
;login:
v o l . 3 8 , n o . 6D E C E M B E R 2 0 1 3

Security
& A Fistful of Bitcoins

Sarah Meiklejohn, Marjori Pomarole, Grant
Jordan, Kirill Levchenko, Damon McCoy,
Geoffrey M. Voelker, and Stefan Savage

& Embassies
Jon Howell, Bryan Parno, and John R. Douceur

& DDoS for Hire
Mohammad Karami and Damon McCoy

& Trusting PGP
Phil Pennock

& Security Event Correlator
David Lang

Columns
Practical Perl Tools: Parsing Command Lines
David N. Blank-Edelman

Python: Python Packages
David Beazley

iVoyeur: Usefulness of Go
Dave Josephsen

For Good Measure: Deciding What’s Vulnerable
Dan Geer and Michael Roytman

/dev/random: Managing Risk
Robert G. Ferrell

Conference Reports
22nd USENIX Security Symposium

VMware Academic Program: Committed to strengthening VMware’s relationship with
the academic and research communities. To learn more, visit labs.vmware.com.

U P C O M I N G E V E N T S

Stay Connected...

www.usenix.org/facebook

twitter.com/usenix

www.usenix.org/youtube

www.usenix.org/linkedin

www.usenix.org/blog

www.usenix.org/gplus

FAST ’14: 12th USENIX Conference on File and
Storage Technologies

February 17–20, 2014, Santa Clara, CA, USA
www.usenix.org/conference/fast14

2014 USENIX Research in Linux File and Storage
Technologies Summit
In conjunction with FAST ’14
February 20, 2014, Mountain View, CA, USA
Submissions due: January 17, 2014

NSDI ’14: 11th USENIX Symposium on Networked
Systems Design and Implementation

April 2–4, 2014, Seattle, WA, USA
www.usenix.org/conference/nsdi14

2014 USENIX Federated Conferences Week
June 17–20, 2014, Philadelphia, PA, USA

USENIX ATC ’14: 2014 USENIX Annual Technical
Conference
www.usenix.org/conference/atc14
Paper titles and abstracts due January 28, 2014

HotCloud ’14: 6th USENIX Workshop on
Hot Topics in Cloud Computing
www.usenix.org/conference/hotcloud14

WiAC ’14: 2014 USENIX Women in Advanced
Computing Summit

HotStorage ’14: 6th USENIX Workshop
on Hot Topics in Storage and File Systems
www.usenix.org/conference/hotstorage14
Submissions due: March 13, 2014

UCMS ’14: 2014 USENIX Configuration
Management Summit

ICAC ’14: 11th International Conference on
Autonomic Computing

USRE ’14: 2014 USENIX Summit on Release
Engineering

23rd USENIX Security Symposium
August 20–22, 2014, San Diego, CA, USA
www.usenix.org/conference/usenixsecurity14
Submissions due: Thursday, February 27, 2014

Workshops Co-located with USENIX Security ’14
EVT/WOTE ’14: 2014 Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections
USENIX Journal of Election Technology
and Systems (JETS)
Published in conjunction with EVT/WOTE
www.usenix.org/jets
Submissions for Volume 2, Issue 3, due: April 8, 2014

HotSec ’14: 2014 USENIX Summit on Hot Topics
in Security

FOCI ’14: 4th USENIX Workshop on Free and Open
Communications on the Internet

HealthTech ’14: 2014 USENIX Workshop on Health
Information Technologies
Safety, Security, Privacy, and Interoperability
of Health Information Technologies

CSET ’14: 7th Workshop on Cyber Security
Experimentation and Test

WOOT ’14: 8th USENIX Workshop on Offensive
Technologies

OSDI ’14: 11th USENIX Symposium on Operating
Systems Design and Implementation

October 6–8, 2014, Broomfield, CO, USA
www.usenix.org/conference/osdi14
Abstract registration due April 24, 2014

Co-located with OSDI ’14:
Diversity ’14: 2014 Workshop on Diversity
in Systems Research

LISA ’14: 28th Large Installation System
Administration Conference

November 9–14, 2014, Seattle, WA, USA
https://www.usenix.org/conference/lisa14
Submissions due: April 14, 2014

E d i t o r
Rik Farrow
rik@usenix.org

M a n a g i n g E d i t o r
Rikki Endsley
rikki@usenix.org

C o p y E d i t o r
Steve Gilmartin
proofshop@usenix.org

p r o d u C t i o n
Arnold Gatilao
Casey Henderson
Michele Nelson

t y p E s E t t E r
Star Type
startype@comcast.net

u s E n i X a s s o C i at i o n
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738

www.usenix.org

;login: is the official magazine of the USENIX
Association. ;login: (ISSN 1044-6397)
is published bi-monthly by the USENIX
Association, 2560 Ninth Street, Suite 215,
 Berkeley, CA 94710.

$90 of each member’s annual dues is for a
subscription to ;login:. Subscriptions for non-
members are $90 per year. Periodicals postage
paid at Berkeley, CA, and additional offices.

POSTMASTER: Send address changes to
;login:, USENIX Association, 2560 Ninth Street,
Suite 215, Berkeley, CA 94710.

©2013 USENIX Association
USENIX is a registered trademark of the
USENIX Association. Many of the designations
used by manufacturers and sellers to
distinguish their products are claimed
as trademarks. USENIX acknowledges all
trademarks herein. Where those designations
appear in this publication and USENIX is aware
of a trademark claim, the designations have
been printed in caps or initial caps.

d E C E M b E r 2 0 1 3 v o l . 3 8 , n o . 6

E d i t o r i a l
2 Musings Rik Farrow

s E C u r i t y
6 The 10-Kilobyte Web Browser Jon Howell, Bryan Parno,

and John R. Douceur

10 A Fistful of Bitcoins: Characterizing Payments Among Men
with No Names Sarah Meiklejohn, Marjori Pomarole, Grant
Jordan, Kirill Levchenko, Damon McCoy, Geoffrey M. Voelker, and Stefan
Savage

16 Dowser: A Guided Fuzzer for Finding Buffer Overflow
Vulnerabilities Istvan Haller, Asia Slowinska, Matthias Neugschwandtner,
and Herbert Bos

20 Rent to Pwn: Analyzing Commodity Booter DDoS Services
Mohammad Karami and Damon McCoy

24 An Interview with Ben Laurie Rik Farrow

28 Mackerel: A Progressive School of Cryptographic Thought
Justin Troutman and Vincent Rijmen

s y s a d M i n
33 Trusting PGP Phil Pennock

38 Using SEC David Lang

44 Erasure Codes for Storage Systems: A Brief Primer James S. Plank

C o l u M n s
52 Practical Perl Tools: CLI Me a River David N. Blank-Edelman

56 Python: -m Is for Main David Beazley

60 iVoyeur: Go, in Real Life Dave Josephsen

64 Measuring vs. Modeling Dan Geer and Michael Roytman

68 /dev/random: Cloud Control: Future (Mis)Directions for Information
Security Robert G. Ferrell

70 Book Reviews Elizabeth Zwicky and Mark Lamourine

u s E n i X n o t E s
74 2014 Election for the USENIX Board of Directors

Anne Dickison and Casey Henderson

75 USA Team Wins Big at 2012 International Olympiad in
 Informatics Brian C. Dean

75 Thanks to Our Volunteers Anne Dickison and Casey Henderson

C o n F E r E n C E r E p o r t s
77 22nd USENIX Security Symposium

2  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

EDITORIALMusings
R i k F a R R o w

Rik is the editor of ;login:.
rik@usenix.org A s often is the case, I find myself musing about the state of computer

security. Although there certainly is no easy answer to fixing our
insecure systems, I’ve come across a wonderful analogy, thanks to a

NOVA (US public television science) show: “Why Ships Sink” [1].

For ships at sea, as well as airplanes, the answer is often simple: human error is at least par-
tially to blame. But nothing is as simple as it may first appear.

Bulkheads
By the time the Titanic sailed, ship designers included bulkheads in their designs. These
bulkheads separated the region below the waterline of a ship into separate compartments.
The goal for these compartments was to limit flooding if two ships collided. The bow of most
ships also included a separate compartment, the peak tank that was designed to both crumple
and contain any flooding from a collision.

As we all know, Titanic’s bulkheads failed rather dramatically. Instead of taking days to sink,
Titanic took just hours [2]. The bulkheads were not actually watertight but could be, and
were, overtopped by flooding. And these compartments were designed under the assump-
tion that a ship would be holed in, at most, two compartments, and then only if a collision
occurred right at the boundary between the two compartments.

The sinking of the Oceanos [3] provides another vivid example of the failure of watertight
bulkheads. Ship designers had done a much better job by this time, having learned from the
Titanic’s failure. But humans could easily foil this design. In the case of Oceanos, partially
completed maintenance allowed a leak that started in the engine room to pass through a hole
in a bulkhead into the sewage waste disposal tank, and from there, into the rest of the ship
via toilets, sinks, and showers. A check valve that would have stopped the backwards passage
of water through the waste lines had been removed and not replaced, leading to the sinking of
the ship in rough seas off the coast of South Africa.

I certainly find it interesting how both of these examples included assumptions in design and
compounded them with the actions of humans.

Computer Security
We have bulkheads, of a sort, in most of our computer systems. Memory management
separates access to the memory of one process by other processes. And there are “rings” of
protection, with the kernel running in the innermost ring, any VMs and possibly device driv-
ers running in the next one or two levels, and user processes running in the outermost ring
[4]. Hardware enforces these rings, so we can imagine them functioning as bulkheads within
our computer systems, designed to prevent exploitation, rather than flooding. Attacks at the
outermost ring should not impact inner rings.

Like the Titanic, which had doors in its bulkheads, CPUs also have “doors” between rings.
These provide access to privileged routines—for example, allowing an editor to access blocks
on a disk or a Web browser to read data from a network connection. We call these doorways
system calls, but at the hardware layer they are software interrupts that cause execution to

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 3

EDITORIAL
Musings

switch between the application that executed the interrupt and
the interrupt or trap handler at an inner ring. This handler uses a
value to index into the table of system calls.

System calls provide an entry point into the inner rings, and
the innermost ring has access to all memory and all hardware.
Behind the system call is what provides the weakness in the
design: the operating system itself. Operating systems are giant
concurrent programs that have several important features: they
are crucial for the proper functioning of systems, they are large,
and they are difficult to write.

As it turns out, kernel exploits have become one of the most
common methods for escalating privilege on *nix systems. In the
pre-Internet days, set-user-id (SUID) programs owned by the
root were the most popular means for privilege escalation. As the
Internet became widely used, root-run network services became
more popular targets. And later, largely because of the awareness
that both SUID root and root-run network services were danger-
ous, the numbers of both have decreased over time. There still
are many SUID root programs, though not as many as there once
were. And the number of root-run network services has declined
dramatically. Also, kernel developers have designed kernel-
based mechanisms, such as capabilities and SELinux, that can
limit the scope of what SUID programs and network services are
permitted to do.

That leaves the kernel as a huge program with a complete set of
privileges and no limitations. Any code running at ring 0 has
complete access to the system, making the kernel a juicy target.

According to conversations with people who run lots of Linux
systems, the usual path to exploitation is to gain access to a
system through theft of an account, then to use a kernel exploit
to gain total control over the system in question. Often, the next
step is to install trojan SSH/SSHD programs, so the attacker can
steal more accounts.

Our watertight bulkheads are no more watertight, or better
designed, than the Titanic’s.

The Lineup
We start off this security-focused issue with an article by Jon
Howell and friends. Jon and his cohorts have published two
papers about Embassies, and after some badgering they have
completed an article about their new notion of how Web brows-
ers should work. Instead of building many different brows-
ers that are more like operating systems with lots of leaky
bulkheads, they have built a system that runs complete binary
applications within a Web browser. Unlike systems such as XaX
[5] and Native Client [6] that came before them, Embassies does
not require extensive code revisions in applications. Instead,
Embassies does something I imagined (and wrote about [7])
many years before. Embassies uses a special library as a replace-

ment for libc and ntdll.dll that provides an extremely limited sys-
tem call interface to applications. In essence, Embassies reduces
the number of openings left in the bulkheads between applica-
tions and the kernel to less than ten, far from the hundreds (to
thousands) of system calls found today.

Sarah Meiklejohn and her associates wrote about Bitcoin. In
their research, they used bitcoins to make online purchases, and
through analyzing information used in these transactions, were
able to group a goodly fraction of all Bitcoin addresses to a num-
ber of well-known entities, such as Mt. Gox and Silk Road. Their
work shows that bitcoin transactions are not as anonymous as
you might think, and the authors do a great job of explaining both
their research and how Bitcoin works.

I interviewed Ben Laurie because a friend had pointed out that
he had strong views about Bitcoin. Of course, Ben spends most
of his time working to make the Internet safer, through his cur-
rent work on Certificate Transparency [8]. I did get to ask Ben
for his thoughts about digital currencies in general, and Bitcoin
in particular.

At Crispin Cowin’s request, I asked Istvan Haller and his co-
authors to write about their smart fuzzer. Crispin had just been
awarded the Test of Time for his work on stack canaries, and he
told me this was his favorite work at the 2013 Security confer-
ence. Haller et al. combine previous work into a technique that
zeroes in on areas within programs that are the best places to
find buffer overflows, which is still an issue after all these years.

Although people presented a lot of other exciting research dur-
ing Security ’13, I chose only one other workshop paper for this
issue. Mohammad Karami and Damon McCoy had researched
DDoS for hire, and presented a workshop paper about this during
LEET. I found what they had uncovered fascinating: for a small
monthly fee, you can have a service DDoS the IP address of your
choice with up to hundreds of millions of packets per second.

Justin Troutman had long been promising me an article about a
new framework for cryptography. He and Vincent Rijmen (best
known for his part in developing AES) have been researching
how best to build a cryptographic framework that works well for
both developers and end users. Today, cryptographic APIs leave
developers with too many choices to make, choices that should
instead be made by cryptographers who understand the theory
behind how cryptographic primitives should be used. And most
cryptographic libraries result in programs that are difficult for
end users to use properly. So instead of having developers mak-
ing design mistakes to produce programs that end users cannot
simply use correctly, Troutman and Rijmen’s goal is to create a
“green” framework that solves both of these problems.

Phil Pennock contacted me, after some urging by Doug Hughes,
about problems he has with how people perceive PGP. Phil runs a

4  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

EDITORIAL
Musings

keyserver and is a code committer, so he is well situated to com-
ment on PGP. Phil tells us that PGP cannot do many of the things
that people expect it to do, for example, prevent traffic analy-
sis. In fact, PGP makes traffic analysis simpler. Phil goes on to
explain things you need to know if you want to use PGP properly.

David Lang continues with his series of articles about enterprise
logging. David explains how to use the Security Event Correlator,
SEC, as a tool for monitoring logs. I had long found SEC a com-
plicated and hard to understand tool, and am glad that David has
taken the time to carefully explain how to use some of its most
important features.

James Plank has written a survey of erasure codes for storage
systems. Most of us are at least somewhat familiar with RAID,
a system that in most configurations relies on erasure coding to
create a more durable storage system. Jim has presented many
papers about erasure coding at FAST workshops, and does a
great job in this article of explaining the different ways erasure
coding works, and how to measure the effectiveness of erasure
coding. Although you might think this is a topic that you don’t
need to understand, you will understand both erasure coding
and RAID much better if you do read his article.

David Blank-Edelman has written about the command line.
Sound boring? Well, it’s not, as David provides helpful Perl
modules and information that makes it easy to parse com-
mand lines, and strongly suggests that you not go and build yet
another wheel.

David Beazley explains Python packages and what takes the
place of main() in Python scripts. I often wondered about this,
and, as usual, David provides lots of clear examples of how to
access functions within packages as if they were the entry func-
tion in a C program.

Dave Josephsen writes to us from the wilderness about his
adventures. Well, he only wrote a little bit about hiking in the
Rockies, and spent most of his column extolling the useful-
ness of Go. Dave has discovered that by programming in Go, he
has been encouraged to use Git, add network interfaces, think
about concurrency, and embrace types and data structures.
That’s pretty amazing for both a computer language and a cur-
mudgeon like Dave.

Dan Geer and guest co-author Michael Roytman point out
that using guesstimates of a vulnerability’s likelihood of being
exploited makes no sense at all. They share charts and data
with us to prove that calculated measures of exploitability do

not match up with the vulnerabilities actually exploited, and
provide suggestions for doing a better job of deciding what is
most vulnerable.

Robert Ferrell gets serious about security in his column. Not
that he isn’t still being funny, but Robert makes a number of very
good points, similar to points I was hearing in hallway talk dur-
ing the Security Symposium.

Elizabeth Zwicky reviewed five books this time, three on
management and two on data analysis. Mark Lamourine
reviewed three short books on Vagrant, Git, and Puppet types
and providers.

We have many more pages of summaries than we can print, all
from the 2013 Security Symposium and the workshops during
that week. If you have ever wondered why some things get sum-
marized and others don’t, summarizing is a volunteer activity.
We do ask any person who has received financial assistance to
attend USENIX events to summarize, but we do not force them
to summarize. We have learned from experience that the best
summaries come from interested participants who have a desire
to write summaries.

That said, the volunteers managed to cover all of the Symposium,
HotSec, WOOT, LEET, and parts of CSET and HealthTech. We
also strive to post the summaries to the ;login: portion of the
USENIX Web site as soon as they have been edited, copyedited,
and typeset, and you will often be able to find summaries weeks
before they appear in print.

One of the more interesting things I’ve heard recently about
security (which doesn’t seem that new at all) is that you don’t
need to wonder whether your systems will be exploited; you need
to notice when they have been. If you read the October issue’s
“For Good Measure” column, you may recall that in the Verizon
Data Breach Investigations Report, 80% of data breaches are
discovered by some unrelated third party. Geer and Pareek also
reported that 65% of the people they survey reported discovering
an attack aimed at some other party.

Perhaps we need to quit worrying about the security of our
systems, start monitoring for signs of a successful exploit, and
keep our incident response teams ready for the emergency that
might sink our already leaky ships. We don’t have watertight
bulkheads, but Titanics cruising serenely along into a night sea
scattered with icebergs.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 5

EDITORIAL
Musings

References
[1] Nova on “Why Ships Sink”: http://www.pbs.org/wgbh/
nova/tech/why-ships-sink.html.

[2] Watertight compartments on the Titanic: http://www
.titanic-titanic.com/titanic_watertight_compartments.
shtml.

[3] Sinking of the Oceanos: http://en.wikipedia.org/wiki/
MTS_Oceanos.

[4] Rings for computer security: http://arstechnica.com/
security/2009/03/storm-over-intel-cpu-security-could-be
-tempest-in-a-teapot/.

[5] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob
R. Lorch, “Leveraging Legacy Code to Deploy Desktop
Applications on the Web,” Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), December 2008, pp. 339–354.

[6] Native Client: http://code.google.com/p/nativeclient/.

[7] Rik Farrow, “Musings,” ;login:, vol. 32, no. 4,
2007: https://www.usenix.org/publications/login/
august-2007-volume-32-number-4/musings.

[8] Certificate Transparency: http://www.certificate
-transparency.org/.

Do you know about the USENIX Open Access Policy?

USENIX is the first computing association to offer free and open access
to all of our conferences proceedings and videos. We stand by our mis-
sion to foster excellence and innovation while supporting research with
a practical bias. Your membership fees play a major role in making this
endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

6  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECurityThe 10-Kilobyte Web Browser
J o n H o w E l l , B R y a n p a R n o , a n D J o H n R . D o u C E u R

Jon Howell is re-envisioning the
delivery of client applications,
building a large scale,
consistent distributed name
service, building formally

verified software, and improving verifiable
computation. howell@microsoft.com

Bryan Parno focuses on
protocols for verifiable
computation and zero-
knowledge proofs, building
practical, formally verified

secure systems, and developing next-
generation application models.
 parno@microsoft.com

John R. Douceur is interested
in the design of distributed
algorithms, data structures,
and protocols, and in the
measurement, evaluation, and

analytical modeling of systems and networks,
with particular focus on statistical analysis and
simulation. douceur@microsoft.com

In theory, browsing the Web is safe: click a link, and if you don’t like what
you see, click “close” and it disappears forever. In practice, this guaran-
tee doesn’t hold, because the browser is complex in both implementa-

tion and specification. We designed and built an alternate Web app delivery
model in which the client-side interface specification and code—the pieces
that replace the browser—are extremely simple, yet can run applications even
richer than today’s JavaScript apps. This article describes how we achieve
this goal, and suggests a path forward into a future free of today’s bloated
browser interface.

Today a Web browser is a 100 MB operating system. Most of those megabytes interpret
JavaScript and render images, but the browser’s most important job is to provide the user
with the ability to visit different Web sites safely, confident that merely viewing one Web site
won’t have any effect on any of the other sites she uses and relies on. Reliable isolation is best
achieved in a simple design. The ideal Web browser would be a VNC viewer: each site renders
its own content entirely independently, and the only job of the client machine is to show the
various pixels to the user.

Of course, real browsers don’t have such a simple specification. They’re vastly more compli-
cated, including HTML, DOM, CSS, JavaScript, JPG, PNG, and a complex specification for
how various applications might interact with one another. This complexity forms a vulner-
able surface, and hence real Web browsers don’t actually succeed in isolating different pages;
users are cautioned to avoid “dangerous” links lest their browser be compromised.

This ideal VNC pixel browser may seem absurd at first, but clearly it gets isolation right. You
might complain that the performance stinks because it depends on a fast, available network,
but we can fix that by allowing each site vendor to borrow a little virtual machine on the client;
think of it as a pico-datacenter. That VM is strongly isolated from the other sites’ VMs, just as
customers in a real datacenter, say of a cloud-hosting provider, are isolated from one another.

In this new model (Figure 1), the specification of the browser is tiny and robust. Without
a simple, clear specification, isolation is unachievable. With a clear specification, like this
VM+VNC analogy, seeing how isolation can be rigorously maintained is easy; we push all the
challenges of deciding how sites should interact with one another to the sites themselves.
Promiscuous sites can still share cookies or engage in risky, CSRF-prone behavior (e.g., host-
ing user-supplied content), but cautious sites (e.g., bank Web sites) now have the control to
reject those complex interactions.

The proposal of a virtual machine for execution and VNC for displaying pixels gives an
intuition for how simple the interface can be, but we can go even simpler. We propose a
minimal client execution interface called a picoprocess. A picoprocess is native code running
in a hardware address space. It can allocate memory and threads, use futexes to schedule
threads, read a real-time clock, and set a real-time alarm. All communication—to remote
servers or to neighboring processes—is via IP; thus, an attacker can’t do anything more
threatening on the client machine than it could do from a server. (An attacker might relay IP
attacks through its presence on a client, but the client’s IP packets enter the Internet outside

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 7

SECurity
The 10-Kilobyte Web Browser

any firewall, so the relay doesn’t gain any privilege from the cli-
ent’s IP address or network position.) The client provides a source
of randomness to enable the app to encrypt its messages over IP.
Finally, the app displays its content by using its own libraries to
render to an off-screen bitmap, then asking the client to paint a
rectangle of pixels on the screen, semantics as simple as VNC.

This minimal interface replaces the role of the VM described
above. Because it’s even simpler than a conventional VM, the
interface can be implemented easily on any host, from desktop
OSes to native microkernels. On Linux, for example, the picopro-
cess is a Linux process, blocked from making Linux system calls
by one of several mechanisms: kvm, ptrace, or filtering system
calls down to read and write on a single open file handle to a
monitor process.

Despite this tiny client picoprocess, the ability to run native
code means the app itself can provide glorious complexity. The
GIMP photo editor and the AbiWord word processor run in this
container [2]. We also run a WebKit browser, to show how the
trusted complexity of a conventional HTML browser can be
repackaged as safely isolated rendering code.

This idea is ambitious: we’re describing a substantial refactor-
ing of the Web, shifting much responsibility from the browser
(and the user) to the vendors that create the applications, so that
visiting a site is no longer a risky proposition. But the ability to
send binary code rather than JavaScript means the idea goes
farther: it not only realizes the “safe click” promised by the Web,

but it can bring those semantics to classic desktop applications,
like the GIMP. When the plan is realized, your Webmail provider
might be based on real Outlook and you might edit documents
with MicrosoftWord.com or LibreOffice.org: solid desktop app
code supported by its site rather than by the end user.

Our Embassies paper [1] proposes this application delivery in
detail, discussing the tradeoffs consequent in shifting complex-
ity from clients to applications. Our USENIX paper [2] shows
how these complex apps can be repackaged to run inside the
constrained picoprocess; source code is available [3].

How Do We Get There from Here?
The overall vision involves reconsidering several of our assump-
tions about the roles, responsibilities, and relationships that
make up today’s Web software ecosystem. Rather than end users
selecting a JavaScript implementation (“download a fast new
browser!”), site vendors will choose their client-side software
stacks the same way they choose today among Python, Ruby, and
PHP on the server side. Such an ambitious change may need to
happen in small steps.

A key step on the way to Utopia is the shift from specifying
client-side software in Web 2.0 (the complex amalgamation of
JavaScript, DOM, CSS, and so on) to specifying it as native code
that interacts through primitive low-level interfaces, such as
painting raw pixels. It’s an important step because it opens the
door to shifting rendering components inside each application.

Figure 1: The current, the ideal, and a new way to browse the Web

8  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECurity
The 10-Kilobyte Web Browser

But it’s also a step that’s compelling all by itself. The Xax [4] and
Native Client [5] projects, both introduced in 2008, showed that
delivering binary code to the client and executing it safely is fea-
sible. Those systems were interesting enough to let us send down
interesting components: Doom on NaCl, or PDF and OpenGL
renderers on Xax.

Going beyond components to full applications exposes big
opportunities. We can already package up GIMP and make it a
Web app. We can do the same for the Gnumeric spreadsheet; add
a bit of “cloud’’ and you have made an open-source alternative to
Google Docs’ spreadsheet. We can fit KDE Marble (a spinning
globe) into a picoprocess; that is the foundation of a Google Earth
alternative that doesn’t require a trusted plugin. The opportu-
nity to deliver rich apps is exciting in itself, even before we reach
the ambitious goal of gutting the browser.

Challenges to Delivering Rich Apps
This goal is within reach. We have the technology; however,
three tasks remain. First, we need to settle on a suitably shaped
native code container. Second, we need to publish a picoprocess
browser plugin. Third, we need to wrap up cool apps and publish
them as Web apps.

How the Native Code Container Affects Deliverability
We said above that Xax delivered fairly modest stacks of librar-
ies. Xax suffered from a practical burden: a high cost of modify-
ing libraries and applications to run in the new environment.
The Xax system replaced the ubiquitous glibc with a patched-
together uclibc. In practice, that broke some libraries, and
required linking others statically rather than dynamically. This
approach worked only for short stacks of libraries. As we tried to
enlarge the library stack, each new package required a new effort
to disassemble its build system, and some software couldn’t even
conceive of being built as a static library. These are mundane
concerns, but they proved a practical barrier to our ambitions of
porting rich desktop apps.

NaCl has encountered similar challenges, for similar reasons.
NaCl’s isolation mechanism requires modifying the compiler’s
code generation step to produce code that NaCl can verify is
safe. This requirement implies perturbing the build process (and
often the link steps) of each package. We suspect that the NaCl
team encountered a mundane but tedious and expensive burden
much like the one that affected our Xax development.

So the choice of isolation container can have a profound effect
on the ease of migrating apps to the new environment. NaCl’s
choice of verification based on software-fault-isolation (SFI) is
driven by a desire to attach untrusted libraries onto the side of
an existing browser, right inside the same process. For our ambi-
tions, this objective is a red herring: even today’s NaCl libraries
don’t need tight coupling with the browser; rich apps will stand

Figure 2: Three applications that currently run in an Embassies picoprocess

Figure 2a: GIMP in an Embassies picoprocess

Figure 2b: AbiWord in an Embassies picoprocess

Figure 2c: WebKit in an Embassies picoprocess

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 9

SECurity
The 10-Kilobyte Web Browser

further alone; and, ultimately, we’d like to see the browser disap-
pear entirely. Because it doesn’t offer intra-process isolation, the
picoprocess can exploit MMU protection, and hence provides a
familiar execution environment for existing code.

Still, that decision wasn’t enough to make porting easy in Xax.
We made two fine-grained changes from Xax to Embassies
that worked out well. The first was that, where Xax allowed the
application to control its address space layout, Embassies only
allows the app to ask for how much memory it needs, not where it
goes. This actually increases the burden on the app—the execut-
able must be position-independent—but it makes implementing
the host much easier. In Xax, each new host added weird new
address-space restrictions; in Embassies, this problem disap-
peared entirely.

More importantly, the main reason we couldn’t use glibc or dynamic
libraries in Xax was that we had no support for the x86 segment
registers, used for thread-local storage (TLS). That meant we had to
compile all components with --no-tls, and we couldn’t find a way to
use dynamic linking without TLS. The x86 segment-as-TLS is a
goofy hack in any case; it uses deprecated hardware to compen-
sate for the architecture’s tiny register set. Because contempo-
rary operating systems rely on paging for memory protection,
this (ab)use of segmentation hardware has no security risk. By
adding it to the Embassies picoprocess x86 specification, we’re
able to use standard glibc, conventional shared library linkage,
and, hence, just about every package as is, with binary compat-
ibility. (This whole discussion is moot on any other, sane archi-
tecture, where TLS just uses a conventional program register.)

The result—the Embassies specification for a native code
container—is a spec to which a wide variety of rich apps can be
ported with little effort. We’ve ported AbiWord (word proces-
sor), Gnumeric (spreadsheet), Gnucash (accounting), Midori
(WebKit-based HTML renderer), GIMP (raster graphics design),
Inkscape (vector graphics design), and Marble (3D globe). At the
same time, the container is small, well-specified and secure, and
practical to implement on any host platform.

A Browser Plugin
Now that we know what shape the container should be, achiev-
ing the initial step of delivering rich apps as Web apps is within
reach: we need to implement the container as a plugin for the
popular browsers, and test it for security.

Performance
We’ve described this new model using a strong analogy to the
Web, to appeal to its “safe click” semantics. That doesn’t mean
we have to keep the Web’s online requirement, or that we have to
fetch our (now 100 MB) apps every time we open a site.

Whereas conventional browsers include caching behavior,
Embassies apps control their own bootstrap and caching. An app
can fetch its 100 MB of program image from any cache on the
Internet and then check its hash to ensure they are the right bits.
That cache can be an untrusted app on the same machine, obviat-
ing the need for network connectivity. The local cache can trans-
mit the image in a single IPv6 jumbo frame, making app start fast;
we see start time overheads of ~100 ms. Thus “sending big apps”
is only an intuitive abstraction borrowed from today’s Web; in
deployed Embassies, it’s fast and works when disconnected.

Once the app is running, native code enables performance better
than JavaScript. The picoprocess’s isolation comes from paging
hardware, and hence introduces no overhead; CPU-intensive GIMP
rotations are just as fast inside Embassies as on desktop GIMP.

Delivering Cool Apps
With an appropriate container available as a ubiquitous plugin,
it’s time to start packaging desktop apps as Web pages. Our ATC
’13 paper [2] (and published code [3]) lays out how to achieve this
packaging, showing it working for lots of apps, from a spread-
sheet to an interactive 3D globe map. These apps need a little
modification to make useful Web sites: for example, they need
plumbing so that saving a document routes the content to client-
or server-side Web storage.

The long-term vision is an exciting one: it promises finally to
make browsing “safe,” and broadens browsing to include both
Web apps and desktop apps. Even if you don’t yet buy that vision,
the first step down the road is exciting all by itself: delivering all
our favorite desktop apps as easily as clicking a link.

References
[1] Jon Howell, Bryan Parno, and John R. Douceur, “Embas-
sies: Radically Refactoring the Web,” USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
awarded “Best Paper,” April 2013.

[2] Jon Howell, Bryan Parno, and John R. Douceur, “How
to Run POSIX Apps in a Minimal Picoprocess,” USENIX
Annual Technical Conference (ATC), June 2013.

[3] http://embassies.codeplex.com/.

[4] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R.
Lorch, “Leveraging Legacy Code to Deploy Desktop Applica-
tions on the Web,” USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), December 2008.

[5] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha
Narula, and Nicholas Fullagar, “Native Client: A Sandbox for
Portable, Untrusted x86 Native Code,” IEEE Symposium on
Security and Privacy, May 2009.

10  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

A Fistful of Bitcoins
Characterizing Payments Among Men with No Names

s a R a H M E i k l E J o H n , M a R J o R i p o M a R o l E , g R a n t J o R D a n ,
k i R i l l l E v C H E n k o , D a M o n M C C o y , g E o F F R E y M . v o E l k E R ,
a n D s t E F a n s a v a g E

Sarah Meiklejohn is a PhD
candidate in computer
science and engineering at the
University of California, San
Diego. She previously received

an ScM in computer science and an ScB in
mathematics from Brown University. At UCSD,
she is co-advised by Mihir Bellare and Stefan
Savage, and has broad research interests in
cryptography and security. 
smeiklej@cs.ucsd.edu

Marjori Pomarole is an
undergraduate at the University
of California, San Diego,
studying computer science.
She has interned at Google

and Facebook, working with infrastructure
monitoring. marjoripomarole@gmail.com

Grant Jordan is a graduate student at the
University of California, San Diego, focusing
on computer security. His previous work has
included research in online spam distribution
and botnets, as well as UAV development for
the Air Force Research Lab. 
gejordan@cs.ucsd.edu

Kirill Levchenko is a research
scientist at the University
of California, San Diego.
His research is focused on
computer networking and

security. klevchen@cs.ucsd.edu

Damon McCoy is an assistant
professor in the CS department
at George Mason University.
He obtained his PhD from
the University of Colorado,

Boulder, and his research includes work
on anonymous communication systems,
cyber-physical security, e-crime, and wireless
privacy. damon.mccoy@gmail.com

Geoffrey M. Voelker is a Professor of Computer Science at the University of California, San
Diego. He works in computer systems, networking, and security. voelker@cs.ucsd.edu

Stefan Savage is a professor of computer science and engineering at the University of
California, San Diego. He received his PhD in computer science and engineering from the
University of Washington and a BS in applied history from Carnegie Mellon University. Savage
is a Sloan Fellow and an ACM Fellow, but is a fairly down-to-earth guy and only writes about
himself in the third person when asked. savage@cs.ucsd.edu

Bitcoin is a decentralized virtual currency whose usage has skyrock-
eted since its introduction in January 2009. Like cash, the owner-
ship of bitcoins is anonymous, as participants transact bitcoins using

pseudonyms rather than persistent real-world identities. In this article, we
examine the limitations of Bitcoin anonymity and discover that the ability to
cluster pseudonyms according to heuristics about shared ownership allows
us to identify (i.e., associate with a real-world entity or user) a significant and
active slice of the Bitcoin economy. Along the way, we explain a lot about how
Bitcoin works.

Bitcoin is a form of electronic cash that was introduced by Satoshi Nakamoto (a pseud-
onym) in 2008. As its name suggests, Bitcoin is similar to cash in that transactions are
irreversible and participants in transactions are not explicitly identified: both the sender(s)
and receiver(s) are identified solely by pseudonym, and participants in the system can use
many different pseudonyms without incurring any meaningful cost. Bitcoin has two other
properties, however, that make it unlike cash: (1) it is completely decentralized, meaning a
global peer-to-peer network, rather than a single central entity, acts to regulate and generate
bitcoins, and (2) it provides a public transaction ledger, so that although transactions operate
between pseudonyms rather than explicit real-world individuals, every such transaction is
globally visible.

Since its introduction, Bitcoin has attracted increasing amounts of attention, from both the
media and from governments seeking ways to regulate Bitcoin. In large part, much of this
attention has been due to either the nature of Bitcoin, which has caused government organi-
zations to express concern that it might enable money laundering or other criminal activity,
or to its volatility and ultimate growth as a currency; in late 2012 the exchange rate began an
exponential climb, ultimately peaking at $235 US per bitcoin in April 2013, before settling to
approximately $100 US per bitcoin (as of September 2013).

In spite of the concerns about Bitcoin, its use of pseudonyms has made gaining any real
understanding of how and for what purposes Bitcoin is used a fairly difficult task, as the
abstract Bitcoin protocol—if exploited to its fullest extent—provides a fairly robust notion of
anonymity. Nevertheless, in modern Bitcoin usage, many users rely on third-party services

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 11

SECURITY
A Fistful of Bitcoins

to store their bitcoins, such as exchanges and wallet services
(i.e., banks), rather than individual desktop clients that they
operate themselves. In this context, our goal is to exploit this
behavior to erode the anonymity of the users that interact with
these and other services. In doing so, we do not seek to de-
anonymize individual users, but rather to de-anonymize flows of
bitcoins throughout the network.

Our approach consists of two techniques. First, we engage in
a variety of Bitcoin transactions to gain ground-truth data; for
example, by depositing bitcoins into an account at the biggest
Bitcoin exchange, Mt. Gox, we are able to tag one address as
definitively belonging to that service, and by later withdrawing
those bitcoins we are able to identify another. To expand on this
minimal ground-truth data, we next cluster Bitcoin addresses
according to two heuristics: one exploits an inherent property
of the Bitcoin protocol, and another exploits a current idiom of
use in the Bitcoin network. By layering this clustering analysis
on top of our ground-truth data collection, we transitively taint
entire clusters of addresses as belonging to certain users and
services; for example, if our analysis indicated that the address
we had previously tagged as belonging to Mt. Gox was contained
in a certain cluster, we could confidently tag all of the addresses
in that cluster as belonging to Mt. Gox as well.

How Bitcoin Works
Before describing our analysis, gaining an understanding of
the Bitcoin protocol is necessary. Cryptographically, Bitcoin
is composed of two primitives: a digital signature scheme (in
practice, ECDSA) and a one-way hash function (in practice,
SHA-256). Users’ pseudonyms are public keys for the signature
scheme, and users can create arbitrarily many pseudonyms by
generating signing keypairs. In here and what follows, we use
Bitcoin to mean the peer-to-peer network and abstract protocol,
and bitcoin, or BTC, to mean the unit of currency; we also use the
terms public key, address, and pseudonym interchangeably.

To see how bitcoins get spent, suppose a user has some number
of bitcoins stored with one of his pseudonyms. For simplicity,
we describe transactions with one input and one output, but
transactions can more generally have any number of input and
output addresses. To send these bitcoins, the user first creates a
message containing (among other things) the intended receiver
of the bitcoins, identified by public key, and the transaction in
which his pseudonym received the bitcoins. The sender can then
sign this message using the private key corresponding to his
pseudonym to create a signature. He then broadcasts the signa-
ture and message—which together make up the transaction—to
his peers, who in turn broadcast it to their peers (see Figure 1).

Before broadcasting the transaction, each peer confirms that
the transaction is valid by checking for two things: first, that
the signature verifies and thus (by the unforgeability of the

signature scheme) was formed correctly by the honest owner of
the bitcoins; and second, that no other transaction already used
the same previous transaction. This second property is crucial
in ensuring that the bitcoins are not double-spent, which is why
every peer needs to have access to the entire transaction history
(or at least to the transactions in which the received bitcoins
have not already been spent). A bitcoin is then not a single object,
but rather a chain of these transactions.

After transactions such as these flood the network, they are
collected into blocks, which serve to timestamp the transactions
and further vouch for their validity. The process of creating a
block is called mining, as it is also the process by which bit-
coins are created. Miners (i.e., users seeking to create blocks)
first collect all the transactions they hear about into a pool of
transactions that have not already been incorporated into blocks;
priority often is given to transactions that include a small fee,
although at present most transactions do not need to include a
fee (the exceptions being transactions that have many inputs
and/or outputs, or transactions that carry a large amount of bit-
coins). The miner then adds a special coin generation transaction
to the pool and hashes this collection of transactions.

The miner aims to have a collection of transactions (and other
metadata, including a reference to the most recently generated
block) that hashes to a value starting with a certain number of
zeroes. This and what follows are a somewhat simplified sketch
of the mining process; in reality, the miner is trying to generate a

Figure 1: How a Bitcoin transaction works: In this example, a user wants
to send 0.7 bitcoins as payment to a merchant. In (1), the merchant gener-
ates or picks an existing public key mpk, and (2) sends this public key to
the user. By creating a digital signature (3), the user forms the transaction
tx to transfer the 0.7 bitcoins from his public key upk to the merchant’s
address mpk. In (4), the user broadcasts this transaction to his peers,
which (if the transaction is valid) allows it to flood the network. In this
way, a miner learns about his transaction. In (5), the miner works to incor-
porate this and other transactions into a block by checking whether their
hash is within some target range. In (6), the miner broadcasts this block to
her peers, which (if the block is valid) allows it to flood the network. In this
way, the merchant learns that the transaction has been accepted into the
global block chain, and has thus received the user’s payment.

12  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECURITY
A Fistful of Bitcoins

hash that is smaller than some target hash. The required number
of leading zeroes is proportional to the difficulty of the network,
which is determined by its current hash rate. The goal is to have
the network produce a new block every ten minutes, so the diffi-
culty is adjusted accordingly (e.g., if the hash rate increases, then
the difficulty increases as well).

In order to produce this target hash while maintaining the
same pool of transactions, the miner also folds in a nonce value.
One can then think of the mining process as starting with
the collection of transactions and the nonce set to 1; if this
produces a hash within the target range, then the miner has
produced a valid block, and if it doesn’t, then she can increment
the nonce and try again.

Once the miner does have a valid block, she broadcasts it
throughout the network in a manner analogous to the broadcast
of transactions, with peers checking the validity of her block by
checking whether its hash is within the target range. Her block
is accepted into the global transaction ledger after it has been
referenced by another block. Because each block references a
previous block, blocks form a chain just as transactions do, so
this transaction ledger is referred to as the block chain.

As a reward for generating this block, which, because of the
one-wayness of the hash function, is a computationally inten-
sive task, the miner receives a certain number of bitcoins in the
public key specified in her coin generation transaction. This
number of bitcoins is determined by the height of the block chain:
initially, the reward was 50 bitcoins, but at height 210,000 (i.e.,
after 210,000 blocks were generated, which happened on Novem-
ber 28, 2012), the reward halved, and will continue halving until
21 million bitcoins are generated, at which point the reward will
be 0 and miners will be incentivized solely by transaction fees,
which will presumably increase as a result.

To summarize, the ledger that every peer downloads when join-
ing the Bitcoin network is the block chain, which consists of a
series of blocks, each referencing the one that preceded it. Blocks
are accepted into the block chain by consensus: if enough peers
agree that a block is valid (for example, it is within the required
target range and creates an appropriate number of bitcoins),
then they will choose to reference it when generating their own
blocks, so that the mining of blocks (and consequent generation
of bitcoins) follows a consensus-defined set of rules rather than
system requirements. These blocks contain collections of trans-
actions that, like blocks, are validated through their acceptance
by peers in the network, which specify the transfer of bitcoins
from one set of pseudonyms to another.

Where Bitcoins Are Spent
As of April 13, 2013, the block chain contained more than 16 mil-
lion transactions between 12 million distinct public keys. More
than 11 million bitcoins had been generated (recall that this is
more than half of all the bitcoins that will ever be generated),
and those bitcoins had been spent many times over, to the point
that more than 1 trillion bitcoins had been transacted.

Given this rate of movement, one might naturally wonder where
bitcoins are being spent. Since 2010, a variety of Bitcoin services
have been introduced at an ever-increasing rate. One of the most
widely used categories, exchanges, allows users to exchange bit-
coins for other currencies, including both fiat currencies such as
dollars, and other virtual currencies such as Second Life Lindens.
Most of these exchanges also function as banks, meaning they
will store your bitcoins for you, although there are also wallet
services dedicated to doing just that. With all of these services,
one runs the risk of theft, which in fact happens fairly often.

Bitcoin mining ASICs were introduced in February 2013 and
are capable of computing 64 billion SHA-256 computations
per second, meaning the odds of generating a block using just
a CPU or even GPU are negligibly small . Due to the computa-
tional intensity of generating bitcoins, mining pools have become
another popular service in the Bitcoin economy, allowing miners
to perform some amount of work (e.g., the examination of some
slice of the nonce space) and earn fractional bitcoin amounts for
every share they contribute.

Users seeking to spend rather than only store or generate
bitcoins can do so with a number of merchants, including ones
such as WordPress that use the payment gateway BitPay, which
accepts payment in bitcoins but pays the merchant in the cur-
rency of their choice (thus eliminating all Bitcoin-based risk for
the merchant). Users can also gamble with their bitcoins, using
poker sites such as BitZino or wildly popular dice games such as
Satoshi Dice.

Finally, users seeking to use Bitcoin for criminal purposes
can purchase drugs and other contraband on sites such as Silk
Road, which are often accessible only via the Tor network.
They can also mix (i.e., launder) bitcoins with services such as
Bitfog, which promise to take bitcoins and send (to the address
of one’s choice) new bitcoins that have no association with the
ones they received.

The first phase of our analysis involved interacting with these
and many other services. In total, we kept accounts with 26
exchanges and ten wallet services, and made purchases with
25 different vendors, nine of which used the payment gate-
way BitPay; a full list of the services with which we interacted
can be found in Table 1, and images of our tangible purchases
can be found in Figure 2. We engaged in 344 transactions

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 13

SECURITY
A Fistful of Bitcoins

with these services, which allowed us definitively to tag 832
addresses (recall that transactions can have arbitrarily many
input addresses, which allows us to tag multiple addresses per
transaction). We additionally scraped various publicly claimed
addresses that we found, such as users’ signatures in Bitcoin
forums, although we were careful to use only tags for which we
could perform some manual due diligence.

Clustering Bitcoin Addresses
In theory, the use of pseudonyms within Bitcoin provides a
property called unlinkability, which says that users’ transactions
using one set of pseudonyms should not be linked to their trans-
actions using a different set of pseudonyms. In practice, however,
certain properties of Bitcoin usage erodes this anonymity.

Recall that, in order to create a valid Bitcoin transaction, the
sender must know the private signing key corresponding to the
public key in which the bitcoins are held. Now suppose that a
user wishes to send 10 BTC to a merchant, but has 4 BTC in
one address and 6 BTC in another. One potential way to pay
the merchant would be to create a new address, send the 4 BTC
and 6 BTC to this new address, and then send the 10 BTC now
contained in this new address to the merchant. (In fact, this is
the method that preserves the most anonymity.) Instead, the
Bitcoin protocol allows for a simpler and more efficient solution:
transactions can have arbitrarily many inputs, so the 4 BTC and
6 BTC addresses can be used as input to the same transaction, in
which the receiver is the merchant.

This observation gives rise to our first clustering heuristic: if
two addresses have been used as input to the same transaction,
they are controlled by the same user. This heuristic is quite
safe, as the sender must know the private keys corresponding
to all input addresses in order to form a valid transaction, and
as such it has already been used in the Bitcoin literature to the
point where freely available tools exist online for performing
this analysis.

Our second clustering heuristic expands on this first heuristic
and exploits the way in which change is made. In the Bitcoin
protocol, when an address receives some number of bitcoins, it
has no choice but to spend those bitcoins all at once (recall that
this is because each transaction must reference a previous trans-
action, and transactions cannot be referenced multiple times).
If this number of bitcoins is in excess of what the sender wants
to spend (e.g., if he has 4 BTC stored in an address and wants to
send 3 BTC to a merchant), then he creates a transaction with

Figure 2: The physical items we purchased with bitcoins, ranging from
beef jerky from BitPantry to a used Boston CD from Bitmit. The items
in green were purchased from CoinDL (the “iTunes of Bitcoin”), in blue
from Bitmit (the “eBay of Bitcoin”), and in red using the payment gateway
BitPay.

Table 1: We interacted with many services, and provide approximate
groupings as shown here.

Mining
 50 BTC BTC Guild Itzod
 ABC Pool Deepbit Ozcoin
 Bitlockers Eclipse MC Slush
 Bitminter Eligius
Wallets
 Bitcoin Faucet Easywallet Strongcoin
 My Wallet Flexcoin WalletBit
 Coinbase Instawallet
 Easycoin Paytunia
Exchanges
 Bitcoin 24 BTC-e Aurum Xchange
 Bitcoin Central CampBX BitInstant
 Bitcoin.de CA VirtEx Bitcoin Nordic
 Bitcurex ICBit BTC Quick
 Bitfl oor MercadoBitcoin FastCash4Bitcoins
 Bitmarket Mt Gox Lilion Transfer
 Bitme The Rock Nanaimo Gold
 Bitstamp Vircurex OKPay
 BTC China Virwox
Vendors
 ABU Games BTC Buy HealthRX
 Bitbrew BTC Gadgets JJ Games
 Bitdomain Casascius NZBs R Us
 Bitmit Coinabul Silk Road
 Bitpay CoinDL WalletBit
 Bit Usenet Etsy Yoku
 Bit Elfi n BitZino Gold Game Land
 Bitcoin 24/7 BTC Griffi n Satoshi Dice
 Bitcoin Darts BTC Lucky Seals with Clubs
 Bitcoin Kamikaze MTC on Tilt
 Bitcoin Minefi eld Clone Dice
Miscellaneous
 Bit Visitor Bitfog CoinAd
 Bitcoin Advertisers Bitlaundry Coinapult
 Bitcoin Laundry BitMix Wikileaks

14  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECURITY
A Fistful of Bitcoins

two outputs: one for the actual recipient (e.g., the merchant
receiving 3 BTC) and one change address that he controls and
can use to receive the change (e.g., the 1 BTC left over).

This behavior gives rise to our second clustering heuristic: the
change address in a transaction is controlled by the sender. As
change addresses do not a priori look any different from other
addresses, significant care must be taken in identifying them.
As a first step, we observe that in the standard Bitcoin client,
a change address is created internally and is not even known
to the user (although he can always learn it by examining the
block chain manually). Furthermore, these change addresses
are used only twice: once to receive the change in a transaction,
and once to spend their contents fully as the input in another
transaction (in which the client will create a fresh address to
receive any change).

By examining transactions and identifying the outputs that
meet this pattern of one-time usage, we identify the change
addresses. If more than one output meets this pattern, then we
err on the side of safety and do not tag anything as a change
address. Using this pattern—with a number of additional precau-
tions, such as waiting a week to identify change addresses—we
identified 3.5 million change addresses, with an estimated false
positive rate of 0.17%, noting that the false positive rate can only
be estimated, as in the absence of ground-truth data we cannot
know what truly is and isn’t a change address. By then clustering
addresses according to this heuristic, we collapsed the 12 mil-
lion public keys into 3.3 million clusters.

Putting It All Together
By layering our clustering analysis on top of our ground-truth data
(and thus transitively tagging entire clusters that contain previ-
ously tagged addresses), we were able to identify 1.9 million public
keys with some real-world service or identity, although in many
cases the identity was not a real name, but rather (for example) a
username on a forum. Although this is a somewhat small frac-
tion (about 16%) of all public keys, it nevertheless allows us to de-
anonymize significant flows of bitcoins throughout the network.

Toward this goal, we first examined interactions with known
Bitcoin services. By identifying a large number of addresses
for various services (e.g., we identified 500,000 addresses as
controlled by Mt. Gox, and more than 250,000 addresses as
controlled by Silk Road), we were able to observe interactions
with these services, such as deposits into and withdrawals from
exchanges. Although this does not de-anonymize the individual
participating in the transaction (i.e., we could see that a user was
interacting with a service, but did not necessarily know which
user), it does serve to de-anonymize the flow of bitcoins into and
out of the service.

To demonstrate the usefulness of this type of analysis, we
turned our attention to criminal activity. In the Bitcoin economy,
criminal activity can appear in a number of forms, such as
dealing drugs on Silk Road or simply stealing someone else’s
bitcoins. We followed the flow of bitcoins out of Silk Road (in
particular, from one notorious address) and from a number of
highly publicized thefts to see whether we could track the bit-
coins to known services. Although some of the thieves attempted
to use sophisticated mixing techniques (or possibly mix services)
to obscure the flow of bitcoins, for the most part tracking the
bitcoins was quite straightforward, and we ultimately saw large
quantities of bitcoins flow to a variety of exchanges directly from
the point of theft (or the withdrawal from Silk Road).

As acknowledged above, following stolen bitcoins to the point
at which they are deposited into an exchange does not in itself
identify the thief; however, it does enable further de-anony-
mization in the case in which certain agencies can determine
(through, for example, subpoena power) the real-world owner
of the account into which the stolen bitcoins were deposited.
Because such exchanges seem to serve as chokepoints into and
out of the Bitcoin economy (i.e., there are few alternative ways
to cash out), we conclude that using Bitcoin for money launder-
ing or other illicit purposes does not (at least at present) seem
to be particularly attractive.

Itis Here!
A brand new magazine for the

Raspberry Pi Community

Look for us at your local newsstand!

Or find us online at
www.raspberry-pi-geek.com

ad_login_RPG_11_2013.indd 1 11/4/13 8:37:00 AM

16  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Dowser: A Guided Fuzzer for Finding Buffer
Overflow Vulnerabilities
i s t v a n H a l l E R , a s i a s l o w i n s k a , M a t t H i a s n E u g s C H w a n D t n E R ,
a n D H E R B E R t B o s

Istvan Haller is a PhD student
in the Systems and Network
Security group at the Vrije
Universiteit Amsterdam. His
current research focuses on

automatic analysis of software systems and
its application to enhance system security.
i.haller@vu.nl

Asia Slowinska is an assistant
professor in the Systems and
Network Security group at the
Vrije Universiteit Amsterdam.
Her current research focuses on

developing techniques to automatically analyze
and reverse engineer complex software that is
available only in binary form. asia@few.vu.nl

Matthias Neugschwandtner is
a PhD student at the Secure
Systems Lab at the Vienna
University of Technology.
mneug@iseclab.org

Herbert Bos is a full professor in
Systems and Network Security
at Vrije Universiteit Amsterdam.
He obtained his PhD from
Cambridge University Computer

Laboratory (UK). He is proud of all his (former)
students, three of whom have won the Roger
Needham PhD Award for best PhD thesis
in systems in Europe. In 2010, Herbert was
awarded an ERC Starting Grant for a project on
reverse engineering that is currently keeping
him busy. herbertb@few.vu.nl

Buffer overflows have long plagued existing software systems, making
them vulnerable to attackers. Our tool, Dowser, aims to tackle this
issue using efficient and scalable software testing. Dowser builds on

a new software testing paradigm, which we call dowsing, that focuses the
testing effort around relevant application components. This paradigm proved
successful in practice, as Dowser found real bugs in complex applications
such as the nginx Web server and the ffmpeg multimedia framework.

Buffer overflows represent a long-standing problem in computer science, first identified in
a US Air Force study in 1972 [2] and famously used in the Morris worm in 1988. Even after
four decades, buffer overflows are perennially in the top three of the most dangerous soft-
ware errors. Recent studies [8] suggest that the situation will not change soon. One way to
handle them is to harden the binary using stack canaries, address space randomization, and
the like in the hope that the program will crash when the buffer overflow bug is triggered;
however, although crashing is better than being pwned, crashes are undesirable, too.

Thus, vendors prefer to squash bugs beforehand and typically try to find as many as they can
by means of fuzz testing. Fuzzers feed programs invalid, unexpected, or random data to see
whether they crash or exhibit unexpected behavior. Recent research in testing has led to the
development of whitebox fuzzing [3, 4, 5]. By means of symbolic execution, whitebox fuzzing
exercises all possible execution paths through the program and thus uncovers all possible
bugs, although it may take years to do.

Imagine that you are a software tester and you are given a binary, without knowledge about
the application internals or its specification. Where do you start? What features will you
be looking for? Intuitively, you start from some random input that you refine based on the
observed output. Seeing that you will spend most of your time figuring out the input seman-
tics, instead of testing the underlying functionality itself, is not difficult. These are the same
challenges that symbolic execution faces when testing applications without developer input.

In this article, we introduce an alternative testing approach that we call dowsing. Rather
than testing all possible execution paths, this technique actively searches for a given
family of bugs. The key insight is that careful analysis of a program lets us pinpoint the
right places to probe and the appropriate inputs to do so. The main contribution is that our
fuzzer directly homes in on the bug candidates and uses a novel “spot-check” approach in
symbolic execution. Specifically, Dowser applies this approach to buffer overf low bugs,
where we achieve significant speed-ups for bugs that would be hard to find with most
existing symbolic execution engines.

In summary, Dowser is a new fuzzer targeted at vendors who want to test their code for buf-
fer overflows and underflows. We implemented the analyses of Dowser as LLVM [7] passes,
whereas the symbolic execution step employs S2E [4]. Finally, Dowser is a practical solution.
Rather than aiming for all possible security bugs, it specifically targets the class of buffer
overflows (one of the most, if not the most, important class of attack vectors for code injec-
tion). So far, Dowser has found several real bugs in complex programs such as nginx, ffmpeg,

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 17

SECURITY
Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities

and inspircd. Most of them are extremely difficult to find with
existing symbolic execution tools.

Dowsing for Candidate Instructions
Dowser builds on the concept of vulnerability candidates, that is,
program locations that are relevant to a specific bug type, in our
case buffer overflows. In other words, it scans the binary for fea-
tures that are possible indications for those hard-to-find buffer
overflows. For instance, for a buffer overflow to occur, we need
code that accesses buffers in a loop. Additionally, we build on the
intuition that code with convoluted pointer arithmetic and/or
complex control flow is more prone to such memory errors than
straightforward array accesses. Moreover, by focusing on such
code, Dowser prioritizes bugs that are complicated—typically,
the kind of vulnerabilities that static analysis or random fuzzing
cannot find. The aim is to reduce the time wasted on shallow
bugs that could also have been found using existing methods. In
this section, we explain how we identify and rank the vulnerabil-
ity candidates.

Identifying the Interesting Spots
Previous research has shown that complex code really is more
error prone than simple code for bugs in general; however, Zim-
mermann et al. [9] also argued that we need metrics that exploit
the unique characteristics of specific vulnerabilities, e.g., buffer
overflows or integer overruns. So how do we design a good met-
ric for buffer overflows?

Intuitively, convoluted pointer computations and control flows
are hard to follow by a programmer, and thus more bug prone.
Therefore, we select vulnerability candidates, by focusing on
“complex” array accesses inside loops. Further, we limit the
analysis to pointers that evolve together with loop induction
variables, the pointers that are repeatedly updated to access
(various) elements of an array.

Prioritize, Prioritize, Prioritize...
After obtaining a set of vulnerability candidates, Dowser priori-
tizes them according to the 80-20 Pareto principle: we want to
discover the majority of software bugs while testing only a subset
of the potentially vulnerable code fragments. While all the array
accesses that evolve with induction variables are potential targets,
Dowser prioritizes them according to the complexity of the data-
and control-flows for the array index (pointer) calculations.

For each candidate loop, it first statically determines (1) the set
of all instructions involved in modifying an array pointer (we
will call this a pointer’s analysis group), and (2) the conditions
that guard this analysis group (for example, the condition of an
if or while statement containing the array index calculations).
Next, it labels all such sets with scores reflecting their complex-
ity. It may happen that the data-flow associated with an array
pointer is simple, but the value of the pointer is hard to follow due

to some complex control changes. For this reason, Dowser also
considers the complexity of the variables involved in condition-
als. For a detailed description of the procedure, refer to [6].

We emphasize that our complexity metric is not the only way
to rank the buffer accesses. For instance, we could also use the
length of a loop, the number of computations involved in the
computation of the array index, or some other heuristic. In fact,
Dowser does not care which ranking function is used, as long as
it prioritizes the accesses in the best possible way. In our lab, we
have evaluated several such functions and, so far, the complex-
ity metric performed best. For instance, Figure 1 compares
Dowser’s complexity metric to count, a straightforward scoring
function that simply counts the number of instructions involved
in the computation of the array pointer.

We base the evaluation on a set of known vulnerabilities from
six real world programs: nginx, ffmpeg, inspircd, libexif, pop-
pler, and snort. Additionally, we consider the vulnerabilities in
sendmail tested by Zitser et al. [10]. For these applications, we
analyzed all buffer overf lows reported in CVE since 2009 to
find 17 that match our vulnerability model. Figure 1 illustrates
the results. Random ranking serves as a baseline; clearly both
count and Dowser perform better. In order to detect all 17 bugs,
Dowser must analyze 92.2% of all the analysis groups; however,
even with only 15% of the targets, we find almost 80% (13/17) of
all the bugs. At that same fraction of targets, count finds a little
more than 40% of the bugs (7/17). Overall, Dowser outperforms
count beyond the 10% in the ranking, and it reaches the 100%
bug score earlier than the alternatives, although the difference
is minimal.

Efficient Spot-Checking
The main purpose of spot-checking is to avoid the complexity
stemming from whole-program testing. For example, the nginx-
0.6.32 Web server [1] contains a buffer underrun vulnerability,
where a specially crafted input URI tricks the program into set-
ting a pointer to a location outside its buffer boundaries. When
this pointer is later used to access memory, it allows attackers

Figure 1: A comparison of random testing and two scoring functions:
Dowser’s and count. It illustrates how many bugs we detect if we test a
particular fraction of the analysis groups.

18  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECURITY
Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities

to overwrite a function pointer and execute arbitrary code on
the system. Exhaustively testing the Web server to find this bug
is almost impossible due to the complexity of the HTTP pack-
ets used as input. Indeed, the existing tools didn’t discover the
vulnerability within eight hours. Dowser, however, ranked the
vulnerable array access at the fourth most complex out of a total
of 62 potentially vulnerable loops, and then found the bug within
five minutes.

As a baseline, spot-checking uses concolic execution [5], a com-
bination of concrete and symbolic execution, where the concrete
(fixed) input starts off the symbolic execution. Dowser enhances
concolic execution with the following two optimizations.

Finding Relevant Inputs
Typically only a part of the input influences a particular analy-
sis group. In our example, only the URI field from the HTTP
packet is relevant to the faulty parser. Dowser aims to identify
and enforce this correlation automatically. In technical terms,
Dowser uses dynamic taint analysis to determine which input
fields influence pointers dereferenced in the analysis group.
During the testing phase, Dowser only treats those fields as sym-
bolic and keeps the remaining ones unchanged.

Eliminating Irrelevant Code
The second optimization leverages the observation that only
the program instructions that influence the underlying pointer
arithmetic are relevant to buffer overflows. Thus, when check-
ing a particular spot, that is, a buffer access, Dowser analyzes
the associated loop a priori to find branch outcomes that are
most likely to lead to new pointer values. The results of this anal-
ysis are used to focus the testing effort around the most relevant
program paths. In the URI parser example, it would prioritize
branches that impact pointer arithmetic, and ignore those that
only affect the parsing result.

Dowser’s loop exploration procedure operates in two main
phases: learning and bug finding. In the learning phase, Dowser
assigns each branch a weight approximating the probability that
a path following this direction contains new pointer derefer-
ences. The weights are based on statistics of pointer value vari-
ance observed during symbolic execution with limited inputs.

In the bug finding phase, Dowser symbolically executes a real-
world-sized input in the hope of finding inputs that trigger a
bug. Dowser uses the weights from the learning phase to steer
its symbolic execution toward new and interesting pointer
dereferences. The goal of our heuristic is to avoid execution
paths that are redundant from the point of view of pointer
manipulation. Thus, Dowser shifts the target of symbolic
execution from traditional code coverage to pointer value
coverage. Therein lies the name we gave to this new search

 heuristic, Value Coverage Search, to emphasize the data-cen-
tric approach that Dowser takes.

We highlight the benefits gained via spot-checking on the same
nginx example used so far. As mentioned in the beginning of
this section, the application itself is too complex for the baseline
concolic execution engine, which was unable to trigger the bug
within eight hours. Limiting the symbolic input to the given
URI field does allow S2E to detect the bug using its built-in
search heuristics (Depth-First Search and Code Coverage),
as we show in Figure 2; however, the reader can also notice an
exponential explosion in the search time, making the traditional
search heuristics inefficient when the input size grows beyond
six bytes. Although many tools recommend code coverage [5] as
the primary strategy to find bugs, in our experience it does not
help with buffer overflows, because memory corruptions require
a particular execution context. Even if 100% code coverage is
reached, these bugs may stay undetected. In contrast with these
results, our Value Coverage heuristic shows excellent scalability
with an almost linear increase in execution time in relation with
the input size.

Dowser in the Real World
Dowser detected nine memory corruptions from six real-world
applications of several tens of thousands LOC, including the
ffmpeg videoplayer of300k LOC. The other applications that
we looked at were nginx, inspircd, poppler, libexif, and snort.
The bug in ffmpeg and one of the bugs in poppler were also not
documented before. We run S2E for as short a time as possible,
(e.g., a single request/response in nginx and transcoding a single
frame in ffmpeg). Still, in most applications, vanilla S2E fails to
find bugs within eight hours, whereas Dowser is always capable
of triggering the bug within 15 minutes of testing the appropriate

Figure 2: A comparison of the different search heuristics while testing for
the vulnerability in nginx. In all instances the symbolic input is limited to
the URI field.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 19

SECURITY
Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities

analysis group. More details about the evaluation can be found in
our paper [6].

Although our paper applies dowsing to the concrete class of buf-
fer overflows, the underlying principles are also valid for a wide
variety of bug families. Once we identify the unique feature set
characterizing each of them, we will be able to discover more vul-
nerable locations. Recent developments in the analysis of legacy
binaries also suggest that the techniques required by Dowser may
soon be applicable without the need of source code information.
Such developments would enable the efficient testing of legacy
binaries to learn about possible zero-day attacks within.

Conclusion
Dowser is a guided fuzzer that combines static analysis, dynamic
taint analysis, and symbolic execution to find buffer overflow
vulnerabilities deep in a program’s logic. It leverages a new
testing approach, called dowsing, that aims to actively search
for bugs in specific code fragments without having to deal with
the complexity of the whole binary. Dowser is a new, practical,

and complete fuzzing approach that scales to real applications
and complex bugs that would be hard or impossible to find with
existing techniques.

Acknowledgments
This work is supported by the European Research Council
through project ERC-2010-StG 259108-ROSETTA, the EU FP7
SysSec Network of Excellence and by the Microsoft Research
PhD Scholarship Program through the project MRL 2011-049.
The authors would like to thank Bartek Knapik for his help in
designing the statistical evaluation.

References
[1] CVE-2009-2629: Buffer Underflow Vulnerability in
Nginx: http://Cve.Mitre.Org/Cgi-Bin/Cvename.Cgi?Name
=CVE-2009-2629, 2009.

[2] J. P. Anderson, “Computer Security Technology Planning
Study,” Tech. Rep., Deputy for Command and Management
 System, USA, 1972.

[3] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex
Systems Programs,” Proceedings of the 8th USENIX Sym-
posium on Operating Systems Design and Implementation
(2008), OSDI ’08.

[4] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Plat-
form for In Vivo Multi-Path Analysis of Software Systems,”
Proceedings of the 16th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (2011), ASPLOS ’11.

[5] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated
Whitebox Fuzz Testing,” Proceedings of the 15th Annual
Network and Distributed System Security Symposium (2008),
NDSS ’08.

[6] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos,
“Dowsing for Overflows: A Guided Fuzzer to Find Buffer

Boundary Violations,” Proceedings of USENIX Security ’13
(Washington, DC, August 2013), USENIX.

[7] C. Lattner and V. Adve, “Llvm: A Compilation Framework
for Lifelong Program Analysis and Transformation,” Proceed-
ings of the 2004 International Symposium on Code Genera-
tion and Optimization (CGO ’04) (Palo Alto, California, March
2004).

[8] V. van der Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos,
“Memory Errors: The Past, the Present, and the Future,” Pro-
ceedings of the 15th international Symposium on Research in
Attacks, Intrusions and Defenses (2012), RAID ’12.

[9] T. Zimmermann, N. Nagappan, and L. Williams, “Search-
ing for a Needle in a Haystack: Predicting Security Vulnerabil-
ities for Windows Vista,” Proceedings of the 3rd international
Conference on Software Testing, Verification and Validation
(April 2010), ICST ’10.

[10] M. Zitser, R. Lippmann, and T. Leek, “Testing Static
Analysis Tools Using Exploitable Buffer Overflows from Open
Source Code,” Proceedings of the 12th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(2004), SIGSOFT ’04/FSE-12.

20  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Rent to Pwn
Analyzing Commodity Booter DDoS Services

M o H a M M a D k a R a M i a n D D a M o n M C C o y

Mohammad Karami is a second
year PhD student in information
security and assurance at
George Mason University.
His broad research interests

include security, trust, and privacy issues in
open distributed systems. More recently, he
has been working on studying and measuring
malicious behavior of financially motivated
underground organizations.
mkarami@masonlive.gmu.edu

Damon McCoy is an
assistant professor in the CS
department at George Mason
University. Previously he was
a Computer Innovation Fellow

at the University of California, San Diego.
He obtained his PhD from the University of
Colorado, Boulder, and his research includes
work on anonymous communication systems,
cyber-physical security, e-crime, and wireless
privacy. mccoy@cs.gmu.edu

Distributed denial-of-service (DDoS) attacks, the practice by which
a malicious party attempts to disrupt a host or network service, has
become an increasingly common and effective method of attack. In

this article, we summarize what we have learned while investigating the phe-
nomenon of what are called booter or stresser services. These booter services
began as a tool used by video-game players to gain an advantage by slowing
or disrupting their opponents’ network connection for a short period of time;
however, as these services have become increasingly commercialized, they
have morphed into powerful, reliable, and easy to use general purpose DDoS
services that can be linked to several attacks against non-gamer Web sites.

We begin with an overview of DDoS techniques. We then outline the common capabili-
ties and infrastructure used by these booter services supported with information found on
underground forums that market and review such services. Finally, we present empirical
measurements of one particular booter, known as TwBooter, based on a publicly leaked dump
of their operational database and our own measurements of their attack capabilities.

Background on DDoS Attack Methods
Well honed DDoS methods can amplify the amount of traffic an attacker is able to generate
by an order of magnitude. Also, there are many attacks that take advantage of misconfigured
options present in many Web servers to magnify the effectiveness of an attack. Although
booter services are not as technologically advanced as cutting-edge DDoS malware, such as
Dirt Jumper Drive [3], they implement several of the most effective DDoS attacks. We review
a few of the methods that are implemented by most booter services in order to provide an idea
of their sophistication.

SYN flood. This form of DoS attack is conducted by rapidly sending large numbers of TCP SYN
requests. To make these requests difficult to filter, the IP source address is normally spoofed.
The goal of this attack is to force a server to expend a large amount of resources handling these
requests, so that it does not have enough resources left to respond to legitimate requests.

DNS reflection. This method enables an attacker to consume all of the victim’s bandwidth
by amplifying their traffic by a factor of ten or more times the amount of actual traffic the
attacker is able to send. The attack takes advantage of several facts. The first is that well-
crafted DNS requests can produce DNS replies that are more than ten times larger. The next
is that DNS operates over UDP, which is a connectionless protocol; thus the attacker can send
a spoofed DNS request that causes the large DNS reply message to be directed to the victim.
The last key part of this attack is that there are large numbers of what are called “open DNS
resolvers.” These are misconfigured DNS resolvers that will provide resolution for clients
outside its administrative domain.

HTTP GET/HEAD/POST flood. This attack focuses directly on the Web servers and oper-
ates by making a large number of HTTP requests to the Web server, with the goal of trigger-
ing database queries or other processes that consume large amounts of server resources.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 21

SECURITY
Rent to Pwn: Analyzing Commodity Booter DDoS Services

RUDY/Slowloris. RUDY stands for “aRe yoU Dead Yet,” and
it again targets Web servers, specifically HTTP forms, with
long POST arguments that cause vulnerable servers to exhaust
their pool of connections processing these never-ending HTTP
POST requests. Another twist on this attack is slowloris, which
slowly reads HTTP replies to tie up and exhaust the available
pool of connections.

The Underground View of Booter Services
Booter services are relatively easy to locate, and there are
countless numbers of them in operation as of the writing of this
article. They can be found by Web searches for “booter stresser,”
and they publicly market themselves as network stress testing
services in order to maintain a facade of legitimacy; however,
on underground forums, such as hackforums.net, they market
themselves as DDoS services that “hit hard” and offer a number
of add-on services, such as locating a victim’s IP via their Skype
ID and a server’s real IP address to get around CloudFlare and
other anti-DDoS services.

Most of these booter services operate on a subscription model,
in which their customers pay a monthly fee that enables them
to launch as many DDoS attacks as they want for the month.
A basic membership costs around $10–$30 US per month and
normally entitles the customer to only one concurrent attack
that lasts 30–60 seconds. The subscriber can launch unlimited
new attacks after their current one has ended. In order to launch
more than one concurrent attack or attacks that last longer (from
one to three hours) the customer must purchase more costly
premium subscriptions that range in cost from $50–$200 US
per month. Most booter services accept payment via PayPal and
some accept bitcoins.

On these same underground forums there are advertisements
from hosting ISPs that rent servers and are tolerant of launching
DDoS attacks. These advertisements and comments from the
operators of these booter services indicate that many of them are
renting dedicated servers instead of using compromised servers
or large botnets for their attack infrastructure. Determining
whether a server is rented by an attacker or compromised is
difficult; however, from a business perspective, renting servers
might make sense because rented servers are likely more stable
than compromised servers or botnets.

Additionally, we see many posts on these underground forums
from booter service operators claiming they have updated their
lists of open DNS resolvers and proxy lists. This provides anec-
dotal evidence they are exploiting other organizations’ misconfig-
ured DNS resolvers for DNS reflection attacks and using public
proxies to make it more difficult to filter Web server attacks
launched from a small set of dedicated servers via IP address.

Finally, there are posts that indicate many of these booter ser-
vices are based on code that has leaked or been stolen, such as
the asylum booter source code, available at its Web site [1]. This
reinforces the fact that there is a low barrier of entry for starting
a booter service.

An Analysis of the TwBooter Service
To gain a deeper understanding of booter services, we conducted
an empirical analysis of TwBooter (http://booter.tw). We will
present analysis based on various aspects of TwBooter’s opera-
tions, including the infrastructure leveraged for mounting DDoS
attacks, details on service subscribers, and the targets being
victimized by the booter. Although TwBooter isn’t thought to
be among the largest booter services, it recently has attracted
attention after being linked to a series of DDoS attacks targeting
a popular blog on computer security and cybercrime [5] and the
Ars Technica Web site [2].

Data Set
Most of our analysis is based on a publicly available SQL dump
file of the operational database of the TwBooter service. The
data set covers a period of 52 days ending on March 15, 2013, and
contains more than 48,000 attack records. Table 1 provides a
summary of the data contained in this data set. See our paper [4]
for more details on what this data set included.

Duration Clients Victims Attacks

Jan. 2013–Mar. 2013 312 11174 48844

Table 1: Summary of TwBooter data set used in the analysis

Ethics, Legal, Authenticity Implications
When dealing with a leaked data set, many issues must be
addressed before using it. Two of the key issues when dealing
with potentially stolen data is that the data is used in an ethical
and legal fashion. In this case, the data was publicly leaked and
previously reported upon, and so we designed a methodology
that would minimize any additional harm from our analysis
and publication. Specifically, we omitted personal information
from our publication, such as email addresses and names of the
subscribers, victims (except in the cases were the information
was publicly reported), and operators of this service even when
these details were known. Another key issue when dealing with
data of unknown provenance is checking as much as possible
that it is authentic and accurate. For this data set, we contacted
three of the victims and confirmed that the data correlated with
attacks that they experienced. We also checked to make sure the
data was internally consistent. This gives us some confidence
that this data is not completely fabricated; however, some of the
data could be fabricated or inaccurate.

22  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECURITY
Rent to Pwn: Analyzing Commodity Booter DDoS Services

Attack Infrastructure
Our analysis of the TwBooter leaked data indicates that only 15
distinct servers were used to perform all the attacks launched by
this service. This means that TwBooter relies on a smaller set of
servers to perform DDoS attacks. Compared to clients, servers
utilized for this purpose could be much more effective as they
typically have higher computational and bandwidth capaci-
ties, making them more capable of starving bandwidth or other
resources of a targeted system.

Further analysis shows that only three servers have been active
for the entire 52-day period covered by our data. The other
servers either left or joined the pool of servers in the middle of
the period. A total of nine servers were in active operation as of
March 15. The lifetime for the six inactive servers ranged from
three days to 16 days, with an average of 11 days. The average
lifetime of nine servers that were still active was 32 days. Two of
the servers were hosted in the USA and the rest were hosted by
an ISP located in the Netherlands. We omit the name of the ISPs
because we do not have enough evidence to tell whether the serv-
ers have been compromised or have been directly leased from
the hosting providers. This supports the anecdotal evidence that
booter services have a relatively stable attack infrastructure
based on higher powered servers.

Attack Measurement
Although TwBooter implemented 12 different attack types, the
ones mentioned above account for more than 96% of all per-
formed attacks. To measure the effectiveness of these attacks,
we subscribed to TwBooter and initiated a number of attacks to
one of our own servers. Table 2 summarizes the measurement
results for both a SYN flood and UDP flood. The UDP flood
used a DNS reflection and amplification attack to generate 827
Mb/sec of DNS query response traffic directed at our server by
sending out large numbers of forged DNS request queries that
included our server’s IP address as the IP source address. For the
SYN flood, we observed 93,750 TCP SYN requests per second
with randomly spoofed IP addresses and port numbers directed
at our server.

In addition to these two flood attacks, we also launched both
HTTP GET/POST attacks on our server to see whether proxy
servers were utilized by TwBooter. We observed a total of 26,296
distinct proxy servers being used for a five-minute HTTP GET
attack and 21,766 proxy servers for an HTTP POST attack of the
same length.

Attack type # of packets Avg. packet size Volume

UDP flood 4552899 1,363 bytes 827 Mb/sec

SYN flood 5625086 54 bytes 40 Mb/sec

Table 2: Summary of measured attacks (duration 60 secs)

Customers
A total of 277 active users subscribed to the TwBooter within
the time period of the data set. The subscription information and
information on the cost of each combination of options allows us
to estimate that TwBooter earned $7,727 a month. Assuming they
were paying around $250–$300/month each for nine dedicated
servers at a hosting ISP, this would be a profitable enterprise.

To make our analysis easier to understand, we classified users
into three categories of behavior based on their subscription
type: (1) gamers mounting short-lived attacks of no longer than
10 minutes, (2) Web site attackers with attacks lasting between
one and two hours, and (3) privileged users with the right to
initiate attacks lasting for more than two hours. Some users
could not be easily categorized into one of these groups and were
excluded from the analysis. The users assigned to one of the
three groups account for about 83% of all users.

The intuition behind this method of classification is that
TwBooter utilizes high bandwidth servers to mount DDoS
attacks. Gamers typically use residential Internet connections
to play online games. Considering the limited capacity of a gam-
ers’ links, they can be easily overwhelmed with large amounts of
traffic originated from one server for a short period of time. For
this reason, the majority of TwBooter users targeting gamers
have subscribed for short-lived DDoS attacks. We found that
users who subscribed for durations of between 10 minutes to
less than an hour were difficult to classify, and thus we have
left them out of this analysis. Those subscribed for an attack
duration of an hour or more are likely to be users targeting Web
sites. Interestingly, there are a few users who have the privilege
to initiate attacks lasting more than two hours, an option that is
not available to ordinary users at registration time.

Table 3 summarizes service usage for the three groups of users.
As observed, gamers and Web site attackers exhibit similar
behavior in terms of the average number of attacks initiated per
day and the number of distinct victims targeted per day. Users in
the third group, however, behave differently. Although privileged
users tend to target fewer distinct victims per day, they initiate
more attack instances on those targets. This is probably attribut-
able to the fact that the privileged users are more likely to utilize
concurrent attacks.

Gamers Web site Privileged

Number of users 180 41 8

Avg. distinct targets
per day

3.32 3.46 2.86

Avg. attacks per day 13 13 16

Avg. attack time per day 59 m 14 h 105 h

Table 3: Service usage of the three user groups

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 23

SECURITY
Rent to Pwn: Analyzing Commodity Booter DDoS Services

In terms of the average number of attacks initiated per day, we
observe that users in all of the three groups use the service fairly
heavily. As expected, the average amount of time spent having
an attack carried out varies significantly among each of the
user groups. Although the maximum duration of an attack for
gamers and Web site attackers is ten minutes and two hours,
respectively, we have attack records for privileged users that last
for a few days. Besides the privilege of mounting longer last-
ing attacks, higher attack concurrency could be another factor
contributing to the huge average attack time for the group of
privileged users.

Victims
For each attack record in the data set, the target is specified as
either an IP address or a Web site URL. We identified 689 unique
Web sites and 10,485 unique IP addresses in the attack records.

To understand what types of Web sites were victims of DDoS
attacks initiated by TwBooter’s subscribers, we manually
visited the top 100 Web sites in terms of the overall time being
under attack. Although the type of targeted Web sites is quite
diverse, ranging from other booters to governmental agencies,
the overwhelming majority of targeted Web sites were either
game servers or game forums. In addition to the attacks on the
two journalists, we noticed two users ordering attacks on several
different governmental Web sites. The primary focus was on two
Indian government Web sites and the Web site of the Los Ange-
les Police Department. Collectively, the three Web sites were
under attack for a total duration of 142 hours by these two users.

Conclusion
Our analysis of TwBooter’s attack infrastructure, customers,
and victims support the anecdotal evidence that these services
are popular and profitable services that are upgrading their
attack capabilities as their user bases expand. This enables
this service and others to expand from their original purpose
as tools used to gain an advantage against gaming opponents,
and they are now used to target a diverse set of victims ranging
from gamers to small- and medium-sized government Web
sites. We have other leaked data sets from larger booter ser-
vices, such as Asylum, that indicate they had customer bases
in the thousands and have been used to launch hundreds of
thousands of attacks a year.

The biggest transformation these services create is a business
model in which attackers can rent and share DDoS infrastruc-
ture that is managed by the booter service instead of building
and maintaining their own dedicated infrastructure, thus
reducing both the technical and monetary barriers to launch-
ing DDoS attacks.

Acknowledgments
We thank Jose Nazario and the other reviewers for their insight-
ful comments of our earlier related LEET paper. This work was
supported by the National Science Foundation under grant
1237076 and a gift from Google.

References
[1] http://softwaretopic.informer.com/
asylum-booter-source/.

[2] Sean Gallagher, “Details on the Denial of Service Attack
That Targeted Ars Technica: http://arstechnica.com/secu-
rity/2013/03/details-on-the-denial-of-service-attack-that-
targeted-ars-technica/, 2013.

[3] Kelly Jackson Higgins, “DDoS Botnet Now Can Detect
Denial-of-Service Defenses”: http://www.darkreading.com/
attacks-breaches/ddos-botnet-now-can-detect-denial-of-
ser/240160466, 2013.

[4] Mohammad Karami and Damon McCoy, “Under-
standing the Emerging Threat of DDoS-as-a-Service,”
LEET 2013: https://www.usenix.org/conference/leet13/
understanding-emerging-threat-ddos-service.

[5] Brian Krebs, “The Obscurest Epoch Is Today”: http://
krebsonsecurity.com/2013/03/the-obscurest-epoch-is-
today/, 2013.

24  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

An Interview with Ben Laurie
R i k F a R R o w

Rik Farrow is the Editor of ;login:.
rik@usenix.org

Ben Laurie is a software
engineer in Google’s security
team and a visiting fellow at the
Cambridge University Computer
Lab. He wrote Apache-SSL,

which powers more than half the world’s
secure Web sites, and he maintains OpenSSL,
the world’s most widely used open source
cryptographic library. Currently he is trying to
fix the Internet with Certificate Transparency
(http://www.certificate-transparency.org/),
among other things. ben@links.org

I had heard of Ben Laurie before, as he is the co-author of several papers
I’ve read, plus open source software that millions of people use: Apache-
SSL. And while I was at USENIX Security, Ben’s name came up while I

was talking about Bitcoin.

I had asked Ben to write in the past, but things never quite worked out, so it seemed natural
that I try an interview instead, which did allow me to ask Ben about some things that I was
curious about.

Rik: I read your Wikipedia page and learned that you’ve been working for Google for years.
But you are also a Visiting Fellow at Cambridge University’s Computer Laboratory, found-
ing director for Apache, a core team member of OpenSSL, security director for The Bunker
Secure Hosting, a committer for FreeBSD, trustee and founding member of FreeBMD, and
an Advisory Board member of WikiLeaks.org. This seems like an awful lot to be doing while
working for Google.

Ben: Indeed I do work for Google, and have done so now for seven years. My current main
project is Certificate Transparency [1]. As you say, I am a Visiting Fellow at Cambridge,
where I work with Robert Watson’s team on a capability CPU, as well as Capsicum [2]. I don’t
really do much on Apache anymore, but I do work on OpenSSL. And I am a director of The
Bunker. Google allows me a portion of my time for some of these things, particularly the work
at Cambridge and on OpenSSL. The rest I fit into my copious spare time.

Rik: Reading through your blog, I noticed the post about the CRIME attack on TLS [3]. Was
OpenSSL changed in any way to make this attack more difficult? I read in the ARS article
that you mention that the popular desktop browsers either were patched or didn’t support
compression in the first place. Is DEFLATE still supported in OpenSSL? In Apache SSL?

Ben: OpenSSL was not changed nor was Apache-SSL, because Apache-SSL is mostly not
used anymore, since mod_ssl (an Apache-SSL derivative) is now included directly in Apache.

Rik: There has been a lot of talk recently (September 2013) about the NSA being capable of
“breaking” SSL, and otherwise weakening crypto to make recovering keys easier. With your
OpenSSL hat on, does this mean doubling the key length, which will cost big providers a lot of
compute time? Or is it really too soon to tell?

Ben: Actually, the CA/Browser Forum has recently doubled key length. From January 2014,
SSL keys will have to be 2048 bits.

As for the claim, I don’t really believe the NSA relies much on weakening crypto—why would
they, when systems are so easy to break into? In my opinion, this whole crypto thing is a com-
plete red herring. We should be focusing on operating system and application security.

Rik: And I have another question. Since I read your blog, I know you’re working on Certificate
Transparency (CT). Could you explain what the goal of that project is and how it would work?

Ben: As we know since the DigiNotar incident [4], it is possible for a CA to not only fail, but
fail and be undetected for a considerable time. The goal of CT is to make it very hard to get a
fake certificate and hide that fact. It works by creating a publicly verifiable log of all issued

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 25

SECURITY
An Interview with Ben Laurie

certificates. The idea is that browsers will refuse connections
that are not secured with a logged certificate, and domain own-
ers (or their agents) will monitor the log to check that issued
certificates [for their domains] are all legitimate.

You can read a lot more here: http://www.certificate-transparency
.org/.

Rik: You are also known for the creation of a digital currency.
Tell me about what lucre was, and what happened with it.

Ben: Lucre [5] was an implementation of an idea by David Wag-
ner. Essentially, he observed that Chaum’s blind signatures,
which were patented at the time, were based on RSA, and there
was a parallel idea based on DSA. At least, I think it was DSA;
perhaps he said Diffie-Hellman.

I implemented this scheme mostly as a learning exercise, but also
to explore the costs of issuing digital money. The answer was: very
cheap, even back then—much cheaper now, of course. I didn’t actu-
ally do much with it in practice, though I did implement the whole
system as open source. The only serious system I am aware of that
was built on it is this: https://github.com/FellowTraveler/
Open-Transactions. But I’m not sure how far that got.

Rik: I read “Decentralized Currencies” [6], your article criticiz-
ing Bitcoin, and understand your points about Bitcoin’s prob-
lem with achieving consensus. In your article, you wrote that
Bitcoin’s proposed consensus group (for deciding where bitcoins
reside) is based on “all the computing power in existence.” And
even though the Bitcoin “proof-of-work” requires more power
than the value of the bitcoin produced, the fraction of computing
involved in the “consensus group” is actually a tiny fraction of all
computing power.

You posit that someone willing to spend a bit more power could
produce a longer chain, and thus create a new proof of where
bitcoins reside. It seems that you’ve demolished any logic behind
the working of Bitcoin with these two statements, yet people still
disagree with you. Could you possibly have this wrong? Is there
something I am not understanding about your arguments?

Ben: People disagree with me for two reasons that I can figure out:

a) The amount of work required to make a longer chain is greater
than the total work put into the existing chain; that is, to outpace
the existing chain you need not just more power, but more power
running for as long as the existing power has been. This isn’t
really an argument against me, so I don’t know why people make
it, but they do. I guess it’s nitpicking at my claim that you need 50%
of the total computing power. “Aha!” they say, “you actually need
more than that, because we have a head start,” which is techni-
cally correct, but doesn’t invalidate the argument, and the amount
you actually need is still far less than half the total, in practice.

b) They sometimes claim that there’s no economic incentive to
making an alternate chain. There are at least two responses to
this: (1) then why are there alternative bitcoin-like currencies?
(2) the attacker’s incentives may not be economic or the econom-
ics may not be the simple economics of bitcoins.

Rik: Sarah Meiklejohn et al. have a paper in IMC 2013 [7] in
which they state that 64% of all bitcoins are currently hoarded.
In [6], you suggest that Bitcoin is not really a decentralized cur-
rency, as the people who created it might be the ones to benefit
most from that. We can’t tell who is hoarding bitcoins, but is it
reasonable to conflate these two ideas?

Ben: Let’s not mince words. Bitcoin is a Ponzi scheme. We all
know who benefits from Ponzi schemes.

Rik: Since Bitcoin has a fixed cap on the number of bitcoins
that can be “minted,” doesn’t this make Bitcoin a deflationary
currency? For me, it recalls the struggle in England between
the landed aristocracy, who wanted the currency pegged to land
(their land), and those who wanted a currency that could grow as
the economy expanded.

Ben: Clearly, the Bitcoin cap favors the Bitcoin aristocracy. As I
point out in one of my papers, if you live in the fantasy universe
where Bitcoin is decentralized, then there are fairer ways to
distribute new, invented wealth (for example, randomly among
all the decentralized participants [8]). But in the real world, the
wealth of the incumbents rests entirely on the willingness of the
next layer of the pyramid to continue to play the game. This is
rather different from your historical example, though; there is no
land to link the currency to.

Rik: With that out of the way, I have a question about Merkle
trees, as that is related to the work you are currently doing.
When I read about Merkle trees, the emphasis is on creating a
tree of hashes; however, searching for a particular certificate in a
tree of hashes boggles my mind, as it implies visiting every node
until you find the one you are interested in. Is there a parallel
data structure to the Merkle tree for certificates that points to
the correct path for the certificate you are interested in? Or, put
another way, I am interested in a better understanding of how
Merkle trees are used practically, and it seems like you are in a
great position to explain this practical use.

Ben: The purpose of the Merkle tree is to allow efficient proofs
that

a) the log is append-only,

b) any particular item is in the log (given its location in the log),
and

c) everyone sees the same log.

26  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECURITY
An Interview with Ben Laurie

If you want to monitor the log for certificates of interest, you do
indeed have to look at the entire log. For certs, that’s not such a
big deal; we’ve been up several months now and there’s still only
2.5M certs in the log.

Rik: I’ve read that FreeBSD 9 has shipped with experimental
support for Capsicum. I was excited when I first learned about
Capsicum in 2010. I recently learned of a new application frame-
work, called Casper, which manages the creation of sandboxes,
making it easier for developers to start using Capsicum. What
more can you tell us about where this project is going?

Ben: Capsicum is a capabilities system layered on top of POSIX.
In short, it adds fine-grained permissions to file descriptors,
effectively turning them into capabilities, and a “capability
mode.” Once a process is in capability mode, which can be done
for it by its parent process, it can no longer create file descrip-
tors directly. It can only create copies of existing file descriptors
with reduced (or equal) permissions, or acquire new ones from
processes it can communicate with; however, it is fully backwards
compatible: Capsicum-unaware software can communicate with
sandboxed processes, and vice versa (if permitted). It is even
possible to “transparently” Capsicumize existing software by
replacing libc with a capability-aware version. It is thus possible
to gradually migrate from the existing ACL-based world to a capa-
bilities-based one without having to rewrite everything all at once.

FreeBSD 10 will have Capsicum enabled by default, and we’re
also working on porting Capsicum to Linux [9]. We’re gradually
Capsicumizing system utilities, but also going after bigger fish,
such as SSH, Wireshark, and Chrome.

Casper is a framework and a utility that makes it easier to
provide services, such as name resolution, restricted network
connections, access to keyrings, and so forth, to sandboxed pro-
cesses. We’re still experimenting with exactly what kind of poli-
cies Casper should use, but one of the key aspects of the design
is that it is flexible: if you don’t like our version, you can replace
it with one of your own, either system-wide or for particular
purposes. Applications can even provide Casper services directly
to each other, with appropriate configuration.

In order to extract maximum value from capabilities, it is neces-
sary to decompose software into separate modules, which, in
a POSIX world, necessarily corresponds to processes. We are
working on utilities to help with that (http://www.cl.cam.ac.uk/
research/security/ctsrd/soaap.html), but we’re also looking at a

novel CPU architecture to allow fine-grained sandboxing within
processes (http://www.cl.cam.ac.uk/research/security/ctsrd/
cheri.html). We already have FreeBSD running on this CPU, and
a version of Clang that understands capabilities. This allows us
to do some pretty cool things. For example, we can modify mal-
loc to return a capability instead of a mere pointer. This com-
pletely eliminates heap overflow at a single stroke.

I could write a whole book about the possibilities and advan-
tages, and I invite interested readers to get in touch with us,
perhaps on the mailing list (https://lists.cam.ac.uk/mailman/
listinfo/cl-capsicum-discuss).

Resources
[1] Certificate Transparency: http://www.certificate
-transparency.org/.

[2] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
and Kris Kennaway, “Capsicum: Practical Capabilities for
UNIX,” 19th USENIX Security Symposium, August 2010:
http://www.usenix.org/event/sec10/tech/full_papers/
Watson.pdf.

[3] Ben Laurie, “Compression Violates Semantic Security”:
http://www.links.org/?p=1277.

[4] DigiNotar: https://en.wikipedia.org/wiki/DigiNotar.

[5] Lucre: http://anoncvs.aldigital.co.uk/lucre/; available
here: https://github.com/benlaurie/lucre.

[6] Ben Laurie, “Decentralized Currencies Are Probably
Impossible: But Let’s At Least Make Them Efficient” (cri-
tique of Bitcoin): http://www.links.org/files/decentralised
-currencies.pdf.

[7] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill
Levchenko, Damon McCoy, Geoffrey M. Voelker, and Stefan
 Savage, “A Fistful of Bitcoins: Characterizing Payments
Among Men with No Names,” IMC 2013:
http://cseweb.ucsd.edu/~smeiklejohn/files/imc13.pdf.

[8] Ben Laurie, “An Efficient Distributed Currency”:
http://www.links.org/files/distributed-currency.pdf.

[9] Capsicum code for Linux: https://github.com/google/
capsicum-linux.

SANDBOXING & VIRTUALIZATION • DETECTING CHEATERS

MARCH/APRIL 2011

THREAT MODELING • MOBILE DEFENSE • FROM PAPER TO PIXELS

JULY/AUGUST 2011

INSIDER ATTACKS • MOBILE TWO-FACTOR AUTHENTICATION • TRUTH IN CROWDSOURCING
SEPTEMBER/OCTOBER 2011

Protect Your Network

www.qmags.com/SNP

IEEE Security & Privacy is the
publication of choice for great
security ideas that you can put into

practice immediately. No
vendor nonsense, just real
science made practical.

—Gary McGraw,
CTO, Cigital, and author of Software
Security and Exploiting Software

Access the latest trends and
peer-reviewed research
anywhere, anytime

Further your knowledge
with in-depth interviews
with thought leaders

 SUBSCRIBE FOR $1995

DIGITAL EDITION

28  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Mackerel: A Progressive School of
Cryptographic Thought
J u s t i n t R o u t M a n a n D v i n C E n t R i J M E n

Justin Troutman is a
cryptographer with research
interests in designing
authenticated encryption
constructions, optimizing the

user experience of cryptographic products, and
analyzing methodologies for signals intelligence.
He has worked with Microsoft, Google, Duke
University, and IEEE. He co-developed the
“green cryptography” strategy for minimizing
implementation complexity, while maximizing
cryptographic security, by recycling components
for multiple purposes. He is currently organizing
international workshops that explore topics such
as optimizing the effectiveness of cryptography
for journalists, and the intersection between
real-world cryptographic design and experience
design.
justin@justintroutman.com

Vincent Rijmen is professor with
the Department of Electrical
Engineering at the University
of Leuven and the security
department of the research

institute iMinds (Belgium). He is co-designer
of the algorithm Rijndael, which has become
the Advanced Encryption Standard (AES),
standardized by the US National Institute for
Standards and Technology (NIST) and used
worldwide, e.g., in IPSec, SSL/TLS, and other
IT-security standards. Rijmen is also co-
designer of the WHIRLPOOL cryptographic
hash function, which is standardized in ISO/
IEC 10118-3. Recent research interests include
security of hash functions, design of methods
for secure hardware implementations and
novel applications of computer security.
vincent.rijmen@esat.kuleuven.be

Troutman and Rijmen offer a framework for creating and fielding new security systems involving
cryptography. Without this or a similar framework to coordinate efforts between different stake-
holder communities, we are doomed to continue providing systems that provide less than expected,
take too long from conceptual birth to fielding, and still leave us at unacceptable risk.

Their framework is “chunked” to nicely fit the natural flow of effort from cryptographers to develop-
ers to users; this allows each profession to maximize its strengths and not be unnecessarily befud-
dled by work going on in sister professions that are also needed to complete full delivery of effective
systems—systems that can be deployed and safely used by customers with minimal training.

Is this work perfect and fully fleshed out? NO. Is it a big step in the right direction? I think YES! Read
and enjoy; it is an easy read that should plant interesting concepts in your mind that will take root
and grow, leading to further needed developments.

—Brian Snow, former Technical Director of Information Assurance at NSA.

Cryptography is hard, but it’s the easy part. It’s an entanglement of
algorithms and assumptions that only a cryptographer would find
poetic, and we’re at a point where strong cryptography is arguably the

most robust aspect of a system’s security and privacy posture. To a consumer,
however, cryptography is still an esoteric sort of black magic whose ben-
efits are out of reach. Developers: If you feel we’ve dropped the ball on safely
implementing cryptography—which we have, and horribly so—this doesn’t
hold a candle to how pitifully we’ve failed at interfacing the benefits of cryp-
tography to consumers. Our contribution to potentially solving this problem,
dubbed Mackerel, is a design and development framework for developers
that’s based on the premise that real-world cryptography is not about cryptog-
raphy; it’s about products.

First, let’s look at a process that works, and with which most of us are familiar: buying and
driving an automobile. You decide it’s time to buy a new vehicle, so you drive to the nearest
car lot of your choice. You’re greeted by a friendly salesman who wants nothing more than
to put you in a new car that day. He needs to sell and you need to buy, so today might be a
double-win for both of you. You tell him that with today’s gas prices, you need something that
gets good mileage, but that you also need something with decent towing capabilities, since
you pull a camper to your favorite campground in the mountains. Oh, and with three kids and
in-laws, you need a third row of seating. Using his oracle-like knowledge of vehicle statistics,
the salesman walks you over to a sporty, yet eco-friendly, SUV that strikes the right bal-
ance for all your requirements. You feel the leather seats, admire the hands-free navigation
system, and even take it for a test drive. A credit check and some paperwork later, and you’re
pulling out of the lot in your brand new set of wheels.

When you sit in the car, you shut the door, and (hopefully) buckle up, then proceed to insert
the key into the ignition switch, turn it, and the process of internal combustion automagi-
cally happens before you. You shift into the appropriate gear, press your foot on the accelera-
tor pedal, and you’re off. At no point did you have to understand the mechanics of the vehicle
or the process of internal combustion; you simply had to insert a key, turn it, shift a knob, and
step on a pedal. In front of you are several indicator lights that give you visual and aural cues

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 29

SECURITY
Mackerel: A Progressive School of Cryptographic Thought

that something needs attention. It lets you know if you’re about
to run out of gas, need an oil change, or if it’s something that you
should probably have a mechanic check out (“check engine”).
You’re able to thoroughly enjoy and benefit from the wonder of
the automobile, without understanding the physics or mechan-
ics; at the most, your experience as a user involves limited
engagement with an intuitive user interface.

So, how can the cryptographic process learn from the consumer
automobile experience? Well, we’ve stated that in order to prop-
erly realize the benefits of cryptography as a product, we need to
employ the right process—one that respects the roles of people
involved. These aforementioned people make up three groups:
cryptographers, developers, and consumers. The first mistake,
and the cardinal sin, is trying to get everyone on the same page.
It’s a true exercise in futility because cryptography looks dif-
ferent as it flows from cryptographer to developer to consumer.
They each assume distinct roles that require different types
of expertise. Ideally, what we want is a process that respects
these roles and doesn’t ask them to make decisions outside of
their realm of expertise. Tragically, it rarely ever happens this
way, and we devolve into a modern-day Tower of Babel, trying
to collectively build something without having a clue as to what
the other is saying. To remedy this, it’s paramount that we notice
the two relationships that exist here—cryptographer-to-devel-
oper and developer-to-consumer—where keeping a tight bond
between the former is necessary for underlying implementation
assurance (think mature and minimalist API), while doing so
for the latter is necessary for user interface accessibility (think
tactile and palatable GUI).

Cryptographer-to-Developer Relationship
Let’s start with the cryptographer-to-developer relationship.
Cryptographers need to approach developers with a particular
golden rule in mind: cryptographic implementations usually fall
apart at the implementation level, not at the cryptographic level.
What this really means is that cryptographers need to create and
promote a more benign surface for developers. It’s not just about
making it easy to get things right; it’s even more about making
things hard to get wrong. One way to achieve that is through
what we call “green cryptography” [1, 2, 3] (extended drafts at
justintroutman.com), which calls for the recycling of mature
and minimalist components whenever and wherever it makes
sense; for example, you can do authenticated encryption (and
you should always be doing both authentication and encryp-
tion) with a single primitive, like the Advanced Encryption
Standard (AES), by using Counter mode (CTR) for encryption
and Cipher-based Message Authentication Code (CMAC) for
authentication. Or even easier to implement would be an Authen-
ticated Encryption with Associated Data mode (AEAD), which
handles both encryption and authentication without the need for
two separate modes. EAX (Encryption and Authentication with

Associated Data), for example, is essentially a combination of
CTR and One-key Cipher Block Chaining Message Authentica-
tion Code (OMAC1; equivalent to CMAC), but doesn’t require
that you manually combine CTR and CMAC; EAX kills two
figurative birds with one stone. Not only that, but this particular
construction gives you two of the strongest notions of confiden-
tiality and integrity that we have: indistinguishability against
Adaptive Chosen-Ciphertext Attacks (IND-CCA2) and Integrity
of Ciphertexts (INT-CTXT). Here’s a memo you should never
say you didn’t get: the order of encryption and authentication
matters, and it follows that encrypting the plaintext, first, then
authenticating the resulting ciphertext, second, is the easiest
to get right, hardest to get wrong, and comes with the tightest
notions of confidentiality and integrity.

There have also been recent attempts to build cryptographic
APIs for developers that make things easier for developers
to safely implement, such as Keyczar [4] from Google’s secu-
rity team. It achieves this safety by choosing secure default
parameters (e.g., block ciphers and key lengths), and automati-
cally taking care of consequential things such as key rotation
and IV generation; this is that “benign” surface we mentioned
earlier. And speaking of implementation failure as the likely
center of catastrophe, there’s a class of attacks that preys on the
actual software and hardware implementations of cryptogra-
phy, dubbed “side-channel attacks,” in which everything from
timing differences to power fluctuations can leak information
about plaintext and keys. Fortunately, there’s a library with
side-channel attack resistance in mind called NaCl (a refer-
ence to cryptographic “salt”); with NaCl [5], although you can
use standards such as the AES, you have the option of using
Daniel J. Bernstein’s own cryptographic primitives, such as the
fast stream cipher Salsa20 [6], for encryption; there’s also the
secure message authentication code (MAC), called Poly1305-
AES [7], which, although specified for the AES, can be used
with other drop-in replacement ciphers. Keyczar and NaCl are
important steps toward safer implementations, but they are far
from ideal and represent an inch in the miles we need to go. Only
by strengthening the relationship between cryptographers and
developers can we get there.

Developer-to-Consumer Relationship
Now, let’s tackle the developer-to-consumer relationship.
Cryptographic software is the quintessential martyr of usability
deprivation, a Rube Goldbergian gauntlet of epic distortion. (For
our readers from the UK, “Heath Robinsonian.” In fact, that’s
probably the most appropriate name to use, given the crypto-
graphic context.) In [8], they capture most of the reasons why
PGP (Pretty Good Privacy) and, by extension, its open source
cousin, GPG (GNU Privacy Guard) share the role as poster chil-
dren for tremendously useful ideas that, although used fervently
by some, elude the majority of consumers because of their lack

30  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECURITY
Mackerel: A Progressive School of Cryptographic Thought

of tactility and palatability and by asking consumers to make
configuration decisions far outside their expertise. To be fair,
PGP was as novel as it was timely, because at that instant, back
when cryptography was a munition, we finally had something
that didn’t previously exist: a way to keep our email conversa-
tions secure and private, with strong cryptography. The point is
that it predated the era of usable security and privacy research,
and to this day, we still haven’t improved much on making it easy
to benefit from cryptography. Having said that, we have made
strides in recent years when it comes to mediating the marriage
of usability with security and privacy tools; in fact, there are aca-
demic laboratories focused on it (e.g., Carnegie Mellon’s CyLab
Usable Privacy and Security Lab, or CUPS) and conferences
dedicated to it (e.g., Symposium on Usable Privacy and Security,
or SOUPS). These are pioneering efforts that must exist, and
we’re better for them; on the other hand, cryptography is such
a niche subset of security and privacy, and the focus of only a
minute portion of this research.

In actuality, to channel [9], “usable cryptography” is as much of
an oxymoron as it is manifest destiny; in fact, it’s the benefits
of cryptography that we should strive for as manifest destiny.
Cryptography, itself, as a usable thing, doesn’t exist; the utility
of cryptography and the usability of a product that implements
cryptography exist on entirely different planes. “Usable cryptog-
raphy” is akin to saying “usable internal combustion.” Consum-
ers don’t want internal combustion; they want to drive. Just like
internal combustion, cryptography is an implementation detail
that shouldn’t be exposed to the consumer. That’s right, consum-
ers rarely, if ever, want cryptography directly; they need what
it provides, but that’s an entirely different problem. What the
consumer actually wants is a useful product, where usefulness
(“what am I getting out of this?”) is determined by utility (“what
does it do?”) and usability (“how easily can I do it?”).

To exhibit Mackerel as a philosophy for guiding product design,
imagine that you’re a journalist working under turbulent condi-
tions, in an oppressive environment, and you need to commu-
nicate securely and privately with your source; you need an app
for your smartphone, and such an app must optimize tactility
and palatability, by focusing on: (1) zero learning curve (works
with little to no training), (2) rapid-fire accessibility (works
intuitively and like the apps you’re used to), and (3) minimal code
footprints (to simplify, and encourage, third-party auditing). A
high-level API could be used to abstract away low-level compo-
nents, while being conscious of side-channel attacks. Such an
API could rest inside of a tactile and palatable GUI that caters
to the desires of the user, without exposing you to the complex
internals. Ultimately, you need to talk; you need to do it quickly;
and, you need to do it easily. It’s imperative that the design
enables you, not hinders you. If we expose the cryptography to
you, we’re creating a barrier between the app and what you really

want to do. Although you need what cryptography provides, it
can’t get in the way of you doing your job.

What We Need
We don’t need better encryption; we need a better experience. As
renowned experience designer Aral Balkan captured in his talk
for Thinking Digital 2013, “Superheroes and Villains in Design”:
as users, we should approach design naively and let it tell us how
it wants to be used. When we do this, we recognize the product
for what it is, the expert; we should be able to trust it to make the
right decisions and give us the affordances we expect. In the case
of the journalist above, this implies several things about the user
experience. Everything matters. You’ll need to consider the right
background and foreground colors, and typefaces as well, to
prevent eye fatigue from straining to see what’s being displayed.
Also, you’ll have to think about the average size of fingertips so
as to prevent misfires; seconds lost to poor interaction can be
costly. Oh, and the arrangement of objects on the display is a big
deal, too; an object’s function should be obvious. And then there’s
the fact that this journalist is likely to be in vastly different
cultures. With that in mind, the symbols and colors you use must
make sense within the context of the culture with which the
source identifies.

The design should anticipate the needs of its users; the experi-
ence should fulfill their wants. The journalist doesn’t want to
encrypt and authenticate the data channel between himself and
the source; the journalist wants to safely talk to his source. He
needs the former, but wants the latter. Balkan’s forthcoming
project, Codename Prometheus, is focused on experience design
in the consumer space, with a strong emphasis on protecting
security, privacy, and human rights. This is a big step in the right
direction of cultivating the experience for the consumer and
solving the conceptual problems they care about (e.g., how can
I communicate conveniently, but safely?), without burdening
them with our own problems regarding the details (e.g., how can
I make this app encrypt and authenticate communications?).

What all of this is trying to tell us is that we’ve been taking a
monolithic approach to development for far too long. It’s simply
not enough for cryptographers to help developers properly imple-
ment; that’s only one-half of real-world cryptographic design.
What we absolutely must have are experience designers helping
developers properly interface. Ignoring this carries on the tired,
hapless campaign of “cryptography for the masses,” which didn’t
materialize into the cypherpunk dream; by inviting it, however,
we have a fair shot at helping those masses benefit from cryptog-
raphy. In the cryptographer-to-developer relationship, cryptog-
raphers have the ability to work with developers on this problem;
in the developer-to-consumer relationship, the consumer hasn’t
the expertise to work with the developer. Experience designers
do, however; they speak to the needs and wants of the consumer

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 31

SECURITY
Mackerel: A Progressive School of Cryptographic Thought

on their behalf. In other words, developers have a chance at
getting the implementation right with cryptographers around;
without experience designers around, however, there’s little hope
of them getting the interface right.

A Fish Called Mackerel
Mackerel is a cryptographic design paradigm that posits that
practical cryptography is essentially a subset of product design.
And because it’s about products, it’s about people, and the need
for a holistic product design process that respects the roles of
the people involved—cryptographers, developers, and consum-
ers—by only asking them to make decisions that lie within their
respective areas of understanding, and of which they understand
the consequences. Ultimately, by focusing on the cryptographer-
to-developer and developer-to-consumer relationships, the
outcome will render the assurance of the underlying implemen-
tation, as well as the accessibility of the user interface, resulting
in a product that’s useful, by offering both utility and usability to
the consumer, and that behaves securely and privately. In short,
Mackerel is a developer-centric, consumer-targeted “concep-
tion-to-cellophane” approach to building a cryptographically
enhanced product from the ground up; the goal is to optimize the
GUI (interface accessibility) and API (implementation assur-
ance), by looking at tried-and-true elements from both product
design and security engineering.

The Mackerel framework is intended to operate similarly to a
software development framework, where the design and devel-
opment of a cryptographic product is modeled as a dissection of
individual components that, although they all affect the overall
goal of security and privacy, often require distinct approaches.
For example, within this framework would be cryptographic
threat modeling, where the intended application of a product and
its operating environment are considered in order to determine
applicable attacks and the appropriate cryptographic mea-
sures for mitigating them. This is clearly a security and privacy
problem with a security and privacy answer; however, as the
framework shifts from low-level to high-level, where you’re
dealing with usability factors and the overall experience of the
product, you’re dealing with a problem that can’t be answered by
security and privacy experts. (If we try to do so, we risk PGP 2.0:
hard to break, but hard to use.) It can be answered by usability
experts and those who design experiences for a living, which
is what has been missing in the modern day process. Although
a bad interface and experience can lead to a poor security and
privacy decision, this doesn’t mean the interface and experience
are security and privacy problems or can be solved as such; it

means that we can’t solve the interface and experience problems
without experts in those areas working alongside security and
privacy experts. We currently having nothing of the sort, let
alone a framework that involves both.

Once you birth cryptography into the real world, it becomes
a small component in a large composite that has more non-
cryptographic parts than cryptographic ones; having said that,
you can’t build a good cryptographic product if you involve
cryptographers but not product designers. You certainly can’t
build a good cryptographic product if you think it’s entirely a
cryptographic problem, or even entirely a security and privacy
problem. Mackerel models every core aspect of cryptography’s
evolution as a product, such that optimal decisions can be made,
given the state-of-the-art know-how in cryptographic design,
software development, and user experience design.

Lastly, let’s tell you why Mackerel is called “Mackerel.” At first
glance, it might seem like just another entry into cryptography’s
long list of systems named after fish. Well, that’s partially true,
but there’s a bit more. Integrity is as important a goal as confi-
dentiality, if not sometimes more. After all, breaking confiden-
tiality is the ability to passively eavesdrop, whereas breaking
integrity is the ability to actively manipulate. You can imagine
how the latter can render far worse results than the former, and
even result in the loss of both. So, although encryption is sup-
posed to handle confidentiality, it often can’t, without authenti-
cation, and the standard way to go about that is through the use
of a MAC, or message authentication code. If there’s anything
out of all of this research that we hope you learn, from a crypto-
graphic point of view, it’s that you should always use a MAC, or
an AEAD mode that does both encryption and authentication, or
die trying.

In order to pay homage to the glorious yet underappreciated
MAC, it was befitting to choose as a moniker the fish whose
name begins with “mac”: the mackerel.

Acknowledgments
We immensely thank the vast number of people whose eyes and
ears have been so graciously loaned over the past five years since
our work on “green cryptography” first emerged. A distinguished
thanks to Brian Snow for supporting our vision and for helping
to shape it with his uncanny know-how and grasp of the level
of assurance and accessibility we should expect from a crypto-
graphic product.

32  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SECURITY
Mackerel: A Progressive School of Cryptographic Thought

References
[1] J. Troutman and V. Rijmen, “Green Cryptography: Cleaner
Engineering through Recycling,” IEEE Security and Privacy,
vol. 7 (2009), pp. 71-73.

[2] J. Troutman and V. Rijmen, “Green Cryptography: Cleaner
Engineering through Recycling, Part 2,” IEEE Security and
Privacy, vol. 7 (2009), pp. 64-65.

[3] J. Troutman, “Green Cryptography”: extended drafts can be
found at http://justintroutman.com, 2013.

[4] A. Dey and S. Weis, “Keyczar: A Cryptographic Toolkit,” 2008.

[5] D. J. Bernstein, T. Lange, and P. Schwabe, “The Security
Impact of a New Cryptographic Library,” Cryptology ePrint
Archive, Report 2011/646, 2011: http://eprint.iacr.org.

[6] D. J. Bernstein, “The Salsa20 Family of Stream Ciphers,”
in New Stream Cipher Designs (Springer-Verlag Berlin, 2008),
pp. 84-97.

[7] D. J. Bernstein, “The Poly1305-AES Message-Authentication
Code,” in Fast Software Encryption (2005), pp. 32-49.

[8] A. Whitten and J. D. Tygar, “Why Johnny Can’t Encrypt,”
Proceedings of the 8th USENIX Security Symposium, 1999.

[9] M. E. Zurko and A. S. Patrick, “Panel: Usable Cryptography:
Manifest Destiny or Oxymoron?,” in Financial Cryptography
(2008), pp. 302-306.

APRIL 2–4, 2014 • SEATTLE, WA

11th USENIX Symposium on Networked Systems
Design and Implementation

Join us in Seattle, WA, April 2-4, 2014, for the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14). NSDI focuses on the design principles, implementation,
and practical evaluation of networked and distributed systems. Our goal is to bring together
researchers from across the networking and systems community to foster a broad approach to
addressing overlapping research challenges.

Program Co-Chairs: Ratul Mahajan, Microsoft Research, and Ion Stoica, University of California,
Berkeley

www.usenix.org/conference/nsdi14

SAVE THE DATE!

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 33

SYSADMINTrusting PGP
p H i l p E n n o C k

Phil is a software engineer at
Apcera, provider of the modern
enterprise IT platform.
phil.pennock@spodhuis.org

PGP is a great tool, but if you’re coming to it now, after this year’s NSA
revelations, then it’s probably not the service you want. In fact, I’ll
go further: if PGP is being peddled to you as the panacea to the NSA

issues, the peddler probably doesn’t understand what they’re talking about.

In all security decisions, you should decide what you’re trying to protect and from whom.
Additionally, you should decide how much the protection is worth to you. Only once you’ve
done this, can you decide which attributes (confidentiality, authenticity, etc.) you need and
what tradeoffs are worth it.

For various good reasons, I run my own mail service that serves only two people; for various
other reasons, I stand out like a sore thumb. Frankly, the NSA is not in my threat model. If
it were, I wouldn’t run servers with network services provided by programs written in C. In
this article, I assume that the reader is dealing with people who have suddenly decided that
the NSA is part of the threat model and that the reader needs data points to apply in a re-
education process.

Traffic Analysis
A number of actions have driven folks to look for more privacy, but the core of the move-
ment lies in that word, “privacy,” and the NSA’s wholesale gathering of traffic analysis data,
of everyone everywhere always. PGP can help you with everything after that initial traffic
analysis gathering. Traffic analysis is all about knowing who is talking to whom, and when.
PGP, as an object-level privacy wrapper, not only does not hide that, it actually embeds the
keys of the recipients into the message. This is optional, but almost always done, because it
makes life easier for the recipients when there is information in the wrapper about which
keys were used as part of encryption. These are the recipient keys that are provably tied to a
given identity, if you’ve gone so far as to arrange for trust verification.

Unfortunately, most mail clients with PGP integration do a rather poor job of managing Bcc
recipients; too often, the keyIDs of all the recipients are listed in the wrapper. If you want to
send encrypted email and use Bcc, do some testing first before trusting the integration. Ide-
ally, the Bcc’d copies will be sent as independent SMTP transactions.

If you’re trying to avoid traffic analysis while still using email, then I suggest that you hide
in the anonymity of crowds. That means using a mail service that provides mail for many
people, not just you. If the mail service you choose uses SMTP/TLS for MX delivery, then
all that an eavesdropper knows is that someone in domain A sent a message to someone in
domain B. You can get a lot of protection, if you trust the mail service provider to provide
privacy up until an individual legal warrant is served if both users are in the same domain,
and there are enough users that the timing of the connections won’t reveal anything,
and neither will the sizes of data transferred. If domains A and B are large and use TLS
between each other, you’ve doubled the number of service operators to be trusted but are
still protected from traffic analysis because of the sheer volume of data continuously being
exchanged between the two.

Naming
OpenPGP is the technical name for
the standards, GnuPG is a com-
mon implementation of that, as
is pgp(1) from the company PGP,
but most commonly the systems
are simply called PGP, the name
of Phil Zimmermann’s original
implementation.

34  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SySadmin
Trusting PGP

For mail service protection against traffic analysis, the bigger
the provider, the better. If your provider offers SMTP and IMAP
access, you can still use PGP to protect the content instead of
having to trust the provider. Of course, if most people are using
Webmail interfaces, then you risk standing out.

Using PGP Safely
With that out of the way, there are issues to understand around
using PGP safely. After key selection and key sizes (just use RSA
with 3072 or more bits; 4096 is the practical upper bound [1]), it
all comes down to key identity, knowing which keys are correct
and how you retrieve the keys to use.

PGP uses the Web of Trust model, with each client making its
own trust decisions. Each PGP key is a self-contained certifi-
cate, and implicitly an always-open Certificate Signing Request;
the “key” passed around is a bundle of collected signatures each
made by various other people’s keys. Anyone can sign anyone
else’s keys. Be aware that here is some confusing terminology:
a PGP “key” contains a cryptographic public “key” and attesta-
tions of identity, which various people will certify.

As an example, let’s work with Alice, Bob, Charlotte, and Derek.
Alice meets Bob, exchanges enough information with him about
his key to decide that the key she has for him really is his public
key. Perhaps Bob has his key fingerprint on his business card.
Bob similarly verifies Charlotte’s key, and Charlotte does the
same with Derek. Now, if Alice can trust Bob to do a good job, and
Charlotte to do a good job, despite never having met Charlotte,
then she might be able to trust that she has the “right” self-con-
tained certificate matching an identity for Derek to a public key.
She might have trust in the chain.

Fundamentally, if Bob gives me his complete PGP key, I trust
that the cryptographic public key contained therein is his. I
might not yet trust the email address claimed in the key, or
that Bob’s name really is Bob, but I’ll trust that the public key
material presented is Bob’s. Issuing a public signature is about
verifying who Bob is and whether he really does own the email
addresses that he claims to own.

This attestation of identity doesn’t scale well, because People
Are Lazy. We all know people are lazy. Anyone who has tried to
get PGP adopted more widely will have dealt with folks who will
sign any key, and publish that signature, not caring that they’ve
made a public attestation of identity, saying “trust me on this,”
without bothering to do any checking to back that attestation.
There’s a reason that our society has the concept of public nota-
ries: a possibly unfair subset of the population whom we might
choose to trust to bother doing checking. And heck, we might
even trust the people choosing those notaries to do an honest job.

Sure, there are some people you might trust. Sometimes just
seeing the email domain is sufficient to infer something mean-

ingful. For instance, even though I don’t use Debian, I trust
their training and indoctrination enough that when, during a
trust database update, I’m presented with an @debian.org UID,
I’ll usually choose to score the key as having “marginal” trust
instead of “don’t know,” even if I don’t know who the person is.

Given that People Are Lazy, the first and biggest problem here
is that the default mode for PGP clients always seems to be to
create public signatures when signing someone else’s key. Each
key signature you make can either be “exportable,” that is, public,
or “local,” used purely for personal convenience. The distinction
is purely a Boolean in the PGP data structure of the signature,
used as a hint that the signature should not normally be exported
for use by others. I’ll posit that most users never think through
the issues enough to develop a viable mental model of the tools
and concepts they’re dealing with, so the default should probably
be to make local signatures, with a --tell-others-to-trust-me-
on-this flag to create an “exportable” signature. That simple act
might encourage others to gain enough understanding to make
the Web of Trust look less like a web woven by a spider on meth.
Fewer signatures might appear to hurt scaling, but they’d be
higher quality signatures by default.

If you want to convey more information to others about the veri-
fication you have done, PGP lets a key signature include a policy
URL to provide a pointer to a description of the sorts of verifica-
tion done. With GnuPG, you can use the --cert-policy-url option
to set this.

Key Distribution
Who are you trusting, with what information, when you fetch a
PGP public key? Are you using the public keyservers? I run one
of those—I have patches in the codebase—and I think they’re
useful enough that I’ll continue to do this as a public service for
as long as I think it tenable. But public keyservers are also filled
with junk. Even spam. The public keyservers do no trust-path
verification. They barely manage to check that a key is valid
or well-formed. They should be rejecting non-exportable key
signatures, but the main peering mesh of keyservers doesn’t do
that and keyserver developers are trying to figure out what to do
about that without breaking the key set reconciliation algorithm.
Presence of a key in the public keyservers means nothing.

Furthermore, when you ask a keyserver for a key, you’re com-
municating to that keyserver who or what it is you want to
communicate with; whether a human for email, or a Web server
participating in Monkeysphere. This provides information for
the same traffic analysis discussed earlier. The people main-
taining pool definitions of public keyservers don’t validate the
people running the keyservers, they just validate that there’s a
functional keyserver that is staying up-to-date with “enough
keys that it’s probably current.” A spider does this validation by
walking the stats pages of the keyservers, figuring out what the

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 35

SySadmin
Trusting PGP

peering mesh is, and determining which keyservers can be used
to get current keys. The spider then updates DNS to update the
records returned for various pools, including geographic pools.

If intelligence agencies aren’t running public keyservers under
hostnames designed to sound cypherpunkish, to get a percentage
of traffic analysis about who wants to talk securely with whom,
then they’re slipping. They could skip this step, as the communi-
cation between keyservers is an old protocol using HTTP with a
fixed pattern of URL construction, no matter which host is cho-
sen. This protocol is called HKP, which stands for Horowitz or
HTTP Keyserver Protocol, depending upon whom you ask. The
traffic is almost always unencrypted. A well-placed traffic tap
for data flowing to and from the default HKP TCP port, 11371, is
probably very informative.

The non-keyserver approaches usually involve tools such as
finger, also unencrypted.

If you want people in your organization to have some privacy
in whom they’re communicating securely with (end-to-end),
consider running a local “SKS” keyserver: you’d currently need
to also provide this as a public service as an inherent part of how
you exchange traffic with peers, but the front-end HTTP proxy
you put up can also offer HTTPS (HKPS) communication on a
known hostname, so that there’s an identity your software cli-
ents can validate, using the PKIX, which is an entirely different
can of worms. If you have an internal certificate authority, and
manage internal software deployments enough to control default
GnuPG configurations, you can at least ensure that only your CA
is trusted for keyserver host identities.

There is little HKPS in the public PGP keyserver web because
most client communication is via pool hostnames, and getting
PKIX signatures for pool services run by unaffiliated indepen-
dent groups certainly should be impossible. And even if you had
that, it would be incentive for some well-funded groups to offer
keyservers that happen to forward logs of retrievals to some
(perhaps local) acronym agency.

There are no better solutions for OpenPGP on the horizon if
you’re concerned about traffic analysis. Various systems that
put keys into DNSSEC-secured DNS can provide for confidence
that you have the right key, but certainly don’t protect against a
network traffic filter for DNS traffic concerning the CERT or
OPENPGPKEY RR-types.

Anything using well-known URLs or services in the recipi-
ent’s domain will leak some traffic data when you retrieve the
key; in the best-case scenario, where the link is encrypted, it’s
obscured to the domain level. In the worst-case, you’ve just
signaled to the world that now would be a good time to compro-
mise your client machine.

Good luck helping your paranoid users thump hard back into
reality.

References
[1] For more guidance on choosing key lengths, see http://
www.keylength.com/en/3/, the “Asymmetric” table column.
This site provides guidance from several sources, so you can
pick and choose depending upon whom you trust most for
advice.

[2] Tools to help with keysigning parties: pius, http://phildev
.net/pius/; caff, http://pgp-tools.alioth.debian.org/.

Keysigning Parties
The security of PGP is largely built around being able to
validate identity assertions via the Web of Trust. Although
anyone can validate another’s key at any time, there are scal-
ing efficiencies to organized events. You will often find in the
schedule for technical conferences a BoF type session that
facilitates mass cross-signings. It’s called a “party,” but that
is surely someone’s idea of a joke. You only need to attend one
or perhaps two of these events to have your key end up in the
“Strong Set,” about which you can find more details online.

In short, all folks planning to attend let the organizer know
ahead of time, with their keyIDs. The organizer prepares a
keyring with those keyIDs and prints out sheets of paper with
each key and fingerprint on it. Each attendee receives a copy
of that at the event. During the event, some mechanism will
be used to let each person see every other person’s photo ID;
depending upon attendee count, that might be passing cards
around, or a somewhat sophisticated conga line that will
eventually dissolve into chaos. But it’s still not a party. Then
each attendee in turn will stand up and read out their key fin-
gerprint, from their own trusted source (not the paper copy
prepared by the organizer), letting each other attendee check
off the details. By the end of this, each attendee should have
some confidence in a legally accepted human name attached
to each keyID. Verifying the email addresses is then a matter
of sending the signature of each PGP UID to the address in
that UID, encrypted to the key, shifting the responsibility
to the key-owner to upload the key to public keyservers. The
two main tools to automate this are “caff” and “pius” [2]. This
means that the extent of the email verification is “someone
with access to the mailbox also had access to the private key
and was happy to affirm the association.”

Announcement and Call for Papers www.usenix.org/osdi14/cfp

October 6–8, 2014, Broomfield, CO

11th USENIX Symposium on
Operating Systems Design and
Implementation (OSDI ’14)
Sponsored by USENIX, the Advanced Computing Systems Association

Important Dates
Abstract registration due: Thursday, April 24, 2014, 9:00 p.m. PDT

Complete paper submissions due: Thursday, May 1, 2014,
 9:00 p.m. PDT

Notification to authors: Thursday, July 17, 2014

Final papers due: Wednesday, September 10, 2014

Symposium Organizers
Program Co-Chairs
Jason Flinn, University of Michigan
Hank Levy, University of Washington

Program Committee
Atul Adya, Google
Lorenzo Alvisi, University of Texas, Austin
Dave Andersen, Carnegie Mellon University
Remzi Arpaci-Dusseau, University of Wisconsin-Madison
Mihai Budiu, Microsoft Research
George Candea, EPFL
Peter Chen, University of Michigan
Allen Clement, Max Planck Institute for Software Systems
Landon Cox, Duke University
Nick Feamster, Georgia Tech
Bryan Ford, Yale University
Roxana Gaembasu, Columbia University
Steve Gribble, University of Washington and Google
Gernot Heiser, University of New South Wales
Frans Kaashoek, Massachusetts Institute of Technology
Kathryn McKinley, Microsoft Research
Ed Nightingale, Microsoft
Timothy Roscoe, ETH Zurich
Emin Gün Sirer, Cornell University
Doug Terry, Microsoft Research
Geoff Voelker, University of California, San Diego
Andrew Warfield, University of British Columbia
Junfeng Yang, Columbia University
Yuanyuan Zhou, University of California, San Diego
Willy Zwaenepoel, EPFL

External Review Committee
Emery Berger, University of Massachusetts
Luis Ceze, University of Washington
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Joseph Gonzalez, University of California, Berkeley
Andreas Haeberlen, University of Pennsylvania
Galen Hunt, Microsoft Research
Sam King, Adrenaline Mobility and University of Illinois
Eddie Kohler, Harvard University

Ramakrishna Kotla, Microsoft Research
Jinyang Li, New York University
Wyatt Lloyd, Facebook and University of Southern California
Shan Lu, University of Wisconsin
Jeff Mogul, Google
Satish Narayanasamy, University of Michigan
Jason Nieh, Columbia University
Vivek Pai, Princeton University
Rodrigo Rodrigues, Universidade Nova de Lisboa
Bianca Schroeder, University of Toronto
Mike Swift, University of Wisconsin
Kaushik Veeraraghavan, Facebook
Hakeem Weatherspoon, Cornell University
Matt Welsh, Google
John Wilkes, Google
Emmett Witchel, University of Texas
Ding Yuan, University of Toronto
Nickolai Zeldovich, MIT CSAIL
Feng Zhao, Microsoft Research

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin-Madison
Brad Chen, Google
Casey Henderson, USENIX
Brian Noble, University of Michigan
Margo Seltzer, Harvard School of Engineering and Applied Sciences
 and Oracle
Chandu Thekkath, Microsoft Research Silicon Valley
Amin Vahdat, Google and University of California, San Diego

Overview
The 11th USENIX Symposium on Operating Systems Design and Imple-
mentation seeks to present innovative, exciting research in computer
systems. OSDI brings together professionals from academic and indus-
trial backgrounds in what has become a premier forum for discussing
the design, implementation, and implications of systems software. The
OSDI Symposium emphasizes innovative research as well as quantified
or insightful experiences in systems design and implementation. OSDI
takes a broad view of the systems area and solicits contributions from
many fields of systems practice, including, but not limited to, operating
systems, file and storage systems, distributed systems, cloud comput-
ing, mobile systems, secure and reliable systems, embedded systems,
virtual ization, networking as it relates to operating systems, manage-
ment and troubleshooting of complex systems. We also welcome work
that explores the interface to related areas such as computer architec-
ture, networking, programming languages, and databases. We partic-
ularly encourage contributions containing highly original ideas, new
approaches, and/or groundbreaking results.

Rev. 10/25/13

Submitting a Paper
Submissions will be judged on originality, significance, interest, clarity,
relevance, and correctness. All accepted papers will be shepherded
through an editorial review process by a member of the program
 committee.

A good paper will:

• Motivate a significant problem

• Propose an interesting, compelling solution

• Demonstrate the practicality and benefits of the solution

• Draw appropriate conclusions

• Clearly describe the paper’s contributions

• Clearly articulate the advances beyond previous work

All papers will be available online to registered attendees before
the conference. If your accepted paper should not be published prior
to the event, please notify production@usenix.org. The papers will be
available online to everyone beginning on the first day of the confer-
ence, October 6, 2014.

Papers accompanied by nondisclosure agreement forms will not
be considered. All submissions will be treated as confidential prior to
publication on the USENIX OSDI ’14 Web site; rejected submissions will
be permanently treated as confidential.

Simultaneous submission of the same work to multiple venues,
submission of previously published work, or plagiarism constitutes
dishonesty or fraud. USENIX, like other scientific and technical confer-
ences and journals, prohibits these practices and may, on the recom-
mendation of a program chair, take action against authors who have
committed them. See the USENIX Conference Submissions Policy at
www.usenix.org/conferences/submissions-policy for details.

Prior workshop publication does not preclude publishing a
related paper in OSDI. Authors should email the program co-chairs,
osdi14chairs@usenix.org, a copy of the related workshop paper and
a short explanation of the new material in the conference paper
beyond that published in the workshop version.

Questions? Contact your program co-chairs, osdi14chairs@usenix.
org, or the USENIX office, submissionspolicy@usenix.org.

By submitting a paper, you agree that at least one of the authors
will attend the conference to present it. If the conference registration
fee will pose a hardship for the presenter of the accepted paper,
please contact conference@usenix.org.

If your paper is accepted and you need an invitation letter to ap-
ply for a visa to attend the conference, please contact conference@
usenix.org as soon as possible. (Visa applications can take at least 30
working days to process.) Please identify yourself as a presenter and
include your mailing address in your email.

Deadline and Submission Instructions
Authors are required to register abstracts by 9:00 p.m. PDT on April 24,
2014, and to submit full papers by 9:00 p.m. PDT on May 1, 2014. These
are hard deadlines. No extensions will be given. Submitted papers
must be no longer than 12 single-spaced 8.5” x 11” pages, including
figures and tables, plus as many pages as needed for ref erences,
 using 10-point type on 12-point (single-spaced) leading, two-
column format, Times Roman or a similar font, within a text block
6.5” wide x 9” deep. Final papers may gain two pages, for a total of
14 pages. Papers not meeting these criteria will be rejected without
review, and no deadline extensions will be granted for re formatting.
Pages should be numbered, and figures and tables should be leg-
ible in black and white, without requiring magnification. Papers so
short as to be considered “extended abstracts” will not receive full
 consideration.

Papers must be in PDF format and must be submitted via the
Web submission form on the Call for Papers Web site, www.usenix.
org/osdi14/cfp.

Blind reviewing of full papers will be done by the program com-
mittee and external review committee, with limited use of outside
referees. Authors must make a good faith effort to anonymize their
submissions, and they should not identify themselves either explicitly
or by implication (e.g., through the references or acknowledgments).
Submissions violating the detailed formatting and anonymization
rules will not be considered for publication.

Authors are encouraged to contact the program co-chairs,
 osdi14chairs@usenix.org, if needed to relate their OSDI submissions
to relevant submissions of their own that are simultaneously under
 review or awaiting publication at other venues. The program co-
chairs will use this information at their discretion to preserve the
anonymity of the review process without jeopardizing the outcome
of the current OSDI submission.

For more details on the submission process, and for templates
to use with LaTeX, Word, etc., authors should consult the detailed
submission requirements linked from the Call for Papers Web site.

Jay Lepreau Award for the Best Paper
The program committee will, at its discretion, determine which
paper(s) should receive the Jay Lepreau Award for the Best Paper.

Poster Session
We plan to hold a poster session in conjunction with a social event at
the Symposium. Details on submitting posters for review will be avail-
able on the Web site by August 2014.

Registration Materials
Complete program and registration information will be available in
August 2014 on the conference Web site.

Announcement and Call for Papers www.usenix.org/osdi14/cfp

October 6–8, 2014, Broomfield, CO

11th USENIX Symposium on
Operating Systems Design and
Implementation (OSDI ’14)
Sponsored by USENIX, the Advanced Computing Systems Association

Important Dates
Abstract registration due: Thursday, April 24, 2014, 9:00 p.m. PDT

Complete paper submissions due: Thursday, May 1, 2014,
 9:00 p.m. PDT

Notification to authors: Thursday, July 17, 2014

Final papers due: Wednesday, September 10, 2014

Symposium Organizers
Program Co-Chairs
Jason Flinn, University of Michigan
Hank Levy, University of Washington

Program Committee
Atul Adya, Google
Lorenzo Alvisi, University of Texas, Austin
Dave Andersen, Carnegie Mellon University
Remzi Arpaci-Dusseau, University of Wisconsin-Madison
Mihai Budiu, Microsoft Research
George Candea, EPFL
Peter Chen, University of Michigan
Allen Clement, Max Planck Institute for Software Systems
Landon Cox, Duke University
Nick Feamster, Georgia Tech
Bryan Ford, Yale University
Roxana Gaembasu, Columbia University
Steve Gribble, University of Washington and Google
Gernot Heiser, University of New South Wales
Frans Kaashoek, Massachusetts Institute of Technology
Kathryn McKinley, Microsoft Research
Ed Nightingale, Microsoft
Timothy Roscoe, ETH Zurich
Emin Gün Sirer, Cornell University
Doug Terry, Microsoft Research
Geoff Voelker, University of California, San Diego
Andrew Warfield, University of British Columbia
Junfeng Yang, Columbia University
Yuanyuan Zhou, University of California, San Diego
Willy Zwaenepoel, EPFL

External Review Committee
Emery Berger, University of Massachusetts
Luis Ceze, University of Washington
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Joseph Gonzalez, University of California, Berkeley
Andreas Haeberlen, University of Pennsylvania
Galen Hunt, Microsoft Research
Sam King, Adrenaline Mobility and University of Illinois
Eddie Kohler, Harvard University

Ramakrishna Kotla, Microsoft Research
Jinyang Li, New York University
Wyatt Lloyd, Facebook and University of Southern California
Shan Lu, University of Wisconsin
Jeff Mogul, Google
Satish Narayanasamy, University of Michigan
Jason Nieh, Columbia University
Vivek Pai, Princeton University
Rodrigo Rodrigues, Universidade Nova de Lisboa
Bianca Schroeder, University of Toronto
Mike Swift, University of Wisconsin
Kaushik Veeraraghavan, Facebook
Hakeem Weatherspoon, Cornell University
Matt Welsh, Google
John Wilkes, Google
Emmett Witchel, University of Texas
Ding Yuan, University of Toronto
Nickolai Zeldovich, MIT CSAIL
Feng Zhao, Microsoft Research

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin-Madison
Brad Chen, Google
Casey Henderson, USENIX
Brian Noble, University of Michigan
Margo Seltzer, Harvard School of Engineering and Applied Sciences
 and Oracle
Chandu Thekkath, Microsoft Research Silicon Valley
Amin Vahdat, Google and University of California, San Diego

Overview
The 11th USENIX Symposium on Operating Systems Design and Imple-
mentation seeks to present innovative, exciting research in computer
systems. OSDI brings together professionals from academic and indus-
trial backgrounds in what has become a premier forum for discussing
the design, implementation, and implications of systems software. The
OSDI Symposium emphasizes innovative research as well as quantified
or insightful experiences in systems design and implementation. OSDI
takes a broad view of the systems area and solicits contributions from
many fields of systems practice, including, but not limited to, operating
systems, file and storage systems, distributed systems, cloud comput-
ing, mobile systems, secure and reliable systems, embedded systems,
virtual ization, networking as it relates to operating systems, manage-
ment and troubleshooting of complex systems. We also welcome work
that explores the interface to related areas such as computer architec-
ture, networking, programming languages, and databases. We partic-
ularly encourage contributions containing highly original ideas, new
approaches, and/or groundbreaking results.

Rev. 10/25/13

Submitting a Paper
Submissions will be judged on originality, significance, interest, clarity,
relevance, and correctness. All accepted papers will be shepherded
through an editorial review process by a member of the program
 committee.

A good paper will:

• Motivate a significant problem

• Propose an interesting, compelling solution

• Demonstrate the practicality and benefits of the solution

• Draw appropriate conclusions

• Clearly describe the paper’s contributions

• Clearly articulate the advances beyond previous work

All papers will be available online to registered attendees before
the conference. If your accepted paper should not be published prior
to the event, please notify production@usenix.org. The papers will be
available online to everyone beginning on the first day of the confer-
ence, October 6, 2014.

Papers accompanied by nondisclosure agreement forms will not
be considered. All submissions will be treated as confidential prior to
publication on the USENIX OSDI ’14 Web site; rejected submissions will
be permanently treated as confidential.

Simultaneous submission of the same work to multiple venues,
submission of previously published work, or plagiarism constitutes
dishonesty or fraud. USENIX, like other scientific and technical confer-
ences and journals, prohibits these practices and may, on the recom-
mendation of a program chair, take action against authors who have
committed them. See the USENIX Conference Submissions Policy at
www.usenix.org/conferences/submissions-policy for details.

Prior workshop publication does not preclude publishing a
related paper in OSDI. Authors should email the program co-chairs,
osdi14chairs@usenix.org, a copy of the related workshop paper and
a short explanation of the new material in the conference paper
beyond that published in the workshop version.

Questions? Contact your program co-chairs, osdi14chairs@usenix.
org, or the USENIX office, submissionspolicy@usenix.org.

By submitting a paper, you agree that at least one of the authors
will attend the conference to present it. If the conference registration
fee will pose a hardship for the presenter of the accepted paper,
please contact conference@usenix.org.

If your paper is accepted and you need an invitation letter to ap-
ply for a visa to attend the conference, please contact conference@
usenix.org as soon as possible. (Visa applications can take at least 30
working days to process.) Please identify yourself as a presenter and
include your mailing address in your email.

Deadline and Submission Instructions
Authors are required to register abstracts by 9:00 p.m. PDT on April 24,
2014, and to submit full papers by 9:00 p.m. PDT on May 1, 2014. These
are hard deadlines. No extensions will be given. Submitted papers
must be no longer than 12 single-spaced 8.5” x 11” pages, including
figures and tables, plus as many pages as needed for ref erences,
 using 10-point type on 12-point (single-spaced) leading, two-
column format, Times Roman or a similar font, within a text block
6.5” wide x 9” deep. Final papers may gain two pages, for a total of
14 pages. Papers not meeting these criteria will be rejected without
review, and no deadline extensions will be granted for re formatting.
Pages should be numbered, and figures and tables should be leg-
ible in black and white, without requiring magnification. Papers so
short as to be considered “extended abstracts” will not receive full
 consideration.

Papers must be in PDF format and must be submitted via the
Web submission form on the Call for Papers Web site, www.usenix.
org/osdi14/cfp.

Blind reviewing of full papers will be done by the program com-
mittee and external review committee, with limited use of outside
referees. Authors must make a good faith effort to anonymize their
submissions, and they should not identify themselves either explicitly
or by implication (e.g., through the references or acknowledgments).
Submissions violating the detailed formatting and anonymization
rules will not be considered for publication.

Authors are encouraged to contact the program co-chairs,
 osdi14chairs@usenix.org, if needed to relate their OSDI submissions
to relevant submissions of their own that are simultaneously under
 review or awaiting publication at other venues. The program co-
chairs will use this information at their discretion to preserve the
anonymity of the review process without jeopardizing the outcome
of the current OSDI submission.

For more details on the submission process, and for templates
to use with LaTeX, Word, etc., authors should consult the detailed
submission requirements linked from the Call for Papers Web site.

Jay Lepreau Award for the Best Paper
The program committee will, at its discretion, determine which
paper(s) should receive the Jay Lepreau Award for the Best Paper.

Poster Session
We plan to hold a poster session in conjunction with a social event at
the Symposium. Details on submitting posters for review will be avail-
able on the Web site by August 2014.

Registration Materials
Complete program and registration information will be available in
August 2014 on the conference Web site.

38  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Using SEC
D a v i D l a n g

David Lang is a Staff IT Engineer
at Intuit, where he has spent
more than a decade working
in the Security Department
for the Banking Division. He

was introduced to Linux in 1993 and has been
making his living with Linux since 1996. He
is an Amateur Extra Class Radio Operator
and served on the communications staff of
the Civil Air Patrol California Wing, where his
duties included managing the statewide digital
wireless network. He was awarded the 2012
Chuck Yerkes award for his participation on
various open source mailing lists.
david@lang.hm

A s you build your enterprise logging infrastructure (as discussed in
the prior articles in this series [1]), one of the most valuable things
that you can do is to have something watch them and generate alerts

when things go wrong. There are a lot of tools out there that can be used for
this. One good, free tool is Simple Event Correlator (SEC) [2]. In this article, I
will provide an introduction to SEC, how to use it, and the capabilities that it
provides. In a future article, I will go into detail about how to tune your SEC
installation to be able to handle high volumes of logs.

SEC can read log files directly on the local system, but in the context of an enterprise logging
infrastructure, this is seldom the right thing to do.

Instead, because you have a consolidated feed of all your logs, you should run one or more
instances of SEC on a central analysis farm server where it can see the logs from all your
different systems. This allows you to create alerts for things that happen across multiple
servers. For example, you don’t want to alert on one failed login, but one failed login to each
of 400 servers is something that you do want to be alerted about. Additionally, there is a lot
of value in keeping your configuration all in one place so that the same rules will be applied
across all systems.

Of course, with advantages come disadvantages. The fact that you see the logs from all your
systems means that your alerts will fire no matter what environment your systems are in.
You probably don’t really want a wake-up call at 3 a.m. because a Dev or QA system had a
problem, whereas you would want such a call if it was a production system. This is why the
enterprise logging architecture defined a way to add metadata to the log messages. Among
other benefits, this metadata provides your alerting farm more information than just what is
in the log messages when deciding whether it should generate an alert.

The best way to feed log events into SEC is to make sure you are using SEC 2.7.4 or newer and
then use the omprog output of rsyslog to have rsyslog start SEC (restarting it, if needed).

With rsyslog 7, this would be done with configuration lines like:

Module (load=”omprog”)

action(type=”omprog” binary=”/usr/sbin/sec --input=- --initevents

 --notail –conf=/path/to/conf” template=”RSYSLOG_TraditionalFileFormat”)

With older versions, the configuration would be something like:

$ModLoad omprog

$ActionOMProgBinary /usr/local/bin/sec.sh

. :omprog:

and you would have to define the script /usr/local/bin/sec.sh to be something like:

#!/bin/sh

/usr/sbin/sec --input=- --initevents --notail –conf=/path/to/conf

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 39

SYSADMIN
Using SEC

Understanding the SEC Config File
Sample Rule
SEC configuration consists of multiple rule definitions, along
the lines of:

type=single

ptype=regexp

pattern= (\S+) sshd\[\d+\]: Accepted.*for (\S+) from (\S+) \

port (\d+)\s

desc=ssh login to $1 from $3 for user $2

action=write - $2 logged in to $1 from $3 port $4

This rule would look for a line like this:

Sep 16 17:46:47 spirit sshd[12307]: Accepted password for rik from

 204.176.22.9 port 59926 ssh2

And when it is found, would generate an alert to stdout that said:

rik logged in from spirit IP 204.176.22.9 port 59926

Notes on syntax:

◆◆ The order of the keyword=value clauses within a rule does not
matter.

◆◆ Keywords are case sensitive (unless otherwise specified in the
man pages).

◆◆ Lines can be continued by ending them with a \.

◆◆ Rules are separated by blank lines.

◆◆ Comment lines start with #, because comment lines are treated
by SEC as if they were blank; comments cannot appear in the
middle of a rule but must be between rules.

Many of the values that you are providing are sensitive to case
and whitespace. For example, the pattern provided in the code
above is looking for a space ahead of the hostname.

Type
There are many different types of matches that SEC has built-in:

SINGLE

 If a match is found, take action immediately.

SUPPRESS

 Ignore anything that matches.

CALENDAR

 Cron type rule to take action at specific times.

SINGLEWITHSUPPRESS

 If a match is found, take action immediately and
 suppress additional alerts for a time.

PAIR

 Watch for pairs of log entries and take one action when
 the first entry arrives, and a second if the second entry
 arrives in time.

PAIRWITHWINDOW

 Watch for pairs of log entries, take one action if the
 second event arrives in time, and take a different
 action if it does not. Unlike Pair, no action is taken
 when the first entry arrives; an action is only taken
 when the second entry arrives or the timeout hits.

SINGLEWITHTHRESHOLD

 Take action if there are X matches in Y time.

SINGLEWITH2THRESHOLDS

 If there are more than X matches in Y time, take one set
 of actions, and then wait until there are fewer than X2
 actions in Y2 time and take another set of actions—i.e.,
 send a notification when a problem happens (too
 many messages) and a second notification when it
 clears up (the problem messages disappear).

EVENTGROUP

 This rule is a generalization of the SingleWithThresh
 old rule; instead of counting and thresholding one
 event type, this rule is able to track unlimited number
 of different events types in a common window (e.g.,
 generate an alarm if ten firewall events and five IDS
 events have been seen for the same IP address during
 one minute).

SINGLEWITHSCRIPT

 If a match is found, run a script and take one of two
 actions depending on whether the script returns
 success or not.

JUMP

 If a match is found, process one or more other config
 files against this event.

Ptype
For each rule, you must tell SEC which of the many possible pat-
tern types this rule is using. The available pattern types are:

1. RegExp: Perl regular expression

This pattern type can set variables based on match terms; items
enclosed with () in the regexp become $# variables for the rest of
the rule. So the sample rule example sets four variables:

40  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SYSADMIN
Using SEC

pattern= (\S+) sshd\[\d+\]: Accepted.*for (\S+) from (\S+) port

(\d+)\s

Sep 16 17:46:47 spirit sshd[12307]: Accepted password for rik from

 204.176.22.9 port 59926 ssh2

 $1 hostname (spirit),

 $2 username (rik),

 $3 source IP (204.176.22.9),

 $4 port number (59962).

Plus the default $0, which refers to the entire line.

2. SubStr: Substring

Substrings are simple text matches, have no special characters
like a regular expression, and don’t return any values ($1, $2...).
They are much faster to process than a regexp.

3. PerlFunc: Perl function

This executes a Perl function and match if the function returns
true and is an extremely powerful capability that I will talk
about more in a later article.

This pattern type can also set variables. The Perl snippet
can return a list, and the elements of that list become the $#
variables.

4. Cached: uses the results of a prior rule match.

5. Tvalue: either matches everything (TRUE) or matches nothing
(FALSE).

Cached and Tvalue are normally combined with context condi-
tions, which are described below.

Each of these pattern types will have a negated version (e.g.,
NregExp, NsubStr, etc.).

Pattern
Most rules require one (or more) pattern lines, and the syntax of
the pattern is defined by the ptype defined for the rules.

Desc
Desc fields are critical to understand when configuring SEC.
They seem simple (a description of the match), but they play a
critical role when doing anything more than a single match.

Proper use of the desc field allows one rule to run many event
correlations in parallel and track the state of the correlations
independently. Desc defines a “scope” for the correlation state.

When SEC is evaluating any type that has to look at more than
one log entry, SEC considers the desc field to be part of the rule.
This means that if the desc field evaluates to a different value
for the log event, the scope is different and progress towards
generating an alert (or suppressing events after an alert has been

generated) will be tracked independently of log events that result
in the desc field evaluating to a different value.

So if we were to take the sample rule from above and change it
to a SingleWithSuppress rule (we don’t want alerts every time
someone logs in), the rule would become:

type=singlewithsuppress

ptype=regexp

pattern= (\S+) sshd\[\d+\]: Accepted.*for (\S+) from (\S+) \

port (\d+)\s

desc=ssh login to $1 from $3 for user $2

action=write - $2 logged in to $1 from $3 port $4

window=60

With this rule, we would only get one alert per minute for the
same user logging in to one server from another server.

But if we wanted to change this alert so we only got one alert per
minute about the user logging in, no matter what server the user
logged in to or where the user came from, we could change the
desc field to:

desc=ssh login for user $2

If we wanted to suppress messages only if the user is logging in
from the same source, we could change it to:

desc=ssh login from $3 for user $2

Note that SEC doesn’t actually care what this text is, so it would be
just as valid as far as SEC is concerned to have the desc field be:

desc=$3 $2

But it is much nicer to the humans who have to read the file if
you make the field more descriptive. SEC combines the desc field
with the rule number, so if you have multiple rules that produce
the same desc string, SEC will still keep them straight.

Action
An action is what SEC should do when it finds some condition.
A single rule can invoke many different actions, semicolon sepa-
rated. SEC supports many different actions in several different
categories. The more important ones to understand include out-
put actions to let you write to a file, a TCP, UDP, or UNIX socket,
or execute a script and pass data to stdin on that script.

These commands all have the form:

action=<action> <destination> <string>

Especially notable are the udgram and spawn actions.

The udgram action lets you send a message to a UNIX socket
like /dev/log, which is a great way to have SEC generate feedback
into the logging system that can be acted on by other analysis
engines. In an enterprise environment, this is also the best way

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 41

SYSADMIN
Using SEC

to generate new events for SEC to process because it will work
across multiple instances of SEC, and the event will be visible to
all your different analysis farms:

action=udgram /dev/log <30>sec-alert: alert text

Note that “<30>” is the over-the-wire representation of priority:
facility (3 daemon) <<3 + severity (6 info) [3].

The spawn action runs an external program and reads any out-
put from that program as additional log events to analyze.

Context actions let you create, delete, or redefine (set) a
context. There are also actions to manipulate and output the list
of strings associated with a context (including add, prepend,

report, pop, shift, copy).

And, finally, there are actions to set variables. Because it is pos-
sible to set a variable to be the output of Perl code, and that Perl
code is allowed to have side effects, these actions turn out to be
the most powerful.

Additional Important Rule Options
Continue
By default, SEC stops processing a log entry the first time a
rule matches that entry. Continue tells SEC whether it should
continue processing rules if this rule matches. The default is
DontCont, which stops processing rules as soon as one matches
the event being processed. By adding a line to the rule that says:

continue=takenext

SEC will continue processing the rules for the current log entry.

If you wanted to use the different desc examples together—for
example, alerting if one user is logging in too many times, or if
one machine has too many logins to it—you would need to make
sure that the earlier rules all include continue=takenext or SEC
will never get to the later rules.

Contexts
Contexts (and the desc field described earlier) are the heart of
SEC and are what makes it more than simply a fancy regexp
engine. Whereas the desc field lets one rule run many event
correlation operations simultaneously, and thus act as if it uses
many rules, contexts allow you to stitch multiple rules together.

Contexts have four properties:

◆◆ Existence—manipulated by the create, delete, obsolete actions

◆◆ Defined lifetime—defined at creation or reset by the set action

◆◆ Storage—manipulated by the add, . . . actions

◆◆ Expiration action—again set during creation or by using the set
action and can be used for a number of different things:

◆◆ Controlling the actions of other rules by testing to see if a con-
text exists. This allows you to dynamically switch rules on and
off by checking for combinations of one or more contexts.

◆◆ Storing events and other strings via the add, . . . actions. The
stored information can then be reported using the report action.

◆◆ Scheduling actions to occur in the future by setting an expire
action and a lifetime in seconds.

Contexts are created and manipulated by the action section, but
are tested by adding a context= clause to your rule

For example, if you want to alert if you see logs foo, bar, and baz
all happen within one minute from the same machine, you could
create the rule file:

type=single

ptype=regexp

pattern=^.{16}(\S+) .*foo

continue=takenext

action=create foo_$1 60

type=single

ptype=regexp

pattern=^.{16}(\S+) .*bar

continue=takenext

action=create bar_$1 60

type=single

ptype=regexp

pattern=^.{16}(\S+) .*baz

continue=takenext

action=create baz_$1 60

type=single

ptype=regexp

pattern=^.{16}(\S+)

context=foo_$1 && bar_$1 && baz_$1

continue=takenext

action=write – warning foo bar baz on $1; \

 delete foo_$1; delete bar_$1; delete baz_$1

Note that this set of tests works even if the logs arrive in a differ-
ent order than you expected.

Executing Perl code as part of the context test is also possible.
When combined with cached pattern types, this allows for
specific and fast rule evaluation.

Contexts allow you to combine multiple rules in one alerting
decision. You can alert only if several different conditions are
true by having one rule for each condition you are interested in
(each one setting a context), and then another rule to detect that
all of the other criteria have been met.

42  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SYSADMIN
Using SEC

The most common use of Contexts is to set a flag (with a time-
out) so that other rules can know that a particular condition has
taken place.

Another use for Contexts is to alert when something stops hap-
pening. For example, if you have your systems running “vmstat
60 |logger -t vmstat”, they will log a vmstat output line every
minute. You can then use a rule similar to:

type=single

ptype=regexp

pattern= (\S+) vmstat:

desc=vmstat_$1

action=create vmstat_heartbeat_$1 180 (shellcmd notify.sh $1)

to generate a notification whenever a system ($1) stops gener-
ating a log message. It does this by creating a context that will
expire in three minutes, and if the context expires, it sends a
notification. If another vmstat message arrives from that sys-
tem, SEC resets the context to expire three minutes from when
that message arrived.

The ability to associate a list of strings with a context allows you
to create a context when you see the first event that makes you
suspicious, add all log events as strings to the context, so that
when the context expires (or some other condition happens), you
can make all of the logs that occurred during this period be part
of the alert that you send out.

Internal Events
When started with –initevents (as in the example of how to start
SEC from rsyslog), SEC generates internal events as it is run-
ning; this allows you to create actions that only take place once
when SEC is started, restarted, shutdown, etc. For example, if
you want a log entry every time that SEC is started or restarted,
you could use a rule like:

type=single

ptype=regexp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Init counters with 0

action=udgram /dev/log <30> sec-status: SEC initialized

Using Perl in SEC
The ability to use snippets of Perl in your SEC rules is one of the
things that makes SEC so incredibly powerful. SEC runs your
Perl snippets in a different namespace than SEC itself, so your
Perl snippets are not going to conflict or interfere with the SEC
internals, although it is possible to get access to the SEC internal
variables if you really need to.

As an example of the capabilities that this provides, you could
extend the sample rule above to produce daily ssh login reports
by changing the action in the sample rule above to:

action=write - $2 logged in to $1 from $3 port $4; \

 eval %o ($ssh_summary{user}{$2}{count}++; \

 $ssh_summary{total_sessions}++;)

SEC doesn’t actually have a command only to execute Perl code,
but it has actions that allow you to run any Perl code and put the
output of that code in a variable. In this case we put the output of
the Perl code into the variable %o, but we never use it. The exec
action compiles the code each time; there is a similar action lcall
that compiles the code once at startup. This is faster, and it can
avoid the need to escape Perl variables.

Add a rule to initialize the variables at startup (and restart).

type=single

ptype=regexp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Init counters with 0

action=lcall %o ->(sub { %ssh_summary=(); })

note that if exec was used instead of lcall,

the prior line would need to escape the % and would be:

action=exec %o (%%ssh_summary=();)

Then add a rule to output the stats daily and reset them.

type=calendar

time=0 0 * * *

desc=output daily stats

action=lcall %o -> (sub { $ssh_summary{total_sessions}; }); \

 udgram /dev/log <30>sec-summary: There were %o ssh sessions

today; \

 lcall %n -> (sub { my($ret); \

 foreach (keys %{$ssh_summary{user}}) { \

 $ret .= “$_ = $ssh_summary{user}{$_}{count} “; } \

 $ssh_summary{total_sessions} = 0; return $ret; }); \

 if %n (udgram /dev/log <30>sec-summary: Number of SSH \

sessions for each user: %n)

Another good use of Perl is to load a table at startup, and then
test it during the rules.

For example, if you create a file that contains a list of your pro-
duction server names, and then create a startup rule like:

type=single

ptype=regexp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Load Production Server Table

action=eval %o (%%prodservers=();open(infile, \

”</etc/prodservers.txt”); \

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 43

SYSADMIN
Using SEC

 while <infile> {chomp; $prodservers{$_}=1; }; close(infile))

you can then add a context test to our original example rule to
only alert if the log is from a production server.

context= =(exists $prodservers{$1})

Similar to the exec command, this compiles the code on each run
(and requires escaping % characters). There is the equivalent to
lcall that would look like:

context= $1 -> (sub { exists $prodservers{$_[0]} })

You can have SEC reload the table on demand by adding a rule like:

type=single

ptype=regexp

pattern=SEC reload production server table

desc=Reload Production Server Table

action=eval %o (%%prodservers=();open(infile, \

”</etc/prodservers.txt”); \

 while <infile> {chomp; $prodservers{$_}=1; }; close(infile))

Note that you probably want to have additional restrictions so
that the reload can only be generated by logs from a specific set
of servers.

Caching Match Results
When you have a number of tests that you want to do with a
single log event, doing the same regexp repeatedly is inefficient.

Using our example, let’s say you want to do multiple alerts on ssh
logins. Instead of each of the rules needing to rerun the regexp
against the log line, you could add the following line to the origi-
nal example rule:

varmap=ssh; line=0; server=1; user=2;source =3; port=4

Then you could create a second rule such as:

type=singlewiththreshold

ptype=cached

pattern=ssh

desc=lots of logins for user $+{user}

action=write - $+{user} logged in to more than 5 servers in one

minute

window=60

thresh=5

continue=takenext

With the use of Perl in the context, you could configure this to
only fire if the user has logged in to more than ten servers all day
(to avoid getting alerts when users arrive in the morning and log
in to a bunch of places to start their day) by adding a line:

context=ssh :> (sub { \

 return $ssh_summary{user}{$_[0]->{user}}{count} > 10})

Debugging
Debugging alerting systems is always an interesting exercise.
You need to be able to generate events to trigger the rules, but
when they don’t fire as expected, you need to be able to figure out
what the internal state of your alerting engine is. SEC provides
this option by way of dump files. If you start SEC with the option
--dump=/path/to/dumpfile, you can send it the signal USR1,
and if the dump file does not already exist, SEC will dump its
internal state. This includes performance stats, how many
matches there have been for each rule, the last several lines that
it has processed, and information about every context that it is
tracking.

Another approach to debugging is to run SEC from the command
line with it reading from stdin or a file. SEC generates a lot of
output as it processes each message, telling you what it does each
step of the way; however, the types of problems that are the hard-
est to troubleshoot tend to involve timing, which means that you
can’t just use a test file. The timing in SEC is based on when SEC
sees the log entry, not any timestamp that may appear in the log
entry. You are better off generating the input to SEC with a script
so that you have a repeatable test that generates the correct mes-
sages with the right timing, either echo+sleep or logger+sleep if
you want to test any filtering in rsyslog as well.

Conclusion
This is a brief overview of the capabilities of SEC, and there are
a lot of nuances and other capabilities that I did not go into. With
the different test types, contexts, desc fields, alerting scripts, and
embedded Perl snippets, there is little that SEC cannot do.

SEC does take some training and expertise to master and
configure for your environment, but any serious alerting engine
that you use is going to require customization to your needs.
The biggest problem with SEC is that there is not a good pool of
examples available for people to work from, but the users mailing
list [4] is extremely responsive to requests.

References
[1] David Lang, Enterprise Logging: https://www.usenix.
org/publications/login/august-2013-volume-38-num-
ber-4/enterprise-logging and https://www.usenix.org/
publications/login/october-2013-volume-38-number-5/
log-filtering-rsyslog.

[2] http://simple-evcorr.sourceforge.net/.

[3] http://en.wikipedia.org/wiki/Syslog.

[4] https://lists.sourceforge.net/lists/listinfo/simple-evcorr
-users/.

44  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Erasure Codes for Storage Systems
A Brief Primer

J a M E s s . p l a n k

James S. Plank received
his BS from Yale University
in 1988 and his PhD from
Princeton University in 1993.
He is a professor in the

Electrical Engineering and Computer Science
Department at the University of Tennessee,
where he has been since 1993. His research
interests are in fault-tolerance, erasure
coding, storage systems, and distributed
computing. He is a past Associate Editor of
IEEE Transactions on Parallel and Distributed
Computing, and a member of the IEEE
Computer Society. plank@cs.utk.edu

Storage systems have grown to the point where failures are inevitable,
and those who design systems must plan ahead so that precious data
is not lost when failures occur. The core technology for protecting data

from failures is erasure coding, which has a rich 50+ year history stemming
communication systems, and as such, can be confusing to the storage systems
community. In this article, I present a primer on erasure coding as it applies to
storage systems, and I summarize some recent research on erasure coding.

Storage systems come in all shapes and sizes, but one thing that they all have in common is
that components fail, and when a component fails, the storage system is doing the one thing
it is not supposed to do: losing data. Failures are varied, from disk sectors becoming silently
corrupted, to entire disks or storage sites becoming unusable. The storage components them-
selves are protected from certain types of failures. For example, disk sectors are embedded
with extra-correcting information so that a few flipped bits may be tolerated; however, when
too many bits are flipped, or when physical components fail, the storage system sees this as
an erasure: the storage is gone!

To deal with these failures, storage systems rely on erasure codes. An erasure code adds
redundancy to the system to tolerate failures. The simplest of these is replication, such as
RAID-1, where each byte of data is stored on two disks. In that way any failure scenario may
be tolerated, so long as every piece of data has one surviving copy. Replication is conceptu-
ally simple; however, it consumes quite a lot of resources. In particular, the storage costs are
doubled, and there are scenarios in which two failed storage components (those holding both
copies of a piece of data) lead to data loss.

More complex erasure codes, such as the well-known Reed-Solomon codes, tolerate broader
classes of failure scenarios with less extra storage. As such, they are applicable to today’s
storage systems, providing higher levels of fault-tolerance with less cost. Unfortunately,
the field of erasure coding traces its lineage to error correcting codes (ECC) in communica-
tion systems, where they are used to solve a similar-sounding but in reality quite different
problem. In communications, errors arise when bits are corrupted silently in a message. This
differs from an erasure, because the location of the corruption is unknown. The fact that
erasures expose the location of the failure allows for erasure codes to be more powerful than
ECCs; however, classic treatments of erasure codes present them as special cases of ECCs,
and their application to storage systems is hard to glean.

In this article, I explain erasure codes in general as they apply to storage systems. I will first
present nomenclature and general erasure coding mechanics, and then outline some com-
mon erasure codes. I then detail some of the more recent research results concerning erasure
codes and storage systems. I provide an annotated bibliography at the end of this article so
that the interested reader may explore further.

The Mechanics of Simple Codes
Let’s assume that our storage system is composed of n disks. We partition them into k disks
that hold user data so that m=n−k disks hold coding information. I refer to them as data and

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 45

SYSADMIN
Erasure Codes for Storage Systems

coding disks, respectively. The acts of encoding and decoding are
pictured in Figure 1.

With encoding, the contents of the k data disks are used to calcu-
late the contents of the m coding disks. When up to m disks fail,
their contents are decoded from the surviving disks. Repeating
from above, when a disk fails, the failure mode is an erasure,
where its contents are considered to be unreadable.

The simplest erasure codes assume that each disk holds one
w-bit word. I label these words d0, …, dk−1, which are the data
words stored on the data disks, and c0, …, cm−1, which are the
coding words stored on the coding disks. The coding words are
defined as linear combinations of the data words:

c0 = a(0,0)d0 + …+ a(0,k−1)dk−1
c1 = a(1,0)d0 + …+ a(1,k−1)dk−1
…

…

cm−1 = a(m−1,0)d0 + …+ a(m−1,k−1)dk−1

The coefficients a are also w-bit words. Encoding, therefore,
simply requires multiplying and adding words, and decoding
involves solving a set of linear equations with Gaussian elimina-
tion or matrix inversion.

The arithmetic of erasure coding is special. When w=1, all of the
d, c and a variables are single bits, and the arithmetic is standard

arithmetic modulo 2: addition is binary XOR (⊕) and multiplica-
tion is binary AND. When w is larger, the arithmetic is called
Galois Field arithmetic, denoted GF(2w). This arithmetic oper-
ates on a closed set of numbers from 0 to 2w−1 in such a way that
addition, multiplication, and division all have the properties that
we expect. Conveniently, addition in a Galois Field is equal to
bitwise XOR. Multiplication is more complicated, and beyond the
scope of this article; however, there is a great deal of reference
material on Galois Field arithmetic plus a variety of open source
implementations (please see the annotated bibliography).

A disk, of course, holds more than a single w-bit word; how-
ever, with these simple codes, I partition each disk into w-bit
words, and the i-th words on each disk are encoded and decoded
together, independently of the other words. So that disks may be
partitioned evenly into w-bit words, w is typically selected to be
a power of two. Popular values are w=1 for its simplicity, because
the arithmetic is composed of XORs and ANDs, and w=8,
because each word is a single byte. In general, larger values of w
allow for richer erasure codes, but the Galois Field arithmetic is
more complex computationally.

An erasure code is therefore defined by w and the coefficients
a(i,j). If the code successfully tolerates the failures of any m
of the n disks, then the code is optimal with respect to fault-
tolerance for the amount of extra space dedicated to coding.
This makes sense, because one wouldn’t expect to add m disks
of redundancy and be able to tolerate more than m disk failures.
If a code achieves this property, it is called maximum distance
separable (MDS), a moniker that conveys zero intuition in a stor-
age system. Regardless, MDS codes are desirable, because they
deliver optimal fault tolerance for the space dedicated to coding.

In real storage settings, disks are partitioned into larger units
called strips, and the set of corresponding strips from each of the
n disks that encode and decode together is called a stripe. Each
stripe is an independent entity for erasure coding, which allows
the storage system designer to be flexible for a variety of reasons.
For example, one may wish to rotate the identities of the n disks
on a stripe-by-stripe basis, as in the left side of Figure 2. This is

Figure 1: An erasure-coded storage system encodes k data disks onto m
coding disks. When up to m disks fail, their contents are decoded by the
erasure code.

Figure 2: Two examples of laying out stripes on a collection of disks. On the left, there are n=4 disks, and each stripe contains k=3 strips of data and m=1
of coding. So that load is balanced, each stripe rotates the identities of the disks. On the right, there are now eight disks; however stripes still contain n=4
strips, three of which are data and one of which is coding.

46  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SYSADMIN
Erasure Codes for Storage Systems

a balanced approach, where each of the n=4 disks contains the
same ratio of data and coding strips.

On the right side, a more ad hoc approach to laying out stripes
is displayed. There are eight disks in this system; however, each
stripe is composed of three data strips and one coding strip.
Thus, the erasure code may be the same as in the left side of the
figure; the allocation of strips to stripes is the only difference.
This approach was used by Panasas to allow for flexible block
allocation, and to allow additional disks to be added seamlessly
to the storage system.

RAID-4 and RAID-5
Within this framework, I can define RAID-4 and RAID-5 as
using the same simple erasure code, but having different stripe
layouts. The code is an MDS code where m=1, w=1, and all of the a
coefficients are also one. The sole coding bit is labeled p, and it is
the XOR of all of the data bits:

p = d0 ⊕d1 ⊕…⊕dk−1.

When any bit is erased, it may be decoded as the XOR of the
surviving bits.

Although this equation operates on single bits, its implementa-
tion in a real system is extremely efficient, because whole strips
may be XOR’d together in units of 128 or 256 bits using vector
instructions such as Intel SSE2 (128 bits) or AVX (256 bits).

RAID-4 and RAID-5 both use the same erasure code; however,
with RAID-4, the identity of each disk is fixed, and there is one
disk, P, dedicated solely to coding. With RAID-5, the identities
are rotated on a stripe-by-stripe basis as in the left side of Figure
2. Therefore, the system is more balanced, with each disk equally
holding data and coding.

Linux RAID-6
RAID-6 systems add a second disk (called Q) to a RAID-4/5
system and tolerate the failure of any two disks. This requires
an MDS erasure code where m=2, which is impossible to achieve
with a simple XOR code. The solution implemented by the Red
Hat Linux kernel employs the following simple code for w=8:

p = d0 ⊕d1 ⊕…⊕dk−1
q = d0 ⊕2(d1) ⊕…⊕2k−1(dk−1)

This code has some interesting properties. First, because addi-
tion in a Galois Field is equivalent to XOR, the P disk’s erasure
coding is equivalent to RAID-4/5. Second, the Q disk may be cal-
culated using only addition and multiplication by two, because:

q = 2 (2 (…2 (2dk−1 ⊕dk−2) …) ⊕d1) ⊕d0.

This is important because there are techniques to multiply
128- and 256-bit vectors of bytes by two in GF(28) with a small
number of SSE/AVX instructions.

Reed-Solomon Codes
Reed-Solomon codes are MDS codes that exist whenever n ≤ 2w.
For example, so long as a storage system contains 256 disks or
less, there is a Reed-Solomon defined for it that uses arithmetic
in GF(28). There are multiple ways to define the a(i,j) coef-
ficients. The simplest to explain is the “Cauchy” construction:
Choose n distinct numbers in GF(2w) and partition them into
two sets X and Y such that X has m elements and Y has k. Then:

a(ij) = 1 ,
 xi ⊕yj

where arithmetic is over GF(2w).

Reed-Solomon codes are important because of their generality:
they exist and are easy to define for any value of k and m. They
have been viewed historically as expensive, because the CPU
complexity of multiplication in a Galois Field is more expensive
than XOR; however, vector instruction sets such as Intel SSE3
include operations that enable one to multiply 128-bit vectors
of bytes by constants in a Galois Field with a small number of
instructions. Although not as fast as multiplying by two as they
do for a RAID-6 Q disk, it is fast enough that in most Reed-
Solomon coding installations, disk I/O and even cache speeds
are larger bottlenecks than the CPU. There are multiple open
source libraries that implement Reed-Solomon coding for stor-
age installations.

Array Codes
Array codes for storage systems arose in the 1990s. They were
motivated by the desire to avoid Galois Field arithmetic and
implement codes solely with the XOR operation. In the simple
codes above, each disk logically holds one w-bit word, and thus
there are m coding words, each of which is a different linear
combination of the k data words. In an array code, each disk
holds r w-bit words. Thus, there are mr coding words, each of
which is a different linear combination of the kr data words.

They are called “array codes” because the coding system may
be viewed as an r × n array of words, where the columns of the
array are words that are co-located on the same disk. I depict
an example in Figure 3. This is the RDP erasure code for k=4
and m=2. As such, it is a RAID-6 code. Each disk holds four bits,
which means that r=4 and w=1. In the picture, I draw the array
with the Q words on the left, the P words on the right, and the
data words in the middle. The horizontal gray bars indicate XOR
equations for the P disk’s bits, and the other lines indicate how
the Q disk’s bits are encoded.

The allure of array codes for w=1 is that encoding and decoding
require only XOR operations, yet the codes may be defined so
that they are MDS. Examples are RDP, EVENODD, Blaum-Roth
and Liberation codes for RAID-6, the STAR code for m=3, and
Cauchy Reed-Solomon, Generalized EVENODD and General-
ized RDP, which are defined for all values of k and m.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 47

SYSADMIN
Erasure Codes for Storage Systems

As mentioned in the section on mechanics, above, the advent of
vector instructions has lowered the CPU burden of Galois Field
arithmetic, and thus the allure of array codes has diminished
in recent years; however, they have interesting properties with
respect to recovery that make them viable alternatives to the
simple codes. I explain this in the next section.

Recent Work #1: Reduced Disk I/O For Recovery
When one is using a simple erasure code and a single disk fails,
the only way to recover its contents is to pick one of the m cod-
ing equations and use it to decode. This requires one to read k−1
strips from the surviving disks to calculate each strip on the
failed disk. With an array code, one may significantly reduce the
amount of data that is read from the surviving disks. I present an
example in Figure 4, using the RDP code from Figure 3. In this
example, the disk D0 has failed and needs to be decoded. Were a
simple erasure code employed, recovery would be equivalent to
decoding solely from the P drive, where 16 bits must be read from
the surviving disks; however, because of the structure of RDP,
a judicious choice of decoding equations from both the P and Q
drive allows one to decode D0 by reading only 12 bits from the
surviving disks.

As described in the section on mechanics, each bit in the descrip-
tion of the code corresponds to a larger block of storage on disk,
which means that this example reduces the I/O costs of recovery
by 25 percent. This observation was first made by Xiang in 2010,
and further research has applied it to other array codes.

Recent Work #2: Regenerating Codes
Regenerating codes focus on reducing network I/O for recovery
in distributed, erasure-coded storage systems. When one or
more storage nodes fail, the system replaces them, either with
nodes that hold their previous contents, or with nodes that hold
equivalent contents from an erasure-coding perspective. In

other words, the new collection of n nodes may hold different
contents than the old collection; however, it maintains the prop-
erty that the data may be calculated from any k of the nodes.

The calculation of these new nodes is performed so that net-
work I/O is minimized. For example, suppose one storage node
has failed and must be replaced. A simple erasure code requires
k−1 of the other nodes to read their contents and send them for
reconstruction. The schemes from Xiang (previous section)
may leverage array codes so that more than k−1 nodes read and
transmit data, but the total amount of data read and transmitted
is reduced from the simple case. A properly defined regenerating
code has the surviving nodes read even more data from disk, but
then they massage it computationally so that they transmit even
less data to perform regeneration.

Research on regenerating codes is both active and prolific.
Please see the bibliography for summaries and examples.

Recent Work #3: Non-MDS Codes
A non-MDS code does not tolerate all combinations of m failures,
and therefore the fault-tolerance is not optimal for the amount of
extra storage committed to erasure coding; however, relaxation
of the MDS property is typically accompanied by performance
improvements that are impossible to achieve with MDS codes. I
give a few examples here.

Flat XOR codes are simple codes where w=1. When m > 1, they
are non-MDS; however, they have attractive features in com-
parison to their MDS counterparts. First, since w=1, they are
based solely on the XOR operation—no Galois Field arithmetic is
required. Second, they reduce both the I/O and the CPU com-
plexity of encoding and decoding. When k and m grow to be very
large (in the hundreds or thousands), flat XOR codes like Tor-
nado and Raptor codes provide good degrees of fault-tolerance,
while only requiring small, constant numbers of I/Os and XORs

Figure 3: The RDP array code with the following parameters: k=4, m=2
(RAID-6), n = k+m = 6, r=4, w=1. The gray lines depict the coding
 equations for the P disk. The other lines depict the coding equations for
the Q disk.

Figure 4: Recovering from a single failure in RDP. Only 12 bits are required,
as opposed to 16 bits when one recovers solely from the P disk.

48  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SYSADMIN
Erasure Codes for Storage Systems

for encoding and decoding. This is as opposed to an MDS code,
which necessarily requires O(k) I/Os and arithmetic operations.
Other non-MDS codes that reduce complexity and rely solely on
XOR are HoVeR, WEAVER, and GRID.

A second important class of non-MDS codes partitions the data
words into groups, and divides the coding words into “local
parities” and “global parities.” Each local parity word protects
a single group of data words, whereas each global parity word
protects all of the words. The system is then fault-tolerant to
a certain number of failures per data group, plus an additional
number of failures for the entire system. The computational and
I/O costs are smaller than an MDS system, yet the failure cover-
age is provably optimal for this coding paradigm. Examples of
these codes are LRC codes that are implemented in Microsoft’s
Azure storage system, an identically named but different LRC
code that has an open-source implementation in Hadoop, and
Partial-MDS codes from IBM.

Finally, Sector-Disk (SD) codes are a class of non-MDS codes
where m disks and s sectors per stripe are dedicated to fault-tol-
erance. An example is drawn in Figure 5, where a 6-disk system
requires each disk to hold four words in its stripe. Two disks
are devoted to fault-tolerance, and two additional words in the
stripe are also devoted to fault-tolerance. The codes are designed
so that they tolerate the failure of any two disks and any two
additional words in the stripe. Thus, their storage overhead and
fault-tolerance match the mixed failure modes of today’s disks,
where sector failures accumulate over time, unnoticed until a
disk failure requires that they be read for recovery.

Conclusion
In this article, I have presented how erasure codes are leveraged
by storage systems to tolerate the failure of disks, and in some
cases, parts of disks. There are simple erasure codes, such as
RAID-4/5 and Reed-Solomon codes, that view each disk as hold-
ing a single w-bit word, and define the coding words as linear

combinations of the data words, using either XOR or Galois Field
arithmetic. Array codes view each disk as holding multiple w-bit
words, and achieve richer fault-tolerance, especially for codes
based solely on the XOR operation. More recent work has focused
on reducing the disk and network I/O requirements of the era-
sure codes, and on loosening the fault-tolerance requirements of
the codes to improve performance.

Annotated Bibliography
In this section, I provide reference material for the various
topics in the article. The following papers provide reference on
implementing Galois Field arithmetic for erasure coding, includ-
ing how to use vector instructions to accelerate performance
drastically. The paper by Anvin [5] details the Linux RAID-6
implementation of Reed-Solomon coding.

[1] K. Greenan, E. Miller, and T. J. Schwartz. Optimizing Galois
Field arithmetic for diverse processor architectures and applica-
tions. In MASCOTS 2008: 16th IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems, Baltimore, MD, September 2008.

[2] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Efficient software
implementations of large finite fields GF(2n) for secure storage
applications. ACM Transactions on Storage 8(2), February 2012.

[3] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tol-
erance in RAID-like systems. Software—Practice & Experience
27(9):995–1012, September 1997.

[4] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast
Galois Field arithmetic using Intel SIMD instructions. In FAST-
2013: 11th USENIX Conference on File and Storage Technolo-
gies, San Jose, February 2013.

[5] H. P. Anvin. The mathematics of RAID-6: http://kernel.org/
pub/linux/kernel/people/hpa/raid6.pdf, 2009.

[6] H. Li and Q. Huan-yan. Parallelized network coding with
SIMD instruction sets. International Symposium on Computer
Science and Computational Technology, IEEE, December 2008,
pp. 364–369.

The following are open-source implementations of Galois Field
arithmetic and erasure coding:

[7] Onion Networks. Java FEC Library v1.0.3. Open source code
distribution: http://onionnetworks.com/fec/javadoc/, 2001.

[8] A. Partow. Schifra Reed-Solomon ECC Library. Open source
code distribution: http://www.schifra.com/downloads.html,
2000-2007.

[9] J. S. Plank, K. M. Greenan, E. L. Miller, and W. B. Houston.
GF-Complete: A comprehensive open source library for Galois

Figure 5: The layout of a stripe with an SD code, which tolerates the fail-
ure of any two disks and any additional two words in the stripe.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 49

SYSADMIN
Erasure Codes for Storage Systems

Field arithmetic. Technical Report UT-CS-13-703, University of
Tennessee, January 2013.

[10] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A
library in C/C++ facilitating erasure coding for storage applica-
tions—Version 1.2. Technical Report CS-08-627, University of
Tennessee, August 2008.

[11] L. Rizzo. Erasure codes based on Vandermonde matri-
ces. Gzipped tar file posted: http://planete-bcast.inrialpes.fr/
rubrique.php3?id_rubrique=10, 1998.

Besides my tutorial on Reed-Solomon coding for storage systems
[3], the textbook by Peterson describes Reed-Solomon coding in
a more classic manner. The papers by Blomer et al. and Rabin
explain the “Cauchy” Reed-Solomon coding construction:

[12] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and
D. Zuckerman. An XOR-based erasure-resilient coding scheme.
Technical Report TR-95-048, International Computer Science
Institute, August 1995.

[13] W. W. Peterson and E. J. Weldon, Jr. Error-Correcting Codes,
Second Edition. The MIT Press, Cambridge, Massachusetts,
1972.

[14] M. O. Rabin. Efficient dispersal of information for secu-
rity, load balancing, and fault tolerance. Journal of the ACM
36(2):335–348, April 1989.

The following papers describe array codes for RAID-6 that are
based solely on the XOR operation:

[15] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An efficient scheme for tolerating double disk failures in RAID
architectures. IEEE Transactions on Computing 44(2):192–202,
February 1995.

[16] M. Blaum and R. M. Roth. On lowest density MDS codes.
IEEE Transactions on Information Theory 45(1):46–59, January
1999.

[17] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J.
Leong, and S. Sankar. Row diagonal parity for double disk failure
correction. In FAST-2004: 3rd USENIX Conference on File and
Storage Technologies, San Francisco, CA, March 2004.

[18] J. S. Plank, A. L. Buchsbaum, and B. T. Vander Zanden. Mini-
mum density RAID-6 codes. ACM Transactions on Storage 6(4),
May 2011.

Blomer et al.’s paper [12] describes how to convert a standard
Reed-Solomon code into an array code that only uses XORs. The
next three papers describe other general MDS array codes where
w=1:

[19] M. Blaum, J. Bruck, and A. Vardy. MDS array codes with
independent parity symbols. IEEE Transactions on Information
Theory 42(2):529—542, February 1996.

[20] M. Blaum. A family of MDS array codes with minimal num-
ber of encoding operations. In IEEE International Symposium
on Information Theory, Seattle, September 2006.

[21] C. Huang and L. Xu. STAR: An efficient coding scheme for
correcting triple storage node failures. IEEE Transactions on
Computers 57(7):889–901, July 2008.

The following papers reduce the amount of data that must be
read from disk when performing recovery on XOR-based array
codes:

[22] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang.
Rethinking erasure codes for cloud file systems: Minimizing I/O
for recovery and degraded reads. In FAST-2012: 10th USENIX
Conference on File and Storage Technologies, San Jose, Febru-
ary 2012.

[23] Z. Wang, A. G. Dimakis, and J. Bruck. Rebuilding for array
codes in distributed storage systems. In GLOBECOM ACTEMT
Workshop, pp. 1905–1909. IEEE, December 2010.

[24] L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang. Optimal recov-
ery of single disk failure in RDP code storage systems. In ACM
SIGMETRICS, June 2010.

The following papers summarize and exemplify research on
regenerating codes:

[25] V. Cadambe, C. Huang, J. Li, and S. Mehrotra. Compound
codes for optimal repair in MDS code based distributed stor-
age systems. In Asilomar Conference on Signals, Systems and
Computers, 2011.

[26] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K.
Ramchandran. Network coding for distributed storage systems.
IEEE Transactions on Information Theory, 2010.

[27] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey
on network codes for distributed storage. Proceedings of the IEEE
99(3), March 2011.

The following papers describe XOR-based, non-MDS codes that
improve the performance of encoding and recovery:

[28] K. M. Greenan, X. Li, and J. J. Wylie. Flat XOR-based era-
sure codes in storage systems: Constructions, efficient recovery
and tradeoffs. In 26th IEEE Symposium on Massive Storage
Systems and Technologies (MSST2010), Nevada, May 2010.

[29] J. L. Hafner. WEAVER Codes: Highly fault tolerant erasure
codes for storage systems. In FAST-2005: 4th USENIX Confer-
ence on File and Storage Technologies, pp. 211–224, San Fran-
cisco, December 2005.

50  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SYSADMIN
Erasure Codes for Storage Systems

[30] J. L. Hafner. HoVer erasure codes for disk arrays. In DSN-
2006: The International Conference on Dependable Systems and
Networks, Philadelphia, June 2006.

[31] M. Li, J. Shu, and W. Zheng. GRID codes: Strip-based era-
sure codes with high fault tolerance for storage systems. ACM
Transactions on Storage 4(4), January 2009.

[32] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and
V. Stemann. Practical loss-resilient codes. In 29th Annual ACM
Symposium on Theory of Computing, pages 150–159, El Paso, TX,
1997. ACM.

[33] A. Shokrollahi. Raptor codes. IEEE Transactions on Infor-
mation Theory, pages 2551–2567, 2006.

The following papers describe non-MDS erasure codes that
feature local and global parity words and address cloud storage
systems or mixed failure modes in RAID systems:

[34] M. Blaum, J. L. Hafner, and S. Hetzler. Partial-MDS codes
and their application to RAID type of architectures. IEEE
Transactions on Information Theory, July 2013.

[35] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J.
Li, and S. Yekhanin. Erasure coding in Windows Azure storage.
In USENIX Annual Technical Conference, Boston, June 2012.

[36] J. S. Plank, M. Blaum, and J. L. Hafner. SD codes: Erasure
codes designed for how storage systems really fail. In FAST-
2013: 11th USENIX Conference on File and Storage Technolo-
gies, San Jose, February 2013.

[37] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.
Dimakis, R. Vadali, S. Chen, and D. Borthakur. XORing ele-
phants: Novel erasure codes for big data. In 39th International
Conference on Very Large Data Bases, August 2013.

Acknowledgements
The author thanks Rik Farrow for encouraging him to write
this article. This material is based upon work supported by the
National Science Foundation under grant CSR-1016636, and by
an IBM Faculty Research Award. The author is indebted to his
various erasure-coding cohorts and co-authors through the years:
Mario Blaum, Randal Burns, Kevin Greenan, Jim Hafner, Cheng
Huang, Ethan Miller, Jason Resch, Jay Wylie, and Lihao Xu.

In return for being our “eyes and ears” on campus, representatives receive a complimentary membership in
 USENIX with all membership benefi ts (except voting rights), and a free conference registration once a year
(after one full year of service as a campus rep).

To qualify as a campus representative, you must:

■ Be full-time faculty or sta� at a four year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

www.usenix.org/students

Professors, Campus Staff, and Students—do you have a USENIX Representative
on your campus? If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide
Association information to students, and encourage student involvement in USENIX. This is a volunteer program,
for which USENIX is always looking for academics to participate. The program is designed for faculty who directly
interact with students. We fund one representative from a campus at a time. In return for service as a campus rep-
resentative, we o� er a complimentary membership and other benefi ts.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for student use

■ Distributing calls for papers and upcoming event
brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

■ Providing students who wish to join USENIX with
information and applications

■ Helping students to submit research papers to
 relevant USENIX conferences

■ Providing USENIX with feedback and suggestions
on how the organization can better serve students

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Subscribe now for instant access!
For only $29.50 per year—less
than $2.50 per issue—you’ll have
access to Linux Journal each
month as a PDF, in ePub & Kindle
formats, on-line and through our
Android & iOS apps. Wherever you
go, Linux Journal goes with you.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE

™

52  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

ColumnSPractical Perl Tools
CLI Me a River

D a v i D n . B l a n k - E D E l M a n

David N. Blank-Edelman is the
Director of Technology at the
Northeastern University College
of Computer and Information

Science and the author of the O’Reilly book
Automating System Administration with Perl (the
second edition of the Otter Book) available at
purveyors of fine dead trees everywhere. He
has spent the past 28+ years as a system/
network administrator in large multi-platform
environments, including Brandeis University,
Cambridge Technology Group, and the MIT
Media Laboratory. He was the program chair
of the LISA 2005 conference and one of the
LISA 2006 Invited Talks co-chairs. David is
honored to be the recipient of the 2009 SAGE
Outstanding Achievement award and to serve
on the USENIX Board of Directors. 
dnb@ccs.neu.edu

If Neil Stephenson’s 1999 60+ page essay “In the Beginning was the
Command Line” [1] left you feeling “ooh, a famous science fiction author
really gets me, he really understands what is in my heart,” then this

column is for you. Today we’re going to talk about a few ways you can write a
better command-line program in Perl.

Switch It Up
One of the first things that contributes to someone’s aesthetic pleasure of using a command-
line tool is how well it handles arguments/switches. There are at least two sets of choices at
work here. The first is a design one that Perl isn’t going to help one whit with. Coming up with
switch names that make sense for your program, are the same as or like the names used in
similar programs in the same domain, are clear, and so on is up to you. This is by no means an
easy task, because it requires careful thought.

The second set of choices does have a technical solution. The second set of choices is the one
where you decide how your program will accept the arguments. Will there be spaces between
them? Can you abbreviate and/or combine switches? Are some mandatory? And so on . . .
This all matters because you want, whenever possible, for someone to try the arguments
using the first way that comes into her head and have it work.

Where Perl helps with this is there are modules (oh so many modules) that handle argument-
parsing for you. A number of them will handle all of the fiddly details for you so that your pro-
gram can be liberal in how the arguments are specified (one dash, two dashes, abbreviated,
abbreviated to single letters, optional and required arguments, and so on). The variety is
dizzying. Before I show you one of these modules, I should mention that the Perl interpreter
actually implements a built-in argument processor in the form of the -s switch. This means
you can write code that looks like this:

 #!/usr/bin/perl -s

 if ($add) { print “You want to add $add\n”; }

 if ($remove) { print “You want to remove $remove\n”; }

 if (${-help}) { print “this variable is crazy!\n”; }

which, when run, gives you:

 $ s.pl -add=fred

 You want to add fred

 $ s.pl -remove

 You want to remove 1

 $ s.pl --help

 this variable is crazy!

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 53

COLUMNS
Practical Perl Tools: CLI Me a River

But don’t write code that looks like that. The -s switch takes
anything passed in with a dash, strips off the dash, and puts it
in a variable with the name of the argument. This has all sorts
of fun ramifications, a couple of which are mentioned in the
perlrun doc:

Do note that a switch like --help creates the variable
“${-help}”, which is not compliant with “use strict ‘refs’”.
Also, when using this option on a script with warnings
enabled you may get a lot of spurious “used only once”
warnings.

In short, this means that you can kiss “use strict;”, the thing
everyone tells you to put first in our programs, goodbye unless
you are willing to turn off some of the strictness.

Out of the crazy number of command argument parsing mod-
ules out there I’m only going to pick one to demonstrate. This
is clearly a subject Perl authors like to riff on, so if it doesn’t
f loat your boat I’d encourage you to spend some time searching
CPAN for one that does. And if you are a budding Perl module
author who has aspirations of writing your own command
argument-parsing module, I’d beseech you to check CPAN mul-
tiple times for something that works for you before reinventing
yet another wheel.

The module we’re going to explore is one of the most popular
modules in this space, perhaps because it actually ships with
Perl. Let’s take a quick look at Getopt::Long. Getopt::Long can do
so many things that the long manual page might be a bit daunt-
ing on first glance. We’ll start with its sample code and then
spice things up as we go along:

 use Getopt::Long;

 my $data = “file.dat”;

 my $length = 24;

 my $verbose;

 GetOptions (“length=i” => \$length, # numeric

 “file=s” => \$data, # string

 “verbose” => \$verbose) # flag

 or die(“Error in command line arguments\n”);

The key function here is the GetOptions() call. The variable
assignments before it are both to keep a “use strict” line (omitted
in the sample code for space reasons) happy and probably just to
reaffirm what kind of data is being referenced in the GetOptions
call. Let’s take that call apart.

In general, GetOptions takes a hash that defines the name
of an argument, what kind of value it must or can be set to
(numeric, string, etc.), any special characteristics (like “required”
or “optional”), and a reference to a place to put the information
parsed from the command-line arguments. For example, this part:

 “length=i” => \$length,

says if we get an argument called length (--length), it must take
a value and that value has to be an integer. That value will be
stored in $length (i.e., --length 2 will put ‘2’ in $length). In the
case of a flag (like --verbose), the variable gets set to “1” so that
Boolean tests like “if ($verbose)” will act as expected.

Two quick things to note before we start to add to this example
code. The “or die()” that follows GetOptions works because
GetOptions returns true if it can parse the options accord-
ing to your wishes, false if that failed (e.g., someone passed in
an argument you hadn’t specified). The other thing to note is
Getopt::Long by default will let you abbreviate unambiguous
arguments on the command line and will handle multiple for-
mats. This means I could call the program with:

 $ s2.pl --length 2

 $ s2.pl --length=2

 $ s2.pl --l 2

 $ s.2pl --l=2

 $ s.2pl --le 2

and so on. Note that I don’t have to code anything special to han-
dle all of these different variations. This is what I mean by hav-
ing Perl make it easier to make better command-line programs.

A moment ago, I said we could add to the sample code, so let me
give you a list of how we can make the argument processing
even fancier:

◆◆ Optional values (using : instead of = as in length:i)

◆◆ Multiple values per flag (pass a reference to an array instead of
a scalar)

◆◆ Negated flags (i.e., --noverbose, which then sets $verbose to 0
instead of 1, specified by using an exclamation mark after the
argument name)

◆◆ Cumulative flags (i.e., -v -v -v will give you more verbose output,
specified by using + after the argument name)

◆◆ Argument name aliases (use different names for the same
argument, specified by using a pipe character in the name, as in
“verbose|chatty|moar” => \$verbose)

Getopt::Long has a few other tricks up its sleeve that I encourage
you to go read about. The only one I want to mention before we
move on is one I use on a regular basis. I haven’t been very explicit
about this, but hopefully you’ve sussed out that the way the rest of
your program can determine which arguments and values were
specified on the command line is through the variables being set
by GetOptions(). I prefer to be able to find all of my options in a
single place vs. a bunch of unconnected variables. To do that, we
can tell GetOptions to store everything in a single hash by provid-
ing a reference to that hash as the first argument like so:

 my %options = ();

 GetOptions(\%options,

54  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

COLUMNS
Practical Perl Tools: CLI Me a River

 “length=i” => \$length,

 “file=s” => \$data,

 “verbose” => \$verbose);

When you do it that way, you can reference $options{length},
$options{file} and $options{verbose}. To check to see if an option
has been set, you’ll want to do something like

if (exists $options{verbose}) { ... }

As I mentioned before, there are tons of variations on the
argument-parsing theme. Some of the variations I found most
compelling are those that construct the argument specification
from a script’s internal documentation (e.g., in POD form). This
leads nicely into the next topic.

Do the Doc
In the previous section I brought up the notion that we are
endeavoring to design things like switch names to be intuitive and
sensical to the script’s users. But even if you manage to intuit or
sense the heck out of your users (if that is even a term), there are
still going to be times where those users will want to see a list of
possible arguments and, ideally, some documentation for them.

That’s where the module Pod::Usage comes into play. We’ve
talked about this module back in 2006 and earlier this year, but
I still want to remind you about it because having a mecha-
nism for providing this documentation is pretty key to a good
command-line program. You’ll forgive me if I do as I did in
one of those columns and reproduce the sample code from
the Pod::Usage documentation, because it really does offer
the best example for how to use the module. Plus, it even uses
Getopt::Long, tying nicely into the last subject. Here’s the
sample code minus the actual specification of the USAGE and
manual page in POD form:

 use Getopt::Long;

 use Pod::Usage;

 my $man = 0;

 my $help = 0;

 ## Parse options and print usage if there is a syntax error,

 ## or if usage was explicitly requested.

 GetOptions(‘help|?’ => \$help, man => \$man) or pod2usage(2);

 pod2usage(1) if $help;

 pod2usage(-verbose => 2) if $man;

 ## If no arguments were given, then allow STDIN to be used only

 ## if it’s not connected to a terminal (otherwise print usage)

 pod2usage(“$0: No files given.”) if ((@ARGV == 0) && (-t STDIN));

 __END__

Okay, so let’s see what is going on here. Our newfound friend,
GetOptions() from Getopt::Long, is being called to look for either

an argument called “help” or “man”. When it gets one of those
two arguments, it calls pod2usage() with a return code and/or a
“verbosity” level. A verbosity level of 0 shows an abridged USAGE
message: 1 spits out the full USAGE message and 2 will print out
the entire man page. Pod::Usage has rules about default error
codes and verbosity levels in the doc that (as they say) mostly do
the right thing. As an extra special trick, instead of calling die() as
our previous Getopt::Long example did when it couldn’t parse the
arguments successfully, it now calls pod2usage() to spit out the
usage message before exiting.

Welcome to My Shell
Just as some people believe that every program that increases in
complexity over time eventually grows the ability to send email
if it gets complex enough, I think you can make a good case that
the more complex command line programs often grow an inter-
active mode. This interactive mode is usually like a mini-shell.
If you find this happens to you, don’t panic! Instead, let me offer
you a tool to help make your interactive mode more pleasant for
the people who will use it.

When building an interactive mode like this, you have to decide
what level of help you want from a Perl module. Do you want
something to just handle prompt parsing/validation (e.g., using
IO::Prompt)? Do you want something to handle terminal inter-
action so someone can edit her or his commands in place (e.g.,
using Term::Readline)? Do you want something that will provide
a list of valid commands with doc, etc.? Let’s see one that gives us
the full monty: Term::ShellUI.

Here’s the first set of sample code described in the Term::ShellUI
doc. I’m showing it to you because it demonstrates a whole host
of things about what Term::ShellUI can do and how to do it:

 use Term::ShellUI;

 my $term = new Term::ShellUI(

 commands => {

 “cd” => {

 desc => “Change to directory DIR”,

 maxargs => 1,

 args => sub { shift->complete_onlydirs(@_); },

 proc => sub { chdir($_[0] ||

 $ENV{HOME} ||

 $ENV{LOGDIR}); },

 },

 “chdir” => { alias => ‘cd’ },

 “pwd” => {

 desc => “Print the current working directory”,

 maxargs => 0,

 proc => sub { system(‘pwd’); },

 },

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 55

COLUMNS
Practical Perl Tools: CLI Me a River

 “quit” => {

 desc => “Quit this program”,

 maxargs => 0,

 method => sub { shift->exit_requested(1); },

 }

 },

 history_file => ‘~/.shellui-synopsis-history’,

);

 print ‘Using ‘ . $term->{term}->ReadLine . “\n”;

 $term->run();

Let’s look at the overall structure first. The code creates a
new Term::ShellUI object by passing a specification into the
module with a few hash keys. Reading from the bottom up to
take the simpler one first, you can see we specify history_file,
which tells Term::ShellUI to keep a history file. This will make
it possible to repeat a previous command (even after you have
quit and reentered the program). The more interesting hash key
is “commands”, the one before history_file. This is where we
define which commands our mini-shell will accept and what to
do for each command. Let’s read from the top down and look at
the arguments.

The first command that is defined by this code is a command
for changing directories. It has a description to that effect
(desc => ...), takes a single argument (“maxargs => 1”), provides

“tab completion” for its arguments (“args => ...”, which in this
case calls complete_onlydirs() to only offer directory names
as part of that completion) and actually performs the com-
mand via the Perl function chdir(). The next command, “chdir”
shows how easy it is to define another name for a command
that will be treated like the original one. The only part of the
other commands worth mentioning is the line in the quit com-
mand that says:

 method => sub { shift->exit_requested(1); }

This tells the module to run the exit_requested() method of the
object, which sets a flag that requests the module cease asking
for more commands. Term::ShellUI has tons of other function-
ality you’ll find described in the doc. Hopefully from this little
snippet, it is obvious that you can get a full-fledged interactive
mode/shell added to your script with little work.

With that, I hope I’ve given you a few tools to make more awesome
command-line programs. Take care and I’ll see you next time.

References
[1] http://www.cryptonomicon.com/beginning.html.

BECOME A USENIX SUPPORTER AND
REACH YOUR TARGET AUDIENCE

The USENIX Association welcomes industrial sponsorship and offers custom packages to
help you promote your organization, programs, and products to our membership and con-
ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted
audience, we offer key outreach for our sponsors. To learn more about becoming a USENIX
Supporter, as well as our multiple conference sponsorship packages, please contact
 sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence
and innovation in neutral forums. Sponsorship of USENIX keeps our conferences affordable
for all and supports scholarships for students, equal representation of women and minorities
in the computing research community, and the development of open source technology.

www.usenix.org/usenix-supporter-program

56  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Columns

Python: -m Is for Main
D a v i D B E a z l E y

A s Python programmers know, Python doesn’t really have a notion of
a main() function like compiled languages such as C or Java. That
is, there’s no dedicated function that you define as the entry point to

your program. Instead, there is the concept of a “main” program module. The
“main” module holds the contents of whatever file you tell Python to execute.
For example, if you type this,

bash % python spam.py

then the contents of spam.py become the main module. For scripts, you might also see the
classic #! convention used to make them executable:

#!/usr/bin/env python

spam.py

...

Finally, a common idiom found in most code meant to run as a main program is a check that
looks like this:

spam.py

...

if __name__ == ‘__main__’:

 # Main program

 ...

__name__ is a special variable that always holds the name of the module and is set to
‘__main__’ when executing as a main program. The primary reason for enclosing the main
program in such a check is that it allows you to import the file as a library module without
triggering main program execution. This can be useful for debugging, writing unit tests, etc.

For many programmers, this is the final word when it comes to writing scripts. I’ll admit that
for most of the past 15 years, I’ve never done much more than this or given the idea of a main
script much thought. Naturally, there is more than meets the eye, otherwise, I wouldn’t be
writing about it. Let’s dig a bit deeper.

The -m Option
Normally when you run a program, you simply give Python the name of the file that you want
to execute; however, a less obvious way to specify the file is as a module name using -m. For
example:

bash % python -m spam

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
dave@dabeaz.com

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 57

COLUMNS
Python: -m Is for Main

Unlike a simple file name, the useful feature of -m is that it
searches for spam on the Python path (sys.path). Although this
feature is a minor change, it means that you don’t actually have
to know where spam.py is located to run it—spam.py merely
must be located somewhere where Python can import it.

Once you discover -m, you’ll quickly find that there is a wide
range of built-in modules and tools that execute in this way. For
example, if you want to run a simple Web server on a directory of
files, do this:

bash % python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...

If you want to run a program under the debugger, type this:

bash % python -m pdb yourprogram.py

Or to profile a program:

bash % python -m cProfile yourprogram.py

Or to time the execution of simple statements:

bash % python -m timeit --setup=”import math” “math.cos(2)”

10000000 loops, best of 3: 0.125 usec per loop

bash %

Indeed, you’ll find that there are a lot of useful things that live
behind the -m option. Your application can use it, too. As it turns
out, there are several benefits to doing so.

Organizing Large Applications
Almost any non-trivial Python program consists of both library
modules and application-level scripts. When you’re starting
out, putting all of your code in a single directory and not worry-
ing too much about code organization is often fine; however, as
things start to grow, you’ll want to think about having a better
organization than a simple directory with a bunch of files in
it. This is especially so if you’re going to start giving your code
away to others.

For most projects, putting library modules into a package struc-
ture is standard practice. You pick a unique top-level name for
your project and organize code as a hierarchy. For example, if the
name of your project was “diddy,” you might make a directory
like this:

diddy/

 __init__.py

 foo.py

 bar.py

 ...

If you’ve never seen __init__.py before, it’s required to mark a
directory as being part of a package. The file can be empty, but
it must be there for imports to work. Application scripts would

then be written to import modules out of this package using
statements such as this:

rundiddy.py

An application script

from diddy import foo

from diddy import bar

...

if __name__ == ‘__main__’:

 # Main program

 ...

This approach immediately presents some problems, though. In
order for a script like this to work, the related package needs to
be properly installed on the Python path (sys.path). This might
not be a problem if you’re working by yourself, but if you hand the
script to a co-worker, it’s not going to work unless she also has
the associated libraries installed somewhere. As an alternative,
you might consider putting the script in a common location (e.g.,
/usr/local/bin) and telling your co-workers to use that; however,
you’ve now placed yourself in the role of a system administra-
tor as you try to manage the script, the installed libraries, and
everything else associated with your application.

All of these problems are caused by the fact that the script and
its dependent package are placed in separate locations. As such,
you need to worry about path settings, version dependencies,
and all sorts of other installation issues. For example, how do
you make sure that your script actually uses the right version of
its dependent library package? I rarely run into Python coders
who haven’t ended up creating a big sys.path hacking mess for
themselves trying to deal with things like this at one point or
another; it can also cause all sorts of weird problems during code
development. For example, you’re probably not going to get the
last few hours of debugging back after you realize that the reason
your code is failing is that it was importing a version of a library
different from the one you expected.

In-Package Scripts
One nice feature of the -m option is that it allows you to easily
create “in-package” scripts. These are scripts that live in the
same package hierarchy as the library files on which they rely.
For example, you can simply move the rundiddy.py file inside the
package like this:

diddy/

 __init__.py

 foo.py

 bar.py

 rundiddy.py

 ...

58  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Columns
Python: -m Is for Main

Once a script lives in a package, you can additionally modify it to
use package-relative imports like this:

rundiddy.py

An application script

from . import foo

from . import bar

...

If you’ve never seen a package-relative import before, the syn-
tax from . import foo means load foo from the same directory.
Similarly, a statement such as from .. import foo loads a module
from the parent directory whereas from ..utils import foo loads a
module from the directory ../util relative to the module doing the
import. I must stress that this syntax only works within a proper
package—you can’t use it in arbitrary Python modules. Addition-
ally, you’re not allowed to write an import that “escapes” the
top-level package directory.

One nice thing about package-relative imports is that you
no longer need to hard-code the top-level package name into
the source, meaning that renaming the top-level package to
something else is easy. For example, if you need to have two
different versions of your package installed at the same time,
rename one of them (e.g., “olddiddy”). All of the imports within
the package will still work if they’ve been written using the
package-relative style.

To run an in-package script, you simply type python -m diddy.
rundiddy. If you’ve done things correctly, the script will simply
find all of its correct library files, with no path hacking or instal-
lation headaches.

If you’re put off by having to type python -m diddy.rundiddy,
you can change the name of the rundiddy.py file to __main__.
py. You’ll then be able to type python -m diddy and it will simply
run the __main__.py file for you. (As an aside, few programmers
realize that any directory of code with a __main__.py file can be
directly executed by Python.)

Who Cares?
The main benefit of moving scripts inside a package is that
they effectively allow you to create a kind of code bundle where
everything is self-contained. For example, if you wanted to give
your application to a co-worker, you could simply hand them the
top-level directory along with instructions on how to run the
code (using -m). If you’ve done everything right, the code will
simply “work” without ever having to fiddle with path settings,
installing code into the user’s Python installation, or anything
else. During software development, this is actually a really use-
ful thing—you can hand someone your code and have him try it
out without requiring him to muck around with his local Python
setup. Similarly, if you’re working on a new version of code, you
can do it in your own directory without ever worrying about pre-

viously installed versions getting in the way. Again, the key thing
that makes this possible is the fact that everything is bundled
together in one place.

I’ve found this approach to be useful in writing various
application-level tools. For example, consider this hypothetical
application structure:

diddy/

 __init__.py

 foo.py

 bar.py

 __main__.py

 server/

 __init__.py

 httpserver.py

 rpc.py

 message.py

 __main__.py

 worker/

 __init__.py

 queues.py

 request.py

 __main__.py

Within this directory, there are actually three separate “applica-
tions” that are executed using -m. For example:

bash % python -m diddy # Executes diddy/__main__.py

bash % python -m diddy.server # Executes diddy/server/__

main__.py

bash % python -m diddy.worker # Executes diddy/worker/__

main__.py

Again, it’s a self-contained bundle of code. There are no scripts
to install and no path hacking to be had other than making sure
the top level “diddy” directory is available when you run Python
(it could be in the current working directory).

Application to Testing
Another place where I’ve found the package approach to be
useful is in unit testing. A problem I always seem to face is
figuring out how to make my unit tests use the correct version
of code. That might sound silly, but I can’t count the number
of times I’ve run some tests only to find out that they executed
using a completely different version of the code than the one I
was working on due to some kind of sys.path issue. In response
to such problems, you might be inclined to hack sys.path in
some manner. For example, in one of my projects, if you look at
the testing files, the first thing the tests do is hack sys.path to
make sure the tests run using the right code base. Frankly, it’s
clumsy and a bit embarrassing.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 59

COLUMNS
Python: -m Is for Main

As an alternative, you can move the tests inside the package and
use the -m option to run them. For example, consider a project
with this file structure:

diddy/

 __init__.py

 foo.py

 bar.py

 tests/

 __init__.py

 foo.py

 bar.py

 __main__.py

In this organization, the tests directory mirrors the structure of
the package itself. Each testing file is a stand-alone executable
that looks like this:

tests/foo.py

import unittest

from .. import foo

class TestSomething(unittest.TestCase):

 def test_example(self):

 result = foo.do_something()

 self.assertEqual(result, expected_result)

 # More tests follow

 ...

if __name__ == ‘__main__’:

 unittest.main()

To run a single testing file, you simply type a command like this:

bash % python -m diddy.tests.foo

.....

--

Ran 5 tests in 0.295s

OK

bash %

I might reserve the tests/__main__.py for running all of the tests
at once. For example, a simple approach is as follows:

tests/__main__.py

from .foo import *

from .bar import *

if __name__ == ‘__main__’:

 unittest.main()

Now, tests can be run like this:

bash % python -m diddy.tests

.........

--

Ran 9 tests in 0.423s

OK

bash %

Saying whether such approach would appeal to hard-core testing
experts is difficult; some might argue that the tests should be
contained in their own dedicated directory separate from the
package itself. To be sure, this might not scale for a tremendously
huge project. Nevertheless, I’ve often found this approach to
be simple, reliable, and quite effective in medium-scale proj-
ects. Part of the appeal is that it works without having to fiddle
around with the environment or a complex set of extra tools. Of
course, your mileage might vary.

Closing Words
Every so often a feature of Python comes along that really
catches my fancy. The -m option definitely falls into that cat-
egory as I find myself using it more and more. Honestly, the main
appeal of it is how it allows my scripts and library code to be
bundled together into a single cohesive package. As such, it saves
me a lot of time where I would have to be fiddling around with
path settings and installation issues. No, life is too short for that.
Instead, put everything in a package and use -m. You’ll thank
yourself later.

60  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Columns

iVoyeur
Go, in Real Life

D a v E J o s E p H s E n

Through a combination of unfortunate timing, unexpected workload,
and laziness, I’m writing this column in the midst of a rare vacation,
as I look out on the eastern front of the Rocky Mountains in late fall.

I’m using a borrowed laptop (thanks Chris) in a land unencumbered by WiFi,
and I’m hoping to find a GPRS signal strong enough to send it to Rik, my edi-
tor, before the deadline, which is today I think, or maybe tomorrow.

Although we’ve arrived only a few weeks later in the year than usual, everything is different
here in my favorite place in the world: the air colder, the animals edgier, the light and foliage
more dramatic. When we manage to make it up here, we expect to be snowed on at least once
or twice, but this time we’ve been either rained, iced, or snowed on every day. This has only
accentuated our hiking, affording us some privacy on the trails, increasing the contrast of
our photos, and giving our supposedly waterproof boots an opportunity to prove their worth.

I love the mountains, not just because their size puts humanity in perspective, and not just
because they are unabashedly wild. I love the mountains because they encourage good habits
in the people who choose to venture into them. They reward hard work, awareness, and
respect, and they punish stupidity, sloth, and arrogance. I love the mountains because loving
them makes me a better human being.

I had planned this month to write more about libhearsay [1], and show off how I’ve used it to
connect a few different monitoring tools together. But that work is 3000 or so miles away,
and anyway those ideas could stand to be baked a bit more before I force them upon you like
an excited co-worker with a USB-stick full of vacation slides.

Instead, because I’ve been writing libhearsay in the Go programming language and also
because Go is a newish and hotish programming language created from scratch by the likes
of Ken Thompson and Rob Pike, I thought I’d share my experience with it thus far.

In the past few years, many smart programmers have written a bunch of brilliant articles
about Go that cover every nook and cranny of every feature and function. None of them, how-
ever, seem to convey a sense of what it feels like to create a program in Go, especially from the
perspective of a systems guy rather than an application developer. Having worked with it for
a few months and a couple of thousand lines, I’ve noticed that, like the mountains, Go seems
to be encouraging beneficial habits in me. Some of these are small things, and are easily
articulated, and others are larger and more subtle, but taken together, the patterns, idioms,
and manners of thought that Go encourages are making me a better programmer. I think that
this, rather than any particular linguistic feature, is the second greatest thing about Go (the
greatest thing about it obviously is its enormous potential for name-related puns). Here are a
few examples:

Dave Josephsen is the
author of Building a
Monitoring Infrastructure
with Nagios (Prentice Hall
PTR, 2007) and is Senior

Systems Engineer at DBG, Inc., where he
maintains a gaggle of geographically dispersed
server farms. He won LISA ‘04’s Best Paper
award for his co-authored work on spam
mitigation, and he donates his spare time to
the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 61

COLUMNS
iVoyeur: Go, in Real Life

Go encourages me to use Git.. ahem, from the git-go
The “go” utility, which is a combination compiler, linker, and
packing tool, expects my Go code to be organized into a simple
directory structure. If I place a github.com folder inside the
top-level src directory of this structure, and commit the con-
tents of a subdirectory of the GitHub folder to GitHub, then
other Go users can install and build my program by typing “go
get foo” at their command prompt (where “foo” is the name of
my project on GitHub).

The go utility will go to GitHub, find my project, clone it into
the local users $GOPATH/src/github.com folder, and build it for
them. This is pretty great; you get a handy packaging mechanism
for free by using revision control, which is something you would
have done anyway. It supports sites other than GitHub, such as
launchpad, googlecode, and bitbucket, and a slew of version con-
trol systems, including Git, Mercurial, Subversion, and Bazaar.
You can even use private sites by following a naming convention
or by providing a <meta> tag.

The scheme is not without its problems, including, perhaps
ironically, that it’s not easy to specify upstream package ver-
sions, but it’s also illustrative of the underlying pragmatism
that typifies Go as a language. The developers didn’t bother
coming up with an unwieldy reimplementation of CPAN or
Gems; instead they observed that developers like to keep code
in revision control systems and hacked up a simple, lightweight
package manager as the shortest path to getting developers
what they probably want anyway.

Go encourages me to think about concurrency
Despite the hours (days?) of study I’ve invested in my consider-
able understanding of threading models and inter-process/
inter-thread communication libraries, and despite the tens (hun-
dreds?) of little test programs I’ve written in C, Perl, Python, and
Ruby in my attempt to implement those models, and even despite
the multi-threaded/multi-process open source projects to which
I’ve committed code, I have never once in my professional life
written a concurrent program for use in production. Nor have I
ever revisited and rewritten one of the thousands of little tools
I’ve written to make it concurrent. Not that is, until I met Go.

This is not for lack of understanding or caring on my part. In real
life I’m an OPS, and the nature of the job just makes impracti-
cal the creation of multi-threaded tools to solve the mundane
sort of everyday problems that I run into (at least in the shops
I’ve worked in so far). There is neither the time nor the payoff.
This sucks for me, because it means I don’t get to think concur-
rently often, and as I grow older, it probably renders that sort of
thinking more difficult for me. So that’s awesome; my current
languages are destroying my brain.

The second Go program I ever wrote was concurrent. It was not
concurrent because I wanted to prove or understand the model,
or because I was bound and determined to use go-routines and
channels. It became concurrent naturally, as a result of my prob-
lem and the fact that go-routines were available. Go-routines
are so handy that functionally, their use is hard to avoid. Which
brings me to:

Go encourages me to network
In the past, for example, I would avoid putting socket code into
my tools. I’ve written socket programs for my own edification,
and fully understand the threading issues among others, but in
real life it almost always makes more sense to quickly hack up
something to standard I/O and rely on daemontools, for example,
for TCP. This sentiment is alive and well among the node.js
crowd these days, but it is simply no longer true with Go. The
concurrency features are so well implemented that there is no
reason not to roll your own TCP server.

For anything of moderate size that is expected to remain resi-
dent in memory, there’s no reason not to roll your own HTTP
server for that matter, and it’s pretty common practice among Go
developers to build something like a distributed worker daemon
in Go, and then add an HTTP server to it to export metrics and
state data, or add an interface to control the worker remotely.

Go encourages me to embrace type and think
about data structures
In Go, creating your own type and extending it with a method is
so simple that even as someone who has never been enamored of
OOP, or the concept of sub-classing, I find myself naturally rea-
soning about my solutions primarily in terms of the interaction
between custom types. I think Go makes this palatable to me
because there isn’t any ceremony or magic involved. Type cre-
ation is no different from typedeffing in C, and adding methods
to types is only trivially different from function declaration.

As a result, where in any other language I might create an array
of doohickeys, and loop across them doing whatever, like:

for(i=0, i<numberOfDoohickeys,i++) myDoohickey=listOfThings[i]

doWhatever(myDoohickey)

in Go I’m much more likely to create a doohickey type of my own
to store in the array (which is probably a pretty complex (for me)
nested type), which has a built-in whatever method like this:

for i in listOfDoohickeys i.Whatever

I know, those pretty much seem like the same thing, but by creat-
ing my own doohickey I get to think about lots of interesting
things, such as exactly how large a doohickey is in memory and
whether the system creates a copy of my doohickey in memory
when it performs the whatever function, or operates directly on
the existing doohickey via a pointer.

62  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Columns
iVoyeur: Go, in Real Life

It also means that, although a program that loops across some
doohickeys doing whatever is useful maybe once or twice, a
program that defines doohockeys and implements an interface
to them that does whatever is useful may be a lot longer, because
other developers (or I) can come back later and trivially add more
interfaces to do other things. Now we have a shop-wide means
of dealing with doohickeys, and everybody who does whatever to
a doohickey from now on will do it in a repeatable way without
having to reinvent the wheel.

There’s an xkcd comic [2] where, having been asked to pass the
salt, an off-frame OCDish person begins developing a general
interface that will enable him to pass arbitrary condiments, and
over-engineering like this can easily get out of hand in some
of the other languages I’ve used. But I’ve noticed that general
interfaces spring into being quite naturally in Go without any
grand intention or purpose on my part; I didn’t whiteboard an
interface for doohickeys, or prototype it in a simple language and
then properly reimplement it in another. I didn’t begin by creat-
ing a doohickey library or subclassing something doohickey-like.
I—a meathead, knuckle-dragging OPS—in scratching my own
immediate doohickey itches, tend to accidently create robust,
probably even concurrent engineering solutions in Go. Solutions
that other OPS are likely to thank me for. As someone who has,
for years, prefaced my scripts with something like:

#Blame Dave: Fri Sep 15 20:56:47 CDT 2006

I appreciate creating code that I don’t need to feel vaguely
guilty about.

Finally, in other languages I’ve used, a certain amount of risk
came along with simplifying things like sockets; a linear rela-
tionship between the language’s ability to expose cool features
and the amount of cruft in my own code as I bolted on this or

that. I had to keep things simple, so the program execution
remained knowable—and this is perhaps unfortunate, because
what is the point of having a simple interface to sockets if
you always feel like it’s too cognitively expensive or ugly and
bloated to use?

In Go, however, the type system has a tendency to keep every-
thing clean and compartmentalized. My Go code is resistant to
cruft. If you aren’t fighting it, the code naturally segments and
documents itself via its type and function definitions, so add-
ing something like a TCP server doesn’t clutter things up, and
more importantly, doesn’t make your types—and therefore your
program—any more difficult to reason about. To be clear, I’m not
throwing HTTP servers into everything I write just in case, but
I’m certainly more likely to add something like a network inter-
face to expose some analytics where it makes sense to do so.

I’m painfully aware that most of what I’ve said in this article
amounts to subjective drivel that could probably be repeated en
masse by any proponent of any programming language ever, so
even though it won’t help, I’ll mention that I’m not married to
Go and, in fact, program in a multitude of languages. My intent
here was not to steal anyone’s mindshare or compliment Go
at the expense of any other language in particular. But I will
wholeheartedly suggest that you learn Go if you get a chance. If
you start using it, I think you’ll notice that Go wants you to be
productive. It keeps things simple, stays out of your way, rewards
you for being you, empowers you to build interesting stuff, and
makes you a better programmer in the process.

References
[1] libhearsay http://www.skeptech.org/hearsay.

[2] http://xkcd.com/974/.

xkcd

xkcd.com

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the te chnical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the te chnical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

64  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Columns

Measuring vs. Modeling
D a n g E E R a n D M i C H a E l R o y t M a n

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc.
dan@geer.org

Michael Roytman is
responsible for building out
Risk I/O’s predictive analytics
functionality. He formerly
worked in fraud detection

in the finance industry, and holds an MS in
operations research from Georgia Tech. In his
spare time he tinkers with everything from
bikes to speakers to cars, and works on his pet
project: outfitting food trucks with GPS.
mikeroytman@gmail.com

It is a capital mistake to theorize before one has data. Insensibly one begins to twist
facts to suit theories, instead of theories to suit facts.

 —Sir Arthur Conan Doyle, 1887

Punchline: Using CVSS to steer remediation is nuts, ineffective, deeply
diseconomic, and knee jerk; given the availability of data it is also
passé, which we will now demonstrate.

Vulnerability data is often used to describe the vulnerabilities themselves. This is not actu-
ally interesting—it’s like using footprints to describe bear paws. Sure, a black bear has differ-
ent ones from a polar bear . . . but a more interesting fact is what kind of fur they have.

Strategies for vulnerability remediation often rely on true, but irrelevant, facts. The problem
begins with how vulnerabilities are defined. There are several places that define vulner-
abilities, but Common Vulnerabilities and Exposures (CVE), while not the most complete,
is the most universal set of definitions with which we have to work. Yet thinking of CVEs as
elements on the periodic table is a grave mistake; before creating synthetic polymers (read:
useful analytics) out of these elements, we need to understand the biases and sources of
uncertainty in the definitions themselves. For example, take a look at this finding from a
research team at Concordia University in their 2011 paper “Trend Analysis of the CVE for
Software Vulnerability Management” [1]:

“Our finding shows that the frequency of all vulnerabilities decreased by 28% from 2007 to
2010; also, the percentage of high severity incidents decreased for that period. Over 80% of
the total vulnerabilities were exploitable by network access without authentication.”

There are many such papers out there and they may be guiding organizational decision-
making, but, to our point, that type of analysis misses the boat on what is being analyzed. An
increase or decrease in vulnerability frequency or the enumeration of vulnerability types
seen in successive time intervals can have wildly varying biases. CVE is a dictionary of
known infosec vulnerabilities and exposures. It is a baseline index for assessing the coverage
of tools; it is not a baseline index for the state of infosec itself.

Looking at the volume of CVEs seems to suggest that steadily increasing CVE disclosures
mean “the state of security is getting worse” or some similar inference. However, CVE is not
a dictionary. It is from a company attempting to streamline a process with limited resources.
If you want to understand why the unit of risk we’re so used to isn’t a unit at all, take a look at
Christey and Martin’s “Buying Into the Bias: Why Vulnerability Statistics Suck” [2]

CVSS, the most widespread vulnerability scoring system, is a model for scoring the rela-
tive likelihood and impact of a given vulnerability being exploited. Among other inputs,
the model takes into account impact, complexity, and likelihood of exploitation. Next, it
constructs a formula based on these by fitting the model parameters to a desired distribu-
tion. This comment was made during the drafting of CVSS v2:

“Following up my previous email, I have tweaked my equation to try to achieve better sep-
aration between adjacent scores and to have CCC have a perfect (storm) 10 score…There
is probably a way to optimize the problem numerically, but doing trial and error gives one

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 65

COLUMNS
Measuring vs. Modeling

 plausible set of parameters…except that the scores of 9.21 and
9.54 are still too close together. I can adjust x.3 and x.7 to get a
better separation . . .” [3]

So what facts is this model twisting? Well, for one, at the time
of the creation of the model, there was no data available about
the likelihood of an exploit. Today, we have SIEM logs with CVE
attack pattern signatures, and most enterprises have both a vul-
nerability scanner and a SIEM installed on their networks. This
allows us to correlate a CVE to the attack signature and track
exploits. No need to blame the model, it’s just that the theory
was created, as Sherlock so aptly put, before there was any
data. Moreover, when a CVE gets a score, an analyst does some
research, and assigns a point-in-time likelihood value.

We can do better than that. The biggest problem with the CVSS
model is not the way in which it is executed but rather what it
seeks to expose. It is trying to capture (in the temporal compo-
nent) a snapshot of what the live instances of attacks against
these vulnerabilities look like—but it is attempting to do so with-
out looking at any live data. Instead, the CVSS model is a static
definition of the very stochastic process of exploit and breach
traffic.

The present authors have access to 30 million live vulnerabili-
ties across 1.1 million assets (hostnames, IPs, files, URLs) and
10,000 organizations. Additionally, using a different data set of
20,000 organizations’ SIEM logs, analyzing them for exploit sig-
natures, and pairing those with vulnerability scans of the same
environments (data collected on the Open Threat Exchange), we
construct a stochastic picture of breach traffic over the months
of June to August 2013, affecting the 135 unique CVE identifiers
that presented themselves in that period. No possible interpreta-
tion of that data (see Table 1) lends itself to a static conception of
likelihood of exploit.

This is where the correlation gets fuzzy. The breaches come
from a different set of organizations than the live vulnerabilities
we have access to. However, as the sizes of both sets get bigger,

the conclusions we can draw from the correlations between
them gain significance. Because this is observed data, per se, we
contend that it is a better indicator than the qualitative analysis
done during CVSS scoring.

How much better? Let’s assess a couple of possible strategies for
choosing which vulnerabilities to remediate. If one chooses a
vulnerability at random from the set of possible vulnerabilities,
then the probability that a breach has been observed via that
vulnerability is roughly 2%. This is our baseline. In Table 2 we
show the probability of breach for vulnerabilities with particu-
lar CVSS scores, which pale by comparison to the probabili-
ties of breach for vulnerabilities with entries in Exploit-DB or
Metasploit or both as seen in Figure 1.

Luca Allodi from the University of Trento [4] has already done
this type of analysis on the definitional level. Correlating the
National Vulnerability Database (NVD) to the Symantec Threat

Week CVEs affected Breach count

1 67 754588

2 13 191

3 4 157

4 18 3948

5 15 9361

6 81 62307

7 70 41619

8 71 39914

Table 1: Breach traffic June–August 2013

CVSS score CVSS v1 Pr(breach) CVSS v2 Pr(breach)

1 0.210% 0.210%

2 -0- 0.36%

3 -0- -0-

4 1.033% 0.480%

5 0.642% 1.220%

6 0.266% 0.220%

7 0.102% 0.070%

8 0.811% 1.432%

9 2.283% 2.438%

10 4.726% 3.530%

Table 2: Probability of exploit using CVSS as the measure

Figure 1: Probability of exploit using other measures

66  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

PVP sensitivity

5%

13%
57%

43%

26%
47%

28%
45%

Exploit-DB

Metasploit

Intersection MSP&EDB

Columns
Measuring vs. Modeling

Exchange in Figure 2, the outer circle encloses all NVD vulnera-
bilities, the smallest circle is the 2.4% of the NVD vulnerabilities
that are actually attacked, and the larger interior circle repre-
sents the 87.8% of vulns that are scored ≥9 but are not attacked—
which is the point: a high CVSS score does not imply impending
risk in need of immediate mitigation.

Allodi’s research further correlates the data with Exploit-DB and
EKITS (an enumeration of CVE entries in blackhat exploit kits).
Figure 3 reproduces his diagram of CVSS scores stacked against
Exploit-DB, EKITS, and Symantec’s Threat Exchange (to be
meaningful, this figure must be viewed online at: https://www.
usenix.org/publications/login/december-2013-volume-38-num-
ber-6). Dimensions are proportional to data size; vulnerabilities
with CVSS ≥9 are red, vulnerabilities with 6≤CVSS<9 are orange,
and vulnerabilities with CVSS<6 are cyan. The two rectangles
outside of NVD space are vulnerabilities not present in NVD.

There are many entries with CVSS≥9 but with no exploit nor
even any live exploit traffic. Conversely, a large portion of
Exploit-DB and Symantec’s intelligence go unflagged by CVSS
scoring; however, this is still a definitional analysis. Visually,
it is easy to see that currently adopted strategies—namely, the
pervasive use of CVSS to direct remediation [5]—yield undesir-
able false negative rates (false positives rates are commonplace
and widely accepted in remediation strategy). What is of greater
interest, however, are the false positive and false negative rates
of remediation strategies based on live vulnerability analysis.

Two terms of art from diagnostic testing are predictive value
positive (PVP), the proportion of positive test results that are
true positives, and sensitivity, the proportion of true positives
that test positive. Using the same data set as above, in Figure 4
we can now really see the value of measuring vs. modeling.

Not everyone has the kind of large scale data we have here, so
what is a CISO to do? First, remember that a model is a model—
understand the implications of that by collecting some data on
yourself, and make a commitment to long-term longitudinal
data collection. Assess how well your remediation strategy is
performing against your adversaries—adversaries do this all
the time; they will implement different exploit kits or simply
target others if the success rates of their kits decrease. Some
black-market exploit kits offer SLAs to their customers with
refunds if the attacks are detected or unsuccessful. A good way
to do your assessment is to use an incident response team as a
way to obtain the kind of predictive value positive metrics you
see above. Use more than one indicator for whether to spend the
labor to remediate a particular vulnerability (as we also illus-
trated above). For the C-suite, being able to show a metric about
the level of effectiveness of a program is important, but more
important is being able to claim a reduction in the volume of

Figure 2: Attacks vs. CVSS score

Figure 3: CVSS scores vs. EDB/EKITS/SYM/NVD

Figure 4: PVP & sensitivity comparison

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 67

USENIX Member Benefits
Members of the USENIX Association receive the following benefits:

Free subscription to ;login:, the Association’s bi-monthly print magazine, and ;login: logout,
our Web-exclusive bi-monthly magazine. Issues feature technical articles, system ad-
ministration articles, tips and techniques, practical columns on such topics as security,
Perl, networks, and operating systems, book reviews, and reports of sessions at USENIX
 conferences.

Access to ;login: online from October 1997 to the current month:
www.usenix.org/publications/login/

Discounts on registration fees for all USENIX conferences.

Special discounts on a variety of products, books, software, and periodicals:
www.usenix.org/member-services/ discounts

The right to vote on matters affecting the Association, its bylaws, and election of its
 directors and officers.

For more information regarding membership or benefits,
please see www.usenix.org/membership-services
or contact office@usenix.org.
Phone: 510-528-8649

COLUMNS
Measuring vs. Modeling

data that the security team has to sift through to get to similar
results. In our data set, while the intersection of ExploitDB and
Metasploit yields a marginally better sensitivity, the predic-
tive value positive is far higher, indicating that to get the same
results, the “cost” is reduced. This is a metric that is useful in
practice and accessible to the C-level.

This column suggests a few measures for an efficient, impactful
security practice. It is probable that there are other attributes
of a vulnerability which are better indicators of breach or which
increase operational efficiency. The 28% PVP we obtain here is
relatively inefficient even if much better than prior art. Identify-
ing these attributes and using them to generate better predictive
metrics is key to more effective security practices.

References
[1] “Trend Analysis of the CVE for Software Vulnerability
Management”: dc239.4shared.com/doc/JAFW1G95/
preview.html (tinyurl.com/k57gxqe).

[2] Steve Christey and Brian Martin, “Buying Into the Bias:
Why Vulnerability Statistics Suck”:

www.attrition.org/security/conferences/2013-07-BlackHat
-Vuln_Stats-draft_22-Published.pptx (tinyurl.com/ksalk3z).

[3] Appendix D: CVSS 2.0 Base Score Equation: www.first.org/
cvss/history#c8 (tinyurl.com/mex8a2x).

[4] Luca Allodi, “Risk Metrics for Vulnerabilities Exploited in
the Wild”: securitylab.disi.unitn.it/lib/exe/fetch.php?media
=seminar-unimi-apr-13.pdf (tinyurl.com/p252aa2).

[5] Guide to Adopting and Using the Security Content
 Automation Protocol (SCAP) Version 1.0: csrc.nist.gov/
publications/nistpubs/800-117/sp800-117.pdf (tinyurl.com/
m3famtj).

68  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Columns

/dev/random
Cloud Control: Future (Mis)Directions for Information Security

R o B E R t g . F E R R E l l

A columnist of my ilk (A positive, with vitamin D and sodium benzoate
added to prevent spoilage) realistically has only three basic choices of
topic: what’s going on with some aspect of technology now, what went

on with some aspect of technology in the past, or what might happen with
some aspect of technology in the future. I’ve churned out a fair amount of
slush on the first two, so now it is time to offer my insights, such as they are,
on what someday might have been.

Security is a crap shoot in the best of times, or maybe a roulette wheel. A roulette wheel fixed
strongly in favor of the house; the house, as usual, being controlled by various unsavory ele-
ments (Sleazium, Larcenium, Felonium, et al.). Security is an abstract concept, unwieldy and
unworkable in the real world. The bottom line is that where the rubber meets the road in the
final analysis at the end of the day, “security” is overused and under-defined.

What we really mean when we talk about security is in fact “insecurity.” A secure system is
one that has not yet been designed and built; all secure systems are therefore future systems.
Systems currently in operation, ipso facto, are inherently insecure, or at best both secure
and insecure simultaneously. Taking the quantum superposition comparison further, any
attempt to characterize the security of a system causes that duality to break down. Heisen-
berg would appreciate that you can never really calculate how secure your system is, only
the probability that it has been compromised today. Or, for the purposes of this discussion,
tomorrow. Security is Schrödinger’s cat, long-deceased and skeletal.

Now that I’ve cleared some of the more egregiously tattered metaphors and dog-chewed
aphorisms out of my virtual writing desk, I can relax and try to make some sense. The term
“security” has, to paraphrase James Thurber, taken a terrific tossing-around in recent years
and no longer means much of anything. There is no “security” in “information security;”
there is only risk and the mitigation thereof. Risk management is where my professional
attention is now directed because security is not something I know how to achieve. Those
of you who are privy to the duties of my “day” job will understand. The rest can talk quietly
amongst yourselves until the bell rings.

This trend toward increasingly draconian measures to self-identify to your software and
hardware has just about reached its practical limitations, from what I can see. As Apple
recently had the shattered pieces of its much-touted thumbprint authentication process for
the iPhone 5S handed back to it in a paper bag by Germany’s Chaos Computer Club, so will
likely go most major “innovations” in access control for the foreseeable future. There is noth-
ing you can possess, Dr. Jones, that I cannot emulate.

In my version of the future, authentication will move from the I/O device to the cloud. To
authenticate, you tell the Master Interrogator Interface who you claim to be and three

Robert G. Ferrell is a fourth-
generation Texan, literary
techno-geek, and finalist for the
2011 Robert Benchley Society

Humor Writing Award. rgferrell@gmail.com

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 69

COLUMNS
/dev/random

people you claim not to be. Once it verifies all four claims, you
are granted access. That sounds perfectly potty, of course, but
is it really any sillier than most other authentication protocols?
I think not.

Maybe we’ll see reliable whole-body photorecognition come
into its own, as well. Those “selfies” you like to snap may
someday get you access to your money or home entertainment/
security system. Perhaps there will be a software photo mask
that keys on a unique micro-attribute like your pore structure
or acne scars.

Application security today is haphazard and depends mostly on
programmers not making any of a dozen or so major blunders in
their code: no bounds checking, relative paths, formatting errors,
and so on. In the future, I predict that applications (which now
reside solely in the cloud) will have no security measures at all
taken during their coding. Because applications themselves will
be modular with extreme granularity and distributed across
the cloud, each instantiation of a particular program will be
unique. Anti-malware functions will be provided by heuristi-
cally programmed agents in the cloud that watch for and forbid
anomalous and/or dangerous behaviors. Antivirus companies
will no longer sell subscriptions to signature files. Instead, they
will activate their cloud heuristic agents for a set period of time
for a specific customer . . . for the traditional hefty fee.

Thunderheads will be the airborne pathogens infesting the
future cloud, much as Blackhats are the venomous spiders in
today’s Web. MITM will stand for “Man in the Miasma,” because
“middle” isn’t very descriptive or accurate in a structure as
amorphous as the cloud. Hackers will cease to have “handles”
but will instead adopt “tail numbers.” Being positively identified

will be to “Fall Out” (of the cloud). Wags will call this “precipita-
tion,” but wags will always be wags.

Encryption, rather than referring to data scrambled by a com-
plex algorithm that requires a lengthy key to reconstitute, will
denote information that is actually en-crypted. That is, it will be
encased in a cocoon built of layers of nonsense information that
can only be penetrated and the data transcribed using the math-
ematical equivalent of a biological polymerase. Not only must
the correct transcriptase be used, but the start and stop codons
must also be correct—as must even the rate of transcription—or
the message will not be comprehensible. Presuming, of course, it
was comprehensible to begin with.

Web defacement, that exceptionally juvenile scourge of the late
’90s and early ’00s, will be replaced by attacks known as ODEs:
On-the-fly Drive-by Exploits. As application code modules are
assembled to order in the cloud, fragments of exploit code—able
to hide from the heuristics agents by dint of being non-functional
on their own—self-assemble into unique malware, the ultimate
functionality and virulence of which depends on the identity and
assembly order of the constituent fragments.

In closing, I’d like to stumble over Advanced Persistent Threats.
I say “stumble over” because my favorite example of an APT is
my cat. She’s advanced—easily as smart as a toddler and much
more creative; persistent—if she wants something, she is simply
not to be ignored; and a threat—she’s fond of sprawling across the
narrow pathway I take every morning before dawn to get to my
shower. But never in the same place twice. The fact that I have
managed to remain fracture-free, proud to be, for 13 years as her
roommate and food provider is nothing short of a miracle.

Thaumaturgy, coincidentally, is my candidate for the most
robust information security tool available.

70  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

BooksBook Reviews
E l i z a B E t H z w i C k y a n D M a R k l a M o u R i n E

Data Science for Business
Foster Provost and Tom Fawcett
O’Reilly Media, 2013. 366 pp.
ISBN 978-1-449-36132-7
Reviewed by Elizabeth Zwicky

Data Science for Business is an introduction to data science as
it is applied to business. The book includes enough informa-
tion to tell you what you can do, how you can do it, and whether
or not your data scientists are crazy and/or making things
up to impress you. If you have exposure to machine learning
already, this book is enough to give you a start on how you can
expect the real world issues to go. You’ll need another book if
you want to actually implement these ideas, but those books
are easy to come by.

The authors clearly have real-world experience, both with the
kinds of misery that occur in real data sets and with the common
problems of academic data analysts encountering them. Many
beautiful theories do badly when faced by the messiness of real
data and questions, and worse yet, they do badly in subtle ways.
Producing apparently good results that are in fact pointless or
actively bad is easy, which makes for a lot of tension between
data scientists and the business groups they are working with.

This is highly technical stuff, and explaining it to people who
are not mathematicians or computer scientists without over-
simplifying it is hard. The authors do a nice job of simplifying it
just far enough. You still must be willing to think about abstract
concepts with numbers in them, and not to be intimidated by
mathematical symbols, but understanding the topic doesn’t
require higher math. (On the flip side, if you know all the math
already, you’re going to need a tolerance for simplified notation.)

I’d recommend this book to people on either side of the business
group/data scientist relationship, or to people trying to under-
stand what data science can realistically do for their organiza-
tion. Somebody who understood this book would meet my group’s
criteria for “not a loser” about data science or machine learning.

You’d need a bit more to get to “useful in the fraud space,” includ-
ing an understanding of why you could have an overfitted model
and still need more features. In case you’re curious, overfit is
caused by the number of features you use, not the number you
have, and is worsened by having poor quality features, plus it is
heavily dependent on sample size. On big data, overfit is often
not reached until >100 features, which the authors do point out,

but they fail to mention that you may need twice that many to
get enough good ones. Naive data scientists with first-order
understanding are almost always too afraid of overfit and not
focused enough on features. Still, somebody worried about over-
fit is easier to deal with than somebody who happily reports that
they have an excellent model, because it performs perfectly on
the data it was built on. People really do this, to my amazement.
They also really build models based on the feature they’re trying
to predict. This book explains how not to.

Hiring the Best Knowledge Workers, Techies & Nerds
Johanna Rothman
Dorset House, 2004. 330 pp.
ISBN 978-0-932633-59-0
Reviewed by Elizabeth Zwicky

Hiring the Best Knowledge Workers, Techies & Nerds lays out a
humane and effective hiring process, including a way of develop-
ing job descriptions that actually results in something practi-
cal for all players. This is a recent digital release, which is how
it caught my eye. The publication date is mostly irrelevant,
although occasionally it is noticeable. Do job seekers still consult
newspapers? They must somewhere, but not in Silicon Valley.

This title would be most useful for somebody in a small com-
pany because it is geared toward people with relatively little
assistance in the hiring process. But the sections on writing job
descriptions, tailoring them for specific places they may be used,
evaluating resumes, and training junior people to interview
are useful to most people, regardless of their environment. The
author’s suggestions are nicely balanced, and she provides good
stories to illustrate why you want to treat job seekers with gen-
erosity, not rejecting people blindly for typos and mistakes. She
does not mention the contentious topic of thank you notes at all.

I found it a little slow-starting, and worried at the beginning that
it would all be too HR-speak, but I warmed up to it. I would have
liked more discussion of cases in which you have a ton of hiring
to do and may not be interested in tying yourself tightly to a
specific job description, but I think the book will still be useful to
most people who need to hire technical people.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 71

Books

Why We Fail: Learning from Experience Design
Failures
Victor Lombardi
Rosenfeld Media, 2013. 214 pp.
ISBN 978-1-933820-17-0
Reviewed by Elizabeth Zwicky

Other people’s disasters are always amusing, and Why We Fail
presents a fine collection of products that failed even with plenty
of starting advantages. The author ties them together as failures
to delight the customer with the experience, and traces down the
reasons why the experience came out lacking. He believes that
better testing of the experience and the assumptions being made
will fix the problem; I’m not so sure, as several of these compa-
nies seem to have made explicit decisions to favor other factors.
Possibly more testing would have helped designers better under-
stand the cost they were paying, but it’s also possible that they
would have made the same bets anyway.

Still, whether you agree with the author’s conclusions or not,
there’s a lot to think about in this book. If nothing else, you
should come away convinced that technical excellence, being
first to market, being well funded, and being the existing market
leader are not enough to save you from disaster, whereas engag-
ing with and delighting the customer might. You will probably
also be convinced that if you want to delight the customer, you
should find one, give her the experience, and believe what she
tells you about it.

And, if your next project fails, you’ll at least be able to console
yourself with the idea that you are in excellent company.

Adrenaline Junkies and Template Zombies:
Understanding Patterns of Project Behavior
Tom DeMarco, Peter Hruschka, Tim Lister, Steve
McMenamin, James Robertson, and Suzanne Robertson
Dorset House, 2008. 234 pp.
ISBN 978-0-932633-67-5
Reviewed by Elizabeth Zwicky

Adrenaline Junkies and Template Zombies is an excellent book
for somebody who is starting to realize that project management
involves a lot of interesting stuff that is not covered in normal
project management books. Somebody beginning to ask ques-
tions such as “Is it me, or is this somehow a train wreck in prog-
ress?” and “Why do some teams just work better than others?
Can it actually involve chocolate and foam weaponry?” and “Can
a really great team still be the problem?” (Probably it’s a train
wreck, yes the frivolity is causally related to the excellence, and
yes, teams can be misplaced.)

For me, this book is amusing, but not transformative. I recognize
many of the patterns and anti-patterns, I appreciate the authors’
willingness to acknowledge that issues of fit mean that some-
thing can be a positive or a negative depending on its surround-
ings, and I got the satisfying feeling of having experiences fall
into patterns and seeing them with new eyes.

Tableau Data Visualization Cookbook
Ashutosh Nandeshwar
Packt Publishing, 2013. 152 pp.
ISBN 978-1-84968-978-6
Reviewed by Elizabeth Zwicky

Tableau Data Visualization Cookbook is not a cookbook; rather,
this book is a manual arranged by concept. If it were about food,
this book would have “recipes” with titles like “Dicing” and
“Sautéing.” (To be fair, your average cookbook in computing
would have recipes like “Egg-based sauce” with a brief example
about Hollandaise and a passing mention of Eggs Benedict as an
example use, with a cross reference to a recipe for toasting things
and possibly one for poaching eggs. Nobody wants the computer
equivalent of a cookbook, really.)

A cookbook approach would make sense if the manuals were ter-
rible, but they aren’t. They are more oriented to Tableau’s view of
the world (you have to look up graphing things under “Building
Views”), but they are better illustrated, and I prefer their format.
The cookbook layout involves bars that unfortunately highlight
the unchanging section headers “Getting Ready” and “How to do
it . . .”

The book is not terrible, and if the manuals don’t meet your
needs it may help you out. Tableau Data Visualization Cookbook
has some interesting tricks, but on the whole I was disappointed.
In a cookbook format I expect either a lot of information about
specific issues (like the Regular Expression Cookbook) or an
approach that illuminates the peculiarities of the software by
using tasks (like the R Cookbook). Tableau Data Visualization
Cookbook is closer to the latter, but doesn’t carry its examples
through with enough detail or independence to get there.

Vagrant: Up and Running
Mitchell Hashimoto
O’Reilly Media, 2013. 156 pp.
ISBN 10:1-4493-3583-7
Reviewed by Mark Lamourine

Desktop virtualization has been around for about a decade now.
Until recently the desktop VM systems have focused on how to
create a VM and then how to power it on and off. Little details
like OS installation and network configuration were generally
left to the system administrator to manage just as they would

72  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Books

have been for physical hosts. Vagrant lets users ignore or auto-
mate those tasks as they wish.

In eight brief chapters, Hashimoto fulfills the promise of the
title. The first chapter is a dusting of background, theory, and
terminology, closing with a walk-through of the installation
process for Vagrant. By the second page of the second chapter he
has you running your first VM, a stock Ubuntu image.

The process takes longer than that sounds because of the way
Vagrant simplifies OS installation by providing a set of pre-built
minimal installation images called “Boxes.” When you first
create a new VM, you will need a network connection so that the
initialization process can download the initial box. Although the
boxes are small for OS images, they are nonetheless complete
bootable disk images for the target operating system.

The next three chapters cover provisioning a real system on top
of the base image (using scripts, Puppet, or Chef), network varia-
tions, and creating complex system simulations with multiple
virtual machines. The coverage is brief but clear and sufficient.
Hashimoto doesn’t try to fill in every detail. He indicates that
the reader will need to be comfortable with an editor or with
basic Ruby syntax and moves on. The examples are clear, not too
cluttered, and, remarkably, not at all contrived.

The last two chapters introduce the two major ways of extending
Vagrant. The first is by creating custom “Boxes.” These are just
VM images (see above) with a little metadata to help Vagrant
manage them, but boxes provide a means for a developer or tester
to throw away a polluted environment and restore to a well-
known start state quickly and reliably. New boxes can be pulled
from remote Web sites and are cached locally.

Hashimoto discusses plugins last. In writing Vagrant, he has
used the standard mechanisms offered by Ruby to provide hooks
for extending the existing behavior, both adding new commands
and altering the behavior of existing ones.

Often “up and running” style books move so fast in an attempt
to show everything that a tool can do that they leave the reader
without a real working knowledge of the main task. Hashimoto
has written about a tool with a specific purpose and has focused
on showing the new user how to do that job easily. He also man-
ages to provide hints for the possibilities for extensions.

Vagrant is a tool that helps manage desktop virtual machines.
If you’re a software developer for complex Web services, you’re
going to want to at least look at Vagrant, and Vagrant: Up and
Running is a really good place to start. Mitchell Hashimoto is
himself the creator of Vagrant; not all software developers can
also write for humans, but Hashimoto is an effective advocate
and instructor for his tool.

Git Pocket Guide: A Working Introduction
Richard E. Silverman
O’Reilly Media, 2013. 215 pp.
ISBN-10: 1449325866
Reviewed by Mark Lamourine

I’ve been a fan of the O’Reilly pocket references for quite a while.
Especially when learning some new programming language or
tool, I find that the pocket reference is a quick way to get what I
need without the narrative of a tutorial or the depth of a tradi-
tional user guide or reference text.

The Git Pocket Guide uses the same physical format as the
pocket references, but the format is task-oriented instead of
the more typical feature list. This makes sense for Git as its
purpose is to help manage the process of collaborative soft-
ware development.

I like the way Silverman interlaces usage explanation, examples,
and theory. Git takes a significantly different approach to imple-
menting source code revision control than previous tools, such
as CVS and Subversion (though more similar to Mercurial and
Bazaar). Each chapter in the pocket guide provides a brief view
into how Git works when performing the task under discussion.
Unlike many other tools, understanding how Git works helps a
lot in understanding how to use it.

The physical and structural formats create a portable and
utilitarian book that should be enough for most people who are
already familiar with the fundamentals of source code control to
get started and do most tasks with Git.

Puppet Types and Providers: Extending Puppet
with Ruby
Dan Bode and Nan Liu
O’Reilly Media, 2013. 80 pp.
ISBN: 978-1-4493-3932-6
Reviewed by Mark Lamourine

O’Reilly has recently begun publishing a series of thin short-
topic books, and Puppet Types and Providers is one of that line.
The authors focus on a single advanced aspect of working with
Puppet: extending Puppet by adding new managed resources.
This book was timely for me, and I just wish there was documen-
tation this good for the rest of Puppet.

At 80 pages, the book does not have much room for introduc-
tion, but Bode and Liu do manage to cover enough of the Puppet
internals so that the purpose and use of the Types and Providers
mechanisms is clear. Then they get right to the meat.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 73

Books

Briefly, Puppet models target systems by allowing the user to
define a set of resources that should exist on those systems. The
Types mechanism provides means for Puppet developers to
create abstract definitions for new resources. Providers are the
concrete implementation backend for the abstract Type defini-
tions. Especially interesting to me is the explanation of the “suit-
ability” mechanism that Puppet uses to decide which provider to
use to execute the resource requirements.

The book only has four chapters. Following an introduction to
Puppet’s resource model, the exposition of Puppet types and
providers each takes one of the remaining chapters. The final
chapter touches on several advanced features of Puppet resource
management using the type/provider mechanism. Before find-
ing this book , I looked for quite a while for documentation that
clearly demonstrates how to define new Puppet resources. I’m
done looking.

Statement of Ownership, Management, and Circulation, 10/1/13
Title: ;login: Pub. No. 0008-334. Frequency: Bimonthly. Number of issues published annually: 6. Subscription price $90.
Offi ce of publication: USENIX Association, 2560 Ninth Street, Suite 215, Berkeley, CA 94710.
Headquarters of General Business Offi ce of Publisher: Same. Publisher: Same.
Editor: Rik Farrow; Managing Editor: Rikki Endsley, located at offi ce of publication.
Owner: USENIX Association. Mailing address: As above.
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds,
mortgages, or other securities: None.
The purpose, function, and nonprofi t status of this organization and the exempt status for federal income tax purposes have not
changed during the preceding 12 months.

Extent and Nature of Circulation Average No. Copies
Each Issue During
Preceding 12 Months

No. Copies of Single
Issue (August 2013)
Published Nearest to
Filing Date

a. Total Number of Copies
3479 3100

b. Paid Circulation

(1) Outside-County Mail Subscriptions 1723 1667

(2) In-County Subscriptions 0 0

(3) Other Non-USPS Paid Distribution 1010 987

(4) Other Classes 0 0

c. Total Paid Circulation 2733 2654

d. Free Distribution By Mail

(1) Outside-County 0 0

(2) In-County 0 0

(3) Other Classes Mailed Through the USPS 64 75

(4) Free Distribution Outside the Mail 490 219

e. Total Free Distribution 554 294

f. Total Distribution 3287 2948

g. Copies not distributed 192 152

h. Total 3479 3100

i. Percent Paid 83% 90%

Paid Electronic Copies 417 432

Total Paid Print Copies 3150 3086

Total Print Distribution 3703 3380

Percent Paid (Both Print and Electronic Copies) 85% 91%

 I certify that the statements made by me above are correct and complete.
 Anne Dickison, Co-Executive Director 10/1/13

Notes

74  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

USENIX Member Benefits
Members of the USENIX Association
 receive the following benefits:

Free subscription to ;login:, theAssocia-
tion’s magazine, published six times a year,
featuring technical articles, system admin-
istration articles, tips and techniques, prac-
tical columns on such topics as security,
Perl, networks, and operating systems, book
reviews, and reports of sessions at USENIX
conferences.

Access to ;login: online from December
1997 to this month:
www.usenix.org/publications/login/

Access to videos from USENIX events in
the first six months after the event:
www.usenix.org/publications/
multimedia/

Discounts on registration fees for all
 USENIX conferences.

Special discounts on a variety of products,
books, software, and periodicals: www.
usenix.org/membership/
specialdisc.html.

The right to vote on matters affecting the
Association, its bylaws, and election of its
directors and officers.

For more information regarding
membership or benefits, please see
www.usenix.org/membership/
or contact office@usenix.org.
Phone: 510-528-8649

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by writing to
board@usenix.org.

P R E S I D E N T

Margo Seltzer, Harvard University
margo@usenix.org

V I C E P R E S I D E N T

John Arrasjid, VMware
johna@usenix.org

S E C R E T A R y

Carolyn Rowland
carolyn@usenix.org

T R E A S U R E R

Brian Noble, University of Michigan
noble@usenix.org

D I R E C T O R S

David Blank-Edelman, Northeastern
 University
dnb@usenix.org

Sasha Fedorova, Simon Fraser University
sasha@usenix.org

Niels Provos, Google
niels@usenix.org

Dan Wallach, Rice University
dwallach@usenix.org

C O - E X E C U T I V E D I R E C T O R S

Anne Dickison
anne@usenix.org

Casey Henderson
casey@usenix.org

2014 Election for the USENIX
Board of Directors
Anne Dickison and Casey Henderson, USENIX
Co-Executive Directors

The biennial election for officers and direc-
tors of the Association will be held in the
spring of 2014. A report from the Nominat-
ing Committee will be emailed to USENIX
members and posted to the USENIX Web
site in December 2013 and will be published
in the February 2014 issue of ;login:.

Nominations from the membership are
open until January 6, 2014. To nominate
an individual, send a written statement of
nomination signed by at least five (5) mem-
bers in good standing, or five separately
signed nominations for the same person,
to the Executive Directors at the Associa-
tion offices, to be received by noon PST,
January 6, 2014. Please prepare a plain-
text Candidate’s Statement and send both
the statement and a 300 dpi photograph to
production@usenix.org, to be included in
the ballots.

Ballots will be mailed to all paid-up mem-
bers in early February 2014. Ballots must be
received in the USENIX offices by March
17, 2014. The results of the election will
be announced on the USENIX Web site by
March 26 and will be published in the June
issue of ;login:.

The Board consists of eight directors, four
of whom are “at large.” The others are the
president, vice president, secretary, and
treasurer. The balloting is preferential:
those candidates with the largest numbers
of votes are elected. Ties in elections for
directors shall result in run-off elections,
the results of which shall be determined by
a majority of the votes cast. Newly elected
directors will take office at the conclusion
of the first regularly scheduled board meet-
ing following the election, or on July 1, 2014,
whichever comes earlier.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 75

NOTES

USA Team Wins Big at 2012
 International Olympiad in
 Informatics
Brian C. Dean, Director, USA Computing
Olympiad

G’day all! Scenic, sunny Brisbane, Australia
was the location this year for the Interna-
tional Olympiad in Informatics (IOI), the
world’s most prestigious computing com-
petition at the high-school level, involving
teams from 80 countries. This year, team
USA consisted of:

•	 Joshua Brakensiek (Junior, Home-
schooled, AZ)

•	 Steven Hao (Junior, Lynbrook High
School, CA)

•	 Johnny Ho (Senior, Lynbrook High
School, CA)

•	 Scott Wu (Sophomore, Baton Rouge
Magnet High School, LA)

Continuing a tradition of strong performance
at past IOIs, our showing at the 2013 IOI
was quite good, with two gold medals (Brak-
ensiek, Wu) and two silver medals (Hao,
Ho), placing us among the top countries
in attendance. Hosted at the University of
Queensland, the week-long event included
two full days of competition as well as fun
excursions to the Sunshine Coast and the
Australia Zoo, giving us time to interact
with like-minded peers from all over the
world, as well as a few Kangaroos and
Koalas. On the technical side, the competi-
tion was of the highest quality, including
some extremely challenging and creative
algorithmic tasks. My favorite task required
students to design algorithms that could

quickly classify hundreds of works of art by
style (e.g., neoplastic modern art, impres-
sionist landscapes, or expressionist action
paintings). It was an amazing week, and one
of the best IOIs ever in my memory.

Every year, the IOI team is selected and
trained by the USA Computing Olympiad
(USACO). One of several major scientific
Olympiads in the States, the USACO (usaco.
org) supports pre-college computing in the
USA and worldwide through free on-line
educational material and monthly pro-
gramming competitions at several levels
throughout the academic year. Each sum-
mer, the USACO invites the top students in
the USA to an intensive academic “training
camp”, held at Clemson University, where
they receive advanced instruction and
contend for placement on the USA team to
attend the IOI. This summer, thanks to our
generous sponsors such as USENIX, we
were able to scale up the size of our summer
camp by 50%, inviting the top 24 students in
the country. Highlights of the camp experi-
ence included an excursion to Oak Ridge
National Labs (home of some of the world’s
fastest supercomputers), a lecture and pro-
graming challenge on machine learning
from distinguished alum Percy Liang (now
a professor at Stanford), a game contest
where students watched their programs
compete head-to-head in an animated
tournament, and an optimization challenge
where student teams computed traveling
salesman tours of the stars in the night sky,
visualized on Clemson’s huge planetarium
dome.

The USACO depends on
a small but dedicated vol-
unteer staff of amazingly-
talented individuals, many
of them former IOI cham-
pions themselves. Our staff
this year includes Mark
Gordon (graduate student,
University of Michigan,
also our deputy team leader
at the IOI), Jacob Steinhardt
(graduate student, Stanford),
Neil Wu (under graduate,
Harvard), Nathan Pinsker

(undergraduate, MIT), Dr. Richard Peng
(Instructor of Applied Mathematics, MIT),
and Dr. Eric Price (soon to be Professor at
the University of Texas, Austin). I am ex-
ceedingly grateful to these individuals
for their hard work throughout the year
in organizing USACO activities, and also
to our sponsors, for making our programs
possible. Sponsorship by USENIX of the
USACO plays a truly crucial role in main-
taining the high quality of our country’s
computing talent.

Thanks to Our Volunteers
Anne Dickison and Casey Henderson, USENIX
Co-Executive Directors

As many of our members know, USENIX’s
success is attributable to a large number
of volunteers, who lend their expertise and
support for our conferences, publications,
good works, and member services. They
work closely with our staff in bringing you
the best there is in the fields of systems
research and system administration. Many
of you have participated on program com-
mittees, steering committees, and subcom-
mittees, as well as contributing to this
magazine. We are most grateful to you all.
We would like to make special mention of
some people who made particularly signifi-
cant contributions in 2013.

Program Chairs
Keith A. Smith and Yuanyuan Zhou: 11th
USENIX Conference on File and Storage
Technologies (FAST ’13)

Alexandra Meliou and Val Tannen: 5th
USENIX Workshop on the Theory and
Practice of Provenance (TaPP ’13)

Nick Feamster and Jeff Mogul: 10th
 USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’13)

Petros Maniatis: 14th Workshop on Hot
Topics in Operating Systems (HotOS XIV)

Chris St. Pierre: 2013 USENIX Configura-
tion Management Summit (UCMS ’13)

Emery Berger and Kim Hazelwood: 5th
USENIX Workshop on Hot Topics in
 Parallelism (HotPar ’13)The 2013 USA IOI team: Joshua Brakensiek, Johnny Ho,

 Steven Hao, and Scott Wu. Photo courtesy Brian C. Dean.

76  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Notes

Yixin Diao (General Chair); Jie Liu and
Ming Zhao (Program Co-Chairs): 8th Inter-
national Workshop on Feedback Computing

Dilma Da Silva and George Porter: 5th
USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’13)

Uwe Brinkschulte, Christian Müller-Schloer,
and Mathias Pacher: 2013 Workshop on
Embedded Self-Organizing Systems
(ESOS ‘13)

Andrew Birrell and Emin Gün Sirer: 2013
USENIX Annual Technical Conference
(USENIX ATC ’13)

Jeffrey Kephart (General Chair); Calton
Pu and Xiaoyun Zhu (Program Co-Chairs):
10th International Conference on Auto-
nomic Computing (ICAC ’13)

Ajay Gulati: 5th USENIX Workshop on
Hot Topics in Storage and File Systems
(HotStorage ’13)

Nicole Forsgren Velasquez and Carolyn
Rowland: 2013 USENIX Women in Ad-
vanced Computing Summit (WiAC ’13)

Cristian Cadar and Jeff Foster: 5th Work-
shop on Hot Topics in Software Upgrades
(HotSWUp ’13)

Sam King: 22nd USENIX Security Sympo-
sium (USENIX Security ’13)

Walter Mebane and Dan S. Wallach: 2013
Electronic Voting Technology Workshop/
Workshop on Trustworthy Elections (EVT/
WOTE ’13); also Editors-in-Chief of the
USENIX Journal of Election Technology and
Systems (JETS)

Chris Kanich and Micah Sherr: 6th Work-
shop on Cyber Security Experimentation
and Test (CSET ’13)

Jed Crandall and Joss Wright: 3rd USENIX
Workshop on Free and Open Communica-
tions on the Internet (FOCI ’13)

Kevin Fu, Darren Lacey, and Zachary
 Peterson: 2013 USENIX Workshop on
Health Information Technologies (Health-
Tech ’13)

Vern Paxson: 6th USENIX Workshop on
Large-Scale Exploits and Emergent Threats
(LEET ’13)

Matt Blaze: 2013 USENIX Summit on Hot
Topics in Security (HotSec ’13)

Jon Oberheide and William Robertson: 7th
USENIX Workshop on Offensive Technolo-
gies (WOOT ’13)

Narayan Desai and Kent Skaar: 27th Large
Installation System Administration Confer-
ence (LISA ’13)

Kyrre Begnum: 2013 USENIX Summit for
Educators in System Administration
(SESA ’13)

Invited Talks/Special Track Chairs
Nitin Agrawal: Poster Session Coordinator
at FAST ’13

Joseph Tucek: Work-in-Progress Reports
(WiPs) Coordinator at FAST ’13

John Strunk: Tutorial Chair at FAST ’13

Matthew Caesar: Poster/Demo Program
Chair at NSDI ’13

Michael Bailey (Chair), Elie Bursztein,
Wenke Lee, and Stefan Savage: Invited
Talks Committee at USENIX Security ’13

William Enck: Poster Session Coordinator
at USENIX Security ’13

Nikita Borisov: Rump Session Chair at
USENIX Security ’13

Ben Ransford: Poster Session Coordinator
at HealthTech ’13

Michael Bailey: Deputy Program Chair at
HotSec ’13

Nicole Forsgren Velasquez and Cory
Luening hoener: Invited Talks Coordinators
at LISA ’13

Lee Damon: Lightning Talks Coordinator at
LISA ’13

Kyrre Begnum: Workshops Coordinator at
LISA ’13

Chris St. Pierre: Guru Is In Coordinator at
LISA ’13

Marc Chiarini: Poster Session Coordinator
at LISA ’13

Matt Simmons: Tutorial Coordinator at
LISA ’13

Paul Krizak, Chris McEniry, and Adele
Shakal: LISA ’13 Lab Hack Space
Coordinators

Other Major Contributors
John Arrasjid, David Blank-Edelman,
Sasha Fedorova, Brian Noble, Niels Provos,
Carolyn Rowland, Margo Seltzer, and Dan
Wallach for their service on the USENIX
Board of Directors

Dan Geer, Eric Allman, and Niels Provos for
serving on the Audit Committee

Margo Seltzer for chairing the USENIX
Board of Directors Nominating Committee

Brian Noble, John Arrasjid, Sasha Fedorova,
Cory Lueninghoener, and Matt Simmons for
serving on the Awards Committee

Brian Dean, Mark Gordon, Jacob Stein-
hardt, Neil Wu, Nathan Pinsker, Dr. Richard
Peng, and Dr. Eric Price, this year’s direc-
tors and coaches for the USA Computing
Olympiad, co-sponsored by USENIX

Eddie Kohler for his HotCRP submissions
and reviewing system

Tadayoshi Kohno for organizing the Tribute
to Evi Nemeth at USENIX Security ’13

Paul Vixie and the ISC for providing 9-layer
ISO T-shirts in honor of Evi Nemeth at
USENIX Security ’13 and LISA ’13

Peter Honeyman for assistance with
HotSec ’13

Jacob Farmer of Cambridge Computer for
his sponsorship of the traveling LISA Data
Storage Day series and for organizing the
Storage Pavilion and Data Storage Day at
LISA ’13

Matt Simmons, Ben Cotton, and Michele
Chubirka for blogging about USENIX and
LISA ’13 activities

Tom Limoncelli for assistance with LISA
’13 promotion

David Nolan, Andrew Mundy, and
 Dragos Jula for assistance with LISA ’13
connectivity

Andrew Mundy for assistance with LISA ’13
videography

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 77

RepoRtsConference Reports

22nd USENIX Security Symposium
(USENIX Security ’13)
Washington, D.C.
August 14–16, 2013
Summarized by: Theodore Book, Sven Bugiel, Rik Farrow, Xinyang Ge,
Frank Imeson, Bhushan Jain, Rahul Pandita, John Scire, Gang Wang,
and Ziming Zhao-

Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)

Sam King, the Program Chair, told us that there were 277 sub-
missions to the 22nd Security Symposium, and that 44 had been
accepted. After thanking the program committee members,
Sam suggested that we not miss the rump session on Wednesday
night (which turned out to be both a lot of fun and interesting).

The Best Paper award went to “Control Flow Integrity for COTS
Binaries,” by Mingwei Zhang and R. Sekar (Stony Brook Univer-
sity). The Best Student Paper award was presented to “Securing
Computer Hardware Using 3D Integrated Circuit (IC) Technol-
ogy and Split Manufacturing for Obfuscation,” by Frank Imeson,
Ariq Emtenan, Siddharth Garg, and Mahesh V. Tripunitara
(University of Waterloo). Finally, Sam presented Crispin Cowen
with the Test of Time award for Stackguard, a mechanism that
guards against stack overflows and that Crispin led the develop-
ment of more than ten years ago.

Wednesday Keynote Address
Summarized by Rik Farrow (rik@usenix.org)

Dr. Felten Goes To Washington: Lessons from 18 Months
in Government
Edward W. Felten, Director, Center for Information Technology Policy, and
Professor of Computer Science and Public Affairs, Princeton University;
former Chief Technologist, U.S. Federal Trade Commission

Ed Felten worked a year and a half as the Chief Technologist at
the Federal Trade Commission (FTC). He explained what work-
ing with buildings full of lawyers was like, and what we can do to
work more effectively with these people. There are differences in
culture, and he adopted the mode of dress of Washington people.
Emphasizing this point, Felten removed his suit coat, tie, and
dress shirt and revealed a t-shirt showing Evi Nemeth’s nine
protocol layers, a more appropriate style of dress for USENIX
conferences than the coat-and-tie of Washington.

Felten pointed out that Senator Ted Stevens got into trouble
for describing the Internet as a series of tubes, but this was not
that ridiculous, as we had talked about networks as pipes all the
time. We still believe that politicians don’t get it, but then they
stereotype us as well. Felten displayed a picture of a kid in his
parent’s basement with cigarette smoke-stained PC XT. People
in Washington did notice the SOPA and PIPA protests, so the

people here do believe they need to pay attention to us. Still, how
to meet and work with us remains an awkward problem. Felten
used a photo of Elvis shaking hands with President Nixon as an
example (https://en.wikipedia.org/wiki/File:Elvis-nixon.jpg);
we need to be like Elvis and learn how to work with Nixon.

Felten then explained his job. The FTC missions are consumer
protection and antitrust/competition (shared with DoJ) and
involve civil law enforcement and investigation. Felten acted as
the policy advisor to the Chairman of the FTC, as an internal
technology consultant in the agency, and finally, as an ambassa-
dor to the tech community.

At this point, Felten’s talk got really interesting as he
explained politics using examples from set theory and algo-
rithms. In our culture, we are obliged to pretend to agree on
truth and to learn from each other, instead of using overheated
rhetoric and bogus claims. But politics is not a search for truth,
and this is a feature rather than a bug. Democracy is not a search
for truth, but an algorithm for resolving disagreements—voting.
With voting, all questions are decidable in constant time (O(1)).
There is no need to decide issues based on underlying facts or
coherent explanations.

Individual legislators appear to be logically inconsistent and
indifferent to truth, but politicians behave that way for a reason.
Felten then showed pseudocode to explain how politicians can
appear inconsistent. He proposed that voters have a “utility
function” that allows them to like or dislike bills, and he made
assumptions: that the behavior of voters is sensible, and that
their ratings on two disjoint bills is disjoint. Felten went on to
show that because voters can like, or dislike, bills by differing
amounts, it is possible for a combination of two disjoint bills
to fail passage because the degree of dislike for one part of the
bill is greater than the degree of “like” for the remainder of the
bill. The result is that the outputs of democracy are not logically
consistent. Felten expounded on this model, showing that if
legislatures follow majority opinion, they will also be logically
inconsistent and appear indifferent to the truth—because they
are. He also pointed out that the problem of adding amendments
to bills is NP complete.

Policy-makers need to be generalists, as they have a broad
domain to cover and they can’t be an expert in every area. Their
goal is to make good decisions, and to do so they need to be clue-
ful. Felten presented his ladder of cluefulness. The bottom rung
is to recognize that expertise exists. The middle step is to recog-
nize true experts, and the top step involves working effectively
with experts. The top rung for experts is to work effectively with
decision-makers. To do so, you learn about their knowledge and

78  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

preferences and provide information to help fill in the structure
of the decision space.

If you have reached the right point in your career, consider tak-
ing a sabbatical and working for the government, just as Felten
and Steve Bellovin have done. Felten suggested spending at least
a year so you can be productive. Felten also explained that for
people starting out, there currently is no career path that leads
from being a working technologist to senior advisor, and it would
be good if that existed.

Dr. Felten left a lot of time for discussion. Tony Dahbura (Johns
Hopkins) observed an important paradox that appears in society,
that the more information becomes accessible, the more unin-
formed people’s behavior appears to be, perhaps because they
are reluctant to say “I don’t know.” Felten said that experience
has shown that having more information has made people better
decision-makers on the whole, but wouldn’t go as far as Dahbura
had in saying it was actually harmful. People need to have skills to
use that information. People also are attempting to confirm their
beliefs, and it has likely always been that way. Knowing how to
turn information access into better decision-making is important.

Iulia Ion (Google) asked what people who don’t have sabbaticals
can do to get involved and share their own views. Felten sug-
gested getting in touch with a policy-maker or the people on
their staff and developing a contact point. The staff people who
answer the phone or work in the office are there largely to work
with constituents, and educating a staff member well might have
a greater impact than talking directly to the decision-maker.

Greg Shannon (CMU) pointed out that some organizations have
legislative affairs people. Then Greg asked what it was like to
have someone listen to him. Felten had done a lot of due dili-
gence before going into the job, and knew he had to work with
the people in the FTC who knew how to work with Congress and
other decision-makers. Felten said you have to socialize the idea
you want to get across, and he worked early on to develop a rap-
port with FTC staff members. Government is designed to make
things hard to do, the checks and balances put there to prevent
abuse. Government is closer to university politics than you might
think, quipped Felten.

William McAlter (Johns Hopkins Applied Physics Lab) asked
where Felten learned about working in government. Felten said
he learned about this through his struggle with the DMCA and
how it affected his research, and later through being an advisor
on the Microsoft antitrust case. Felten said it is something you
have to learn over time.

Joe Kiniry (Technical University of Denmark) said that, having
worked in both Europe and America, he had discovered some dif-
ferences. For example, in Denmark, there is not a single legisla-
tor educated in STEM. In America, that tastes different. Felten

replied that having politicians trained in sciences is a good thing;
for example, there’s a New Jersey senator who was trained in
physics and actually understands statistics. In the House, on the
other hand, STEM education is quite rare, which becomes an
issue. Part of the issue is the career gap, and another is the belief
that knowledge of technology disqualifies you from participating
in that policy discussion.

Bill Simpson thanked Felten for a great call to arms. He also
suggested getting involved in campaigns, as he has done, by
providing technical support. Simpson pointed out that of those
people you are participating in campaigns with, about half of
them will become staffers. Simpson said he has been doing this
since the mid-’70s, and now visits people he knows in congres-
sional offices when he visits Washington. Felten agreed that this
is excellent advice, and went further by saying that campaigns
have become much more analytical and data driven, so there is
now a greater need for technical support, to apply your expertise
to campaigns.

Chris Watjic (Georgetown) wondered how to help politicians
identify quacks. Felten suggested helping people recognize what
type of credentials represent expertise, such as being a long-time
member of the IETF (like Bill Simpson), or being a program
chair or program committee member. Unfortunately, sometimes
credibility comes from a person who works for a company that
has a stake in the outcome of a decision.

Michael Hicks (University of Maryland) asked whether there is
a way that researchers could do their jobs better to help with the
political process. Felten said that we currently focus on building
knowledge brick-by- brick, but sometimes we need to choose our
projects differently. Also, we need to examine how we decide to
publicize our findings, which could be as simple as emailing a
contact about your research.

There was much more discussion, and additional points that
Felten provided in his well-received and prepared talk. I suggest
that you watch the video or listen to the audio on the USENIX
Web site: https://www.usenix.org/conference/usenixsecurity13/
dr-felten-goes-washington-lessons-18-months-government.

Network Security
Summarized by Gang Wang (gangw@cs.ucsb.edu)

Greystar: Fast and Accurate Detection of SMS Spam
Numbers in Large Cellular Networks Using Gray
Phone Space
Nan Jiang, University of Minnesota; Yu Jin and Ann Skudlark, AT&T Labs;
Zhi-Li Zhang, University of Minnesota

Yu Jin talked about Greystar, their system for detecting SMS
spam in cellular networks. The authors’ key assumption is that
spammers randomly select target phone numbers from a finite
phone number space. So they will inevitably send messages
to numbers that normal users typically would not reach: for

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 79

RepoRts

example, those associated with laptop data cards or electricity
meters. Yu called these numbers “gray” phone numbers.

Then Yu described their statistic model for SMS spammer detec-
tion based on gray phone numbers. To evaluate the system, they
experimented with five-months of SMS call records from AT&T.
The experiments demonstrated that they could achieve high
accuracy, and also detect spammers much faster than existing
crowdsourced user reports. In particular, Yu mentioned that
their system, once deployed, could reduce spam volume by 75%
during peak hours.

Several people asked about the possibility of using other features
to improve the system, for example, messages sent per day. Yu
responded that these features were complementary, and some
could easily raise false alarms. Another audience member asked
what would happen if attackers didn’t target randomly selected
phone numbers but real, valid phone numbers collected via other
methods, e.g., social engineering. Yu said that, based on their
real-world data, 90% of the spammers fall into their assumption.
Finally, there was a question about possible collaboration of dif-
ferent carriers to combat SMS spam together. Yu said collabora-
tions would be helpful, in their case, to accurately identify gray
phone numbers and catch spammers; however, in practice, this
type of collaboration was still hard to achieve.

Practical Comprehensive Bounds on Surreptitious
Communication over DNS
Vern Paxson, University of California, Berkeley, and International Computer
Science Institute; Mihai Christodorescu, Qualcomm Research; Mobin Javed,
University of California, Berkeley; Josyula Rao, Reiner Sailer, Douglas Lee
Schales, and Marc Ph. Stoecklin, IBM Research; Kurt Thomas, University
of California, Berkeley; Wietse Venema, IBM Research; Nicholas Weaver,
International Computer Science Institute and University of California,
San Diego

Wietse Venema presented their work on detecting stealth com-
munication over DNS. Today, attackers can piggyback commu-
nication in DNS queries to transmit information secretly. Wietse
presented a new measurement procedure that could bound the
amount of information that a domain could receive through DNS
queries. The key idea is to use lossless compression. Potentially,
attackers may encode information in a DNS query name, query
type, query timing, or a combination of them. The authors’ pro-
cedure takes all potential information vectors and investigates
the upper bound of information that can be encoded in a stream
of DNS queries. Using this bound, they can narrow down surrep-
titious communications to a small set of DNS lookups. Also, the
set should be small enough for manual assessment.

A practical challenge for this procedure is how to minimize the
analysis burden in the face of tens of millions DNS lookups. In
the talk, Wietse showed how they pare down the volume of DNS
queries by eliminating obvious benign candidates. They evalu-
ated this procedure with a real-world data set of 230 billion DNS
lookups. Their procedure had no false positives and was able to

detect 59 confirmed tunnels. Wietse also pointed out that they
found that 4 KB/day was a reasonable threshold, which led to an
acceptable assessment burden (one to two events per week) for
enterprise sites to take in practice.

One audience member asked whether they could share the data
set. Wietse said they were happy to share the code and results,
but the data set was from IBM and could not be shared because
of company policy. Another audience member asked whether
this approach would still work if DNS queries were encrypted.
Wietse’s reply was positive. Someone asked how they determined
the thresholds in the measurement procedure. Wietse said that
the tradeoff was made based on their empirical analysis of real
data: a smaller threshold (4 KB) for individual clients and a
larger threshold (10 KB) for extremely aggregated logs.

Let Me Answer That for You: Exploiting Broadcast
Information in Cellular Networks
Nico Golde, Kevin Redon, and Jean-Pierre Seifert, Technische University
Berlin and Deutsche Telekom Innovation Laboratories

Kevin Redon presented a new attack in cellular networks. Focus-
ing on GSM, he demonstrated how attackers could hijack a
mobile terminated service (e.g., phone call) and perform a denial
of service attack. This attack can occur because GSM initiates
the paging procedure on a broadcast medium before setting
up any authentication. So attackers who are also in this net-
work can observe the paging requests of other phones (victims)
and send a fake paging response on behalf of the victim. If the
attacker responds faster than the victim, the GSM network will
accept the fake response and ignore the victim’s response. After
these replies, GSM will set up service authentication (which will
fail) and the victim’s service will be dropped.

Kevin demonstrated the feasibility of this attack using freely
modifiable software and hardware for GSM networks. Other
standards, such as UMTS or LTE, also have the same (vulner-
able) paging procedure, which is worth noting. At the end of the
talk, Kevin showed a list of possible countermeasures, using
A5/3 encryption to prevent hijacking, for example, or perform-
ing authentication before paging procedure, etc. Kevin said they
notified the respective standards organizations about this prob-
lem but have had no immediate reaction from them so far.

Video about the attack can be found here: https://www.youtube.
com/watch?v=oep3zpY6cvE, https://www.youtube.com/
watch?v=4umb2P-93BQ.

One audience member asked which countermeasure is actu-
ally deployable in practice. Kevin said most countermeasures
are about protocol modification, which requires efforts from
standards organizations. At the very least, we could adopt the
more secure A5/3 to mitigate the threat. A follow-up question
was whether they tested any proposed countermeasures using
their testbed. Kevin said they empirically tested a few, but not

80  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

all of them. Another audience member asked whether the cel-
lular tower could notice the presence of this attack based on the
duplicated paging responses. Kevin said the cellular tower could
detect that there were two phones sending responses, but could
not tell which one was the legitimate one.

Potpourri
Summarized by Ziming Zhao (zzhao30@asu.edu)

Dowsing for Overflows: A Guided Fuzzer to Find Buffer
Boundary Violations
Istvan Haller and Asia Slowinska, VU University Amsterdam; Matthias
Neugschwandtner, Vienna University of Technology; Herbert Bos, VU
University Amsterdam

Istvan started his presentation by explaining that buffer
overflows are still among the top three threats after 40 years
of research. He then provided context about state-of-the-art
automated testing approaches by explaining static analysis and
symbolic execution. Static analysis is difficult to make path-sen-
sitive and inter-procedural, and it generates many false positive
and negatives. Even though symbolic execution could achieve
significant code coverage, the exponential number of possible
paths means it is not practical in many cases.

By showing a piece of buggy code from the Nginx Web server,
Istvan concluded that complete code coverage cannot even
guarantee triggering a bug. To address these issues, Istvan and
his co-authors tried to narrow down the scope of their research
problem. Instead of pursuing complete coverage of paths, they
focused on high-priority code fragments, especially the code that
accesses an array in a loop.

They proposed to first identify and rank loops based on their bug
probability, calculated from features such as whether the loop
has a pointer dereference. Using taint tracking, they were then
able to identify the variables that may influence potential buggy
loops. Finally, they performed symbolic execution only on these
identified variables, which reduces the test space tremendously.

To explain their symbolic execution approach, Istvan first laid
out the basics of symbolic execution followed by some traditional
search strategies, such as depth first search and code coverage.
They proposed using a value coverage search strategy, which
showed incredible performance in terms of search time. In
conclusion, Istvan showed that their implemented tool, Dowser,
could detect bugs in less than a minute for some programs that
previously had required more than eight hours analysis.

Someone asked how their dynamic analysis was guaranteed to
find the code that modifies pointers. Istvan answered that the
learning process was important; more time spent on learn-
ing would increase the quality. Another attendee asked how
the results of value coverage were searched without source
code. Istvan replied that the only part of their analysis using
source code was the static analysis to find loops. Someone

asked which semantic engines was their work based on. Istvan
replied they used some standard semantics engines that have
been out for years.

MetaSymploit: Day-One Defense Against Script-Based
Attacks with Security-Enhanced Symbolic Analysis
Ruowen Wang, Peng Ning, North Carolina State University; Tao Xie,
University of Illinois at Urbana-Champagne; Quan Chen, North Carolina
State University

Ruowen Wang started his presentation by introducing Meta-
sploit, a Ruby-based penetration framework that contains
more than 1,000 attack scripts. The typical mechanism that a
Metasploit script uses has four steps: it (1) probes a vulnerable
target, (2) generates an attack payload dynamically based on the
probe results, (3) sends that payload to the victim, and (4) trig-
gers the vulnerability and compromises the target.

He then showed a number of Internet news articles about hack-
ers using Metasploit to attack production systems; Metasploit as
a powerful penetration tool has turned into a real-world weapon.
Ruowen and his co-authors have proposed an effective technique
to defend against attacks launched by Metasploit. He explained
that their approach does not require a vulnerable applications
and testing environment, but only uses security-enhanced sym-
bolic analysis to generate IDS signatures.

Ruowen presented the architecture of their tool, MetaSymploit.
MetaSymploit symbolically executes attack scripts collected
from Metasploit and captures fine-grained attack behaviors and
conditions. By using both symbolic values and concrete values
in the generated payload from MetaSymploit, they were able to
extract signature patterns for specific attack payloads.

To implement their idea, Ruowen presented their efforts to develop
a symbolic execution engine for Ruby 1.9.3. They have integrated
their work into Metasploit 4.4. Based on their evaluation, their tool
could generate snort roles for 548 attack scripts. The performance
required less than one minute for each script, wihch is impressive
considering that symbolic execution was adopted.

An attendee asked whether Ruowen had considered combining
the generated rules. Ruowen replied that they are looking into
some work on aggregating rules with regular expressions. Ses-
sion chair David Wagner asked how hard it is for the bad guys to
defend against this work. Ruowen said it is possible for bad guys
to defend against their technique, but they face challenges. Shuo
Chen (Microsoft Research) asked whether the input size of the
symbolic execution introduced any performance issues. Ruowen
replied that it was not an issue in their study.

Towards Automatic Software Lineage Inference
Jiyong Jang, Maverick Woo, and David Brumley, Carnegie Mellon University

Jiyong Jang explained the motivations for software lineage
inference, which is to recover the lineage given a set of program
binaries. Software lineage inference could provide information
in many security scenarios, such as malware triage and software

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 81

RepoRts

vulnerability tracking. Even though there are abundant analyses
of software history and lineage, how to infer software lineage
from binaries automatically is still an open question.

To address this problem, Jiyong presented a list of software
features that could be utilized to infer a temporal ordering and
evolutionary relationships among binaries. He also explained
some features were chosen based on the common understanding
that program size and complexity tend to increase rather than
decrease as new revisions are released.

To measure the difference between the feature sets from binaries,
Jiyong presented several techniques that include symmetric
distance, dice coefficient distance, Jaccard distance, Jaccard
containment distance, and weighted symmetric distance. Jiyong
then showed that the lineage inference algorithm they proposed
performed similarly regardless of the distance metrics, with
 Jaccard containment distance being the exception.

To evaluate their work, Jiyong presented some lineage examples
from real-world binaries compared with ground truth generated
from source code. Jiyong focused on one example in which the
automatically inferred lineage differed from the ground truth.
Jiyong explained that a deeper manual analysis revealed that a
version of the software was reverted to version 1 after several
generations instead of evolving from the previous version. This
was the root cause of the difference, and their automatically
inferred results were accurate and able to identify this change.

Sumam Jana (UT Austin) asked whether their work is based
on source code or binary. Jiyong replied their work only needs
binaries. One attendee asked about how they handled obfus-
cated malware. Jiyong replied they had considered a lot of met-
rics, including some dynamic features, and had combined them
with other features to achieve better accuracy for malware.
Someone from Maryland asked about the particular challenges
involved in extracting lineage relationships from binaries since
there is already work doing the same thing for source code.
Jiyong said working on binaries required much more careful
feature selection.

Mobile Security I
Summarized by John Scire (jscire@stevens.edu)

Securing Embedded User Interfaces: Android and Beyond
Franziska Roesner and Tadayoshi Kohno, University of Washington

Franziska described the motivation for their work on embedded
user interfaces. Currently, Web browsers have a simplistic and
mostly secure way of embedding third-party material into a
Web site using iframes, which provide secure isolation between
UI elements; however, Android does not have any way to do
cross-application embedding securely. What currently exists
in Android is the embedding of ads in an application, but this is
done using third-party ad libraries. She gave a great example to

demonstrate a type of attack that exists with these ad libraries
on current stock Android, where an embedded ad could change
all of the other child UI elements in an application. She went on
to describe some of the previous work related to the embedded
UI in Android, but these only involved approaches specifically
tailored to these ad libraries. The approach that her team took
was creating a modified version of Android that supports secure
cross-application embedding, which they call LayerCake.

Franziska provided some background knowledge about how
Android applications work so as to understand how their modi-
fication works. An Android application consists of one or more
elements that are known as Activities and within each Activity
there is a tree of UI elements known as Views. The modification
itself, as described by Franziska, involves three components.
The first is the separation of processes, which essentially works
similarly to iframes. They created a new View called Embed-
dedActivityView that will display the embedded content. This
new addition allows the parent and child elements to be isolated
from one another, while still having communication between
them. The second component is to use separate windows for
each of these Embedded Activity Views. This is because their
first component, creating new Views, still allows for UI elements
to grab data passing through the layout tree. The third compo-
nent involves various other additions to handle other security
concerns discussed in the paper.

The evaluation of LayerCake involved, in total, more than 2,500
changes that included fundamental changes to the Activity-
Manager and WindowManager. In the applications they tested,
higher load times were required to load all of the embedded
activities. The parent activity load times, on the other hand,
were unaffected. Because each Activity is in its own window,
the Android WindowManager has to be involved to switch
focus based on user input. This additional indirection, however,
had little impact on the application. For instructions on how to
download and flash LayerCake onto an Android device, go to
http://layercake.cs.washington.edu.

Will Enck (NC State) asked about how this modified Android
would handle software dependencies with embedded UI ele-
ments in an application. Franziska replied that there was not
one real answer, but she provided some approaches, including
installing the dependencies at the Android store. Paul Pierce
(UC Berkeley) asked about having any plans with Google to inte-
grate this into stock Android. Franziska replied that she had not
talked to Google about this yet, but would love to.

Automatic Mediation of Privacy-Sensitive Resource
Access in Smartphone Applications
Benjamin Livshits and Jaeyeon Jung, Microsoft Research

Ben began his talk by providing an overview of permissions in
mobile applications. Permissions mainly go under two catego-

82  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

ries, installation-time and runtime, these names describing the
point at which they are shown and asked for. Installation-time
permissions were not enough, however, because users simply
click “Accept” and continue using the application without really
knowing what they are consenting to. Although this may have
implications on iOS and Android, the rest of the talk focused on
location data permissions on the Windows Phone platform.

Ben explained an MS guideline document that has various criteria
for properly obtaining a user’s permission, which in the scenario of
location data requires having some kind of prompt telling the user
that an application wants to use her location. By looking at how
various example applications implemented prompts, Ben and his
team were able to come up with a static analysis approach using a
Control Flow Graph to locate missing prompts for resources and
put them in when they were actually missing. They developed two
different methods to do this. The first was the Dominator-Based
method, where the prompt would be placed at the dominating node
for a particular access request node. Ben said that this method,
although extremely fast, prompts the user long before the actual
request, which was something that they wanted to avoid. The
other method was Backward Placement, which works backwards
through the graph, starting at the resource access and putting the
prompt at nodes prior to these accesses. The problem with this
approach is that you could have multiple placements of prompts
for the same access.

The authors evaluated 100 applications with an average size
of 7.3 MB and an average of two location accesses per applica-
tion. The Dominator method was faster than Backward Place-
ment and was also much more successful in terms of properly
inserting missing prompts in applications. Taken together,
these approaches were 91% successful and, for unique resource
accesses, 95% successful in correctly placing missing prompts.

Rik Farrow asked why this approach wasn’t just put into the OS
itself. Ben said that this not only required a lot of “soul search-
ing,” but also a bit more than simply placing it into the OS. He
added that they also want to allow the developer to have some
control. Someone asked about checking what the actual prompt
says if it does exist within the application. Ben replied that they
do not have any further analysis on the actual prompt text. The
questioner said that you could build this into the OS by having
mandatory text and then optional text with a particular prompt.
Ben said that this was not impossible to do.

Flexible and Fine-Grained Mandatory Access Control on
Android for Diverse Security and Privacy Policies
Sven Bugiel, Saarland University; Stephan Heuser, Fraunhofer SIT; Ahmad-
Reza Sadeghi, Technische Universität Darmstadt and Center for Advanced
Security Research Darmstadt

Sven started by brief ly describing the current state of Android
security, which has proven to be insufficient several times over
using various attack vectors. Thus, better security mecha-

nisms need to be in place. He introduced previous academic
security extensions that have been developed, such as Saint,
XManDroid, and SEAndroid. From these, Sven and his team
made two key observations: (1) most of these extensions
involved a form of mandatory access control that was modified
to fit a specific problem and not a general fitting, and (2) access
control on Android needs to be both on a user-space level and
a kernel-space level. Sven mentioned a particular example of
a rootkit bypassing a middleware enforcement mechanism
altogether to access a particular service within Android. Using
these two observations, Sven and his team came up with a
general system-wide mandatory access control solution for
Android called FlaskDroid.

FlaskDroid employs a policy language, SELinux to be specific, in
order to perform the MAC enforcement policies. Along with this,
it uses an object manager that allows processes or applications
to be aware of the exact kind of data they are handling, which
includes attributes such as a particular security type for that
object. Examples of the language were provided as further expla-
nation, but there are a multitude of them in the paper. In terms
of the system itself, FlaskDroid uses SEAndroid at the kernel
layer of Android for low-level MAC and a middleware module at
the user-layer. Both of these components sit behind the API for
services on Android to control enforcement and are connected
to the security servers for policy queries. Sven added that the
user and application developer can add policy rules specific to
the settings they want that will get updated on these servers.
Then, to hook the two components together, they use a Boolean
mechanism whereby both the user-layer MAC and kernel-layer
MAC communicate.

Because this employs the SELinux policy language, one could
argue that this might weigh down FlaskDroid with an over-
whelming number of rules. As it turns out, Sven and his team
produced vastly fewer rules than SELinux in FlaskDroid’s cur-
rent setup. He also showed some use-cases pertaining to how a
sample application may utilize this new MAC mechanism. One
example involved a phone dialing application where the user is
presented with a dial pad. The user can then turn on a phone
booth context, which is a sort of mode in SELinux, that will
disable the ability to leave the dial pad screen entirely. This way
a person using your phone to try to dial a phone number cannot
use the phone to do anything else. The paper itself has many
more use cases and the source code for FlaskDroid can be viewed
at flaskdroid.org.

Rik Farrow asked about the ability of malicious applications to
loosen the “everything denied by default” approach of SELinux.
Sven replied that the policy set by an application is only for the
application and cannot interfere with access to another appli-
cation. Will Enck (NC State) asked about the choice of using
SELinux in the implementation due to its unmanageability. Sven

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 83

RepoRts

responded that the choice was primarily due to wanting to merge
their implementation with SELinux. Sven stated that SELinux
becomes unmanageable only because of the sheer number of
rules, but for smartphones it was not nearly as bad; however,
Sven said they could improve this if they did in fact choose a
 different language.

Invited Talk
Summarized by Rahul Pandita (rpandit@ncsu.edu)

Windows 8.1 Supporting User Confidence
Crispin Cowan, Senior Program Manager, Windows Core Security,
Microsoft, Inc.

Cripin started the presentation by sharing with the audience his
experience of a 2010 talk where he compared Windows secu-
rity with UNIX security, and humorously admitted that he was a
UNIX fan prior to working at Microsoft. In retrospect, he added,
Windows security was fine even then, but he pointed out that not
only have attackers gotten better, but end users have become
more demanding. These two factors have significantly increased
the need for security in the operating system environment.

Crispin then dived deep into the features of Windows 8 directed
towards boosting end-user confidence in the security of the
operating system. He touched on a wide range of features, start-
ing with hardware-based security, where he introduced Unified
Extensible Firmware Interface (UEFI). UEFI is an improvement
over the existing Basic Input/Output System (BIOS) to ensure
that only a verified OS loader is used during boot time. This
effectively addressed issues with malware that targets OS load-
ers. He then went into details about other security measures to
ensure a safe boot of the OS in Windows 8.

Moving forward, he introduced the security features of inter-
acting with the Windows App Store. He presented the feature
called app container. An app container allows the OS to contain
the effects of a rogue app installed by a user. App container also
facilitates the seamless transfer of data with the OS (like open-
ing a file) and the app by use of a mechanism Microsoft terms
an authentic user gesture (AUG). The security principle behind
the functioning of AUG is that the AUG can only be initiated by a
user and not by an App. This was followed by a series of demos of
AUG, mostly involving opening and storing a file within an app.

Crispin also presented the concept of a kill bit (reminds me of a
kill switch) in apps. Having the kill bit in place allows Microsoft
to remove a rogue app from all the devices remotely. He assured
us that such a capability is used sparingly and after careful
evaluation of the app that needs to be removed. He also explained
that every app that is installed on Windows 8 has to be digitally
signed by the developer and has to be installed only through the
Windows App Store.

Among other features, he talked about modernized access con-
trol. In particular, he presented new sign-in options in Windows

8, including pin, passwords, picture passwords, access cards,
and even biometric verification support. He proceeded to show
a demo of the picture passwords but could not show it in action
due to screen resolution issues of his Windows 8 device when
connected to the projector for the talk. He concluded his talk by
reiterating some of the core security features of Windows 8.

Felix “FX” Lindner (Recurity Labs) asked why Microsoft dele-
gated the task of issuing and managing certificates for the
OS Loader in UEFI to a third party. Crispin responded that
certificate authorities (CA) were a well established business and
outside the scope of Microsoft’s business interests. Furthermore,
he said that existing certificate authorities were doing a great
job, and thus Microsoft did not feel the need to manage certifi-
cates on their own.

Someone followed up by asking, what if the CA itself was com-
promised? Crispin said that there was a kill-bit built right into
the UEFI module to remotely disable it.

Two people asked about the kill-bit and expressed their con-
cerns about abusing them. Crispin addressed their concerns by
assuring them that Microsoft carefully weighs its options before
using the kill-bit and that extra carefulness is required because
abusing kill-bits also has legal implications.

Another attendee followed up by asking, what if a security
researcher wanted to keep a malicious app for experimenting
on it? Crispin clarified that the kill-bit was mandatory and not
optional and so, if exercised by Microsoft, the malicious applica-
tion had to go. He hinted, however, that there were some indirect
workarounds if someone wanted to keep a malicious app.

Session chair Wenke Lee(Georgia Tech) asked whether the Sur-
face RT—the first device that ships with Windows 8—is locked
into the Windows App Store. Crispin affirmed this. Lee further
inquired how difficult it is, given the safety features of the Win-
dows 8, for students to write and install their own Apps. Crispin
humorously responded that “students might have to jump some
hoops to do that.”

Applied Crypto I
Summarized by Bhushan Jain (bpjain@cs.stonybrook.edu)

Proactively Accountable Anonymous Messaging in Verdict
Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford, Yale University

Henry Corrigan-Gibbs outlined the motivation for their work on
an anonymity system called Verdict by presenting a scenario:
an activist in a country X learns about a prime minister’s stash
of stolen money and wants to publish this information anony-
mously before the elections next day. Henry then took us through
the options available to the activist based on existing systems
and pointed out possible attacks to expose the activist or delay
message posting. An onion routing solution can be broken by a
state-owned ISP using a first-last correlation attack. Henry

84  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

then introduced dining cryptographers networks (DC-nets),
anonymous communication networks resistant to traffic
analysis in which a group of people contribute an equal length
 message to derive one single anonymous message at the end of
the protocol. Dissent is a practical implementation of DC-nets;
however, the prime minister’s supporters can infiltrate the group
and cause denial of service attacks on the Dissent system. The
shuffle protocol used by Dissent to assign blame to the disruptor
takes time and so the PM’s supporters can postpone the posting
of an anonymous message until after the elections are over. If the
disruptors can control 10% of the nodes involved in the protocol,
they can block communication for a day or more.

Verdict is a system derived from Dissent to leverage the traffic
analysis resistance and scalability of Dissent but with lower
blame cost. The main idea is that the group members must prove
that the message they are sending is correctly formed. Thus,
Verdict identifies the disruptors before they launch the denial of
service attack.

Henry then took us through design challenges and optimizations
to make the system fast. Verdict resists traffic analysis attacks
by having each client transmit an equal length cryptographically
indistinguishable message per round. In order to make the
sender’s transmission indistinguishable, every other client sends
a dummy message encrypted using an ElGamal-like scheme
while the sender sends the original message encrypted in the
same format. In order to prove that their transmissions are
well formed, the clients attach non-interactive zero-knowledge
(NIZK) proofs of knowledge to their ciphertexts. He explained
optimizations to improve performance in case of long messages,
lazy proof verification, and a hybrid Dissent+Verdict DC-net.

The fastest implementation of Verdict provides a 5.6x speedup
over existing systems and the hybrid Dissent+Verdict imple-
mentation gives 138x speedup. In a 1024-node cluster, the lazy
Verdict optimization reduces messaging latency by 2.3x over
pure Verdict, and the hybrid version reduces latency by 27x. The
pure Verdict version can reduce the cost of finding disruptors
from Dissent by about 200x.

When asked why not use the provable shuffle anonymity system
instead of Dissent to relay messages, Henry said that Verdict
achieves better efficiency for messages of varying length or mul-
tiple rounds over using provable shuffle. Someone asked whether
the provable shuffle to assign slots can be replaced by a rotation.
Henry said that it would work but may not be any faster. When
asked if the hybrid version may take more time due to disrup-
tions, Henry agreed that it takes time to switch to Verdict from
Dissent in case of disruptions and that the hybrid version trades
off the performance in the general case with the performance
during disruptions.

ZQL: A Compiler for Privacy-Preserving Data Processing
Cédric Fournet, Markulf Kohlweiss, and George Danezis, Microsoft Research;
Zhengqin Luo, MSR-INRIA Joint Centre

Cédric Fournet presented their work on a compiler for data
processing with strong privacy guarantees. He started by
explaining the need for privacy-preserving data processing using
examples of smart meters and pay-how-you-drive insurance.
The main argument is that the service provider doesn’t need to
know all the details of usage as long as the provider is getting
paid the correct amount. The existing cryptographic solutions
need intervention from security experts every time the policy or
query is changed. To solve this problem, Cédric introduced ZQL,
a high-level language for querying data together with its query
compiler that synthesizes cryptographic protocols from a source
definition to generate code that can run on various platforms.

ZQL supports a subset of F# language and iterators on data
tables. ZQL can compute math functions, exponentiation, and
table lookup operations while operating on secrets. ZQL uses a
combination of Pedersen commitments, NZIK arguments, and
CL-signatures for cryptographic implementation. One limitation
of ZQL is that the intermediate result structure has to be public
even though contents in that structure are private. The ZQL
compiler takes the data specification and query as input and
generates queries for the parties involved to be used in a cryp-
tographic protocol. A F# or C generator then consumes these
queries and outputs reference implementation in F# or C.

They extended ZQL to support cryptographic primitives like
long integer, exponents, hashes, signatures, and commitments.
Now, ZQL generates an extended query from source query using
a compositional shared translation by inserting commitments,
openings, and proof assertions. The extended query is subject to
code specialization to generate a NIZK proof of knowledge. They
also use the extended query to generate a simulator to reason
about privacy and an extractor to reason about soundness.

Cédric then demonstrated the system for two sample computa-
tions and their verification. He showed how a verifier can verify
that the value x+y is computed correctly. He also showed how
the protocol works in the case of a pay-how-you-drive query.
The cryptographic evidence is linear in size as compared to the
computation. The verification proof does not contain any infor-
mation about the input but provides computational integrity. The
system was evaluated using RSA 1024, RSA 2048, and pairing-
based crypto. The proof size is a few KB for the test cases.

When asked about the different tradeoffs for one of the related
works, Pinocchio, Cédric mentioned that Pinocchio proofs are
constant size and the verifier computations are small but the
prover has to do more work. Pinocchio may be preferred for
computation-intensive processing for a limited amount of data
while ZQL will do better for large amounts of data processing.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 85

RepoRts

Table lookups that are very important for ZQL cannot be done
using Pinocchio; however, Cédric et al. are looking at how to
combine the two. The code will be available soon.

DupLESS: Server-Aided Encryption for Deduplicated
Storage
Mihir Bellare and Sriram Keelveedhi, University of California, San Diego;
Thomas Ristenpart, University of Wisconsin-Madison

Sriram Keelveedhi presented a system called DupLESS, a
server-aided encryption system for deduplicated storage. Dedu-
plication saves storage resources by avoiding storing duplicate
copies of the same file. Their goal is to securely deduplicate
in the presence of an untrusted storage service and to provide
client compromise resilience. DupLESS trades off the storage
savings and performance efficiency of plaintext dedup with
increased security and compromise resilience for client files.
He explained how existing solutions either do not allow dedu-
plication or are not resilient to client compromise. Even the
convergent encryption solution that achieves deduplication and
compromise resilience is vulnerable to brute-force attack by the
storage provider to recover the original file.

DupLESS uses server-aided encryption by leveraging a key
server that helps clients encrypt their files. Every client sends
the key server a hash of the file, and the key server computes the
key to be used to encrypt the file using a PRF on this hash value.
All clients encrypt their files with the same key K and send this
encrypted file along with the encryption of the key K under their
own key. The first file is deduplicated as it is the same for all
clients. The second file is small enough that even though it is not
deduplicated, the overhead isn’t much. This scheme falls short
when a strong adversary can compromise the key server and leak
the key K used to encrypt all copies of that file. They imple-
mented an oblivious PRF protocol between the key server and
the client to defend against this attacker. This protocol is opti-
mized to use sessions between the client and the key server, and
the actual OPRF query takes a single round as authentication
is done only during session establishment. On evaluating this
protocol on EC2, they observed that the protocol performance
was close to round trip time for the optimized version.

Sriram then explained the details of the DupLESS system
design, which uses a storage service that provides a set of APIs
to manipulate files. He then took us through the translation of
a storage put query to steps for DupLESS. Put and get were the
most expensive operations for DupLESS. A put operation takes
16% extra time to upload a file and increases the size by about
10%. DupLESS costs 4.4% extra space as compared to plaintext
deduplication. In the future, DupLESS may support keyword
search, complex file systems, and heuristics on which files to
select for deduplication.

Indranil Banerjee (Qualcomm) asked what secure means in the
context of deduplication. Sriram replied that security implies

semantic security and no information leakage about the data.
A follow up question was how does deduplication increase the
risk of compromising confidentiality. It is difficult to combine
encryption and deduplication as seen in existing solutions, and
DupLESS provides a solution to mitigate risks of attacks against
these solutions. Someone asked whether a key server can do
brute-force attacks on the file if the key server is compromised.
Sriram replied that this attack is possible only if the key server
can monitor the network traffic to get the ciphertext. Does the
implementation have to take into account the backend storage
provider? As long as the storage provider exposes APIs as dis-
cussed, DupLESS is seamless to the implementation behind the
scenes. Zack Peterson asked why couldn’t an encrypting proxy
perform all the computations instead of the client. The encryp-
tion proxy becomes the natural target for the attacker, answered
Sriram. With DupLESS, even if the keyserver is compromised,
they at least have guarantees of a convergent encryption. David
Jacobson (Qualcomm) asked whether a side channel could leak
information that the file already existed on the storage server
based on the time required to store the file. Sriram said that the
information that is leaked is based on the location of deduplica-
tion. Deduplication on the storage provider side will force trans-
mission of the whole file irrespective of whether the file already
existed on the storage server. Someone asked why not use DTLS
instead of the OPRF protocol. Sriram replied that the OPRF
protocol can be derived by tweaking the DTLS protocol.

Large-Scale Systems Security I
Summarized by Gang Wang (gangw@cs.ucsb.edu)

Trafficking Fraudulent Accounts: The Role of the
Underground Market in Twitter Spam and Abuse
Kurt Thomas, University of California, Berkeley, and Twitter; Damon McCoy,
George Mason University; Chris Grier, University of California, Berkeley, and
International Computer Science Institute; Alek Kolcz, Twitter; Vern Paxson,
University of California, Berkeley, and International Computer Science
Institute

Kurt Thomas presented their study on underground markets
that trade fake Twitter accounts. To understand this problem,
they monitored 27 account merchants over 10 months and
purchased 100k fake Twitter accounts from them. Kurt said they
found these merchants were using many sophisticated methods
to circumvent automated account creation barriers. For example,
account merchants used crowdsourcing services to solve CAPT-
CHAs, collected fraudulent email credentials from Hotmail and
Yahoo, and also used tens of thousands of IPs (proxies, VPNs) all
over the world to evade IP blacklisting.

To detect these auto-generated accounts, they developed a clas-
sifier, which looked at patterns in naming conventions and fea-
tures that indicate automated accounts registration (e.g., events
sequence triggered during signup and timing). With the help of
Twitter, they scanned all Twitter accounts registered last year
and found several million fake accounts. According to Kurt,

86  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

the revenue of these account merchants are about $100,000 to
$400,000. After Twitter adopted this technique, many account
merchants started to go out of business. During the talk, Kurt
even showed screenshots of some merchants’ announcements,
saying that they could no longer provide the service due to
unknown changes in Twitter, which is impressive.

Someone asked about possible evasions of the proposed classi-
fier. Kurt commented that account merchants may get around
the naming features, but it was still hard for them to deal with
features indicating automated account registration. Another
audience member asked about the acceptable false positive
rate for Twitter. Kurt said he did not know because this was
confidential for Twitter. An attendee asked whether these fake
accounts include compromised accounts. Kurt said the mar-
kets they focused on were mainly selling automatically regis-
tered accounts, but there are merchants who sell compromised
accounts. Another person asked whether they monitored the
price change over time. Kurt said that the prices in the markets
they monitored were relatively flat. Someone asked whether
these merchants would resell those accounts. Kurt confirmed
that certain merchants did scam their customers: after selling
the accounts, the merchants would try to secretly retrieve the
accounts back and resell them to other customers.

Impression Fraud in Online Advertising via Pay-Per-View
Networks
Kevin Springborn, Broadcast Interactive Media; Paul Barford, Broadcast
Interactive Media and University of Wisconsin—Madison

Kevin Springborn talked about their measurement study on
impression fraud in online advertising. In regular online adver-
tising, advertisers place advertisements on publishers’ Web
sites and pay publishers based on how many users have viewed
the ads (impressions). In the talk, Kevin described pay-per-
view (PPV) networks that help dishonest publishers to drive
traffics to their Web sites. PPV networks usually consist of
compromised Web sites that render publishers’ pages hidden in
requested pages to users’ browsers. In this way, they can gener-
ate additional, fraudulent impressions on publishers’ pages.
The true victims are advertisers who have to pay dishonest
publishers for those impressions.

Kevin described their measurement approach. Basically, they
set up three Web sites as honeypots, and then purchased traffic
(addition impressions) from 34 traffic generation services who
owned PPV networks. Surprisingly, they found those pay-per-
view networks were rarely blocked by public blacklists and
only had modest IP reuse. Additionally, there was zero user-
interaction from the purchased traffic. According to Kevin, the
estimated fraudulent impressions delivered by PPV networks
can reach as much as 500M per day, making this a multi-hun-
dred-million dollar business. Kevin also pointed out some pos-
sible countermeasures, such as detecting zero-sized frames and
blocking known PPV hosts.

One audience member asked whether all sites in pay-per-view
networks were high-quality sites. Kevin answered that the
quality level may vary from service to service. Someone asked
about the click-through rate of these ads. Kevin said the ads
were not actually “displayed.” They were usually hidden in a
zero-sized frame that users cannot see. So there were no user
clicks generated. Finally, someone asked about the effective-
ness of the countermeasures. Kevin said the countermeasure
was easy to deploy and should be effective, but many current
sites did not bother to do that, because they didn’t have the
incentive (they were not the victims).

The Velocity of Censorship: High-Fidelity Detection of
Microblog Post Deletions
Tao Zhu, Independent Researcher; David Phipps, Bowdoin College; Adam
Pridgen, Rice University; Jedidiah R. Crandall, University of New Mexico;
Dan S. Wallach, Rice University

Tao Zhu talked about their measurement efforts to understand
censorship in Chinese microblogging sites. Their focus was
Weibo, the largest microblogging site in China. Because of cen-
sorship, people’s posts (i.e., tweets) on Weibo would be deleted
if the content were considered to be politically sensitive. The
key question Tao wanted to explore was how fast the content
deletion happened and possible mechanisms Weibo used to
carry out censorship.

To collect the deleted (censored) Weibo posts, Tao focused on
a set of sensitive users (several thousands) and crawled their
timeline every minute over a two-month period in 2012. Tao
found that Weibo was surprisingly fast in identifying and
deleting sensitive posts. Most deletion happened within the
first hour after the content was posted on Weibo. Tao said they
tried to reverse-engineer the possible mechanisms Weibo used
to achieve fast censorship. According to Tao, Weibo seemed
to be using a keyword-based filter, combined with dedicated
human censors. Also Weibo paid closer attention to users who
frequently posted sensitive content.

One attendee pointed out that Weibo could potentially pollute
Tao’s data by intentionally returning incorrect timeline data.
Tao said at the time of their study, they ran some validation tests
by comparing the content returned from the API and the Web
site, and did not find any inconsistencies. Another person asked
how they knew the deleted posts were caused by censorship, not
other reasons like spam or even self-deletion. Tao said the error
message for self-deleted posts and Weibo-deleted posts were dif-
ferent. Also those users they monitored were carefully selected
to make sure they were involved in censored discussion before.
Thus their content was unlikely to be spam.

Another questioner asked what people would do after they got
censored. Tao said he saw people started to perform some obfus-
cation on their posts, changing the form of keywords, for exam-
ple, or using keyword substitutions. Someone asked how Weibo

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 87

RepoRts

censors knew what topics to censor. Tao said there were multiple
possible channels: they might get orders from the government to
censor certain topics, or based on those sensitive users’ recent
posts or external resources like oversea news.

Thursday Keynote Address: The White House’s Priorities
for Cybersecurity
Andy Ozment, Senior Director for Cybersecurity, White House
Summarized by Theodore Book (theodorebook@gmail.com)

Andy Ozment spoke about the Obama administration’s priorities
for cybersecurity. He identified five basic priorities: protecting
critical infrastructure (see Executive Order on Cybersecurity,
below), securing the government, engaging internationally,
improving incident response, and shaping the future. He empha-
sized the recent executive order on cybersecurity and summa-
rized its main points.

Securing the Government: The federal government is a large
institution with an unknown number of machines, people, and
agencies. Work to secure it is being conducted by establishing
standards and holding people accountable. There are a series
of cross-agency priority goals: First, implementing trusted
Internet connections. Currently, they don’t know where they are
connected to the Internet. They have found tens of thousands
of connections, and are finding more all the time, but want to
move to around 50. Secondly, they want to implement two-factor
authentication, through the use of a smart card that provides
both physical and electronic access. The third goal is continuous
monitoring. Here, they seek to measure how secure they are—
knowing vulnerabilities, and incentivizing higher security.

Engage Internationally: There need to be consequences for
those who are trying to intrude, otherwise they will eventually
get in. By using the word “intrude” rather than “attack,” they are
consciously using the language of espionage and not war. This
process is extremely slow. They are engaging with the Chinese
government, by raising this issue through diplomatic channels
and a working group. They are trying to convey that there is a
norm of behavior for espionage that distinguishes economic
from government espionage. They want to discourage economic
espionage by state actors. They are also working with the Rus-
sians in a long series of negotiations that have led to a red phone
for cybersecurity incidents.

Improve Incident Response: A year ago, they held a national-
level exercise on cybersecurity (these have traditionally focused
on physical events like earthquakes and hurricanes). They
have also been facing a steady year of DoS attacks against the
financial services sector. They collected a list of attacked IPs
and passed them to ISPs. Originally the process would take two
weeks. They can now do it in minutes or hours.

Shape the Future: Attackers have the edge—they can keep
trying until they succeed. They want to make things better by

focusing on DNSSEC, routing security, building a cybersecurity
workforce, and R&D into less vulnerable systems.

Executive Order On Cybersecurity: The recent executive order
on cybersecurity has four goals: information sharing, privacy
and civil liberties, standards, and the identification of critical
infrastructure.

Information Sharing: The administration wants to have par-
ties share information on attacks, so that it becomes possible
to understand the scale of a single intruder’s activity. They also
want to share indications of intrusions, so that if an intruder is
caught in one place, he will be caught everywhere. The current
goal is for the government to share information with the private
sector, not because the government necessarily knows more
than the private sector, but because it is easier within cur-
rent laws. They also want to change government culture and
classify less data. The problem is that sharing information can
cause that information to lose its value. Even limited releases
of information are quickly picked up by adversaries. Still, they
are going to share more.

They want to offer an intrusion detection system called
Enhanced Cybersecurity Services that uses classified signa-
tures. These signatures are given to private sector enterprises
who are certified to store it and who have personnel with
security clearances to handle it. A generic infrastructure firm
can then run traffic through this black box to block malicious
traffic. This is useful for small firms that don’t have the in-house
capability to analyze malicious traffic.

Privacy and Civil Liberties: Sharing government informa-
tion with the private sector includes some privacy risks. Recent
documents reference the Fair Information Practice Principles,
which represent the accepted best practices for these questions.

Standards: Many companies have very poor cybersecurity
standards. To improve this, the government is asking compa-
nies to share lessons learned from NIST. The goal is to build a
framework (not a new set of standards) that collects standards
together to provide a comprehensive guide for information
security. These standards can become a basis for regulation. For
example, regulators of existing industries (such as utilities) will
be encouraged to create new regulations to force people to do
what the government wants based on these standards.

Identification of Critical Infrastructure: There have already
been many efforts (post Sept. 11) to identify critical infrastruc-
ture; however, they had more emphasis on physical threats. The
goal of the current survey is to identify infrastructure, vulnerable
to cyberattacks, whose loss would cause a catastrophic impact.
This produces a shorter list that is easier to manage. It also allows
government to prioritize companies for regulation and support.
They are currently informing companies who made the list.

88  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

Legislative Priorities: The Obama administration is look-
ing for more power from Congress to impose its views on
cybersecurity. They dislike the idea of allowing states to make
their own regulations, and prefer to concentrate power in the
executive branch of the federal government so that we won’t
have 50 different sets of regulations. They want to collect more
information from companies, but they also want to ban com-
panies from providing information with personally identifying
information, and to restrict the use of information collected by
the government in that way.

A number of individuals asked questions after the presentation.
Several attendees asked questions relating to the relative value
of voluntary or mandatory standards. In reply, Dr. Ozment stated
that there is no appetite for mandatory standards. People feel
that a top-down approach would be harmful rather than helpful.
They are then asking regulators to look at the voluntary stan-
dards, which they may then impose through regulation. A past
attempt to get Congress to pass a law enabling the administra-
tion to impose standards failed. He also indicated that there are
some problems with FISMA (the existing standards, which the
questioner had criticized). Some organizations do a great job
within this framework. Others have devolved into a regulation-
compliance approach. Some problems are with the law, others
with procedures required by the executive branch. They are try-
ing to update it, and update their internal procedures.

In May 2011, they did not propose specific regulations, but the
authority to regulate. The executive order is a good alternative
solution. It allows for cooperative development of the framework
which can then be imposed on many companies through exist-
ing regulators, although there will be some holes. Regarding
other companies, three agencies were tasked to produce reports
suggesting how they might be forced to act according to the
administration’s desires. They looked at various incentives and
came up with nine. Some were: using the insurance industry by
making the standards a possible factor in setting rates; using the
rate recovery mechanism—regulated utilities could charge more
to cover security expenses; prioritizing government grants and
assistance; etc. Some of these will have to wait until the frame-
work is done.

When asked whether the proposal to provide classified signa-
tures to certain providers was potentially anticompetitive, Dr.
Ozment replied that this program has been piloted with the
defense industrial base. There is no limitation on service provid-
ers. Anyone who is willing to meet the required standards and
provide staff that can clear the background checks can take part.

On the question of whether incident reports should be publicly
available, he indicated that we are in a difficult spot. Most com-
panies do not report intrusions. We have to incentivize report-
ing. This means that a company should see a positive outcome as

a result of reporting (e.g., intruder caught). Also, there should not
be a significant downside, and for most companies, releasing the
reports would be a downside.

In response to a wide-ranging question, Dr. Ozment stated the
following: regarding [FDA] regulations prohibiting updates,
some areas have a strong culture of safety and reliability that
clashes with the culture of security—they prefer not to update.
Regarding funding, no budget has been passed since Obama took
office. Nonetheless, he believes that cybersecurity funding has
increased—he will check on that. The government doesn’t have
a good way of tracking what it is spending money on, so there
is no way for the administration to know what it is spending on
cybersecurity. They are trying to figure that out by putting more
regulations on government departments and requiring them to
report more information. Regarding the recent unauthorized
disclosures and what people are reading in the newspapers, he
doesn’t know what is going on, and could only read talking points
in any case. He does want people to be able to trust the govern-
ment and share their information with the government.

On the question of metrics, he observed that good metrics in
cybersecurity are hard to come by. Right now, there is an obvi-
ous problem even without metrics. They will deal with metrics
when the big things are tackled. On the question of privacy
regarding biometric data, he indicated that society needs to
define these issues, not just the government. Government can
record that consensus. The commerce department released
a “green paper” on privacy, which might be worth looking at.
When asked about international engagement with allied and
neutral countries, Dr. Ozment replied that the administration
is helping other countries to develop norms of behavior as to
what is acceptable in cyberspace.

Finally, on the question of education, he stated that they have
national cybersecurity information month. Most is focused on
universities, some on broad national awareness. They can gen-
erally raise awareness—it is more tricky to offer useful advice
to individuals.

Large-Scale Systems Security II
Summarized by Frank Imeson (fcimeson@gmail.com)

You Are How You Click: Clickstream Analysis for Sybil
Detection
Gang Wang and Tristan Konolige, University of California, Santa Barbara;
Christo Wilson, Northeastern University; Xiao Wang, Renren Inc.; Haitao
Zheng and Ben Y. Zhao, University of California, Santa Barbara

Gang Wang explained that a Sybil is a fake identity owned by an
adversary and is maliciously controlled. Sybils have infiltrated
social networks in a big way with 14.3 million on Facebook and
20 million on Twitter. The types of attacks Sybils can execute
range from spamming unwanted advertisements, malware,
phishing, stealing user information, and even political lobbying
efforts have been made to try to release fake headlines about

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 89

RepoRts

Obama. One might assume that a Sybil’s friends list would con-
sist of mostly other Sybils, but this is not the case and in fact it
is often the case that by the time a Sybil requests you as a friend
they already have 20 or more of your friends in common with
you, which on the surface makes them seem more legit to you
and even to a static analysis of the graph.

Wang et al. proposed an alternative to static graph analysis,
which is to monitor the time and click events to distinguish
between normal and Sybil users. This is motivated by the intu-
ition that a Sybil is goal oriented and time limited so one might
expect a pattern and efficiency to a Sybil’s clicks. They investi-
gate this approach by building a classifier that takes the click-
stream (click time and events) as input and is trained offline
with ground truth or trained online with input from a set of
trusted users. Results of the classifier trained with ground truth
only had 3% false negatives and 1% false positives. They shipped
their software to Linkedin and Renren, where Linkedin trained
the classifier with a ground-truth set of 40k users’ clickstreams
and was able to flag 200 new Sybils. Renren used the classifier
on 1M users, flagged 22k suspicious users, and identified a new
attack (embedded URLs in images). Wang concluded by stating
that good Sybil detectors force the Sybils to slow down their click
speed, mimic normal users and thus turn a beast into a puppy.

Siddharth Garg, University of Waterloo, asked how they cluster
the graph? Wang answered that they use automatic clustering
and just need to choose the resolution—too small and there’s a
loss of generality, too large and they lose accuracy. Garg asked
how this software is effective over different data sets. Wouldn’t
it have to be unsupervised since there is no ground truth? Wang
said that for this case we would need to generate a small data
set to use for ground truth. Simon Chung (Georgia Tech) said
that if the Sybil must limit its click speed, can it achieve the
same throughput with many parallel Sybils? Wang answered
that this is possible and is also why they do not simply classify
Sybils by the time intervals between clicks, but also look at
event transitions.

Alice in Warningland: A Large-Scale Field Study of
Browser Security Warning Effectiveness
Devdatta Akhawe, University of California, Berkeley; Adrienne Porter Felt,
Google, Inc.

Devdatta Akhawe began by explaining that this study was
conducted on data collected from Google’s Chrome and Mozilla’s
Firefox from users who have opted in to sharing “Telemetry”
data. The information about how the user responds to the
warning is recorded in the browser and shared with Google or
Mozilla. The study “Bridging the Gap in Computer Security
Warnings,” Bravo-Lillo 2011, states that “most people don’t read
computer warnings, don’t understand them, or simply don’t heed
them.” Because this was contradictory to Akhawe et al. find-
ings, they conjectured that the original studies got these results

because they were conducted in a lab environment, used trusted
computers, presented the user with text-only warnings, and only
required one click confirmation. Today’s warnings are more
engaging, including pictures, offering lay content with a link to
read more details, and often requiring a multi-step override such
as asking: are you really really sure?

Click-through rate is the ratio of warnings ignored over warn-
ings shown, and they claim that an ideal click-through rate
is 0% (all warnings should be heeded). This ideal rate should
motivate content providers to fix their Web content in the case
of false positives and thus would also alleviate users of annoy-
ing false warnings. The results show an interesting difference
between Firefox, Chrome, Windows, Mac OS and Linux users.
For example, Firefox had a lower click-through rate on both
phishing and malware. Differences like this could be due to the
amount of effort (number of clicks) it takes the user to ignore the
warning but in the case of Firefox it only takes one click to ignore
compared to Chrome’s two clicks to ignore. Linux users also
show a much higher click-through rate than Windows or Mac OS
users. Also users of the beta or dev releases of the browsers show
higher click-through rates. Which begs the question: “Does a
greater degree of technical skill correspond to reduced risk aver-
sion?” Akhawe states that this data shows that users do actually
heed warnings, but the design does impact the users’ behavior.

Frank Imeson (University of Waterloo) asked if there are times
when a warning should be ignored and, if so, wouldn’t that make
the ideal click through rate non zero? Akhawe said that if there
are false positives then the browser should ignore them and/or
the content provider should fix their content, but this is a very
long argument to be discussed more offline. Someone else com-
mented that improvements are the result of improved warnings
and an increase in public education. Is there a way to tease out
the effects of education from the results? Akhawe said he doesn’t
know how they could do that but it would be useful information.
Someone else asked whether there was a way to assess false
positive rates. Akhawe replied not at the moment.

An Empirical Study of Vulnerability Rewards Programs
Matthew Finifter, Devdatta Akhawe, and David Wagner, University of
California, Berkeley

Akhawe stayed on stage to present his work on reward programs
for finding bugs. Google and Mozilla both offer a reward-based
program to users who sign up to find bugs for their browser
software. This study analyzes the difference between the tradi-
tional approach of hiring an engineer to find bugs compared to
outsourcing this task to willing and able end users. If the user
is able to find a bug, he or she is rewarded. This reward may be
proportional to the severity of the bug as with Google; sometimes
Google also revisits the severity assessment of the bug and, if
they think the bug was more important than they originally
thought, retroactively award more money to that user.

90  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

The finding states that vulnerability reward programs (VRP)
are cost effective: Google spends about $485 per day while
Mozilla spends about $658 per day, which is comparable to
an engineer’s salary doing the same job. VRPs have found on
average more bugs than internal engineers for both non-critical
and critical bugs: Mozilla reports that its VRP found 148 bugs
compared to the 48 bugs found by the internal engineers, while
Google reports that more critical bugs were found by VRPs than
by their internal engineers. Akhawe also showed that Chrome
has a smaller proportion of bugs considered critical than Firefox,
which he hypothesizes to be because of privilege separation in
Chrome. Akhawe concluded that Chrome and its VRP is more
popular than Firefox. Google’s VRP finds more bugs, has a
shorter time to patch than Mozilla’s, and has shown good repeat
participation by users.

Someone from the University of Maryland complimented
Akhawe on his talk and asked how VRP compares with black
market reward programs. Akhawe responded that although
black market rewards are higher, the required commitment is
greater since they are looking for a working exploit. He added
that people are generally good and black markets do attract the
majority of bug finders. Jason Jones (Airborne Networks) asked
about the effect of having programs like ZDI buying up exploits
for Chrome and Firefox with respect to this work. Akhawe said
that he doesn’t know enough about ZDI but it would be interest-
ing to take a look at. Someone else asked whether he had any data
on false positives and had the time wasted on these cases been
factored into the cost-effectiveness of VRP. Akhawe replied that
he didn’t have any data on false positives but in his conversa-
tions with Mozilla and Google no one had ever mentioned false
positives as an issue. Jerry Tyson (Facebook) asked how this
could work for Web apps and what the differences would be.
Akhawe said that he has thought about it, thinks there would be
advantages and disadvantages, and would love to get his hands
on data from Facebook. Tim Fraser (DARPA) said that assigning
metrics for measuring security is hard, but would the amount of
money spent on the black market for these bugs be a good metric?
Akhawe replied that black market money might be indicative
but that metrics are difficult; the lack of spending by a vendor on
bugs, however, may indicate a lack of security.

Applied Crypto II
Summarized by John Scire (jscire@stevens.edu)

Secure Outsourced Garbled Circuit Evaluation for Mobile
Devices
Henry Carter, Georgia Institute of Technology; Benjamin Mood, University
of Oregon; Patrick Traynor, Georgia Institute of Technology; Kevin Butler,
University of Oregon

Henry began his presentation by discussing the current abilities
of smartphones to perform SMC, or secure-multiparty computa-
tion. SMC involves two or more parties trying to securely evalu-
ate some function without revealing their inputs. Smartphones

now are limited in several aspects, one of which is computational
power, which SMC heavily requires. This is mainly due to the
large amount of computation and memory necessary for garbled
circuits, which are circuits constructed to perform the evalua-
tion of an SMC function and whose inputs at each gate is obfus-
cated in some way. To solve this problem, Henry and his team
devised a protocol that would push most of this heavy computa-
tion to the cloud, specifically in the two-party scenario, in a way
that also allows all parties to be assured of the correctness and
validity of the output.

The protocol uses Kreuter et al.’s maliciously secure SMC tech-
nique along with consistency checks and an outsourced oblivi-
ous transfer mechanism. To further describe the protocol, Henry
provided the following scenario (featuring Alice, a Web server,
Bob, and the cloud): (1) the construction of circuits by Bob, (2)
an outsourced oblivious transfer involving all three parties to
generate key information as well as Alice generating her garbled
input, (3) the generation of Bob’s input, (4) the evaluation of
circuits by the cloud, and finally (5) the delivery of output. Henry
mentioned that these steps retain all of the security checks used
in Kreuter et al.’s previous work, but the formal proofs of security
for the whole protocol are in their technical report, which is cited
in the paper.

To test this protocol, Henry and his team put Kreuter et al.’s
work onto servers and had a Galaxy Nexus phone connected to
these servers. They then created a bunch of test mobile applica-
tions that use classic SMC functions, such as the Millionaires’
Problem and edit distance, and ran these applications with and
without the help of the servers. As a result, they saw that smaller
inputs actually ran better on the device by itself, but of course
larger inputs were dramatically slower on just the mobile device.
The addition of the cloud performing the computation intro-
duced a 98.9% speedup in terms of total execution time over just
using the mobile device in the edit distance application with an
input size of 128.

Someone asked whether anything would actually be problem-
atic with Alice colluding with the cloud. Henry responded that
allowing Alice and the cloud to collude could break some of the
consistency checks that are in the protocol, which would cause
Bob to lose assurance of the protocol. He also said that this is
something that they could work on to improve.

On the Security of RC4 in TLS
Nadhem AlFardan, Royal Holloway, University of London; Daniel J. Bernstein,
University of Illinois at Chicago and Technische Universiteit Eindhoven;
Kenneth G. Paterson, Bertram Poettering, and Jacob C.N. Schuldt, Royal
Holloway, University of London

Jacob first presented a brief introduction to TLS, which is
used widely today for secure HTTP connections, and the RC4
stream cipher. Transport Layer Security, or TLS, consists of two
protocols: the Handshake protocol and the Record protocol. The

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 91

RepoRts

Handshake protocol is used to establish the connection, whereas
the Record protocol deals with the encryption of the payload of
the packet. This research, however, only deals with the Record
protocol because this is where RC4 is used. RC4 involves two
algorithms: key scheduling and key generation. Key scheduling
initializes a byte permutation using a key. Key generation then
further permutes this byte permutation to create the keystream
used for encryption. As Jacob mentioned, RC4 is used in more
than 50% of all HTTPS connections, despite known statistical
weaknesses. Using these known weaknesses, Jacob and his team
created two plaintext-recovery attacks against RC4.

The first attack Jacob and his team made uses single-byte biases
that exist in the first 256 bytes of the RC4 keystream. To do this,
they first created a keystream byte distribution using many 128-
bit RC4 initial keys. They then took these keys byte by byte and
XORed them with a chosen plaintext candidate byte in order to
get an induced distribution. From there, they just computed the
most likely plaintext byte for each of the byte positions. Jacob
mentioned, however, that this attack required the same plaintext
to be encrypted under different keys each time. Jacob and his team
found several ways to make this happen, such as by causing a
client to continuously request access to a secure Web site via a
session renegotiation or resumption. The second attack used a
similar approach but involved known biases that exist within
consecutive bytes in the entire RC4 keystream. Jacob pointed
out that the full details of how this worked were in the paper.
Other than the difference in the algorithm for the attack itself,
this second attack requires the same plaintext to be encrypted
with the same RC4 keystream. This precludes the need for any
type of session renegotiation such as was required in the first
attack. This attack is also not restricted to the first 220 bytes of
the plaintext.

In terms of performance, the first attack showed an increase in
percentage of plaintext recovered with an increase in the number
of sessions used. In fact, Jacob and his team were able to achieve
a plaintext recovery rate of 100% with a very large number of
sessions. As for the second attack, the recovery rates were high
and scaled with the increased number of same plaintext copies.
Despite these high recovery rates, both attacks required a vast
amount of traffic to succeed and so were not prac tical; however,
Jacob still suggested stopping the use of RC4 altogether as the
most efficient way of preventing all of these attacks.

Someone asked whether these problems were caused by the TLS
implementation or by TLS’s interaction with RC4. Jacob said
these problems were in fact due to how RC4 was implemented.
The same person asked whether RC4 should still be used to pro-
tect credit card transactions online, as using RC4 is part of the
standard for dealing with credit card information. Jacob said it
depends. If you were using TLS 1.0 unpatched against a BEAST
attack, for example, he would recommend just using RC4.

PCF: A Portable Circuit Format for Scalable Two-Party
Secure Computation
Ben Kreuter, University of Virginia; Benjamin Mood, University of Oregon;
Abhi Shelat, University of Virginia; Kevin Butler, University of Oregon

Ben first gave an overview of previous work on secure two-party
computation. He pointed out that previous solutions to creating
toolsets for two-party secure computation worked, but they suf-
fered in their scalability. To fix this, Ben and his team developed
not only a method to scale these secure computations, but also an
entire library to do this called PCF.

Ben then went into several optimizations of previous work that
make up PCF. One such example is that of reducing the storage
size of circuits, particularly the storage of wire values, dur-
ing runtime. Originally, a high-level language would be used to
write the protocol and then compiled into a circuit; however,
circuits can grow immensely during runtime depending on the
protocol, such as with wire values. During runtime of a circuit,
a table would be created for every wire, and then values would
be put into the table entries. This creates a growing memory
requirement that scales with the worst case to running time.
Ben and his team used a simpler approach that overwrites wires
when they are not needed using high-level information that the
compiler can provide. Another improvement Ben discussed was
that of PCF’s flexibility with other languages. PCF can actually
support any language for two-party computation. A developer,
for example, could simply use standard C to program a protocol
without adding any additional changes to the C language. As Ben
put it, PCF can be thought of as simply writing and running a
normal program.

Using this new tool, Ben and his team were able to handle bil-
lions of gates for a circuit. They were also able to reduce cir-
cuit file sizes and compile times by large orders of magnitude.
Interestingly enough, Ben said that the actual bottleneck was in
running the protocol itself.

Someone asked whether they ran into any counterexamples
regarding the assumptions they made about the way that they
were doing loops via backwards branches. Ben replied that they
have not yet found any counterexamples, but they do have a
backup plan if need be and a way to carry out the plan. Another
person asked how they avoided information leakage if they are
not evaluating the full depth of the circuit. Ben responded that
only the branches in the forward direction can depend on private
inputs. He added that for loops they rely on the user’s ability to
end the loop and thus do not terminate the loop if it happens to
run infinitely, just like running a program.

92  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

Protecting and Understanding Binaries
Summarized by Xinyang Ge (xxg113@cse.psu.edu.ge)

Control Flow Integrity for COTS Binaries
Mingwei Zhang and R. Sekar, Stony Brook University

Awarded Best Paper!

Mingwei noted that control flow integrity (CFI) can mitigate
attacks like buffer overflow attacks and return-oriented pro-
gramming (ROP) that need to subvert the original control flow;
however, previous CFI implementations rely on the compiler’s
help or debug information. Mingwei said that their work can
apply CFI enforcement on stripped binaries.

The first challenge was to disassemble the binary. On architec-
tures like x86, the instruction length is varied; there are “null”
gaps between code, which might be interpreted as instructions
during disassembling. The authors combined linear disassem-
bling with recursive disassembling to correctly identify gaps
among code sections.

Binary instrumentation also requires transparency to existing
code and maintaining the correctness of the original execu-
tion. To enforce control flow integrity over executable as well as
all dynamically loaded libraries, they instrumented the Global
Translation Table (GTT) that is used to map an indirect target
with routing address in a different module. To keep the GTT
updated, they modified the loader by adding 300 SLOC.

To evaluate the effectiveness of CFI enforcement, they pro-
posed a metric called average indirect target reduction (AIR)
that quantifies the fraction of eliminated indirect targets. They
compared their techniques with others and showed the effec-
tiveness of eliminating unnecessary indirect targets. To test the
correctness of implementation, they applied their approach over
more than 300 MB of binaries and the result was that none of
them was broken during binary rewriting. Certain optimizations
like branch prediction and adding address translation have been
applied to the original implementation to reduce the overhead.

Ian Goldberg asked about how the gap is accurately identified.
Mingwei answered they do not accurately identify the gap and
it is possible the disassembler might mistakenly disassemble
the gap. Because the gap would not be executed, it should be
fine. Eric Bodden asked about self-loading libraries. Mingwei
answered that all of the libraries should be translated in advance
or CFI could not be enforced. And they haven’t taken care of a
self-loaded library so far.

Native x86 Decompilation Using Semantics—Preserving
Structural Analysis and Iterative Control-Flow Structuring
Edward J. Schwartz, Carnegie Mellon University; JongHyup Lee, Korea
National University of Transportation; Maverick Woo and David Brumley,
Carnegie Mellon University

Edward first asked a question about whether researchers would
like to read assembly or high-level language code like C. The

answer is obvious: C code is much easier to understand than
assembly code, and there are many existing techniques that
require source code to do static analysis. Thus, their work focused
on recovering the high-level abstractions from machine code.

The authors proposed two desired properties of decompilation:
effective abstraction and correctness. To illustrate abstraction
effectiveness, Edward showed two code examples doing the
same thing, one using “goto” and the other using “while”. To
realize effective abstraction, they divided the decompiler, named
Phoenix, into several components and recovered the control flow
of the original program. A diagram illustrated how the decom-
piler works: (1) CFG recovery, (2) type recovery, (3) control flow
structure, and (4) source code output. They captured the types
by extracting the semantics of instructions. For instance, “movl
(%eax), %ebx” reveals %eax is a pointer to type A while %ebx
is of type A. With types, they further recover the control flow
and generate source code. In order to preserve structuredness
of source code, they apply iterative control flow structuring for
source code generation. The aim is to minimize the use of “goto”.

For evaluation, they showed an example decompilation of a
short program and demonstrated the effective abstraction their
decompiler can achieve. Then they launched some large-scale
experiments with other decompilers (e.g., Hex-Rays, Boomerang)
on GNU coreutils. They use two metrics to measure Phoenix:
correctness and structuredness. The result turned out 50% of
tested programs can be correctly executed and less goto’s are
used compared to other decompilers (details can be found in
their paper).

Someone from UC Berkeley asked about whether their work
focused on languages other than C. Edward answered currently
their work focuses on C. Someone else asked about obfuscation
or handwritten assembly. Edward said they are only looking
at assembly directly from a compiler. Michael from UC Berke-
ley believed compiler optimization could change control flow.
Edward said it is possible but if it represented the same logic,
things should be fine. Scott Karlin (Princeton) suggested a
further use case of detecting source code plagiarism. Finally, a
researcher from Cisco asked whether they have tried multiple
phases of compiling and decompiling using their tools. Unfortu-
nately, the answer was no.

Strato: A Retargetable Framework for Low-Level Inlined-
Reference Monitors
Bin Zeng and Gang Tan, Lehigh University; Úlfar Erlingsson, Google Inc.

Normally, attacks are launched by triggering existing bugs inside
programs using user input. Previous countermeasures include
data execution protection, address space layout randomization
(e.g., PaX), and inlined reference monitors (IRM). An IRM is
nothing but placing security checks inside programs. Most IRMs
are implemented at a low level, which is difficult to reuse. Also,

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 93

RepoRts

low-level instrumentations are restricted to a certain architec-
ture and difficult to port. Thus, their work performs IRM rewrit-
ing at the Intermediate Representation (IR) level.

The challenge of doing IRM rewriting at IR is risky because
the compiler is not reliable. For instance, the compiler might
optimize the security checks out at the backend. So they
intentionally add checks that are respected by the compiler and
also verify that these checks are preserved after compilation
is done. To illustrate how security checks are added to IR, Bin
gave an example of IR code with checks added. Additionally,
they also did optimizations on the security checks including
removing redundant checks.

To evaluate, they measured the performance on SPEC2k and
portability by using same security checks on both x86 and
x86-64. The average performance overhead was about 21%. For
portability, the same instrumentation could work on both x86
and x86-64.

Someone asked about whether the security check is really ISA
independent. Bin answered it actually depends on what the
security check is. In fact, IR itself is not ISA independent. Ben
Livshits (Microsoft Research) asked why the performance
overhead is that high. Bin said intuitively this is related to the
number of security checks placed, but they haven’t measured
what really incurs the overhead.

Invited Talk
Confessions of a “Recovering” Data Broker: Responsible
Innovation in the Age of Big Data, Big Brother, and the
Coming Skynet Terminators
Jim Adler, VP of Products, Metanautix

Jim Adler began his invited talk by introducing his company
Metanautix. Metanautix is working on building a next genera-
tion big data management and analysis system. It has already
built massive data analysis systems for many large enterprises
such as Google and Facebook.

Based on his experience, Jim introduced the data supply chain.
The huge amount of data from government, commercial, and
self-reporting can generate huge value and are powerful for
applications in transportation, marketing, etc.; however, only
few data collectors are regulated. Those unregulated uses can be
easily abused by powerful people, and the hugeness and variety
of data makes the world have less anonymity.

Through comparing EU rights and US torts, Jim asked, how do
we unpack privacy and distinguish private from public? He fur-
ther used place, player, and perils (3P) to characterize privacy
issues. To describe the relationships among 3P, he concluded
that player power gaps are proportional to secrecy and have an
inverse relationship to trust. He further gave us an example
of how his Felon predictor works (http://bloom.bg/1eMtnug)

determining whether a person had committed a felony using
other information in the database. He showed that the clas-
sifiers depend on policy as much as technology. Finally, he
concluded that now government doesn’t trust people but does
trust machines.

A few attendees asked whether it is illegal to share private infor-
mation on the market. Jim said it depends on what is privacy and
what is public. Supermarkets usually do not share their custom-
ers’ information with others. Other attendees were also curious
about how to know which info is correct among huge data. Jim
said through the data chain and huge data correlation, we have
some mechanisms through which we can infer the valuable data.
The world is shrinking in the information era, and we need to
respect the data. Some people were worried about their privacy
and asked whether we have choice to protect our privacy. Jim
said that we need new policy now to deal with privacy protection.
And we need better behaviors to protect our own privacy.

Current and Future Systems Security
Summarized by Sven Bugiel (bugiel@cs.uni-saarland.de)

On the Security of Picture Gesture Authentication
Ziming Zhao and Gail-Joon Ahn, Arizona State University and GFS
Technology, Inc.; Jeong-Jin Seo, Arizona State University; Hongxin Hu,
Delaware State University

Ziming Zhao presented his research on the security of picture
gesture authentication (PGA) as deployed, for example, in the
latest version of Microsoft’s Windows 8 operating system. In
PGA, users choose a background picture (from local storage)
and perform gestures on this picture, such as tapping, drawing
a circle, or drawing a line. The order, precision, and direction of
those gestures then form the user password for authentication.
To better understand the security of this new authentication
mechanism, Ziming and his co-authors were first interested in
better understanding the user-choice for background pictures
and gestures. Using the results of this investigation, they devised
and evaluated an automated attack framework to successfully
break users’ gesture passwords.

To investigate the users’ choice of passwords (i.e., pictures and
gestures), the authors conducted a user-study with two user-
groups. The first group consisted of 56 computer science under-
graduate students from Arizona State University, uniformly
male, which used PGA for accessing class materials on the uni-
versity Web site. The second group consisted of 762 participants
recruited over public channels such as crowdsourcing, and their
task was to emulate logging in to their online banking Web site
using PGA. The study yielded that, from all picture categories,
pictures depicting people are most commonly chosen since they
are easier to remember, and that there is a strong relationship
between the user’s personality and his choice for his background
picture. More importantly, the study showed that gestures are
generally drawn around distinct points of interest, such as

94  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

objects, shapes, or preeminent colors, and that the patterns for
drawing gestures are very similar among different users.

Ziming and his co-authors applied these insights to design and
implement an automated attack framework to break users’ pass-
words. At the heart of their framework is a location-dependent
gesture selection function that models and simulates the users’
selection of gestures around and between points of interest.
Evaluation of the attack framework based on the passwords
collected from the user-study showed that the authors could
successfully break between 24% (group 2) and 48% (group 1) of
the passwords. This difference in success rate is explained by
the lower security-sensitive context for the first group (access
to class material), which resulted in simpler gestures (e.g.,
three times tapping a point of interest). Moreover, the evalu-
ation showed that the attack success rate is noticeably higher
for simple pictures with few points of interest and for portrait
pictures with more predictable gestures. When tested as real-life
online attacks on Windows 8 (i.e., only five attempts on guess-
ing the gesture password) for passwords of the second group, the
authors were still able to break 2.6% of the passwords.

The data sets of the user-study are available online at http://
sefcom.asu.edu/pga/, and an example tool for measuring the
gesture password strength is provided at https://honeyproject1.
fulton.asu.edu/stmidx.

Chris Thompson (UC Berkeley) asked about the recall over
time of gesture passwords and, further, if the two user groups
are not too biased and participants of the first group are incen-
tivized to choose weaker passwords. Ziming replied that they
evaluated memorability of gesture password for the first group
and the results are presented in the paper. The two groups were
chosen on purpose in this configuration, and although users
of group one did change their passwords to weaker ones, why
they did so is unclear. Some feedback indicated that the weaker
passwords were easier to use on smartphones. David Wagner
asked whether the authors compared their real-life success
rate of approximately 3% to the best attacks on text passwords.
Ziming explained that they have not yet compared their results,
but that the password space for picture gesture authentica-
tion is bigger than for text passwords, and this space could be
further increased by allowing more gestures.

Explicating SDKs: Uncovering Assumptions Underlying
Secure Authentication and Authorization
Rui Wang, Microsoft Research Redmond; Yuchen Zhou, University of Virginia;
Shuo Chen and Shaz Qadeer, Microsoft Research Redmond; David Evans,
University of Virginia; Yuri Gurevich, Microsoft Research Redmond

Yuchen Zhou presented his results in uncovering implicit
assumptions by authors of authentication services’ SDKs that
can potentially compromise the security of applications that use
those SDKs. As a result of this research, Yuchen and his co-
authors were able to discover flaws in Facebook’s authentication
service and in the OAuth 2.0 specification.

Applications, today, are increasingly empowered by online
services. One very prominent example is single sign-on (SSO)
services offered by Facebook or Windows Live. To incorporate
those services into their applications, developers are provided
with SDKs and corresponding documentation on how to use the
SDKs. Yuchen and his co-authors posed the question, whether
the application is secure if the developer adheres to the SDK’s
documentation. He illustrated that this is not the case, by show-
ing a demo video of an attack in which a malicious app is able to
steal credentials retrieved from the Windows Live SSO service
and use those credentials to impersonate itself as the legitimate
user. Yuchen showed that such security issues can be traced back
to implicit assumptions by the SDK developers, such as assump-
tions that are essential for the application’s security properties
and are not clearly stated in the SDK documentation, or that
relate to how the SDK should be used.

To systematically discover such implicit assumptions in SDKs
and their associated documentation, the authors of this paper
built semantic models that capture both the logic of the SDK
and the essential aspects of underlying runtime systems. To be
able to consider all possible apps that can be built with an SDK,
these models consider both the client and the service side. The
semantic models, together with explicitly captured assump-
tions and security assertions (i.e., desired properties such as
authentication or authorization), form the input to a BOOGIE-
based verifier. In an iterative process in which the model is
refined or new assumptions are added, the final assumptions
for this model are derived.

Applying this approach to explicate the three concrete examples
of Facebook SSO PHP SDK, Windows 8 SDK for modern apps,
and Windows Live connect SDK, Yuchen and his co-authors
were able to uncover implicit assumptions that lead to a change
of the Facebook SDK, a revision of the Windows Live SDK
documentation, and an addendum to the OAuth 2.0 standard.
Moreover, the authors conclude that due to these implicit
assumptions, a majority of the tested apps—for example, Face-
book’s showcase apps—were vulnerable to attacks, and Yuchen
illustrated this with concrete vulnerabilities for the Facebook
SDK and Windows Live SDK.

Felix Lindner (Recurity Labs) asked about the efficiency of this
approach versus a good Web-application pen tester. Yuchen
replied this is a guided approach to better understand the
system and find vulnerabilities. Penetration testing, on the
other hand, is rather a black box testing to find vulnerabili-
ties. Yuchen argued that their approach is more systematical
but might help increase the efficiency of penetration testing.
Someone asked whether the authors considered applying their
approach more generally instead of only to SSO SDKs. Yuchen
answered that their approach can definitively be generalized
and applied to other models like payment, but they focused for

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 95

RepoRts

now on SSO. Adrienne Porter Felt (Google) followed up on the
different responses Yuchen received from the SDK providers
and wondered whether updating an SDK documentation to
include implicit assumptions is really enough. Yuchen replied
that changing the SDK is definitively the best solution, because
it is unclear whether developers adhere to the SDK documenta-
tion. But that is not always possible and thus documentation
updates should be more strikingly propagated to developers to
update their code.

Enabling Fine-Grained Permissions for Augmented
Reality Applications with Recognizers
Suman Jana, The University of Texas at Austin; David Molnar and Alexander
Moshchuk, Microsoft; Alan Dunn, The University of Texas at Austin;
Benjamin Livshits, Helen J. Wang, and Eyal Ofek, Microsoft Research

Suman Jana presented a solution for a more fine-grained access
control model for augmented reality (AR) applications, which
simultaneously allows for a higher scalability of these appli-
cations. Suman first illustrated, based on different, popular
examples, such as the SoundWalk app or Google Glass, how AR
applications abstractly operate: AR apps retrieve raw input from
sensors such as the video camera, then apply object recognition
algorithms (e.g., to detect hand gestures), and finally render the
raw input augmented with virtual objects back to the screen.
Currently, AR apps implement this pipeline by themselves and
do not rely on operating system support.

Suman explained that this current status has two important
drawbacks: first, because the applications retrieve raw, rich
input, there is a high privacy risk. He illustrated this based on
a face-recognition app that receives raw video camera streams
and thus can also scan the background to discover, as an exam-
ple, whiteboards full of confidential information. Second, the
current AR application model does not allow two AR apps to run
concurrently on the same hardware and hence does not scale.

The solution Suman presented is based on operating system
support for augmented reality in the form of so-called “recog-
nizers.” A recognizer recognizes real-world objects from raw
inputs (e.g., face or gesture recognition). AR applications can
subscribe to recognizers and retrieve a stream of preprocessed
data (e.g., the hand gestures performed or the recognized
faces). Because applications do not retrieve raw input streams
anymore, this enables a least-privilege access control for AR
applications. To explain to the user which data an AR applica-
tion receives, Suman and his co-authors introduced “privacy
goggles,” which previews to the user the filtered output; Suman
provided different examples of privacy goggles in his presenta-
tion. Moreover, since the preprocessing of the recognizer can
be off loaded and its output shared between different client
apps, this allows for higher scalability of AR apps.

In their evaluation based on 87 Xbox applications, Suman and
his co-authors discovered that 94% of the AR apps required

access to the skeleton recognizer, used for tracking movements
of a human body, and that only four recognizers (skeleton, person
texture, voice command, and hand position) together cover about
90% of the tested applications. Additionally, ten surveys with 50
participants each showed that 86% of the participants consid-
ered the recognizer output less privacy-sensitive. Suman pre-
sented that even with six apps sharing recognizers, more than 25
fps can be achieved for each app and he additionally showed the
offloading of a heavyweight 3D modeling recognizer to an exter-
nal graphic card. In future work, the authors want to investigate
how to securely share the other steps of the processing pipeline
among apps (e.g., rendering augmented output to screen) and
how to securely support third-party recognizers.

Devdatta Akhawe (UC Berkeley) asked whether moving object
recognition to the operating system level would result in a
slower application development, because apps might require
recognizers not yet available in the operating system and oper-
ating systems have slower update cycles. Devdatta wondered
how many recognizers would be required for Xbox Kinect
apps today, which were not available when the Xbox started
shipping. Suman replied that they have no such statistics, but
their evaluation shows that the bulk of the apps require only a
few recognizers and that corner cases might be addressed in
the future with a secure integration of third-party recogniz-
ers. Felix Lindner (Recurity Labs) wondered about the 14%
of survey participants who were not able to use the privacy
goggles despite the clearly unambiguous goggle preview. Suman
mentioned that these users were rather boggled by the whole
use-case and were unfamiliar with AR. Adrienne Porter Felt
(Google) asked about barcode scanners as recognizers. Suman
mentioned that this would be easily implementable and in
fact they showed how to run a bar code scanner in a privacy-
preserving manner in their S&P ’13 paper, “A Scanner Darkly:
Protecting User Privacy from Perceptual Applications.”

Hardware and Embedded Security I
Summarized by Bhushan Jain (bpjain@cs.stonybrook.edu)

CacheAudit: A Tool for the Static Analysis of Cache Side
Channels
Goran Doychev, IMDEA Software Institute; Dominik Feld, Saarland
University; Boris Köpf and Laurent Mauborgne, IMDEA Software Institute;
Jan Reineke, Saarland University

Boris Köpf started by discussing how caches improve per-
formance by reducing memory accesses but also jeopardize
security by leaking information about the latency for memory
lookups. This leaked information can be used to recover secret
keys from AES, DES, RSA, and ElGamal. He introduced the
three types of cache attacks: timing based, where the attacker
can determine the number of cache hits and misses from observ-
ing execution time; trace based, where the attacker can see the
trace of cache hits and misses by monitoring power consump-
tion; and access based, where the attacker shares a cache with

96  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

RepoRts

the victim and can find information about the memory loca-
tions accessed by the victim. Although some defenses against
cache attacks are implemented in hardware, most of them are
designed based on the interaction between the hardware and the
software. These solutions depend on the cache specifics and the
binary executing for security guarantee. CacheAudit helps such
solutions to reason about the security guarantee using automatic
static analysis of cache-side channels. It derives formal quanti-
tative bounds on the information leaked to the attacker.

Boris then explained the theoretical foundations of CacheAudit.
The goal is to compute a bound on the number of possible side-
channel observations to give a quantitative security guarantee
using program analysis. A binary program is represented by a
state transition system where the cache is a part of the program
semantics. The problem of computing the set of reachable states
is not feasible. Abstract interpretation is a static analysis method
where this set of reachable states is soundly over-approximated
by using a set of abstract states that are mapped to actual states
using a concretization function such that the abstract transition
function always delivers a superset of the concrete transition
function. Thus the size of superset of set of reachable states
represents a bound on the number of reachable states at the end
of program termination.

CacheAudit contains different abstract domains representing
the states in stack, memory, f lags, actual values, and cache hit
or miss. It parses x86 code and generates a control f low graph

that is traversed by the iterator to access all the possible states
that can be reached. Boris did not go into much detail about
cache abstract domain due to time constraints. The basic goal
of cache abstract domain is to statically predict cache hits and
misses. They analyzed the AES-128 implementation from the
PolarSSL library. CacheAudit provides different bounds for dif-
ferent attacker models. Few bits are leaked to a timing-based
attacker and many bits are leaked to the trace based attacker. If
the AES tables are preloaded, the bounds drop to 0 at the point
where the table can be entirely in the cache. He directed the
audience to the paper for many more results. The source code is
publicly available.

Eric asked how to use the CacheAudit reports to distinguish
between false positives and actual leakage. CacheAudit helps
the security developer prove that the system is secure and allows
him to make stronger security claims than before. Monitor the
CacheAudit execution and analyze the location where the num-
ber of reachable cache states increases above one. Ben Livshits
(Microsoft Research) asked about the loss in expressiveness if
we go for zero leakage. Boris was not clear on the question. The
chair suggested taking the discussion offline as the question and
answer apparently needed some discussion.

The complete USENIX Security ’13 report, as well as summaries
from CSET ’13, HealthTech ’13, HotSec ’13, LEET ’13, and WOOT
’13, are available online at www.usenix.org/publications/login.

VMware Academic Program: Committed to strengthening VMware’s relationship with
the academic and research communities. To learn more, visit labs.vmware.com.

SAVE THE DATE!
FEB. 17–20, 2014 • SANTA CLARA, CA

12th USENIX Conference
on File and Storage
Technologies

FAST ’14 brings together storage-system researchers and practitioners
to explore new directions in the design, implementation, evaluation, and
deployment of storage systems. The conference will consist of technical
presentations, including refereed papers, Work-in-Progress (WiP) reports,
poster sessions, and tutorials.

Full program information and registration will be available soon.
www.usenix.org/fast14

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES

	Contents and Masthead
	Musings
	The 10-Kilobyte Web Browser
	A Fistful of BitcoinsCharacterizing Payments Among Men with No Names
	Dowser: A Guided Fuzzer for Finding Buffer Overflow Vulnerabilities
	Rent to Pwn: Analyzing Commodity Booter DDoS Services
	An Interview with Ben Laurie
	Mackerel: A Progressive School of Cryptographic Thought
	Trusting PGP
	Using SEC
	Erasure Codes for Storage Systems: A Brief Primer
	Practical Perl Tools: Cli Me a River
	Python: -m Is for Main
	iVoyeur: Go, in Real Life
	Measuring vs. Modeling
	/dev/random: Cloud Control: Future (Mis)Directions for Information Security
	Book Reviews
	2014 Election for the USENIX Board of Directors
	USA Team Wins Big at 2012 International Olympiad in Informatics
	Thanks to Our Volunteers
	Conference Reports: 22nd USENIX Security Symposium

