
www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 89

BOOKSBook Reviews
M A R K L A M O U R I N E A N D R I K F A R R O W

Effective Python: 90 Specific Ways to Write Better
Python, 2nd Edition
Brett Slatkin
Pearson Education Inc., 2020, 444 pages
ISBN 978-0-13-485398-7

Reviewed by Mark Lamourine

In Effective Python, Slatkin offers a rather different twist on the
cookbook format for programming references. In the conven-
tional form, each chapter opens with a problem or a question. The
body of the chapter then consists of a solution with some exposi-
tion. The premise is that the reader is learning the language
features and capabilities. The recipes provide language-specific
ways to achieve what are normally common goals.

Slatkin’s approach is more of a catalog of best practices for the
Python coder. The book is subtitled “90 Specific Ways to Write
Better Python.” Each of the 90 small “items” referred to in the
subtitle opens with a recommendation. For example, Item 9:
“Avoid else Blocks After for and while Loops.” The main body
of the item is a presentation of an argument for the recommenda-
tion. The arguments range from readability and performance to
avoidance of common coding errors. Slatkin’s arguments tend
to follow a pattern. First he shows how the feature or construct
is used commonly. He talks about why the typical usage makes
sense at first and then how it can lead to problems. Only then
does he offer his alternative, using new code fragments and
explaining how the new code’s behavior addresses the problems
cited. Each item ends with a summary bullet list of things to
remember.

The items are grouped into chapters thematically. Most are
related to language features like lists, functions, or classes. The
opening and closing chapters are more about idiom, style, and
human behavior and are entitled, respectively, “Pythonic Think-
ing” and “Collaboration.”

These two chapters directly express a thematic undercurrent
that runs throughout the book: coding is a human endeavor and a
craft and in every instance involves the judgment of the devel-
oper. Despite his recommendations favoring specific behaviors
and constructs over others, Slatkin always appreciates why the
common usage is common. His recommendations are always
presented in a way that is meant to be persuasive rather than
strident or proscriptive.

I started using Python with version 1.5, and version 2.x has been
a staple for me since it was released in 2000. For me, version 3
was always “someday.” I’m embarrassed to realize it’s been 12
years. With the sunsetting of version 2 in January 2020 [1], it has
become important not just to learn the differences, but to commit
to version 3. The second edition of Effective Python treats only
version 3, with none of the back references or porting comments
that have been common for a decade.

There have been a couple of changes that I didn’t really inter-
nalize. One was the introduction of the bytes and str types
for representing strings. I understand the difference between
ASCII byte strings and UTF-8, but the treatment in Python and
the idiomatic usage have never become second nature. Slatkin
addresses this as Item 3 in the first section. He shows how to
recognize them and how to convert between them. More impor-
tantly he indicates when to convert between them and when to
leave them alone.

I had been in the habit of using the print() function in Python
2 from the __future__ module and the str.format() method
instead of the formatting operator (%) for a long time. I was
surprised to learn that there is a new string formatting method
introduced in version 3.6 called Literal String Interpolation, or
f-strings, for the prefix used to indicate one in the code. These
work more like Jinja2 templating, where you use the name of
the variable inline to resolve and replace the value in the string.
What I really like about this item is the way Slatkin demonstrates
the earlier methods, showing how it is easy to make errors with
them. Finally, he demonstrates f-strings in a way that highlights
how they resolve the problems.

Don’t be fooled by my initial examples. Effective Python addresses
some rather deep theoretical constructs as well. It has a fantastic
treatment of generators, not just what they are and how to use
them, but how they work and why to use them. Hint: avoid large
in-memory arrays of computable values. Slatkin’s treatments
of metaclasses and concurrency also brought me some “aha!”
moments. The references in these cases are provided for anyone
who is learning about these topics for the first time and that’s a
good thing.

The only real quirk I noted with Slatkin’s style is that it really
requires you to properly read the text. In many reference works,
once you’re familiar with the topic you can skim to find just the
bit of code you need. While none of the items here are particularly
long or deep, the teaching style requires the reader to follow the
narrative. I don’t think that this is a problem, but it was an adjust-
ment I had to make to get the most out of what I was reading.

90    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

BOOKS

Normally, I would encourage new coders to set something like
this book aside until they had some experience and context to
bring to it. In the case of Effective Python, I would consider sug-
gesting they get it, skim the first few sections, and then set it
aside. It will be there when they begin to ask the questions it tries
to answer. It’s a book I expect to return to.

Dependency Injection Principles, Practices, and
Patterns
Steven van Deursen and Mark Seemann
Manning Publications, 2019, 522 pages
ISBN 978-1-61729-473-0

Reviewed by Mark Lamourine

I remember my confusion the first time I heard the term depen-
dency injection (DI). I’d seen it used in some Ruby code with unit
and functional tests, but I didn’t know it had a name and didn’t
understand the formal basis for it. Since then I’ve spent signifi-
cant time failing to create testable or f lexible code using DI.
Understanding DI has been on my back burner, and when I saw
this book I had to see what DI is about.

“Principles, Practices and Patterns” is actually a pretty good
description of the book. The authors are clearly fans of Martin
Fowler, Robert Martin, and the Design Patterns [2] “Gang of
Four.” They make explicit reference to several design patterns
that are extensively used to implement DI constructs. They
also make good use of proper UML diagrams to illustrate object
dependency relationships and life cycle. While prior knowledge
of design patterns and UML isn’t required, it will definitely help
a reader understand the theory and the assertions the authors
make about the structure of software and the effect that has on
testability and maintainability.

At the end of Chapter 1 I found a paragraph that is easy to miss
but critical to understanding this book. The goal of the authors
is to help readers implement code designed with loose coupling.
That is, code that depends on interface and API definitions of
the code it uses rather than on the specific implementation. The
authors’ core assertion is that loose coupling is a generally desir-
able trait of well-designed systems. Dependency injection is just
the technique they are offering to enable loose coupling. It is easy
to lose track of that emphasis when trying to absorb the some-
what dense concepts that follow.

One thing becomes evident during the first three chapters:
loosely coupled code looks more complex than tightly coupled
code, at least at first look. In Chapters two and three, the authors
show a simple three-layer application with a database, a user
interface, and some business logic sandwiched in between. They
do a good job of showing the options and decisions that lead
to tightly coupled code. The design decisions are primarily a

function of the desire for initial simplicity. They are natural and
straightforward, based on the intent of the application.

In the following chapter the authors re-implement the appli-
cation with a design in which the components are carefully
decoupled. Each of the interacting classes defines an interface
rather than just providing a function or method for callers. The
design is significantly larger, increasing from four classes to nine
and with three interfaces. The chapter is also twice as long. That
extra text is used to explain the different considerations that are
needed to design decoupled code. It takes a deliberate approach
and the development of a set of habits to view a problem this way.

The second section is where the theory gets deep. These chapters
present the DI design patterns and set of anti-patterns, conclud-
ing with a chapter on DI code smells. The final two sections show
how to implement applications with DI, first directly and then
using a kind of DI factory called a DI Container. These take
existing classes and reflect them to create a new class that allows
DI. The examples given are specific to .Net, though the illustra-
tion is useful.

I was a little concerned when I realized that the examples and
code samples are written in C# and make use of .Net libraries.
My worries were unfounded. The C# code will be clearly under-
stood by anyone familiar with C++ or Java, and the .Net library
references are reminiscent of Java APIs. The examples have the
camelcase verbosity one would expect from those languages as
well, but it doesn’t interfere with clarity. Very few of the code frag-
ments are longer than a single page, and the typeset annotations
are well placed and clearly associated with the lines they describe.

Dependency Injection Principles, Practices, and Patterns provides
a lot to chew on, and it’s going to take me a while to properly con-
sume and digest it. I have several web projects going where I hope
to make use of it.

Building Secure and Reliable Systems
Heather Adkins, Betsy Beyer, Paul Blankinship, Piotr
Lewandowski, Ana Oprea, and Adam Stubblefield
Google LLC and O’Reilly Media Inc., 2020, 557 pages
ISBN 978-1-492-08312-2

Reviewed by Mark Lamourine

When Google publishes a guide for infrastructure, you can be
sure that it’s worth reading. The real question is: is it something
you can use? Google works on a scale that few other companies
can. As a purely practical matter, few companies have the
resources or the strictest requirements for efficiency that
characterize the handful of truly colossal Internet companies.
I picked up Building Secure and Reliable Systems with a bit of
skepticism.

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 91

BOOKS

I was also concerned with the size of the book. At over 500 pages
it’s still not the largest infrastructure book I’ve read. I wanted to
see how the authors managed the challenge of providing a useful
level of information in a manageable amount of space.

This is the third book in a series Google has published on the
topic of site reliability engineering (SRE) [3]. This is Google’s
refinement of the system administration model that has been
called DevOps. The first defines and describes the philosophy of
the SRE model and the role that the SRE plays in an operational
organization. The second is a “workbook” for SREs, describing
how they go about their job. This third volume provides a set of
best practices both for the enterprise and for the service groups.
It puts the SRE into the context of a complete organization in a
way that can be appreciated both by the SREs and by their man-
agement and business peers.

Where the earlier volumes focused on workers and their tasks,
this one illuminates the factors to consider in design and imple-
mentation of computer systems. The chapters alternate between
discussion of a single desirable aspect of a system and case stud-
ies to give concrete examples.

Those design aspects are not things that are usually put high on
the system requirements list: understandability, resilience, and
recovery. The only element specifically for security is least privi-
lege. The authors recognize that encryption and user authentica-
tion get a lot of attention. Defense in depth requires more care
and thought. Security vulnerabilities will always be present, but
exploits can often be neutralized by limiting what an attacker
can access.

Each of these chapters really just provides additional incentive to
follow ordinary design best practices. These discussions provide
weight to arguments against cutting corners in design and imple-
mentation, and they provide rationale for better decisions than
are often made.

The implementation section addresses considerations for reli-
ability during the realization of the design, with chapters on
writing, testing, and deploying the code and on surveying and
debugging systems. In these chapters, the real nature of the
writing comes through. This is a volume of collected wisdom:
it’s a series of thoughts and reminders—remembering to stop
and think when things go wrong, for example, and to pair work
where one is typing and the other is a scribe, both to avoid losing
information and for mentoring.

The final couple of chapters talk about what I think has become
the most critical aspect of software development and system
administration: culture. There can be a lot of focus on techni-
cal stars in hiring and team formation. What experience has
shown me is that people want to do good work and to learn and
challenge themselves. The most common frustration is poor

team empowerment and communication. All of the preceding
chapters are nullified if the developers and admins aren’t given
the freedom and incentives to collectively evaluate and then act
on their decisions.

Each of the chapters is nicely self-contained. The writing is
clean, almost sanitary. This reflects the Google aesthetic of
minimal bling, flash, and distraction. The authors provide
frequent cross references, and each chapter concludes with a
summary and a list of references. The spare nature of the writing
style makes for a surprisingly readable text.

Except for a few details and discovery of a small set of obscure
but useful tools, I didn’t learn a lot that was new. For the devel-
oper or sysadmin, this book is a good complete compendium of
the highest level considerations for system design. For project
management, it is a window into the kinds of things the team
should be discussing and resolving throughout a project. I didn’t
see anything here that made me think “you can only do that if
you’re Google.” I’ll keep Building Secure and Reliable Systems
handy for when I need to champion more thoughtful, purposeful
design and operational behaviors. “See, this is how Google does it.”

Rootkits and Bootkits: Reversing Modern Malware
and Next Generation Threats
Alex Matrosov, Eugene Rodionov, and Sergey Bratus
NoStarch Press, 2019, 448 Pages
ISBN-13: 978-1-59327-716-1

Reviewed by Rik Farrow

I chose this book to review after listening to an invited talk at
WOOT ’20 by the main author, Alex Matrosov, and because
Sergey Bratus is also an author. I would ordinarily have steered
clear of books primarily about Windows, but once you get past
Part 1, about rootkits, you find yourself in territory relevant to
Linux systems. The authors cover information relevant to any-
one running software on Intel or AMD chipsets.

The book is well written and organized, and it includes example
code (all Windows) and dumps from malware and firmware
samples. I had little trouble reading the book, although I did want
a glossary of abbreviations handy after a while, as there are loads
of obscure TLAs.

The authors start out by describing TDL3 and Festi rootkits.
These are “old,” designed for 32-bit versions of Windows that
have long been out-of-date but likely still run. Most of the tech-
niques used—plugins to extend the malware, using a rolling XOR
as “encryption,” changing registry keys—seem familiar. What
makes Festi interesting is the malware designers’ knowledge
of kernel internals. They hook both file and network drives very
deep in the software stack, making them difficult to discover
through Host Intrusion Prevention System (HIPS) products, as
these tools also install hooks at the same layer.

92    WI N T ER 2020  VO L . 45 , N O. 4 	 www.usenix.org

BOOKS

I really hadn’t been paying much attention to Windows malware
over the last decade, and the focus of this book is on two specific
areas that cover some of the most sophisticated attacks possible.
I enjoyed reading the book and learning about the malware, even
if it was not particularly relevant to me, as “I don’t do Windows.”
Still, there’s more than enough here that’s relevant to Linux
users, as malware writers are now turning their attention to
Linux servers.

References
[1] https://www.python.org/doc/sunset-python-2.

[2] E. Gemma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley Professional, 1994).

[3] https://landing.google.com/sre/books/.

As security in Windows improves, malware writers have shifted
their focus to bootkits, methods of infecting the kernel during
the boot process. Here again you will find information relevant
to any operating system that relies on x86 chipsets. The authors
cover the boot process and provide analyses of bootkit samples,
as well as the arms race in bootkits that leads to UEFI Boot.
UEFI is supposed to provide secure boot, with checks of the
authenticity of code, but in many cases vendors have not properly
implemented the standard.

Chapters 15 and 17 demonstrate the use of a tool, called Chipsec,
that allows you to probe your firmware settings. The tool works
for Windows, Linux, and macOS, and you can find the tool on
GitHub at https://github.com/chipsec/chipsec. With the tool, you
could see if your firmware is write-protected and whether SPI
flash memory protections also have been enabled. The authors
have tested a number of motherboards, and many of them have
either not enabled or included firmware protections, making the
system more susceptible to bootkit malware.

https://www.python.org/doc/sunset-python-2

www.usenix.org	   WI N T ER 2020  VO L . 45 , N O. 4 93

Statement of Ownership, Management, and Circulation, 09/30/2020
Title: USENIX Association/ ;login:
Pub. No. 1044-6397
Frequency: Quarterly
Number of issues published annually: 4
Subscription price: $90.
Office of publication: 2560 9th St., Suite 215, Berkeley, CA 94710-2565
Contact Person: Sara Hernandez. Telephone: 510-528-8649 x100
Headquarters or General Business Office of Publisher: USENIX Association, 2560 9th St, Suite 215, Berkeley, CA
94710-2573
Publisher: USENIX Association, 2560 9th St, Suite 215, Berkeley, CA 94710-2573
Editor: Rik Farrow; Managing Editor: Michele Nelson, located at office of publication.
Owner: USENIX Association. Mailing address: As above.
Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount
of bonds, mortgages, or other securities: None.
The purpose, function, and nonprofit status of this organization and the exempt status for federal income tax
purposes have not changed during the preceding 12 months.

Publication Title
USENIX ASSOCIATION/ ;login:

Issue Date for Circulation Data Below
09/01/2020 — Fall ’20 Issue

Extent and Nature of Circulation Average No. Copies
Each Issue During
Preceding 12 Months

No. Copies of Single
Issue (Fall 2020)
Published Nearest
to Filing Date

a. Total Number of Copies (Net press run) 1863 1875

b. �Paid Circulation (By
Mail and Outside the
Mail)

(1) Mailed Outside-County Paid Subscriptions 805 818

(2) Mailed In-County Paid Subscriptions 0 0

(3) Paid Distribution Outside the Mails 513 529

(4) Paid Distribution by Other Classes of Mail 0 0

c. Total Paid Distribution 1318 1347

d. �Free or Nominal Rate
Distribution (By Mail
and Outside the Mail)

(1) Free or Nominal Rate Outside-County Copies 79 79

(2) Free or Nominal Rate In-County Copies 0 0

(3) Free or Nominal Rate Copies Mailed at Other Classes 20 25

(4) Free or Nominal Rate Distribution Outside the Mail 73 30

e. Total Free or Nominal Rate Distribution 172 134

f. Total Distribution 1490 1481

g. Copies Not Distributed 374 394

h. Total 1863 1875

i. Percent Paid 88.46% 90.95%

Electronic Copy Circulation

a. Paid Electronic Copies 410 444

b. Total Paid Print Copies 1729 1791

c. Total Print Distribution 1899 1925

Percent Paid (Both Print and Electronic Copies) 91% 93%

Submit Your Work!

www.usenix.org/sec21

PROGRAM CO-CHAIRS

Michael Bailey
University of Illinois

at Urbana–Champaign

Rachel Greenstadt
New York University

Seventeenth Symposium on
Usable Privacy and Security
Co-located with USENIX Security ’21
August 8–10, 2021 | Vancouver, B.C., Canada
The Seventeenth Symposium on Usable Privacy and Security
(SOUPS 2021) will bring together an interdisciplinary group of
researchers and practitioners in human computer interaction,
security, and privacy. The program will feature technical papers,
including replication papers and systematization of knowledge
papers, workshops and tutorials, a poster session, and lightning
talks.
Mandatory Paper Registration Deadline:
Thursday, February 18, 2021

Symposium Organizers
General Chair

Sonia Chiasson, Carleton University
Technical Papers Co-Chairs

Joe Calandrino, Federal Trade Commission
Manya Sleeper, Google

www.usenix.org/soups2021

Winter paper submission deadline: Thursday, February 4, 2021

The 30th USENIX Security Symposium will bring together researchers, practitioners, system
administrators, system programmers, and others to share and explore the latest advances in the
security and privacy of computer systems and networks.

AUGUST 11–13, 2021 | VANCOUVER, B.C., CANADA

https://www.usenix.org/sec21
https://www.usenix.org/soups2021

