
;login:
v o l . 3 9 , n o . 2A p r i l 2 0 1 4

Sysadmin and Networking
& SDN, Beyond the Hyperbole

Rob Sherwood

& The Case of the Clumsy Kernel
Brendan Gregg

& System Administration Is Dead
Todd Underwood

& I Am Not a Sysadmin
Elizabeth Zwicky

& Splunk Performance Tuning
David Lang

Columns
Practical Perl Tools: Using MongoDB
David N. Blank-Edelman

Python: When to Use Python 3
David Beazley

iVoyeur: ChatOps
Dave Josephsen

For Good Measure: Mitigation as a Metric
Dan Geer and Richard Bejtlich

/dev/random: I Miss Being a Sysadmin
Robert G. Ferrell

U P C O M I N G
E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

2014 USENIX Federated Conferences Week
June 17–20, 2014, Philadelphia, PA, USA

HotCloud ’14: 6th USENIX Workshop on
Hot Topics in Cloud Computing
June 17–18, 2014
www.usenix.org/hotcloud14

HotStorage ’14: 6th USENIX Workshop
on Hot Topics in Storage and File Systems
June 17–18, 2014
www.usenix.org/hotstorage14

9th International Workshop on Feedback Computing
June 17, 2014
www.usenix.org/feedbackcomputing14

WiAC ’14: 2014 USENIX Women in Advanced
Computing Summit
June 18, 2014
www.usenix.org/wiac14

ICAC ’14: 11th International Conference on
Autonomic Computing
June 18–20, 2014
www.usenix.org/icac14

USENIX ATC ’14: 2014 USENIX Annual Technical
Conference
June 19–20, 2014
www.usenix.org/atc14

UCMS ’14: 2014 USENIX Configuration Management
Summit
June 19, 2014
www.usenix.org/ucms14

URES ’14: 2014 USENIX Release Engineering Summit
June 20, 2014
www.usenix.org/ures14

23rd USENIX Security Symposium
August 20–22, 2014, San Diego, CA, USA
www.usenix.org/sec14

Workshops Co-located with USENIX Security ’14
EVT/WOTE ’14: 2014 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
August 18–19, 2014
www.usenix.org/evtwote14
USENIX Journal of Election Technology
and Systems (JETS)
Published in conjunction with EVT/WOTE
www.usenix.org/jets

CSET ’14: 7th Workshop on Cyber Security
 Experimentation and Test
August 18, 2014
www.usenix.org/cset14
Submissions due: April 25, 2014

3GSE ’14: 2014 USENIX Summit on Gaming, Games,
and Gamification in Security Education
August 18, 2014
www.usenix.org/3gse14
Invited submissions due: May 6, 2014

FOCI ’14: 4th USENIX Workshop on Free and Open
Communications on the Internet
August 18, 2014
www.usenix.org/foci14
Submissions due: May 13, 2014

HotSec ’14: 2014 USENIX Summit on Hot Topics
in Security
August 19, 2014
www.usenix.org/hotsec14

HealthTech ’14: 2014 USENIX Summit on Health
Information Technologies
Safety, Security, Privacy, and Interoperability
of Health Information Technologies
August 19, 2014
www.usenix.org/healthtech14
Submissions due: May 9, 2014

WOOT ’14: 8th USENIX Workshop on Offensive
Technologies
August 19, 2014
www.usenix.org/woot14

OSDI ’14: 11th USENIX Symposium on Operating
Systems Design and Implementation

October 6–8, 2014, Broomfield, CO, USA
www.usenix.org/osdi14
Abstract registration due: April 24, 2014

Co-located with OSDI ’14:
Diversity ’14: 2014 Workshop on Supporting Diversity
in Systems Research
October 5, 2014

HotDep ’14: 10th Workshop on Hot Topics in
Dependable Systems
October 5, 2014

INFLOW ’14: 2nd Workshop on Interactions of NVM/
Flash with Operating Systems and Workloads
October 5, 2014

TRIOS ’14: 2014 Conference on Timely Results in
Operating Systems
October 5, 2014

E d i t o r
Rik Farrow
rik@usenix.org

C o p y E d i t o r S
Steve Gilmartin
Amber Ankerholz

p r o d u C t i o n M A n A G E r
Michele Nelson

p r o d u C t i o n
Arnold Gatilao
Casey Henderson

t y p E S E t t E r
Star Type
startype@comcast.net

u S E n i X A S S o C i At i o n
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2014 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

A p r i L 2 0 1 4 v o L . 3 9 , n o . 2

E d i t o r i A L
2 Musings Rik Farrow

o p i n i o n
6 The Death of System Administration Todd Underwood

S y S A d M i n
10 Interview with John Looney Rik Farrow

14 How to Be a Better System Administrator and Then
Something Else Elizabeth Zwicky

16 Accelerating the Path from Dev to DevOps Dinah McNutt
19 Interview with Tom Hatch Rik Farrow

21 The Case of the Clumsy Kernel Brendan Gregg

26 Large Scale Splunk Tuning David Lang

31 /var/log/manager: Let’s Find Someone to Blame Andy Seely

n E t W o r K i n G
34 SDN Is DevOps for Networking Rob Sherwood

38 Musings and Hacks on DHCP Doug Hughes

C o L u M n S
43 Practical Perl Tools: MongoDB Meet Perl 

David N. Blank-Edelman

47 A Pragmatic Guide to Python 3 Adoption David Beazley

52 iVoyeur: ChatOps Dave Josephsen

58 Measure Like You Meant It Dan Geer and Richard Bejtlich

61 /dev/random: Robert G. Ferrell

B o o K S
63 Book Reviews Elizabeth Zwicky, Rik Farrow, and Mark Lamourine

2  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

EDITORIALMusings
r i k f a r r o w

Rik is the editor of ;login:.
rik@usenix.org I have a new hat, one with a fancy feather in it, perhaps to help it feel lighter.

I’ve become the tutorial manager, taking over for Dan Klein after he’s
done the job single-handedly for more than 20 years. I appreciate what

Dan has done and will have to work hard, working with a team, to do as well
and, hopefully, better. This change has led me on a quest for information
about the future of system administration.

What I learned is nothing new, in a way: system administration has always been changing.
But, as always, there will be the risk takers, the early adopters, and the adventurers—the
ones who strike out in new directions expecting that others will surely follow them.

There are also those who, having been through several schools of hard knocks, would like
to continue on the path that they have become adept at navigating. Those hard knocks were
painful and time-consuming, and learning new ways of doing things means going through
yet another learning process.

Being an older kind of guy, I too can resist change. Then again, I know it’s good for the ol’
 noggin to stretch its limits by learning new things. I’ve watched what being really stuck does
to older folks than I, and I surely don’t want to go there.

System Administration, Then and Now
Like Elizabeth Zwicky writes in this issue, I am not a system administrator. Oh, I can still
fake it, by managing my own systems (DNS, SMTP, DHCP, and HTTP) and occasionally
even consulting locally. But I gave up on being a sysadmin when I found out that I wasn’t very
interested in a very important aspect of it: building scripts and systems to automate the work
that needed to be done routinely.

What I liked most about being a sysadmin was solving problems. Although my skills are
dwarfed by Brendan Gregg (also in this issue), I followed one of the techniques in his book [1],
the scientific method. I didn’t learn it from his book, but from Arthur Conan Doyle’s fictional
detective, Sherlock Holmes. I read all the stories about Sherlock, and what stuck with me was
a methodical approach to problem solving: gathering evidence, creating a hypothesis, testing
it, then either fixing the problem or iterating, depending on the result.

I think I also liked the effect I could have on people when I produced wizard-like successes.
Often, simply by creating a clear problem statement, the answer to the problem would just
pop out. I liked feeling and appearing smart.

What I didn’t like was the boredom of repetition: adding a user to a handful of workstations
or performing updgrades on that same set of systems. Like Elizabeth Zwicky, I am not a
programmer who builds systems from scratch. So I contented myself with fixing systems,
sometimes by building scripts for specific purposes. Managing a group of systems through
a unifying set of programs, however, was beyond my thinking. I gradually drifted away from
system administration.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 3

EDITORIAL
Musings

For most of the ’90s, system administration remained very
similar to what I had experienced. People managed each system
separately, perhaps leveraging some network software (like NIS
or LDAP) to solve part of the management issues. Someone who
managed a lot of systems, say one or two hundred, would do so by
making them all look exactly alike, whether they were part of a
cluster or developer desktops.

Configuration management brought about some real changes,
allowing administration of more systems without the need to
make them all the same: now we could have groups of systems,
and systems with sets of software on them. When I found
myself installing 30 laptops for classes I was teaching, I couldn’t
have done it without CFEngine. And I used CFEngine as an
example of how to properly manage networks of systems in those
very classes.

Scale
I’ve always been fascinated by big machines, whether they were
harvesters, bulldozers, or computers that filled a large room.
I got to visit MCI’s NOC, via connections to UUNet, and could
marvel at the volume of data moving through a subterranean
room in Northern Virginia.

But there was something else beginning to happen in the
early noughts, the birth of services run on immense farms of
distributed systems. Amazon and Google were experiencing
tremendous growth, and dealing with this by building networks
of computers on a scale never before seen or heard of. These
networks might have been managed like clusters and super-
computers had been. But they weren’t. These systems weren’t
there for running batch jobs, but for providing services to users
who expected response times in terms of seconds, or less. The
’90s clusters weren’t designed for this, and although the tiered
systems—load balancers in front of Web servers in front of a
database—provided a rough model, they would freeze under the
loads that these new companies were experiencing.

Todd Underwood, in his closing plenary at LISA ’13 [2] and in
an article in this issue, addresses the human side of scale. Quite
simply, you can’t, and don’t want to, scale human sysadmins at
the same rate you scale servers. Doug Hughes explains (in this
issue) how D. E. Shaw Research buys racks of configured servers
at a time, and that they figured out how they could autoconfigure
both the racktop switch and the servers as soon as they were
plugged in. In my interview with John Looney, you get an even
better notion of how scale affects how work gets done. Instead
of spending months setting up a new datacenter, a Google team
spent months building automation. That automation does in just
three hours what took teams of people months to complete.

I don’t believe that system administration, as it has been prac-
ticed, is going to disappear. But I certainly know that system

administrators are going to need new skills so they can work
with online services. Debugging a distributed system where you
have access to both the networks and the servers is very different
from troubleshooting a distributed application running in the
cloud where your access is limited. And working at scale, even
modest scales, means the end of manually searching logs and
monitoring: you need automation to help not just pick up prob-
lems but respond to them appropriately, and in a timely manner.

Will every service move to a cloud? I don’t think the NSA is
going to, and neither will privacy-sensitive or regulatory-bound
businesses. People will still be running company networks and
servers, and in some cases, like D. E. Shaw Research, their own
supercomputers. Cloud computing works very well for many
things, especially Internet services. But office, factory, and many
other workers will continue to rely on internally provided ser-
vices—ones that will keep working even when their connection
to the Internet has failed or a cloud service becomes temporarily
unavailable.

And we will not all be working at Google or some place like it:
not hardly, as working at these scales does take some skills that
not everybody has or wants to spend time doing. But I know one
thing for certain: system administration will continue to evolve.

The Lineup
We start off this issue with a deliberately provocative piece by
Todd Underwood. Todd emphatically states that the practice
of system administration needs to change, which, whether you
agree with Todd or not, is definitely happening. What isn’t as
clear is just how system administration will evolve, or how much
it will follow Google’s lead.

Next up is an interview with John Looney. John is an SRE for
Google and taught the SRE Classroom class at LISA ’13. I missed
visiting this class, because I was teaching the same day, and I
learned about it from hearing people talk about it over the next
couple of days.

John provides the clearest explanation, through examples, of
how being an SRE is different from what sysadmins, even those
administering to large clusters, do. His description of how differ-
ent things are within Google is crystal clear for me, and I think it
will be useful to you as well.

Elizabeth Zwicky volunteers her own view: although Elizabeth
started out as a system administrator, that was a doorway for her
into many different jobs over the years, some related to system
administration, and some barely at all.

Dinah McNutt, past LISA chair, writes about release engineer-
ing, a field related to system administration. According to Dinah,
release engineering is critical for any company providing a

4  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

EDITORIAL
Musings

service in a competitive market, and there are many subfields
related to release engineering as well.

I interviewed Tom Hatch, creator and principal of SaltStack.
SaltStack can be thought of as a grid execution engine, but it can
do much more. I wanted to ask Tom about his use of ZeroMQ for
message queueing and learn more about where he plans to take
SaltStack.

Brendan Gregg provides this issue’s troubleshooting feature.
Brendan takes us through debugging a performance issue,
explaining along the way how he performs troubleshooting. You
can consider this a taste of what you’ll find in his book [1].

David Lang continues his series on logging, focusing this time
on Splunk. Splunk provides some wonderful features, but it does
need to be set up and tuned if it is to provide the best perfor-
mance. And, setting your Splunk servers up incorrectly can fool
you into thinking you need more servers, when you simply need
to do things differently.

Andy Seely begins a series of articles about managing system
administrators and other IT staff. Andy explains how he handled
a situation where his management needed someone to blame for
a failure that was really outside the scope of what his own orga-
nization had control over.

Changing focus, Rob Sherwood updates us on Software Defined
Networks (SDNs). Rob wrote for ;login: in February 2011 [3]
about safely using SDN in a production network. For this issue,
I asked Rob to provide us with an update on where SDN is today,
and why it is important to know about, even for those with mod-
erately sized networks.

Doug Hughes and his co-workers have taken a careful look at the
most commonly used DHCP daemon and found it lacking. They
needed the DHCP protocol to do something they thought it could
easily do, and they found that the easiest way forward was to do
it themselves. Along the way, Doug explains DHCP, what it can
do, and what they needed it to do to support their organization.

David Blank-Edelman stays on the theme of Perl and NoSQL
databases. In this column, he explains MongoDB and explores its
Perl interface. MongoDB is different in many ways from Redis,
which he explored in the previous issue.

David Beazley discusses Python 3 from the perspective of
whether you should now be using it or porting existing Python 2
code to Python 3. David provides a very balanced answer, as well
as reminders for tools and techniques for moving to Python 3.

Dave Josephsen takes us on a graphic journal through a tool that
helps in collaborative troubleshooting. Dave shows examples of
ChatOps, a chat tool that includes the ability to include graphs
and links, useful in operations.

Dan Geer and Richard Bejtlich explore a method for understand-
ing the risk of data theft: counting and classifying digital secu-
rity incidents, and measuring the time elapsed from the moment
of detection to the moment of risk reduction. As usual, Dan and
his co-author take a hard-line approach that is also much more
realistic than common practice.

Robert Ferrell also writes about being a system administrator
this time. He muses about his past as a sysadmin and pines for
the power he has given up.

My usual book reviewers surprised me this month with just
three book reviews. I’ve added one of my own, on a book that I
really liked.

System administration isn’t dead or dying. It’s changing. Just
like it always has, as technology has advanced. To be honest,
you really do not want to do what I did in the mid-’80s: wire up
a hub-and-spoke arrangement of serial connections to support
UUCP. UUCP did relay email and support file transfers, but the
truth was that it was all we had. Within a handful of years, TCP/
IP networks became the new norm, and within 15 years, people
would be discussing sharing DRAM over the network instead of
using local disks.

In 1988, AT&T was releasing System V Release 4 (SVR4), with
a focus on GUI interfaces for system administration. Under the
hood, some of the commands for managing configuration had
gotten extremely ugly (multiple lines with many strange options)
to do what had previously been simple. The designers’ argument
was that system administrators shouldn’t be hand editing these
files, as it wasn’t safe. I replied that hand editing files may not be
safe, but GUIs and impenetrable syntax both restrict flexibility
and cannot work with scripting.

Bay Networks was a competitor to Cisco in the early ’90s, and
they too had a very nice GUI for managing their routers. But
their interface was also restrictive. Cisco had (and still has)
their command-line management for network gear, which was
tremendously more flexible than Bay Networks. Today, Bay
 Networks is just a memory.

SDN promises a much more flexible approach to network man-
agement, and I expect it will have a similar effect on old school
network equipment companies.

In the world of sysadmin, we now have tools like Augeas [4] that
turn the myriad formats of configuration files into tree-like
structures, helping to hide their eccentricities.

I had considered updating the story of Chuck, my system admin-
istrator of the near future [5]. But I kept seeing Chuck getting
bored and fat (from all the bon-bons he was eating) because his
job had been taken over by automation.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 5

EDITORIAL
Musings

I don’t believe things are that bad. We still have time to shape
our future, which we can do through the tools we build, and the
philosophies behind those tools. Google employees have repre-
sented one view of the future, where automation is emperor, and
I think that their view is not just relevant, but a likely future.

And, like Todd Underwood, I don’t think humans will be forced
out of the picture, at least, not for a long time. Not only are
humans writing the automation tools, they are also trouble-
shooting what goes wrong with much more flexibility than exists
in any automation tool.

References
[1] Brendan Gregg, Systems Performance for Enterprise and
Cloud (Prentice Hall, 2013).

[2] Todd Underwood, “PostOps: A Non-Surgical Tale of
 Software, Fragility, and Reliability,” 27th Large Installation
System Administration Conference (LISA ’13): https://www.
usenix.org/conference/lisa13/technical-sessions/plenary
/underwood.

[3] Rob Sherwood, “Safely Using Your Production Network as
a Testbed,” ;login:, February 2011, vol. 36, no. 1: https://www.
usenix.org/publications/ login/february-2011-volume-36-
number-1/safely-using-your-production-network-testbed.

[4] Augeas, a configuration API: http://augeas.net/.

[5] Musings about the future of sysadmin, featuring Chuck,
;login:, February 2010, vol. 35, no. 1: https://www.usenix.org
/publications/login/february-2010-volume-35-number-1
/musings.

References
[1] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller,
“Dynamic Metadata Management for Petabyte-scale File
 Systems,” in SC ’04 (Pittsburgh, PA), ACM, Nov. 2004.

[2] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.
Maltzahn, “Ceph: A Scalable, High-performance Distributed
File System,” in OSDI ’06 (Seattle, WA), Nov. 2006.

[3] K. V. Shvachko, “HDFS Scalability: The Limits to
Growth,” ;login:, vol. 35, no. 2, 2010.

[4] C. Maltzahn, E. Molina-Estolano, A. Khurana, A. J. Nel-
son, S. A. Brandt, and S. A. Weil, “Ceph as a Scalable Alterna-
tive to the Hadoop Distributed File System,” ;login:, vol. 35,
no. 4, 2010.

[5] S. A. Weil, A. Leung, S. A. Brandt, and C. Maltzahn,
“Rados: A Fast, Scalable, and Reliable Storage Service for
Petabyte-scale Storage Clusters,” in Proceedings of the 2007
ACM Petascale Data Storage Workshop (PDSW ’07), (Reno,
NV), November 2007.

[6] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn,
“CRUSH: Controlled, Scalable, Decentralized Placement of
Replicated Data,” in SC ’06 (Tampa, FL), ACM, Nov. 2006.

Letter to the Editor
Dear Editor,

I want to congratulate you for the very nice and timely focus
on file systems (and object storage in particular) in the ;login:
February 2014 issue.

I appreciate the first article’s (“A Saga of Smart Storage
Devices”) overall analysis of the landscape of Object Storage but
as someone who was closely involved in the design of Ceph I feel
the need to express my confusion by how Ceph was portrayed.

The article describes Ceph as “a cluster of OSDs cooperating
to perform automatic replication, recovery, and snapshots”
that “builds on previous work,” presumably NASD, “decentral-
ized placement of objects on devices” and “the RUSH family of
algorithms.”

I’d like to make two clarifications:

1. Ceph is a parallel file system and, as such, much more than a
cluster of cooperating OSDs. The following papers give a more
accurate account (none of them were cited in the article): [1-4].
The authors appear to conflate “Ceph” with the Ceph’s object
storage subsystem which is called RADOS (Reliable Auto-
nomic Distributed Object Store, described in detail in [5], also
not cited) and mention the term RADOS only in the context of
a protocol.

2. Similarly, while Ceph’s data placement (aka CRUSH) is in part
related to RUSH, RUSH turned out to be an insufficient solu-
tion in practice. CRUSH fully generalizes the useful elements
of RUSH while resolving previously unaddressed reliability
and replication issues, and offering improved performance and
flexibility. The authors do write about the various features of
CRUSH but without mentioning it or citing the paper describ-
ing it [6].

Thanks,
Carlos Maltzahn
carlosm@soe.ucsc.edu

https://www.usenix.org/conference/lisa13/technical-sessions/plenary/underwood
https://www.usenix.org/conference/lisa13/technical-sessions/plenary/underwood
https://www.usenix.org/conference/lisa13/technical-sessions/plenary/underwood
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/safely-using-your-production-network-testbed
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/safely-using-your-production-network-testbed
https://www.usenix.org/publications/login/february-2011-volume-36-number-1/safely-using-your-production-network-testbed
http://augeas.net/

opinion

6  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

The Death of System Administration
T o d d U n d e r w o o d

I come to bury system administration, not to praise it.
The evil that well intentioned, clever geeks do lives after them;
The good is oft interred with their bones (and their previous jobs);
So let it be with system administration. The noble devops
Hath told you sysadmins were ambitious but insufficiently so:
If it were so, it was a grievous fault;
And grievously hath system administrators answer’d it.
Here, under leave of software engineers and the rest, —
For we are an honorable people;
So are they all, all honorable sysadmins, —
Come I to speak in sysadmins’s funeral.
It was my friend, faithful and just to me and to all of us…

 —with apologies to Bill Shakespeare

W e are in the final days of system administration. I’m as nostal-
gic as many of you are. But I hope it is the same nostalgia that
causes some of us old folks to fetishize terrible, unsafe, inefficient

cars from the 1960s—a nostalgia borne of history but with no designs on the
future. I hope we can cherish our shared history and accomplishments and
then put them to rest in favor of a future where computers work for us rather
than us for them. I dream of a future where we stop feeding the machines
with human blood.

In the Beginning…ISPs
I grew up as a sysadmin first at a university and then at an Internet Service Provider
(AS2901) during the 1990s. This is just what we did at the dawn of the Internet age. ISPs
were a fantastic place to learn. We were all working massively beyond our capabilities and
knowledge, gleefully skating over the edge of competence. At my ISP, we ran Sendmail (didn’t
you?). Everyone was still configured as an open relay, of course. One of the first things I did
when I started was teach a class in locking down Sendmail. I didn’t know how to lock down
Sendmail. Obviously, I had to learn sendmail.cf syntax, m4, and at least a little bit about what
the heck these spammers were doing with our mail systems. And I needed to teach a class on
these things. In three days. Those were heady days.

Everyone did some of everything. The networking staff ran their own name servers, BIND 4
on AIX and FreeBSD. The systems staff often ran our own cable, and sometimes terminated
it for ourselves, badly with plenty of near-end crosstalk. And the developers (sometimes) did
their own backups. We were all learning and all building something that had never been seen
before. As we went, we looked for more and better solutions. By the fourth time we had to
modify our “new user creation” script, we were already pretty sick of it. We wanted central-
ized, automatable authentication and authorization. NIS? NIS+? RADIUS + some custom
DB2 module (hat tip to Monte Mitzelfeld here)? LDAP! And that was better. Not perfect, just
better. We traded the challenge of maintaining buggy, custom software for the challenge of
maintaining, integrating, and automating LDAP. But things were moving on up.

Todd Underwood is a site
reliability director at Google.
Before that, he was in charge of
operations, security, and peering
for Renesys, a provider of

Internet intelligence services; and before that
he was CTO of Oso Grande, a New Mexico ISP.
He has a background in systems engineering
and networking. Todd has presented work
related to Internet routing dynamics and
relationships at NANOG, RIPE, and various
peering forums. tmu@google.com

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 7

opinion
The Death of System Administration

It didn’t help very much for the Windows hosting customers, and
it didn’t fix the entries in the billing database perfectly. But it
was better.

At my next gigs, I tried to consistently automate away the toil,
but the trivial toil (editing crontab by hand) was often replaced
by larger scale toil (maintaining yum repositories, updating
installer infrastructure, editing and testing Puppet configs).
The toil became more interesting and the scale grew consider-
ably, but I realized that the work itself didn’t seem substantially
better.

Site Reliability Engineering at Google
Google chose to solve this set of problems very differently. They
invented something that’s rapidly becoming an industry-
standard role: Site Reliability Engineering. The history of
exactly how and why that happened isn’t written down and
I wasn’t there, which leaves me perfectly free to reimagine
events. This almost certainly isn’t what happened, but it is
 completely true.

Google was, and still is, incredibly ambitious and incredibly
frugal. They had dreams of scaling beyond what anyone had
seen before and dreams of doing it more affordably than anyone
thought possible. This meant avoiding anything with costs that
scaled linearly (or super-linearly) to users/queries/usage. This
approach applied to hardware, and it most certainly applied
to staff. They were determined to not have a NOC, not have an
“operations” group that just administered machines. So, in the
early days, software developers ran their own code in production,
while building software to create the production environment.

Developers didn’t like that very much, so they proceeded to auto-
mate away all of the annoying drudgery. They built automated
test, build, push infrastructure. They built a cluster operating
system that handled task restarting, collected logs, deployed
tasks to machines, and did distributed tracing/debugging. Some
of the software engineers working during these early days were
much more production-oriented than others. These became the
first site reliability engineers.

SRE at Google is composed of systems and software engineers
who solve production problems with software. That’s how it
started and how it still is.

SRE != DevOps
The DevOps cultural movement that has been happening over
the past few years is a huge improvement over the culture of
system administration, IT, and operations that came before. It
emphasizes collaboration among several siloed organizations
and closer interaction between developers and the production
environment they will work on. The rise of DevOps coincided
with the conclusion of a many-year sysadmin obsession with
configuration management systems (CFEngine, Puppet, any-

one?). Sysadmins finally agreed that OS configuration manage-
ment was drudgery and was best dealt with using configuration
management tools.

As adoption and recognition of DevOps has grown, we have seen
artificial and counterproductive barriers among organizational
divisions fall. Well, not “fall,” but at least “become somewhat
more porous.” We’ve also seen a bevy of software developed in
the spirit of DevOps and claiming the DevOps mantle. This is
mostly just marketing, where “DevOps” and “Cloud” are words
that don’t mean much more than “a buzzword to get this PO
approved.”

Still, almost everything is better now. We’re not romanticiz-
ing the days when grizzled sysadmins built user accounts by
useless-use-of-cat-ing individual bytes into /etc/passwd and
 /etc/shadow files by hand. We are slowly growing to realize that
our human potential is much better suited to actual creative
endeavors. More building; more thinking; less futzing.

But we’re not even close to done. If there’s one significant failing
of the DevOps movement/community, it’s that they don’t hate
operations nearly enough. They want to make operations better
and to embed operational concerns and perspectives into soft-
ware development, security, and networking. I think that’s a good
start along the way to killing operations entirely, for software-
centric, Internet-built infrastructures.

Adrian Cockcroft of Netflix coined the term “NoOps” [1] to
describe this vision of an operations-free future. I referred to a
similar vision as “PostOps” recently [2]. This is the ambitious
future, and near-present, that I think we should be collectively
demanding. In this vision, the platform is a service and software
developers code to it. The platform builds, deploys, and moni-
tors your code. It balances load among your tasks, provisioning
more resources when you need them. Your structured storage is
provisioned according to your service needs, storage quantities,
access patterns, and latency/availability requirements. Your
unstructured storage is scalable and essentially infinite (or at
least capable of tens of petabytes of capacity without significant
planning). And when the infrastructure fails, it notifies you in
a sensible, configurable, and correlated way. When the fault is
with your code, debugging tools point to the problem. When the
fault is with the infrastructure, mitigation is automatic.

We should be demanding more from our infrastructure pro-
viders than a quickly provisioned VM and some dashboards.
We should be demanding a glorious future where we focus on
interesting problems that really cannot be solved with software
yet and rely on a platform to do the rest. When we get there, I’ll
be leading the charge towards the couch in the corner where we
can sip bourbon and eat bon-bons. The extent to which DevOps
encourages us to be satisfied with where we are is the extent to
which DevOps and I part ways. I like what it’s done so far, but I’m
not satisfied.

8  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

opinion
The Death of System Administration

Why You Probably Shouldn’t Care About
Operations Research
As the industry has been trying to figure out where to go, some
people have suggested for the past few years that operations
research is a really relevant source of academic thinking related
to software operations. This is a field of study mostly focused on
optimizing the output of a fixed set of constraints (traditionally a
factory). The intent is to accurately model the set of constraints
to understand where and why bottlenecks occur in the output.
This facilitates intervention in the process design to improve
output and efficiency.

Operations research is appealingly congruent to what we do
in systems infrastructure. We try to build and maintain a set
of infrastructure, with the intent of processing data with the
minimum hardware and people, all the while maintaining
service, availability, and performance within acceptable levels.
Given a set of requirements ($x TiB of data at rest, $y queries per
second of $z CPU cost per query on average), we should be able
to provide the infrastructure specification that meets those
requirements.

The problem arises as soon as you assume that the substrate
below is fixed. It is not. It is software. Your network is software.
Your chip’s instruction set is software. Your OS is software. Your
RPC marshalling/unmarshalling system is software. Your clus-
ter file system is software. When it’s convenient to think of each
of these things as fixed, it is of course reasonable to do so. The
constraints on the software stack, however, are massively less
than the constraints on the machines in a factory. Your services
infrastructure is exactly like a factory where a 3D printer can
create new automation for each step at the same rate as you can
specify and design it. We will have such factories, and when we
do they will look much more like cloud infrastructure than cloud
infrastructure looks like factories.

What’s Next?
Let’s back up for a second and review. Are operations and system
administration already dead?

Not really. In some ways, the early part of this piece of writing
is more exaggerated polemic than literal description. Our
software and infrastructure are woefully incapable of actually

handling a PostOps (or NoOps) world. For some time to come,
the traditional sysadmin will continue to reinstall OSes, update
configurations, troubleshoot network device drivers, specify
new hardware, and reboot Windows boxes. But the writing is on
the wall [2]. The computers are getting better and the tasks are
getting more interesting. Most of these jobs will, and should, go
away, to be replaced by a world with better, distributed infra-
structure and more interesting jobs.

When that better, distributed infrastructure arrives, there are
two things you need to know:

1. There will still be some operations to be done.

2. Operations will be done with software.

The wonderful, distributed self-regulating system of the future
will not be stable and self-adjusting forever. It will encounter
faults. Humans will have to intervene. When they do, operational
sensibilities and approaches will be required to troubleshoot
and resolve problems. So some amount of reactive, operational
work endures. The scale and complexity will be much higher and
the percentage of operational work will be much lower. You are
definitely going to have to read, modify, and write software. If
you’re any kind of sysadmin, you already know how to code, but
you may think you don’t. You’re already better than 50% of the
people out there who are professionally employed as software
engineers. Just get better than that.

As is usually the case, the future belongs to those who build it. So
let us do that together—starting now.

References
[1] Adrian Cockcroft on NoOps: http://perfcap.blogspot.
com/2012/03/ops-devops-and-noops-at-netflix.html.

[2] Todd Underwood, “PostOps: A Non-Surgical Tale of
Software, Fragility, and Reliability,” 27th Large Installation
System Administration Conference (LISA ’13): https://www.
usenix.org/conference/lisa13/technical-sessions/plenary
/underwood.

https://www.usenix.org/conference/lisa13/technical-sessions/plenary/underwood
https://www.usenix.org/conference/lisa13/technical-sessions/plenary/underwood
https://www.usenix.org/conference/lisa13/technical-sessions/plenary/underwood

Publish and Present Your Work at USENIX Conferences
The program committees of the following conferences are seeking submissions. CiteSeer ranks the USENIX Conference Proceedings
among the the top ten highest-impact publication venues for computer science.

Get more details about each of these Calls for Papers and Participation at www.usenix.org/cfp.

JETS Volume 2, Number 3: USENIX Journal of Election
and Technology and Systems
JETS is a new hybrid journal/conference, in which papers will have
a journal-style reviewing process and online-only pub lication.
Accepted papers for Volume 2, Numbers 1–3, will be presented
at EVT/WOTE ’14, which takes place August 18–19, 2014.

CSET ’14: 7th Workshop on Cyber Security Experimentation
and Test
Co-located with the USENIX Security ’14
August 18, 2014, San Diego, CA
Submissions due: April 25, 2014, 11:59 p.m. EDT
CSET invites submissions on the science of cyber security evalua-
tion, as well as experimentation, measurement, metrics, data, and
simulations as those subjects relate to computer and network
security and privacy.

3GSE ’14: 2014 USENIX Summit on Gaming, Games, and
Gamification in Security Education
Co-located with the USENIX Security ’14
August 18, 2014, San Diego, CA
3GSE is designed to bring together educators and game design-
ers working in the growing field of digital games, non-digital
games, pervasive games, gamification, contests, and competi-
tions for computer security education. The summit will attempt
to represent, through invited talks, panels, and demonstrations,
a variety of approaches and issues related to using games for
security education.

FOCI ’14: 4th USENIX Workshop on Free and Open
Communications on the Internet
Co-located with the USENIX Security ’14
August 18, 2014, San Diego, CA
Submissions due May 13, 2014, 11:59 p.m. PDT

HealthTech ’14: 2014 USENIX Summit on Health Information
Technologies
Safety, Security, Privacy, and Interoperability of Health
Information Technologies
Co-located with the USENIX Security ’14
August 19, 2014, San Diego, CA
Submissions due May 9, 2014, 11:59 p.m. PDT

LISA ’14: 28th Large Installation System Administration
Conference
November 9–14, 2014, Seattle, WA
Submissions due: April 14, 2014, 11:59 p.m. PDT
If you’re an IT operations professional, site-reliability engineer,
system administrator, architect, software engineer, researcher,
or otherwise involved in ensuring that IT services are effectively
delivered to others—this is your conference, and we’d love to
have you here.

OSDI ’14: 11th USENIX Symposium on Operating Systems
Design and Implementation
October 6–8, 2014, Broomfield, CO
Abstract registration due: April 24, 2014, 9:00 p.m. PDT
OSDI brings together professionals from academic and industrial
backgrounds in what has become a premier forum for discuss-
ing the design, implementation, and implications of systems
software.

10  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

SYSADMINInterview with John Looney
R i k F a R R o w

Rik Farrow is the editor of ;login:
rik@usenix.org

John Looney graduated from
the School of Computer
Applications at Dublin City
University and specialized
in supporting high-end

commercial UNIX environments. He ran
LinuxWorld Dublin in 2000 and, while at
Hosting365, he built Ireland’s largest shared
hosting infrastructure for 30,000 customers
on a shoestring budget. John is a site reliability
engineer responsible for Google’s cluster
infrastructure: initially the cluster fabric, GFS
and Chubby, and more recently the datacenter
automation and remote access technologies.
He has built a five-month, full-time graduate
program to take junior engineers and retrain
them to take the pager for Google.com. John
is on the Computing Committee for Engineers
Ireland. looney@google.com

During LISA ’13, John Looney taught something he called “SRE Class-
room: Non-Abstract Large System Design for Sysadmins” [1].
I had little idea what that was, and I was teaching on the same day

so I couldn’t drop in. But the description sounded too good to be true.

John had gathered ten fellow Google SREs to mentor people during class exercises, and the
result was an experience that really had people talking. The class covered the design of large
distributed systems, with exercises focused on building a detailed design. The designs are
not specific to Google products but general enough for any large-scale system.

I was intrigued by the success of the tutorial, and wanted to learn more about where this
class evolved. For me, John’s explanation of what it’s like to work at scale is fascinating and
eye-opening.

Rik: Tell me about how you got involved with working with *nix and clusters.

John: In college, I loved messing around with the commercial UNIX workstations we had
and, with a friend, secretly installed Linux on all the university Windows desktops. We
repurposed one desktop with a broken monitor as server and covertly offered a Linux net-
work to the students for their projects—we ran MySQL, NFS, etc. on Pentium 60s with VGA
cards—it was so much more pleasant to use than SPARC ELCs with monochrome screens.

I did some Solaris support, various training and consulting services for Sun Microsystems
after college and realized that though there were many training resources for Solaris sysad-
mins, there were none for Linux. So I started the Irish Linux User Group and arranged free
community-led training programs every month. I made lots of great friends and learned so
much. I got entangled in a few hilariously doomed startups, and eventually ran the network
and systems of a Web hosting company with explosive growth for a few years. We never had
much money, so had great fun building our own routers and servers with whatever hardware
we could find.

This gave me the bug for supporting big systems, and I lucked out and joined Google’s “Clus-
terops” team in 2005. At the time, we were responsible for the Google File System and all
low-level cluster functionality.

Rik: My early sysadmin experiences did include Sun workstations, but we were still happy to
have any network at all—UUCP over serial cables. So my experience stops well short of under-
standing what it’s like administering clusters of servers. Could you tell us more about that?

John: In the Web hosting company, we had ~15 racks of equipment, most of which I’d installed
myself from CD. When one failed, I knew which customer was affected, and usually exactly
how to fix it. My first day in Google couldn’t have been more different. “Here is a list of 18,000
broken machines. See how many you can get back serving, and if you think it’s hardware,
bounce it onto the hardware guys.” My debugging skills needed to evolve. In the old days, I
used to ssh in, poke around, work out what was wrong, write a small script to fix it, then run
it on all other similarly broken machines.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 11

sysadmin
Interview with John Looney

A problem could be “Kernel X on platform Y in network Z emits
100 kernel log messages an hour filling the disk.” The work-
around might be “Truncate /var/log/messages on all affected
machines with a cronjob.” The permanent fix would be “File a
bug with kernel team and get that kernel pushed out to affected
machines once it passes testing.”

In my Web-hosting days, that was a five-minute fire and forget
shell command. In Google, shepherding that process could take
a week…but it was worth it, if it was affecting 1000 machines;
it could take more time if the buggy kernel was rolled out to all
machines. Running clusters makes you think much more deeply
about root causes and how to resolve issues permanently.

We have some very smart upper management in Google who
realized that taking many weeks to turn up new clusters, by
assigning new engineers the task, was a colossal waste of money.
They told us to do the impossible—“Go work out how to turn up a
cluster in a week. And the deadline is three months, because we
have a half-dozen new clusters coming online that week.”

We quickly built a technically beautiful system, based on Python
unit test frameworks, to do cluster turn-ups. First, we wrote
unit tests to verify that every aspect of a cluster was configured
according to best practices. One unit test for “Does the DNS
server IP respond to DNS queries?” and another for “Does it have
an IP for its own address?” etc. There were thousands of tests
that had to be written for everything from “Did anyone make a
typo in the cluster definition database?” to “Does the Web search
pass a load test?”

When a unit test failed, we had the automation framework run
code that “repairs” the service, given that specific test failure:
“DNS isn’t listening on port 53…so go install the DNS package
on machines reserved for DNS.” “DNS is listening, but doesn’t
resolve correctly…execute code to push the latest configuration
files to the DNS server.”

It allowed geographically distributed teams to add tests and
fixes for their own services, which could depend on each other
(WebSearch depends on storage, which depends on Compute,
which depends on Chubby, which depends on DNS). By the
deadline date, we had a system that could execute months of
manual, error-prone work in three hours. This saved a massive
amount of money, but also meant we had up-to-date code that
documented exactly how to turn up clusters, and could spot and
repair configuration problems in running production systems. It
was the application of engineering to an operations function, the
definition of SRE.

Rik: You certainly make it clear that managing clusters is not
like the system administration that I used to do. While there is
still problem solving, automation becomes an important part of
the solution.

What are some of the things that people interested in managing
clusters can learn that will help them?

John: Try to keep abreast of the state of the art. I’m fortunate
that in Google, if I have a problem I can usually find ten teams
who have had that problem first and have taken a stab at solving
it once or twice.

In the outside world, it’s common to think your specific problem
is unique, and the existing tools don’t work. You are probably
wrong :). Conferences and user groups are good places to find
experienced folks who can talk you out of trying to build some-
thing new, but have ideas on how to customize and contribute to
an existing system that will solve your problem.

Of course, that means that sysadmins need to be able to code in
the common systems and automation languages—C, Python,
Java, and perhaps one of the less common systems. “I only know
AWK and Perl” isn’t good enough anymore. If you are on a very
small site, with few coders, it’s really important to network and
use the free software community as a resource to allow you
develop software engineering skills sysadmins need—writ-
ing code that can be tested, is efficient, and that others can
maintain.

I’m a big believer in “whole stack” knowledge for a sysadmin. You
should be able to talk about Arduino-level electronics, the latest
CPU and RAM designs, and the physics of hard disk manufac-
ture. Books like The Elements of Computing Systems: Building a
Modern Computer from First Principles (www.nand2tetris.org)
are wonderful for this “low-level” knowledge. You should know
your way around the operating system kernel and be able to write
simple device drivers (even if it’s just to talk to an Arduino over
serial or something).

One of the ways sysadmins can surprise and intimidate software
engineers is by being able to take a broken system they’ve never
seen, and diagnose and suggest a fix. You get good at this by
practicing—downloading random free software packages, trying
them out, shouting aloud at dumb config systems, but making it
work anyway. Go a step further—suggest or make changes to the
software, and get the changes into the upstream code. Ask the
author why it was done that way in the past. The modern sysad-
min needs to be a software archaeologist when needed.

There are some powerful configuration systems out there
these days. It seems most people use them in a very procedural
way—“This is the directory for Web server configs, one file per
machine, this is the directory for SSH daemons.” Learn how your
whole network looks from above and build models (in a text file,
SQL database, etc.) that describe everything about your system…
then write tools that take that “model” and build the configs for
you. Cluster admins shouldn’t edit text files, unless they config-
ure systems that configure systems that write text files :).

12  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin
Interview with John Looney

Lastly, I’d recommend that they try to think bigger. We often try
to solve the problem in front of us the way we solved it last year.
If you are in an environment that tolerates failure (aka innova-
tion). At LISA last year, I had great fun getting 70 sysadmins to
try to design a system, like imgur.com, in enough detail to work
out how much it would cost to buy the hardware. By pushing our
limits, in design, capacity planning, architecture, and presenta-
tion skills, we can learn a lot about ourselves.

Rik: That was a very popular class. Can you tell us more about
that class and how it was run?

John: The interview process for SRE is pretty tough, as we grill
people on networking, UNIX, software engineering, project
management, and other skills we might find useful. The inter-
view that most people struggle with is “non-abstract large-scale
design.” It’s probably because it’s not something everyone does. If
you do well in that interview, it’s a good sign you will make a good
SRE. If you do poorly…we can’t draw conclusions.

Some SREs in London decided to run an experiment—locate
SRE job applicants who were potential SREs, but were too inex-
perienced to succeed at a large-scale design interview. Invite
them in for a one-day class on design, explain how such a skill
would be applied in the real world, and if they felt up to it, have
them interview for an SRE job the next day.

It’s one thing to be able to design, but it’s also important to be
able to communicate that design to people. So they designed
a class that would introduce the concepts of design, and allow
 people to practice them, and discuss them in groups. We dis-
cussed how to approach an SLA-based design, some common
facets of large-scale systems, failure modes of distributed sys-
tems, and monitoring such systems. We interleaved the classes
with discussions on design in small groups, each of which was
led by an experienced Googler.

We’ve now run this class in a few offices, and helped a good
number of people to get hired by Google (success!). I was asked to
help with a tutorial at LISA and decided that I’d love to try to do a
similar event. I panicked a little when I found out we had nearly
70 attendees signed up—in Google we had one “mentor” per five
attendees. I made an impassioned plea to the Google SRE team,

and ten volunteers traveled to Washington and gave up their
Sunday to share their love of crazy big systems.

I think if you assume that your attendees are up for a real chal-
lenge, are willing to have their brains turned inside-out with
some really good material, and are willing to try something
they’ve never done before, you can have a lot of fun.

Rik: That’s quite a story. I really had no idea that members of
Google SRE teams would give up part of their weekend to mentor
students.

USENIX hopes to find other tutorials that will help people learn
what it takes to work at scale. Do you have any ideas for other
class topics that might be useful? Other people have suggested
data analysis and release engineering.

John: Release engineering is vital. At scale, you are likely running
custom software, so you can’t assume someone else has tested
everything for you. It’s also not acceptable to have scheduled
downtime, so building and testing software that can be incre-
mentally drained and upgraded without a problem isn’t trivial.

Data analytics could be useful; it could also be useful to learn
how to take “production quality” software and instrument it.
Add the equivalent of an Apache “status” page that tells all the
incoming and outgoing requests, latencies, RAM usage, etc.
Something that can be aggregated by your monitoring system
later.

I’d also love to build a distributed debugging class, but I fear
debugging is so domain specific it wouldn’t be useful—or easy to
run. We need to optimize for people’s time and energy. If you’d
like to be involved, please contact LISA’s Program Committee
for 2014.

Reference
[1] SRE Classroom: https://www.usenix.org/conference
/lisa13/training-program/full-training-program#S2.

Donate Today: The USENIX Annual Fund
Many USENIX supporters have joined us in recognizing the importance of open access over the years. We are thrilled
to see many more folks speaking out about this issue every day. If you also believe that research should remain open
and available to all, you can help by making a donation to the USENIX Annual Fund at www.usenix.org/annual-fund.

With a tax-deductible donation to the USENIX Annual Fund, you can show that you value our Open Access Policy and
all our programs that champion diversity and innovation.

The USENIX Annual Fund was created to supplement our annual budget so that our commitment to open access and
our other good works programs can continue into the next generation. In addition to supporting open access, your
donation to the Annual Fund will help support:

• USENIX Grant Program for Students and Underrepresented Groups

• Special Conference Pricing and Reduced Membership Dues for Students

• Women in Advanced Computing (WiAC) Summit and Networking Events

• Updating and Improving Our Digital Library

With your help, USENIX can continue to offer these programs—and expand our offerings—in support of the many
 communities within advanced computing that we are so happy to serve. Join us!

We extend our gratitude to everyone that has donated thus far, and to our USENIX and LISA SIG members; annual
 membership dues helped to allay a portion of the costs to establish our Open Access initiative.

www.usenix.org/annual-fund

Donate Today: The USENIX Annual Fund
Many USENIX supporters have joined us in recognizing the importance of open access over the years. We are thrilled
to see many more folks speaking out about this issue every day. If you also believe that research should remain open
and available to all, you can help by making a donation to the USENIX Annual Fund at www.usenix.org/annual-fund.

With a tax-deductible donation to the USENIX Annual Fund, you can show that you value our Open Access Policy and
all our programs that champion diversity and innovation.

The USENIX Annual Fund was created to supplement our annual budget so that our commitment to open access and
our other good works programs can continue into the next generation. In addition to supporting open access, your
donation to the Annual Fund will help support:

• USENIX Grant Program for Students and Underrepresented Groups

• Special Conference Pricing and Reduced Membership Dues for Students

• Women in Advanced Computing (WiAC) Summit and Networking Events

• Updating and Improving Our Digital Library

With your help, USENIX can continue to offer these programs—and expand our offerings—in support of the many
 communities within advanced computing that we are so happy to serve. Join us!

We extend our gratitude to everyone that has donated thus far, and to our USENIX and LISA SIG members; annual
 membership dues helped to allay a portion of the costs to establish our Open Access initiative.

www.usenix.org/annual-fund

14  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin

How to Be a Better System Administrator and
Then Something Else
E l i z a b E t h z w i c k y

After years as a system
administrator, Elizabeth has
experienced an almost full
recovery but happily has
maintained her ability to

intimidate the help desk into providing sensible
answers. Zwicky@otoh.org

I once was a system administrator. Now I’m not. This caused somebody to
think I might have useful career advice, which is absurd if you look at my
career trajectory, which looks like a ball of string after the kitten got to

it. In fact I am, as the saying has it, a highly paid computer professional and
have been all along, and most of the things that have caused people to give me
other jobs are skills I honed as a system administrator.

There is one thing which will make no difference to your performance as a system admin-
istrator but will make getting another job in technology vastly easier, and that is a college
degree, preferably in computer science or a related field. (No, I don’t know what “a related
field” is, except I have evidence that if you make this claim and turn out not to have had any
classes involving a computer, people will fire you.) This is a fact about the job market, and
its actual wisdom or lack thereof is irrelevant. If you can get a college degree, do so; and, if
involving computing in it is still a reasonable option for you, drag some computers into it.

Then learn to code. If you do this by solving problems at work, it will make you a better system
administrator. The process will also teach you things about coding that most courses and
books don’t teach well. If you ask my colleagues, they will tell you, with affectionate conde-
scension, that I “don’t really code.” You might think, based on that, that I rarely write code (in
fact, I do so almost every day), or that I never modify production systems (in fact, I am one of
the people called upon to write changes directly into major customer-facing systems when
that needs to be done on the fly), or that I don’t use the main programming languages we use
(this is almost true, but I do review and fix code in all of them).

In fact, what they mean is that I don’t spend all day writing code, and that I almost never
produce an entire application myself.

I really learned to code as a system administrator. I have a computer science degree, which as
I mentioned above is a valuable piece of paper, and it certainly taught me what variables are,
how command structures work, and why O(n2) is bad. However, it is the single least relevant
piece of my computing experience to my work life—well, behind my teenage days trying to
make BASIC play Animal better. Because my real learning was on system administration
tasks, it leaned heavily on regular expressions, on reading and porting other people’s code in
whatever language they chose, and on building utility chains. This means that if you want an
application written from the ground up, I am nearly useless at actually producing the code. On
the other hand, if you want somebody to do that with moderate competence, you can probably
find three at the nearest coffee shop. All of them will blanch if you ask them to write a regular
expression, and if they do write it, it will contain at least one unnecessary and dangerous “.*.”.

So embrace the funkiness of writing the code that your situation needs. It may not look like
coding in school, or even coding as a full-time programmer, but it will give you the ability to
round out a programming team.

And embrace the rest of the limitations you may face. You have to debug third-party software
with no source code? Great! You will never be any of the people who took my bug reports and

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 15

sysadmin
How to Be a Better System Administrator and Then Something Else

closed them because “the code doesn’t do that,” which is a phrase
liable to inspire me to vio lence. I really don’t care whether the code
does it or the pack of trained gerbils living under the floor does it.
If I reported it as a bug, I want it to stop already. You will also not be
the person who never uses a debugger because you can always just
put in some print statements, right? (No, you can’t.)

Learning to debug distributed systems written by other people
will also give you a head start on being data-driven, because
when you are trying to figure out what happened on somebody
else’s computer system, you don’t have a lot of choice except to
start digging data out of the system. What’s in the logs? What
files got changed? Programmers who can work in a change-and-
try system don’t get forced to that mode of thought. Admittedly,
only the good system administrators do. Debugging is a theme,
and excellence at system administration is what turns into
transferrable skills.

What else goes with that theme?

◆◆ Understand the technology you work with; in particular,
know how networks and file systems work. For some rea-
son, computer science degrees manage to get people to recite
facts about compilers, operating systems, and maybe even
databases, but most of them are not entirely sure the Internet is
not made of tubes.

◆◆ Learn to be good in emergencies. System administrators
get called in the middle of the night when things are broken
and people are screaming. This builds important life skills for
times you don’t always have a pager. In particular, it teaches
you to be very, very careful, because everybody is stupid in
the middle of the night and you need to be able to recover. I
don’t edit important files in place. I don’t do it much in broad
daylight when I’m relaxed and caffeinated, but I don’t do it at
all when the stakes are high—I don’t trust software and I don’t
trust myself. So I make a copy, and a backup copy, and then I
edit the copy, and then I copy the edited copy to the original lo-
cation and see what happens. You can argue about the details
of this process—I’m sure you’re dying to inform me that all
your files are in source control, which is even better—but the
point is that somebody has already paid to have this caution
instilled in me, which is a win for all my recent employers.

◆◆ Learn to be customer-oriented. I don’t care if you call the
people who use your systems “users,” but you need to be able
to think about what every change means to them. Again, this
is a skill that differentiates senior people from junior people,
regardless of where you are, and it’s one you can learn in stark
and dramatic terms in system administration, when your users
are often senior to you and capable of physically yelling at you.

◆◆ Learn capacity planning and performance tuning. This
is full of useful mathematics; if you don’t figure out why the
mean is not the interesting average when you start looking

at how users use disk space, or send email messages, or how
your network is utilized, you are never going to understand
numbers. Building big production systems is dependent on an
ability to think about the numbers in ways they don’t teach
in school, based on the number of mid-level programmers
who, when asked questions like “Will I be able to do that in my
100-millisecond budget for this operation?” or “How much
space will that data take up?” give answers like “It’s really
fast” and “It shouldn’t be a problem in the cloud.” (Hint: I
didn’t ask idly. If your company built cloud technology, it is be-
cause it has problems that require a cloud, instead of problems
that are trivial with a cloud.)

◆◆ Learn about security. When you’re responsible for the system,
you’re responsible for protecting it. This is the time to learn
about threat models and attack surfaces. Engineering a system
to resist an active attacker is a different skill from engineering
one that is resilient to pure error. And those debugging skills I
mentioned earlier? They’re security skills as well, because one
of the chief jobs of security and abuse teams is distinguish-
ing security and abuse issues from other issues. Not only are
programmers bad at security, but carefully purpose-trained
security people spend years seeing bad guys behind every crash.
Converted system administrators have a finely honed respect
for the basic malevolence of the universe.

◆◆ Learn to pick up new technologies. Again, as a system ad-
ministrator, you are often pretty much stuck adapting yourself
to the choices of your management and the people you support.
Embrace and extend; get good at figuring out the rudiments of
whatever it is they are doing. When I am hiring new program-
mers, my first choice is one who knows one of the languages
we use a lot really well but is happy to learn others. My second
choice is somebody who doesn’t really care deeply what lan-
guages we use a lot but knows a little bit about a couple of our
languages. The person who has a really strong opinion about
what languages we ought to use is not very high up on my list,
no matter how good they are at the languages they know, and
even if they think our current choice is right, because we slowly
but surely change our language balance over time.

There are dozens of other things I could add. I’ve mentioned
security, programming, and network engineering, but system
administration could also lead you into release engineering, or
technical writing, or project management, or database admin-
istration, all skills that are careers on their own but which
system administrators are often expected to do on their own. I
hope I have convinced you—and helped you to convince future
 employers—that system administration is not only valuable
work in itself, but also a solid platform for doing other work if
that’s of interest.

16  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin

Accelerating the Path from Dev to DevOps
D i n a h M c n u t t

Dinah McNutt is a release
engineer at Google. She has a
master’s degree in mechanical
engineering from MIT and has
worked in the fields of system

administration and release engineering for
more than 25 years. She’s written articles
for numerous publications and has spoken at
technical conferences (including chairing LISA
VIII). mcnutt@google.com

My first lesson in release engineering occurred more than 20 years
ago. I was working for a start-up company, and we discovered that
we could not reproduce the build we had shipped to customers.

This meant we could not send out a patch for this release and our only solu-
tion was to force all our customers to upgrade to the new version. I was not
directly involved in the events that got us into this situation, but I certainly
learned from it.

I’ve spent most of my career in a system administration role at start-up companies and have
learned a lot about software development and releasing products. Twelve years ago, I fell
into a release engineer position when the company I was working for needed someone to do
the work, and I discovered I loved it. All the skills that made me a good system administrator
(problem solving, attention to detail, etc.) were directly applicable.

What Is Release Engineering?
Release engineering (or releng, pronounced “rel-eng” with a soft g) is like the old story of the
blindfolded people and the elephant. You may get a different answer depending on whom you
ask. But, because this is my article, I get to describe my elephant.

In a perfect world, a release process looks like:

◆◆ Compile

◆◆ Test

◆◆ Package

◆◆ Release

A real release process looks more like what is shown in Figure 1.

Figure 1: A real world release process

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 17

sysadmin
Accelerating the Path from Dev to DevOps

I’m not going to go into the details of Figure 1 because the point
is to show that most release processes are complicated. How-
ever, here are some terms from the figure that you might not be
familiar with:

◆◆ Build artifacts. By-products of the release process (i.e., log files,
test results, and packaged binaries). Basically, it’s everything
you want to save from the release process.

◆◆ Canaries. Testing new software on a small number of machines
or with a small number of users.

As the tagline to this article says, releng accelerates the path
from development to DevOps by bringing order to the chaos
shown in Figure 1. How do we do that?

Building Blocks
My eyes usually glaze over when I hear people talk about velocity,
agility, delivery, auditing, etc. Those concepts are the attributes
and results of good releng practices but are not where I like to
start when I talk about releng.

Instead, here are the things I care about:

◆◆ Release engineering from the beginning. Releng is often an
afterthought. Companies should budget for releng resources
at the beginning of the product cycle. It’s cheaper to put good
practices and process in place early rather than have to retrofit
them later. It is essential that the developers and release
engineers (also called releng) work together. The releng need
to understand the intention of how the code should be built
and deployed. The developers shouldn’t build and “throw the
results over the fence” to be handled later by the releng. It’s OK
to outsource the implementation of your releng processes, but
keep the ownership and design in-house.

◆◆ Source code management. Everything needs to be checked into
a source code repository. It’s not just about code. Configuration
files, build scripts, installation scripts, and anything that can be
edited and versioned should be in your SCM. You need to have
branching/merging strategies and choose an SCM system that
makes these tasks easy. I personally think you should have dif-
ferent strategies for ASCII and non-ASCII files (like binaries). I
am not a fan of storing binaries with source code, but I do think
it is reasonable to have separate repositories for those types of
files. (This is one of those topics in which even members on the
same releng team do not agree!)

◆◆ Build configuration files. The releng should work closely with
the developers to create configuration files for compiling,
assembling, and building that are consistent and forward
thinking (e.g., portable and low-maintenance). Do they support
multiple architectures? Do you have to edit hundreds of files if
you need to change compile flags? Most developers hate dealing
with build configuration files, but a releng can make their lives
easier by taking the lead in this task.

◆◆ Automated build system. You need to be able to build quickly
and on-demand. The build process needs to be fully automated
and do things like run tests, packaging, and even deployment.
Your build system should support continuous and periodic (e.g.,
nightly) builds. A continuous build is usually triggered by code
submissions. Frequent builds can reduce costs through early
identification (and correction) of bugs.

◆◆ Identification mechanism. There should be a build ID that
uniquely identifies what is contained in a package or product,
and each build artifact needs to be tagged with this build ID.

◆◆ Packaging. Use a package manager. (As I have said repeat-
edly, tar is not a package manager.) You have to plan ahead for
upgrades, handling multiple architectures, dependencies, unin-
stalls, versioning, etc. The metadata associated with a package
should allow you to determine how the binaries were built and
correlate the versions to the original source code in the source
code repository.

◆◆ Reporting/Auditing. What was built when? Were there any fail-
ures or warnings? What versions of the products are running
on your servers? Logs, logs, and more logs. (We like logs.)

◆◆ Best practices. What compile flags should you use? How are you
versioning your binaries so you can identify them? Are you us-
ing a consistent package layout? Can you enforce policies and
procedures?

◆◆ Control of the build environment. Do your tools allow you to put
policies in place to ensure consistency? If two people attempt
the same build, do they get identical results? Do you build from
scratch each time or support incremental builds? How do you
configure your build environments so you can migrate your
tool base to newer versions yet still be able to support and build
older versions of your code?

I’ve described the building blocks of release engineering.
Through effective use of these building blocks, you can

◆◆ Continuously deliver new products (e.g., high-velocity)

◆◆ Identify bugs early through automated builds and testing

◆◆ Understand dependencies and differences between different
products

◆◆ Repeatedly create a specific version of a product

◆◆ Guarantee hermetic build processes

◆◆ Enforce policy and procedures (this is a hard one—you at least
need to be aware of violations and exceptions)

Sub-disciplines within Releng
Releng is an evolving discipline. It’s going to be exciting to see
how it changes over the next few years. At many companies,
releng is just one of several hats worn. At LISA ’13, I held a Birds-
of-a-Feather session on release engineering. Several people
attended who have a dual role as system administrator and

18  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin
Accelerating the Path from Dev to DevOps

release engineer. Because I come from a system administration
background, that makes perfect sense to me!

However, at a large company like Google, we are starting to see
specialization within the releng team that is dictated by product
area and personal preference. Here are the sub-disciplines I have
identified:

◆◆ Tools development. Extending and customizing our proprietary
build tools; developing stand-alone applications to provide re-
porting on everything from build status to statistics about build
configuration files.

◆◆ Audit compliance. This is no one’s favorite task, but the
Sarbanes-Oxley Act of 2002 dictates that controls must be put
into place for applications that handle financial information.
The controls include (but are not limited to):

◆○ Verifying all code that is under scope for SOX has under-
gone a code review (separation of duties)

◆○ Verifying the person who writes the code must not also own
the build and deployment processes (separation of duties)

◆○ Embedding a unique ID that can tie the binary to the build
that produced it (version verification)

◆○ Using a package manager that supports signatures so the
package can be signed by the user who built it (builder and
version verification)

Release engineers work with developers and internal auditors
to ensure that appropriate controls and separation of duties
are in place.

◆◆ Metrics. We have several projects that provide releng-related
metrics (build frequency, test failures, deployment time, etc.).
Some of these tools were developed by members of the releng
team.

◆◆ Automation and execution. We have proprietary continuous-
build tools, which are used to automate the release process. Re-
lease frequency varies widely (from hourly to yearly). Typically,
customer-facing applications are released more frequently in
order to get new features out as quickly as possible. Internal
services are usually updated less frequently because infra-
structure changes can be more expensive. However, with effort,
release processes can be developed which support frequent,
low-impact changes.

◆◆ Consultation and support. The releng team provides a suite of
services to development teams, which range from consulting to
complete automation and execution of the releases.

◆◆ Source code repository management. We have a dedicated team
of software engineers and administrators who work on our
source code management system, but many of the release en-
gineers have in-depth knowledge of the system. We even have
engineers who transferred from the source code repository
team to a releng team!

◆◆ Best practices. This covers everything from compiler flags to
build ID formats to which tasks are required to be executed
during a build. Clear documentation makes it easy for devel-
opment teams to focus on getting their projects set up and
not have to make decisions about these things. It also gives us
consistency in how our products are built and deployed.

◆◆ Deployment. Google has an army of Site Reliability Engineers
(SREs) who are charged with deploying products and keeping
google.com up and running. Many of the releng work closely
with SREs to make sure we implement a release process that
meets their requirements. I spend just as much time working
with SREs as I do Software Engineers (SWEs). We develop
strategies for canarying changes, pushing out new releases
without interruption of services, and rolling back features that
demonstrate problems.

What’s Next?
Here is what I expect to see over the next few years in the field of
release engineering:

◆◆ More vendors entering the space (particularly cloud-based so-
lutions). Look for productization around open source software
(e.g., Git) and tools that will offer end-to-end release engineer-
ing solutions. The latter will probably be achieved through
partnerships between vendors.

◆◆ Fuzzy lines between configuration management and release
engineering (my prediction is that they will evolve into a single
discipline)

◆◆ Standards organizations—ISO standards for releasing highly
reliable software, SOX compliance standards, etc.

◆◆ Industry-standard job ladders

◆◆ College curriculums

◆◆ Industry-accepted best practices

◆◆ Industry-accepted metrics

I am excited to be chairing the upcoming URES ’14 (USENIX
Release Engineering Summit). As we are starting to put the con-
ference program together, we wanted to be able to easily explain
what release engineering is and why it is important (and timely)
for USENIX to sponsor a summit on this topic. I hope this article
has been a good introduction to release engineering and that my
personal experiences have been educational. May all your soft-
ware come from reliable, reproducible processes!

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 19

sysadmin

Interview with Tom Hatch
R i k F a R R o w

Rik is the editor of ;login:.
rik@usenix.org

Tom is the creator and principal
architect of SaltStack. His years
of experience as principal cloud
architect for Beyond Oblivion,
software engineer for Applied

Signal Technology, and system admin for
Backcountry.com provided real-world insight
into requirements of the modern datacenter
not met by existing tools. Tom’s knowledge
and hands-on experience with dozens of
new and old infrastructure management
technologies helped to establish the vision
for Salt. Today, Tom is one of the most active
contributors in the open source community.
For his work on Salt, Tom received the Black
Duck “Rookie of the Year” award in 2012 and
was named to the GitHub Octoverse Top 10
list for the project with the highest number of
unique contributors, rubbing shoulders with
projects like Ruby on Rails and OpenStack. 
thatch@saltstack.com

R ikki Endsley met Tom Hatch, CTO of SaltStack and creator of the
Salt [1] open source project, during USENIX 2013 Federated Confer
encesWeek. Rikki suggested I interview Tom and, when I found out

that Salt uses ZeroMQ, my own curiosity was piqued.

ZeroMQ is one of a new breed of asynchronous messaging libraries. These libraries hide the
complexity of developing your own queueing software. They also can use reliable multicast
protocols, which can cut down on the amount of network traffic when many hosts will be
receiving the same information. Message queueing also helps prevent overloading the server,
a problem known as incast.

While Salt competes with more popular configuration management systems, like Puppet,
Chef, and CFEngine, I thought that what makes it different also makes it important to take a
deeper look at Salt.

Rik: There are lots of configuration management systems available today, but what caught
my eye was the mention of Salt using ZeroMQ. Tell us about how Salt uses ZeroMQ and what
the advantages of doing that are.

Tom: The big thing to remember about Salt is that it was first and foremost a remote execu
tion system, and this is the reason I used ZeroMQ initially. ZeroMQ has been a great help
with the configuration management system as well. The ability to have queued connections
has allowed Salt to scale very well out of the box without modification and has been a founda
tion for Salt’s flexibility.

The real benefit of ZeroMQ is that it has allowed us to do things where we have clean communi
cation about anything in a deployment so that decisions can be made about configurations
anywhere, which allows us to make a truly ad hoc distributed configuration management
system. We are working on a UDP alternative to ZeroMQ to get past some of the limitations
of ZeroMQ.

Rik: What specifically attracted you to using message queueing in the first place, instead of
more traditional means of communication, like SSH over TCP?

Tom: Really, it was the PUB/SUB interface in ZeroMQ. PUB/SUB is very difficult to do with
nonasync systems and is very slow. ZeroMQ gave us an easy way to have a PUB/SUB inter
face that works well for remote execution. Beyond that, ZeroMQ has continually proven itself
a great asset in communication with large groups of systems.

Salt does also ship with an optional SSH transport to have an “agentless” approach, but
ZeroMQ is still substantially more scalable and faster.

To get more into the weeds, ZeroMQ’s ability to queue connections and commands on the
client side allows for very large numbers of systems to request information at once and all
wait for the server end to be available rather than just bogging down the server. This is one of
the key advantages in the Salt file server. This file server is built entirely on top of ZeroMQ
from scratch and subsequently is capable of sending very large numbers of small files to large
groups of systems with great efficiency.

20  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin
Interview with Tom Hatch

Rik: You just mentioned the Salt file server. Is this how you store
commands to be executed on clients? Or is this something else,
like the general term for your server, which can interface with
other CMDBs?

Tom: The Salt file server is just part of the Salt master. The
master includes a fully functional file server and is a critical part
of the CM system in Salt, because the salt minions (the agents)
download the configuration management files from the master
and compile them locally. The Salt file server can also be used
to distribute large files like VM disk images. This is part of how
Salt’s cloud controller, saltvirt, works.

ZeroMQ is what makes serving files so scalable. It lets Salt
minions download chunks of files and queue for their down
loads, which keeps things humming and prevents overload on the
master.

So the commands to be executed in the CM system are all stored
in files (typically YAML files) and served via the Salt file system.
Then the commands are compiled down to data structures on
the minion and executed.

Salt has a lot of services in the master. For instance, the Pillar
system is what allows the master to connect to external systems
like CMDBs to get raw data which can be used when compiling
the config management files into execution data.

Rik: I watched your presentation at UCMS ’13 [2], and you
mentioned the Pillar system. So Pillar can extract configuration
information from existing systems, like Puppet or Chef, and then
provide it to Salt minions? Do the minions use the original con
figuration agent, or are configuration actions performed natively
by the minions?

Tom: Pillar is a system that allows for importing generic data,
not just configuration data. It is minionspecific data that is gen
erated on the master. So think of it more as a variable store that
can be accessed from Salt’s configuration management system.

Configuration management is performed natively in Salt by the
minion. The great thing about Pillar is that it can be a toplevel
data store. Pillar makes it VERY easy to make generic configura
tion management formulas in Salt.

Let me try and sum up a few things since we are kind of jumping
from topic to topic.

Salt is a remote execution platform that can execute generic
commands on clients called minions. This generic command
execution means that Salt is often used to orchestrate deploy
ments that already use Puppet, and Wikipedia is a classic
example.

But Salt has its own CM system which incorporates features not
found in Puppet or Chef and ties directly into the remote execu
tion system, allowing for many crosscommunication routines to
work—all over ZeroMQ.

Salt management is all about data, so the config management
files that Salt uses, or formulas, can use Pillar (data generated
on the master—optionally from external sources like CMDBs)
or grain data (data generated on the minion, things like the OS
version—kind of like Puppet’s Facter [3]) as variables or to decide
what routines should be executed.

So to answer your question, Pillar can pull data out of systems
that Puppet uses, like Hiera, and reuse the data in its own con
figurations, or it can just call Puppet directly on the client. Or
everything can be directly managed by Salt.

Rik: I find it interesting that Salt can handle data returned by the
minion. Your UCMS presentation hinted at that. Getting config
uration information back from the client, like Puppet’s Facter, is
certainly useful for configuration management. But because Salt
is a remote execution system, I was wondering how it handles
other information that might be returned by a client: for example,
a failed compilation of a downloaded package because of miss
ing library dependencies? How hard is it to set up Salt to handle
other information, like my example, from a minion?

Tom: What you asked in the first question starts to hint at where
Salt goes beyond configuration management. Since Salt is based
on remote execution and events, any time something fails in
a configuration management run, an event gets fired on the
master. This means that the Salt Reactor can pick up the event
and react to it. The reaction is arbitrary: it can reach out to the
minion and try the install again, or it can react by destroying the
virtual machine running the minion (assuming it is a VM, as an
example) by communicating to the hypervisor, or to the cloud
system, such as OpenStack, AWS, or any major cloud provider.

Also, since Salt’s configuration management system is natively
idempotent, it is easy to fire the configuration management to
run again, either manually or via the Reactor.

References
[1] Salt: https://github.com/saltstack/salt.

[2] UCMS SaltStack talk: https://www.usenix.org/
conference/ucms13/summitprogram/presentation/Hatch.

[3] Puppet Facter: http://puppetlabs.com/facter.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 21

sysadmin

The Case of the Clumsy Kernel
B r e n d a n G r e G G

Brendan Gregg is the lead per
formance engineer at Joyent,
where he analyzes performance
and scalability at any level of the
software stack. He is the author

of the book Systems Performance (Prentice Hall,
2013) and is the recipient of the USENIX 2013
LISA Award for Outstanding Achievement in
System Administration. He was previously a
performance lead and kernel engineer at Sun
Microsystems, where he developed the ZFS
L2ARC, and later Oracle. He has invented and
developed performance analysis tools, which
are included in multiple operating systems,
and has recently developed performance
visualizations for illumos and Linux kernel
analysis. brendan.gregg@joyent.com

A ll benchmarks are wrong until proven otherwise. Benchmarking is
an amazingly error-prone activity, with results commonly misinter-
preted and wrong conclusions drawn. However, every now and then,

a benchmark takes me by surprise and not only is correct but also identifies a
legitimate issue. This is a story of debugging a benchmark.

A Joyent customer had benchmarked Node.js connection rates and found a competitor had
five times higher throughput than we did. Because we’re supposed to be the “High Perfor-
mance Cloud,” as well as the stewards of Node.js, this was more than a little embarrassing. I
was asked to troubleshoot and determine what was happening: were the results misleading,
or was there a real performance issue? We hoped that the problem was something simple,
like the benchmark system hitting a CPU limit.

Our support staff had already begun collecting a problem statement, which included check-
ing which software versions were used. This process can solve some issues immediately,
without any hands-on analysis. The benchmark was Apache Bench (ab) [1], measuring the
rate of HTTP connections to a simple Node.js program from 100 simulated clients. This was
about as simple as it gets.

Some factors can make these investigations very hard. The worst I deal with involve net-
working between multiple hardware-virtualized guests, which means trekking between
guest and host kernels via a hypervisor, and where those kernels are entirely different (Linux
and illumos [2]). In this case, it was on a single host via localhost, and in an OS-virtualized
guest. These factors took the physical network components and lower-level network stack
completely off the investigation table and left only one kernel to study (illumos). This should
be easy, I thought.

The USE Method
I created a server instance and ran the same benchmark that the customer had. Benchmarks
like ab run as fast as they can and are usually limited by some systemic bottleneck. The
utilization, saturation, and errors (USE) method is a good way to identify these bottlenecks
[3], and I performed it while the benchmark was executing. The USE method involves check-
ing physical system resources: CPUs, memory, disks, network, as well as resource controls.
I discovered that CPUs, which I expected to be the limiter for this test, were largely idle and
also were not driven near the cloud-imposed limit. The USE method often gives me quick and
early wins, but not in this case.

By this point, I had run ab a few times and noticed that its results matched what the customer
had seen: the connection rate averaged around 1000 per second. Because I don’t trust any-
thing any benchmark software tells me, ever, I looked for a second way to verify the result
and to get more information about it. Running on SmartOS [4], I used “netstat -s 1” to print
per-second summaries, which also shows per-second variation (on Linux, I would have used
“sar -n TCP 1”).

22  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin
The Case of the Clumsy Kernel

$ netstat -s 1 | grep ActiveOpen

 tcpActiveOpens =728004 tcpPassiveOpens =726547

 tcpActiveOpens = 4939 tcpPassiveOpens = 4939

 tcpActiveOpens = 5849 tcpPassiveOpens = 5798

 tcpActiveOpens = 1341 tcpPassiveOpens = 1292

 tcpActiveOpens = 1006 tcpPassiveOpens = 1008

 tcpActiveOpens = 872 tcpPassiveOpens = 870

 tcpActiveOpens = 932 tcpPassiveOpens = 932

 tcpActiveOpens = 879 tcpPassiveOpens = 879

[…]

The first line of output is the summary since boot, followed by
per-second summaries. What caught my eye was the change
in connection rate: starting around 5000 per second, and then
slowing down after two seconds. This was not only a great lead,
it also rang a bell. I remembered that this type of benchmarking
can hit a problem involving TCP TIME_WAIT. This state occurs
when the SYN packet heralding a new connection is misidenti-
fied as belonging to an old connection and so is dropped by the
kernel. My test for this issue is to see how many connections
are stuck in TIME_WAIT, and whether the client’s ephemeral
port range is exhausted—which causes every new connection
to clash with an old one. I used netstat and saw that there were
only around 11,000 connections from a possible range of about
33,000. So much for that theory.

What else might be happening after two seconds? I drew a blank.

Thread State Analysis
My other go-to methodology is the thread state analysis (TSA)
method [5], where thread run time is divided into states, and
then you investigate the largest states. On Linux, I’d perform
this using tools including pidstat. On SmartOS, I used prstat
[6]. When ab was running at 5000 connections per second, this
showed that a single thread in node (the runtime process for
Node.js) was on-CPU 100% of the time. This was the kind of
CPU limit I had expected to hit. When ab slowed down, prstat
showed:

The node thread was now spending 81% of its time in the sleep
(SLP) state, meaning the thread is blocked waiting for some
event to complete, typically I/O. Were this performed between
two remote hosts on a network, I would guess that it was waiting
for network packet latency. But this was a localhost test!

One way to investigate the sleep state is to trace system calls
and their latency. I may find that the sleep time is during read(),
or accept(), or recv(), and I can investigate each accordingly. On
Linux, I’d use one of the (in-development) tracing tools, which
include ktap, SystemTap, dtrace4linux, and perf, or, if I didn’t
mind the overhead, strace. Because this was SmartOS, I used
DTrace and quickly found that the sleep time was in the portfs()
system call. The user-level stacks that led to portfs() told me
little: the threads were polling for events.

portfs() is part of the event ports implementation, which has a
similar role to epoll on Linux: an efficient way to wait on mul-
tiple file descriptors. Being blocked on portfs() meant we were
blocked on something else, but we didn’t know what, and it would
be a bit of work just to dig out the right file descriptors.

This was looking like a dead end. Imagine you have a thread
blocked polling on portfs(), or on Linux, epoll_wait(). What do
you investigate next?

Tracers can lead you to think in a thread-oriented manner. If
the thread time between A and B is of interest, then you look
for events that happened between A and B for that thread, and
measure their relative times. But what if the thread does nothing
between A and B, as was the case here? Time has been spent on
something else in the kernel—something mysterious and likely
involving other threads. There is no easy way to correlate this
activity, let alone know what activity or threads to trace to in the
first place.

Walking the Wakeups
There is a way, however, and it’s one that I’ve been using more
and more of late. My approach is to trace the kernel as it per-
forms wakeups: where one thread wakes up another sleeping
thread. This provides correlation and context: the stack trace of
the waker.

$ prstat -mLc 1

 PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/LWPID

63037 root 15 3.6 0.0 0.0 0.0 0.0 81 0.2 268 26 8K 0 node/1

12927 root 2.4 8.3 0.0 0.0 0.0 0.0 89 0.7 1K 42 16K 0 ab/1

[...]

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 23

sysadmin
The Case of the Clumsy Kernel

I used cv_wakeup_slow.d [7], modified to trace node processes.
This is a DTrace script I wrote earlier, which shows the stack
trace of the threads that woke up a specified target (the cv is
for conditional variable, which is how the sleep and wake up is
implemented by the kernel). I ran it with a 10 ms threshold and
caught:

./cv_wakeup_slow.d 10

[…]

 23 12326 sleepq_wakeone_chan:wakeup 63037 1 0 0 sched… 46 ms

 genunix c̀v_signal+0xa0

 genunix`port_send_event+0x131

 genunix`pollwakeup+0x86

 sockfs̀ so_notify_newconn+0x81

 sockfs̀ so_newconn+0x159

 ip`tcp_newconn_notify+0x198

 ip`tcp_input_data+0x1b4a

 ip`squeue_drain+0x2fa

 ip`squeue_enter+0x28e

 ip`tcp_input_listener+0x1197

 ip`squeue_drain+0x2fa

 ip`squeue_enter+0x28e

 ip`ip_fanout_v4+0xc7c

 ip`ire_send_local_v4+0x1d1

 ip c̀onn_ip_output+0x190

 ip`tcp_send_data+0x59

 ip`tcp_timer+0x6b2

 ip`tcp_timer_handler+0x3e

 ip`squeue_drain+0x2fa

 ip`squeue_worker+0xc0

This stack trace shows a thread slept for 46 ms and was woken
up by a TCP packet. Interpreting latency depends on application
needs and expectations for the target. In this case, I was expecting
the benchmark to stay on-CPU as much as possible, so any non-
zero sleep time was worth investigating. My choice of a 10-ms
threshold was intended to filter out noise from occasional sys-
temic perturbations, such as interrupts preempting the bench-
mark. These perturbations should be fast (sub- millisecond), and
unlikely to cause the 81% sleep time I saw earlier. But if a 10-ms
threshold came up empty-handed, I’d reduce that to 1 ms, and, if
need be, to 0 ms so I could see all events.

Looking down the stack shows tcp_timer() calling tcp_send_
data(). Huh? I took a quick look at the tcp_timer() code, which
largely handles TCP retransmission. Retransmits?

I checked the retransmission rate compared to the connection
rate using “netstat -s 1” (on Linux, use “sar -n TCP -n ETCP 1”).
When the connection rate from ab was high, the retransmit rate
was zero. But, when retransmits began to occur, the connection
rate slowed down. This correlation matched what I’d found with
the wakeup tracing: the benchmark was getting blocked waiting
on retransmits.

But…retransmits? Over localhost? How is this possible?

Retransmits can be a sign of a poor physical network, including bad
wiring, cables not plugged in properly, an overloaded network,
TCP incast, and other reasons. But this was localhost, where the
kernel is passing packets to itself, with no networks (reliable or
otherwise) involved. I mentioned this to a colleague, Robert, and
we were amused by the mental image of a clumsy kernel, drop-
ping packets as it passed them from one hand to the other.

We did remember some legitimate reasons why a kernel might
drop packets (firewalls, out of memory, etc.), which could lead
to retransmits. And there was always the possibility of bugs. It
wouldn’t be the first localhost bug I’ve seen, and I shuddered at
the thought of finding another.

I noticed something else about the retransmit rates: they seemed
to hit a ceiling of 100 per second. ab was simulating 100 clients,
and the TCP retransmit interval was one second. This fit: each
client could do at most one retransmit per second, because it
would then spend an entire second blocked on the retransmit. As
an experiment, I set the ab client count to 333, and, sure enough,
the retransmits moved to a ceiling of 333 per second.

I used another DTrace script I had written earlier [8] to trace
retransmit packets and show their TCP state. This script
quickly tells me whether the retransmitted packets were from
an established connection, or from a different stage of a TCP
session. Such kernel state information is not visible on the wire
(or “wire” in quotes, as this is localhost), so it cannot be observed
directly using packet sniffers. I hesitate to use packet sniffers for
this kind of investigation anyway, because their overheads can
change the performance of the issue I’m trying to debug.

./tcpretranssnoop_sdc6.d

TIME TCP_STATE SRC DST PORT

2014 Jan 4 01:31:31 TCPS_SYN_SENT 127.0.0.1 127.0.0.1 3000

2014 Jan 4 01:31:31 TCPS_SYN_SENT 127.0.0.1 127.0.0.1 3000

2014 Jan 4 01:31:31 TCPS_SYN_SENT 127.0.0.1 127.0.0.1 3000

[…]

The output showed that the sessions were in the SYN_SENT
state, so the packets were likely SYNs for establishing new
connections. I’ve seen this before, when the TCP backlog queue
is full due to saturation, and the kernel starts dropping SYN
packets. This can be identified from “netstat -s” and the tcpLis-
tenDrop and tcpListenDropQ0 counters on SmartOS (on Linux,
“SYNs to LISTEN sockets dropped” and “times the listen queue
of a socket overflowed”). I was kicking myself for not checking
these sooner—I should have suspected this problem for this type
of benchmark.

However, these drop counters were zero. Another dead end.

Given a TCP-related issue, I looked at the remaining counters
from the “netstat -s” output to study TCP more carefully, and I

24  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin
The Case of the Clumsy Kernel

saw that the rate of tcpOutRsts was consistent with tcpRetrans-
Segs. tcpOutRsts indicates TCP RST (reset) packets. Now I had
a new factor to investigate: RSTs.

TCP Resets
I was curious to see packet-by-packet sequences, to see if there
was a direct relationship between the RSTs and retransmits.
This may also reveal other packet types that are involved. To
do this, I could trace all packets or use a packet-capturing
tool. I decided to try the latter to begin with, despite the higher
overheads, because these tools typically do a good job of present-
ing packet and protocol details, which can help reveal patterns
across multiple packets. I could do the same with a tracing tool,
but in that case I’d need to code that presentation myself, which
takes time. I tried snoop (on Linux, tcpdump) to check how the
RSTs occurred, and I saw that they were happening in response
to the SYNs. Why would we RST a SYN? The port was open. Was
this TIME_WAIT?

Another DTrace script from my toolkit [9] showed whether pack-
ets were arriving during TIME_WAIT:

The output showed hundreds of packets per second. This was
the TIME_WAIT issue I had thought of at the very beginning,
although manifesting in a different way. Checking the ephemeral
ports from the snoop output and revisiting rate counters from
netstat, I could see that each of the 100 ab clients would aver-
age two successful connections per second and then block on
the third. This left two connections per client in TIME_WAIT
for the default of 60 seconds. So, for each second, there would be
about 2 x 100 x 60 = 12,000 connections still around in TIME_
WAIT, similar to the 11,000 connections I had seen earlier,
which I had thought was too few to matter. Picking an ephemeral
port from a range of about 33,000 when 11,000 were in use was
also consistent with encountering one clash out of every three
attempts. A final detail also fell into place: the “fast” rate of 5000
connections per second, seen in the earlier prstat output, lasted
about two seconds. That was the time it took to reach approxi-
mately 11,000 connections in TIME_WAIT.

To find the kernel code that was causing this problem, I could
follow the stack traces that led to the RSTs. I remembered that
I could do this using the DTrace TCP provider I had developed
while at Sun, although I couldn’t remember my own syntax! A
quick Internet search found my documentation, and I quickly
had the stack trace responsible.

Unfortunately, the stack trace didn’t look that special, with
tcp_send_data() called by tcp_xmit_ctl(), which can happen
for many different reasons. Fortunately, I found a gift from the
kernel engineer who wrote tcp_xmit_ctl(): its first argument
was a character pointer to a string explanation. Such strings are
trivial to trace, and I found that it contained the text “TCPS_
SYN_SENT-Bad_seq”. This took me straight to the problem
code, which was…familiar.

Too familiar. I started remembering more about the last time
I had debugged this: we had laughed about how silly it seemed
to have 60 seconds of TIME_WAIT for localhost connections
and had said that that should be fixed. In fact, it had been fixed
(thank you, Jerry!), but the customer had benchmarked on a
system with an older illumos kernel. Linux has a different way
to recycle sessions in TIME_WAIT and didn’t suffer this issue
in the first place. This was the reason that the competitor, on
Linux, was always running five times faster, without any slow-
down from retransmits.

The actual problem originates from the TCP specification: 16-bit
port numbers and a lengthy TIME_WAIT. Sessions are identi-

fied by a four-tuple: client-IP:client-port:server-IP:server-
port (or a three-tuple, if the server IP is not included).
Because this benchmark only has one client IP, one server
IP, and one server port, the only variable to uniquely identify
connections is the 16-bit client ephemeral port (which by
default is restricted to 32,768–65,535, so only 15-bits). After
(only) thousands of connections, the chances of colliding

with an old session in TIME_WAIT become great.

So the final verdict for the customer benchmark: there was a
real performance issue, and the results were misleading. It was
thought that our competitor was five times faster, but this wasn’t
the case for real production workloads. Node.js typically handles
thousands of clients making new connections every second, not
one client making thousands of new connections every second.
The workaround for the benchmark was to use multiple real
clients (not simulated ab clients), which brought the connec-
tion rate to around 5000 per second and steady, the same as our
competitor, for this workload. The use of HTTP keep-alives was
another workaround, as it avoided creating new connections
altogether.

In the end, I had amazed myself: moving directly from thread
time in the sleep state to TCP retransmits, by tracing which
thread woke up our sleeping thread. What if I had stopped at
pollsys() and not drilled down this far? That’s what had hap-
pened last time I investigated: I had eventually run “netstat -s”
and studied all counters, hoping for a clue, and found it. Hav-
ing solved the same problem twice, using two very different
approaches, gives me a rare opportunity to compare my own
debugging techniques. I much prefer the direct approach that I
used here—drilling down on latency and walking the wakeups.

./tcptimewait.d

TIME TCP_STATE SRC-IP PORT DST-IP PORT FLAGS

2014 Jan 4 01:56:16 TCPS_TIME_WAIT 127.0.0.1 54170 127.0.0.1 3000 2

2014 Jan 4 01:56:16 TCPS_TIME_WAIT 127.0.0.1 50427 127.0.0.1 3000 2

2014 Jan 4 01:56:16 TCPS_TIME_WAIT 127.0.0.1 37854 127.0.0.1 3000 2

[...]

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 25

sysadmin
The Case of the Clumsy Kernel

References
[1] ab - Apache HTTP server benchmarking tool:
http://httpd.apache.org/docs/2.2/programs/ab.html.

[2] illumos: http://illumos.org.

[3] USE Method: http://www.brendangregg.com
/usemethod.html.

[4] SmartOS: http://smartos.org.

[5] B. Gregg, Systems Performance: Enterprise and the Cloud
(Prentice Hall, 2013).

[6] prstat: http://illumos.org/man/1m/prstat.

[7] cv_wakeup_slow.d: https://github.com/brendangregg
/dtrace-cloud-tools/blob/master/system/cv_wakeup_slow.d.

[8] tcpretranssnoop_sdc6.d: https://github.com/brendangregg
/dtrace-cloud-tools/blob/master/net/tcpretranssnoop_sdc6.d.

[9] tcptimewait.d: https://github.com/brendangregg
/dtrace-cloud-tools/blob/master/net/tcptimewait.d.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you
 promote your organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we
offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our
multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation
in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community,
and the development of open source technology.

Learn more at:
www.usenix.org/supporter

26  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

SySadmin

Large Scale Splunk Tuning
D a v i D L a n g

David Lang is a site reliability
engineer at Google. He spent
more than a decade at Intuit
working in the Security
Department for the Banking

Division. He was introduced to Linux in 1993
and has been making his living with Linux since
1996. He is an Amateur Extra Class Radio
Operator and served on the communications
staff of the Civil Air Patrol, California Wing,
where his duties included managing the
statewide digital wireless network. He was
awarded the 2012 Chuck Yerkes award for his
participation on various open source mailing
lists. david@lang.hm

Splunk is a great tool for exploring your log data. It’s very powerful, but
still very easy to use. At lower log volumes (especially with the 500
MB/day, single-system, no-cost license) it’s basically install and use.

Because its paid licensing only depends on the amount of new data it sees
each day, you can scale its performance and available history for “only” the
cost of the systems to run it on. Very few tools can compete with Splunk for
unplanned searches over very large volumes of log data. It is very practical
to search hundreds of terabytes of log data and get the answer back within a
minute or two.

However, as you scale up Splunk to handle these larger log volumes, you move away from the
simple “anyone can do anything” install and use model and toward something that’s much
closer to the traditional database administration model, where you assign a small set of
people to become experts in Splunk internals, watching performance, changing the configu-
ration of Splunk, and influencing the queries sent to Splunk.

In the last article in this series [1], I talked about the ways that dashboards and reports can
kill your log query system and how to change them to minimize the load they create. In this
article, I will be talking about administering and configuring Splunk systems to perform
the log searches. I am specifically covering the configuration of the core servers, explor-
ing the conflicting goals that you will need to balance to match your particular data set and
workload.

Overview of Splunk Internals
The main tuning configuration settings that you will want to watch are the configuration
settings of your Indexes in Splunk. In Splunk “Index” is used in a way analogous to “data-
base” in a traditional DBMS like PostgreSQL, MySQL, or Oracle. You have one instance of
the main engine running, and it contains multiple databases/indexes inside it. Data is seg-
regated between the different Indexes (although not as firmly as among different databases
in a DBMS because you can issue one query that searches multiple Indexes). Unfortunately,
there is no one right way to configure Splunk any more than there is a right way to configure
any other DBMS. Everything is a tradeoff, where changing things will improve performance
under some conditions and decrease performance in other situations. This article maps out
the main configuration changes that you should be looking at, and what the benefits and
costs are to provide a set of guidelines to get you started.

The one user visible configuration you will need to manage is defining what logs will end up
in what Index. Users can limit their queries to specific Indexes, and user permissions can pro-
vide very solid access controls at the Index level. User permissions can provide weaker access
controls within an index by automatically appending search terms to any query the user
performs. I will go into more detail on the advantages and disadvantages of configuring what
logs go to what Index later in the article. The other configuration changes are not user visible.

To start with, I need to go over some low-level details of how Splunk is implemented and
related terminology.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 27

sysadmin
Large Scale Splunk Tuning

Splunk is a MapReduce type of system where one or more search
heads provide the search interface for the users and then parse
the query, determine which Indexes need to be searched (explic-
itly specifying them in the search or falling back on the user’s
default set of Indexes), and dispatch the appropriate sub-queries
to the various Indexer machines. The search head then combines
the results and does any additional processing that’s needed. In
most use cases, the bottleneck is going to be in the data retrieval
from the Indexer machines far more than the search heads.

When an Indexer receives a search from a search head, it applies
timestamp filters. The data in an Index is split up into “buckets”
no larger than a per-index configured size. Buckets are identi-
fied by the date range contained in that bucket, so Splunk doesn’t
even look in a bucket unless it contains the date range you are
searching for. Once the machine determines that a bucket
contains the date range, new versions of Splunk can use Bloom
filters [2] to perform a second check to see whether the query
term may be in that bucket. Bloom filters provide Splunk with a
very small chunk of data that can be used to definitively say that
the search term does NOT appear in the bucket. A Bloom filter is
128 K per bucket, and because it’s so small, it’s fast to search and
is likely to be cached in RAM. Bloom filters cannot say that the
data IS in the bucket; that requires a full index search.

Inside each bucket, Splunk keeps the raw logs in a set of gzipped
files and has a large amount of index data—this time using
index in its traditional database meaning of the term—data that
makes it faster to search than retrieving the raw log data. This
index data can easily be the majority of the storage space. I have
observed that with a bucket size of 10 GB, 3–4 GB is the gzipped
raw log data (holding ~30 GB of raw data), and the remaining 6–7
GB is index data. Other users have reported even worse ratios:
2 GB of compressed data (13 GB raw) with 8 GB of index data.
The Splunk documentation gives a rough estimate that your raw
data will compress to ~10% its original size, and Splunk will use
from 10% to 110% of the raw data size for indexes. For the rest of
this article, I use Index to refer to the high-level structure and
index when I need to talk about this lower level data. Luckily,
only Splunk admins need to deal with indexes, and even they
don’t need to do much with them. Unlike indexes in a traditional
database, Splunk indexes require very little configuration.

Buckets go through a series of states, with size, time, count, and
manual triggers to move a bucket from one state to the next.

Bucket States

HOT
◆◆ Writable: all new data that arrives is written to a Hot bucket.

◆◆ If there are multiple Hot buckets, Splunk will try to put logs
with different timestamps in different buckets to minimize the
range of timestamps held in each bucket. This is only effec-

tive if you have logs arriving at the same time with different
timestamps.

◆◆ Roll to Warm.

Warm
◆◆ Read-only.

◆◆ May be replicated to multiple machines for resiliency.

◆◆ Must live on the same file system as Hot buckets.

◆◆ Roll to Cold.

COLd
◆◆ Same restrictions as Warm, except that they can live on a dif-

ferent file system.

◆◆ Roll to Frozen via an admin configurable cold2frozen script.

FrOzen
◆◆ Not searchable.

◆◆ The default cold2frozen throws away the index data from the
bucket to reduce the storage requirements. Thawing such a
bucket requires re-indexing the raw data.

◆◆ Not managed by Splunk. The cold2frozen script should move
them outside of the directory tree that holds Cold and Thawed
buckets.

◆◆ Do not need to be online. These can be moved to offline storage
(tape, etc.).

◆◆ The Splunk admin runs a frozen2thawed script to copy the
bucket to Thawed. If the cold2frozen script throws away the
index data, the frozen2thawed script will need to re-index the
raw data. This can take a noticeable amount of time.

THaWed
◆◆ Logically the equivalent of Cold.

◆◆ Must live on the same file system as Cold buckets.

◆◆ Splunk expects these buckets to appear and disappear
 dynamically.

By allowing the data to be stored on two different file systems,
you can have a small amount of fast but expensive storage for
your “hot” and “warm” buckets that contain your most recent
data (which theoretically is more likely to be searched) and a
much larger amount of cheaper storage to hold your older data in
“cold” and “thawed” buckets.

The “read-only” status of the buckets isn’t quite true. There are
times when an admin should go in under the covers with some
of the Splunk command-line tools and modify the buckets (e.g.,
to split buckets that have bad timestamp ranges or that you are
splitting into two Indexes), but such work is not supported by
the Splunk GUI and is frowned upon by Splunk Support unless

28  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin
Large Scale Splunk Tuning

you are doing it under the direction of the Splunk Professional
Services or Support teams. If you are using Splunk data replica-
tion, the buckets will be modified to indicate which machines
that bucket exists on.

To optimize your Splunk cluster, you will need to balance the
following goals to match your system, log volume, and query
 patterns. There is no one right way to tune Splunk.

Goal #1
Make your buckets as large as you can.

The larger the bucket, the more efficient it is to search for things
in the bucket. Searching through the indexes within a bucket
is a O(log(n)) task, so searching through two buckets of size N
will take just about twice as long as searching through a single
bucket of size 2*N.

Goal #2
Appropriately set the number of hot buckets per Index.

If you have data arriving from machines that are providing
significantly different timestamps, mixing this data into a single
hot bucket will make each bucket’s timestamp range wider by
the range of timestamps considered “now” by your systems. This
means that anytime a search is done against this wider time
frame, this bucket will need to be searched. If you have buckets
that roll every three hours, but combine local timestamps from
every time zone into the same bucket, you will have to search
eight times as many buckets than if you had all the systems
reporting the same time.

If you have a machine whose clock is wrong and is generating
logs with wildly wrong timestamps, it can be FAR worse than
this (think about a system that has its clock off by months or
years). If you keep logs in Splunk for long time periods, and do
searches against old data routinely (security forensics searches
are a good example), a problem like this can hang around for a
very long time. This is one of the times where it’s worth looking
at manipulating the bucket contents to either split the bad data
out or correct it.

If you cannot reliably set your systems to a uniform time, look at
the time frame that a single bucket covers and see if you would
benefit from allowing more “hot” buckets so that the different
time zones each end up in their own hot bucket. If one hot bucket
covers 48 hours, and you have two adjacent time zones, it’s prob-
ably not worth splitting. However, if one hot bucket covers less
than an hour, and you have two offices in time zones 10 hours
apart, it’s a very large win to have two hot buckets.

Ideally, you should use UTC instead of local time on all systems
so that you also avoid daylight savings-related issues. If you have
systems running on local time in different time zones, there

are many ways that local times (without the time zone info)
can make their way into your logs. For example, the traditional
syslog timestamp does not contain time-zone information. Logs
generated by applications frequently embed local times in the log
messages themselves.

If you frequently have systems generate logs with wildly wrong
timestamps (systems that boot with clocks off by years), add an
extra hot bucket to catch these stragglers.

Goal #3
Segregate your data so that Splunk can easily rule out the need to
search a bucket because it is in a different Index or because it can
be eliminated via Bloom filters.

If you have logs that are distinct enough from each other that
it’s unlikely that you will be searching in both sets of logs at the
same time (e.g., Web server and router logs), put the different logs
in different Indexes. You can still search both if you need to by
specifying both Indexes in your query, but if you are only search-
ing for one type of log there will be fewer buckets to search.

Similarly, if one application generates logs that look very differ-
ent, and you are likely to be searching for something that does
not appear in one of the subsets of logs, putting those logs in a
different Index and searching it by default will be a win because
the Bloom filters will quickly exclude most of the buckets that
you don’t care about, so the resulting search will have far fewer
buckets to search.

Goal #4
Have the logs spread out evenly over as many indexer systems as
you can so that no matter what time frame you are searching for,
you can utilize all of the systems. If your data is not distributed
evenly across the systems, the system that has the most data will
take longer to do its portion of the search and will be the limiting
factor in your performance.

Splunk scales horizontally very well. As a result, the more
systems that you have working on a given query, the faster your
results will be returned.

With the new data replication features introduced in Splunk 5,
and new management features expected in Splunk 6, you can
have one box index the data and then use the Splunk replication
to spread the data across multiple systems, using all of the sys-
tems to perform searches on the Index. In Splunk 5, the manage-
ment tools do not allow you to do this effectively.

The other approach is to spread the data across different Indexer
machines as it arrives, with each machine processing a portion
of the data for that time frame. If you are using the Splunk agent
to deliver the logs, you can use its load balancing mechanism to
spread the data. If you are using syslog to deliver the logs, you

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 29

sysadmin
Large Scale Splunk Tuning

can use any appropriate load balancing mechanism to spread
the logs across the machines. Note that you do not need to try
and be perfect here; even something as crude as sending several
seconds’ worth of logs to one machine, and then switching to
the next machine for the next several seconds is going to be
good enough in practice, because your search time frames are
generally in minutes at the most precise and can be in years. As
the load scales up, you will find that one machine cannot keep up
with the data flow, and load balancing will let you use multiple
machines. In this case, try to tune the bursts of traffic to each
machine to be small enough that the entire burst gets handled
in a reasonable time. It would not be reasonable to send all logs
for a five-minute period to one machine if it takes that machine
an hour to process those logs. However, it would probably be
very reasonable to send all logs for a second to that machine if it
only takes it 12 seconds to process the logs; it’s almost certainly
reasonable to send 1/100 of a second worth of logs to a machine
and have them be processed in 0.12 seconds.

Remember that if the data is spread unevenly across the systems,
you will end up waiting for the slowest system to finish. Think
about failure conditions when you are planning this, and if you
have an extended outage that causes the systems to become
unbalanced, you may need to go in under the covers again to get
them closer to balanced.

Goal #5
The number of indexes times the number of hot buckets per
index times bucket size needs to not only fit in RAM, but leave
enough RAM left over for your searches (both the state info
needed for real-time searches, and the cache space needed to
effectively retrieve data from disk for your searches).

Note that this goal is in direct conflict with the earlier ones. The
earlier ones drive you toward more indexes, more hot buckets,
and larger bucket sizes, whereas this goal is saying that you need
to minimize the product of these three values.

Also, if you have hot buckets that do not receive new logs for
an extended time frame, they may end up getting pushed out of
cache by the OS, resulting in worse performance as they have to
get pulled back in.

When you do a search, Splunk will have to do its search through
the Bloom filter and indexes of that bucket. The searches
through the indexes are random searches over a large volume
of data. If you have very large volumes of data compared to the
RAM available for disk caching on your systems (after you
account for the OS, the hot buckets, and the real-time searches),
you will not have this data cached and so will have to read it from
disk. This is both a very common case (it’s common to have a
single Splunk node with multiple TBs of indexed data, and it’s

unusual to have more than a few tens of GB of RAM available for
caching) and a worst case random read load for spinning drives.
If the version of Splunk you are running allows it, and you can
afford it, putting the Bloom filter files on SSD storage can go
a long way towards mitigating the cost of finding and reading
them in after they are pushed out of the systems’ disk cache.

Because a new log arriving can result in changes to the bucket
indexes that result in rewriting large portions of the index data,
you really want to have all of your hot buckets in RAM at all
times; if any of them get pushed out to disk, you are likely to have
to retrieve the data and rewrite it in the near future.

Remember that you do not have to put logs for every Index on
every machine; you can split the Splunk cluster into multiple
sub-clusters, with each sub-cluster holding specific types of logs.

Goal #6
Minimize the number of buckets that need to be retrieved for
each query.

This goal requires a lot more explanation because it is in direct
conflict with the earlier goals.

If you commonly do searches across different Indexes (if you
have one Index per application, but need to look for someone
accessing any application, for example), consider combining the
Indexes together. The resulting Index will be less efficient to
search than either Index on its own, but it may be significantly
faster to search the combined Index than the two separate
Indexes for a single query.

In addition, because the bucket sizes are constant, you may find
that the time frames you commonly search are poorly matched
with the time ranges that the buckets end up containing.

For example, given four log sources, each generating the same
amount of data, you put them each into a separate Index, and the
bucket size combined with your data rate means that each bucket
contains four hours’ worth of logs. A search for something across
all four log sources over the last hour will still have to search one
bucket per Index for a total of four buckets.

If, however, you were to combine all four log sources into a single
Index, then each bucket will contain one hour’s worth of logs, and
a search over the last hour will only have to search a total of one
bucket.

On the other hand, if your typical search is instead limited to a
single log source, but it covers the last day, putting each applica-
tion in its own Index will require searching six buckets, while
having all four applications in the same Index will require
searching 24 buckets.

30  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin
Large Scale Splunk Tuning

Unless you are really sure that you have people doing a lot of
searches of a specific set of data, I suggest starting out with
everything in one Index and splitting it out later as you discover
the true query patterns of your users.

Even if you have people interested in only a specific set of data,
if they don’t bother restricting their search to a particular Index,
their query will be evaluated against all the indexes that their
user permissions default to.

Special Case: Summary Log data
Summary log data is a special case. Because it’s fairly small and,
as a result, queries against a time-range of summary data tends
to want to retrieve all the data, it can be a good idea to have a
separate Index for your summary data. Instead of setting the
bucket size for the summary data Index, set the maxHotSpan-
Secs parameter to either 86400 (1 day) or 3600 (1 hour), and have
Splunk rotate the hot buckets every hour every day at midnight
or on the hour. The buckets are smaller, so a report over a mas-
sive time range will be a little less efficient than a large bucket,
but the smaller bucket sizes match the time limits of your que-
ries nicely, and it’s much better to search for an hour’s worth of
data in a one-day bucket than in a three-week bucket. Summary
data is also going to be searched far more frequently than normal
data (largely due to dashboards).

As a result of this, and the fact that the data tends to be small, in
many cases it makes sense to set up two separate sets of serv-
ers: one to handle your summary data, the other to handle your
main data. The servers you use to handle the summary data do
not need to have the super-beefy disk systems that your main
data systems have; it’s likely that you can set up systems that
will keep the working set of the data that your users are query-
ing in RAM. At that point, CPU will become your limiting factor
instead of the disk I/O that is normally the first limitation. By
setting up a separate set of systems to serve the summary data
to dashboard users, you ensure that the dashboards are not going
to impact the performance of your main systems: the worst they
will do is slow each other down as well as slow report generation.

Conclusion
Splunk can be a wonderful tool for exploring your logs. It works
very well for a wide range of user expertise. But if you don’t have
someone with a high level of expertise managing the system
(very similar to the way that you would not dream of running a
large Oracle system without a good DBA), you are likely to end up
with a very poorly performing system. I’ve seen a Splunk cluster
configured such that it would have required 40 TBs of RAM to
cache all the hot buckets Splunk was trying to manage. I’ve also
seen Splunk get to the point where the dashboards were showing
data over three hours old because of poor tuning and bad usage
patterns.

I am not saying that you need to prevent people from using
Splunk, even for dashboards and reports. However, you do need
to avoid giving everyone admin rights to Splunk, and you need to
have a team of experts monitor and configure Splunk and how
it’s used so that you can maintain good performance of your sys-
tem. If you don’t do this, you are going to either end up building
a cluster that is huge and expensive compared to what it really
needs to be, or have it slow to a crawl.

This article is the latest in this series on logging topics [3]. If
you have requests for topics for future articles, please email
me (david@lang.hm) or Rik Farrow (rik@usenix.org) with your
suggestions.

References
[1] “Logging Reports and Dashboards,” ;login:, vol. 39, no. 1,
 February 2014: https://www.usenix.org/publications/login
/feb14/logging-reports-dashboards.

[2] http://docs.splunk.com/Documentation/Splunk/5.0.2
/indexer/Bloomfilters.

[3] http://www.usenix.org/login/david-lang-series.

mailto:david@lang.hm
mailto:rik@usenix.org
http://docs.splunk.com/Documentation/Splunk/5.0.2/Indexer/Bloomfilters
http://docs.splunk.com/Documentation/Splunk/5.0.2/Indexer/Bloomfilters

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 31

sysadmin

/var/log/manager
Let’s Find Someone to Blame
A n d y S e e l y

Andy Seely is the manager
of an IT engineering division,
customer-site Chief Engineer,
and a computer science
instructor for the University of

Maryland University College. His wife Heather
is his init process and his sons Marek and Ivo
are always on the run queue.
andy@yankeetown.com

If two people are in a boat and lost at sea, both have to row to survive; one
doesn’t get to be the captain and the other the sailor. In a large organi-
zation with layers of management and silos of responsibility, figuring

out individual responsibilities and root cause of a failure is a lot more diffi-
cult than just blaming someone and moving on. Assigning blame is actually
pretty easy. Truly understanding failure and finding a way to appease the top
while improving the organization’s overall effectiveness takes real manage-
ment skill.

The Manager’s Problem: The Product Release Failed
The VP of communications and technology came to me after we got news about a problem
with our latest product release. “I want you to deal with your engineer. He totally messed this
up.” That’s my job. The engineer works for me. I’m responsible for his actions. The engi-
neer didn’t do anything wrong, but the VP needed blood from his own organization and had
already decided who he was going to blame: my engineer.

I’m a senior manager in the organization, but it’s not like I own the company. At the executive
level above me, vice presidents like mine can have motivations that are sometimes mysteri-
ous. My goals are simple: empower people to do their best work towards making the systems
perform business functions correctly and within performance parameters, as cheaply as pos-
sible. Sometimes that means knowing people, understanding their motivations, and clearing
a path for them. And sometimes that means taking a bullet. This day, I took the bullet.

The Manager’s Choice: Assigning Blame or Understanding the
Bigger Picture
It’s a complex organization, with multiple echelons of the organization and several manage-
ment chains involved. At least six people are involved in the product, not including their
individual managers and chains of command. It’s a complex product. From requirement,
to build, test, security, QA, release, to deployment, through the occasional post-production
error, the product passes through a lot of gates and a lot of hands. The process is mature and
usually works well, but when something goes awry it’s difficult to find clear fault. In my opin-
ion, quick blame is really a luxury anyway; understanding the true root cause of a failure is
always about learning and improving and, honestly, sometimes about blame.

My investigation showed that our release was done correctly, by the book, with no problems.
Maybe it was a little rushed because of a shorter than usual operations deadline. Maybe the
engineer who puts the package together had this “normal rush job” to do and he had another
rush job to do at the same time. Maybe the security review was done by the second-string
technician this time. Maybe there were externalities for which we didn’t test, because our
test environment is not set up for everything under the sun. Maybe a lot of things happened,
but ultimately the release passed all the gates and met the deadline.

We only got word of a problem after the release was in production for a few days. A user of a
remote service provided by an external company was getting failures that were traced back
to a local Java dependency. We had updated our Java Runtime Environment to the current

32  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

sysadmin
Let’s Find Someone to Blame

version recommended by Oracle and all our internal Java depen-
dencies passed, but this remote application had some poorly
coded dependency on the minor revision number. This user had a
direct line to the top of our organization and made his problem a
high-level issue that rolled downhill onto my team.

The Manager’s Challenge: Threading the
Least-Worst Path Through Failure
I’m the manager of the division. I work for a VP and I have
branch managers who work for me. I am dealing with a product
release that is considered a failure by those above me and a suc-
cess by those below me.

There are three ways this might play out.

1. I defend my team to my VP. They did it right, the release was
textbook-correct, and the failure case is not on them, it’s on the
external organization that didn’t update their code to work with
ours. The result will be that the VP will have to show his bosses
he took action, and since he can’t control the external organiza-
tion he’ll look at me as the thing he can control. After all, if the
release was both “textbook” and “failure,” then the textbook,
my textbook, was flawed and I refused to take action. I sacrifice
either my credibility or my job, and neither result will actually
help improve future releases.

2. I act as pass-through for the heat. I write up the integration
branch manager, and then he writes up his engineers who built
the release. Or I just save him the trouble and write him up and
fire his guy for him. Or I fire him and his guy. Make an example
out of everyone and prove myself to be “he who manages by
fear,” creating a demoralized workforce. This path is easy.
Holding others accountable rarely costs you your own skin,
as long as you’re willing to blame employees for causing their
own demoralization. This approach will result in losing the
people whom you have depended upon the most, who know the
systems and processes the best, and it will set the stage for a
working environment where the only people who stay are those
for whom fear is actually an effective motivation.

3. I find the middle ground where my VP can get satisfaction, my
crew can be proud of their work, and people can get the chance
to improve the process and release failure-resistant products.
As a side effect, I can show organizational maturity through
flexibility and introspection. I stand in front of the VP and
take the blame, which is not entirely misplaced because it’s my
organization’s release that was found wanting, but I defy the de-
mand for counseling or firing people. I turn to my team and hold
them accountable, without blaming them. I challenge them to
find a way to prevent this type of failure in the future. Not just
this specific failure, but to define this as a class of failure and fix
the process. Evolve.

Empower and Challenge People to Get Results
that Really Matter
If done well, the middle-ground approach sets the stage for
future success and helps to mature the organization. The team
sees that the manager took responsibility and didn’t just pass
blame directly through. A team that already takes pride in their
product will respond well to a challenge to make that product
stronger.

I’m the manager. I take the heat and hold the line, while giving
the team a new goal. The team sees how much I have on the line,
and they’ll work hard for me because I put myself out there for
them, and they’ll produce an improved product. My VP gets what
he needs to answer his own masters, and maybe is slower to seek
blood the next time. And me? I get the pleasure of having that
rare opportunity not to be the boss, not to be a manager, but to be
a leader, equal parts showing the way and being fully invested in
the outcome of the whole team. As a leader, if my own skin isn’t
in the game then nothing I do really counts.

How Did It End?
We found the actual culprit for the failed release. As everyone
had said, it was a textbook product release. We discovered that
a chapter of our textbook was, indeed, flawed. Every application
had passed its respective application validation checklist, but
there was no governance for how those checklists were reviewed
and updated. We had been relying on sysadmins and engineers
to create the validation checklists, and in some cases they had
no idea how the applications were actually used by functional
operators.

A simple solution was to add a user validation section to every
application validation checklist in the product release pack-
age; before the product is released, key users of each applica-
tion will be asked to validate the function of their applications.
This added step gave us some immediate benefits. We gained
improved user engagement, which gave us greater understanding
of how our product was used, and every release was now checked
by the people who actually depend on it. Now if a user discovers a
post-release product failure in the future, he’s vastly more likely
to call his new friends in the engineering shop than to call the
CEO. Through understanding real responsibility and holding the
line on the blame game, we found the right path to keep our best
people on the team and deliver a better product. I’m the manager.
That’s my job.

The USENIX Security Symposium brings together researchers, practitioners, system
administrators, system programmers, and others interested in the latest advances in the
security of computer systems and networks. The Symposium will include a 3-day technical
program with refereed papers, invited talks, posters, panel discussions, and Birds-of-a-
Feather sessions.

www.usenix.org/sec14

Stay Connected...

www.usenix.org/facebook

twitter.com/USENIXSecurity

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

23rd USENIX Security Symposium
AUGUST 20–22, 2014 • SAN DIEGO, CA

EVT/WOTE ’14: 2014 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
August 18–19, 2014
www.usenix.org/evtwote14
USENIX Journal of Election Technology
and Systems (JETS)
Published in conjunction with EVT/WOTE
www.usenix.org/jets

CSET ’14: 7th Workshop on Cyber Security
Experimentation and Test
August 18, 2014
www.usenix.org/cset14
Submissions due: April 25, 2014

NEW! 3GSE ’14: 2014 USENIX Summit on Gaming,
Games, and Gamification in Security Education
August 18, 2014
www.usenix.org/3gse14
Invited submissions due: May 6, 2014

FOCI ’14: 4th USENIX Workshop on Free and
Open Communications on the Internet
August 18, 2014
www.usenix.org/foci14
Submissions due: May 13, 2014

HotSec ’14: 2014 USENIX Summit on Hot Topics
in Security
August 19, 2014
www.usenix.org/hotsec14

HealthTech ’14: 2014 USENIX Summit on Health
Information Technologies
Safety, Security, Privacy, and Interoperability
of Health Information Technologies
August 19, 2014
www.usenix.org/healthtech14
Submissions due: May 9, 2014

WOOT ’14: 8th USENIX Workshop on Offensive
Technologies
August 19, 2014

The following co-located events will precede the Symposium.

34  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

NETWORKINGSDN Is DevOps for Networking
R o b S h e R w o o d

Rob serves as the CTO for
Big Switch Networks, where
he spends his time internally
leading software architecture
and externally evangelizing SDN

to customers and partners. Rob is an active
contributor to open source projects such as
Switch Light and Floodlight as well as the Open
Compute Project. He was the former chair
of the ONF’s Architecture and Framework
Working Group as well as vice-chair of the
ONF’s Testing and Interoperability Working
Group. Rob prototyped the first OpenFlow-
based network hypervisor, the FlowVisor,
allowing production and experimental traffic to
safely co-exist on the same physical network
and is involved in various standards efforts and
partner and customer engagements. Rob holds
a PhD in computer science from the University
of Maryland, College Park.
rob.sherwood@bigswitch.com

Caught in a perfect storm of technology trends—including public and
private cloud, Bring-Your-Own-Device (BYOD), converged storage,
and VoIP—computer network management is reaching unprec-

edented levels of complexity. However, unlike server administrators whose
tools have evolved with the times, network administrators are stuck using
20+-year-old box-by-box management tools. A new technology trend, Soft-
ware-Defined Networking (SDN), promises to simplify network manage-
ment. Although it seems like every vendor has its own definition of SDN, in
this article, I make the claim that SDN is to networking what the DevOps
movement is to server management: a way of making systems management
easier to manage by adding programmable APIs that enable better automa-
tion, centralization, and debugging. In this article, I try to provide back-
ground on SDN, to snapshot its current and highly fluid state, and end with
some predictions for what to expect next.

Networking Needs a “DevOps”
All types of networks, including campus, datacenter, branch office, wide area, and access
networks, are growing at unprecedented speeds. More people with more devices are coming
online and are accessing an increasing plethora of data. Although this is good for society at
large, the reality is that networks themselves are becoming increasingly difficult for “mere
mortals” to manage. In the past, sensitive data would exist on a single, dedicated, physi-
cal server in a fixed location with a clear physical DMZ policy “choke point” as the divide
between the trusted and untrusted parts of the network. Today, sensitive data can be spread
across multiple databases potentially distributed throughout the cloud on virtual machines
that change physical location depending on load; thus, the single policy “choke-point” is a
thing of the past.

While low-level packet forwarding devices have made amazing advances with speeds mov-
ing from 100 Mb/s server ports to 10 Gb/s and beyond, the management tools needed to oper-
ate and debug these devices have stagnated. Indeed, operators of today use the same basic
command-line syntax and tools to configure routers as when I first started administering
networks 20 years ago. The only thing that seems to have changed is that we used to telnet to
these boxes but now we use SSH! Furthermore, network administrators are caught between
a rock and a hard place because the management interfaces for the network devices are typi-
cally closed, vertically integrated systems that resist enhancement or replacement.

Despite going through the same growing pains, server administrators dodged these problems
with a variety of automation and centralization tools that can roughly be grouped under the
term “DevOps.” DevOps infuses traditional server administration with best practices from
software engineering, including abstraction, automation, centralization, release manage-
ment, and testing. The server ecosystem is quite different from networking because it has
many open interfaces: server admins can supplement, enhance, or replace software com-
ponents of their systems, including configuration files, whole applications, device drivers,
libraries, or even the entire operating system if desired. As a result, server administrators

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 35

NetworkiNg
SDN Is DevOps for Networking

were able to manage growing server complexity by replacing and
automating critical components of their management stack with
tools such as Puppet [1], Chef [2], and others. In other words,
although server administrators have the same problems in
terms of scale and complexity as network administrators, they
were able to solve their problem with DevOps-style deployments
because the server ecosystem has open and programmable
interfaces.

SDN Promises an Interface to Unlock Networking
Centralization, automation, and better debugging sound like
good goals, but the closed and vertically integrated nature of
most switches and routers makes it unclear how to apply them
to networking. SDN promises to create an application program-
ming interface (API) for networking and thus unlock DevOps’
same desirable properties of automation, centralization, and
testing.

The term SDN was first coined in an MIT Technology Review
article [3] by comparing the shift in networking to the shift in
radio technology with the advance from software defined radios.
However, the term is perhaps misleading because almost all
networking devices contain a mix of hardware and software
components. This ambiguity was leveraged and exacerbated by a
litany of companies trying to re-brand products under the “SDN”
umbrella and effectively join the SDN bandwagon. As a result,
much of the technical merit of SDN has been lost in the noise.

The SDN movement, originating from Stanford University
circa 2007, was first exemplified by the OpenFlow protocol.
OpenFlow is an open protocol and is currently maintained by
the vendor-neutral Open Networking Foundation [4]. Open-
Flow exposes a remote API for managing the low-level packet
forwarding portions of network devices, including switches,
routers, access points, and the like. At a high level, OpenFlow
abstracts packet forwarding devices as a series of “match action”
tables. That is, when a packet arrives at a device, it is processed
through a series of prioritized lookup tables of the form “if the
packet matches MATCH, then apply LIST OF ACTIONS,” where
the list of actions can be anything from “send packet out port X,”
“decrement TTL,” or rewrite one of the packet header fields. By
creating this abstraction layer and interface, network admins
can, in a programmable way, manage the forwarding rules of
their networks in an automated and centralized manner.

Many-Layered APIs of SDN
From the first successes of OpenFlow [5], SDN began to expand
and consider new use cases and deployments. As with any
vibrant software ecosystem, many APIs—both complementary
and competing—have begun to emerge. In addition to APIs like
OpenFlow for managing packet forwarding logic, interfaces for
managing configuration, tunneling, as well as more traditional

APIs for statistics monitoring and debugging are being viewed
as SDN. Most recently, much like with servers, the lowest-level
“bare metal” hardware APIs are being exposed, allowing enter-
prising startup companies and DIY types to write their own
network operating systems from the ground up. In other words,
SDN is bringing the networking ecosystem closer to the server
DevOps ecosystem where an administrator can choose the right
API/tool for the task and automate and centralize common tasks.

As with any complex and rapidly evolving system, tracking all of
the APIs, protocols, ideas, and works-in-progress is impractical,
but here I try to provide a hopefully representative snapshot of
the state of SDN. Figure 1 provides a visible map of some of the
existing layers.

Forwarding Plane APIs
Probably the most important and novel aspect of SDN is the
ability to programmatically manage low-level packet forward-
ing. OpenFlow itself has evolved quite a bit since its debut 1.0
release in 2009. More modern versions of OpenFlow have added
support for richer packet actions (e.g., NAT, tunneling, meter-
ing), more extensible matches, multiple tables, IPv6 support,
and even batched “bundled” commands with the most recent
version: OpenFlow 1.4.0 [6]. In addition to new forwarding
capabilities, the Open Networking Foundation (ONF) is explor-
ing better abstractions for wired forwarding hardware as well
as for optical and wireless technologies. Rather than replacing
traditional routing forwarding decisions, the IETF’s Interface to
the Routing System (I2RS [7]) seeks to provide an API for merg-
ing programmatic packet forwarding with packet forwarding
decisions inferred from traditional routing protocols like BGP,
IS-IS, OSPF, and others. Not to be left out, traditional network-
ing vendors have created their own forwarding APIs, including
Cisco’s onePK and Juniper’s Junos Space.

Configuration and Statistics APIs
Besides low-level packet forwarding, networking devices have
a dizzying array of tunable configuration parameters and
statistics. Many protocols, such as SNMP and Netconf that long
predated OpenFlow exposed APIs (“MIBs” in SNMP, “schemas”

Figure 1: SDN has many layers, from the traditional APIs, to the forward-
ing APIs that were the first target of SDN, to the bare metal APIs.

36  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

NetworkiNg
SDN Is DevOps for Networking

in Netconf), allow network admins to tweak configuration set-
tings and monitor statistics like port counters. Newer APIs, like
ONF’s OpenFlow Config protocol [8] and Open vSwitch’s DB man-
agement API [9], supplement existing APIs by adding support for
managing tunnels and virtual switches (i.e., by adding and remov-
ing virtual ports). Additionally, many of these APIs have support
to enable and configure packet sampling protocols like NetFlow
and sFlow, which are critical for in-depth traffic analysis.

Bare Metal and Open Hardware APIs
Whereas the above APIs build on top of existing vendor soft-
ware, it is increasingly possible to write directly to the low-level
hardware APIs and replace vendor software altogether. By com-
parison, if writing packet forwarding rules is like writing your
own application, then writing to the bare metal hardware is like
writing your own operating system. Although writing the entire
network stack is not for the faint-of-heart, it can be necessary to
overcome limitations of existing vendor stacks or to accomplish
something completely revolutionary. Writing to the bare metal
is made possible by two recent changes in the ecosystem: a stan-
dardized network device boot loader and open ASIC APIs.

The Open Network Install Environment (ONIE [10]) is an
open source boot loader available for an increasing number of
networking devices, particularly datacenter switches. In server
terms, ONIE provides functionality that is one part PC BIOS and
one part grub/lilo/sysimage. A network admin can use ONIE to
add/remove/reset the switch operating system over the network.
In other words, using ONIE, it is possible to network boot (or
even dual boot!) an arbitrary network operating system on to an
ONIE-enabled network device. Think of it as PXE for switches
and routers. ONIE is hosted and sponsored by the Open Compute
Project (OCP [11]), which, among other aspects, includes open
hardware designs and specifications for networking devices.

To achieve high speeds, modern networking typically requires
special purpose hardware, such as an Application-Specific Inte-
grated Circuit (ASIC). Historically, the APIs to program these
ASICs have been closed and access to them tightly controlled via
strict non-disclosure agreements. However, more recently, ASIC
manufacturers are moving to the “bare metal” bandwagon and
have started to make the APIs public. For example, ASIC manu-
facturers Centec and Mellanox have begun to publish their APIs
in their Lantern [12] and Open Ethernet [13] projects, respec-
tively. Other ASIC manufacturers seem likely to follow suit, so
this trend seems likely to increase over time.

Impact from Market Forces
Although SDN is primarily a technology movement, it would be
an error to assume that its traction is purely a result of a superior
architecture. As technologists, we like to ignore the economics,
but history is filled with technologies that didn’t succeed despite

superior design. In particular, technologies similar to SDN have
come and gone in the past without comparable traction, includ-
ing IETF’s ForCES [14] and the field of active networking. So
a critical question is, why is SDN achieving industry traction
where similar technologies have not?

The answer is that the underlying market forces of networking
have significantly changed. Large datacenters mean that more
money is being spent on networking than ever before, which
encourages both more competition as well as bigger gains from
commodities of scale. Historically, packet forwarding ASICs
were only created by pure networking vendors for inclusion into
their own vertically integrated products. As a result, the market
rewarded vertically integrated closed systems because that best
protected the companies’ ASIC investments. But, with the rise of
large datacenters, sufficient ASICs were being sold that highly
specialized “ASIC only” companies became commercially viable.
Soon, companies like Broadcom, Marvell, Fulcrum, and others
began to create switching ASICs and sell them to others without
owning the full solution. Competition for this new commodity
“merchant” silicon space increased, and now we are beginning to
see strong market forces come into play in terms of lower costs
and additional features. This is all because merchant silicon
companies have the incentive to sell more and better ASICs—not
more and better boxes. It is a result of this competition that these
same companies are breaking industry norms and publishing
their APIs—and thus enabling SDN.

Another effect of large datacenters is the convergence of com-
pute, storage, and networking. Administrators are increasingly
buying these resources as integrated solutions, and vendors
are reacting in turn. The result is that traditional networking
companies are starting to sell products that integrate compute
and storage (e.g., Cisco’s UCS product), and traditional com-
puter companies are starting to acquire networking companies
(e.g., HP bought 3Com, Dell bought Force10, IBM bought Blade
Networks). The once very stable networking market is full of
new and significant competition, with each company looking
for ways to differentiate itself from the rest—including open-
ing up networking devices by implementing SDN protocols like
OpenFlow.

Conclusions and Predictions
Networking administrators are adopting SDN for many of the
same reasons that server administrators adopted DevOps:
automation, centralization, and ease of debugging. Historically,
network devices have been vertically integrated closed software
stacks with few mechanisms to replace or extend their function-
ality. However, recent changes in the market are causing vendors
to shift their business models and open up their devices to pro-
grammable access through a suite of APIs. The result appears
to be a trend towards a more extensible and vibrant third-party
software-driven networking ecosystem.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 37

NetworkiNg
SDN Is DevOps for Networking

Perhaps more interesting than any one specific API are the
appli cations that are enabled by using combinations of APIs.
For example, imagine an application that makes API calls to all of
the devices in the network to set up sFlow sessions, monitor the
dynamically changing traffic, and then make further API calls to
readjust traffic engineering policies via OpenFlow. Such combina-
tions will allow networks to be more easily managed and scale up
to the demands from BYOD, VoIP, and future technology trends.

In terms of predictions, my big claim is this: after 20+ years of
closed software stacks in networking devices, the genie is out of
the bottle. I believe that as in the transition from the IBM main-
frame to the PC or from closed cell phones to modern, open API
smartphones, we will see networking go through a renaissance.
We will see switch operating systems and applications that are
entirely open source, and applications that do more niche and
specialized tasks. We will see the cost of hardware drop signifi-
cantly: just to put a number to it, I believe we will see the cost
of 10G Ethernet switches drop below $75 per port before 2015.
This explosion of new ideas, lower cost hardware, and innova-
tive networking features will change how networking consum-
ers view their networks. In other words, I believe that with an
open network, operators will be empowered to create and deploy
innovative new features that will change networking from a cost
center into a new source of revenue in terms of novel products for
their customers. The really fun question becomes, what will be
the killer app that no one thought of until everyone needed it?

References
[1] Puppet: http://www.puppetlabs.com.

[2] Chef: http://www.getchef.com.

[3] Kate Greene, “10 Breakthrough Technologies: TR10—
Software-Defined Networking,” MIT Technology Review,
March/April 2009: http://www2.technologyreview.com
/article/412194/tr10-software-defined-networking/.

[4] Open Networking Foundation: https://www
.opennetworking.org.

[5] Open Networking Foundation, Solution Briefs: https://
www.opennetworking.org/sdn-resources/sdn-library
/solution-briefs.

[6] Open Networking Foundation, OpenFlow 1.4.0 Wire
 Protocol Specification: https://www.opennetworking.org
/images/stories/downloads/sdn-resources/onf-specifications
/openflow/openflow-spec-v1.4.0.pdf.

[7] I2RS: https://datatracker.ietf.org/wg/i2rs/charter/.

[8] OpenFlow Config Protocol: https://www.opennetworking
.org/sdn-resources/onf-specifications/openflow-config.

[9] Open vSwitch’s DB management API: http://www
.openvswitch.org.

[10] Open Network Install Environment (ONIE): http://
onie.github.io/onie/docs/overview/index.html.

[11] Open Compute Project: Networking: http://www
.opencompute.org/projects/networking/.

[12] Centec Lantern ASIC APIs: http://www.centecnetworks
.com/en/OpenSourceList.asp?ID=260.

[13] Mellanox Open Ethernet Project: http://www.mellanox
.com/openethernet/.

[14] IETF’s ForCES: http://datatracker.ietf.org/wg/forces
/charter/.

http://www.puppetlabs.com/
http://www.getchef.com/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.opennetworking.org/
http://www.opennetworking.org/
https://www.opennetworking.org/sdn-resources/sdn-library/solution-briefs
https://www.opennetworking.org/sdn-resources/sdn-library/solution-briefs
https://www.opennetworking.org/sdn-resources/sdn-library/solution-briefs
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://datatracker.ietf.org/wg/i2rs/charter/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow-config
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow-config
http://www.openvswitch.org/
http://www.openvswitch.org/
http://onie.github.io/onie/docs/overview/index.html
http://onie.github.io/onie/docs/overview/index.html
http://www.opencompute.org/projects/networking/
http://www.opencompute.org/projects/networking/
http://www.centecnetworks.com/en/OpenSourceList.asp?ID=260
http://www.centecnetworks.com/en/OpenSourceList.asp?ID=260
http://www.mellanox.com/openethernet/
http://www.mellanox.com/openethernet/
http://datatracker.ietf.org/wg/forces/charter/
http://datatracker.ietf.org/wg/forces/charter/

38  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

NETWORKING

Musings and Hacks on DHCP
D o u g H u g H e s

Doug Hughes is the manager
for the infrastructure team
at D. E. Shaw Research, LLC.
in Manhattan. He is a past
LOPSA board member and was

the LISA 2011 conference co-chair. Doug fell
into system administration accidently after
acquiring a B.E. in computer engineering, and
decided that it suited him. doug@will.to

W hen you think of DHCP, where do your thoughts tend? Perhaps
to assigning temporary addresses to devices. Perhaps to lease
maintenance and netblock assignment. Perhaps as the original

extension to BOOTP [1]. DHCP is a lot of things to a lot of people, sometimes
maligned, often underappreciated, and quite often used without full compre-
hension. After an introduction, I plan to point out some interesting possibili-
ties, implementation issues, and potential novel uses for DHCP that most
sites likely haven’t considered. At the end, I’ll address our implementation
and how it increases our operational efficiency.

Introduction
The Dynamic Host Configuration Protocol (DHCP) [2] was defined in October of 1993 as an
extension to the Bootstrap Protocol (BOOTP) then prevalent. Since those primordial days,
it has undergone many revisions, extensions, and has become de rigueur at most sites. The
original raison d’être of DHCP was to enable one to dynamically assign addresses to a pool of
machines. This was a boon for ISPs and corporations that had mobile machines or a limited
set of modems where users would dial in, set up a PPP or SL/IP connection, and be assigned
an IP address. Enter DHCP, a way to give a lease on an address to a connection that could be
reused by somebody else later. But DHCP has many more extensions over BOOTP as well. I’ll
add some color to these shortly.

Later, in 1999, DHCP got a new lease on life (so to speak) with the invention of Preboot eXe-
cution Environment (PXE) [3] by Intel and SystemSoft. PXE was, and remains, a marvelous
invention allowing for embedding DHCP (and TFTP, or Trivial File Transfer Protocol) into
the NIC so that it can download some small bit of code to enable bootstrapping and install-
ing machines. The combination of DHCP with TFTP [4], and some identifiers like UUID and
GUID with an API, was a master stroke for the sites that needed a way to install machines
with as little interaction as possible. To this day, TFTP is still used even though it was
originally implemented in 1981! These days, though, TFTP is often used as a means to load a
small executable like PXELINUX [5], which then will do some further loading via HTTP or
NFS or another mechanism. Even so, TFTP still has widespread use in the network provider
space. But this article isn’t about either PXE or TFTP.

The Workings of DHCP
DHCP has a small number of things that are mandatory to send to the host and come right
at the top of the request and reply packets. Many are carried forward from BOOTP to retain
backward compatibility, with some minor changes to extend the capabilities. The important
ones are outlined in Table 1.

Let’s briefly refocus on the “Options.” Many of these are defined in their own RFCs. Some
are vendor-specific tags that extend the protocol in particular ways, like defining specific
addresses of servers for particular protocols. Some are functionally obsolete, like “NDS
Server” or “Impress Server.” I will have more to say about options later.

It’s important to note that DHCP protocol has three modes for assigning addresses: auto-
matic allocation, dynamic allocation, and manual allocation. Automatic allocation assigns a

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 39

NETWORKING
Musings and Hacks on DHCP

permanent IP address to a client from an address pool. Dynamic
allocation assigns an address to a client from a pool for a limited
period of time, which may be renewed. Manual allocation allows
a network or system administrator to map the MAC address to a
specific IP address. Dynamic allocation is the mode that allows
automatic reuse of IP addresses for transient clients.

On DHCP Options
Every DHCP option consists of two bytes. The first byte is the
option identifier, or tag. The second byte is the length of the
option data in bytes. So you can see that there are built-in limits
on options. There can be only 256 options and every option can
be only up to 255 bytes long. A length of 0 is valid for Boolean
type flags, and option tags 0 and 255 are special. Thus, since an
IPv4 address is four bytes, every option tag that references an
IPv4 address (TFTP server, DNS server, etc.) is four bytes long
(plus the two preceding bytes with the tag number and the data
length).

Other interesting tidbits:

◆◆ Some string options are required to be NULL terminated.
Others are not. (The null is included in the length!)

◆◆ As mentioned, Option 255 is special and has a 0 byte length. It
is added by the server to signal the end of the DHCP reply.

◆◆ Option 0 is also special and is a pad as defined in RFC 2132. It
is used to cause subsequent fields to align on word boundaries
if necessary.

◆◆ Option 55 carries a parameter request list. It is inserted by the
client and includes the tag numbers of options that the client
wishes to receive. The byte length field of Option 55 holds the
count of the number of tags, and each byte after the length
is an option tag number. The DHCP server isn’t required to
answer every tag if it doesn’t have information for that tag, but
it must try to provide any tags that it does answer in the order
requested by the client. Thus, if the client requests options 5,
120, 40, 35, 39, 20, then the server, when composing its reply,
should insert them in the reply packet in that same order.

◆◆ Wireshark will decode options for you. It is quite illuminating.

◆◆ Option 82 is quite interesting, and figures heavily into our
implementation. Stay tuned.

What Do We Need?
With the obligatory introductory technical information out of
the way, let’s take a step back to look at business objectives. At
my organization, we have a number of custom supercomputer
machines for molecular chemistry research. Each machine is
functionally identical, with a number of ASIC boards, a number
of commodity computers connected to the boards with a custom
PCI card, and a number of commodity network switches con-
necting the off-the-shelf computers into the network for storage
and supporting software.

When a commodity node fails, we want to replace it quickly. The
new node must have the same name, same location, and same IP
address as the old one, because it will be doing the same thing.
Also, if a switch fails, we want to be able to put a new one in
place, plug it in, and have it auto-configure itself, including the
correct VLANs, switch port labels, and sundries. It is imprac-
tical to have a spare sitting around preconfigured for every
possibility of failed device. It is very desirable to have a factory-
default box ready to plug in, install itself, and be ready to go in
a couple of minutes. DHCP can help manage this. It was on the
search to solve these issues that we discovered Option 82.

Additionally, my organization tends to buy servers in units of a
rack, to save time, labor, and money on partial integration. This
allows us to take advantage of third-party integration services
for getting all of the machines cabled, labeled, IPMI addresses
set, tested, and ready to deliver; integrators pre-stress all
manufacturer-delivered machines for early failures. Once all of
the preliminary work is done in this fashion, we can receive the
entire bundle in a crated rack, roll it into place, plug in the power
distribution unit and the network uplink cables, and install all
of the servers at one time. Because all of the IPMI addresses are
set, all we need to do is configure the switch(es) to the appropri-
ate VLAN(s), connect the power and network uplinks, and start
installing all the machines remotely.

Name Description

Operation Request or reply (client or server)

Transaction ID Used for discriminating among multiple
clients for leases

Lease time Number of seconds before lease expires

Ciaddr Client IP address (in client request; used for
bound, renewing, and rebinding clients)

Yiaddr Your (client) IP address—given by server in
reply

Siaddr Address to use for next server, typically the
TFTP server for fetching code

Giaddr Gateway address; when a proxy is involved

Chaddr Client hardware address (e.g., Ethernet
MAC)

Hostname Up to 64 characters, null terminated

Boot file 128-character path for boot file on server

Options A set of tags and values
Table 1: DHCP and BOOTP essential tags

40  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

NETWORKING
Musings and Hacks on DHCP

One last component of labor and delivery speed that caused
us to expend a considerable amount of time and effort was the
fact that, to install the nodes, we needed to assign IP addresses.
Referring back to the DHCP “modes,” DHCP Dynamic mode is
unfavorable because we want all of the nodes to have constant
DNS resolution. We could use dynamic DNS for this, but adding
that infrastructure and having IPs and names in a predefined
order to facilitate subsequent debugging has positive benefits
and fewer moving parts. Any statistics or history that is indexed
by an IP address when using dynamic mode would be lost on a
random DHCP reassignment later on.

Up to this point, we’ve had our integrator supply us with a list
of all of the MAC addresses of every node in a rack integration
spreadsheet. This spreadsheet has the MAC address of each
eth0, eth1, and IPMI for each server, its rack position, name,
serial number (for later RMA), Ethernet switch port designation,
switch name (if more than 40 nodes in a rack), and PDU recep-
tacle (if switched PDU). The MAC address collection in particu-
lar adds a lot to delivery time because it requires the integrator
to gather all of the extra MAC data and carefully collate it; serial
numbers are generally more accessible and do not require boot-
ing the machine. It also means we need to add all of the MAC
addresses into isc-dhcpd. In our case, that means populating
them into a database with the host record, so it’s not that hard,
but it is tedious and time-consuming and leads to slower delivery
and installation.

The most common DHCP server in use today is the Internet
Systems Consortium’s dhcpd [7] (isc-dhcpd). It has a number of
interesting features: for instance, client groups and subgroups,
support for dynamic DNS updates, and access lists. Until now,
we have been vigorous users of isc-dhcpd for our commodity
node installations. Then our eyes were opened with the previ-
ously undiscovered utility of…

Option 82
DHCP Option 82 is defined in RFC 3046 and is a bit of a lesser
known gem. It was devised, in part, as a solution for cable
modem, DSL, and other providers with a high port count that
want to assign IP addresses to a particular subscriber line stati-
cally without having to worry about exceeding dynamic capacity
of a pool. It is still heavily in use today by that same contingent,
but with some growing use outside of that. The rest of this article
discusses our attempts to use and our final application of Option
82. But, first, I’ll go over a few technical details.

Option 82 is called the Relay Agent Information Option. A relay
agent is any device that listens for DHCP requests on one subnet
and forwards them to a DHCP server on a remote network.
DHCP is inherently a Layer 2 protocol and uses link-level broad-
cast technology to find a server. Relay agents enable DHCP to be
Layer 3 capable. Relay agents are in common use at sites where

there are many VLANs (or subnets) because it prevents the need
for having a DHCP server per VLAN. Relay agents (typically
managed network routers) are, among other things, required
to add a gateway address into the request so that the server can
send the reply back via the relay agent.

One uncommon thing about Option 82 is that it includes two
sub-options. The length byte of Option 82 contains the combined
length of the two sub-options and their sub-tags. Because there
are currently only two sub-options (they automatically have
room for up to 256), these are tagged 1 and 2. Sub-option 1 is the
Agent Circuit ID and sub-option 2 is the Remote ID. Each of the
two sub-options is voluntary. A relay agent may insert one or
both into a DHCP request or skip it entirely. Additionally, the
encoding of a sub-option is left up to the implementer. A DHCP
server must include the entire option in its reply, verbatim.

◆◆ Agent Circuit ID: This is intended to be used as a port identi-
fier for the agent upon which the request was received. It is
left up to the vendor to determine how to encode the port (e.g.,
ASCII or integer, numeric, or alpha-numeric). Some vendors
include VLAN and blade information for chassis switches
along with the port, while others include only a port name or
number. Cable modems often include the virtual circuit of the
subscriber.

◆◆ Remote ID: If included, this signifies the device acting as the
agent. Again, it is not specified in the RFC how this should be
encoded, so it could be an ASCII switch name, a hexadecimal
encoding of a serial number or VLAN IP address where the
request is received, or a caller-ID for a dial-up connection.
Because the RFC requires the remote ID to be globally unique,
many vendors use an encoded or literal serial number but al-
low the administrator to override this with an arbitrary name.
We use the unique name of the switch where possible.

In big networks, it is not uncommon to have multiple levels of
relay agent between the source network and a destination server.
Different switch vendors handle this in different ways. Some
allow you to append or overwrite the remote ID and circuit ID
information with new information, at the administrator’s choice.
Some will only overwrite. Check your switch documentation to
learn more.

You may be wondering to yourself, okay, he’s explained what all
of this agent stuff is, but what does it give me that I didn’t already
have? I’m not a cable modem provider, what’s in it for me? Excel-
lent question. Let’s relate it back to my use case.

Option 82 allows me to say the request that arrived tagged with
switch name rack201-sw on port 32 will be given IP address
10.10.1.9. Or, the device that requested an IP and bootfile on port
16 of mgmtswitch1 is going to be rack216-sw with IP 10.10.1.1
and should bootstrap its configuration and self-configure onto

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 41

NETWORKING
Musings and Hacks on DHCP

the network with all VLANs, IP addresses, and spanning tree
configurations predefined.

What Happens When You Can’t Get There
From Here?
Finally, we get to the part where isc-dhcpd falls short, after a
very protracted back story. ISC is tenaciously tied to the notion
that you are going to assign an IP address based upon MAC
address or assign a dynamic address. It has support for Option
82, but only in a hobbled fashion.

Here are a few interesting implementation details about the isc-
dhcpd configuration and its limitations:

◆◆ Classes are a way to group attributes:

◆○ Classes are implemented as a single linked list data
structure.

◆○ Classes can be used in the host block to decide whether to
assign an address.

◆○ Classes cannot be nested.

◆◆ Sub-classes present another way to group attributes:

◆○ Sub-classes are stored efficiently in a hash.

◆○ Sub-classes can be instantiated dynamically at runtime
as an arbitrary group of attributes pulled from the DHCP
request (class followed by sub-class).

◆○ Sub-classes cannot be used in a host attribute to assign an
address.

◆○ Some people have devised source code patches to make
sub-classes useful in the host stanza, but they are against
old source code and not integrated into the core.

◆◆ The host-identifier option can be used to specify “use this
other thing as a MAC equivalent.” This would appear to be a
way to get there, however:

◆○ You can concatenate various objects dynamically in an
isc-dhcpd stanza, like remote ID and circuit ID, but objects
created this way cannot be used as host identifiers. They
are useful for logging, but not allocation.

◆○ You can specify that the host-identifier is either a re-
mote device ID or a remote circuit ID, but not both nor in
combination.

◆● Remote ID is not useful by itself because it’s just the
relay agent device forwarding the request. You can’t
make any useful determination based upon that, unless
it has only one device plugged into it (you can see why
this could be okay for DSL and cable modems).

◆● Circuit ID is useful as long as you only have one switch
in your entire network acting as a relay agent.

◆● To be effective, the IP must be a combination of the two.

◆○ You can use an isc-dhcpd hack that says “give this request-
ing device a dynamic IP address in this particular range,”
where the range is something like 192.168.1.2–192.168.1.2.
However, without a way to combine this with circuit ID
and remote ID, it has limited use.

Here is my summary about why I find this so disappointing:

We could possibly use classes, if we could concatenate the
Remote ID and Circuit ID together to make a unique client desig-
nator, but classes are inefficient at that scale, and you cannot use
concatenated objects in such a way.

We could possibly use the host identifier, if isc-dhcpd let you use
concatenated/generated objects.

We could possibly use the dynamic sub-class spawning facility
(remote ID = class, remote-circuit = subclass), but you cannot
use sub-classes in host stanzas.

Our Solution
Frustrated and stymied, we went on an isc-dhcpd-alternatives
discovery trek. We found a basic Ruby DHCP implementation
and extended it to fully support the notion that IP addresses
were to be given based upon the remote ID and circuit ID pre-
sented by the relay agent. Also, because we have all of the infor-
mation about all of our hosts in a MySQL database, we extended
the relevant network table to include remote ID and circuit ID
fields. The Ruby daemon contacts the database upon receiving
a query for a given remote-circuit combination, and then serves
the host an IP address, network accoutrements, and bootfile,
if necessary. This allows us to do complete zero-configuration
installation of a switch for the impending supercomputer rollout
in 2014, about the time this article will be published.

Furthermore, this implementation has led us down the natu-
ral path of considering this for racks of servers. The integrator
can save many hours of work collecting and collating MAC
addresses because we no longer have to care. We can plug in
the switch, let it configure itself, then turn on all of the hosts.
They will all get a name and address according to their posi-
tion on the switch, which dictates their position in the rack. The
DNS is preconfigured. Just before publication we deployed two
racks of 144 machines each using this DHCP server to assign
addresses based upon switch and port. It was a happily success-
ful proof-of-concept.

One last feature of the server is that we can log the MAC address
heard in the DHCP request into a MySQL table associated with
the network entry for the host. This makes it easy to determine
if a given host has moved from one switch to another, or where a
particular MAC address lives if we happen to lose track of it. It’s
a built-in history mechanism and will allow us to track a device

42  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

NETWORKING
Musings and Hacks on DHCP

that may have been returned for repair to the vendor and then
put back into service as a different node later.

The DHCP server configuration file is very simple. It consists of
things like the database table, host, username, password, what
logging level to use, the interface to bind to, and any site- or
network-specific overrides for testing. All of the logic about IP
addresses, ports, subnet masks, hostnames, etc. lives in the data-
base, where it belongs. There is essentially nothing to distribute
for multiple redundant servers.

Summary
We can have redundant MySQL databases and redundant serv-
ers without the need to worry about generating or keeping DHCP
configuration files up to date. We can leverage our inventory
database (along with minor extension) with our DHCP address
allocation and also keep track of the motion of assets that have
been repurposed or repaired. Although I have not yet published
the source code for this server anywhere, I can possibly share the
code upon request. Some things in it are still a bit site specific
(like the database table schema), and it so far has only been
tested against Dell/Force10 and HP Procurve switches as relay
agents. Some documentation cleanup and further testing is in
progress.

Lastly, DHCP options are quite powerful. You may find an inter-
esting gem in there that you didn’t expect if you take a moment to
review them. Option 82 is useful whatever DHCP server you use.

Epilogue
Just before sending this article for final publication, ISC
released a new alpha version of isc-dhcpd that reportedly allows
one to make an Option 82 determination in a class that includes
both the remote ID and circuit ID, something like this:

class “1-2-3-9” {

 match if option agent.circuit-id = “1.21.1.4/Ethernet9”;

}

The remote ID and port get separated by a /. Unfortunately, we
were not able to test whether this works. If so, this would reduce
the major shortcoming of needing something that can actually
deal with both remote ID and circuit ID at the same time and
would just leave the burden of generating and distributing a
very large configuration file with every host defined in it, and
the inherent scalability concern of a single large linked list with
every possible combination of switch and port.

References
[1] BOOTP: http://www.ietf.org/rfc/rfc951.

[2] DHCP: http://www.ietf.org/rfc/rfc2131 (obsoletes 1541,
updated by 3396, 4361, 5494, 6842).

[3] PXE: http://en.wikipedia.org/wiki
/Preboot_Execution_Environment.

[4] DHCP with TFTP: http://www.ietf.org/rfc/rfc1350 (obso-
letes 783, updated by 1782, 1783, 1784, 1785, 2347,
2348, 2349).

[5] PXELINUX: http://en.wikipedia.org/wiki/SYSLINUX.

[6] http://www.iana.org/assignments/bootp-dhcp-parameters
/bootp-dhcp-parameters.xhtml.

[7] ISC DHCP: https://www.isc.org/downloads/dhcp.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 43

ColumnsPractical Perl Tools
MongoDB Meet Perl

D a v i D N . B l a N k - E D E l m a N

Mongo just pawn in great game of life.

 —As spoken by Alex Karras in Blazing Saddles

I had such fun writing my previous column on using Redis from Perl that I
thought we should invite another NoSQL package to come play with Perl
this issue. The package I have in mind, just in case the Mel Brooks refer-

ence wasn’t clear, is MongoDB (www.mongodb.org).

We will use approximately the same example data set we used in the Redis column for this
one as well, but I’m going to do everything I can to avoid making comparisons between the
two packages. They do have some small overlapping characteristics (e.g., I will talk about
key-value pairs here, too), but they really have quite different mental models so I don’t want
to do either the disservice by comparing them. One thing that will definitely be different
from the past column is that I won’t be using the included command-line tool for much of
the example output. MongoDB has a similar tool, but it is heavily skewed towards JavaScript
(not that that’s necessarily a bad thing, but it adds another level of detail that will get in the
way). Instead, you’ll see more Perl code right up front from me that uses the Perl module
called “MongoDB.” There are other clients (e.g., Mango by the author of Mojolicious), but the
standard one is a good place to start.

Think Documents
In the intro I tried to distance MongoDB from Redis, but an even more important disconnect
that you’ll have to make in your brain comes from the last two letters in the name. If you grew
up like I did thinking things that ended in DB are relational databases that want you to talk
SQL at them, your first challenge with MongoDB will be to leave a whole bunch of preconcep-
tions behind. Truth be told, even now as I use it, I can’t tell if I buy their way of doing things,
but let me show it to you and see what you think.

MongoDB is a document-based database package. Before you flash to a Microsoft Word file in
your head, let me show you what they mean by document:

{

 “name” : “USENIX”,

 “address” : “2560 Ninth Street, Suite 215”

 “state” : “CA”,

 “zip” : “94710”,

 “board” : [

 “margo”,

 “john”,

 “carolyn”,

 “brian”,

 “david”,

 “niels”,

 “sasha”,

 “dan”

],

}

David N. Blank-Edelman is the
director of technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter book), available
at purveyors of fine dead trees everywhere.
He has spent the past 24+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA ‘05 conference and one of the LISA
‘06 Invited Talks co-chairs. David is honored
to have been the recipient of the 2009 SAGE
Outstanding Achievement Award and to serve
on the USENIX Board of Directors beginning in
June of 2010.  dnb@ccs.neu.edu

44  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns
Practical Perl Tools

This JSON-looking thing (it is actually a format called BSON)
contains a bunch of key-value pairs where the values can
be different things such as strings, arrays, dates, and even
sub-structures of key-value pairs (which they call embedded
documents). If this reminds you even a little bit of Perl hash
data structures, that’s a thought you should water until it grows
because we are indeed heading in that direction in a moment.

Documents like the one above are stored in MongoDB
collections. Collections are stored in namespaces called
“databases.” I’m sort of loathe to say this because I think it
reinforces bad preconceptions, but their beginner docs make
these comparisons: in theory, you could compare MongoDB
documents to relational database rows, collections to tables that
hold those rows, and databases to, well, databases that contain
those tables. But don’t do that. I’ll explain later why this analogy
breaks, so forget I said anything.

Let me see if I can help subvert the dominant paradigm for
you: MongoDB has no built-in “joins.” MongoDB has no built-in
transactions. MongoDB does not enforce a schema for what
can be stored. Yes, you can fake all of these things in your
application, but MongoDB doesn’t have them built-in like (pick
your favorite relational database) does. MongoDB means to
provide a system that is very fast, very flexible, and very easy to
use (with a different mindset) for cases where the above things
aren’t crucial to your needs. Let’s take a look at it now.

Basic Stuff
I guess the first question is how do we actually get a document
into MongoDB. Here’s the start at a simple Perl answer:

use MongoDB;

my $client = MongoDB::MongoClient->new;

my $db = $client->get_database(‘usenix’);

my $org = $db->get_collection(‘organization’);

To start, we load the MongoDB module and then create a new
client connection. By default, ->new creates a connection to the
server running on “localhost” on the standard MongoDB port
(27017). These defaults work just peachy for the server I happen
to be running on my laptop right now. From there, we indicate
which database we want to use and then which collection in that
database we’ll be working with. At this point, we are ready to do
our document insert.

Was that a klaxon I heard? Indeed, here is one of the first places
where I expect your cognitive dissonance to spike around
MongoDB. Are you perhaps thinking, “Hey, you must have
left out a step here! You know, the one where you created the
collection, or at least the database? Don’t you have to do that
before you can write something to them?” Nope. Similar to the
way variables, data structures, etc. auto-vivify in Perl, all you

have to do is reference something in MongoDB that doesn’t exist
and “poof,” it is now available and ready for you. Is this a good
thing? I know I’m not so sure.

Okay, so congratulations, we’ve created a new database and
collection and it is time to perform the insert:

my $id = $org->insert(

 { ‘name’ => ‘USENIX’,

 ‘address’ => ‘2560 Ninth Street, Suite 215’,

 ‘state’ => ‘CA’,

 ‘zip’ => ‘94710’,

 ‘board’ => [qw(margo john carolyn brian david niels

sasha dan)],

 }

);

Basically, we just feed a Perl hash data structure to insert()
and we’re done. There’s one subtle thing going on here that isn’t
apparent because I’ve chosen to use the insert() defaults. Each
document in a collection has a unique ID stored in a field named
_id. If we don’t choose to make up our own _id when inserting
a document, MongoDB will automatically use the ObjectID of
the document in that field for us. The return value of insert() is
actually the _id of the document.

I stripped the _id field in the document example I gave earlier
just because it looks kinda icky, and I didn’t want to explain it
until now. The real document had a field that looked like this:

“_id” : ObjectId(“52e9c4565bfcc3d832000000”),

MongoDB has a bulk_insert command that is more efficient
for multiple document inserts. It takes a reference to an array
containing a bunch of hashes. Here’s an example:

use MongoDB;

my $client = MongoDB::MongoClient->new;

my $db = $client->get_database(‘usenix’);

my $lisa = $db->get_collection(‘lisaconference’);

my @ids = $lisa->batch_insert(

 [{ ‘2014’ => ‘Seattle’ },

 { ‘2015’ => ‘D.C.’ },

 { ‘2016’ => ‘Boston’ },

 { ‘2017’ => ‘San Francisco’ },

]

);

It returns a list of _ids.

Find Me
We can prove that the _id field gets added by dumping the
contents of all of the documents in the second collection we
populated above:

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 45

Columns
Practical Perl Tools

use MongoDB;

my $client = MongoDB::MongoClient->new;

my $db = $client->get_database(‘usenix’);

my $lisa = $db->get_collection(‘lisaconference’);

my $lisacursor = $lisa->find();

while (my $year = $lisacursor->next) {

 print “---\n”;

 while (my ($key, $value) = each %{$year}) {

 print “$key = $value\n”;

 }

}

Here’s the result:

_id = 52e9c4565bfcc3d832000001

2014 = Seattle

2015 = D.C.

_id = 52e9c4565bfcc3d832000002

2016 = Boston

_id = 52e9c4565bfcc3d832000003

2017 = San Francisco

_id = 52e9c4565bfcc3d832000004

The key thing about this code is that it introduces the find()
method. NoSQL (and SQL) databases are really cool and all
that, but only if you can actually retrieve the data you put in.
The find() method is our primary way for doing this. This code
demonstrates a few things about find() and how it works:

1. find() without any arguments will find “everything.”

2. find() returns a cursor (this term exists in other database
contexts). Think of a cursor as a file handle or iterator that
you repeatedly ask for the next data result until it runs out (at
which point it returns undef).

In the code above, you can see we used the Perl each() function to
be able to pull all of the fields found in the document. If it seems
weird from a programmer’s point of view that I’m not doing a set
of specific hash lookups with known field names (i.e., columns),
congratulations, you’ve hit another place your relational
database assumptions don’t apply to MongoDB.

In a relational database, you know that if a row has a certain
column, all of the other rows in the same table have that column
too as part of the table definition. Not true here, my friend.
Individual MongoDB documents can include or not include any
fields they’d like. Two documents in the same collection can
contain or omit any field they’d like.

Now, in practice your application will be inserting a known set
of fields into each document (and/or you’ll know if you consider

certain fields to be optional, so not having them in a document
won’t be a big surprise). To get any reasonable performance,
you’ll want indices on known shared fields. So, not total anarchy,
just, um, more flexibility than you are used to.

The other thing I should also probably cop to is creating a
collection with documents that forced the issue by having no
field names (besides the default _id) in common. It’s not really a
design you’d expect to see used in real life. Let’s rejigger things
and use a better design for that collection:

#... same new, get_database(), get_collection()

we’ll learn about this command in a moment

$lisa->drop;

my @ids = $lisa->batch_insert(

 [{ ‘year’ => ‘2014’, ‘location’ => ‘Seattle’ },

 { ‘year’ => ‘2015’, ‘location’ => ‘D.C.’ },

 { ‘year’ => ‘2016’, ‘location’ => ‘Boston’ },

 { ‘year’ => ‘2017’, ‘location’ => ‘San Francisco’ },

]

);

So now our data set looks like this (minus the _id fields):

year = 2014

location = Seattle

year = 2015

location = D.C.

year = 2016

location = Boston

year = 2017

location = San Francisco

Now back to find(): more specific queries are made by including
a filter when calling find(). Like almost everything else, a filter
is specified using a hash. So if we wanted to query all of the
documents in our collection for the conferences held in Boston,
we’d write:

my $lisacursor = $lisa->find({‘location’ => ‘Boston’});

while (my $conf = $lisacursor->next) {

 print “$conf->{‘year’} is in $conf->{‘location’}\n”; }

and it would say “2016 is in Boston”.

This syntax actually means two things in this context. If we are
querying a field whose value is a string, it does a string match as
expected. If we are querying a field where the value is an array,
like the field “board” in our first document example, MongoDB
will find the documents where our filter value is one of the array

46  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns
Practical Perl Tools

elements (i.e., it tests for membership). For extra spiffiness, it is
possible to use regular expressions, like so:

my $lisacursor = $lisa->find({‘location’ => qr/San/});

MongoDB’s filter syntax can do more than straight matches. If
you use special keywords that start with dollar signs (sorry, Perl
programmers!), you can do all sorts of comparisons, like:

find all years < 2017

my $lisacursor = $lisa->find({‘year’ => {‘$lt’ => 2017}});

or

find all years > 2014 and < 2017

my $lisacursor

 = $lisa->find({ ‘year’ =>

 { ‘$gt’ => 2014, ‘$lt’ => 2017 } });

The filter language is pretty rich, so I recommend you check
out the docs for further examples. If you are getting the sense
that you won’t be mourning the loss of SQL in MongoDB but
rather will be translating from the SQL you already know to
the MongoDB query syntax you don’t, I think that’s a reasonable
assumption.

I want to mention one more thing before we leave our quick skim
of what find() can do: as with SQL, it is often more efficient to
specify just which fields you want returned vs. asking for the
whole document. MongoDB (like other databases) calls this
a projection. This is indicated by another hash passed as the
second argument to the find():

my $lisacursor = $lisa->find({},

{ ‘location’ => 1,

 ‘_id’ => 0 });

while (my $conf = $lisacursor->next) {

 print “$conf->{location}\n”; }

Here you can see I’ve asked for all documents ({}) and specified
that I only want the location field (I explicitly have to request
that we don’t get _id). The code above yields this lovely list:

Seattle

D.C.

Boston

San Francisco

Change Is Gonna Come
We’ve seen the insert() operation; let’s talk about how we change
things. To get the easiest thing out of the way, you can nuke an
entire document using remove():

beware! remove with no filter, i.e., ({})

removes all documents in that collection, so beware

$lisa->remove({‘year’ => 2014});

To get rid of a collection or a database, there is a similar drop()
command as I demonstrated above.

Now on to the fun stuff. To change the contents of a document
that exists, there is an update() command of this form:

$collection->update({filter},{change},{optional parameters})

To begin, we specify what to change and then what change we
want to make. The way we specify what change we want to make
is akin to the filter examples above. We use special keywords
that begin with dollar signs to specify the kind of update. For
example, to set a field in a document to a specific value:

$lisa->update(

 { ‘location’ => ‘Boston’ },

 { ‘$set’ => { ‘year’ => 2018 } },

);

If we want to work with array values, we can use keywords like
this:

$org->update({‘name’ => ‘USENIX’},

 {‘$pop’ => {‘board’ => 1}});

I mentioned optional parameters above. There is an “upsert”
parameter that we could add to any of these statements that will
change a document if one is found or insert a new one if it not
(i.e., “update + insert”). A second parameter worth knowing is
the “multi” parameter. With “multi” in place, the change will be
made to all documents that match the filter. This is analogous
to the bulk-replace functionality you are used to using with
UPDATE statements in SQL.

What Else?
We’re about out of time here, but, golly, there’s a whole bunch of
other stuff MongoDB can do. It has aggregation commands, both
traditional, like grouping (only spiffier because this can be done
as a pipeline), and newfangled (like map-reduce). We can create
and adjust indices for better performance. There are replication
capabilities and fairly complex sharding configurations. I highly
recommend you check out the MongoDB documentation site at
docs.mongodb.org to get the full scoop.

Take care, and I’ll see you next time.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 47

Columns

A Pragmatic Guide to Python 3 Adoption
D a v i D B e a z l e y

Believe it or not, it’s been more than five years since Python 3 was
unleashed on the world. At the time of release, common consensus
among Python core developers was that it would probably take about

five years for there to be any significant adoption of Python 3. Now that the
time has passed, usage of Python 3 still remains low. Does the continued
dominance of Python 2 represent a failure on the part of Python 3? Should
porting existing code to Python 3 be a priority for anyone? Does the slow
adoption of Python 3 reflect a failure on the part of the Python developers or
community? Is it something that you should be worried about?

There are no clear answers to any of these questions other than to say that “it’s complicated.”
To be sure, almost any discussion of Python 3 on the Internet can quickly turn into a fiery
debate of finger pointing and whining. Although, to be fair, much of that is coming from
library writers who are trying to make their code work on Python 2 and 3 at the same time—a
very different problem than that faced by most users. In this article, I’m going to try and steer
clear of that and have a pragmatic discussion of how working programmers might approach
the whole Python 3 puzzle.

This article is primary for those who use Python to get actual work done. In other words, I’m
not talking about library and framework authors—if that applies to you and you’re still not
supporting Python 3, stop sitting on the sidelines and get on with it already. No, this article is
for everyone else who simply uses Python and would like to keep using it after the Python 3
transition.

Python 3 Background
If you haven’t been following Python 3 very closely, it helps to review a bit of history. To my
best recollection, the idea of “Python 3” originates back to the year 2000, if not earlier. At
that time, it was merely known as “Python 3000”—a hypothetical future version of Python
(named in honor of Mystery Science Theater 3000) where all of the really hard bugs, design
faults, and pie-in-the-sky ideas would be addressed someday. It was a release reserved for
language changes that couldn’t be made without also breaking the entire universe of existing
code. It was a stock answer that Guido van Rossum could give in a conference talk (e.g., “I’ll
eventually fix that problem in Python 3000”).

Work on an actual Python 3000 version didn’t really begin until much later—perhaps around
2005. This culminated in the eventual release of Python 3.0 in December 2008. A major
aspect of Python 3 is that backward-incompatible changes were made to the core language.
By far, the most visible change is the breakage of the lowly print statement, leading first-time
Python 3 users to type a session similar to this:

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
dave@dabeaz.com

48  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns
A Pragmatic Guide to Python 3 Adoption

 >>> print “hello world”

 File “<stdin>”, line 1

 print “hello world”

 ^

SyntaxError: invalid syntax

 >>>

This is easy to fix—simply change the print statement to
print(“hello world”). However, the fact that even the easiest
example breaks causes some developers to grumble and come
away with a bad first impression. In reality, the internal changes
of Python 3 run much deeper than this, but you’re not likely to
encounter them as immediately as with print(). The purpose of
this article isn’t to dwell on Python 3 features, however—they are
widely published [1] and I’ve written about them before [2].

Some Assumptions
If you’re using Python to solve day-to-day problems, I think there
are a few underlying assumptions about software development
that might apply to your work. First, it’s somewhat unlikely that
you’re concerned about supporting every conceivable Python
version. For example, I have Python 2.7 installed on my machine
and I use it for a lot of projects. Although I could enter a time
machine and install Python 2.3 on my system to see if my code
still works with it, I honestly don’t care. Seriously, why would I
spend my time worrying about something like that? Even at large
companies, I find that there is often an “official” Python version
that almost everyone is using. It might not always be the latest
version, but it’s some specific version of the language. People
aren’t wasting their time fooling around with different inter-
preter versions.

I think a similar argument can be made about the choice
between Python 2 and 3. If you’ve made a conscious choice to
work on a project in Python 3, there is really no good reason to
also worry about Python 2. Again, as an application programmer,
why would I do that? If Python 3 works, I’m going to stick with
it and use it. I’ve got better things to be doing with my time than
trying to wrap my brain around different language versions. (To
reiterate, this is not directed at grumpy library writers.)

Related to both of the above points, I also don’t think many
application programmers want to write code that involves weird
hacks and non-idiomatic techniques—specifically, hacks aimed
at making code work on two incompatible versions of the Python
language. For example, if I’m trying to use Python to solve some
pressing problem, I’m mostly just concerned with that problem.
I want my code to be nice and readable—like the code you see in
books and tutorials. I want to be able to understand my own
code when I come back to read it six months later. I don’t want
to be sitting in a code review trying to explain some elaborate
hacky workaround to a theoretical problem involving Python
2/3 compatibility.

Last, but not least, most good programmers are motivated by
a certain sense of laziness. That is, if the code is working fine
already, there has to be a pretty compelling reason to want to
“fix” it. In my experience, porting a code base to a new language
version is just not that compelling. It usually involves a lot of
grunt work and time—something that is often in short supply.
Laziness also has a dark side involving testing. You know how
you hacked up that magic Python data processing script on a Fri-
day afternoon three years ago? Did you write any unit tests for it?
Probably not. Yes, this can be a problem too.

So, with the understanding that you probably just want to use a
single version of Python, you don’t want to write a bunch of weird
hacks, you may not have tests, and you’re already overworked,
let’s jump further into the Python 3 fray.

Starting a New Project? Try Python 3
If you’re starting a brand new project, there is no reason not to
try Python 3 at this point. In fact, it doesn’t even have to be too
significant. For example, if you find yourself needing to write
a few one-off scripts, this is a perfect chance to give Python 3 a
whirl without worrying if it will work in a more mission critical
setting.

Python 3 can be easily installed side-by-side with any existing
Python 2 installation, and it’s okay for both versions to coex-
ist on your machine. Typically, if you install Python 3 on your
system, the python command will run Python 2 and the python3
command will run Python 3. Similarly, if you’ve installed addi-
tional tools such as a package manager (e.g., setuptools, pip, etc.),
you’ll find that the Python 3 version includes “3” in the name. For
example, pip3.

If you rely on third-party libraries, you may be pleasantly sur-
prised at what packages currently work with Python 3. Most
popular packages now provide some kind of Python 3 support.
Although there are still some holdouts, it’s worth your time to try
the experiment of installing the packages you need to see if they
work. From personal experience over the last couple of years, I’ve
encountered very few packages that don’t work with Python 3.

Once you’ve accepted the fact that you’re going to use Python 3
for your new code, the only real obstacle to starting is coming to
terms with the new print() function. Yes, you’re going to screw
that up a few hundred times because you’re used to typing it as a
statement out of habit. However, after a day of coding, adding the
parentheses will become old hat. Next thing you know, you’re a
Python 3 programmer.

What To Do with Your Existing Code?
Knowing what to do with existing code in a Python 3 universe
is a bit more delicate. For example, is migrating your code
something that you should worry about right now? If you don’t

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 49

COLUMNS
A Pragmatic Guide to Python 3 Adoption

migrate, will your existing programs be left behind in the dust-
bin of coding history? If you take the plunge, will all your time be
consumed by fixing bugs due to changes in Python 3 semantics?
Are the third-party libraries used by your application available
in Python 3?

These are all legitimate concerns. Thus, let’s explore some
concrete steps you can take with the assumption that migrating
your code to Python 3 is something you might consider eventu-
ally if it’s not too painful, maybe.

Do Nothing!
Yes, you heard that right. If your programs currently work with
Python 2 and you don’t need any of the new functionality that
Python 3 provides, there’s little harm in doing nothing for now.
There’s often a lot of pragmatic wisdom in the old adage of “if it
ain’t broke, don’t fix it.” In fact, I would go one step further and
suggest that you NOT try to port existing code to Python 3 unless
you’ve first written a few small programs with Python 3 from
scratch.

Currently, Python 2 is considered “end of life” with version 2.7.
However, this doesn’t mean that 2.7 will be unmaintained or
unsupported. It simply means that changes, if any, are reserved
for critical bug fixes, security patches, and similar activity.
Starting in 2015, changes to Python 2.7 will be reserved to
security-only fixes. Beyond that, it is expected that Python 2.7
will enter an extended maintenance mode that might last as long
as another decade (yes, until the year 2025). Although it’s a little
hard to predict anything in technology that remote, it seems safe
to say that Python 2.7 isn’t going away anytime soon. Thus, it’s
perfectly fine to sit back and take it slow for a while.

This long-term maintenance may, in fact, have some upsides.
For one, Python 2.7 is a very capable release with a wide vari-
ety of useful features and library support. Over time, it seems
clear that Python 2.7 will simply become the de facto version of
Python 2 found on most machines and distributions. Thus, if you
need to worry about deploying and maintaining your current code
base, you’ll most likely converge upon only one Python version
that you need to worry about. It’s not unlike the fact that real
programmers are still coding in Fortran 77. It will all be fine.

Start Writing Code in a Modern Style
Even if you’re still using Python 2, there are certain small steps
you can take to start modernizing your code now. For example,
make sure you’re always using new-style classes by inheriting
from object:

class Point(object):

 def __init__(self, x, y):

 self.x = x

 self.y = y

Similarly, make sure you use the modern style of exception han-
dling with the “as” keyword:

try:

 x = int(val)

except ValueError as exc: # Not: except ValueError, exc:

...

Make sure you use the more modern approaches to certain built-
in operations. For example, sorting data using key functions
instead of the older compare functions:

names = [‘paula’, ‘Dave’, ‘Thomas’, ‘lewis’]

names.sort(lambda n1, n2: cmp(n1.upper(), n2.upper())) # OLD

names.sort(key=lambda n: n.upper()) # NEW

Make sure you’re using proper file modes when performing I/O.
For example, using mode ‘t’ for text and mode ‘b’ for binary:

f = open(‘sometext.txt’, ‘rt’)

g = open(‘somebin.bin’, ‘rb’)

These aren’t major changes, but a lot of little details like this
come into play if you’re ever going to make the jump to Python 3
later on. Plus, they are things that you can do now without break-
ing your existing code on Python 2.

Embrace the New Printing
As noted earlier, in Python 3, the print statement turns into a
function:

 >>> print(‘hello’, ‘world’)

hello world

>>>

You can turn this feature on in Python 2 by including the fol-
lowing statement at the top of each file that uses print() as a
function:

 from __future__ import print_function

Although it’s not much of a change, mistakes with print will
almost certainly be the most annoying thing encountered if you
switch Python versions. It’s not that the new print function is
any harder to type or work with—it’s just that you’re not used to
typing it. As such, you’ll repeatedly make mistakes with it for
some time. In my case, I even found myself repeatedly typing
printf() in my programs as some kind of muscle-memory hold-
over from C programming.

Run Code with the -3 Option
Python 2.7 has a command line switch -3 that can warn you
about more serious and subtle matters of Python 3 compatibility.
If you enable it, you’ll get warning messages about your usage of
incompatible features. For example:

50  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns
A Pragmatic Guide to Python 3 Adoption

 bash % python2.7 -3

>>> names = [‘Paula’, ‘Dave’, ‘Thomas’, ‘lewis’]

>>> names.sort(lambda n1, n2: cmp(n1.upper(), n2.upper()))

__main__:1: DeprecationWarning: the cmp argument is not

supported in 3.x

>>>

With this option, you can take steps to find an alternative
implementation that eliminates the warning. Chances are, it will
improve the quality of your Python 2 code, so there are really no
downsides.

Future Built-ins
A number of built-in functions change their behavior in Python
3. For example, zip() returns an iterator instead of a list. You can
include the following statement in your program to turn on some
of these features:

 from future_builtins import *

If your program still works afterwards, there’s a pretty good
chance it will continue to work in Python 3. So it’s usually a
 useful idea to try this experiment and see if anything breaks.

The Unicode Apocalypse
By far, the hardest problem in modernizing code for Python 3
concerns Unicode [3]. In Python 3, all strings are Unicode. More-
over, automatic conversions between Unicode and byte strings
are strictly forbidden. For example:

>>> # Python 2 (works)

>>> ‘Hello’ + u’World’

u’HelloWorld’

>>>

>>> # Python 3 (fails)

>>> b’Hello’ + u’World’

Traceback (most recent call last):

 File “<stdin>”, line 1, in

TypeError: can’t concat bytes to str

>>>

Python 2 programs are often extremely sloppy in their treat-
ment of Unicode and bytes, interchanging them freely. Even if
you don’t think that you’re using Unicode, it still might show up
in your program. For example, if you’re working with databases,
JSON, XML, or anything else that’s similar, Unicode almost
always creeps into your program.

To be completely correct about treatment of Unicode, you need
to make strict use of the encode() and decode() methods in any
conversions between bytes and Unicode. For example:

>>> ‘Hello’.decode(‘utf-8’) + u’World’ # Result is Unicode

u’HelloWorld’

>>> ‘Hello’ + u’World’.encode(‘utf-8’) # Result is bytes

‘HelloWorld’

>>>

However, it’s really a bit more nuanced than this. If you know
that you’re working with proper text, you can probably ignore
all of these explicit conversions and just let Python 2 implicitly
convert as it does now—your code will work fine when ported
to Python 3. It’s the case in which you know that you’re work-
ing with byte-oriented non-text data that things get tricky
(e.g., images, videos, network protocols, and so forth).

In particular, you need to be wary of any “text” operation being
applied to byte data. For example, suppose you had some code
like this:

f = open(‘data.bin’, ‘rb’) # File in binary mode

data = f.read(32) # Read some data

parts = data.split(‘,’) # Split into parts

Here, the problem concerns the split() operation. Is it splitting
on a text string or is it splitting on a byte string? If you try the
above example in Python 2 it works, but if you try it in Python 3 it
crashes. The reason it crashes is that the data.split(‘,’) opera-
tion is mixing bytes and Unicode together. You would either need
to change it to bytes:

parts = data.split(b’,’)

or you would need to decode the data into text:

parts = data.decode(‘utf-8’).split(‘,’)

Either way, it requires careful attention on your part. In addi-
tion to core operations, you also must focus your attention on
the edges of your program and, in particular, on its use of I/O. If
you are performing any kind of operation on files or the network,
you need to pay careful attention to the distinction between
bytes and Unicode. For example, if you’re reading from a network
socket, that data is always going to arrive as uninterpreted bytes.
To convert it to text, you need to explicitly decode it according to
a known encoding. For example:

data = sock.recv(8192)

text = data.decode(‘ascii’)

import urllib

u = urllib.urlopen(‘http://www.python.org’)

text = u.read().decode(‘utf-8’)

Likewise, if you’re writing text out to the network, you need to
encode it:

text = ‘Hello World’

sock.send(text.encode(‘ascii’))

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 51

COLUMNS
A Pragmatic Guide to Python 3 Adoption

Again, Python 2 is very sloppy in its treatment of bytes—you can
write a lot of code that never performs these steps. However, if
you move that code to Python 3, you’ll find that it breaks.

Even if you don’t port, resolving potential problems with Unicode
is often beneficial even in a Python 2 codebase. At the very least,
you’ll find yourself resolving a lot of mysterious UnicodeError
exceptions. Your code will probably be a bit more reliable. So it’s
a good idea.

Taking the Plunge
Assuming that you’ve taken all of these steps of modernizing
code, paying careful attention to Unicode and I/O, adopting the
print() function, and so forth, you might actually be ready to
attempt a Python 3 port, maybe.

Keep in mind that there are still minor things that you might
need to fix. For example, certain library modules get renamed
and the behavior of certain built-in operations may vary slightly.
However, you can try running your program through the 2to3
tool and see what happens. If you haven’t used 2to3, it simply
identifies the parts of your code that will have to be modified
to work on Python 3. You can either use its output as a guide for
making the changes yourself, or you can instruct it to automati-
cally rewrite your code for you. If you’re lucky, adapting your
code to Python 3 may be much less work than you thought.

What About Compatibility Libraries?
If you do a bit a research, you might come across some compat-
ibility libraries that aim to make code compatible with both
Python 2 and 3 (e.g., “six,” “python-modernize,” etc.). As an
application programmer, I’m somewhat reluctant to recommend
the use of such libraries. In part, this is because they sometimes
translate code into a form that is not at all idiomatic or easy to
understand. They also might introduce new library dependen-
cies. For library writers who are trying to support a wide range of
Python versions, such tools can be helpful. However, if you’re just
trying to use Python as a normal programmer, it’s often best to
just keep your code simple. It’s okay to write code that only works
with one Python version.

References
[1] Nick Coghlan’s “Python 3 Q&A” (http://ncoghlan
-devs-python-notes.readthedocs.org/en/latest/python3
/questions_and_answers.html) is a great read concerning
the status of Python 3 along with its goals.

[2] David Beazley, “Three Years of Python 3,” ;login:, vol. 37,
no. 1, February 2012: beazley12-02_0.pdf.

[3] For the purposes of modernizing code, I recommend Ned
Batchelder’s “Pragmatic Unicode” presentation (http://
nedbatchelder.com/blog/201203/pragmatic_unicode.html)
for details on sorting out Unicode issues in Python 2 and
preparing your mind for work in Python 3.

xkcd xkcd.com

http://ncoghlan-devs-python-notes.readthedocs.org/en/latest/python3/questions_and_answers.html
http://ncoghlan-devs-python-notes.readthedocs.org/en/latest/python3/questions_and_answers.html
http://ncoghlan-devs-python-notes.readthedocs.org/en/latest/python3/questions_and_answers.html
https://www.usenix.org/system/files/login/articles/beazley12-02_0.pdf

52  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns

iVoyeur
ChatOps

D a v e J o s e p h s e n

Once upon a time, not too long ago, I was locked in a small room with a
horde of telephone salesmen. They were quite enamored of VOIP, and
SIP phones, and MPLS, and together with one of the executives, they

were convinced that telephones (yes, telephones) were the final and ultimate
solution to every productivity-related problem in the company.

They had a grand vision to unite all workers of the company by attaching them (nearly sym-
biotically) to a device called a “SIP phone.” The SIP phone would sit on everyone’s desk and
inform everyone of everyone else’s status via the blue-hued LED magic of something called a
“presence protocol.”

Everyone, I was told, would log into their phones first thing every morning, and they would
message each other via phone protocols, as well as transfer files to each other this way.
Everyone would always know the moment everyone else logged in to work, and because
everyone would do everything through their phone, pie charts (yes, pie charts) could be
produced that detailed the work habits of the whole company (except of course the execs).
The executives really liked pie charts, so they had locked the Ops guys (us) in a small room
with the telephone salesmen for six hours (yes, six) to teach us about presence protocols and
explain things like how the telephones would replace email and monitoring systems, and
how the new system would pay for itself in months once the people were all wired up to the
phones. We were evidently expected to do the wiring; honestly, I wasn’t looking forward to it.

Meanwhile, on the West Coast, so many companies were in want of smart people that they
had snatched up every smart person out there and were actively sending out spies to capture
and import more. Some of them had even resorted to stealing smart people from each other,
and paying college kids to drop out of school. Other, more respectable, West Coast companies
realized that they might be able to use smart people from other parts of the world without
shanghaiing them, if they could just figure out how to handle remote workers, so they started
exploring the concept of “distributed teams” [1]. Oddly, they collectively came to a vastly
different conclusion about the best way to manage their employees—one that did not involve
anything like plugging everyone into a phone.

The emergent “distributed teams” phenomenon is based on asynchronous communication,
like persistent chat systems, and flextime to maximize individual productivity. Persistent
chat is a lot like Web-based IRC, except you get scroll-back of all the conversations that have
been going on even while you were disconnected (hence, persistent). These tools integrate
easily with other tools and services, especially operations-focused tools, and so they’ve
become a popular solution to centralize operations undertakings, like troubleshooting, and
software deployments via chatbot.

Collectively referred to as ChatOps [2], this loosely collaborative alternative to approaches
like the phones described above is often referred to in a theoretical way on this blog or that [3, 4]
these days, but how it works in practice is not well documented and is something you really

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 53

COLUMNS
iVoyeur

need to see in the wild before you comprehend just how nice it
is. So, having just joined the distributed workforce, I thought it
might be interesting to share a peek inside one such company—
how we use ChatOps to communicate, troubleshoot, and monitor
our own infrastructure.

My story begins a few days ago when our production API
experienced a small glitch. Not the kind of thing that provokes a
thorough postmortem, but just a momentary network issue of the
sort that briefly degrades service.

Glitches like this are to be expected, but when you’re running
distributed applications, and especially multi-tenant SaaS, these
little hiccups are sometimes the harbingers of disaster—they
cannot be allowed to persist and should be detected and investi-
gated as quickly as possible. Our glitch on this particular morn-
ing didn’t grow into anything disastrous, but I thought it might
be nice to share it with you, to give you a peek at what problem
detection and diagnosis looks like at Librato.

A Culture of ChatOps
About half of our engineers are remote, so unsurprisingly we rely
heavily on ChatOps for everything from diabolical plotting to
sportsball banter. Because it’s already where we tend to “be” as
a company, we’ve put some work into integrating our persistent
chat tool with many of the other tools we use. It should be no
surprise, then, that our first hint something was wrong came by
way of chat (Figure 1).

Dr. Manhattan (Dr. M), a special-purpose account used for
tools integration, is the means by which our various third-party
service providers feed us notifications and—like his namesake—
can talk to all of our service providers at the same time. In this
paste, he’s letting us know that he’s gotten two notifications from
our own alerting feature. The first alert means that our API is
taking longer than normal to look up metric names stored in
memcached, while the second indicates that our metrics API is
responding slowly in general to HTTP POSTs.

Thanks to our campfire [5] integration, Dr. M. is also able to tell
us the names of the hosts that are breaking the threshold and
their current values. This is alarming enough, but these alerts
are quickly followed by more. First comes a notification from our
log processing system (Figure 2).

We’ve configured rsyslog on our AWS hosts to send a subset of
our ngnix logs to a third-party alert processing service (Pap-
ertrail). About the same time those metrics crossed threshold,
Papertrail noticed some HTTP 502 errors in our logs and is
sending them to Dr. M. who is listing them in channel. Some of
these lines indicate that a small number of requests are failing to
post. Not good.

More trouble follows, including several more alerts (Figure 3)
relating to our API response time, as well as notifications from
our alert escalation service [6], and our exception reporting
service [7], the latter of which indicates that some of our users’
sessions might be failing out with I/O errors.

Figure 1: Initial notifications of API problems appear in our Ops channel.

Figure 2: Follow-up alerts from our log processing system appear in the Ops channel.

54  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns
iVoyeur

Figure 4: Our API latency is visualized from links in the chat-alerts.

Figure 5: Our engineers react to the influx of bad news.

Figure 3: A third set of alerts from various service providers appear in channel.

Figure 6: Our engineers troubleshoot the latency issue.

Figure 7: The data confirms a short-lived upstream network partition.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 55

COLUMNS
iVoyeur

In every case, the notifying entity provides us a link that we can
use to get more info. For example, clicking the link in the first
notification from our alerting feature yielded the graph (Figure
4) in our metrics UI.

Sure enough, there are two obvious outliers here, indicating
that two machines (out of the dozen or so API hosts) were three
orders of magnitude slower than their peers returning metric
names from memcached.

Our engineers take a moment to assimilate the barrage of bad
news that was just dumped into the channel (Figure 5), and then
they dig in to figure out just what exactly is going on. Having
machine notifications inline with human conversation is a huge
win for us. The ability to react directly to what we are seeing in
channel without having to context-switch between our phones

and workstations makes us a more productive team—everyone is
literally on the same page all the time (Figure 6). We win again
when the troubleshooting we do as a team is automatically docu-
mented, and any newcomers to the channel who join mid-crisis
get all the context in the scrollback when they join.

We initially suspected that our message queue might be the cul-
prit, but we were able to quickly check the queue latency graph
and eliminate that possibility without wasting time poking at
the queue directly. Then we noticed some aberrant system-level
stats on the two hosts that broke threshold in the initial alert.

Our metrics tool puts all of our production metrics in one place,
so it’s trivial to correlate metrics from one end of the stack to the
other. Using a combination of application-layer and systems-
level graphs, we were able to verify that the problem was in fact

Figure 8: Thumbs up from our operations guys signals the all clear.

Figure 9: Our operations staff, talking to themselves.

56  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns
iVoyeur

some sort of short-lived network partition that isolated those
two particular AWS nodes. The data included the graph in
 Figure 7, which depicts our total number of healthy AWS nodes
(this data sources from AWS CloudWatch [8], using our turnkey
AWS integration feature).

The “dip” you see indicates that two of our nodes went dark
for a few seconds (too short a length of time for them to have
bounced). We noted their names and will keep them under obser-
vation for a few days, but at that point all we could do was glare
in Amazon’s general direction and call “all clear” (Figure 8).

Communicate to Document
We love ChatOps so much that sometimes—late at night, when
nobody is around—you can catch our engineers talking to them-
selves in channel (Figure 9).

This happened not long ago, late at night on a Sunday. Our on-
call Ops engineer was alerted by pager via our escalation service
about a database problem. You can see both the escalation alert
and our engineer’s acknowledgment shortly before he joins the
channel at the top. As he troubleshoots the issue, he narrates his
discoveries and pastes interesting tidbits, including log snippets
and graphs of interesting metrics. In this way, he documents
the entire incident from detection to resolution for the other

engineers who will see it when they join the channel the next
morning. Using ChatOps to document incidents has become an
invaluable practice for us. Important customer interactions, fea-
ture ideas, code deploys, and sales stats are also communicated
asynchronously, company-wide, via ChatOps. It is our portal,
wiki, and water cooler.

Another practice that we would find it hard to live without is
that of sharing graphs back and forth in channel in the way Peter
has done above. This is a handy way to both communicate what
you’re seeing to other engineers and simultaneously document
it for later. We’d begun to rely so heavily on copy/pasting graphs
to each other that we added a snapshot [9] feature to our metrics
tool so our engineers can share the graph they’re looking at in
our UI directly to a named chatroom in our chat tool without
copy/paste.

In this particular incident, Peter tracks the issue down to a
read-replica failure on a particular database node, and decides to
replace the node with a fresh instance. He first deletes the faulty
host and waits for things to normalize (Figure 10), and then he
brings up the new node (Figure 11) and monitors dashboards
until he’s convinced everything is copacetic.

Figure 11: Our on-call engineer brings up a new replica and monitors the result.

Figure 10: Our on-call engineer deletes a malfunctioning database replica.

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 57

COLUMNS
iVoyeur

References
[1] An Ode to Distributed Teams: http://blog.idonethis.com
/post/41946033190/an-ode-to-distributed-teams.

[2] ChatOps at GitHub (Rubyufza ’13): http://www.youtube
.com/watch?v=NST3u-GjjFw.

[3] Distributed teams at buffer: http://joel.is/post
/59525266381/the-joys-and-benefits-of-working-as-a-
distributed-team.

[4] Distributed teams at Zapier: https://zapier.com/blog
/how-manage-remote-team/.

[5] Campfire team collaboration tool: https://campfirenow
.com/.

[6] Pagerduty: http://www.pagerduty.com/.

[7] Honeybadger: https://www.honeybadger.io/.

[8] AWS CloudWatch: http://aws.amazon.com/cloudwatch/.

[9] Librato Snapshots: https://metrics.librato.com/product
/features.

[10] Propane client for Campfire: http://propaneapp.com/.

[11] Librato-Propane library: https://github.com/librato
/librato-propane.

Do you know about the
USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to
 offer free and open access to all of our confer-
ences proceedings and videos. We stand by
our mission to foster excellence and innovation
while supporting research with a practical bias.
Your financial support plays a major role in
making this endeavor successful.

Please help to us to sustain and grow our open
 access program. Donate to the USENIX Annual
Fund, renew your membership, and ask your
colleagues to join or renew today

Throughout his monologue, Peter is using the snapshots feature
I mentioned earlier to share graphs by clicking on the graph in
our UI, and then hitting the snapshot button to send it to Dr.
M., who, in turn, pastes it into the channel for everyone to see.
Snapshots are generally preferable to copy/pasting because they
provide everyone in channel a static PNG of the graph as well as
a link back to the live graph in our UI. Those of us who use the
Propane [10] client for Campfire even get live graphs [11] in chan-
nel instead of boring PNGs.

ChatOps Works
ChatOps delivers on the promise of remote presence in a way
the presence protocols never did. It’s a natural estuary for stuff
that’s going on right now; information just can’t help but find its
way there, and having arrived, it is captured for posterity. Chat-
Ops is asynchronous but timely, brain-dead simple yet infinitely
flexible. It automatically documents our internal operations in a
way that is transparent and repeatable, and somehow manages
to make time and space irrelevant.

Furthermore, because our monitoring is woven into every layer
of the stack and is heavily metrics-driven, data is always avail-
able to inform our decisions. We spend less time troubleshooting
than we would if we chose to rely on more siloed, legacy tech-
niques. Instrumentation helps us to quickly validate or disprove
our hunches, focusing our attention always in the direction of
root cause.

http://blog.idonethis.com/post/41946033190/an-ode-to-distributed-teams
http://blog.idonethis.com/post/41946033190/an-ode-to-distributed-teams
http://www.youtube.com/watch?v=NST3u-GjjFw
http://www.youtube.com/watch?v=NST3u-GjjFw
http://joel.is/post/59525266381/the-joys-and-benefits-of-working-as-a-distributed-team
http://joel.is/post/59525266381/the-joys-and-benefits-of-working-as-a-distributed-team
http://joel.is/post/59525266381/the-joys-and-benefits-of-working-as-a-distributed-team
https://zapier.com/blog/how-manage-remote-team/
https://zapier.com/blog/how-manage-remote-team/
https://campfirenow.com/
https://campfirenow.com/
http://www.pagerduty.com/
https://www.honeybadger.io/
http://aws.amazon.com/cloudwatch/
https://metrics.librato.com/product/features
https://metrics.librato.com/product/features
http://propaneapp.com/
https://github.com/librato/librato-propane
https://github.com/librato/librato-propane

58  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns

Measure Like You Meant It
D a n G e e r a n D r i c h a r D B e j t l i c h

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc.
dan@geer.org

Richard Bejtlich is chief security
strategist at FireEye and a
nonresident senior fellow at the
Brookings Institution.
contact@taosecurity.com

“How did it get so late so soon?”

 —Dr. Seuss

Pie charts: managers of security programs create them; their bosses
consume them. What slice of corporate computers is patched? What
percentage of systems runs antivirus software? What versions of vari-

ous Microsoft Windows operating systems are present in the environment?
Pie charts are the answer to questions like those.

The only real purpose of security metrics is decision support; therefore, we question the
utility of pie charts. Statistics on patching, antivirus, and OS distribution are needful, but
remember—they are “input metrics.” They are a means to an end; they are not the end itself.

Managers devise and operate digital security programs in many forms, sometimes summa-
rizing them in the form of the confidentiality-integrity-availability triad. One goal of a digital
security program might well be to protect the organization’s data from theft by an intruder.
Assuming for the sake of argument that such protection is the organization’s primary goal,
might it not make sense to measure progress toward that goal?

Organizations may well care about mitigating data theft, but seldom do they invest in mea-
suring their progress toward that goal, per se. They spend more time (creating pie charts) on
input metrics like patching, antivirus, and OS, but they don’t track “output metrics.” What
they need to ask is, “Are we compromised, and, if so, how bad was the intrusion?” You can
spend all the time in the world measuring what goes into the oven, but that won’t tell you if
you burned the cake—or if a thief stole it.

We argue that the two output metrics for understanding the risk of data theft are (1) count-
ing and classifying digital security incidents, and (2) measuring the time elapsed from the
moment of detection to the moment of risk reduction.

1. Counting and classifying digital security incidents: An organization should devise a
tracking mechanism appropriate for its environment and culture. Security professionals are
sure to debate the nature of various intrusions, but don’t allow that debate to drag on; you
need a taxonomy simple enough to apply and rich enough to usefully describe the incidents
likely to be encountered. Figure 1 is a sample set of intrusion categories [1]:

The intrusion “names” given in Figure 1 can easily be replaced with terms tailored to the
individual organization.

The focus of this exercise is to count the number of times defensive measures fail, and how
badly. A common classification system (emphasis on common) is a prerequisite if incident
responders are to communicate their true security posture. In Figure 1, they know that if
they’re facing a Breach 2, they need to implement containment faster than if confronting

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 59

Columns
Measure Like You Meant It

a Cat 2. Why? Because in the case of a Breach 2, data theft is
imminent, whereas a Cat 2 has not yet escalated to the same
likelihood of negative consequences. This is what we mean by
metrics that deliver decision support.

2. Measuring the time elapsed from the moment of detection
to the moment of risk reduction: When first reading this
output metric, you might ask, “What is risk reduction?” Profes-
sional incident responders speak in terms of “containment”—
actions taken to remove an intruder’s ability to communicate
with a compromised resource (i.e., if a compromised computer
is “contained,” then the intruder can neither steal data from it
nor issue remote commands to alter its state). Rogue, indepen-
dent code that is already on the machine, however, can still take
actions whether or not it is cut off from the outside world, such
as to scramble or delete data—that risk remains even if the risk
of data exfiltration from the compromised system is eliminated
when that system can no longer contact its home base (or be
contacted by it).

You may ask, “Why measure from the moment of detection to the
moment of risk reduction (i.e., containment)? Why not measure
time elapsed from the moment of compromise to the moment
the resource is returned to a trustworthy state (i.e., recovery)?”
Organizations beginning to measure output metrics should
start with the more achievable goal of measuring detection-to-
containment. On the “left” side of the time horizon, determin-
ing when an intrusion first occurred can be a daunting task. In
Mandiant’s experience, many serious intrusion victims wait
months before learning they have been compromised: 243 was
the median number of days from compromise to detection, and

2/3 of the time a third party notified the victim of the intrusion.
(Both Verizon’s Data Breach Investigations Report and the Index
of Cyber Security have found similar numbers.) On the “right”
side of the time horizon, moving from containment to recovery
is not necessarily the responsibility of the security team; usually
the IT team is tasked to rebuild intrusion victims from gold mas-
ter builds. Measuring that process is outside the security team’s
purview and can be unnecessarily demoralizing if recovery is a
lengthy process.

Or you may ask, “Why does time matter at all? Shouldn’t the
severity of the intrusion be the most important metric?” Even if
it’s true that severity is ultimately the most important metric, an
incident response team will rarely recognize the severity of an
intrusion at the moment of first detection. At best, the team can
decide whether the intrusion merits a “fast path” or a “slow path”
response process. Using threat intelligence, the most advanced
incident response teams identify perpetrators with a history of
inflicting the most damage, or having the intention and/or capa-
bility of inflicting the most damage. Upon finding these critical
threat groups active in the enterprise, the IR team responds
using a “fast path,” taking actions to quickly implement contain-
ment. Other intruders deserve a “slow path.” Triage is not just for
hospital emergency rooms.

If time is important, what is the reward for being fast? Again,
using Mandiant’s experience, critical threat groups do not act “at
network speed” or “at the speed of light” as is often heard when
speaking to government and defense officials. Rather, most data
thieves need time to move beyond their initial foothold. They
need to find the data they want, figure out a way to remove it,
and only then exfiltrate that information. This process may take
days or weeks, not nanoseconds. All the while, they must remain
unseen by the victim organization and any third parties with
extraordinary detection mechanisms. If at any point the defend-
ers detect and interrupt the intruders before they can steal data,
the victim organization “wins.”

One public example of the role of time comes from the 2012 hack
of the State of South Carolina Department of Revenue. As shown
in Figure 2, it took the criminal group exactly one month to
accomplish its goal [1]. Although the threat actor compromised
the agency on August 13, 2012, they did not remove any data
until September 13, 2012.

Recalling that Availability = MTBF / MTBF+MTTR , where
MTBF is “Mean Time Between Failures” and MTTR is “Mean
Time To Repair,” you can see that 100% availability comes from
either making MTBF infinite or making MTTR zero. In the
spirit of supporting your decisions, it’s clear that there comes
a point where further investment in intrusion avoidance is
diseconomic. From that point on, if not sooner, your investments
should go towards reducing the duration of compromise, hence
the very metric we suggest.

Figure 1: Example of intrusion categories

60  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns
Measure Like You Meant It

While we are at it, if there is no such thing as a “good intrusion”
nor is perfect knowledge ever possible, then measuring time is
the most concrete way to evaluate incident handling maturity,
especially in large organizations suffering many intrusions.
Beyond counting/classifying and measuring time as we argue
above, we offer one simple indicator that an incident response
capability is moving in the right direction: is your organization
a member of FIRST? FIRST is the Forum of Incident Response
and Security Teams, a global security group founded in 1989 and
consisting of nearly 300 members (Figure 3).

FIRST membership demonstrates a commitment to creat-
ing and maintaining a formal incident detection and response
program, backed by an audit of a candidate member’s capability
and recommendation by two current FIRST member teams.
By successfully joining FIRST, an organization says, “We are
committed to incident response as a core element of a security
program.” The growth in FIRST membership since 1989 paral-
lels the rise of incident response as a viable security strategy,
complementing (and some might say now, partially displacing)
incident avoidance.

Perhaps we should have admitted it at the outset, but we are pes-
simists who prefer to think of ourselves as realists. If you are a
security program manager, then prepare for when you get hacked
next. If you are a statistician, then get the data—you can always
throw it away later.

References
[1] Taken from Richard Bejtlich, The Practice of Network
Security Monitoring (No Starch Press, 2013).

Figure 2: Timeline of a compromise

Figure 3: FIRST membership by year

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 61

Columns

/dev/random
R o b e R t G . F e R R e l l

Make no mistake: I miss being a sysadmin. I did not truly realize to
what extent that was true until the first job I had where I was a
mere user. I couldn’t install drivers, write scripts, change system

options, put in patches, or much of anything else. To me, a computer repre-
sents something you optimize and manage so other people can use it to run
programs and print stuff out. In the final analysis, I simply don’t like being
a mere user. It isn’t really the sense of power that some sysadmins seem to
crave; for me, it’s more of an intimacy issue. I’ve been smitten by comput-
ers for all of my adult life and I like to be in touch with the whole enchilada.
Being an ordinary user is akin to going to a museum. You can look, but you
can’t touch. Boring.

Being the system administrator allows you to meld with the computer and feel its innermost
heartbeat. You can watch the packets skitter across the network interface, crawl up the stack
to the application layer, and then spill out onto the user like so much confetti at a tickertape
parade. (Some of you may need to stop and employ an Internet search engine such as Google
at this point. I refuse to use “Google” as a verb.)

When you’ve got root you enter into “with great power comes great responsibility” territory:
at once both intoxicating and sobering . . . which I guess would cancel each other out. Another
evocative literary sloop dashed against the rocks of semantics. Anyway, sitting at the console
with root access is like sitting at the helm of a great starship, the myriad galaxies glittering
and twinkling in your forward viewscreen, all awaiting exploration. The process table is your
ship’s manifest, the processor is the propulsion system, the firewall and IDS are your shields,
the router your navigation system, and the weapons bay . . . the weapons bay consists of your
brain and your fingers, because if you weren’t capable of doing damage that way you probably
wouldn’t be reading this. I hasten to add that this ship engages in purely defensive actions
only. Really.

Your passengers are the users. You must keep them happy by avoiding rough seas (latency),
noroviruses (malware), and running out of booze (inadequate quotas). You must also, of
course, get them to their destination (process their data successfully) without running
aground (crashing the system) or being intercepted and boarded by pirates (see malware,
above). If the ship springs a (memory) leak, you must be ready to patch it immediately.

I was going to see how far I could carry the nautical metaphor but I’m starting to feel a little
queasy, so it’s time to tie off at the nearest dock and disembark. I hope you had a pleasant
cruise. Customs should only take three or four hours; don’t forget to declare that velvet mata-
dor painting and the six liters of tequila and rum you poured into empty shampoo bottles
tucked away in your luggage.

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

62  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Columns
/dev/random

I love looking at logs. To me they’re like reading the daily news.
System logs will show you which processes completed success-
fully and which took a dive. Security logs reveal who’s been
rattling your (hopefully locked) gates, casing the joint, or trying
to slip malware under the door or through the transom. They can
also provide a peek into the secret life of your machine: which
applications play well with others and which don’t.

Ah, what I wouldn’t give for a return to the halcyon days when
my mornings consisted of coffee and leisurely log scanning,
instead of frantically trying to prioritize the huge stack of over-
due tasks by which ones will engender the least abuse from my
chain of command when finally completed. Had I known where
I would be at this moment 15 years ago, I would have stayed put
as a sysadmin. To quote Billy Joel, “if that’s movin’ up, then I’m
movin’ out.”

Self-pity having had its say, let’s get back on task. I must confess
to being something of a network voyeur in that I’ve always been
fascinated by using a sniffer to watch packets flitting to and fro.
I don’t mean reading their payloads so much as just witnessing
TCP/IP in action. UDP is less engaging, because there’s no flow
to it: just the occasional incoming or outgoing datagram, like
watching birds patronizing a rather unpopular feeder, or a slow
golf game (if that isn’t redundant). TCP/IP, on the other hand,
is basketball, a continuous stream that experiences peaks and
troughs of activity, depending mostly on what’s going on at
Layer 7.

I’ve always been the kind who enjoys helping people, so system
administration was a natural for me. In contrast to the infamous
“BOFH” (I’m using the abbreviation because I’m not sure how
the editors would feel about my spelling it out), the powers of the
system administrator may also be used for good. Solving prob-
lems for users can be very fulfilling. It can also be aggravating,
but now that I have spent almost seven years as a user, I under-
stand what makes some users act the way they do.

Speaking of that, sysadmins tend to get the impression that their
users are somewhat intellectually challenged. I certainly did.
Now that I have quite a bit of experience on the other side, I find
myself constantly questioning the cognitive abilities of the IT
staff. I suppose that’s unavoidable, as neither side has access to
the thought processes and priorities of the other. An alternate
conclusion one might reach is that I simply think I’m smarter
than everyone else, but I’m going to sidestep that one as unchari-
table because it’s my column and I can do that.

I’ve heard rumors that the sysadmin is a doomed species whose
time on Earth is rapidly dwindling down to a few last chmod
spasms. I don’t believe them. Taking a human out of the loop may
seem to streamline and normalize the administration process,
but at least you can reason with a human sysadmin (chocolate
and beer, for example, being powerful arguments). When your
human-less network server tells you that your quota has been
exceeded and your account will be frozen as a result, who you
gonna call?

www.usenix.org A p r i l 20 14 Vo l . 3 9, N o. 2 63

BooksBook Reviews
E l i z a b E t h z w i c k y , R i k F a R R o w , a n d M a R k l a M o u R i n E

Numbersense: How to Use Big Data to Your Advantage
Kaiser Fung
McGraw Hill, 2013. 218 pages
ISBN 978-0-07-179966-9
Reviewed by Elizabeth Zwicky

This is a fine book about thinking about numbers, only moder-
ately connected to big data. If you really want to know about big
data, you’d be better off with one of the recently reviewed data
analysis books; only some of the examples here deal directly with
big data issues. On the other hand, if you would like a better idea
of how data analysts work and how the news is lying to you, with-
out too many actual numbers, this is a nice start. Seriously, a lot
of data analysis is more about skepticism than about numerical
manipulation more complex than addition and subtraction, and
this kind of introduction will move you towards the right thought
habits.

Hyperbole and a Half: Unfortunate Situations,
Flawed Coping Mechanisms, Mayhem, and Other
Things That Happened
Allie Brosh
Simon and Schuster, 2013. 371 pages
ISBN 978-1-4516-6617-5
Reviewed by Elizabeth Zwicky

This is a purely non-technical book, based on a Web comic. It is
one of the funniest descriptions of dog ownership ever, and Allie
Brosh is one of the few people who can write about depression
in ways that are both funny and true. You don’t need to take my
word for it, you can just go and search for it. In book format you
get more text and no video, but the video is not actually required,
while the text is excellent.

Although I read the web comic, I had missed some of these,
including some laugh out loud stories. Go get a copy so that you
can press it on friends you can’t email links to, or just so that
when your Internet goes out you can while away the time reading
and remembering that every so often the Internet brings us mar-
velous creators, moments of pure hilarity, and utter poignancy.
Or, if you like, so that you know that yours is not the stupidest
dog ever.

Systems Performance for Enterprise and Cloud
Brendan Gregg
Prentice Hall, 2013;. 735 pages
ISBN 978-0-13-339009-4
Reviewed by Rik Farrow

Although Brendan’s book’s title refers to performance, the book
could just as easily have been called troubleshooting Linux and
Solaris systems. And by systems, I do mean everything from
caches to distributed services. Brendan writes clearly, leaves
nothing out, and is well organized but never boring.

The book begins with four chapters that provide the necessary
background for the following eight chapters. Brendan explains,
with examples, key concepts, methodology, terminology, kernel
internals for the performance analyst, and tools. He uses anal-
ogy well: for example, when converting time scales for system
latency into human-understandable scales, where if a clock tick
is one second, L3 cache access takes 43 seconds, and DRAM
access six minutes. The book is full of analogies like this that
make the writing easier to comprehend.

The next eight chapters cover particular topic areas, like appli-
cations, memory, CPUs, network, and cloud computing, in detail.
Brendan designed the book so that it can be used as a reference,
and he attempts to future-proof it with the focus on methodology
and necessary background. The final chapter contains a lengthy
troubleshooting session showing how Brendan uses the method-
ology that he has described in real life. He ends with a quote from
Niels Bohr: “An expert is a person who has made all the mistakes
that can be made in a very narrow field.” I believe this reflects
Brendan’s attitude well, in that he speaks from experience and
does not talk down to his readers.

There are seven appendices, starting with performance tools
for Linux and Solaris and including one of DTrace one-liners.
Throughout the book, Brendan shows how tools for both Linux
and Solaris-related operating systems are used to display utili-
zation, capacity, saturation, and errors, part of his USE method-
ology that forms an early step in troubleshooting performance
issues.

I found Brendan’s writing pleasant to read. The attention to
detail is great, and I noticed no typos or mistakes in examples,
which was also a real pleasure. I can recommend this book to
system designers, system administrators, and programmers
because all three groups will benefit by better understanding,

64  A p r i l 20 14 Vo l . 3 9, N o. 2 www.usenix.org

Books

and being able to measure, the many subsystems that are impor-
tant in systems performance. Although this is not a beginner’s
book, an intermediate to advanced practitioner will get a lot of
benefit from reading it, in whole or in part.

RabbitMQ In Action
Alvaro Videla and Jason J. W. Williams
Manning Publications, 2012. 287 pages
ISBN 978-1935182979
Reviewed by Mark Lamourine

RabbitMQ in Action is subtitled “Distributed Messaging for
Everyone,” and while that’s hyperbolic, it’s not without a grain
of truth. As the timeline in the first chapter notes, for decades,
enterprise quality messaging services have been the purview of
a handful of commercial providers. In the past 15 years or so, a
handful of attempts have been made to bring an open messaging
service to distributed applications with mixed results. Rab-
bitMQ and AMQP (Advanced Message Queuing Protocol) show
a lot of promise.

I appreciated the context that the authors provide in the intro-
ductory chapters. The verbal and graphical timelines for the
inception and development of computer messaging are rooted
in the financial industry of the early 1980s and carry through

an attempt at unification in the JMS standard to the emergence
of AMQP from the same world of financial applications in the
mid-2000s. The authors also explain how the use of messaging
technology improves the robustness and flexibility of distributed
applications. This is still the first chapter. The last two pages
cover installation and initial configuration of the service.

In the remainder of the book, the authors treat service configu-
ration, clustering, and failover and message store persistence
(making sure messages en route aren’t lost if the node they’re on
fails). Several chapters relate to application development, focus-
ing on design patterns and writing for failure. RabbitMQ is writ-
ten in Erlang but, never fear, all of the code for the examples is in
common application languages like Python and PHP. In the final
chapters, Videla and Williams touch on managing, monitoring,
and securing the RabbitMQ service.

The authors write with a clear flowing style that packs a lot
of content into an unimposing book without feeling dense or
unnecessarily academic. Videla and Williams have created an
accessible introduction to messaging technology in general and
to AMQP and RabbitMQ in particular. If you’re considering
writing a modern distributed application, whether for internal
business processes or Web applications, RabbitMQ in Action is a
good place to start.

USENIX Board of Directors
Communicate directly with the USENIX Board of Directors
by writing to board@usenix.org.

p r e s i d e n t

Margo Seltzer, Harvard University
margo@usenix.org

v i c e p r e s i d e n t

John Arrasjid, VMware
johna@usenix.org

s e c r e t a r y

Carolyn Rowland, National Institute of Standards and Technology
carolyn@usenix.org

t r e a s u r e r

Brian Noble, University of Michigan
noble@usenix.org

d i r e c t o r s

David Blank-Edelman, Northeastern University
dnb@usenix.org

Sasha Fedorova, Simon Fraser University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

e x e c u t i v e d i r e c t o r

Casey Henderson
casey@usenix.org

Itis Here!
A brand new magazine for the

Raspberry Pi Community

Look for us at your local newsstand!

Or find us online at
www.raspberry-pi-geek.com

ad_login_RPG_02_2014.indd 1 2/13/14 12:01:27 PM

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

www.usenix.org/facebook

www.twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

2014 USENIX Federated Conferences Week
Cloud, Storage, Sysadmin, and More
June 17–20, 2014 Philadelphia, PA www.usenix.org/fcw14

USENIX ATC ’14: 2014 USENIX Annual Technical Conference

ICAC ’14: 11th International Conference on Autonomic Computing

Feedback Computing ’14: 9th International Workshop on Feedback Computing

HotCloud ’14: 6th USENIX Workshop on Hot Topics in Cloud Computing

HotStorage ’14: 6th USENIX Workshop on Hot Topics in Storage and File Systems

URES ’14: 2014 USENIX Release Engineering Summit NEW!

UCMS ’14: 2014 USENIX Confi guration Management Summit

WiAC ’14: 2014 USENIX Women in Advanced Computing Summit

Training Sessions
are back!
Topics include:
• Autonomic computing
• Configuration

management
• Release engineering

Registration opens in April. Discounts available!
 Register by the Early Bird Deadline, Monday, May 19, 2014, and save.

	Cover
	Contents
	The Death of System Administration
	Musings
	How to Be a Better System Administrator and Then Something Else
	Interview with John Looney
	Accelerating the Path from Dev to DevOps
	Interview with Tom Hatch
	The Case of the Clumsy Kernel
	Large Scale Splunk Tuning
	Let’s Find Someone to Blame
	SDN Is DevOps for Networking
	Musings and Hacks on DHCP
	Practical Perl Tools
	A Pragmatic Guide to Python 3 Adoption
	xkcd
	iVoyeur
	Measure Like You Meant It
	/dev/random
	Book Reviews

