
www.usenix.org	   WI N T ER 20 19  VO L . 4 4 , N O. 4  55

COLUMNS

iVoyeur
Distributive Tracing

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Fastly. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

Last night my niece asked me if I wanted to take the “idiot test.” If
you’re not familiar, the idiot test is a trollish, adolescent joke about
zero-indexing, and it goes like this:

Prankster: Do you want to take the idiot test?

Dupe: Sure.

Prankster: What color is the sky?

Dupe: Blue.

Prankster: What do humans breathe?

Dupe: Air.

Prankster: What was the first question I asked you?

Dupe: “What color is the sky.”

Prankster: Wrong! It was: “Do you want to take the idiot test!” You failed! <_insert
ridicule_> & etc.

Dupe: [Feels bad about himself]

As a bonafide grown-up in situations like this, I feel strongly that we have a duty to small
children like my niece to consistently fail tests like this. Few things are as formative to a
nine year old, I believe, as the sense that you are a contender in the world. And yet, I’d be
lying if I said I didn’t feel just the slightest pang of childish irritation when I throw one of
my niece’s harmless little contests of wit.

This may be because I’m self-aware enough to know I’m not immune to making the odd off-
by-one error in my day job from time to time, thereby failing the idiot test in earnest. Just
the other week I got bit (once again) by Lua, which has odd (read: exasperating) list-indexing
behavior. Ah well, few things are as formative to a 40-something as the sense that you are
taking yourself too damn seriously.

There’s another game, beloved by my niece, who to my chagrin insists on calling it “Chinese
Whispers,” despite the myriad not-racist names for the same game: whisper down the lane,
broken telephone, operator, grapevine, gossip, don’t drink the milk, secret message, the mes-
senger game, pass the message, and etc. Between you and me, let’s call it: “Telephone.”

In this game, players arrange themselves in a circle, and a message passes verbally between
them. The first player decides on a message and writes it down. Then, serially, one-by-one,
each player whispers the message into the ear of the player to their left, until the message
passes all the way back to the first player. Of course, because of the entropic nature of the
universe combined with humanity’s lack of integrated hash-summing algorithms, the message
is corrupted hop-by-hop as it traverses the circle, until it entirely loses its original meaning
and becomes an altogether different message (usually somehow now involving poop).

56    WI N T ER 20 19  VO L . 4 4 , N O. 4 	 www.usenix.org

COLUMNS
iVoyeur: Distributive Tracing

When the original and corrupted messages are openly compared
at the end of the game, the group has a good laugh, as if the delta
represents something humorous, rather than outright horrify-
ing. It’s more fun than I’m probably making it sound.

Tracing
Because I’ve been spending a lot of my non-existent free time
working on the OpenTelemetry project, games like Telephone
invariably remind me of Distributed Tracing, where messages,
nested within HTTP headers travel between hops like players
whispering—albeit with a hopefully more reliable result.

In a previous article (https://www.usenix.org/system/files​
/login/articles/login_spring18_13_josephsen.pdf), I wrote
about another, similar sounding, tracing project, called Open-
Tracing. In that article I compare HTTP Trace headers to the
“Received” header in SMTP, enabling us to apply monitoring
to individual hops traversed by a single request. I went on to
describe that since HTTP requests can often spawn related
non-HTTP requests like database calls, distributed tracing
implementations often include mechanisms to enable engineers
to embed information about child-requests, metadata, and ad
hoc metrics within HTTP headers as a request passes between
systems.

For several years now, there have been two quasi-competitive
open-source distributed tracing implementations widely
used in the wild. The Cloud Native Computing Foundation’s
OpenTracing (https://opentracing.io) project concerns itself
with providing vendor-neutral instrumentation for distributed
tracing. OpenTracing provides engineers an API they can use to
embed tracing data into their requests, and it leaves the interpre-
tation of that data to pluggable third-party “tracers” like Jaeger
(https://www.jaegertracing.io) or Lightstep (https://lightstep.com).

Google’s OpenCensus (https://opencensus.io) project, by com-
parison, provides a more holistic implementation of distributed
tracing, complete with performance monitoring and metrics.

The Merger
The last several months have been quite eventful for the dis-
tributed tracing community since the announcement in April
that the two primary open-source tracing projects, the CNCF’s
OpenTracing and Google’s OpenCensus, are merging to form a
single über tracing project called OpenTelemetry.

At the same time (not at all coincidently), the W3C has opened a
working group to extend HTTP with a standard header format to
propagate context information for distributed tracing scenarios.
In other words, HTTP will itself soon have vendor-agnostic
distributed tracing built in. The best way to quickly get a sense of
what that means and how it will eventually work is to read Alois

Reitbauer’s write-up (https://medium.com/@AloisReitbauer​
/trace-context-and-the-road-toward-trace-tool-interoperability
-d4d56932369c) on the problems inherent with vendor-specific
trace headers and how the W3C plans to work around them.

The group currently has a candidate recommendation (https://​
www.w3.org/TR/trace-context/), against which many imple-
mentations are already coding. You can track this ongoing effort
or even help out by joining the team’s Slack-channel, available
through the group’s home page (https://www.w3.org/2018​
/distributed-tracing/).

Meanwhile OpenTracing and OpenCensus are coming together
to form OpenTelemetry at breakneck speed. Driven by an aggres-
sive schedule that includes sunsetting both the OpenTracing
and OpenCensus projects by November 2019, a lot of parallel
effort is underway to bring myriad language libraries into alpha.
You can read the detailed road map and current status in the
well-maintained milestones (https://github.com/open-telemetry​
/opentelemetry-specification/blob/master/milestones.md)
document. The spec is available on the project’s spec GitHub site
(https://github.com/open-telemetry/opentelemetry​
-specification).

In order to parallelize the workload as much as possible, the proj-
ect is organized into numerous special-interest groups, including
a SIG on cross-language specification, the agent/collector (since
the project includes metrics collection as a first-class citizen),
and numerous SIG working groups on language-specific SDKs,
including those for Java, Golang, Python, .NET, Ruby, and so on.

Most of the SDK SIGs are approaching alpha, and all are in
dire need of well-written documentation, GitHub tagging and
organization, QA, and, of course, code. If you’ve ever wanted to
dig in to the early stages of an open-source effort that’s going to
have a huge impact, this is a great time to chip in to an Open
Telemetry Special Interest Group. In a few years, everything
from the browser to the database, including the underlying
protocol itself, HTTP, is going to support distributed tracing.
If you think you might be of assistance, I’d encourage you to
take a look at the project’s contributing page (https://github.com​
/open-telemetry/community) and join us on gitter (https://
gitter.im/open-telemetry/community).

https://www.usenix.org/system/files/login/articles/login_spring18_13_josephsen.pdf
https://www.usenix.org/system/files/login/articles/login_spring18_13_josephsen.pdf
https://opentracing.io
https://www.jaegertracing.io
https://lightstep.com
https://opencensus.io
https://medium.com/@AloisReitbauer/trace-context-and-the-road-toward-trace-tool-interoperability-d4d56932369c
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://www.w3.org/2018/distributed-tracing/
https://www.w3.org/2018/distributed-tracing/
https://github.com/open-telemetry/opentelemetry-specification/blob/master/milestones.md
https://github.com/open-telemetry/opentelemetry-specification/blob/master/milestones.md
https://github.com/open-telemetry/opentelemetry-specification
https://github.com/open-telemetry/opentelemetry-specification
https://github.com/open-telemetry/community
https://github.com/open-telemetry/community
https://gitter.im/open-telemetry/community
https://gitter.im/open-telemetry/community

