
46  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNSManaging Systems in an Age of Dynamic
Complexity
Or: Why Does My Single 2U Server Have Better Uptime than GCP?

L A U R A N O L A N

A decade ago most systems administrators were running relatively
static systems. We had servers which were provisioned and updated
by hand, or maybe via a human invoking Puppet, Capistrano, or

CFEngine. Instances were typically added to load balancer pools manually.
New instances would be provisioned when administrators decided that more
capacity was needed, and systems were sized for peak loads (plus a margin).
Networks were configured by hand.

This kind of static administration has pros and cons. Servers that stay around a long time
and get updated manually can be very hard to replace when they fail. Instances that should
be identically configured can experience drift, leading to hard-to-diagnose production prob-
lems. There’s a lot of work to be done by hand. Load balancing and network failover can give
some capacity to handle failure, but often you’ll need to alert a human to fix problems. Even
if the system is robust enough to stay up in the face of failure, someone usually needs to fix
things afterwards to bring things back to the intended capacity.

Fundamentally, a human or a team of humans is operating the system directly. When some-
thing changes in the system, it is because someone intended it to change or because some-
thing failed. Small, static, human-managed systems can have really good uptime. Change
tends to be relatively infrequent and human initiated, so it can usually be undone quickly if
problems arise. Hardware failures are rare because the likelihood of failure is proportional
to the amount of hardware you have: individual server uptimes measured in years aren’t too
uncommon, although nowadays long-lived servers are generally considered an antipattern as
Infrastructure-as-Code has become popular.

At scale, things change. All the downsides of managing a lot of servers by hand become much
worse: the human toil, the pager noise. High uptime becomes hard to maintain as failures
become more common. Cost becomes a factor: there is almost certainly going to be organiza-
tional pressure to be as efficient as possible in terms of computing resources. System archi-
tectures are likely to be complex microservice meshes, which are much more challenging to
manage than simpler monoliths.

These pressures lead to the rise of what I will term dynamic control systems: those systems
where the jobs once done by human administrators, such as provisioning instances, replac-
ing failed instances, restarting jobs, applying configuration, and updating load balancer
back-end pools, are done by machines. The most obvious examples of today’s dynamic
systems are software-defined networking (SDN), job or container orchestration, and service
meshes. These systems do indeed work well to increase resource utilization and thus reduce
costs, to prevent human toil scaling with the size of the services managed, and to allow sys-
tems to recover from routine hardware failures without human intervention.

Dynamic control systems, however, also bring completely novel challenges to system opera-
tors. Most dynamic control systems have a similar structure, shown in Figure 1.

Laura Nolan’s background is
in site reliability engineering,
software engineering,
distributed systems, and
computer science. She wrote

the “Managing Critical State” chapter in the
O’Reilly Site Reliability Engineering book and
was co-chair of SREcon18 Europe/Middle
East/Africa. Laura Nolan is a production
engineer at Slack. laura.nolan@gmail.com

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 47

COLUMNS
Managing Systems in an Age of Dynamic Complexity

The components are:

◆◆ Service pools: a set of instances doing work of some kind.

◆◆ Signal aggregator: a service which collects metrics from the
service pool instances (often a monitoring system such as
 Prometheus), usually one per “zone” (meaning region, data-
center, cluster, availability zone—whichever domain makes
sense for a given service).

◆◆ Global controller: a service which receives signals from the
signal aggregator and makes global decisions about configura-
tion of the service.

◆◆ Controller: a service which receives updates from the global
controller and applies configuration locally.

Google’s B4 SDN WAN control plane [1] is an example of this
architecture. Variants exist, of course: a small dynamic control
system might merge some of these functions into fewer services—
for instance, a service running in just one zone might collapse
the functions of the aggregator, controller, and global controller
into a single service. Another possible architecture is to have
independent controllers in each zone for services that don’t need
global coordination.

There might be multiple controllers (for example, mapping this
concept to Kubernetes, the global controller is the Kubernetes
Master and the controllers are the kubelets). Most SDN archi-
tectures are a variant on this, as are coordinated load-balancing
and rate-limiting architectures, including service meshes. Many
job orchestration functions like autoscaling and progressive
rollouts/canarying are structured in this way, too.

The dynamic control system architecture above is popular
because it works: it scales, allowing globally optimal decisions

or configurations to be computed and pushed back to instances
quite quickly. The controllers provide useful telemetry as well as
a point of control to apply overrides or other exceptions.

However, it also has its downsides. Most notably, it adds a lot
more software components, all of which can themselves fail or
misbehave. A naive implementation of a global load-balancing
control plane which experiences correlated failure in its zonal
monitoring subsystems could easily lead to global failure, if its
behavior in such cases is not carefully thought through or if it
has bugs.

Another critical weakness of dynamic systems architecture is
that it distances operators from the state of their systems: we
do not make changes directly anymore. We understand normal
operation less well, and it can also be harder to understand and
fix abnormal operation. Charles Perrow discusses this phenom-
enon in Normal Accidents [2] in the context of the Apollo 13 acci-
dent. Mission control had detailed telemetry but was confused
about the nature of the incident. The astronauts knew that they
had just initiated an operation on a gas tank, they felt a jolt and
they saw liquid oxygen venting. Their proximity to the system
was key to their understanding.

Systems administrators used to be more like the astronauts, but
now our profession is moving towards being mission control. We
are now in the business of operating the systems that operate
the systems, which is a significantly harder task. In addition to
managing, monitoring, and planning for failure in our core sys-
tems, we must now also manage, monitor, and plan for the failure
of our dynamic control planes. Worse again, we normally have
multiple dynamic control planes doing different tasks. Figuring

Figure 1: A generic dynamic control system architecture, showing two separate sets of service instances

48  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

COLUMNS
Managing Systems in an Age of Dynamic Complexity

out all the potential interactions between multiple control planes
in working order is probably impossible; trying to figure out how
multiple control planes might interact when one or more of them
have bugs or experience failure is definitely impossible.

This brings us back to the subtitle of this article: how can a
single server have better uptime than a cloud platform which is
carefully designed by competent engineers for availability in the
case of failure? Let’s examine two outages.

On April 11, 2016, Google Compute Engine (GCE) lost external
connectivity for 18 minutes. The RCA (root cause analysis) for
the incident [3] is a study in dynamic control systems failure:

1. An unused IP block was removed from a network configuration,
and the control system that propagates network configurations
began to process it. A race condition triggered a bug which
removed all GCE IP blocks.

2. The configuration was sent to a canary system (a second
dynamic control system), which correctly identified a problem,
but the signal it sent back to the network configuration propa-
gation system wasn’t correctly processed.

3. The network configuration was rolled out to other sites in turn.
GCE IP blocks were advertised (over BGP) from multiple sites
via IP Anycast. One could take the view that BGP advertise-
ments themselves constitute a third dynamic control system.
This means that probes to these IPs continued to work until the
last site was withdrawn—see [4] for more detail on why. This
meant the rollout process lacked critical signal on the effect of
its actions on the health of GCE.

This incident features multiple control systems with multiple
failures in processing and in monitoring. These systems are
utterly necessary to manage networks at this scale, but it is also
impossible to predict the many ways in which they can go wrong.
The following is a classic complex systems failure [5]:

On June 2, 2019, Google Cloud experienced serious network
degradation for over three hours. The RCA [6] is another tale
of dynamic control systems misadventure in which many
instances of the network control plane system were accidentally
descheduled by the control system responsible for managing
datacenter maintenance events. It took two misconfigurations
and a software bug for that to happen: again, there is no way to
predict that specific sequence of events. This incident is also
an example of the difficulty that can arise in restoring control
system state when it has been lost or corrupted.

Dynamic control systems are inherently complex, and will
always be challenging, but it is to be hoped that best practices
regarding their operation will emerge. One such best practice
that is often suggested is to avoid systems that can make global

changes, but that is not always easy. Some systems are inher-
ently global, anycast networks being a good example as well as
systems that balance load across multiple datacenters or regions.

This is one of the key challenges of modern large systems admin-
istration, SRE, and DevOps: human-managed static systems
don’t scale, and we haven’t yet developed enough experience with
dynamic control systems to run them as reliably as our 2U server
of yore—and maybe we’ll never be able to make them as reliable.

Both of the incidents analyzed here are Google RCAs, but
dynamic control system problems are by no means unique to
Google (here are examples from Reddit [7] and AWS [8]). Google
has simply been running dynamic control systems for longer than
most organizations. With the rise of SDN, service meshes, job
orchestration, and autoscaling, many more of us are now working
with dynamic control systems—and it’s important that we under-
stand their drawbacks as well as their many advantages.

References
[1] S. Mandal, “Lessons Learned from B4, Google’s SDN
WAN,” presentation slides, USENIX ATC ’15: http://bit.ly
/atc15-mandal.

[2] C. Perrow, Normal Accidents (Princeton University Press,
1999), p. 277.

[3] Google Compute Engine Incident #16007: https://status
.cloud.google.com/incident/compute/16007.

[4] M. Suriar, “Anycast Is Not Load Balancing,” presentation
slides, SREcon17 Europe: http://bit.ly/srecon17-europe-suriar
-slides.

[5] R. I. Cook, M.D., “How Complex Systems Fail”: https://
web.mit.edu/2.75/resources/random/How%20Complex
%20Systems%20Fail.pdf.

[6] Google Cloud Networking Incident #19009: https://status
.cloud.google.com/incident/cloud-networking/19009.

[7] “Why Reddit was down on Aug 11 [2016]”: https://www
.reddit.com/r/announcements/duplicates/4y0m56/why
_reddit_was_down_on_aug_11/.

[8] “Summary of the December 24, 2012 Amazon ELB Service
Event in the US-East Region”: https://aws.amazon.com
/message/680587/.

http://bit.ly/atc15-mandal
http://bit.ly/atc15-mandal
https://status.cloud.google.com/incident/compute/16007
https://status.cloud.google.com/incident/compute/16007
http://bit.ly/srecon17-europe-suriar-slides
http://bit.ly/srecon17-europe-suriar-slides
https://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
https://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
https://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf
https://status.cloud.google.com/incident/cloud-networking/19009
https://status.cloud.google.com/incident/cloud-networking/19009
https://www.reddit.com/r/announcements/duplicates/4y0m56/why_reddit_was_down_on_aug_11/
https://www.reddit.com/r/announcements/duplicates/4y0m56/why_reddit_was_down_on_aug_11/
https://www.reddit.com/r/announcements/duplicates/4y0m56/why_reddit_was_down_on_aug_11/
https://aws.amazon.com/message/680587/
https://aws.amazon.com/message/680587/

