
www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 35

SRE AND SYSADMINAsk-Me-Anything Engineering
E F F I E M O U Z E L I

Effie Mouzeli studied physics
and distributed scientific
computing but didn’t turn out
to be a physicist or a scientific
computer scientist. She has

worked as a systems engineer/SRE at a
number of startups and small organizations
(most of which are not with us anymore),
where her responsibilities were usually
automation, infrastructure architecture, and
working closely with developers. Currently, she
is on the SRE team that takes care of Wikipedia
and its sister projects at the Wikimedia
Foundation. emouzeli@runbox.no

Small organizations are the reality for a number of people doing
 operations. Despite that, there are limited resources on the subject
of working in a systems team of a few engineers. On the contrary,

there is literature on how large organizations implement SRE, how they
got to 99.999% availability, and how to process millions of metrics per sec-
ond. Those are really good and interesting reads, but I have been in the shoes
of a person reading such articles and thinking, “I enjoyed reading this, but I
can’t use it.” For the purpose of this article, the terms “small organizations/
companies” but also “small-scale” will be used to describe organizations and
startups where there is a single SRE or a small team of SREs.

Everything was just a few servers once, and everything started from something. Let’s just
think about how much we rely on products by small companies like local news sites or
local ferry booking services. Moreover, we mustn’t forget that some of us live in cities and
countries where there are no large engineering teams, and those environments are the only
available places to work. And those are just a handful of reasons why small-scale companies
matter.

There are a few major challenges that a systems engineer at a small organization will have to
constantly deal with:

◆◆ Paying off someone else’s technical debt, almost alone

◆◆ Managing a live infrastructure, almost alone

◆◆ Caring for the development teams, almost alone

I will try to provide an overview of what it is like working in small-scale environments, what
to expect, how SRE concepts can be beneficial, and what can be learned.

The Role of an A.M.A. Engineer
In small software companies, I always considered the systems team as setting their tempo to
the development team. The development team needs that expertise so as to, in turn, set the
standards for the organization. For example, if bootstrapping a new server takes a day, every-
one will consider this normal and will never demand to have a new server ready in an hour.
If pushing code to production requires 10 manual steps, the development team will never be
able to deliver faster. It is up to the SRE to automate manual steps if possible.

Another important aspect of this role is to be the facilitator between development and infra-
structure. It is up to the systems engineer to make the infrastructure accessible to develop-
ers, show them where the controls are, and be there for them. But beyond that, people come
to us for answers when things don’t add up. An Ask-Me-Anything engineer can be the expert
on DNS, databases, networking, Linux, and monitoring. One can expect to receive a broad
range of inquiries, from “My service can’t access the database” to “My dad wants to buy a
new laptop.” For me, I believe the most bothersome question was, “What’s the guest WiFi
password?” That is, until I taped QR codes on every office wall.

36  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Ask-Me-Anything Engineering

In addition, our experience will help us to plan wisely for
the future. We should be able to see a few steps ahead and
have a plan about how the systems will grow along with the
organization.

It is not unusual, though, for systems engineers not to get the
credit they deserve. While large organizations go a long way to
achieve “five nines,” that is not always the case in small ones.
Keeping the developers happy and productive while having few
incidents does not translate financially, for example, like a new
feature would. As Heidi Waterhouse has said, “No one remem-
bers the crisis averted” [1]. Sadly, good systems engineering does
not have a direct Return on Investment.

Small-Scale Technical Debt
Technical debt is every organization’s Achilles’ heel, regardless
of size. There is almost always a mountain of it. Even at startups,
there is rarely a dedicated person for operations in the begin-
ning, meaning that the multi-hat engineering team is trying to
make systems work and make technical decisions to the best of
their knowledge.

Identifying what is generating technical debt is a very good start
towards slowing it down. It is impossible to come up with a com-
plete list of reasons behind technical debt in systems at small
environments, but I can name a few from my experience.

Lack of Processes, Documentation, and History
When a few people are developing and running a product, it is
normal to solve problems ad hoc. Minor and major problems
are dealt with as they come up, and then are forever forgotten.
There are no runbooks, no postmortems, no histories. But
those issues derive from deeper ones: there are no standard
processes for how to do things, e.g., introducing a new service to
production, but also no documentation as to how things work.
Especially in fast-paced environments like startups, we sub-
consciously consider documentation as a waste of time.

Cargo Culting
New and immature technologies are adopted under the false
assumption that they can fix anything and that by using them,
the organization can stay up-to-date and relevant. Together with
the lack of appropriate systems background or experience, it just
equals technical debt. Not to mention that sometimes, we go as
far as fitting our problems into the solution we want to experi-
ment with. Without drawing any lines, or putting any limits,
this can lead to a Frankenstein infrastructure. Some notable
examples are Kubernetes and Docker; they provide solutions, but
how many times did a team with limited resources ask whether
it had the human capital to go in this direction?

Short-Term Planning
Cargo culting itself is a symptom of another underlying problem:
the culture of short-term planning. Everything moves so much
faster when the development team is 20 people rather than 100
or 200. This team of 20 people has a list of features to add to the
product, which in turn have a list of requirements. Still, there is
no vision as to how the systems themselves should look a year
after those changes. A simple example would be, “We estimate
that if we market this new feature, we will gain 20% more clients
within six months.” That is great, but have we done any capacity
planning to handle that traffic?

Waiting for a Hero
This does not generate technical debt per se, but it is a conse-
quence of all the above. At some point the organization has so
much duct tape and WD-40 that it simply waits for someone to
make sense of the chaos and save it. How chaotic this chaos is
depends on a number of factors. If this is a startup, the chaos
is proportional to how late to the party a systems engineer has
arrived. On a brighter note, at a startup it is highly likely one can
talk to the people who created all that debt and get answers. If
this is a long-running company, it depends on how many systems
engineers have come and gone over the years as well as how
many people assumed that role.

The Five Stages of Technical Debt
Let’s assume that we have joined an organization as the first
SRE. Our hypothetical new startup, everythingsocks.io, has
30 servers, 50k customers, and about 25 developers, all using the
same account, root. Funding is secured, business is booming,
and the future looks bright!

We arrive in a new fast-paced environment where we don’t know
anyone, we are required to run a live infrastructure we have
never seen before, and we have no idea what is coming. One thing
is certain though: we are going to go through the five stages of
technical debt [2].

1. Denial
The product looks functional, as well as its systems, and we
reckon our job is to initially keep everything running and then
move forward. All we have to do is hold the wheel and drive.
EverythingSocks looks like an awesome place to work after all.
They have free lunches, a pool table, and free yoga lessons!

2. Anger
While we are sure that everything is going great, we begin to
get interrupted. A developer reports they think the auth server
is overloaded. They believe an additional server might help.
Another one pops by, saying that they are getting some 500s, just
like last week. A third one appears complaining they are unable

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 37

SRE AND SYSADMIN
Ask-Me-Anything Engineering

to access StackOverflow. It goes without saying that everything
is urgent. We realize that we are smiling because we have no idea
what is going on. We are frustrated.

3. Bargaining
This is the part where we believe that we must gain control.
We are trying to show some faith in our abilities and not get too
overwhelmed, even though everything is on fire. Our colleagues
seem to be good people after all; we can make it work!

4. Depression
At this point we are desperate for information. We are running
around trying to figure out what’s under the ground we are
standing on. The more we uncover, the more we feel despondent.
We find out that everyone has root access to the databases, even
the microservices, and the main application is logging plaintext
passwords. This is depressing.

5. Acceptance
We get to acceptance when we finally see some light at the end of
the tunnel. We have a better overview, we are feeling optimistic,
and we have a plan of how to make it better.

Getting Control
With all these problems discovered, as a whole, there is a moun-
tain to climb. The problems have to be broken down into pieces
and prioritized. The development team and our intuition can
help us get there.

Asking a Lot of Questions
But in addition to asking questions it’s crucial to ask the right
questions. For example, ask the development team what they
need, what are their daily pain points, and what they believe
should be improved. The team might request a proper staging
environment but fail to mention that they manually delete appli-
cation logs every week. Read between the lines!

Understanding the Product
A bad habit I have noticed among systems engineers is that they
tend to distance themselves from knowing how the applications
they are managing work. This is a mistake that can turn many
incidents into a wild goose chase. How subsystems communicate
with each other, what they are doing, as well as what external
dependencies they have, should be something an SRE is aware of.
For instance, if a payment provider is taking longer to respond,
it might exhaust the application workers. If you don’t know that
one of the apps depends on a payment provider’s response time,
you will find out the hard way, through reading logs, stracing,
tcpdumping, etc., while everything is on fire.

Documentation Is Bliss
As you are gathering information about literally everything,
write it down: what you learn, what you think is missing, what
needs improvement. Your ultimate goal is to eventually have a
board with the work that needs to be done. You will feel hopeful
when there is finally a comprehensive list of tasks that include
immediate and future needs. This is how one gets to Acceptance!

Understand Your Limits
I strongly believe that a good engineer is able to understand what
they can do under certain circumstances. Try not to rush. Do not
start making promises that “it will take two days.” If your work is
fast but sketchy, it will keep coming back to haunt you, and that
does not scale well. Equally important, having nothing delivered
on time can become part of the culture.

When it comes to introducing new tools to help you in your day-
to-day tasks, start with the familiar ones. You will find time later
to try something new and fancier, together with researching.
And if what you are researching is not working out, learn to let
go and move on. The more time you spend on one front, the more
everything else is falling behind. I was in a team, a newly formed
team, that kept promising to migrate the infrastructure from
one datacenter to another within three months, while migrating
our servers from bare metal to VMs, while migrating from Chef
to SaltStack, while production was running. What could possibly
go wrong?

Consistency
Creating standard processes and rules, and then sticking to
them and defending them, is your true ally: for example, pro-
cesses about new server requests, new applications, new users,
rules that all microservices should be managed by systemd, and
all packages must be installed via configuration management.
You need to keep snowflakes to a bare minimum as much as you
need your sanity.

The Big Picture
I will lay down the components a functional infrastructure
needs in order to be manageable. No matter how many servers
we have or how much traffic we serve, we need all of them. The
problem in small-scale is all will be implemented by a single
person or a tiny team. That is the beauty and the difficulty of
small-scale. The strategy here is divide and rule. Attacking all
of them at the same time can be chaotic and stressful, so iterate,
little by little!

Automation and Provisioning
Try to manually create a staging environment and document all
steps; it will help you learn more about the product. Next time
you revisit it, write scripts for that. Later on, have Jenkins run
those scripts. Having Jenkins running silly bash scripts is better

38  WI N T ER 20 19 VO L . 4 4 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Ask-Me-Anything Engineering

than you running them. In the same fashion, decide how you will
provision. Be it bare metal servers, virtual machines, or con-
tainer images, provisioning must be automated. Infrastructure
as code is the best way.

Observability
Based on current needs, decide on monitoring and alerting. If
real-time monitoring looks like a lot right now, choose a more
simple solution. You will know when a more sophisticated solu-
tion is needed. What about metrics? Which metrics can be used?
Which metrics can be pulled from logs? Which are of business
value, and which can be used as health indicators? Talk to the
development team and figure it out. Together. For instance, low
sock sales is a business metric that can imply systems issues.

Updating and Viable Backups
Keeping software and tools up-to-date while in a tiny team is
very, very challenging. It is up to you to judge when and what
should be updated given the time you have available. Viable back-
ups are our dirty secret, and there are countless horror stories
to prove it. We just strap them on flying unicorns and never look
back. Even the most pessimistic personalities, when it comes to
systems, hope for the best-case scenario: they won’t have to use
their backups. In other words, figure out what needs to be backed
up and test those backups. You need the confidence and security
that you can rely on them.

Security
Common practices like limiting access unless needed (e.g., to
databases), using different database passwords in production
and staging, keeping track with security updates, etc., are a very
good start. Taking this lightly can lead to those upsetting stories
about junior engineers deleting the production database on their
first day.

Emergency Response
You are always on call. Sit with the development team and
discuss what can be done in possible scenarios, along with
some emergency checklists, and eventually create some early
runbooks.

Legacy Systems
This is more common in existing companies than startups: very
essential services running somewhere, but no one knows any-
thing more about them. And when they break, you will be called
on to fix them. For your own peace of mind, work with your col-
leagues on ways to remove those black boxes.

The aim is to bring the systems to a manageable state while
assisting the development team with their deliverables. Balance
comes through small iterations, improving what you have in
each one. Don’t rush; let your systems mature.

Building Habits and Culture
It is not uncommon in software companies for developers to
dislike working with systems engineers, and vice versa. This is
usually due to a lack of communication and bad attitude from
all quarters. Certainly in a place with a single SRE, this is not
going to work to anyone’s benefit. Being approachable is key in
building trust between you and the development team. After
all, they are your team as well. Try to have standard meetings
with each other, and share what is in the roadmap. Guess who
will have to work extra hours if you are playing with alerting
while developers are about to roll out a feature that needs a new
dedicated database server. It is important to learn to meet each
other halfway.

Furthermore, many developers are not proficient in systems
engineering, and that is generally accepted in small companies.
Instead of being frustrated for being asked for the 10th time,
“How do I restart a service?” teach them and document it! Help
them become better. Help them learn how to use what you are
building. After leading a systems crash course with 15 develop-
ers, I cried with joy the first time a colleague used ngrep to debug
an issue. Generally, the more self-serviced the development team
is, the less toil for you.

Lastly, being arrogant is something that you can’t afford. If
people prefer running around production with scissors because
they just don’t want to deal with the SRE, then you’re holding
a time bomb. A few years ago, a group of developers wanted to
experiment with Docker, but my team resisted even running
rough tests with Docker. Eventually, the developers set up a
staging environment using Docker at a cloud provider outside
of our infrastructure. This meant that our proprietary code was
deployed somewhere outside the control of the systems team. But
who is to blame here?

It Takes a Village
Your efforts will go as far as management and the development
team want to go. Same goes for if what you have started will
turn into a team or teams in the future. If there is not enough
management buy-in, there is an upper limit to what can change
and improve. You may want to introduce service level objectives
[3] so that, in turn, you can add meaningful alerts. This can’t be
done without developer assistance. In addition, it is impossible to
have blameless postmortems if nobody wants to write them and
if people prefer to point fingers at each other.

There are chances that one may really try to push for changes
and not get the desired results. Aristotle wrote “one swallow
does not make a spring” [4], and it is true. A person alone might
not be enough if the rest of the team won’t listen, and in my per-
sonal opinion, that is not a problem an SRE should be solving.

www.usenix.org WI N T ER 20 19 VO L . 4 4 , N O. 4 39

SRE AND SYSADMIN
Ask-Me-Anything Engineering

Small companies are intimate, and they provide us with that
feeling of belonging, but they can also feel a little lonely, espe-
cially if one is flying solo. What helped me over the years was
keeping in touch with other people doing the same job, through
meetups, group gatherings, and chats. It is essential to be able to
share the tech and non-tech problems at work with people who
understand.

Is It Worth It?
This is a coming-of-age experience for an engineer. There are
no safety nets and no one you can pass the ball to. Every deci-
sion will be more well thought out since any consequences will
directly affect you and your peers. Moreover, when money is
tight and time is limited, one gets creative. You work with what
is in front of you; you can’t simply add 100 servers or you can’t
waste days trying to find what is wrong.

You will acquire a really broad skill set. It will range from debug-
ging tools, networking, databases, and programming, to project
management, human resources, people skills, event planning
(true story), and, possibly, how to help a colleague’s dad find his
dream laptop.

Mistakes will happen, things will break again and again, you
won’t always have all the answers, and sometimes you will cre-
ate more technical debt than can be handled. And at the end of
the day, our systems will not be perfect, just manageable.

References
[1] H. Waterhouse, “Y2K and Other Disappointing Disasters:
Risk Reduction and Harm Mitigation,” SREcon18 EMEA,
USENIX, 2018: https://www.usenix.org/conference
/srecon18europe/presentation/waterhouse.

[2] Coined after the Kübler-Ross model: https://en.wikipedia
.org/wiki/Kübler-Ross_model.

[3] Service Level Objectives: https://landing.google.com/sre
/sre-book/chapters/service-level-objectives/.

[4] “The Young Man and the Swallow”: https://en.wikipedia
.org/wiki/The_Young_Man_and_the_Swallow.

USENIX Supporters
USENIX Patrons

Bloomberg • Facebook • Google • Microsoft • NetApp

USENIX Benefactors
Amazon • Oracle • Thinkst Canary • Two Sigma • VMware

USENIX Partners
Cisco Meraki • ProPrivacy • Restore Privacy • Teradactyl

TheBestVPN.com • Top 10 VPN

Open Access Publishing Partner
PeerJ

https://www.usenix.org/conference/srecon18europe/presentation/waterhouse
https://www.usenix.org/conference/srecon18europe/presentation/waterhouse
https://en.wikipedia.org/wiki/Kübler-Ross_model
https://en.wikipedia.org/wiki/Kübler-Ross_model
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://landing.google.com/sre/sre-book/chapters/service-level-objectives/
https://en.wikipedia.org/wiki/The_Young_Man_and_the_Swallow
https://en.wikipedia.org/wiki/The_Young_Man_and_the_Swallow

