in raw mode
– knows about files
– crashes less frequently

c) C paragrapher

d) “grabcore” – a system routine to free up and reserve a specific  
       piece of core for double-port devices

1975–2015



64   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

HISTORY
Introducing UNIX News

Boston Children’s Museum
UNIX at the Children’s Museum has been fully operational 
since August, 1974. Development work jointly with Harvard 
University began the previous winter, making us one of the first 
non-Bell users.

Our hardware configuration includes:

* PDP11/40 processor with EIS

* 48K core memory (MM/MF11-L)

* KW11L line clock

* 2 RK03 (a.k.a. Diablo) disk drives on RK11-c controller

*  6 VT05 terminals operating at 600 and 2400 baud on DL11-E 
controllers

* 1 LA30 DECwriter at 300 baud on DL11-A

* 1 ASR33 teletype on DL11-A

* 1 ComData modem on dialup line, 110 baud on DL11-E

* 1 LP11-HA upper/lower case 60-column line printer

* 1 VOTRAX VS-5 voice synthesizer on DL11-E

*  1 QUME G30 high-quality 30-cps printer (a.k.a. Diablo 
 HyType, or the guts of the GSI etc. terminal) on DR11-C

Further, we are designing and will begin construction soon 
on several new hardware devices and interfaces, including a 
dirt-cheap DR11-C equivalent that is capable of driving our 
scaled-down elcheapo versions of things like the LOGO project’s 
“turtle.”

Our hardware and software is extensively kidproofed, and modi-
fications have been made to the UNIX terminal driver to include 
modes whereby newline characters are ignored on “empty” or 
“null” lines, and whereby all characters typed by the user are 
thrown away if the system is in the midst of typing on the termi-
nal. Attractive rubout handling (backspace-erase line) has also 
been added for VT05 terminals.

Software that we have developed that may be of interest to oth-
ers includes:

*  FOCAL, written in C and modeled after PDP-8 FOCAL by a 
high-school student

*  A PDP-8 simulator (simple memory-and-a-single-terminal 
machines only at this time), also in C, by the same student 
(interrupts are not currently being supported but are being 
worked on)

*  Rewritten standard UNIX shell (pipelines not yet imple-
mented) with user-settable prompts, a “change to default 
directory” command, standard accounting options, a monitor 
option that copies all typein to a hidden file (for keeping tabs 
on potentially malicious users), and others

*  A new more-conversational PS command that displays criti-
cal process data in English (SWAPPED/IN CORE, SLEEP/
WAIT/RUN, etc.)

*  An RK disk driver that optimizes seeking through queue-
diddling

Under development and scheduled for imminent completion is 
a general-purpose information storage and retrieval system. 
A license fee will probably be made for this package, but all of 
the other items listed above are available free to nonprofits on 
request. Please contact me to discuss media conversion: we can 
supply RK disk, DECtape, or paper (sak) tape.

Bill Mahew, The Children’s Museum, Jamaicaway, Boston, MA

1975–2015



Do you have a  USENIX Representative 
on your university or college campus?

If not, USENIX is  interested in having one!
The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide 
Association information to students, and encourage student involvement in USENIX. This is a volunteer program, 
for which USENIX is always looking for academics to participate. The  program is designed for faculty who directly 
interact with students. We fund one representative from a campus at a time. In return for service as a campus 
representative, we offer a complimentary membership and other benefits.

A campus rep’s responsibilities include:

■  Maintaining a library (online and in print) of  USENIX 
publications at your university for student use

■  Distributing calls for papers and upcoming event 
brochures, and re-distributing informational emails 
from  USENIX

■  Encouraging students to apply for travel grants to 
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-
only areas of the USENIX Web site, free conference registration once a year (after one full year of service as a 
 Campus Representative), and electronic conference proceedings for downloading onto your campus server so 
that all students, staff, and faculty have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four-year accredited university

■  Have been a dues-paying member of USENIX for at least one full year in the past

www.usenix.org/students

■  Providing students who wish to join USENIX with 
information and applications

■  Helping students to submit research papers to 
 relevant USENIX conferences

■  Providing USENIX with feedback and suggestions 
on how the organization can better serve students

For more information about our Student Programs, contact 
Julie Miller, Marketing Communications Manager, julie@usenix.org



66   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

1975–2015

HISTORY

Dueling UNIXes and the UNIX Wars
P E T E R  H .  S A L U S

For nearly a decade, UNIX was UNIX, the operating system from  
Bell Labs. 

By 1979, we had PWB 2.0 (Programmer’s Workbench), Version 7, 32V (the port of V7 to the 
VAX architecture), and 3BSD (the first Berkeley release for the VAX). UNIX, after all, was 
not an AT&T OS. It was a “telecommunications support tool.” This was a result of the 1956 
“consent decree,” which enjoined AT&T/Western Electric from “commencing…manufac-
ture for sale or lease any equipment” other than that used in telephony or telegraphy. One of 
the few exceptions permitted to AT&T was “[experimentation] for the purpose of testing or 
developing new common carrier communications services”—UNIX.

UNIX was worldwide at the end of the ’70s: Australia in 1974; the UK in 1973; the Nether-
lands, Belgium, Austria, Israel, Japan, the US, and Canada had picked up the “new” system. 
And there were also commercial UNIX companies. The earliest was Whitesmiths, founded 
in 1978 by P. J. (“Bill”) Plauger, and then the Wollongong Group in Australia and HCR in 
Toronto. In 1979, Microsoft and the Santa Cruz Operation brought out XENIX2 and Berkeley 
produced 4BSD, each a V7 derivative.

By the early ’80s, UniSoft had released UniPlus+; mt Xinu (UNIX tm backwards) had been 
founded; and Apollo, DEC, Eakins, Gould, Integrated Solutions, Masscomp, NSC, and Wol-
longong were also marketing Berkeley UNIX. System III or System V derivatives were being 
marketed by AT&T, Altos, Apollo, Compaq, Convergent, HP, Honeywell, IBM, ITT, Intel, 
Interactive, Masscomp, Microport, Microsoft, Motorola, NCR, NUXI, Opus, SCO, Silicon 
Graphics, Sperry, Sun, Tandy, UniSoft, and Wollongong. Finally, a host of vendors, including 
Amdahl, Apple, Cray, DEC, Data General, HP, IBM, and Motorola, offered proprietary ver-
sions of UNIX, some based on 4.1 or 4.2BSD.

UNIX, which began in 1969 quite a bit smaller than MS-DOS, had become obese by its 18th 
birthday and was drowning in alphabet soup.

At the June 1986 USENIX conference in Atlanta, many AT&T staff wore buttons which read, 
“System V: Consider it Standard,” and a number of major vendors were promoting products 
based on System V. On the other hand, System V did not yet have TCP/IP networking built in 
and BSD 4.2 did; vendors of engineering workstations were nearly all using BSD, and buttons 
and posters that said “4.2 > V” were available. (I still have mine.)

In late 1987, AT&T announced that it had purchased a large percentage of Sun Microsystems 
and that Sun would receive preferential treatment as AT&T/UNIX Systems Labs  developed 
new software. Sun announced that its next system would not be a further extension of SunOS 
(which had been based on Berkeley UNIX) but would be derived from AT&T’s System V, 
Revision 4. A shiver ran through the UNIX world: the scientific community felt that Sun was 
turning its back on them, and the other vendors felt that the “special arrangement” would 
mean that Sun would get the jump on them.

Peter H. Salus is the author of  
A Quarter Century of UNIX 
(1994), Casting the Net (1995), 
and The Daemon, the Gnu and 
the Penguin (2008).  

peter@pedant.com



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 67

1975–2015

HISTORY
Dueling UNIXes and the UNIX Wars

DEC, in particular, sensed that AT&T was no longer the benign, 
benevolent progenitor of UNIX.

The direct result of this was a meeting at DEC’s Western 
offices in Palo Alto, on January 7, 1988. Participants present 
represented Apollo, DEC, Gould, Hewlett-Packard, Honeywell-
Bull, InfoCorp, MIPS, NCR, Silicon Graphics, UniSoft, Unisys, 
and a few others. Because the offices were at 100 Hamilton 
 Avenue, the attendees were referred to as the Hamilton Group. 
On January 15, the Group sent a telegram to James E. Olson, 
CEO of AT&T, requesting a meeting with Vittorio Cassoni, 
Senior VP of AT&T’s Data Systems Division, during the week  
of January 25, 1988.

(UniForum and USENIX both met in Washington, D.C. 
that week, which culminated in the “second Washington 
snowstorm.”)

Larry Lytle of HP called a preliminary meeting at the JFK 
 Marriott for the evening of Wednesday, the 27th. The meeting 
with Cassoni was held the next day. Where the Hamilton Group 
was concerned, the meeting with Cassoni had no positive result. 
The Group agreed to meet on February 9 in Dallas. In March, the 
Group decided to invite IBM, a heavyweight, to join.

With Armando Stettner urging Ken Olsen, DEC hosted semi-
secret meetings that included HP, IBM, Bull (France), and 
Nixdorf and Siemens (Germany). In May 1988, they announced 
the formation of the Open Software Foundation to be dedicated 
to the production of an operating system, a user interface, a 
distributed environment, and free cotton candy. Eventually, 
this UNIX offshoot would be AT&T license-free.

The Wall Street Journal of May 18, 1988, noted that no one at 
the launch of OSF could recall Ken Olsen sharing “a stage with 
an IBM chief executive.” Ken Thompson was in Australia at the 
time. When Dennis Ritchie told him what had transpired, he 
said: “Just think, IBM and DEC in one room and we did it!” They 
had. But it didn’t take very long for AT&T, Sun, and their coterie 
to form a counter-consortium, UNIX International, dedicated to 
the marketing of SVR4.

The war was on.

The companies that formed the OSF were joining hands to pro-
duce a new UNIX kernel and a new user interface. Their “tem-
porary” headquarters would be in Lawrence, MA. A delegation 
of executives (loaned to OSF from their various corporations) 
attended the USENIX Conference in San Francisco in June. 

OSF quickly named its executive team, including David Tory 
(Computer Associates) as President, and Roger Gourd (DEC), 
Ira Goldstein (HP), and Alex McKenzie (IBM) among the Vice 
Presidents. 

UI appointed Peter Cunningham (ICL) as President. 

By the end of 1989, Gourd’s engineering team had come out 
with a new user interface, Motif, which was well-received, and 
Goldstein’s research team had chosen Mach as the underlying 
kernel for the OS. OSF also increased its number of sponsors, 
adding Hitachi and Philips. However, as HP swallowed up Apollo 
and Siemens bought Nixdorf, at year end there were still seven 
sponsors. 

Both OSF and UI ran membership drives and gave out pens and 
badges and stickers. Each ended up with about 200 members. 

In 1991–92 the worldwide economy worsened. Bull, DEC, IBM, 
and the computer side of Siemens all lost money. AT&T resold 
its share of Sun. The fierce mudslinging appeared to be over. (At 
one point there was even a rumor of OSF and UI merging, for the 
good of UNIX. But that would take several more years.) 

It hardly seemed to matter: Sun had adopted Motif; in 1993 USL 
sold UNIX to Novell, whereupon UI disbanded; OSF abandoned 
several of its previously announced products (shrink-wrapped 
software and the distributed management environment); Bull, 
Philips, and Siemens withdrew from sponsorship of OSF. 

It was then that Armando Stettner remarked to me: “It’s not 
clear whether there’s any purpose to OSF anymore.” 

In 1984 a group of UNIX vendors had formed a consortium,  
X/Open, to sponsor standards. It was incorporated in 1987  
and based in London. In 1996 OSF merged with X/Open, 
which owned the UNIX trademark, to become The Open Group, 
which then held the UNIX trademark. The Group also took on 
Motif and the Common Desktop Environment (CDE). The war 
appeared to be over.

But the Open Group maintained its concern with standards, and 
sponsored the Single UNIX Specification. It has also taken on 
sponsorship of other standards including CORBA and the Linux 
Standard Base. 

And it was Linux that profited. At Berkeley, the CSRG began 
purging its distributions of copyrighted AT&T code from 1989 
to 1994. Keith Bostic would convene BSD BoFs where he would 
announce  the progress in checking that the code was free of 
AT&T copyright. 

But BSD soon found itself in legal trouble with AT&T’s USL 
 subsidiary, who at that time were the owners of the System V 
code and the UNIX trademark. The USL v. BSDi lawsuit was  
filed in 1992 and led to an injunction on the  
distribution of BSDi’s Net/2 until the 
validity of USL’s copyright claims on the 
source could be judicially determined.



68   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

1975–2015

HISTORY
Dueling UNIXes and the UNIX Wars

The lawsuit slowed development of the free-software descen-
dants of BSD for nearly two years while the legal status was in 
question; as a result, systems based on the Linux kernel gained 
greater support. 

The lawsuit was settled in January 1994, largely in Berkeley’s 
favor. A condition of the settlement was that USL would not file 
further lawsuits against users and distributors of the Berkeley-
owned code in the upcoming 4.4BSD release. Kirk McKusick 
summarized the lawsuit and its outcome:

Code copying and theft of trade secrets was alleged. 
The actual infringing code was not identified for 
nearly two years. The lawsuit could have dragged on 
for much longer but for the fact that Novell bought USL 
from AT&T and sought a settlement. In the end, three 
files were removed from the 18,000 that made up the 
distribution, and a number of minor changes were made 
to other files. In addition, the University agreed to add 
USL copyrights to about 70 files, with the stipulation 
that those files continued to be freely redistributed.

Wars rarely conclude profitably for the opposing forces. Look 
at the lists of companies and organizations above. Apollo, 
DEC, Encore, Compaq, Convergent, Bull, Nixdorf, Sun, Silicon 
Graphics, OSF, UNIX International, etc., etc. All gone. HP, IBM, 
and Microsoft remain. Among the operating systems, all, even 
Microsoft Windows, owe debts to Bell Labs, Berkeley, and Linux.



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 69

1975–2015

HISTORY

Invisible Intruders: Rootkits in Practice
D A V I D  B R U M L E Y

To catch a cracker you must understand the tools and techniques he 
will use to try to defeat you. A system cracker’s first goal is to hide his 
presence from you, the administrator. One of the most widely used 

cracker tools for doing this is the rootkit. A rootkit gets its name not because 
the toolbox is composed of tools to crack root, but instead because it com-
prises tools to keep root.

Rootkits are used by intruders to hide and secure their presence on your system. An intruder 
achieves complete cloaking capability by relying on an administrator to trust the output of 
various system programs. This assumption is more or less true – most of the time system 
administrators trust ps to display all processes and ls to list all files.

The cracker hides simply by modifying these programs not to display his activities: ls is 
altered not to display the cracker’s files, and ps is modified not to display the cracker’s pro-
cesses. This simple method proves powerfully effective. A system administrator often has no 
clue that anything is amiss. Should the administrator sense that the system does not “feel” 
right, she’ll have a hard time tracking down the exact problem.

To replace any of the programs mentioned here, the cracker must already have root access. 
The initial attack that leads to superuser access is often very noisy. Almost every exploit will 
produce a lot of network traffic and/or log activity. Once in, though, the skilled attacker has 
no difficulty covering tracks. The average cracker will have programs in his rootkit such as 
z2 and wted that remove login entries from the wtmp, utmp, and lastlog files. Other shell 
scripts may clean up log entries in /var/log and /var/adm. Luckily, the average cracker is 
sloppy. Sometimes he will forget to clean out certain programs or will simply just zero out the 
log file. Any time a log file has zero length it should be an immediate sign that something is 
amiss.

Trojans
Once the cracker cleans up the appropriate files to hide his tracks, he will want to leave a 
backdoor in order to avoid using his noisy exploit again. Rootkit backdoors – often called 
trojan horses – can typically be divided into two categories: local programs and network 
services. These trojaned programs are the core of the rootkit.

Local programs that are trojaned often include chfn, chsh, login, and passwd. In each case, 
if the magic rootkit password is entered in the appropriate place, a root shell is spawned. Of 
course a smart cracker will also disable the history mechanism in the root shell.

The replacement for login is especially interesting. Since some systems have shadowed and 
unshadowed password schemes, the cracker’s replacement must be 
of the right type. A careless cracker might use the wrong kind of login 
trojan. When this happens, all or some accounts will be inaccessible, 
which should be an immediate tipoff that a cracker has gained control 
of your system.

Davd Brumley then…
David Brumley works for the 
Stanford University Network 
Security Team (SUNSeT). He 
graduated with honors from 
the University of Northern 

Colorado in mathematics with additional work 
in philosophy. In his free time he enjoys playing 
hockey and reading Kant.  

…and now
David Brumley is an Associate 
Professor at Carnegie Mellon 
University in the Electrical 
and Computer Engineering 
Department.  Prof. Brumley 

graduated from Carnegie Mellon University 
with a PhD in Computer Science in 2008. 
Hehas received several best paper awards, an 
NSF CAREER award, and the United Stated 
Presidential Early Career Award for Scientists 
and Engineers. dbrumley@cmu.edu

Reprinted from ;login: Special Issue on 
Intrusion Detection, September 1999 



70   A P R I L 20 1 5  VO L .  4 0,  N O.  2  www.usenix.org

1975–2015

HISTORY
Invisible Intruders: Rootkits in Practice

inetd, the network super daemon, is also often trojaned. The 
daemon will listen on an unusual port (rfe, port 5002 by default 
in Rootkit IV for Linux). If the correct password is given after 
connection, a root shell is spawned and bound to the port. The 
manner in which the shell is bound makes it essential to end all 
commands with a semi-colon (“;”) in order to execute any com-
mand line.

rshd is similarly trojaned. A root shell is spawned when the 
rootkit password is given as the username (i.e., rsh [hostname] 

-l [rootkit password] will get you in to the compromised 
machine).

Last, a root shell is often simply left bound to a port by the pro-
gram bindshell. This program requires no password. By default 
the program is bound to port 31337, “eleet” in cracker jargon.

Satori
In all of these programs, the default password for the new-
est Linux rootkit (Rootkit IV) is satori. Older rootkits have 
used lrkr0x and h0tb0x as passwords. Rarely is the default left 
unchanged, but it never hurts to check.

To expand their domain, the cracker may also install an Eth-
ernet sniffer. An Ethernet sniffer listens in on all traffic on the 
local network, grabbing passwords and usernames destined for 
other machines. ifconfig will normally report such odd behavior 
by alerting the administrator with the PROMISC flag. Unfortu-
nately, ifconfig is usually one of the programs modified.

The allure of rootkits should now be obvious. Even if the admin-
istrator patches the program that initially led to root access, the 
cracker merely has to telnet to the proper port to get a root shell. 
If this is closed, the cracker can try the backdoored login or rshd 
program. And even if that doesn’t work, the cracker can still log 
in as a user (from perhaps a cracked password or his Ethernet 
sniffer) and used the trojaned ping, chfn, or chsh program to 
become the superuser once again.

Why do crackers break into systems? Sometimes you are tar-
geted directly. The cracker wants information or access specifi-
cally available at your installation. Often, however, a cracker 
may simply want to break into any system in order to get on IRC, 
serve up WAREZ, or trade MP3s. If they do this, they might 
trojan crontab in order to hide jobs that rotate, modify, or check 
on the status of the illicit activity.

Hidden
What tools does the administrator have to find these trojan-
horse programs? If a rootkit is properly installed, the adminis-
trator will not be able to tell the difference between the original 
and a modified program. A widely used cracker program named 
fix will take a snapshot of the system binary to be replaced. 
When the trojaned or modified binary is moved into place, the 
fix program mimics all three timestamps (atime, ctime, and 
mtime) and CRC checksum of the original program. A carefully 
constructed and compiled binary will also have the same length.

Without a cryptographically secure signature of every system 
binary, an administrator cannot trust that she has found the 
entire rootkit. If even one program goes undetected, the intruder 
might have a way back into your system. Several utilities, such 
as tripwire and RedHat’s rpm, provide secure MD5 check-
sums of binaries. To be truly secure, the reports must be kept 
offline in some sort of secure location, lest the hacker tamper 
with the report. (Not so long ago a system-cracker magazine 
called Phrack published an article on defeating online tripwire 
reports.) These reports may be the only thing that saves you from 
a complete reinstallation of the entire system.

Luckily, many crackers are careless, and portions of their rootkit 
can be detected. The trojaned files above often have configura-
tion files that list the programs to hide and which to display. 
Often they forget to hide the configuration files themselves. 
Since /dev is the default location for many of these configura-
tion files, looking in there for anything that is not a normal file is 
often a good idea. The default setup for many rootkits is to have 
the configuration file begin with pty, such as /dev/ptys or /dev/

pryr.

Another trick is to look at modification times of all programs. 
Although a good cracker will try to cover most of the times, they 
often forget a few files or directories. find / -mtime -N -print, 
where N is the number of days you expect the intruder has had 
access to your system, should work in most cases. I’ve found 
many times the hacker has covered his tracks well in /bin and /
sbin, but left the entire build directory for his rootkit in /tmp!

Inside each modified directory you should compare the output 
of echo * with ls. If ls has been trojaned and configured to hide 
anything, the echo command will show it.

Also pay close attention to the strings in the system binaries. 
Although /sbin/inetd may look the right size, if the string “/bin/
bash” shows up in it, you should start worrying about what else 
has been replaced. Another trick is to look at the file type. If file 
/bin/inetd says that inetd is not stripped, it most certainly has 
been tampered with.

If you’re lucky enough to have a /proc filesystem, spend some 
time to become acquainted with it – there is a lot of useful 



www.usenix.org  A P R I L 20 1 5  VO L .  4 0,  N O.  2 71

1975–2015

HISTORY
Invisible Intruders: Rootkits in Practice

information there. By walking the directory tree you can find 
which processes are running. After comparing the output to 
what ps shows, you can determine with some level of certainty 
whether ps has been modified. Other files in /proc may show you 
all active network connections, and some others may even list all 
open file descriptors!

The easiest way to detect crackers, however, is to have a clean set 
of statically linked binaries for your system. Statically linked? 
Sometimes a more advanced cracker will replace system librar-
ies, so anything that dynamically uses them cannot be trusted. 
If possible you should have a spare set of common programs such 
as ps, ls, ifconfig, perhaps lsof, etc., on a secure host. When you 
find a compromised system, simply download the clean binaries, 
set your PATH environment variable to use them, and start look-
ing for backdoors.

Various versions of rootkit are available at most cracker sites. 
The most accessible versions are for open-source operating sys-
tems such as Linux and FreeBSD. Also commonly reported are 
versions for Irix, SunOS, and Solaris. The latest rootkit, Linux 
Rootkit IV, is distributed by The Crackers Layer, http://www.
lordsomer.com. It is definitely worth the bandwidth to download 
the source and see how it works.

Rootkits have become very popular tools for both experienced 
and novice crackers. Your first line of defense should always be 
protection with regular patches and administration. Equally 
important is the second line: a good plan in the event of a real 
compromise. By arming yourself ahead of time with secure 
checksums and clean binaries, you will be much quicker and 
more effective in local and sitewide incident response.

Utilities Included in Rootkit IV
Programs That Hide the Cracker’s Presence
ls, find, du—will not display or count the cracker’s files.

ps, top, pidof—will not display the cracker’s processes.

netstat—will not display the attacker’s traffic, usually used to 
hide daemons such as eggdrop, bindshell, or bnc.

killall—will not kill the attacker’s processes.

ifconfig—will not display the PROMISC flag when sniffer is 
running.

crontab—will hide the cracker’s crontab entry. The hidden 
crontab entry is in /dev by default.

tcpd—will not log connections listed in the configuration file.

syslogd - similar to tcpd.

Trojaned Programs That Have Backdoors
chfn—root shell if rootkit password is entered in as new full 
name.

chsh—root shell if rootkit password is entered as new shell.

passwd—root shell if rootkit password is entered as current 
password.

login—will allow the cracker to log in under any username 
with the rootkit password. If root logins are refused, user rewt 
will work. It also disables history logging.

Trojaned Network Daemons
inetd—root shell listening on port rfe (5002). After connec-
tion, the rootkit password must be entered in as the first line.

rshd—trojaned so that if the username is the rootkit password, 
a root shell is bound to the port (i.e. rsh [hostname] -l [rootkit 
password]).

Cracker Utilities
fix—installs a trojaned program (e.g., ls) with the same time-
stamp and checksum information.

linsniffer—a network sniffer for Linux.

sniffchk—checks to make sure a sniffer is still running.

wted—wtmp editor. You can modify the wtmp.

z2—erases entries from wtmp/utmp/
lastlog.

bindshell—binds a root shell to a port 
(port 31337 by default).



72   APRIL 2015  VOL.  40,  NO.  2  www.usenix.org

REPORTSConference Reports

LISA14
November 9–14, 2014, Seattle, WA
Summarized by Herry Herry and Josh Simon 

Invited Talks 
Making “Push on Green” a Reality: Issues & Actions Involved in Maintaining a Production 
Service 
Dan Klein, Google, Inc.
Summarized by Josh Simon (jss@clock.org)

Despite encouragement from the audience, Dan didn’t give the talk as an interpretive dance. The 
talk basically asked (and answered) the question, “What is ‘push on green,’ and what do you need to 
do before you can get to it?”

He laid out his assumptions for this talk: you have at least one server, at least one environment, 
some number of dependents or dependencies, the need to make updates, and a limited tolerance for 
failure.

What’s “push on green”? When something—such as a human, build system, or test suite—says it’s 
okay to release something, do it. It’s unfortunately complicated by reality: how do you avoid rollout 
pain with a new or modified service (or API or library or...)? In summary:

◆◆ Developing. Peer reviewed code changes; nobody does a check-in-and-push (with possible 
exceptions when Production is broken, but the code review needs to happen after the fact). Is the 
code readable? Well-documented? Test your code—with both expected and unexpected condi-
tions. Does it fail gracefully? Use new libraries, modules, and APIs; don’t do a “first upgrade in 
five years” thing.

◆◆ Testing. Unit tests, module tests, end-to-end tests, smoke tests and probers, and regression 
tests. Find a bug? Write a test to reproduce it, patch it, and rerun the test. (Example: OpenSSL 
has only five simple tests at a high level and hundreds of modules that aren’t directly tested at all.)

◆◆ Monitoring. Volume (how many hits), latency, throughput (mean, minimum, maximum, stan-
dard deviation, rate of change, and so on); historical data and graphing; alerting and service level 
agreements (SLAs). As a side note, SLAs require service level objectives (SLOs), which require 
service level indicators (SLIs).

◆◆ Updating (and rolling back). Should be automated and mechanical idempotent processes. 
This requires static builds, ideally with human-readable version numbers like yyyymmdd_rcn. 
It needs to be correlated with monitoring. You can mark a version as “live,” and then push is just 
changing the pointer to that live version; rollback is re-marking the “old” version as live and 
updating the pointer (“rolling forward to a previous version”—assuming no database schema 
changes anyhow). You should also have canary jobs; a canary job is in the case when you have 
more than one machine or process. You say “some amount of traffic will hit the canary job with 
the new version.” You need to check the canary first to see whether it crashed. If you monitor the 
canaries and let them have some fraction of the traffic, you can look at those graphs and check for 
anomalies and trending and see whether the canary works as expected. If it looks good, you can 
push things live. If it doesn’t, only a small fraction of users are affected for a short period of time.

Your organization needs a cross-cultural mindset across all of these.

So how do you do a safe rollout? In general:

◆◆ Silence the relevant alerts in your monitoring system. 
◆◆ Update the canary jobs. 
◆◆ Run your smoke tests. 

In this issue:
72  LISA14 

75  Advanced Topics Workshop 
at LISA14



www.usenix.org  APRIL 2015  VOL.  40,  NO.  2 73

REPORTS

◆◆ Let canaries “soak,” or run for a while; the code or test might 
require some number of iterations such as loading a disk 
cache. 

◆◆ Push the remaining jobs.
◆◆ Run the smoke tests again. 
◆◆ Unsilence alerts.

What about making the configuration changes? You can have 
job restarts with runtime flags, or HUPping the job to reread the 
config file. The latter is faster but riskier.

In about 84 weeks with this process, Google went from roughly 
five rollouts per week to upwards of 60 (with a peak of 75) and 
freed up an FTE engineer. Having more frequent and smaller 
rollouts helps developers, who don’t have to wait for the “weekly 
build” to release their code.

Process improvements they’ve made include automated recur-
ring rollouts (using a 4.5-day week, excluding weekends and 
Friday afternoons), inter-rollout locking (to prevent stomping 
on each other), schedules of rollouts (to prevent things from hap-
pening when people are sleeping), and one-button rollbacks.

Future enhancements to the process include rollback feasibility 
(how easy is it to roll back the release, e.g., if there are schema 
changes?), continuous delivery (just release it automatically if 
there’s a change in the binary or config file checked in), rollout 
quotas (prevent someone from taking all the slots for a person, 
team, or tool), and green on green (if there’s continuous deliv-
ery and something breaks, should that halt additional deploy-
ments?).

This is an evolutionary process. Things will go wrong—things 
break, and so we need to adjust attitudes. Find the reasons why 
something went wrong, not to assign blame but to fix the pro-
cess. Let humans be smart and machines be repeatable. Have a 
Big Red Button so a human can stop things if needed.

You don’t need to be at Google-scale to do this. And, sorry, there 
are no silver bullets. It’s a laborious process with lots of baby 
steps. You have to be careful and not take shortcuts, just keep 
going.

While waiting for the Q&A to start, Dan did perform an inter-
pretive dance after all.

For more information, please see the “Push on Green” article in 
the October 2014 (vol. 39 no. 5) issue of ;login:.

Distributing Software in a Massively Parallel 
Environment
Dinah McNutt, Google, Inc.
Summarized by Josh Simon (jss@clock.org)

Dinah McNutt has been coming to LISA since LISA IV (1990) 
and chaired LISA VIII (1994), and while she used to be a sysad-
min she’s now a release engineer. One of her passions is pack-
aging; she’s fascinated by different package managers and she 
talked about Google’s. 

The problem is that with very large networks, it may take a long 
time to distribute things; there are bottlenecks (such as network, 
disk, CPU, and memory), a machine may be offline, networks 
might be partitioned (“you can’t get there from here”), and there 
are even concurrent writers.

Google’s package management system is called Midas Package 
Manager (MPM). The package metadata (more below) is stored 
in their Bigtable Database, and package data is stored in their 
Colossus File System and replicated. The transport mechanism 
is a custom P2P mechanism based on torrent technology.

An MPM package and metadata contain the contents of the 
package (the files), a secure hash of the unique version ID, sig-
natures for verification and auditing, labels (such as “canary,” 
“live,” “rc” with date, and “production” with date; for more on the 
“canary” and “live” labels see the preceding talk), pre-packaging 
commands, and optionally any pre- and post-installation com-
mands.

She gave a quick case study: a config file needs to go to thousands 
of machines, so the relevant pieces are packaged into an MPM 
file, and a job (that is, a process running in a container) on each 
remote machine fetches and installs a new version of that MPM 
every 10 minutes, so the config changes can go out quickly. A 
post-fetch script is in the MPM to install the new config file. 
Easy, right?

Alas, it’s not quite that simple: machines may be offline, bottle-
necks must be minimized, jobs have to specify the version of a 
package, jobs on the same machine may use different versions 
of the same package, the system must be able to guarantee files 
aren’t tampered with in flight, and the system must be able to 
roll back to a previous version.

At package creation, the build system creates a package defini-
tion file, which includes the file list; ownership and permissions; 
pre- and post-install and remove commands; and all is gener-
ated automatically. Then it runs the build command. It can apply 
labels and signatures at any point during the process.

If files going into the package aren’t changed, a new package 
isn’t created; the label or signature is just applied to the existing 
(unchanged) package.

The metadata can be both immutable (who, when, and how it 
was built; list of files, attributes, and checksums; some labels, 
especially those with equals signs; and version ID) and mutable 
(labels without equals signs, and cleanup policy).

The durability of an MPM package depends on its use case: test 
packages are kept for only three days, ephemeral packages are 
kept for a week (usually for frequently pushed configuration 
files), and durable packages are kept for three months after their 
last use (and stored only on tape thereafter).

Distribution is via pull (by the client-side job), which avoids 
network congestion (things are only fetched when needed) and 



74   APRIL 2015  VOL.  40,  NO.  2  www.usenix.org

REPORTS

lets the job owners decide when to accept new versions (e.g., 
“wait until idle”). But since job owners can decide when to accept 
new versions, there either has to be extra logic in the job to check 
for new versions or the ability to restart jobs easily, and it can be 
difficult to tell who’s going to be using a specific version.

The package metadata is pushed to Bigtable (which is replicated) 
immediately. Root servers read and cache data from their local 
Bigtable replica. MPM queries the local root server; failover logic 
is in the client, so if requests fail they’re automatically redi-
rected to another Bigtable replica.

Package data is in the Colossus File System, scattered geograph-
ically. It’s a two-tiered architecture; frequently used packages 
are cached “nearby” (closer to the job). The fetch is via a torrent-
like protocol, and the data is stored locally; so as long as it’s in 
use you don’t need to talk to either Bigtable or Colossus. There’s 
only one copy on the machine no matter how many jobs on the 
machine use it. They have millions of fetches and petabytes of 
data moving daily.

Security is controlled via ACLs. Package namespace is hierar-
chical, like storage/client, storage/client/config, and storage/
server. ACLs are inherited (or not). There are three levels of 
access:

◆◆ Owner can create and delete packages, modify labels, and 
manage ACLs.

◆◆ Builder can create packages and add/modify labels.
◆◆ Label can control who can add/modify specific labels: pro-

duction.*, canary, my_label=blah, and so on.
Individual files can be encrypted within a package, and ACLs 
define who can decrypt the files (MPM can’t). Encryption and 
decryption are performed locally and automatically, which 
allows for passwords that aren’t ever stored unencrypted.

Signatures can be signed at build time or later. Secure key 
escrow uses the package name and metadata so a package can be 
verified using the name and signer.

Why love MPM? There’s an mpmdiff that can compare any two 
packages regardless of name (like the file owner, file mode, file 
size, file checksums, and the pre- and post-scripts).

Labels are great. You can fetch packages using labels. You can 
use them to indicate where the package is in the release pro-
cess (dev, canary, or production). You can promote a package 
by moving labels from one package to another, although some 
labels (those with equals signs) are immutable and can’t be 
moved. Some labels are special (“latest,” which shouldn’t be used 
because that bypasses using a canary). They can assist in roll-
backs (like “last_known_good” or “rollback” to label the current 
MPM while promoting the new one).

There’s a concept of file groups: it’s a grouping of binaries within 
an MPM. Binaries can belong to more than one group. Common 
practice is to store both stripped and unstripped binaries in the 

same MPM but in different file groups, to ensure the unstripped 
and stripped binaries match when troubleshooting problems.

There’s a Web interface to browse all MPMs and show the meta-
data. It also shows graphs by size (so you can see how file groups 
change over time).

In the Q&A, Dinah addressed various questions.

Because job owners have control over when they accept new 
versions, the MPM team can’t guarantee that every machine 
in production runs the “correct” version; you may have to nag 
people to death to upgrade. The release processes can therefore 
vary wildly. The SREs are good and well-respected; they’re 
gatekeepers to keep the release processes sane. The automated 
build system (which is optional) enforces workflows. There is a 
continuous testing system where every command line  submitted 
triggers a test. They insist that formal releases also run tests 
since the flags are different.

One thing possibly missing is dependency management, but 
that’s because packages are self-contained. Performing a fetch 
pulls in the dependent packages, and the code explicitly lists the 
dependencies. In MPM, the goal was to avoid dependency man-
agement since anything can be in a package.

Building a One-Time-Password Token Authentication 
Infrastructure 
Jonathan Hanks, LIGO Lab/California Institute of Technology; Abe Singer, 
Laser Interferometer Gravitational Wave Observatory, Caltech
Summarized by Herry Herry (h.herry@sms.ed.ac.uk)

Jonathan Hanks began by saying that his team built a one-time-
password token authentication infrastructure, called LIGO, in 
part because they want to prevent credential theft before it is 
too late. His organization produced several requirements of the 
token-based solution: one token to rule them all; the token must 
be produced by a physical device; trust no one; and the system 
must be distributed, fault-tolerant, use open standards, and  
be cheap.

After considering the requirements, his team decided to build a 
custom semi-distributed system where some sites  run authen-
tication servers while others do not. The authentication system 
can split and join depending on circumstances. The system is 
using MIT Kerberos with a custom user database. The server 
periodically synchronizes its data with others to replicate the 
user database.

All services are connected to the authentication system using 
PAM. Each user of a service must employ a YubiKey device to 
generate a one-time password during authentication. The device 
itself is sent simply by mail, and the user must activate the 
device before it can be used.

Jonathan closed his talk by saying that it is important to own the 
system by themselves because there is no secret in the system. 
Thus, they can fully trust it.



www.usenix.org  APRIL 2015  VOL.  40,  NO.  2 75

REPORTS

JEA—A PowerShell Toolkit to Secure a Post-Snowden 
World 
Jeffrey P. Snover, Microsoft
Summarized by Herry Herry (h.herry@sms.ed.ac.uk)

Jeffrey Snover began by illustrating that Edward Snowden 
is more powerful than General Michael Hayden (former CIA 
director), mainly because he held “the key to the kingdom”: there 
was no limitation on what he could do on the system as a system 
administrator. This issue motivated Jeffrey’s team to build JEA 
(Just Enough Admin). But although we should manage the risk, 
we cannot eliminate it.

Snover explained that with JEA, we can prescribe which 
actions that can be executed by particular admins. With this, 
people do not need admin privileges to do their job. He also added 
that all admin actions got logged, which is very useful for audit-
ing. One of the attendees described JEA with the precise term 
“firewall shell.”

Jeffrey mentioned that JEA is integrated inside the PowerShell. 
He said that we can define “command visibility” data, which 
drives the parsing capability of the PowerShell. This data-
structure limits the commands and the parameters that can be 
invoked by the user.

Advanced Topics Workshop at LISA14
November 11, 2014, Seattle, WA
Summarized by Josh Simon

Tuesday’s sessions included the 20th (and final) Advanced Top-
ics Workshop; once again, Adam Moskowitz was our host, mod-
erator, and referee. Unlike past years, we only ran for a half day. 
With only two new participants (both longtime LISA attendees), 
Adam covered each participant’s interface to the moderation 
software in brief one-on-one sessions over lunch. We started 
with our usual administrative announcements. We mostly 
skipped introductions. However, Adam noted that two people 
here were at the first ATW, and he and I were both here for the 
past 18 years (he as moderator and I as scribe). In representation, 
businesses (including consultants) outnumbered universities by 
about two to one (about the same as last year); over the course of 
the day, the room included 10 LISA program chairs (past, pres-
ent, and announced future, up from five last year) and nine past 
or present members of the LOPSA or USENIX boards.

Our first topic, which took two-thirds of the discussion time, 
was on why this was the last ATW. To oversimplify:

◆◆ The workshop has met its originally stated goals of increasing 
the number of more senior people who attend the conference 
and to have a space to discuss possibly confidential issues in a 
non-public venue with other senior people and without inter-
ruption.

◆◆ Most of the topics we discuss are not controversial and don’t 
lead to much discussion, spirited or otherwise. There were 
few if any strong opinions.

◆◆ Many of the topics were repeated year after year but nothing 
new was being said.

Of course, since this decision was announced without input 
from the participants, it generated a very spirited and passion-
ate discussion (and at times an outright debate). That discussion 
wandered through what the workshop should be if it were to 
continue, as well as the future direction of the LISA confer-
ence itself. No definitive conclusions were reached, in large part 
because not all stakeholders were present or represented.

It was argued that the workshop has been successful. The 
founder, John Schimmel, had originally looked at the conference 
and identified a problem: the more senior system administrators 
would only come to LISA (which was then more about training 
junior administrators) if they were speaking or teaching, and 
were much less likely to come as attendees. The workshop was 
an attempted solution to that problem: get the more senior sysad-
mins present for the workshop, where they could have non-public 
discussions without having to step down the language for junior 
sysadmins to understand, and they’d be (and were) much more 
likely to stick around for the rest of the conference.

It was also argued that there’s still value in getting together, even 
if just “at the bar.” Many were quick to point out that it would be 
much more difficult to sell “I’m meeting with a couple of dozen 
senior sysadmins at the bar” than “… at the workshop” to their 
management.

Some of the other points we considered during the discussion 
included:

◆◆ What problems are there with the conference today, and how 
can we solve them? In general, we see a need and provide 
service to the community; someone therefore needs to present 
a proposal (for a workshop, talk, tutorial, or whatever is ap-
propriate) and see whether it’s accepted.

◆◆ If there were no ATW, would you still attend LISA? If not, why 
not? How can LISA evolve to change your mind? For many 
people—nearly half of those present—ATW was the reason 
they attend LISA, in part because we provide seniority with-
out overspecialization. Also, would the conference be losing 
something important? (Most thought so.)

◆◆ Is the workshop name still appropriate? Some years the topics 
aren’t necessarily advanced, but we’re talking about imple-
menting and integrating existing technologies into existing 
(often complex legacy) environments.

◆◆ A side discussion came up as to whether we’re elitist. How 
many of us sent in a position paper? (Virtually all at least 
once; it’s only required the first time. At least one participant 
submits a position paper every year.) We need some kind of 
bar to keep the limited space available for the more senior 



76   APRIL 2015  VOL.  40,  NO.  2  www.usenix.org

REPORTS

people; any bar, even if it’s “senior vs. junior,” can be perceived 
as elitist. Perhaps owning up to the word as a function of the 
workshop would be a good thing. Some present parsed the 
message of “the workshop is perceived as elitist” as “USENIX 
would prefer you weren’t here”; the USENIX representatives 
present disagreed with that parsing.

◆◆ How do we, as senior sysadmins and often longtime LISA at-
tendees, contribute to the conference?

◆◆ Why should USENIX fund this (indeed, any) workshop? Is it 
an appropriate use of USENIX’s time and money? By reserv-
ing the room for the workshop, which loses money, there’s one 
less room available for tutorials, which make money. That led 
to a discussion about what LISA should be and what USENIX 
should do. It was noted that USENIX has to continue to make 
money, to serve the community, and to serve the conference. If 
it’s not going to be making money but serving another purpose 
that serves the community, that’s still valid. Nobody at USE-
NIX wants the workshop participants to stop coming, but by 
pulling the plug they may have that effect. The board members 
present agreed that they would welcome discussions with a 
committee elected to consider the future of the workshop.

◆◆ We need something formal on the schedule to justify our at-
tendance and travel to our management.

◆◆ Some of our extended discussions over the years have 
spawned their own workshops or conferences (notably the 
Configuration Management workshop held at LISA and the 
standalone LISA-NT conference).

◆◆ This workshop is a microcosm of what happened to the gen-
eral conference: it spun off other workshops and conferences 
and made the general conference look less important and less 
relevant.

◆◆ This forum of knowledgeable and experienced people is a hard 
resource to replace. Is this workshop, as currently constituted, 
the right forum for such discussion? If not, what is?

◆◆ Is the issue with the format or the lack of new blood? We 
only get two to three new people requesting to join each year 
because the position paper scares many off. That said, many 
agree we need new blood. One wants everyone to encourage 
someone new to join us next year, doubling the size of the 
workshop; unfortunately, workshops need to be size-limited 
for things to work.

◆◆ Having the same people year after year can lead to an echo 
chamber. Something not impacting us may be overlooked or 
ignored. Some of us show up out of habit; this won’t be a prob-
lem as long as it doesn’t drive away people with specific topics 
to discuss. Perhaps a position paper should be required from 
every participant every year (instead of only the first year)?

◆◆ How do we bring, to the conference or to the workshop if it 
remains, other qualified people, those on the leading edge of 
technologies?

◆◆ How can we be better at mentoring leaders?

It was stressed that all interesting proposals (for papers, talks, 
tutorials, and workshops) are both welcome and desired. A 
proposal saying “After N years we have a new version of the 
ATW called something else” would be considered as long as it 
indicated how it would be different. The number of workshops is 
limited by the number of rooms available and by the number of 
places any one of us can be at one time. It’s not just what should 
serve USENIX or LISA better but what would serve us (the con-
stituents) better.

As a palate cleanser we went with a lightning round: what’s 
your favorite tool? Answers included Aptly, C+11, CSVKit, Chef, 
Docker, Expensify, Go, Google Docs, Graphana, Graphite, Hip-
Chat, JCubed, JIRA, R, Review Board Sensu, Sinatra, Slack, Git 
and git-annex, logstash, and smartphone-based cameras.

Our next discussion was about platform administrators. With 
user-level networking and systems becoming one blended plat-
form, are platform admins the new sysadmins? Is this a new tier 
for provisioning logical load balancers and front and back ends? 
The conclusion seemed to be that it’s still sysadmin, just a spe-
cific focus. It’s like any other new technology, and may be due to 
the extension of virtualization into the network world. The “are 
we specializing?” question comes up often (e.g., storage, network, 
Windows versus UNIX, and so on), and we’re still sysadmins.

One participant strongly disagreed, thinking platform admin-
istration is fundamentally different in that for the first time it’s 
now readily straightforward and easy to think of system deploy-
ment as a cheap software call or RPC. It’s so lightweight in so 
many ways that it’s fundamentally different from early virtual-
ized environments. His business expects to routinely spin up 
thousands of virtual instances. How much and how fast to spin 
things up (and down again) is a game changer. The other part of 
it is that the environments they’re using for this are fundamen-
tally confused about everything of value, with APIs calling APIs. 
At some level this is sysadmin on a new layer, because it’s a pro-
grammability block mode; much of the sysadmin stuff is hidden. 
What happens when you’re repairing a cluster and something 
says you have to scale out from 200 to 1000? Either “you don’t” or 
“you wait” might be the answer.

Another person noted that we’re system administrators, not just 
focused on the single computer (or network or person), but on 
the interaction between those systems (computers, networks, 
people, and so on). Nothing’s really changed: we still look at the 
pieces, the goals, and whether the product/service is being deliv-
ered as expected.

Two side discussions came out of this as well. First, with 
virtualization and cloud and *aaS, how many businesses still 
administer their IT as their core function? Second, sysadmins 
who won’t write code (including shell scripts) will soon be out of 
a job, since the field is moving towards that: systems will be built 
by writing code. With virtualization and APIs, we suspect that 
most sysadmins will fall into the “services” mode, maintaining 



www.usenix.org  APRIL 2015  VOL.  40,  NO.  2 77

REPORTS

services on perhaps-dedicated, probably virtual machines, as 
opposed to the folks administering the underlying hardware on 
which the virtualized machines run.

Our next discussion was started with the phrase, “If I had a dol-
lar for every time someone said DevOps was the future…” It took 
forever for Agile to get into Gartner, but DevOps is there already 
and, in the speaker’s opinion, has jumped the shark in less than 
two years. DevOps is a horribly abused term, despite being a 
paradigm shift. At ChefConf, the belief was that DevOps was 
“software engineers throwing off the yoke of the evil sysadmins 
who have oppressed them for so long.” (That’s a direct quote from 
their keynote speaker.) Code needs to be in the realm of infra-
structure; what we did 20 years ago won’t scale today. There’s a 
huge difference between writing actual code and writing a Ruby 
file that consists entirely of declarations.

In another company, they have some developers who do sys-
admin work as well, but not all developers there have the 
background, and the speaker doesn’t trust them to do it: their 
sysadmins are developers but not all developers are sysadmins.

One participant who has been going to DevOps and infrastruc-
ture-as-code meetups for a while now says it’s like SAGE-AU 
and Sun Users’ Group repeating the same mistakes all over again.

Even now, everyone has a different definition of DevOps, though 
most could agree it’s not a tool, position, mechanism, or process, 
but a culture, about having the operations folks and engineers 
talk to each other as the product is written as well as after oper-
ations has it in production. There’s a feedback loop through the 
entire life cycle. But having “a DevOps team” is not true; it’s 
about not isolating teams.

We had a brief conversation on recruiting. How do you find and 
entice qualified people to jump ship to a new company? They 
have problems finding candidates who want to come to the com-
pany. The only response was that sometimes you simply can’t, 
and one participant noted he turned down a great job because 
of its location (being sufficiently unpleasant to make it a deal 
breaker).

We then discussed what tools people are using to implement 
things within a cloud infrastructure. One participant is all in 
AWS, for example. Do you do it manually or through automation, 
what do you use to track things and manage things, and so on? 
One participant snarked he’d have an answer next year.

Another is about to start moving away from the AWS API to the 
Terraform library (written in Go), which supports several differ-
ent cloud vendors and has a modular plugin system. Beyond that 
it depends on what you’re trying to do.

Yet another says part of this is unanswerable because it depends 
on the specific environment. His environment is in the middle 
of trying to deploy OpenStack storage stuff, and most of the 
tools can’t work because they reflect the architectural confu-

sion thereof. They have used ZeroMQ for monitoring and control 
due to scalability to a million servers—which is what they call 
a medium-sized application. Precious few libraries can handle 
that level. That’s the number thrown around by HPC too.

Once you care about speed and latency and measurements you 
can make a better judgment of how much to spin up to handle 
those requirements and whether physical or virtual is the right 
answer for your environment.

Our final discussion topic was on getting useful information 
from monitoring data.

One participant loves Graphite. Since he has a new hammer 
everything looks like a thumb, so he’s been trying to get more and 
more into it, and now that he’s taken the stats classes, he needs 
more low-level information so he can draw correlations and 
eventually move data out of the system. What are others doing 
with their statistics? What are you using to gather, store, and 
analyze data? In general, R and Hadoop are good places to start, 
and there’s an open source project called Imhotep for large-scale 
analytics. Several others noted they use Graphite as a front end 
to look at the data. Spark is useful for real time and streaming. 
Nanocubes can do real-time manipulation of the visualization 
of a billion-point data set. Messaging buses discussed included 
RabbitMQ and ZeroMQ.

How does this help? In one environment, they used the col-
lected metrics to move a datacenter from Seattle to San Jose, 
and the 95th percentile improved a lot. Another noted that Apple 
determined that the transceiver brand makes a huge difference 
in performance.

We wrapped up with the traditional lightning round asking 
what we’d be doing in the next year. Answers included an HPC 
system with 750K cores and an 80 PB file system, automation 
and instrumentation, chainsaws and hunting rifles in Alaska, 
enabling one’s staff, encouraging people to create and follow 
processes, exabyte storage, functional programming, Hadoop, 
home automation, Impala, infrastructure, learning a musical 
instrument, merging an HPC-focused staff into the common IT 
group, moving from GPFS to something bigger, network neutral-
ity, organizing a street festival and writing the mobile app for it, 
packaging and automated builds, producing a common environ-
ment across any type of endpoint device, R, scaling product and 
infrastructure (quadrupling staff), Spark, trying to get the com-
pany to focus on managing problems not incidents, and updating 
the Cloud Operational Maturity Assessment.

Our moderator thanked the participants, past and present, for 
being the longest-running beta test group for the moderation 
software. The participants thanked Adam for moderating ATW 
for the past 18 years.



Call for Papers and Posters www.usenix.org/lisa15/cfp/papers-posters

November 8–13, 2015, Washington, D.C.

29th Large Installation 
System Administration 
Conference (LISA15)
Sponsored by USENIX, the Advanced Computing Systems Association,  
in cooperation with LOPSA

Important Dates
• Submissions due: April 17, 2015, 11:59 pm PDT

• Author response period: May 11, 2015–May 17, 2015

• Notification to authors: June 5, 2015

•  Final papers and poster abstracts due: August 27, 2015,
11:59 pm PDT

Conference Organizers
Program Co-Chairs

Cory Lueninghoener, Los Alamos National Laboratory
Amy Rich, Mozilla Corporation

Overview
Publishing at USENIX LISA Means Industry Impact and 
 Recognition
Papers published at LISA receive visibility and recognition from a 
unique audience that fundamentally builds and operates the systems 
that run the world. For a researcher, publishing at LISA proves that 
your work is relevant and applicable to industry and has the potential 
to transform the profession’s approach to systems engineering.

USENIX Stands for Open Access and Advancing the State of 
the Computing World
USENIX strongly believes that research is meant for the com munity as 
a whole and maintains a clear stance advocating open access. Your 
poster abstract or paper and presentation will be available online at 
no charge, where it can have the most impact and reach the broadest 
possible audience. Papers and poster abstracts will also be part of the 
conference proceedings, which has its own ISBN.

Topics of Interest
• Systems and Network Engineering

° Cloud and hybrid cloud computing

° Software Defined Networks (SDN)

° Virtualization

° HA and HPC clustering

° Cost effective, scalable storage

° Configuration management

° Security

• Monitoring and Metrics

° Performance and scalability

° Monitoring, alerting, and logging systems

° Analytics, interpretation, and application of system data

° Visualization of system data

• SRE/Software Engineering

 ° Software-defined System Administration

 ° Continuous delivery and product management

 ° Continuous deployment and fault resilience

 ° Release engineering

 ° Big Data

• Culture

° Business communication and planning° 
Standards and regulatory compliance

° DevOps

° On-call challenges

° Distributed and remote worker challenges

° Mentorship, education, and training

° Workplace diversity

Papers
Refereed papers accepted to LISA describe new techniques, tools, 
theories, and inventions, and present case histories that extend our 
understanding of system and network administration. They present 
new ideas, backed by rigorous and repeatable methodology, in the 
context of previous related work, and can have a broad impact on 
operations and future research.

Accepted papers will be published in the LISA15 proceedings 
and conference web pages, and all accepted papers will be given a 
presentation and Q&A slot in the LISA15 academic research track. After 
acceptance, paper authors should also create a companion poster to 
present during the poster session to further engage with the confer-
ence attendees. Cash prizes will be awarded at the conference for the 
best refereed paper.

Posters
The LISA juried posters session is a great opportunity to present 
your work visually, either as a companion to a refereed paper or as a 
standalone submission displaying work in progress. Posters present 
the core of your research to a wide audience, providing you with the 
ability to gain valuable feedback from both industry and academic 
audiences. Poster abstracts of 500 words or less will be published in 
the LISA15 Proceedings, and a link to your research website will be 
included in the conference web page. Additionally, cash prizes will be 
awarded at the conference for the best juried poster.

We hope that you will consider sharing your ongoing research 
with the LISA community. All paper and poster abstract submissions 
are due by April 17, 2015. If you have any questions beyond this CFP, 
please contact lisa15research@usenix.org.

Paper and Poster Submission Rules
Submissions may only be submitted by an author, no third parties. 
Authors retain ownership of the copyright to their works as described 
in the USENIX Conference Submissions Policy at www.usenix.org/
usenix-conference-submissions-policy.

Submissions whose purpose is to promote commercial products 
or services will be rejected.

Papers and poster abstracts may not be simultaneously submit-
ted to other venues. Writing must be original and not previously 
published online or otherwise. If the content is similar to, or builds 
upon prior work, the author must cite that work and describe the 
differences.

The first page of each paper submission or poster abstract sub-
mission must include the name, affiliation, and email address of the 
author(s).

All paper submissions must be full papers, in draft form, 8–12 
pages in length, including diagrams, figures, full references, and ap-
pendices. All poster abstracts must be 500 words or less.

All draft papers and poster abstracts must be submitted as PDFs 
via the Web form, which is located at https://lisa15.usenix.hotcrp.com/. 
They must be in two-column format, using 10-point type on 12-point 
(single-spaced) leading, with a maximum text block of 6.5” wide x 
9” deep, with .25” inter-column space, formatted for 8.5” x 11” paper. 
Pages must be numbered, and figures and tables must be legible 
when printed. Templates are available for Microsoft Word and LaTeX 
at www.usenix.org/templates-conference-papers. Papers not meeting 
these criteria will be rejected without review.

Paper and Poster Acceptance Details
All submitters will be notified of acceptance or rejection by  
June 5, 2015.

Authors of accepted papers will be assigned one or more shep-
herds who will read and offer advice on intermediate drafts before 
submission of the final paper. At least one author must present at 
the LISA conference, and the chosen presenter(s) must rehearse their 
presentation with their shepherd prior to the conference.

One author per accepted paper will receive a registration discount.
Final poster abstracts and papers must be submitted for publica-

tion by August 27, 2015, and completed posters are required by the 
start of the conference. Accepted presenters should ensure that they 
have enough time to acquire the necessary approvals through their 
organizations’ Institutional Review Board (IRB) or similar process in 
time for the final paper submission deadline.

If any accepted presenters need an invitation letter to apply for a 
visa to attend the conference, please identify yourself as a presenter 
and include your mailing address in an email to conference@usenix.
org as soon as possible. Visa applications can take at least 30 working 
days to process.

All accepted papers and poster abstracts will be available online to 
registered attendees before the conference. If your work should not 
be published prior to the event, please notify production@usenix.org 
when you submit your final copy.



Call for Papers and Posters www.usenix.org/lisa15/cfp/papers-posters

November 8–13, 2015, Washington, D.C.

29th Large Installation 
System Administration 
Conference (LISA15)
Sponsored by USENIX, the Advanced Computing Systems Association,  
in cooperation with LOPSA

Important Dates
• Submissions due: April 17, 2015, 11:59 pm PDT

• Author response period: May 11, 2015–May 17, 2015

• Notification to authors: June 5, 2015

•  Final papers and poster abstracts due: August 27, 2015,
11:59 pm PDT

Conference Organizers
Program Co-Chairs

Cory Lueninghoener, Los Alamos National Laboratory
Amy Rich, Mozilla Corporation

Overview
Publishing at USENIX LISA Means Industry Impact and 
 Recognition
Papers published at LISA receive visibility and recognition from a 
unique audience that fundamentally builds and operates the systems 
that run the world. For a researcher, publishing at LISA proves that 
your work is relevant and applicable to industry and has the potential 
to transform the profession’s approach to systems engineering.

USENIX Stands for Open Access and Advancing the State of 
the Computing World
USENIX strongly believes that research is meant for the com munity as 
a whole and maintains a clear stance advocating open access. Your 
poster abstract or paper and presentation will be available online at 
no charge, where it can have the most impact and reach the broadest 
possible audience. Papers and poster abstracts will also be part of the 
conference proceedings, which has its own ISBN.

Topics of Interest
• Systems and Network Engineering

° Cloud and hybrid cloud computing

° Software Defined Networks (SDN)

° Virtualization

° HA and HPC clustering

° Cost effective, scalable storage

° Configuration management

° Security

• Monitoring and Metrics

° Performance and scalability

° Monitoring, alerting, and logging systems

° Analytics, interpretation, and application of system data

° Visualization of system data

• SRE/Software Engineering

 ° Software-defined System Administration

 ° Continuous delivery and product management

 ° Continuous deployment and fault resilience

 ° Release engineering

 ° Big Data

• Culture

° Business communication and planning° 
Standards and regulatory compliance

° DevOps

° On-call challenges

° Distributed and remote worker challenges

° Mentorship, education, and training

° Workplace diversity

Papers
Refereed papers accepted to LISA describe new techniques, tools, 
theories, and inventions, and present case histories that extend our 
understanding of system and network administration. They present 
new ideas, backed by rigorous and repeatable methodology, in the 
context of previous related work, and can have a broad impact on 
operations and future research.

Accepted papers will be published in the LISA15 proceedings 
and conference web pages, and all accepted papers will be given a 
presentation and Q&A slot in the LISA15 academic research track. After 
acceptance, paper authors should also create a companion poster to 
present during the poster session to further engage with the confer-
ence attendees. Cash prizes will be awarded at the conference for the 
best refereed paper.

Posters
The LISA juried posters session is a great opportunity to present 
your work visually, either as a companion to a refereed paper or as a 
standalone submission displaying work in progress. Posters present 
the core of your research to a wide audience, providing you with the 
ability to gain valuable feedback from both industry and academic 
audiences. Poster abstracts of 500 words or less will be published in 
the LISA15 Proceedings, and a link to your research website will be 
included in the conference web page. Additionally, cash prizes will be 
awarded at the conference for the best juried poster.

We hope that you will consider sharing your ongoing research 
with the LISA community. All paper and poster abstract submissions 
are due by April 17, 2015. If you have any questions beyond this CFP, 
please contact lisa15research@usenix.org.

Paper and Poster Submission Rules
Submissions may only be submitted by an author, no third parties. 
Authors retain ownership of the copyright to their works as described 
in the USENIX Conference Submissions Policy at www.usenix.org/
usenix-conference-submissions-policy.

Submissions whose purpose is to promote commercial products 
or services will be rejected.

Papers and poster abstracts may not be simultaneously submit-
ted to other venues. Writing must be original and not previously 
published online or otherwise. If the content is similar to, or builds 
upon prior work, the author must cite that work and describe the 
differences.

The first page of each paper submission or poster abstract sub-
mission must include the name, affiliation, and email address of the 
author(s).

All paper submissions must be full papers, in draft form, 8–12 
pages in length, including diagrams, figures, full references, and ap-
pendices. All poster abstracts must be 500 words or less.

All draft papers and poster abstracts must be submitted as PDFs 
via the Web form, which is located at https://lisa15.usenix.hotcrp.com/. 
They must be in two-column format, using 10-point type on 12-point 
(single-spaced) leading, with a maximum text block of 6.5” wide x 
9” deep, with .25” inter-column space, formatted for 8.5” x 11” paper. 
Pages must be numbered, and figures and tables must be legible 
when printed. Templates are available for Microsoft Word and LaTeX 
at www.usenix.org/templates-conference-papers. Papers not meeting 
these criteria will be rejected without review.

Paper and Poster Acceptance Details
All submitters will be notified of acceptance or rejection by  
June 5, 2015.

Authors of accepted papers will be assigned one or more shep-
herds who will read and offer advice on intermediate drafts before 
submission of the final paper. At least one author must present at 
the LISA conference, and the chosen presenter(s) must rehearse their 
presentation with their shepherd prior to the conference.

One author per accepted paper will receive a registration discount.
Final poster abstracts and papers must be submitted for publica-

tion by August 27, 2015, and completed posters are required by the 
start of the conference. Accepted presenters should ensure that they 
have enough time to acquire the necessary approvals through their 
organizations’ Institutional Review Board (IRB) or similar process in 
time for the final paper submission deadline.

If any accepted presenters need an invitation letter to apply for a 
visa to attend the conference, please identify yourself as a presenter 
and include your mailing address in an email to conference@usenix.
org as soon as possible. Visa applications can take at least 30 working 
days to process.

All accepted papers and poster abstracts will be available online to 
registered attendees before the conference. If your work should not 
be published prior to the event, please notify production@usenix.org 
when you submit your final copy.



Sponsored by USENIX in cooperation with LOPSA

Nov. 8 – 13, 2015  |  Washington, D.C. CULTURE

SRE

METRICS

Industry Call for Participation
LISA is the premier conference for IT operations, where systems engineers, operations professionals, and 
academic researchers share real-world knowledge about designing, building, and maintaining the critical 
systems of our interconnected world.

We invite industry leaders to propose topics that demonstrate the present and future of IT operations. LISA 
submissions should inspire and motivate attendees to take actions that will positively impact their business 
operations.

Topic Categories
Systems and Network Engineering
• Cloud and hybrid cloud computing
• Software Defined Networks (SDN)
• Virtualization
• HA and HPC clustering
• Cost effective, scalable storage
• Configuration management
• Security

Monitoring and Metrics
• Performance and scalability
• Monitoring, alerting, and logging systems
• Analytics, interpretation, and application of

system data
• Visualization of system data

Proposals we are Seeking
• Talks: 30-minute talks with an additional 10 minutes for Q&A

• Mini-tutorials: 90-minute courses teaching practical, immediately applicable skills

• Tutorials: Half-day or full-day courses taught by experts in the specific topic, preferably with interactive
components such as in-class exercises, breakout sessions, or use of the LISA lab space

• Panels: Moderator-led groups of 3–5 experts answering moderator and audience questions on a
particular topic

• Workshops: Half-day or full-day organizer-guided, round-table discussions which bring
members of a community together to talk about common interests

• Papers and posters: Showcase for the latest research; see the Academic Research Papers
and Posters Call for Participation at www.usenix.org/lisa15/cfp/papers-posters for more
information

SRE/Software Engineering
• Software-defined System Administration
• Continuous delivery and product management
• Continuous deployment and fault resilience
• Release engineering
• Big Data

Culture
• Business communication and planning
• Standards and regulatory compliance
• DevOps
• On-call challenges
• Distributed and remote worker challenges
• Mentorship, education, and training
• Workplace diversity

Important Dates
Submissions due: April 17, 2015, 11:59 pm PDT
Notification to participants: June 5, 2015

Conference Organizers
Program Co-Chairs
Cory Lueninghoener, Los Alamos National Laboratory
Amy Rich, Mozilla Corporation

Submit your proposal today!
www.usenix.org/conference/lisa15/call-for-participation/submission



If You Use Linux, You Should Be
Reading LINUX JOURNAL

áá In-depth information 
providing a full 360-
degree look at featured 
topics relating to Linux

áá Tools, tips and tricks you 
will use today as well as 
relevant information for 
the future

áá Advice and inspiration for 
getting the most out of 
your Linux system

áá Instructional how-tos will 
save you time and money

Subscribe now for instant access! 
For only $29.50 per year—less 
than $2.50 per issue—you’ll have 
access to Linux Journal each month 
as a PDF, in ePub format, in Mobi 
format, on-line and through our 
Android and iOS apps. Wherever 
you go, Linux Journal goes with you.

SUBSCRIBE NOW AT:
www.LinuxJournal.com/subscribe

™

IfYouUseLinux_FP2015-8.5x11-gray_Layout 1  3/2/15  10:17 AM  Page 1

U P C O M I N G  E V E N T S

Stay Connected...
  

www.usenix.org/facebook

  
twitter.com/usenix

  
www.usenix.org/youtube

  
www.usenix.org/linkedin

  
www.usenix.org/blog

  
www.usenix.org/gplus

Do you know about the
USENIX Open Access Policy?

USENIX is the fi rst computing association to  off er free 
and open access to all of our conferences proceedings 
and videos. We stand by our mission to foster excel-
lence and innovation while supporting research with 
a practical bias. Your membership fees play a major 
role in making this endeavor successful.

Please help us support open access. Renew your 
 USENIX membership and ask your colleagues to 
join or renew today!

www.usenix.org/membership

NSDI ’15: 12th USENIX Symposium 
on Networked Systems Design and 
Implementation

May 4–6, 2015, Oakland, CA, USA
www.usenix.org/nsdi15

SREcon15 Europe
May 14–15, 2015, Dublin, Ireland
www.usenix.org/srecon15europe

HotOS XV: 15th Workshop on Hot Topics in 
Operating Systems

May 18–20, 2015, Kartause Ittingen, Switzerland
www.usenix.org/hotos15

USENIX ATC ’15: 2015 USENIX Annual Technical 
Conference

July 8–10, 2015, Santa Clara, CA, USA
www.usenix.org/atc15

Co-located with USENIX ATC ’15 and taking place 
July 6–7, 2015:

HotCloud ’15: 7th USENIX Workshop on Hot 
Topics in Cloud Computing
www.usenix.org/hotcloud15

HotStorage ’15: 7th USENIX Workshop on Hot 
Topics in Storage and File Systems
www.usenix.org/hotstorage15

USENIX Security ’15: 24th USENIX Security 
Symposium

August 12–14, 2015, Washington, D.C., USA
www.usenix.org/usenixsecurity15

Co-located with USENIX Security ’15:

WOOT ’15: 9th USENIX Workshop on Offensive 
Technologies
August 10–11, 2015
www.usenix.org/woot15

CSET ’15: 8th Workshop on Cyber Security 
Experimentation and Test
August 10, 2015
Submissions due April 23, 2015
www.usenix.org/cset15

FOCI ’15: 5th USENIX Workshop on Free and 
Open Communications on the Internet
August 10, 2015
Submissions due May 12, 2015
www.usenix.org/foci15

HealthTech ’15: 2015 USENIX Summit on Health 
Information Technologies
Safety, Security, Privacy, and Interoperability 
of Health Information Technologies
August 10, 2015
www.usenix.org/healthtech15

JETS ’15: 2015 USENIX Journal of Election 
Technology and Systems Workshop
(Formerly EVT/WOTE)
August 11, 2015
www.jets-journal.org

HotSec ’15: 2015 USENIX Summit on Hot Topics 
in Security
August 11, 2015
www.usenix.org/hotsec15

3GSE ’15: 2015 USENIX Summit on Gaming, 
Games, and Gamification in Security Education
August 11, 2015
Submissions due May 5, 2015
www.usenix.org/3gse15

LISA15
November 8–13, 2015, Washington, D.C., USA
Submissions due April 17, 2015
www.usenix.org/lisa15



USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

2015 USENIX Annual Technical Conference
J U LY  8 10,  2015 •  S A N TA  C L A R A ,  C A
www.usenix.org/atc15 

USENIX ATC ’15 brings leading systems researchers together for cutting-edge systems research and 
unlimited opportunities to gain insight into a variety of must-know topics, including virtualization, 
system administration, cloud computing, security, and networking.

Co-located with USENIX ATC ’15: July 6–7, 2015

HotCloud ’15
7th USENIX Workshop on Hot Topics in Cloud Computing
www.usenix.org/hotcloud15 
Researchers and practitioners at HotCloud ’15 share their perspectives, report on recent 
developments, discuss research in progress, and identify new/emerging “hot” trends in cloud 
computing technologies. 

HotStorage ’15
7th USENIX Workshop on Hot Topics in Storage and File Systems 
www.usenix.org/hotstorage15 
HotStorage ‘15 is an ideal forum for leading storage systems researchers to exchange ideas and 
discuss the design, implementation, management, and evaluation of these systems. 

Register Today!


	Cover
	Upcoming Events
	Contents
	Musings
	Jump the Queue to Lower Latency
	The Design and Implementation of Open vSwitch
	Interview with Andrew Tanenbaum
	The Living Dead
	Software Testing for Sysadmin Programs
	Managing Incidents
	/var/log/manager: A Generational Theory of Sysadmins
	Practical Perl Tools: Dance, Browser, Dance!
	Raising Hell, Catching Errors
	iVoyeur: Graphios
	For Good Measure: The Undiscovered
	/dev/randomDistributed System Administration
	Books
	Notes
	Introducing UNIX News
	Dueling UNIXes and the UNIX Wars
	Invisible Intruders: Rootkits in Practice
	Conference Reports

