
www.usenix.org WI N T ER 20 17 VO L . 42 , N O. 4 59

SRE AND SYSADMIN

Understanding Docker
K U R T L I D L

Docker, from Docker Inc., is a popular containerization software sys-
tem for building, deploying, and running Linux applications. Docker
containers offer a relatively low overhead mechanism for running

multiple Linux applications where the different applications are isolated
from each other. Docker offers a high-level interface to configure, build,
store, and fetch Docker images. This article contains a brief review of popu-
lar virtualization technologies, an example of Docker’s facilities for building
containers, and a brief discussion of Docker’s future evolution.

Overview of Virtualization Techniques
There are many different virtualization techniques available across the operating systems
in use today. The most basic virtualization is the concept of a software process. This is the
traditional virtualization that UNIX and many other operating systems have provided to
different processes from early on: each user process has an independent, protected-access
memory map provided through the virtual memory system of the kernel. Other more compre-
hensive virtualization techniques—such as software, hypervisor-based, hypervisor-based
with hardware acceleration, and containerized applications—will be reviewed.

Software Virtualization/Emulation
Software-based, complete machine emulators, such as QEMU and SIMH, can emulate prac-
tically any CPU and machine architecture on the hosting machine. These types of emulators
are generally fairly slow but offer complete independence between the emulated hardware
and the hosting machine. The emulation software provides an instruction-by-instruction
emulation of the target machine and provides a software implementation of the hardware
devices of the target machine. For example, disk drives on the target are often emulated with
plain files on the hosting machine. Even machines that no longer have operating hardware,
such as the Honeywell DPS8M, can be emulated. In this case, the emulation is of sufficient
fidelity to allow the historically significant Multics operating system to run on the emulated
machine with no software changes. Another significant example of this type of emulator was
the Connectix Virtual PC software, which could emulate a complete x86 computer, hosted
on a PowerPC-based Mac computer. The Connectix company was purchased by Microsoft,
however, and the software is no longer available.

Hypervisor-Based Virtualization
At the opposite end of the virtualization spectrum are hypervisor-based implementations.
A hypervisor-based virtualization generally runs at a significant percentage of the native
speed of the hosting machine. Only a small set of hypervisor-mediated system functions
execute in the hypervisor, and the rest of the user code runs in the virtualized machine at
native speeds. This type of virtualization is considered fairly “heavyweight” in that each
virtualized machine has its own copy of whatever operating system is being run (Figure 1).
One area of performance issues with this scheme is that the virtualized operating system

Kurt Lidl is a Principal Member
of the Technical Staff at Oracle,
working on the Oracle Public
Cloud build team. He started
using BSD UNIX with 4.2

BSD, and now contributes as a Committer
on the FreeBSD Project. He lives in Potomac,
Maryland, with his wife and two children.
lidl@freebsd.org

Editor’s note: A version of this article
appeared in the July/August 2017 issue
of the FreeBSD Journal.

60  WI N T ER 20 17 VO L . 42 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Understanding Docker

also has to maintain its own set of memory protections for its
own use. Hardware support for this type of operation, sometimes
called “nested page tables,” greatly enhances the operation of
guest operating systems under the hypervisor.

There are many hypervisor-based virtualization platforms
available, including:

◆◆ bhyve on FreeBSD

◆◆ KVM on Linux

◆◆ xhyve on Mac OS X

◆◆ Hyper-V on Microsoft Windows

◆◆ ESXi and vSphere from VMware

◆◆ Xen on multiple operating systems

◆◆ Several hardware architectures

Containerized Virtualization
Containers are lightweight virtualization schemes where
processes have some sort of partitioning and isolation between
different administrative groups on the same host. The different
partitions all share a single kernel application binary interface
(ABI) running against a single kernel instance. Often, but not
always, each process running in a container can be seen on the
hosting server. This type of virtualization is generally called
“container computing” and offers a middle ground between the
level of isolation from hypervisors and the “shared everything”
from a standard UNIX environment.

Containerization is the fundamental idea behind the following
facilities:

◆◆ Jail system on FreeBSD

◆◆ Control Groups on Linux

◆◆ Containers on Nexenta OS

◆◆ Containers on Solaris

Hybrid Virtualization Techniques
There are other hybrid virtualization techniques, such as run-
ning a combination of hypervisor virtual machines and then
hosting various containerized applications on those virtual
machines. This hybrid approach is how Docker is implemented
on non-Linux machines such as the Mac OS version of Docker,
which is built on top of the Mac OS xhyve virtualized machine.
In a similar fashion, the Windows implementation of Docker
uses the Hyper-V hypervisor to create a virtual machine run-
ning Linux, which is then used to execute the system calls from
the Docker containers.

Linux Control Groups and Docker
The Linux kernel has a relatively new capability that makes
Docker possible: Control Groups (aka “cgroups”). This is the
fundamental technology that allows for the isolation of various
user processes in one control group from affecting and directly
interacting with a different control group.

In a traditional UNIX environment, there is a single hierarchy
of user processes. The init process (pid 1) is the root of that
hierarchy, and all processes can trace their ancestry back to that
initial process. The cgroups facility in the Linux kernel allows
for instantiating new hierarchies of processes that are contained
entirely in the new hierarchy and can only interact with other
processes in that hierarchy.

The cgroups facility can do more than just create new process
hierarchies; it can set up resource limits (e.g., memory and
network bandwidth) and attach these limits to the process
hierarchies that are created. While management of the low-level
cgroups mechanism via provided system utilities is possible, it
is rather tedious. Docker provides a more convenient interface
for controlling the cgroups mechanism at runtime, along with
an easy-to-use system for building the static environments that
will be executed later.

Docker uses cgroups, along with other Linux kernel facilities,
such as iptables, for networking configuration and control and
for a union file system (UnionFS) for isolating the container
from the file systems of the hosting machine. There is also a
mechanism available to allow explicit sharing of directories
between the host machine and the Docker containers. The
UnionFS that Docker implements is layered on top of a Docker
storage driver. The storage drivers that are available depend on
the particular Linux system that is running Docker and provide
varying degrees of performance and stability.

Figure 1: Xen architecture

www.usenix.org WI N T ER 20 17 VO L . 42 , N O. 4 61

SRE AND SYSADMIN
Understanding Docker

Docker Terminology and Software Architecture
An image is what Docker calls the containerized file system that
has been created and loaded with the software layers that are
needed for a particular application. When an image needs to run,
a copy-on-write snapshot of the image is created, and that copy-
on-write file system is called the container.

The process that starts a container is then placed into a new
cgroup hierarchy. Any new processes spawned by the initial
process in a Docker container will not be able to influence
any processes outside of the running container, because all
other processes will belong to different cgroups. This isolation
prevents any interaction or interference between two or more
Docker containers running on the same physical host.

A modern Docker installation typically has at least two long-
running daemons, dockerd and docker-containerd. There is
a single user command, docker, that takes multiple command
keywords. This is similar to how many complex systems are
controlled through a single dispatch command (e.g., git, hg, and
rndc). The docker command communicates through a UNIX
domain socket to the dockerd process. The dockerd process
communicates with the docker-containerd process to specify
the management of the containers on a system. There are other
container software shims that are started for each container.
The runC container runtime system initializes and starts the
container, and then hands the file descriptors for stdin/stdout/

stderr over to containerd-shim, which acts as a proxy of sorts
between the running container and docker-containerd
 (Figure 2). This intermediate process is required so that a
restart of the dockerd process, and therefore, the restart of
docker-containerd, can allow the new docker-containerd
daemon to reattach to the containerd-shim for each currently
running container.

Docker Images Explained
A Docker image is a virtual file system, packaged as a series of
layers. Each layer in the file system is stacked on top of the layers
underneath it. The ultimate view of the file system is the union
of the file systems that make up a Docker image. The layers in
the image are built from the commands in a Dockerfile.

Dockerfile as a Recipe
The Dockerfile is a simple text file, holding one or more com-
mands, and any comments that the user has placed in the file.
When Docker builds an image, it runs each of the commands
found in the file in the order they are encountered. In this man-
ner, the docker build procedure is just like following a step-by-
step recipe for preparing a meal. Each of the commands in the
Dockerfile will generate a new layer in the resulting image. By
convention, the Docker commands are written in uppercase to
help differentiate them from user-specified commands. If any of
the commands that are executed fail (that is, has a non-zero exit
code), the building of the image stops immediately, and the image
build is marked as a failure. For efficiency reasons, it is desirable
to keep each layer in the Dockerfile as small as possible. This
means that cleaning up after any commands that create large
amounts of metadata, such as yum update, should be done as
part of the same command that generated the metadata.

This example Dockerfile will create an image with six layers.
Some of those layers, which are identical to the prior layer, will
be automatically discarded during the build process.

An image for running Apache

FROM centos:7

MAINTAINER Ms. Nobody <nobody@example.com>

RUN yum -y --setopt=tsflags=nodocs update && \

 yum -y --setopt=tsflags=nodocs install httpd && \

 yum clean all

VOLUME [“/var/www/html”, “/var/log/httpd”]

EXPOSE 80

CMD [“/usr/sbin/apachectl”, “-DFOREGROUND”]

The first command, FROM centos:7, which creates the first layer
in the image, specifies that the base image for CentOS 7 should
be pulled from the central Docker repository into the local
machine’s cache of file-system layers. This layer is the bottom
layer in the image. The FROM command must be the first com-
mand in a Dockerfile and initializes a new build.

The second command, MAINTAINER ..., sets a special label in the
metadata for the image. This label is used to identify the creator
of the image. There is also a LABEL command that could be used
instead to set an arbitrary number of labels on an image. The
labels can be used by the end user for any purpose.

The third command, RUN yum -y update ..., updates any out-
of-date software packages that were included in the base image.
The next part of the command, yum -y install httpd, installs
the Apache httpd package. The final part of the command, yum

clean, expunges all the package/repository metadata maintained
by the yum package management system to minimize the size
of the generated layer. For the same reason, the yum command,
using the nodocs flag, is instructed to ignore any documentation
during the upgrade and installation of packages. The arguments

Figure 2: Docker process relationships

62  WI N T ER 20 17 VO L . 42 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Understanding Docker

to the RUN command are executed by a shell process, so the
complexity of the generated layer in the constructed image can
be quite elaborate.

The fourth command, VOLUME [...], marks a list of directories
to be used as external mountpoints in the UnionFS file system.
During container execution, these mountpoints will have exter-
nal file systems mounted at these locations. The UnionFS layer
should not attempt to capture that activity to the copy-on-write
file system. This is one method for how a container can persist
data outside of the copy-on-write image from which the con-
tainer is executing.

The fifth command, EXPOSE 80, provides information that will
be used when a container is started from this image. A port on
the hosting machine can be mapped to the specified TCP port
number of the container at runtime. Or, by specifying a different
networking option at runtime, the port of the container can be
made accessible to other containers running on the same host.

Finally, the sixth command, CMD ..., specifies the default com-
mand to be executed when a container is started from this image.
In this case, it starts the Apache Web server in the foreground.
When the Apache Web server process exits, the container will
be automatically stopped. It is often useful to create a small
wrapper script around a daemon that is started inside a Docker
container in order to restart the daemon if it stops running. By
automatically restarting the daemon, the Docker container can
continue to run without needing to be restarted.

Now that the purpose for each of the lines is known, building an
image is straightforward. Note that some of the output from the
build process has been removed and lines wrapped to improve
readability. The image is created by running the command
docker build directory, where directory is the path to the direc-
tory holding the Dockerfile.

docker build -t centos-apache-testimage .

Sending build context to Docker daemon 2.048kB

Step 1/6 : FROM centos:7

 ---> 3bee3060bfc8

Step 2/6 : MAINTAINER Ms. Nobody <nobody@example.com>

 ---> Using cache

 ---> 7f88dbad6a42

Step 3/6 : RUN yum -y --setopt=tsflags=nodocs update &&

 yum -y --setopt=tsflags=nodocs install httpd &&

 yum clean all

 ---> Using cache

 ---> f50595808f75

Step 4/6 : VOLUME [“/var/www/html”, “/var/log/httpd”]

 ---> Running in bce2b6331fc8

 ---> 51b4c07c8eba

Removing intermediate container bce2b6331fc8

Step 5/6 : EXPOSE 80

 ---> Running in 073e6fac8709

 ---> 5bf7cadf8102

Removing intermediate container 073e6fac8709

Step 6/6 : CMD /usr/sbin/apachectl -DFOREGROUND

 ---> Running in e5a44065f0d7

 ---> 4d119d3a4776

Removing intermediate container e5a44065f0d7

Successfully built 4d119d3a4776

Successfully tagged centos-apache-testimage:latest

Docker Image Inspection
It is instructive to look at some of the metadata about that image,
via the docker inspect command. Not all the metadata is shown
in this output, just some of the more interesting pieces.

docker inspect centos-apache-testimage:latest

[

 {

 “Id”: “sha256:db9314a42feb [...]”,

 “RepoTags”: [

 “centos-apache-testimage:latest”

],

 “ContainerConfig”: {

 “ExposedPorts”: {

 “80/tcp”: {}

 },

 “Env”: [

 “PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:”

],

 “Cmd”: [

 “/bin/sh”,

 “-c”,

 “#(nop) “,

 “CMD [\”/usr/sbin/apachectl\” \”-DFOREGROUND\”]”

],

 “Volumes”: {

 “[“/var/www/html”,”: {},

 “”/var/log/httpd”]”: {}

 }

 },

 “DockerVersion”: “17.06.0-ce”,

 “Author”: “Ms. Nobody <nobody@example.com>”,

 “Architecture”: “amd64”,

 “Os”: “linux”,

 “Size”: 275797466,

 “GraphDriver”: {

 “Data”: null,

 “Name”: “aufs”

 },

 “RootFS”: {

 “Type”: “layers”,

 “Layers”: [

www.usenix.org WI N T ER 20 17 VO L . 42 , N O. 4 63

SRE AND SYSADMIN
Understanding Docker

 “sha256:dc1e2dcd [...]”,

 “sha256:41fc3fb9 [...]”

]

 }

 }

]

The ContainerConfig section has the complete environment
specified for the processes in any containers that are started
from this image. The Architecture and Os settings show that the
containers support the Linux syscall interface, for the amd64
(aka x86 64) machine type. The Docker image for this article
was created on a Macintosh computer, running macOS Sierra
10.12.5, but any containers will be executed with a Linux/amd64
runtime environment.

This image could be moved to any host capable of running
Linux/amd64 Docker images. The portability of images is one of
the principal advantages of Docker—ease of building and deploy-
ing across many different hosts without having to worry about
shared library conflicts or corrupting configurations of already
installed components. Docker supports the image registries
where images may be stored and retrieved. A private Docker
registry can be created that allows users to centrally store their
customized images. Once the image is stored in the registry, a
single command can retrieve the image to a host, and a second
command can start a container from that image.

Running a Container
It is easy to create a running container from the example image:

docker run --rm -d -p 8080:80 \

 -v $(pwd)/htdocs:/var/www/html \

 -v $(pwd)/logs:/var/log/httpd \

 centos-apache-testimage:latest

This command starts the container, telling Docker to throw
away the copy-on-write file system (--rm) when the container
exits. The command runs the container in the background (-d)
and port-maps localhost:8080 to the container’s TCP port 80
(-p 8080:80). The command also performs volume mounts
of $(pwd)/htdocs to the DocumentRoot of the Web server (-v
$(pwd)/htdocs:/var/www/html), and mounts $(pwd)/logs to
hold the log files from the Web server running in the container
(-v $(pwd)/logs:/var/log/httpd). Finally, the name of the image
to be used as the initial file system for the container is listed.

Looking at Running Containers
Once a container has been started, it will run until the initial
process that started the container exits. The user who started
the container, or the system administrator, can stop the con-
tainer via the docker stop command. This sends a SIGTERM to
the initial process in the container, and then a SIGKILL after
a grace period, if the container has not stopped. This is very

similar in intent to running the shutdown command on a UNIX
host. The docker kill command just sends a SIGKILL to the root
process in the container.

The docker ps command gives the list of running containers.
The docker rm command can be used to remove the copy-on-
write file system of a stopped container.

Looking at Images on the Machine
The docker images command will show the list of images cur-
rently available on the host.

The docker rmi command can be used to remove a reference to
an image, freeing the storage associated with that image when
the reference count drops to zero. Note that shared layers in the
image may also be used by other images, so there often isn’t a
one-to-one correspondence between the amount of space listed
as in use for the image and the amount of disk space used by
the image. Many of the issues with double-counting of storage
blocks that occur with file system snapshots are also evident
with the docker-containerd storage of images.

Other Docker Commands
There are other Docker commands available that can be used
for launching containers automatically and maintaining a set of
containers that must run together to accomplish a given task. It is
beyond the scope of this article to fully example the complete set of
commands available inside of Docker. More advanced orchestration
of multiple containers running across multiple hosts is possible via
the Docker Swarm support in recent versions of Docker.

Comparison with FreeBSD Jails
Docker containers are similar to FreeBSD jails in terms of
what virtualization is provided and how machine resources
are shared. Both offer compartmentalized processes running
against a single kernel image on the hosting machine (Figure 3).
Docker offers an easy-to-use command line interface for creating,
deploying, running, and updating images. Little setup and configu-
ration are required on the hosting machine, other than the basic
Docker Engine installation. FreeBSD jails have a considerably sim-
pler interface to running and stopping jails. The base FreeBSD
system offers essentially no high-level support for the building
and installation of jails into a directory. There are several add-on
FreeBSD ports (e.g., ezjail, qjail, and qjail4) that attempt to make
jail usage less cumbersome, to varying degrees of success.

One significant advantage that Docker has over jails is the
concept of spawning a per-instance copy-on-write file system
for each container that is started. This is fundamental to the
deployment and reusability of Docker images, whereas each
FreeBSD jail typically runs in a persistent file system tree. Some
of the add-on jail management systems use ZFS’s snapshot and
promote features to create a clone of a prototype file system

64  WI N T ER 20 17 VO L . 42 , N O. 4 www.usenix.org

SRE AND SYSADMIN
Understanding Docker

for a newly instantiated jail, but that clone still persists the file
hierarchy across multiple restarts of the jail.

With Docker containers, the Docker infrastructure takes care of
mounting various directories when the container is started, whereas
mounting of any directories, even including the crucial devfs /dev

mount, must be handled explicitly for each FreeBSD jail.

For instance, running the example Docker container for Apache,
there are several mountpoints active:

df

File system 1K-blocks Used Available Use% Mounted on

none 61890340 863500 57859916 2% /

tmpfs 1023384 0 1023384 0% /dev

tmpfs 1023384 0 1023384 0% /sys/fs/cgroup

/dev/sda2 61890340 863500 57859916 2% /etc/hosts

shm 65536 0 65536 0% /dev/shm

osxfs 976426656 624064128 352106528 64% /var/www/html

tmpfs 1023384 0 1023384 0% /sys/firmware

The Docker system manufactured the required mounts automati-
cally, with the exception of the /var/www/html mount, which was
specified on the command line when the container was started.

The security benefits of Docker vs. jails are roughly equivalent.
The security features of Docker are typically modified through
command-line flags, while the security features for jails are either
globally specified via sysctl settings or have per-jail configura-
tion settings in the /etc/jail.conf file. Jails, when operated with the
VIMAGE networking option, have a per-instance network stack.
This implies that each jail could have different packet filtering
in place. All the running containers on a Linux-based host share
a single iptables-based packet filter configuration.

The control aspects of Docker vs. jails are quite different. Docker
has many commands and options to allow almost all configura-
tions to happen on the command line. FreeBSD jails rely heavily
on the contents of the /etc/jail.conf file to specify which jails are
to be run and how they are to be configured. Docker internalizes
much of the configuration that is the metadata for a given Docker

image. By attaching this metadata to the image, the deployment
to a new host is significantly eased. FreeBSD jails have no such
metadata directly attached to each jail.

In a related area, some of the FreeBSD ports for helping to man-
age bhyve virtualized host instances, such as iohyve, offer some
of the same type of configuration help. These systems use ZFS
properties to attach the metadata about a virtualized machine to
a ZFS file system or ZFS zvol, which represents the file system
for the virtualized machine. Several of the earliest versions
of these management tools just used well-known names for the
parameters that were to be controlled: hostname, number of CPUs,
amount of memory, and so forth. None offered a generic, extensible
tag:value configuration file that could be attached to a ZFS file sys-
tem, although this might have changed since the earliest attempts
at supporting virtual machine metadata in this manner.

Future Directions for Docker
The Docker system is undergoing fairly rapid evolution. There is
a consortium of companies that have formed the Open Con-
tainer Initiative (OCI). Significant members of the OCI include
Amazon, AT&T, Cisco, Docker Inc., Facebook, Google, IBM,
Microsoft, Oracle, Red Hat, and VMware. OCI is attempting to
standardize both a container runtime system (“runtime-spec”)
and an image specification (“image-spec”). As a starting point
for the standardization process, Docker Inc. donated their con-
tainer specification, and their runtime system (runC) to OCI.
Some of the members of OCI have vested interests in supporting
more than just a Linux syscall ABI container, and the specifica-
tions are clear in the need to support multiple ABIs, as well as
multiple operating systems hosting the container runtime. A
recent development in the standardization process is Oracle’s
release of an open-source implementation of the oci-runtime
called Railcar, which is written in Rust.

Docker on FreeBSD
Examining the current state of the Docker system, it seems that
there are no insurmountable technical impediments to mak-
ing the Docker system run natively on FreeBSD. The future of
Docker and the support for different ABIs across containers
implies that supporting a native FreeBSD kernel ABI for the
containers would be possible. Obviously, this makes deploy-
ment using Docker less of a Linux/amd64 monoculture. Cur-
rently, Docker is effectively only running the Linux ABI on
amd64 hardware. The Docker community, through the OCI, has
already tentatively agreed to a multi-architecture system where
both Linux and Windows will be supported as first-class ABI
environments across multiple hardware platforms. This cross-
system support is already available in a limited fashion for the
Linux ABI on IBM’s Z-System hardware, and nascent support
for the arm64 architecture is available as well. It should be pos-
sible to extend this multi-ABI future to include FreeBSD.

Figure 3: Jail architecture

18 13th USENIX Symposium on Operating Systems
Design and Implementation

October 8–10, 2018 • Carlsbad, CA, USA
OSDI brings together professionals from academic and industrial backgrounds in what has become a

premier forum for discussing the design, implementation, and implications of systems software. The

OSDI Symposium emphasizes innovative research as well as quantifi ed or insightful experiences in

systems design and implementation.

The Call for Papers is now available.
Abstract registrations are due April 26, 2018.

Program Co-Chairs:
Andrea Arpaci-Dusseau, University of Wisconsin—Madison

 and Geoff Voelker, University of California, San Diego

Save the Date!

www.usenix.org/osdi18

Co-located with USENIX ATC ’18

2018 USENIX Annual Technical Conference
JULY 11–13, 2018 • BOSTON, MA, USA

USENIX ATC ’18 will bring together leading systems researchers for cutting-edge
systems research and unlimited opportunities to gain insight into a variety of
must-know topics, including virtualization, system and network management and
troubleshooting, cloud and edge computing, security, privacy, and trust, mobile and
wireless, and more.

The Call for Papers is now available.
Paper submissions are due February 6, 2018.

Program Co-Chairs:
Haryadi Gunawi, University of Chicago, and Benjamin Reed, Facebook

Save the Date!

www.usenix.org/atc18

HotStorage ’18: 10th USENIX
Workshop on Hot Topics in
Storage and File Systems
July 9–10, 2018
www.usenix.org/hotstorage18

HotCloud ’18: 10th USENIX
Workshop on Hot Topics in
Cloud Computing
July 9, 2018
www.usenix.org/hotcloud18

HotEdge ’18: USENIX
Workshop on Hot Topics in
Edge Computing
July 10, 2018
www.usenix.org/hotedge18

