
www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 57

COLUMNS

Zero, Null, and Missing! Oh My!
C H R I S “ M A C ” M C E N I R Y

It’s common for work settings to have multiple environments in them.
These environments, e.g., Production and Development, have many
similarities and some very specific differences. In the attempt to mini-

mize cognitive load (and typing) so we can tell the differences between envi-
ronments, we tend to only call out the differences. For example, Production
has the prod database, and Development has the dev database, but both use
the same DNS systems.

In the end, our configurations have to reflect the exact settings for each environment. But,
as mentioned, we do not want to deal with all of that verbosely.

In this article, I’m going to looking at one way to simplify that verbosity. We’re going to have
a common/base configuration and then composite the environment-specific configurations
on top of that to produce the final exact settings for each environment.

To do this, we have to take a look at how the Go encoding libraries work, and account for, or
work around, some of the defaulting behavior in Go.

The code for these examples can be found at https://github.com/cmceniry/login in the
“zeronullmissing” directory. Each directory contains a corresponding example and can be
executed using go run main.go.

encoding Standard Library
Go has an extensive standard library with all sorts of useful functionality. One of the com-
monly used pieces of it is the encoding package, which translates Go structures to other data
forms—XML, JSON, and GOB (a native Go marshaling format). The standard library pattern
and interface is also used in many third party libraries for other data formats.

The encoding pattern relies on Go’s ability to inspect Go data types via reflection. Typically,
when using the encoding libraries, one would define a custom struct type with necessary
fields. The example above might look like:

 type Configuration struct {

 Database string

 DNS string

 }

While this same struct could be used for multiple formats, we’re going to work with JSON
and the associated encoding/json library. The corresponding JSON configuration data for
our example environments would look like:

 Production

 { “database”: “prod”, “DNS”: “shared” }

 Development

 { "database": "dev":, "DNS": "shared" }

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

58  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
Zero, Null, and Missing! Oh My!

Unmarshal is the encoding/json library function that converts
the JSON structure into our Go struct. It takes a byte slice with
the JSON data and a de-referenced Configuration value, and
returns an error if the conversion failed.

 d, _ := ioutil.ReadFile("conf.json")

 var conf Configuration

 err := json.Unmarshal(d, &conf)

With this in hand, we can move on to compositing the configura-
tion together.

Overriding
On first pass, to composite together our final configuration, we
can read in the base and then environment configuration, and
then merge those two. In our example, we would extract the com-
mon DNS configuration into the Base and handle the databases
in each environment specific. The JSON input would look like:

 base.yaml

 { "Database": "SETME", "DNS": "common"}

 development.yaml

 { "Database": "dev" }

 production.yaml

 { "Database": "prod" }

Loading these into Go corresponds with the following Go struct
values:

 base := Configuration{

 Database: "SETME",

 DNS: "Common",

 }

 development := Configuration{

 Database: "dev",

 DNS: "",

 }

 production := Configuration{

 Database: “prod”,

 DNS: "",

 }

A point to notice is that when Database or DNS is not specified
in the JSON, it is initialized with the zero value for the string
type—the empty string “”. In the common case, we can inter-
pret the empty string as an unspecified value. When merging,
we can take only the Database values from development and
 production, so those are not the empty string, and have those
override the Database value in base.

But what happens if we want to clear a value or set a value to the
zero value?

JSON even has a null value. If set, that will also initialize the Go
variable with a zero value. We can attempt to use Go pointers to
interpret this, but it really changes it from a string zero value, "",
to the string pointer zero value, nil. This will help us determine
the difference between null and "" in the JSON, but still does not
help us with missing values versus explicit zero values.

The standard encoding libraries do not make a distinction
between a zero value (including null) and a missing value. We’re
going to examine this zeroing quirk of Go using probably the
most heavily used data formatting library, encoding/json.

Baseline
First, we’re going to examine the baseline behavior of Unmarshal.

To begin, we define our custom struct. To exercise the cases, we
focus on six use cases:

1. FromZero: An explicitly set empty string into a string type

2. FromNull: An explicitly set null string into string type

3. FromPtrZero: An explicitly set empty string into a string pointer
type

4. FromPtrNull: An explicitly set null string into string pointer type

5. FromMissing: A missing string type

6. FromPtrMiss: A missing string pointer type

baseline/main.go: struct.

 type Items struct {

 FromZero string

 FromNull string

 FromPtrZero *string

 FromPtrNull *string

 FromMissing string

 FromPtrMiss *string

 }

We use a string var to hold the input data we’re going to work with.

baseline/main.go: input.

 var input = {̀

 "fromzero": "",

 "fromnull": null,

 "fromptrzero": "",

 "fromptrnull": null

 }̀

Inside of our main, we first initialize a location to hold the output
of our decoding.

baseline/main.go: output.

 output := Items{}

With our input and output, we can finally call Unmarshal. To cre-
ate a common interface, Unmarshal expects all inputs to be byte
slices, so we cast to that. Unmarshal also does not initialize the

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 59

COLUMNS
Zero, Null, and Missing! Oh My!

output, but we do want to modify it, so we pass a pointer refer-
ence already initialized output (this is the case even in the event
of maps and slices). Unmarshal returns an error if the decode
fails or nil if it succeeds.

baseline/main.go: unmarshal.

 err := json.Unmarshal([]byte(input), &output)

To show what happens, we print out the Go value.

baseline/main.go: print.

 fmt.Printf("%#v\n", output)

This output looks like the following, after being folded to fit in
this column:

main.Items{FromZero:"",FromNull:"",FromPtrZero:(*string)

 (0xc0000860e0),FromPtrNull:(*string)(nil),

 FromMissing:"",FromPtrMiss:(*string)(nil)}

This confirms that we cannot tell if something is explicitly set
zero or implicitly set by being missing.

Drilling Down
For us to be able to discern if there are intentionally missing
keys or intentionally null values, we need to take matters into
our own hands.

Go provides the very quintessentially generic type, the empty
interface or interface{}. When the encoding libraries encounter
the empty interface, they infer it as an indicator that you want
to handle the decoding by yourself. Instead of decoding it into
organized structs, they pack all that they can into the empty
interface slot in as raw a format as they can.

The empty interface can be used at any point—the top level or
even inside of a struct. In our example, we’re using a JSON object
which has key/value pairs. This equates to a Go map. We let the
library decode the keys as normal string keys, but we indicate
that we’ll handle the values. To do that, we’re going to use a map
of the empty interface, map[string]interface{}.

Using the same data value as before, we unmarshal the same
way. However, instead of using the struct, we’re going to use the
empty interface map.

manual/main.go: decode.

 output := make(map[string]interface{}, 0)

 err := json.Unmarshal([]byte(input), &output)

Since we don’t have the fields of our struct as before, we’re going
to iterate over a list of keys that we expect to potentially be there.

manual/main.go: loop.

 keys := []string{"fromzero", "fromnull", "fromptrzero",

 "fromptrnull", "frommissing"}

 for _, k := range keys {

With each key, we must first check that it is there. If it is not, we
continue to the next iteration. This detects that our frommissing
field is not present.

manual/main.go: check.

v, ok := output[k]

if !ok {

 fmt.Printf(`"%s" is missing +̀"\n", k)

 continue

}

Now, we know we have a value, we use a type switch to handle
the cases of what it might be. In our example, we only care about
nulls and strings, so we handle those cases and leave others to a
default.

Note: Unlike the baseline example, we find that a null converts to
the nil type, instead of a nil value of a string pointer.

manual/main.go: type.

switch v.(type) {

 case nil:

 fmt.Printf(`"%s" is null +̀"\n", k)

 case string:

 fmt.Printf(`”%s” is present and equal to "%s" +̀”\n",

k, v.(string))

 default:

 fmt.Printf(`"%s" unhandled type %T +̀"\n", k, v)

}

Putting that all together, we can now successfully determine
the difference between an explicit zero value, a null value, and a
missing value.

 $ go run manual/main.go

 "fromzero" is present and equal to “”

 "fromnull" is null

 "fromptrzero" is present and equal to “”

 "fromptrnull" is null

 "frommissing" is missing

Conclusion
The standard library encoding libraries save you a lot of work
and effort by decoding data formats into Go structs. It works in
the majority of cases.

However, sometimes, you have cases that you need to handle
differently. This can be to determine missing versus explicit
values, or to allow for polymorphous structures. But if you have
to work with these other use cases, you do have a bit of overhead
that you have to handle yourself. Fortunately, you can still use
the encoding libraries to handle the framing even while you’re
handling the Go data structures manually. I hope this example
gives you options for these other use cases.

Good luck and Happy Going.

