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W ith the emergence of new computing paradigms (e.g., cloud and 
edge computing, big data, Internet of Things, deep learning) 
and new storage hardware (e.g., non-volatile memory, shingled-

magnetic recording disks) a number of open challenges and research issues 
need to be addressed to ensure sustained storage systems efficacy and per-
formance. The wide variety of applications demands that the fundamental 
design of storage systems should be revisited to support application-specific 
semantics. Existing standards and abstractions need to be reevaluated; new 
sustainable data representations need to be designed to efficiently support 
emerging applications. To take advantage of hardware advancements, new 
storage software designs are also necessary to maximize overall system effi-
ciency and performance.

Therefore, there is an urgent need for a consolidated effort to identify and establish a vision 
for storage systems research and comprehensive techniques that provide practical solutions 
to the storage issues facing the information technology community. In May 2018, a National 
Science Foundation (NSF) Workshop on Data Storage Research 2025 took place at the 
IBM Research—Almaden campus in San Jose, CA [1]. This two-day community-visioning 
workshop identified research challenges in designing novel and innovative systems to store, 
manage, retrieve, and efficiently utilize unprecedented volumes of data at increasingly faster 
speeds. Thirty-three researchers participated in the discussions. Participants came from 
academia, industry, and government to represent multiple storage, I/O, and distributed sys-
tems research communities.

In-depth discussions were carried out at the workshop along four major themes: (1) storage 
for cloud, edge, and IoT systems; (2) AI and storage; (3) rethinking fundamentals of storage 
systems design; and (4) evolution of storage systems with emerging hardware. The partici-
pants underscored the need for focused educational and training activities to instill storage 
system expertise and interest in the next generation of researchers and IT practitioners. 
Finally, the development of shared, scalable, and flexible community infrastructure to enable 
and sustain innovative storage research and verifiable evaluation was also discussed. This 
article summarizes the discussions on the interaction of cloud and AI with storage. For more 
details, see the full workshop report [10].

Storage for Cloud, Edge, and IoT Systems
The advent of cloud computing has transformed the basic substrate for systems building in 
the last decade, and the long-anticipated “Internet of Things” (IoT) has led to the emergence 
of edge computing that extends system boundaries pervasively. In such a dynamic  context, 
the depth of the storage stack and the scope of storage systems are increasing rapidly. Stor-
age systems will need to manage data collected, stored, transformed, and transferred from 
heterogeneous edge devices to back-end cloud services, which can involve more than 18 
layers [8]. Moreover, there are potential gaps or miscommunications between layers and 
components, which increase the difficulty of providing end-to-end guarantees and achiev-
ing the ideal tradeoffs among performance, reliability, fairness, etc. To move data storage 
research forward for cloud, edge, and IoT systems, we summarize the research challenges 
and opportunities into nine key properties that are essential for future storage systems.
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1. Efficient systems. Similar to traditional systems, cloud-based systems also put great 
focus on efficiency. This is important for both users who pay for usage and for cloud service 
providers who need to maximize profit. However, compared to traditional systems, there are 
many more layers involved in cloud systems: different layers usually require different data 
formats and read/write strategies to achieve the best local efficiency; these may conf lict 
with other layers. Moreover, the diverse hardware, dynamic workloads, multitude of customer- 
facing cloud services, and inherent multitenancy make achieving high efficiency even more 
difficult. Finally, more effort must be expended on capabilities that support local and end-to-
end quality of service (QoS). We can no longer focus on a single layer or component. Instead, 
cross-layer and end-to-end solutions are needed for removing all excess resource allocations 
in different layers, saving various costs (e.g., CPUs, memory, energy) and achieving an overall 
high efficiency.

2. Unified systems. Modern systems are filled with diverse storage options (e.g., file 
systems, SQL databases, key-value and object stores). While each individual storage option 
usually provides some unique features, they often have similar functions or components (e.g., 
managing persistent data structures or data replication). This inherent overlap of function-
ality is one of the major sources of inefficiencies in today’s systems. We should explore the 
possibility of extracting the unified core components as building blocks and providing general-
ized solutions for various higher-level services. Also, to make different services more unifiable, 
we should experiment with solutions that can automatically transform configurations based on 
the dynamic needs of workloads: addressing the underlying representation of data, the amount 
of resources allocated, and adapting configurations of durability and replication parameters.

3. Specified systems. Current approaches to system building are too prescriptive, rigid, and 
error prone. This has led to various problems, including downtime and data loss, reducing 
future storage systems’ scalability. We envision that future systems and applications should 
be specified in terms of performance requirements, data persistence needs, etc. Correctness 
properties should be precisely specified throughout the systems, which could potentially 
lead to the holy grail of verified systems that never lose data. There are several open research 
questions: how to specify properties for the opaque cloud, how to identify the necessary 
properties and interfaces for each layer or component in the system, and how to specify the 
dynamic requirements of workloads.

4. Elastic systems. Unlike traditional storage clusters that are built on fixed hardware 
resources, cloud-based systems are naturally elastic. Such systems can be broken into con-
stituent components that can be scaled up/down independently based on current workload 
demands. We envision that system elasticity can be utilized for handling storage infra-
structure tasks in addition to the workloads, likely improving overall system utilization and 
efficiency. To utilize storage elasticity, more desegregated, composable software architec-
tures are highly desirable. Instead of today’s monolithic storage and file systems, we should 
experiment with different building blocks and microservices, which can be reused across 
domains and improve elasticity, long-term reusability, etc.

5. Explainable systems. Current cloud-based systems are opaque to users. Many services 
use relatively simple interfaces, which makes it difficult for users to reason about the prov-
enance and layout of their data. Moreover, due to the complicated layering within the cloud, 
it is also difficult for system builders or administrators to explain abnormalities in system 
behaviors. We envision future systems as providing detailed provenance information at a 
configurable verbosity level regarding, for example, how a data object was created, the number 
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of copies of it stored in the system, and who can access what and 
why. This will be helpful for improving security (e.g., how infor-
mation is leaked), reliability (e.g., how data is corrupted), and 
performance (e.g., why this one run is slow). 

6. Sharable systems. Unlike the first-generation cloud tech-
nologies that only run a single or a few applications for one entity, 
multitenancy is a new reality in modern cloud-based systems. 
We believe one fundamental requirement of multitenancy is 
effective sharing. However, achieving effective sharing is non-
trivial as it involves many other systems aspects. For example, 
from efficiency’s perspective, multitenancy may cause interfer-
ence among different workloads at different system layers and 
thus violate QoS or service level objectives (SLOs). Similarly, 
security and privacy concerns need to be addressed in the multi-
tenant environment to provide trustworthy sharing.

7. Application-driven systems. One major driving force of 
systems research is new application needs. There are many 
interesting new applications arising recently (e.g., augmented 
reality), which place new demands on storage systems (e.g., 
real-time processing). Given the diversity of applications, it is 
inefficient and impractical to build a highly specialized storage 
system for each application. Instead, we should explore the com-
monality among applications and automatically adapt storage 
systems for a range of applications. One unique challenge here is 
how to assemble a representative application suite and metrics 
for learning the common characteristics and demands. 

8. Reliable systems. As the scale and complexity of systems 
keep increasing, failures become the norm rather than the 
exception. Therefore, we need to design systems to deliver high 
performance and other desired properties in the presence of fail-
ures. Future systems need to be formally specified, which could 
potentially lead to truly reliable storage that will never lose data. 
Existing efforts have shown that it is possible to formally specify 
and verify the crash consistency of one local file system built 
from scratch [6]. Nevertheless, it remains unclear how to scale 
formal methods to the vast majority of legacy software systems 
in cloud environments. More advanced mathematical methods 
and software engineering approaches are desirable.

9. Re-evaluable systems. A constant theme in storage research 
is the availability of suitable workloads. This is critical for fair 
comparisons between systems and for generating reproducible 
results. Unfortunately, compared to workloads for local stor-
age systems (e.g., Filebench, SPEC-SFS), fewer cloud-based 
workloads are publicly available; a few such useful workload 
generators exist (e.g., YCSB [7], ATLAS [4]), but as systems keep 
evolving, more representative workloads are needed to advance 
research. Moreover, future storage systems should be built with 
easy evaluation in mind (e.g., exporting internal performance 
metrics) to facilitate the fair comparison of design tradeoffs 
under the same representative workloads.

Edge and Its Impact on Cloud
IoT is becoming a reality, causing an explosion of data collec-
tion, storage, and processing demands. The proliferation of IoT 
devices and the associated demands have led to the emergence 
of edge computing. Essentially, the edge model places a “mini 
datacenter” of compute and storage resources at the network 
edge, closer to end users. Compared with cloud computing, edge 
computing is less mature or standardized, and IoT devices can 
differ in capabilities, protocols, and data formats.

The service models for IoT applications are unclear. We envi-
sion that one possible direction is the serverless computing 
model, like AWS Lambda. However, additional research efforts 
are needed to integrate the spectrum of IoT devices into current 
models. Despite this heterogeneity, one common feature of all 
IoT devices is their limited hardware resources. To address this 
constraint, we should explore how to identify and discard unim-
portant data in a timely fashion—and how to balance among 
storage, preprocessing, and communication between IoT devices 
and clouds.

Cloud systems can be built for various workloads and adapt 
to demands on the fly. Conversely, edge computing has a large 
upfront cost to install edge nodes and a limited opportunity for 
ad hoc multiplexing at runtime, so we need to identify these 
workloads and match them to storage capabilities precisely.

One barrier to storage research in the era of cloud-edge comput-
ing is that no edge-to-cloud, holistic, persistent data storage 
capabilities exist today. Therefore, a realistic testbed involv-
ing both edge and cloud is highly desirable. Another barrier is 
the lack of agreed-upon workloads and traces for evaluation 
and comparison of new research designs. A realistic workload 
trace needs to track requests to read and write data across all 
devices, edge nodes, and cloud servers—including operations 
that transform or aggregate the data. Recent work on distributed 
system tracing [2] may provide the mechanism for collecting 
such traces; but the research community also needs to agree on 
a trace format, such as SNIA’s DataSeries [5], and strategies for 
replaying such traces.

AI and Storage
Although AI and ML have existed as separate fields for decades, 
the last 5–10 years have witnessed an exponential growth in AI 
development and applications. Today, virtually all industries are 
either applying or planning to apply AI techniques. This shift 
is driven by three factors: data, compute, and algorithms. The 
confluence of these three factors has fueled AI’s growth and, in 
turn, will drive the need for combined storage and AI research. 
Storage for AI focuses on how storage research that drives 
system designs can better serve AI workloads and data usage. 
Conversely, AI for Storage focuses on how storage systems can 
be improved via internal application of AI techniques.
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Storage for AI
Storage technologies are likely to be more complex in the future 
to support growing needs of big data and AI workloads. This 
complexity will demand support for different APIs at different 
levels. We expect to continue to see healthy use of block-level, 
file-level (e.g., POSIX), object, and key-value stores—and likely 
combinations thereof. There is a need for high-level, easy-to-use 
APIs that hide much of the internal complexity from users and 
developers; conversely, there is also a need to allow advanced 
users to access lower-level APIs to enable more effective custom 
optimizations. The key to the design of future storage systems 
and their APIs would be that they must be easy to use and logi-
cal for AI application developers and at the same time provide 
optimal storage at the lower levels. Specifically, the emerging 
AI field presents five trends that intersect with storage, where 
targeted storage research can benefit AI uses and applications:

1. Massive data sets. AI workloads require the ingestion, pre-
processing, and, ultimately, analysis of massive amounts of data. 
Multiple stages exist in typical AI pipelines, from data inges-
tion such as ETL (Extract, Transform, Load), to pre-processing 
(e.g., feature engineering), to the ultimate execution of an AI 
algorithm in its training or inference phases. All of these can 
benefit from storage optimizations for performance and data 
management.

2. Awareness of AI stages. Storage that is aware of the distinct 
stages or phases of AI processing can optimize AI pipelines via 
techniques such as caching of intermediate results, tracking of 
lineage, provenance, and checkpointing.

3. Compute architecture and data optimization. AI  platforms 
typically follow distinct distributed computation architecture 
patterns (e.g., data and model parallel). Memory hierarchy and 
data layout design for such computation patterns should be a 
focus for future storage research. APIs that express the data 
access intent of an AI algorithm can be a powerful tool to inte-
grate optimizations with AI computation.

4. Unique characteristics. AI algorithms have unique charac-
teristics that can be exploited to create efficient storage designs. 
Example characteristics include tolerance of small amounts of 
data loss, highly structured access patterns, and the ability to 
use and extrapolate from lossy compression. Emerging access 
methods and characteristics associated with AI workloads, 
such as stream processing or edge storage, also create unique 
challenges.

5. Security, traceability, and compliance. The use of AI brings 
a new dimension to data security. As industries and users demand 
that decisions made by AI algorithms be reproducible, transparent, 
and explainable, pressure builds on enterprises to use data-manage-
ment mechanisms to govern what data is collected and how it should 
be used to generate AI models and consequent insights.

AI for Storage
AI techniques should be researched to improve storage systems 
with respect to performance, reliability, availability, and QoS. 
This can be accomplished using the large and growing amount of 
available storage systems’ historical access data. Insights can be 
gained from training and thus be used to help design or optimize 
storage systems in five ways:

1. Data placement optimizations. ML algorithms can be applied 
to predict popular data and application patterns, which help 
improve various storage techniques, including tiered caching, 
prefetching, and resource provisioning. Adapting caching poli-
cies through online learning can have significant benefits: using 
ML techniques to select between LRU and LFU replacement 
policies, for example, improved cache hit rates significantly 
under tighter memory constraints [9]. We believe that ML can  
be successfully applied for other performance optimizations.

2. Failure prediction. Failure or error patterns in large storage 
systems, such as disk failures and silent data corruptions, can be 
predicted using ML techniques and early detection; then, cau-
tious measures can be taken to prevent errors from propagating. 
For example, proactively replacing disks that are predicted to fail 
soon can reduce the cost of data loss or rebuilding.

3. Storage tuning. Storage systems typically evolve to have 
a large number of tunable parameters. Parameters include 
hardware composition, I/O schedulers, tiering thresholds, cache 
sizes, etc. Using learning and other black-box optimization 
techniques can help administrators build and maintain storage 
systems under dynamic workloads, informing them on the opti-
mal parameter values to improve system performance and lower 
cost for given workloads.

4. Change and anomaly detection. Part of tuning for work-
loads is understanding when they change phases. Anomaly 
detection has been an application area for ML techniques for 
over 20 years, and many techniques from these fields can trans-
late easily to storage domains.

5. Intelligent storage devices. Storage devices capable of car-
rying out computation can help reduce maintenance overhead 
for the overall storage system, potentially improving perfor-
mance. Such devices, however, require that we determine what 
level of intelligence is appropriate to offload to the device and 
propose storage techniques to achieve the best synergy.

The key challenge in using AI for Storage is that training data 
will often be limited before decisions have to be made. For 
instance, systems to store and quickly process data in self-
driving cars must exist and run fast even before enough data can 
be collected for automated system design. Similarly, as stor-
age needs shift over time in an organization, there may not be 
enough training data to predict how best to deal with changing 
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priorities when reconfiguring system parameters, tiers, data 
placement, and layout. Storage tuning may also be improved 
by considering more complex cost models, not just traditional 
throughput and latency: dollar cost, complexity, and power 
consumption are useful reward functions in a multi-objective 
optimization scheme.

Benchmarks and Workloads
Since AI techniques are heavily data dependent, any strategy for 
driving AI and storage research needs to factor in the need for 
publicly accessible data sets and benchmarks. Public data sets 
exist in ML but are in many cases too small to extract meaning-
ful storage access patterns. Next, we describe three challenges 
that have to be overcome to drive expansive research into the 
storage and AI opportunities presented above:

1. Data-set generation and collection. We need some system-
atic and sustainable schemes to generate and collect data sets, 
including synthetic data generation of ML workloads, data sets 
from simulations and prior research, and long-term data collec-
tion and dissemination via shared community infrastructure.

2. Characterizing workloads across layers. How to bench-
mark and characterize workloads from different layers, includ-

ing application, middleware, system, and storage-device layers, 
is challenging and needs investigation.

3. Workload classification. Classifying workloads has been 
studied for a long time [3]. As new storage platforms and applica-
tions are developed, there is a need to understand, in a way that 
is precise and communicable across different industries, what 
modern storage workloads look like. We could use ML tech-
niques to improve workload characterization in four areas:  
(1) quantifying similarity among workloads; (2) tracking 
changes in how a workload functions on a given architecture; 
(3) learning mixes of customer workloads on shared storage 
systems; and (4) detecting phases of complex long-running 
workloads.

Conclusion
The NSF Workshop on Data Storage Research 2025 has unques-
tionably identified that the ongoing evolution of computing use 
cases, hardware technologies, and resource consumption pat-
terns creates a multitude of new and complex challenges in data 
storage and management. We hope that this summary article 
and its associated, full-length public report [10] will serve as a 
useful guidance for data storage researchers in the coming years.
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