
o c t o b e r 2 0 1 2   v o l . 3 7 , n o . 5
e l e c t r o n I c S U P P l e M e n t

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4Th USENIX WORkShOp ON hOT TOpICS IN STORagE aNd FILES SySTEmS (hOTSTORagE ’ 12) pagE 1

4th USENIX Workshop on Hot Topics in
Storage and Files Systems (HotStorage ’12)
Boston, MA
June 13-14, 2012

Dealing with Dynamics
Summarized by Timothy Zhu (timothyz@cs.cmu.edu)

Multi-Structured Redundancy
Eno Thereska, Phil Gosset, and Richard Harper, Microsoft Research,
Cambridge, UK

Eno Thereska began by relating some common abstractions
used in today’s datastores. For example, key-value stores,
file stores, and graph stores are all used to store data, but the
different abstractions are often paired with certain assump-
tions and designs. When workloads change, we end up need-
ing to redesign systems for a new set of assumptions. In his
talk, Eno proposes the radical idea of using multiple datas-
tores simultaneously to efficiently represent data. He relates
this to the idea from the database community of representing
tables both as row stores and column stores.

In particular for datacenters, Eno proposes using the redun-
dancy in the system to store the multiple representations.
This opens up many research questions such as: Can the dif-
ferent datastores be kept in sync? What about performance
interference? Can this be supplanted with an in-memory
structure? Eno also presented this idea from the perspective
of a laptop environment. Here there is no redundancy to take
advantage of, but the system can be partitioned to expose
multiple data representations. This approach also brings
along some interesting HCI questions about how people want
to interact with their data.

The first question from the audience was whether this
work has covered all the fundamental data structures. Eno
responded that the key-value store, file store, and graph
store are likely the most common, but additional structures
may be needed. One point of caution when using more data
structures simultaneously is the increased complexity in
synchronization. Next, Timothy Zhu (CMU) asked about
the impact of erasure coding replication in the datacenter.
Eno responded that erasure codes are mostly used for cold
data, and this idea might still apply to the hot data. He also
remarked that perhaps the multiple data structures can be
applied only to the indexes. In this case, it doesn’t matter
how the data is replicated. Timothy also asked if there was
a tradeoff between ingesting data quickly and accessing
the data quickly in an efficient format. Eno responded that
their system always accesses the latest version, but it will
eventually need to handle the backlog from converting the
quickly ingested data into the appropriate datastore. Lastly,

Nauman Rafique (Google) asked about how this research
direction compares with trying to find one general datastore
that works in all cases. Eno responded that in-memory stores
work well in most cases, but some workloads need different
data formats. He gave an example from the database commu-
nity of how using both row stores and column stores make a
big performance difference, both on-disk and in-memory.

MixApart: Decoupled Analytics for Shared Storage
Systems
Madalin Mihailescu, University of Toronto; Gokul Soundararajan,
NetApp; Cristiana Amza, University of Toronto

In this talk, Madalin Mihailescu looked at the problem of
combining enterprise and analytics data in one datastore.
Since these two workloads exhibit very different behaviors,
different storage systems have been built for each type. For
example, enterprise systems have a rich set of data manage-
ment features and are designed for strong consistency. On
the other hand, analytics systems are less concerned about
consistency and data protection, but are designed for high
throughput. The common practice of using two separate
datastores unfortunately leads to excessive hardware and
maintenance cost. Furthermore, sharing data often requires
transferring data between the systems. What the authors
propose is a method of integrating analytics data into enter-
prise storage systems while maintaining scalability and
performance.

The key idea behind their technique is to use the local disk of
the compute server as a cache for performance. Since there
is high data reuse in many workloads, it is possible to reduce
load at the shared storage system by caching data on the com-
pute server’s local disk. They also build a scheduler to better
utilize the cache and prefetch input data for the next job.
Madalin concluded with some evaluation results comparing
their system to Hadoop.

Moises Goldszmidt (Microsoft Research) and Ning Wu
(EMC) asked how this technique could be used to improve
machine learning algorithms and Hadoop. Madalin
responded by clarifying that this work is not attempting to
improve performance, but rather to integrate analytics data
with enterprise storage. Their techniques help to allevi-
ate the burden from the analytics workload so that they
can achieve a similar performance as when running on a
dedicated datastore. Ajay Gulati (VMware) asked if large
datacenters should be switching to use enterprise storage
systems. Madalin replied by suggesting that companies
need not use one large storage system instead of a cluster of
 storage devices, but could use something in the middle such
as a small set of medium-sized storage servers.

Conference Reports

pagE 2  | OCTOBER 2012 | VOL. 37, NO. 5 | 4Th USENIX WORkShOp ON hOT TOpICS IN STORagE aNd FILES SySTEmS (hOTSTORagE ’ 12)

E L E C T R O N I C S U P P L E M E N T

LoadIQ: Learning to Identify Workload Phases from a
Live Storage Trace
Pankaj Pipada, Achintya Kundu, K. Gopinath, and Chiranjib
Bhattacharyya, Indian Institute of Science; Sai Susarla and P.C. Nagesh,
NetApp

Pankaj Pipada presented the authors’ investigation into the
problem of identifying different I/O phases in a workload
from a live trace. This information can be used to dynami-
cally tune storage systems to better match the require-
ments of a workload phase. Doing so would require a tool
that is automated and non-intrusive. They propose a generic
technique, not based on heuristics, to automatically classify
I/O phases based on storage traces and build a tool based on
these ideas.

The key mechanism behind their technique is the Support
Vector Machine (SVM) machine learning algorithm. They
define a similarity metric between two traces by using histo-
grams of shifts in the storage trace’s offset field. This defines
a similarity matrix. Using a technique from prior work, they
modify this matrix to make it positive semidefinite. This is
then used in a SVM classifier to classify a trace as one of two
phases. To support m phases, they use m(m-1)/2 SVM classi-
fiers, one for each pair of phases. A trace is tagged a particu-
lar phase if all m-1 of its classifiers vote for this phase. If a
trace cannot be identified as one of the phases, then the trace
is considered “unknown.” After some time, the unknown
category can be turned into its own phase.

Pankaj concluded with some results showing their clas-
sification accuracy. He also raised some questions for the
audience. First, he asked about how concurrent I/O can be
separated in a combined trace. Second, he asked about how to
quantify the confidence of the result. Lastly, he asked about
ways in which systems can exploit this phase knowledge.

Moises Goldszmidt (Microsoft Research) first commented
that SVM already has a method of statistically quantify-
ing the confidence. Second, he asked if this problem is more
suited to a clustering algorithm rather than SVM, a binary
classifier. He suggested perhaps using latent Dirichlet
allocation, which handles unknown groups more effectively.
This would also eliminate the need to modify the similarity
matrix. Pankaj responded offline that defining the num-
ber of clusters is a problem when using a clustering-based
approach. Also, he noted that using supervised learning
makes it easier to interpret each cluster, which is impor-
tant for the mentioned use cases. Eno Thereska (Microsoft
Research) commented that using additional information
about other parts of the system such as memory or network
usage could provide better phase identification than from
using storage traces alone. He asked if this technique could
be applied to these other resources as well. Pankaj responded

that their framework should work for other resources, but a
similarity metric needs to be defined for that data. Lastly,
Ajay Gulati (VMware) commented that phase identification
can be useful in systems for performance diagnosis as well as
throttling applications for QoS.

Cloudy with a Chance of QoS
Summarized by Pankaj Pipada (ppipada@gmail.com)

Gecko: A Contention-Oblivious Design for Cloud
Storage
Ji Yong Shin, Cornell University; Mahesh Balakrishnan, Microsoft
Research; Lakshmi Ganesh, UT Austin; Tudor Marian, Google; Hakim
Weatherspoon, Cornell University

Log-structured storage designs can be used to solve the disk
contention problem in modern datacenters, but they suffer
from performance degradation due to garbage collection
(GC) overheads. Ji Yong Shin presented Gecko, a system
where a single log structure is distributed across a chain of
drives, physically separating the tail of the log from its body.

Gecko cuts the log tail from the body so that GC reads do
not interrupt the sequential write. This results in a single
uncontended drive rather than N contended drives. Gecko
avoids write-write contention and GC-write contention.
Gecko design offers a tradeoff between potentially utilizing
the maximum write throughput of all disks in an array and
eliminating performance degradation due to gc-write con-
tention. Gecko uses preferential caching of data, from the tail
drive of the chain in a flash cache, to avoid read-write con-
tention. Results comparing aggregate throughput for RAID-0
+ LFS v/s Gecko using a move-to-tail GC were presented.
Also it was shown that when compact-in-body GC is used the
application throughput is not affected.

Umesh Maheshwari (Nimble Storage) first commented that
Gecko would work with RAID-1 and then raised a question
on how to extend this to parity-based RAID systems. Ji Yong
Shin clarified that parity-based RAID can be implemented
on top of Gecko by sending each parity stripe to each Gecko
chain. Specifically, a disk chain in a Gecko-based RAID
system will correspond to a disk in a regular RAID. Someone
asked if a specific LFS was used to compare performance.
Ji Yong Shin responded that they used the LFS used by
Gecko, with chain-size 1, for comparisons. When asked about
implementation details, Ji Yong responded that the current
implementation is using block devices, but use of compres-
sion in such devices was not considered.

A Parallel Page Cache: IOPS and Caching for Multicore
Systems
Da Zheng, Randal Burns, and Alexander S. Szalay, Johns Hopkins
University

The current OS page cache is designed for magnetic disks
(with thousands of IOPS) and for high cache hits. Whereas

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4Th USENIX WORkShOp ON hOT TOpICS IN STORagE aNd FILES SySTEmS (hOTSTORagE ’12) pagE 3

E L E C T R O N I C S U P P L E M E N T

cloud I/O is characterized by randomness and lower cache
hits. Da Zheng presented a set-associative page cache for
scalable parallelism of IOPS in multicore systems. The focus
was on cloud workloads where most accesses are reads; few
pages are accessed many times, and most pages are accessed
few times.

The design eliminates lock contention and hardware cache
misses by partitioning the global cache into many indepen-
dent page sets, each requiring a small amount of metadata
that fits in few processor cache lines. The design is extended
by using message passing among processors in a non-uni-
form memory architecture (NUMA). It avoids the problem of
long latencies due to remote memory access by partitioning
the cache by NUMA nodes. All cores in a NUMA node share
a cache partition. Each NUMA node is treated as a node in
the distributed system. The evaluation studies scalability
of the proposed cache with a high page turnover rate under
random workload without cache hits. The cache hit rate and
the overall runtime performance of the cache is done using a
Zipfian workload. Da Zheng provided a performance evalua-
tion on an SSD array, providing an in-kernel implementation
and dynamic cache sizing as future work.

When asked about the overhead incurred if the implementa-
tion was done in the kernel rather than in user-space, Da
Zheng responded that if performance is used as a metric to
measure overhead he expects it to be the same. Someone else
asked for the amount of contention in absolute time rather
than in percent. Da Zheng responded that they measured the
lock overhead with perf, which only shows the percentage of
each component. To get the absolute time, they have to take
the total time times the percentage of spin locks. The total
runtime with 12 threads is about 28 seconds, so it’s 28 * 52%
= 14.56 seconds.

Efficient QoS for Multi-Tiered Storage Systems
Ahmed Elnably and Hui Wang, Rice University; Ajay Gulati, VMware Inc.;
Peter Varman, Rice University

Providing performance isolation and QoS guarantees among
various clients is challenging in multi-tiered storage systems.
The notion of I/O cost used by existing solutions in such
environments gets very hard to estimate and use. Ahmed
showed through example that for existing fair schedulers,
time-slice-based schedulers do not work well for multi-tiered
storage. He also provided an example of a queue-partitioning-
based scheme where static partitioning doesn’t work well.
Then Ahmed described a model called “reward scheduling”
along with a corresponding algorithm, which favors the cli-
ents whose I/Os are less costly on the back-end storage array.
This can be due to better locality, caching, hitting in the SSD
tier, etc.

In their approach, each client is weighted to denote its rela-
tive priority. A running average of the response times of the
last N requests of each client is used for I/O cost accounting.
A queue is maintained per client with a tag and the scheduler
dispatches the request with the smallest tag to the stor-
age array when invoked. The clients who complete requests
faster are given priority over those with slower requests, as
are clients with higher static weights. The evaluation was
done using a simulator for a multi-tiered array as well as on
a Linux-based system with locally attached SSD and a disk.
The evaluation showed that reward scheduling was able to
maintain high utilization by favoring I/Os that are cheaper
on the back-end array.

Ahmed raised a couple of interesting open question on
whether interaction between cache management and
scheduling algorithms could provide better results. He also
asked whether it is possible to better isolate queueing delays
from response time. When asked if the algorithm sacrifices
system throughput, Ahmed responded that for most of the
experiment the disk utilization was 100%, so the system
throughput is not affected.

The key takeaway from the talk was that the problem of pro-
viding QoS in multi-tiered arrays is not solved using existing
techniques, and new research is needed in this area. One also
needs to figure out how to improve the interaction between
an outside scheduler that is sending requests to the array and
the internal array scheduling to better optimize the utiliza-
tion of underlying storage devices.

Keynote Address: Designing Storage Systems
with Flash
Umesh Maheshwari, Nimble Storage
Summarized by Rik Farrow (rik@usenix.org)

Umesh Maheshwari started out with a word completion
exercise, asking the audience to finish sentences by provid-
ing these buzzwords: cloud, virtualized, dedup, big data, and
flash. Five years ago no storage vendor had flash in their
products, but today the big storage vendors and many start-
ups are in the game. Is flash a done deal? No, everybody is
doing it differently. Umesh then built a tree of decision points,
such as if you use flash in storage, do you use it alone or with
disk. His tree extends to five levels of decisions. Then he said,
“In each of these cases, Nimble has made the right choice, or
the right-hand choice,” to laughter. “There is no right versus
wrong here, and many of these choices are not mutually
exclusive,” he continued.

Umesh provided some background by explaining that he
founded Nimble Storage with Varun Mehta (an early NetApp
employee) in 2008, when there were no flash storage prod-
ucts. Their focus has been producing both good performance

pagE 4  | OCTOBER 2012 | VOL. 37, NO. 5 | 4Th USENIX WORkShOp ON hOT TOpICS IN STORagE aNd FILES SySTEmS (hOTSTORagE ’ 12)

E L E C T R O N I C S U P P L E M E N T

and capacity for mainstream applications. Umesh then
worked his way down the decision tree he presented earlier.
While flash seems like a good idea in a server host, it actually
will work just as well in a SAN once the queue depth gets
deeper. Flash on storage supports multiple hosts, provides
high availability, and can accelerate the storage block map or
other metadata. At the next decision point, Umesh explained
why hybrid makes the most sense: flash is expensive, and
most data is cold. Enterprise flash costs 30x as much as
enterprise disk. Then there is the uncertain long-term reli-
ability of flash. These points all argue strongly for a hybrid
solution.

The next decision point in his tree is simpler: flash as end-
point or accelerator. Flash used as an endpoint for storing
data requires copying data into or out of flash, depending
on whether it is hot or not. When using flash for accelera-
tion, data copied to flash does not have to be copied back to
disk. At the next level in Umesh’s decision tree, he compares
using flash as a write-back flash versus using it as a read
cache. Umesh pointed out that NVRAM works better as a
write-buffer, although flash can provide a much larger buffer.
Flash also has the issue of write wear. By using flash as a
read cache, you can control how often flash gets written. As
for the unreliability of flash, the data in cache is a subset of
clean data on disk, so there’s no need for parity or mirroring.
A checksum failure just means finding the data on disk.

The final decision point has to do with disk layout, read-
optimized or write-optimized. Read-optimized layouts help
with sequential reads as well as being simpler for calculating
block offsets. In write-optimized layouts, blocks can go any-
where, requiring a large map and a more complex algorithm
for locating blocks. But I/O has become increasingly write-
dominated, as much as 80% currently. And systems include
a large amount of memory, which acts as a cache for recently
written data. Nimble focused on write-optimization, where
they use the block map stored in flash to speed up garbage
collection for coalescing blocks, both to improve read speed
but also so they can write in large stripes using their log
structured file system.

Umesh concluded with his wish for improvements in SSDs,
mainly features that would fit best with their use of flash.
Fred Douglas of EMC commented about cache: even though
memory has gotten bigger, data has gotten much bigger as
well. Umesh said that this depends on the application. In
the case of big data, you will typically be reading in large
chunks of data sequentially. Dilma Da Silva of IBM, said that
if you don’t trust the flash for write data, how can you use it
to optimize it for reading the block map? How can you trust
the block map? Umesh pointed out that the block map is just
a cache of what’s on disk, and that if a checksum fails when

reading a block map location, you can just go back to the disk.
Geoff Kuenning of Harvey Mudd College said that people
have been pretending that SSDs have spinning heads and
behave like disk drives. But Umesh’s wish list shows he’d like
things to be different. Umesh replied that flash manufactur-
ers are optimizing their products for non-enterprise level
products, so most of the smarts have to be in the device. He
would like to leave some things, like wear-leveling, in the
devices, but have more control over things like garbage col-
lection and the ability to write to erasure blocks instead
of pages.

Dealing with Devices
Summarized by Pankaj Pipada (ppipada@gmail.com)

Exploiting Peak Device Throughput from Random
Access Workload
Young Jin Yu, Seoul National University; Dong In Shin, Taejin Infotec,
Korea; Woong Shin, Nae Young Song, Hyeonsang Eom, and Heon Young
Yeom, Seoul National University

Using polling instead of interrupts and removing delayed-
execution due to the I/O scheduler and SoftIRQ handlers
are common optimizations when using solid state devices
to enhance random I/O performance. But this mechanism
for handling I/O suffers a performance wall at 75,000 IOPS
(approx. 13 usec/4KB). Young Jin Yu proposed a new
batching scheme called “temporal merge,” which dispatches
non-contiguous block requests using a single I/O opera-
tion. This overcomes the disadvantages of the narrow block
interface, and enables an OS to exploit the peak throughput of
a storage device for small random requests as well as a single
large request.

Temporal merge combines multiple (even non-sequential)
requests within a short time window, and dispatches them by
using a new I/O interface. In synchronous temporal merge,
each thread submits a block request. A winner is chosen who
combines concurrent block requests into one and dispatches
it by using a new interface. The losing threads yield CPU and
sleep until the completion of their requests. This method
balances the synchronous I/O paths and batching to give low
latency and high throughput, but the merge count is limited
by the maximum number of threads entering into the I/O
subsystem. Young Jin Yu proposed asynchronous temporal
merge, which maximizes the accumulation of block requests
in a queue when the concurrency is low. Young Jin Yu also
proposed an extended block I/O interface of DRAM-based
SSD and described how temporal merge can be implemented
in the I/O subsystem in Linux. The experimental results
show that under multithreaded random access workload, the
proposed solution can achieve 87–100% of peak throughput
of the SSD.

When asked about whether the CFQ I/O scheduler was used
for implementation, Young Jin Yu responded that a custom-

 | OCTOBER 2012 | VOL. 37, NO. 5 | 4Th USENIX WORkShOp ON hOT TOpICS IN STORagE aNd FILES SySTEmS (hOTSTORagE ’12) pagE 5

E L E C T R O N I C S U P P L E M E N T

ized I/O scheduler was used for evaluation. Regarding fair-
ness of temporal merging, it is at least as good as a sync-poll
mechanism since it guarantees FIFO dispatching order.
However, it does not take process priority into consideration;
the process priority of a winner may be lower than those of
losing threads. Also it was suggested that atomic updates
were done using standard test and set mechanisms which
incurred an acceptable overhead.

Finding Soon-to-Fail Disks in a Haystack
Moises Goldszmidt, Microsoft Research

Moises Goldszmidt presented a statistical machine-learn-
ing-based detector of soon-to-fail disks. The model uses
one performance signal for its prediction. The signal used
is average-max-latency (AML) that goes through a model
comparison filter (using Hidden Markov Models, HMM),
and a peak counter. A logistic regression model then fuses
the output of these two filters. The parameters of these mod-
els are automatically trained using signals from healthy and
failed disks.

Evaluation was done by dividing the data into two sets of
1190 disks with 17 failed disks each. The first set is used for
training, while the second is used for testing. The HMM
models are trained by taking 24 hours of AML data at a
time with a sliding window of four hours for 12 failed and 48
healthy disks. Logistic regression is trained using 200 disks,
and 900 disks are used to set the threshold for minimizing
false positives. During testing, simulating the production
environment, the detector was able to predict 15 out of the 17
failed disks (88.2% detection) with 30 false alarms (2.56%
false positive rate). The detector predicted the problem
within two weeks to eight hours before failure. The workload
was stable for all disks (healthy or soon-to-fail), and there is
no solid correlation to SMART data.

When asked if there is any intuition to why there is no cor-
relation to SMART signals, Moises Goldszmidt responded
that more data is needed and speculated that from informal
observations disks appear to fail for different reasons, each
involving a different SMART signal. Moises also suggested
that moving applications from the detected failed disk or
modifying the amount of replication for the data can be the
possible usages after an alarm signal by the detector. He also
mentioned that the work started through an observation
made by an operator in the performance of failing disks.

An Evaluation of Different Page Allocation Strategies
on High-Speed SSDs
Myoungsoo Jung and Mahmut Kandemir, The Pennsylvania State
University

Exploiting internal parallelism is becoming a key design
issue in high-speed solid state disks (SSDs). Myoungsoo Jung
presented a simulation of a cycle-accurate SSD platform with

24-page allocation strategies, geared toward exploiting both
system-level parallelism and flash-level parallelism with a
variety of design parameters.

The key findings of the experiments were: flash-level resource
first-page allocation strategies can give better performance
overall; channel-first page allocation schemes render high
flash-level parallelism difficult under disk-friendly work-
loads; with most of the modern parallel data access meth-
ods, internal resources are significantly underutilized.
Also, several optimization points were presented to achieve
maximum internal parallelism. Incorporating a high-speed
flash interface (400 MHz) in the design is an area of future
work. Also, further evaluations using varying parameters
such as different queue/buffer management, flash firmware,
internal resource parameters, and more diverse workloads in
evaluation was seen as future work.

When asked about the effect of larger pages on the perfor-
mance, Myoungsoo Jung suggested that the channel conten-
tion would increase in the case of reads because channel bus
activities of reads accounts for about 50% of the total execu-
tion time, and the amount of such bus activities mainly depends
on their page sizes. He also suggested that reducing the
eight-way channels to two-way or one-way would increase
the resource conflict significantly.

