
66    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

COLUMNS
It’s with some regret that this is the final installment of my regular Python

column. I suppose that I should offer some final words of wisdom, a his-
torical retrospective, or maybe even a forward-looking “Python of the

future” vision—however, I’m simply not that clever. Truth be told, I’m simply
stretched a bit thin these days and think it would be a good time to step aside
to make room for a fresh new voice and insights. So, in the spirit of leaving on
a useful note, I thought I’d end on a practical trifle of a matter of some impor-
tance—the problem of getting a Python program to quit.

Bailing Out
Suppose your program has reached the final limit of what it can tolerate and you want it to
die. To make it happen, raise a SystemExit exception and be done with it. For example:

raise SystemExit(1)

It is standard practice to include some kind of numeric exit code, which indicates success
(zero) or failure (non-zero) back to the process that launched Python. Alternatively, you can
include a diagnostic message.

raise SystemExit(‘Goodbye cruel world’)

When you give a message, it is printed to sys.stderr and Python exits with a status code of
1. Problem solved—your program gracefully cleans up after itself and quits. Of course, that’s
naturally not the end of the story or else this would be a pretty short article. Let’s continue.

Catching Exceptions
The SystemExit exception is not grouped with other exceptions. For example, it’s somewhat
common to encounter code that catches all errors like this:

try:

 something_complicated()

except Exception as e:

 print(“It didn’t work. Reason: %s”, e)

This code will catch most errors, but not SystemExit. If you wanted to catch that, you’d have
to add an extra clause for it. For example,

try:

 something_complicated()

except Exception as e:

 print(“It didn’t work. Reason: %s”, e)

except SystemExit as e:

 print(“I see you’re going away”)

 raise

In practice, it’s rarely the case that you would ever catch SystemExit yourself. Even if you did,
the most sensible action is perhaps to simply log the event and re-raise the exception as shown.

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

raise SystemExit(0)
D A V I D B E A Z L E Y

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  67

COLUMNS
raise SystemExit(0)

A common confusion is that sometimes programmers catch Sys-

temExit by accident by writing sloppy exception handling code:

try:

 something_complicated()

except:

 print(“It didn’t work.”)

This actually catches all possible errors, including SystemExit.
However, this behavior is often unexpected and a potential
source of obscure bugs. It’s usually best to catch just the excep-
tions you need as opposed to casting such a wide net.

Keeping the Interpreter Alive
For the purpose of debugging, sometimes it’s nice to keep the
interpreter alive so that you can go poking around. Use python

-i for that. It works even in programs that intentionally raise
a SystemExit exception. You might see a message printed, but
otherwise, you’ll be dropped into the interactive Python shell
afterwards. From there, you can mess around. For example:

% python3 -i spam.py

Traceback (most recent call last):

 File “spam.py”, line 5, in

 spam()

 File “spam.py”, line 3, in spam

 raise SystemExit(“I’m dead”)

SystemExit: I’m dead

>>>

Cleanup Actions
Sometimes you might want extra actions to take place upon
program termination. For this, you can use the atexit module [1].
For example:

import atexit

def goodbye():

 print(“So long and thanks for all of the fish”)

atexit.register(goodbye)

atexit allows you to register an arbitrary number of zero-argu-
ment functions that get fired upon termination of the Python
interpreter. The functions execute in reverse order of registra-
tion. If you need to carry extra information, it is standard prac-
tice to use a lambda or functools.partial to do it. For example:

def spam(name):

 atexit.register(lambda: print(‘Goodbye’, name))

 ...

If needed, you can also unregister a previously registered func-
tion using atexit.unregister().

Cleanup with Context Managers
On the subject of cleanup, when working with objects, it’s usually
best to make use of context managers and Python’s with state-
ment. For example, suppose you had some object that involved
closing a resource such as a file or connection. A good way to clean
it up is to give it __enter__() and __exit__() methods like this:

class Spam(object):

 def __init__(self):

 self.resource = SomeResource()

 ...

 def __enter__(self):

 return self

 def __exit__(self, *args):

 # Cleanup

 self.resource.close()

With this object, you can now write code like this:

with Spam() as s:

 ...

 # Use s

 ...

 # Resources released here

When control-flow leaves the indented block, the __exit__()
method will run. This happens regardless of what happens in the
block—including SystemExit.

The __del__ Puzzle
Sometimes user-defined classes will define a __del__() method
for the purposes of cleanup. For example:

 # spam.py

import datetime

class Spam(object):

 def __del__(self):

 print(“%s destroyed at %s” % (self, datetime.datetime.now()))

__del__() is a particularly troublesome method to be defining
in general. The main problem is that you simply don’t know when
it’s actually going to fire. This is especially true on program
exit. When Python shuts down, all active objects get garbage
collected—this includes functions, classes, and modules. In the
above example, it’s entirely possible you could get a warning
message like this printed to standard error:

Exception AttributeError: “’NoneType’ object has no attribute

‘datetime’” in <bound method Spam.__del__ of <spam.Spam

object at 0x1007d9f90>> ignored

What’s happened here is that the datetime module reference
has already been garbage-collected and is no longer defined in
global scope. The __del__() method blows up because datetime

68    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

COLUMNS
raise SystemExit(0)

is gone. This sort of thing can often be fixed by playing weird
games with default arguments. For example:

 # spam.py

import datetime

class Spam(object):

 def __del__(self, now=datetime.datetime.now):

 print(“%s destroyed at %s” % (self, now()))

Ugh. Explaining something like that to your coworkers is going
to be hard and even then, it’s no guarantee that it’s going to work
(what if the now() function itself needs other functionality that’s
already been garbage-collected?). The bottom line is don’t rely on
__del__() to perform cleanup actions properly when it comes to
program exit. You’re better off considering a context manager or
a more explicit approach.

Threads
Program exit becomes much more interesting when you start
programming with threads [2]. Consider the following code:

import threading

import time

def countdown(n):

 while n > 0:

 print(‘T-minus’, n)

 time.sleep(5)

 n -= 1

threading.Thread(target=countdown, args=(5,)).start()

raise SystemExit(“Goodbye”)

If you run this, program termination is delayed until the thread
runs to completion. In fact, if you had a lot of threads, program
exit won’t occur until all of them terminate.

This situation is made even more unfortunate given that there
is no mechanism for terminating or signaling a thread once
started. Your only sane recourse is to build in some kind of peri-
odic polling or check.

import threading

import time

main_thread = threading.current_thread()

def countdown(n):

 while n > 0 and main_thread.is_alive():

 print(‘T-minus’, n)

 time.sleep(5)

 n -= 1

threading.Thread(target=countdown, args=(5,)).start()

raise SystemExit(‘Goodbye cruel world’)

Alternatively, you could create the thread as “daemonic” like this:

import threading

import time

def countdown(n):

 while n > 0:

 print(‘T-minus’, n)

 time.sleep(5)

 n -= 1

threading.Thread(target=countdown, args=(5,), daemon=True).

start()

raise SystemExit(“Goodbye”)

Daemonic threads are killed immediately once the main thread
exits. This is not without its own set of concerns, however.
Daemonic threads killed in this way do not exit gracefully. For
example, they don’t garbage-collect remaining objects (they don’t
execute __del__() methods), and they don’t run the __exit__()
method of context managers. So if you were expecting some kind
of graceful cleanup from this, don’t.

Curiously, functions registered with atexit will still run upon
termination of a threaded program—even if registered by dae-
monic threads. So you could write code like this:

import threading

import time

import atexit

def countdown(n):

 onexit = lambda: print(‘Thread dead. Final value’, n)

 atexit.register(onexit)

 while n > 0:

 print(‘T-minus’, n)

 time.sleep(5)

 n -= 1

 atexit.unregister(onexit)

threading.Thread(target=countdown, args=(5,), daemon=True).

start()

time.sleep(12)

raise SystemExit(‘Goodbye cruel world’)

When you run this, you’ll see a message about a final value of 3.

Keyboard Interrupts and Signals
One especially nasty problem with program termination is the
handling of keyboard interrupts (Control-C) and signals [3].
These events often ultimately result in program termination,
but unlike a typical SystemExit exception, they occur asynchro-
nously. This means that they could potentially occur on any
statement in your program.

Perhaps the most important thing to note about signals is that
they are only handled by Python’s main execution thread. There

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  69

COLUMNS
raise SystemExit(0)

are situations where it is impossible to receive signals and it
will appear as if it is impossible to kill your program. The most
common scenario is if the main program gets tied up on a lock or
becomes busy with some CPU-intensive task. Here is a simple
example you can try:

>>> ’a’ in range(1000000000) # Use xrange on Python2

<Ctrl-C>

In this example, you’ll find that the code becomes totally unre-
sponsive to the keyboard interrupt until the operation completes.
Under the covers the interpreter is tied up with a big calcula-
tion taking place in C. There’s just no opportunity for it to be
interrupted.

More diabolical situations can arise with combinations of lock-
ing and signal handling. Consider this interesting bit of code
involving the logging module:

import logging

import time

import signal

log = logging.getLogger(__name__)

def goodbye(signo, frame):

 log.debug(‘Goodbye’)

 raise SystemExit()

def spin():

 while True:

 log.debug(‘Hey %f’ % time.time())

signal.signal(signal.SIGINT, goodbye)

logging.basicConfig(level=logging.DEBUG)

spin()

In this code, a constant stream of log messages is quickly emit-
ted until terminated by a Control-C (SIGINT). It might look
innocent enough and it might even seem to work when you try it.
However, there are hidden dangers. It turns out that the logging
module internally uses thread locks. If you run this program
repeatedly, killing it with Control-C, you might find that just
every so often, instead of dying, the whole program freezes.
What happened? The main program was in the middle of logging
a message with the lock held when a signal arrived. The signal
handler then tried to log a message, but is now deadlocked due to
the logging lock being in use. Your only recourse here—open up
another terminal and kill Python using kill -9.

Some general advice concerning threads, signals, and program
exit. If you want your program to terminate, a sensible strategy is
often one that keeps the main-thread free for nothing other than
signal handling. Use it to catch keyboard interrupts and other
signals and have it arrange to have the rest of the program exit

in the most graceful manner that you can devise. This is only a
simple template:

import threading

import time

terminated = False

def countdown(n):

 while n > 0 and not terminated:

 print(‘T-minus’, n)

 time.sleep(5)

 n -= 1

threading.Thread(target=countdown, args=(5,)).start()

 # Main-thread. Spin and wait for termination

try:

 while True:

 time.sleep(1)

finally:

 terminated = True

There are many variations on this theme, but if you’ve got a very
complicated application and it involves concurrency, direct-
ing all asynchronous signals and/or the keyboard interrupt to a
single well-defined place is probably a good strategy.

The Nuclear Option
Finally, if all else fails, there is always os._exit(). For example:

import os; os._exit(1)

This is a direct line to the underlying exit() system call. It will
terminate Python immediately, with no cleanup of any kind. As a
general rule, though, you’d probably want to avoid this except as
a last resort.

Final Words
As noted, this is my last installment of the regular Python col-
umn. I’d just like to thank Rik Farrow and everyone else at USE-
NIX for their support over the last six years and hope that you’ve
enjoyed it. I intend to stay active in the Python community, so
say hello if you ever see me at a conference, or if you happen to
be in the Chicago area, please feel free to look me up. Until then,
happy Python hacking!

References
[1] Atexit module: https://docs.python.org/3/library/atexit​
.html.

[2] Threading module: https://docs.python.org/3/library​
/threading.html.

[3] Signal module: https://docs.python.org/3/library/signal​
.html.

https://docs.python.org/3/library/atexit.html
https://docs.python.org/3/library/atexit.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/signal.html
https://docs.python.org/3/library/signal.html

