
74  WI N T ER 20 17 VO L . 42 , N O. 4 www.usenix.org

COLUMNS

Go
HashiCorp’s Vault

C H R I S “ M A C ” M C E N I R Y

In the Fall 2017 issue, we examined using Go to set up TLS encryption
between our gls service and gls client. To recap, Go has three strong
libraries which we used: the crypto/x509 library and the crypto/rsa

libraries provided us with a means of generating the certificate, and the
crypto/tls library provided us with a way of wrapping the gls communica-
tions with encryption.

In this issue, we’re going to look to another tool to handle our certificate and key generation:
HashiCorp’s Vault (https://www.vaultproject.io/).

Vault, which is written in Go, has a Go client library for it. Not surprisingly, this library is not
in the standard Go library. This will give us a chance to get a taste of the new Golang depen-
dency management tool: dep (https://github.com/golang/dep).

We’re going to use the existing code from last issue’s article, but we’ve added a new file:
certs/generate_certs_vault.go to do our certificate generation. You can get this code from
https://github.com/cmceniry/login-glss, or by running:

 shell$ go get -u github.com/cmceniry/login-glss

Using an External Secret Store
Organizations are under increasing pressure from regulatory entities to ensure proper han-
dling of secrets. They need to be able to demonstrate a proper chain of custody and limited
exposure of those secrets. They need to be able to show when a secret was accessed and by
whom.

This ends up involving a significant amount of overhead and having a large impact on code
and configuration processes. The secret cannot be kept with other configuration data, even
though it is critical to the application or service being able to run.

What are some of these secrets? A few examples are:

◆◆ Passwords for service accounts to access databases

◆◆ Salts or shared secrets for message hashing and signatures

◆◆ Shared secrets for encryption channels

◆◆ TLS keys or the passphrases to TLS keys

Imagine having to go to every location where an application is running and manually putting
a password or passphrase in place. The application code and the rest of its configuration are
already there, but you still can’t start the application without having these secrets. Even in
a well-run organization, this can cause critical delays to service delivery or restoration. And
that this is not well auditable is just as bad. You have to rely on people filling out sign in/sign
out forms for retrieving the password or passphrase.

Chris “Mac” McEniry is a
practicing sysadmin responsible
for running a large e-commerce
and gaming service. He’s been
working and developing in

an operational capacity for 15 years. In his
free time, he builds tools and thinks about
efficiency. cmceniry@mit.edu

https://www.vaultproject.io/
https://github.com/golang/dep
https://github.com/cmceniry/login-glss
github.com/cmceniry/login-glss

www.usenix.org WI N T ER 20 17 VO L . 42 , N O. 4 75

COLUMNS
Go: HashiCorp’s Vault

Vault makes it easier and faster to handle the secret and to keep
that handling auditable. It is a network service that can share or
issue secrets. The application or application server authenticates
itself to Vault and receives an access token in response. The
application then uses this token to retrieve any secrets it needs.
Vault is maintaining the audit log for when that secret was cre-
ated, modified, or retrieved.

Vault is designed to have multiple pluggable back ends. A back
end handles a particular type of secret—such as a generic or
database password. In the case of the database password, Vault
can perform an action to create the credentials on the fly when
it is asked for the password. This allows limited-use passwords
and other precautions to reduce risk.

We’re going to use Vault to generate our keys and certificates
using the Vault Go library. But before we do that, we need to set
up Vault and prepare it to be a certificate authority.

Getting Started: Vault
To get set up with Vault for this exercise, we’re going to:

◆◆ Install Vault

◆◆ Start the Vault server

◆◆ Set our authentication credentials for Vault

◆◆ Configure Vault with our certificate authority back end

◆◆ Have Vault generate a key and certificate for our certificate
authority

◆◆ Configure a role to use our certificate authority

Vault is a combined network server and client in one binary. You
can download the binary for several platforms from the project’s
Web site: https://www.vaultproject.io/downloads.html.

To keep this article brief, we’re going to cut a few corners when
starting the server—namely, start it in dev mode. This leaves out
the certificates for encrypting the communication with vault,
and shortcuts the authentication phase by using a predefined
token available in dev mode. Vault will keep everything in
memory so this is definitely not a permanent installation. In a
production deployment, you would want to examine both of these
areas more closely.

Start vault with the -dev and -dev-root-token-id=mytoken and
send it to the background.

 shell$./vault server -dev -dev-root-token-id=mytoken &

 [1] 13625

 shell$ ==> Vault server configuration:

 Cgo: disabled

 Cluster Address: https://127.0.0.1:8201

 Listener 1: tcp (addr: “127.0.0.1:8200”, cluster address:

“127.0.0.1:8201”, tls: “disabled”)

 Log Level: info

 Mlock: supported: false, enabled: false

 Redirect Address: http://127.0.0.1:8200

 Storage: inmem

 Version: Vault v0.8.3

 Version Sha: 6b29fb2b7f70ed538ee2b3c057335d706b6d4e36

==> WARNING: Dev mode is enabled!

Next, we’ll want to set up a few environment variables. VAULT_

ADDR sets the connection point for Vault. VAULT_TOKEN sets the
authentication token to use.

 shell$ export VAULT_ADDR=http://127.0.0.1:8200

 shell$ export VAULT_TOKEN=mytoken

Now we can set up the back end in Vault. In this case, we’re going
to use the pki back end, which will be our certificate authority.
We want to make it available inside of Vault at a known location—
we’ll use myca. Back ends are set up with the mount command.

 shell$./vault mount -path=myca pki

 2017/09/23 21:22:55.762379 [INFO] core: successful mount:

path=myca/ type=pki

 Successfully mounted ‘pki’ at ‘myca’!

Now we need to have Vault generate the key and certificate for
our certificate authority. Vault uses a generic interface to the
back ends—namely, you can perform write (Create/Update), read
(Read), and delete (Delete) operations on paths inside of Vault.
When a back end is mounted, it exposes child paths underneath
the mount path. You can perform CRUD operations on these child
paths as appropriate for the back end. The paths and their usages
for the pki back end can be found at https://www.Vaultproject.io
/api/secret/pki/index.html. We’re going to start by issuing a write
to the path for “Generate Root.” For this path, we have to specify
the common name that will be stamped on the CA’s certificate.

 shell$./vault write myca/root/generate/internal common_

name=”My CA”

 Key Value

 — -----

 certificate -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

 expiration 1508992653

 issuing_ca -----BEGIN CERTIFICATE-----

 ...

 -----END CERTIFICATE-----

 serial_number 54:64:79:74:5c:b8:a1:6a:66:0c:88:6e:eb:bb:

40:1e:46:4b:d4:43

https://www.vaultproject.io/downloads.html
https://127.0.0.1:8201
http://127.0.0.1:8200
http://127.0.0.1:8200
https://www.Vaultproject.io/api/secret/pki/index.html
https://www.Vaultproject.io/api/secret/pki/index.html
b8:a1:6a:66:0c:88:6e:eb:bb:40:1e:46:4b:d4:43
b8:a1:6a:66:0c:88:6e:eb:bb:40:1e:46:4b:d4:43

76  WI N T ER 20 17 VO L . 42 , N O. 4 www.usenix.org

COLUMNS
Go: HashiCorp’s Vault

Vault responds with a generic response as well—key-value pairs.
For this path, it responds with the CA’s certificate, its expiration
date represented in UNIX Epoch time, and the serial number.
The certificate shows up twice—once as itself and once as its
own issuing_ca. The second time has more to do with the struc-
ture of Vault’s internal code for generating certificates—this will
show up later as well. To mirror the last issue, replace the certs/
CA.crt file with the certificate PEM block from above.

The last piece of setup in the Vault is that we need to configure
roles inside of our myca path. These roles are both specific to the
pki back end and specific to this instance of it. They represent
the options for what configurations—namely, the common name,
and type—can be put on to the issued certificates. Since we’re
already using the powerful root token, we’re going to generate
powerful roles which can mint certificates with any name, but
we’ll keep separate roles for generating server certificates and
client certificates.

 shell$./vault write myca/roles/powerserver allow_any

_name=true \

 enforce_hostnames=false \

 server_flag=true \

 client_flag=false

 Success! Data written to: myca/roles/powerserver

 shell$./vault write myca/roles/powerclient allow_any

_name=true \

 enforce_hostnames=false \

 server_flag=false \

 client_flag=true

 Success! Data written to: myca/roles/powerclient

Getting Started: Vault Client Library
To get ready to use the client, we’re going to:

◆◆ Add a reference client to our project code

◆◆ Initialize dep and let it pull down our code dependencies

dep looks at your code to decide what it needs to pull in. To start
to use dep, we’re going to add the Vault client as an import in
certs/generate_certs_vault.go. Since the package name api is
a bit too generic, we’re going to specify that the qualified identi-
fier of the package name is going to be vaultapi.

 import (

 vaultapi “github.com/hashicorp/vault/api”

Now we let dep do the hard part. For demonstration purposes,
I’m using the verbose flag; otherwise, dep is very quiet.

 shell$ dep init -v

 Root project is “github.com/cmceniry/login-glss”

 3 transitively valid internal packages

 2 external packages imported from 2 projects

 (0) ✓ select (root)

 (1) ? attempt github.com/kelseyhightower/gls with 1 pkgs; 1

versions to try

 (1) try github.com/kelseyhightower/gls@master

 (1) ✓ select github.com/kelseyhightower/gls@master w/1 pkgs

 (2) ? attempt github.com/hashicorp/vault with 1 pkgs; 76

versions to try

 (2) try github.com/hashicorp/vault@v0.8.3

 ...

 Locking in master (42a06e0) for direct dep github.com

/kelseyhightower/gls

 ...

 Locking in v0.8.3 (6b29fb2) for direct dep github.com

/hashicorp/vault

 Locking in master (68e816d) for transitive dep github.com

/hashicorp/hcl

What is init doing?

From our project, it starts by examining every .go file and look-
ing at their import statements. From that it starts to build out
a list of dependencies and pulls those in. It then does this same
examination of the dependencies’ import statements and iterates.
When it looks at a dependency, it looks for any versioning infor-
mation that that dependency may give—this usually shows up as
semantic versioning (v$major.$minor.$patch)-based Git tags.

dep creates a Gopkg.toml file if one does not already exist.
The toml file is used to specify any version constraints on the
dependencies. After dep has collected all of the dependency
and version information, and any constraints from the toml
file, it attempts to solve finding the appropriate version of every
dependency.

Once solved, dep creates a Gopkg.lock file, and pulls down any
missing dependencies. The lock file is the version informa-
tion which dep has picked for the current dependency solution.
dep uses the vendor pattern for storing dependencies. When it
pulls down a dependency, it stores that dependency in the vendor
directory of this project. This allows the build to be specific to this
particular project and not conflate items in the src directory of
your $GOPATH. That way, if you are working with multiple projects
that have conflicting dependencies, you can keep those separate
rather than rebuilding your $GOPATH/src all of the time.

After init is done, it’s good to take a look at what it has gathered.
The status subcommand provides the current dependency solu-
tion and also takes a look at the upstream repositories to provide
the latest version information.

github.com/hashicorp/vault/api
github.com/cmceniry/login-glss
github.com/kelseyhightower/gls
github.com/kelseyhightower/gls@master
github.com/kelseyhightower/gls@master
github.com/hashicorp/vault
github.com/hashicorp/vault@v0.8.3

www.usenix.org WI N T ER 20 17 VO L . 42 , N O. 4 77

COLUMNS
Go: HashiCorp’s Vault

While we won’t need it in this exercise, you can always re-solve
and bring your dependencies up-to-date with dep ensure.

Now that we have our dependencies, we can build out certificate
generator.

Generating Keys and Certificates with the
Vault API
To start off, our main program needs to set up our Vault con-
nection. The Vault API does this in two parts—initializing the
configuration and using that configuration to create a client
struct. As with working with the command-line client, we need
to explicitly set the Vault address as appropriate.

 config := vaultapi.DefaultConfig()

 config.Address = “http://127.0.0.1:8200”

 c, err := vaultapi.NewClient(config)

Unlike before, where we set the authentication token as part of
our environment, the token is set on the client.

 c.SetToken(“mytoken”)

Now we can ask Vault to issue a key and certificate. We’re going
to start with the glssd server certificate.

First, we call Logical() to indicate that we’re going to be access-
ing a Vault back end. If we wanted to perform administrative
functions, such as mount, to Vault instead of data functions, we
can use the Sys() function to get access there.

As with the command line interface, the Write call used a generic
interaction with Vault. In the logical subsystem, we call a similar
Write to the myca/issue/powerserver endpoint to have Vault
issue us a key and certificate. In addition to the path, we have to
supply some data—common_name and ttl for the expiration to
use. How this data is transmitted is where the generic interac-

tion comes into play. The Write call of the Vault
API has the same signature regardless of what
back end is in use. To allow for different back-end
forms, it has to rely on loose type checking—the
kind you find with the empty interface. And to
allow for multiple data parameters, requests to
Write take data in the form of a map where the
map key is the data name as a string, and the map
element is the data value as an empty interface.

 s, err := c.Logical().Write(

 “myca/issue/powerserver”,

 map[string]interface{}{

 “common_name”: “localhost”,

 “ttl”: “1h”,

 })

Vault responds with a Secret struct. There are several parts to it,
but the part we care about is in the Data field. Much in the same
way that the input data was in the generic map[string]inter-

face{}, the Data field is also a map[string]interface{}. We can
access the returned keys and assert their type to what we know
they are. In particular, for the pki back end’s issue commands,
we get back the private_key key and the certificate. We take
these and assert them to strings. Strings easily cast to byte slices
which are what the ioutil.WriteFile func needs to save them out
to disk.

 ioutil.WriteFile(

 “certs/server.key”,

 []byte(s.Data[“private_key”].(string)),

 0444,

)

 ioutil.WriteFile(

 “certs/server.crt”,

 []byte(s.Data[“certificate”].(string)),

 0444,

)

Next we do the same actions for the client certificate. This time,
we also have to use a different role because that is the role we used
which will issue certificates with the client usage set on them.

 s, err = c.Logical().Write(

 “myca/issue/powerclient”,

 map[string]interface{}{

 “common_name”: “glss Client A”,

 “ttl”: “1h”,

 },

)

 ...

 shell$ dep status | cut -b1-80

 PROJECT CONSTRAINT VERSION REVISION LATE

 github.com/fatih/structs * v1.0 a720dfa a720

 github.com/golang/snappy * branch master 553a641 553a

 github.com/hashicorp/errwrap * branch master 7554cd9 7554

 github.com/hashicorp/go-cleanhttp * branch master 3573b8b 3573

 github.com/hashicorp/go-multierror * branch master 83588e7 8358

 github.com/hashicorp/go-rootcerts * branch master 6bb64b3 6bb6

 github.com/hashicorp/hcl * branch master 68e816d 68e8

 github.com/hashicorp/vault ^0.8.3 v0.8.3 6b29fb2 6b29

 github.com/kelseyhightower/gls branch master branch master 42a06e0 42a0

 github.com/mitchellh/go-homedir * branch master b8bc1bf b8bc

 github.com/mitchellh/mapstructure * branch master d0303fe d030

 github.com/sethgrid/pester * branch master 0af5bab 0af5

 golang.org/x/net * branch master 0744d00 0744

 golang.org/x/text * branch master 1cbadb4 1cba

http://127.0.0.1:8200
github.com/fatih/structs
github.com/golang/snappy
github.com/hashicorp/errwrap
github.com/hashicorp/go-cleanhttp
github.com/hashicorp/go-multierror
github.com/hashicorp/go-rootcerts
github.com/hashicorp/hcl
github.com/hashicorp/vault
github.com/kelseyhightower/gls
github.com/mitchellh/go-homedir
github.com/mitchellh/mapstructure
github.com/sethgrid/pester
golang.org/x/net
golang.org/x/text

78  WI N T ER 20 17 VO L . 42 , N O. 4 www.usenix.org

COLUMNS
Go: HashiCorp’s Vault

 ioutil.WriteFile(

 “certs/client.key”,

 []byte(s.Data[“private_key”].(string)),

 0444,

)

 ioutil.WriteFile(

 “certs/client.crt”,

 []byte(s.Data[“certificate”].(string)),

 0444,

)

A word of warning: we’re being fast and loose with the conver-
sion from the empty interface of the response to something we
can write to a file. This means that any issues that crop up here
will result in Go panics. It would be advisable to add conversion
error checking to this code before building off of it. Or you could
use the github.com/mitchellh/mapstructure library, which
provides a way to convert loose data into structs much like you
would with the encoding/json and encoding/xml libraries.

With that complete, we can run it to generate the new keys and
certificates:

 shell$ go run certs/generate_certs_vault.go

 Success!

Since we have a drop in replacement for the generate_certs.
go method, we can run the same commands as we did last
issue, and verify that we’re still working with the Vault-issued
certificates:

 shell$./glssd &

 [1] 32659

 shell$ 2017/09/23 23:15:31 Starting glsd..

 shell$./glss .

 2017/09/23 23:15:34 user=”glss Client A” connect

 drwxr-xr-x 442 Sep 23 22:39 .

 drwxr-xr-x 510 Sep 23 23:14 .git

 -rw-r--r- 42 Sep 23 22:39 .gitignore

 -rw-r--r- 2776 Sep 23 22:08 Gopkg.lock

 -rw-r--r- 687 Sep 23 22:08 Gopkg.toml

Application Changes When Using an External
Secret Store
To extend the example here, instead of doing a drop-in replace-
ment for the key and certificate generator, you can imagine that
the glssd program itself would contact Vault and get a new key
and certificate every time it started up. This is interesting for
several reasons:

◆◆ We know when a specific certificate was issued to a specific
client and can track and audit that.

◆◆ We can set the certificate lifetimes relatively low, increase key
rotation, and decrease the impact timeframe of a leaked key.

◆◆ We can apply deployment automation to our environment
without having to worry about dirtying our source control
systems with keys.

Some of the above is very much dependent on the way the appli-
cation authenticates to the Vault system, but that will have to
wait for a future article. Regardless, the benefits are intriguing.

I hope this article has convinced you that it is relatively straight-
forward to retrieve items from external secret stores. I hope you
take the time to see what they can do for you to help improve the
overall security stance in your code and at your organization.

github.com/mitchellh/mapstructure

