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K U R T  L I D L

Docker, from Docker Inc., is a popular containerization software sys-
tem for building, deploying, and running Linux applications. Docker 
containers offer a relatively low overhead mechanism for running 

multiple Linux applications where the different applications are isolated 
from each other. Docker offers a high-level interface to configure, build, 
store, and fetch Docker images. This article contains a brief review of popu-
lar virtualization technologies, an example of Docker’s facilities for building 
containers, and a brief discussion of Docker’s future evolution.

Overview of Virtualization Techniques
There are many different virtualization techniques available across the operating systems 
in use today. The most basic virtualization is the concept of a software process. This is the 
traditional virtualization that UNIX and many other operating systems have provided to 
different processes from early on: each user process has an independent, protected-access 
memory map provided through the virtual memory system of the kernel. Other more compre-
hensive virtualization techniques—such as software, hypervisor-based, hypervisor-based 
with hardware acceleration, and containerized applications—will be reviewed.

Software Virtualization/Emulation
Software-based, complete machine emulators, such as QEMU and SIMH, can emulate prac-
tically any CPU and machine architecture on the hosting machine. These types of emulators 
are generally fairly slow but offer complete independence between the emulated hardware 
and the hosting machine. The emulation software provides an instruction-by-instruction 
emulation of the target machine and provides a software implementation of the hardware 
devices of the target machine. For example, disk drives on the target are often emulated with 
plain files on the hosting machine. Even machines that no longer have operating hardware, 
such as the Honeywell DPS8M, can be emulated. In this case, the emulation is of sufficient 
fidelity to allow the historically significant Multics operating system to run on the emulated 
machine with no software changes. Another significant example of this type of emulator was 
the Connectix Virtual PC software, which could emulate a complete x86 computer, hosted 
on a PowerPC-based Mac computer. The Connectix company was purchased by Microsoft, 
however, and the software is no longer available.

Hypervisor-Based Virtualization
At the opposite end of the virtualization spectrum are hypervisor-based implementations. 
A hypervisor-based virtualization generally runs at a significant percentage of the native 
speed of the hosting machine. Only a small set of hypervisor-mediated system functions 
execute in the hypervisor, and the rest of the user code runs in the virtualized machine at 
native speeds. This type of virtualization is considered fairly “heavyweight” in that each 
virtualized machine has its own copy of whatever operating system is being run (Figure 1). 
One area of performance issues with this scheme is that the virtualized operating system 
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also has to maintain its own set of memory protections for its 
own use. Hardware support for this type of operation, sometimes 
called “nested page tables,” greatly enhances the operation of 
guest operating systems under the hypervisor.

There are many hypervisor-based virtualization platforms 
available, including:

◆◆ bhyve on FreeBSD

◆◆ KVM on Linux

◆◆ xhyve on Mac OS X

◆◆ Hyper-V on Microsoft Windows

◆◆ ESXi and vSphere from VMware

◆◆ Xen on multiple operating systems 

◆◆ Several hardware architectures

Containerized Virtualization
Containers are lightweight virtualization schemes where 
processes have some sort of partitioning and isolation between 
different administrative groups on the same host. The different 
partitions all share a single kernel application binary interface 
(ABI) running against a single kernel instance. Often, but not 
always, each process running in a container can be seen on the 
hosting server. This type of virtualization is generally called 
“container computing” and offers a middle ground between the 
level of isolation from hypervisors and the “shared everything” 
from a standard UNIX environment.

Containerization is the fundamental idea behind the following 
facilities:

◆◆ Jail system on FreeBSD

◆◆ Control Groups on Linux

◆◆ Containers on Nexenta OS

◆◆ Containers on Solaris

Hybrid Virtualization Techniques
There are other hybrid virtualization techniques, such as run-
ning a combination of hypervisor virtual machines and then 
hosting various containerized applications on those virtual 
machines. This hybrid approach is how Docker is implemented 
on non-Linux machines such as the Mac OS version of Docker, 
which is built on top of the Mac OS xhyve virtualized machine. 
In a similar fashion, the Windows implementation of Docker 
uses the Hyper-V hypervisor to create a virtual machine run-
ning Linux, which is then used to execute the system calls from 
the Docker containers.

Linux Control Groups and Docker
The Linux kernel has a relatively new capability that makes 
Docker possible: Control Groups (aka “cgroups”). This is the 
fundamental technology that allows for the isolation of various 
user processes in one control group from affecting and directly 
interacting with a different control group.

In a traditional UNIX environment, there is a single hierarchy 
of user processes. The init process (pid 1) is the root of that 
hierarchy, and all processes can trace their ancestry back to that 
initial process. The cgroups facility in the Linux kernel allows 
for instantiating new hierarchies of processes that are contained 
entirely in the new hierarchy and can only interact with other 
processes in that hierarchy.

The cgroups facility can do more than just create new process 
hierarchies; it can set up resource limits (e.g., memory and 
network bandwidth) and attach these limits to the process 
hierarchies that are created. While management of the low-level 
cgroups mechanism via provided system utilities is possible, it 
is rather tedious. Docker provides a more convenient interface 
for controlling the cgroups mechanism at runtime, along with 
an easy-to-use system for building the static environments that 
will be executed later.

Docker uses cgroups, along with other Linux kernel facilities, 
such as iptables, for networking configuration and control and 
for a union file system (UnionFS) for isolating the container 
from the file systems of the hosting machine. There is also a 
mechanism available to allow explicit sharing of directories 
between the host machine and the Docker containers. The 
UnionFS that Docker implements is layered on top of a Docker 
storage driver. The storage drivers that are available depend on 
the particular Linux system that is running Docker and provide 
varying degrees of performance and stability.

Figure 1: Xen architecture
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Docker Terminology and Software Architecture
An image is what Docker calls the containerized file system that 
has been created and loaded with the software layers that are 
needed for a particular application. When an image needs to run, 
a copy-on-write snapshot of the image is created, and that copy-
on-write file system is called the container.

The process that starts a container is then placed into a new 
cgroup hierarchy. Any new processes spawned by the initial 
process in a Docker container will not be able to influence 
any processes outside of the running container, because all 
other processes will belong to different cgroups. This isolation 
prevents any interaction or interference between two or more 
Docker containers running on the same physical host.

A modern Docker installation typically has at least two long-
running daemons, dockerd and docker-containerd. There is 
a single user command, docker, that takes multiple command 
keywords. This is similar to how many complex systems are 
controlled through a single dispatch command (e.g., git, hg, and 
rndc). The docker command communicates through a UNIX 
domain socket to the dockerd process. The dockerd process 
communicates with the docker-containerd process to specify 
the management of the containers on a system. There are other 
container software shims that are started for each container. 
The runC container runtime system initializes and starts the 
container, and then hands the file descriptors for stdin/stdout/

stderr over to containerd-shim, which acts as a proxy of sorts 
between the running container and docker-containerd 
 (Figure 2). This intermediate process is required so that a 
restart of the dockerd process, and therefore, the restart of 
docker-containerd, can allow the new docker-containerd 
daemon to reattach to the containerd-shim for each currently 
running container.

Docker Images Explained
A Docker image is a virtual file system, packaged as a series of 
layers. Each layer in the file system is stacked on top of the layers 
underneath it. The ultimate view of the file system is the union 
of the file systems that make up a Docker image. The layers in 
the image are built from the commands in a Dockerfile.

Dockerfile as a Recipe
The Dockerfile is a simple text file, holding one or more com-
mands, and any comments that the user has placed in the file. 
When Docker builds an image, it runs each of the commands 
found in the file in the order they are encountered. In this man-
ner, the docker build procedure is just like following a step-by-
step recipe for preparing a meal. Each of the commands in the 
Dockerfile will generate a new layer in the resulting image. By 
convention, the Docker commands are written in uppercase to 
help differentiate them from user-specified commands. If any of 
the commands that are executed fail (that is, has a non-zero exit 
code), the building of the image stops immediately, and the image 
build is marked as a failure. For efficiency reasons, it is desirable 
to keep each layer in the Dockerfile as small as possible. This 
means that cleaning up after any commands that create large 
amounts of metadata, such as yum update, should be done as 
part of the same command that generated the metadata.

This example Dockerfile will create an image with six layers. 
Some of those layers, which are identical to the prior layer, will 
be automatically discarded during the build process.

An image for running Apache

FROM centos:7

MAINTAINER Ms. Nobody <nobody@example.com>

RUN yum -y --setopt=tsflags=nodocs update && \

     yum -y --setopt=tsflags=nodocs install httpd && \

     yum clean all

VOLUME [“/var/www/html”, “/var/log/httpd”]

EXPOSE 80

CMD [“/usr/sbin/apachectl”, “-DFOREGROUND”]

The first command, FROM centos:7, which creates the first layer 
in the image, specifies that the base image for CentOS 7 should 
be pulled from the central Docker repository into the local 
machine’s cache of file-system layers. This layer is the bottom 
layer in the image. The FROM command must be the first com-
mand in a Dockerfile and initializes a new build.

The second command, MAINTAINER ..., sets a special label in the 
metadata for the image. This label is used to identify the creator 
of the image. There is also a LABEL command that could be used 
instead to set an arbitrary number of labels on an image. The 
labels can be used by the end user for any purpose.

The third command, RUN yum -y update ..., updates any out-
of-date software packages that were included in the base image. 
The next part of the command, yum -y install httpd, installs 
the Apache httpd package. The final part of the command, yum 

clean, expunges all the package/repository metadata maintained 
by the yum package management system to minimize the size 
of the generated layer. For the same reason, the yum command, 
using the nodocs flag, is instructed to ignore any documentation 
during the upgrade and installation of packages. The arguments 

Figure 2: Docker process relationships



62   WI N T ER 20 17  VO L .  42 ,  N O.  4  www.usenix.org

SRE AND SYSADMIN
Understanding Docker

to the RUN command are executed by a shell process, so the 
complexity of the generated layer in the constructed image can 
be quite elaborate.

The fourth command, VOLUME [ ... ], marks a list of directories 
to be used as external mountpoints in the UnionFS file system. 
During container execution, these mountpoints will have exter-
nal file systems mounted at these locations. The UnionFS layer 
should not attempt to capture that activity to the copy-on-write 
file system. This is one method for how a container can persist 
data outside of the copy-on-write image from which the con-
tainer is executing.

The fifth command, EXPOSE 80, provides information that will 
be used when a container is started from this image. A port on 
the hosting machine can be mapped to the specified TCP port 
number of the container at runtime. Or, by specifying a different 
networking option at runtime, the port of the container can be 
made accessible to other containers running on the same host.

Finally, the sixth command, CMD ..., specifies the default com-
mand to be executed when a container is started from this image. 
In this case, it starts the Apache Web server in the foreground. 
When the Apache Web server process exits, the container will 
be automatically stopped. It is often useful to create a small 
wrapper script around a daemon that is started inside a Docker 
container in order to restart the daemon if it stops running. By 
automatically restarting the daemon, the Docker container can 
continue to run without needing to be restarted.

Now that the purpose for each of the lines is known, building an 
image is straightforward. Note that some of the output from the 
build process has been removed and lines wrapped to improve 
readability. The image is created by running the command 
docker build directory, where directory is the path to the direc-
tory holding the Dockerfile.

docker build -t centos-apache-testimage .

Sending build context to Docker daemon  2.048kB

Step 1/6 : FROM centos:7

 ---> 3bee3060bfc8

Step 2/6 : MAINTAINER Ms. Nobody <nobody@example.com>

 ---> Using cache

 ---> 7f88dbad6a42

Step 3/6 : RUN yum -y --setopt=tsflags=nodocs update && 

           yum -y --setopt=tsflags=nodocs install httpd &&

           yum clean all

 ---> Using cache

 ---> f50595808f75

Step 4/6 : VOLUME [“/var/www/html”, “/var/log/httpd”]

 ---> Running in bce2b6331fc8

 ---> 51b4c07c8eba

Removing intermediate container bce2b6331fc8

Step 5/6 : EXPOSE 80

 ---> Running in 073e6fac8709

 ---> 5bf7cadf8102

Removing intermediate container 073e6fac8709

Step 6/6 : CMD /usr/sbin/apachectl -DFOREGROUND

 ---> Running in e5a44065f0d7

 ---> 4d119d3a4776

Removing intermediate container e5a44065f0d7

Successfully built 4d119d3a4776

Successfully tagged centos-apache-testimage:latest

Docker Image Inspection
It is instructive to look at some of the metadata about that image, 
via the docker inspect command. Not all the metadata is shown 
in this output, just some of the more interesting pieces.

docker inspect centos-apache-testimage:latest

[

    {

        “Id”: “sha256:db9314a42feb [...]”,

        “RepoTags”: [

            “centos-apache-testimage:latest”

        ],

        “ContainerConfig”: {

            “ExposedPorts”: {

                “80/tcp”: {}

            },

            “Env”: [

                “PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:”

            ],

            “Cmd”: [

                “/bin/sh”,

                “-c”,

                “#(nop) “,

                “CMD [\”/usr/sbin/apachectl\” \”-DFOREGROUND\”]”

            ],

            “Volumes”: {

                “[“/var/www/html”,”: {},

                “”/var/log/httpd”]”: {}

            }

        },

        “DockerVersion”: “17.06.0-ce”,

        “Author”: “Ms. Nobody <nobody@example.com>”,

        “Architecture”: “amd64”,

        “Os”: “linux”,

        “Size”: 275797466,

        “GraphDriver”: {

            “Data”: null,

            “Name”: “aufs”

        },

        “RootFS”: {

            “Type”: “layers”,

            “Layers”: [
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                “sha256:dc1e2dcd [...]”,

                “sha256:41fc3fb9 [...]”

            ]

        }

    }

]

The ContainerConfig section has the complete environment 
specified for the processes in any containers that are started 
from this image. The Architecture and Os settings show that the 
containers support the Linux syscall interface, for the amd64 
(aka x86 64) machine type. The Docker image for this article 
was created on a Macintosh computer, running macOS Sierra 
10.12.5, but any containers will be executed with a Linux/amd64 
runtime environment.

This image could be moved to any host capable of running 
Linux/amd64 Docker images. The portability of images is one of 
the principal advantages of Docker—ease of building and deploy-
ing across many different hosts without having to worry about 
shared library conflicts or corrupting configurations of already 
installed components. Docker supports the image registries 
where images may be stored and retrieved. A private Docker 
registry can be created that allows users to centrally store their 
customized images. Once the image is stored in the registry, a 
single command can retrieve the image to a host, and a second 
command can start a container from that image.

Running a Container
It is easy to create a running container from the example image:

docker run --rm -d -p 8080:80 \

    -v $(pwd)/htdocs:/var/www/html \

    -v $(pwd)/logs:/var/log/httpd \

    centos-apache-testimage:latest

This command starts the container, telling Docker to throw 
away the copy-on-write file system (--rm) when the container 
exits. The command runs the container in the background (-d) 
and port-maps  localhost:8080 to the container’s TCP port 80 
(-p 8080:80). The command also performs volume mounts 
of $(pwd)/htdocs to the DocumentRoot of the Web server (-v 
$(pwd)/htdocs:/var/www/html), and mounts $(pwd)/logs to 
hold the log files from the Web server running in the container 
(-v $(pwd)/logs:/var/log/httpd). Finally, the name of the image 
to be used as the initial file system for the container is listed.

Looking at Running Containers
Once a container has been started, it will run until the initial 
process that started the container exits. The user who started 
the container, or the system administrator, can stop the con-
tainer via the docker stop command. This sends a SIGTERM to 
the initial process in the container, and then a SIGKILL after 
a grace period, if the container has not stopped. This is very 

similar in intent to running the shutdown command on a UNIX 
host. The docker kill command just sends a SIGKILL to the root 
process in the container.

The docker ps command gives the list of running containers. 
The docker rm command can be used to remove the copy-on-
write file system of a stopped container.

Looking at Images on the Machine
The docker images command will show the list of images cur-
rently available on the host.

The docker rmi command can be used to remove a reference to 
an image, freeing the storage associated with that image when 
the reference count drops to zero. Note that shared layers in the 
image may also be used by other images, so there often isn’t a 
one-to-one correspondence between the amount of space listed 
as in use for the image and the amount of disk space used by 
the image. Many of the issues with double-counting of storage 
blocks that occur with file system snapshots are also evident 
with the docker-containerd storage of images.

Other Docker Commands
There are other Docker commands available that can be used 
for launching containers automatically and maintaining a set of 
containers that must run together to accomplish a given task. It is 
beyond the scope of this article to fully example the complete set of 
commands available inside of Docker. More advanced orchestration 
of multiple containers running across multiple hosts is possible via 
the Docker Swarm support in recent versions of Docker.

Comparison with FreeBSD Jails
Docker containers are similar to FreeBSD jails in terms of 
what virtualization is provided and how machine resources 
are shared. Both offer compartmentalized processes running 
against a single kernel image on the hosting machine (Figure 3). 
Docker offers an easy-to-use command line interface for creating, 
deploying, running, and updating images. Little setup and configu-
ration are required on the hosting machine, other than the basic 
Docker Engine installation. FreeBSD jails have a considerably sim-
pler interface to running and stopping jails. The base FreeBSD 
system offers essentially no high-level support for the building 
and installation of jails into a directory. There are several add-on 
FreeBSD ports (e.g., ezjail, qjail, and qjail4) that attempt to make 
jail usage less cumbersome, to varying degrees of success.

One significant advantage that Docker has over jails is the 
concept of spawning a per-instance copy-on-write file system 
for each container that is started. This is fundamental to the 
deployment and reusability of Docker images, whereas each 
FreeBSD jail typically runs in a persistent file system tree. Some 
of the add-on jail management systems use ZFS’s snapshot and 
promote features to create a clone of a prototype file system 
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for a newly instantiated jail, but that clone still persists the file 
hierarchy across multiple restarts of the jail.

With Docker containers, the Docker infrastructure takes care of 
mounting various directories when the container is started, whereas 
mounting of any directories, even including the crucial devfs /dev 

mount, must be handled explicitly for each FreeBSD jail.

For instance, running the example Docker container for Apache, 
there are several mountpoints active:

df

File system 1K-blocks Used Available Use% Mounted on

none  61890340 863500 57859916 2% /

tmpfs 1023384 0 1023384 0% /dev

tmpfs 1023384 0 1023384 0% /sys/fs/cgroup

/dev/sda2 61890340 863500 57859916 2% /etc/hosts

shm 65536 0 65536 0% /dev/shm

osxfs 976426656 624064128 352106528 64% /var/www/html

tmpfs 1023384  0 1023384 0% /sys/firmware

The Docker system manufactured the required mounts automati-
cally, with the exception of the /var/www/html mount, which was 
specified on the command line when the container was started.

The security benefits of Docker vs. jails are roughly equivalent. 
The security features of Docker are typically modified through 
command-line flags, while the security features for jails are either 
globally specified via sysctl settings or have per-jail configura-
tion settings in the /etc/jail.conf file. Jails, when operated with the 
VIMAGE networking option, have a per-instance network stack. 
This implies that each jail could have different packet filtering 
in place. All the running containers on a Linux-based host share 
a single iptables-based packet filter configuration.

The control aspects of Docker vs. jails are quite different. Docker 
has many commands and options to allow almost all configura-
tions to happen on the command line. FreeBSD jails rely heavily 
on the contents of the /etc/jail.conf file to specify which jails are 
to be run and how they are to be configured. Docker internalizes 
much of the configuration that is the metadata for a given Docker 

image. By attaching this metadata to the image, the deployment 
to a new host is significantly eased. FreeBSD jails have no such 
metadata directly attached to each jail.

In a related area, some of the FreeBSD ports for helping to man-
age bhyve virtualized host instances, such as iohyve, offer some 
of the same type of configuration help. These systems use ZFS 
properties to attach the metadata about a virtualized machine to 
a ZFS file system or ZFS zvol, which represents the file system 
for the virtualized machine. Several of the earliest versions 
of these management tools just used well-known names for the 
parameters that were to be controlled: hostname, number of CPUs, 
amount of memory, and so forth. None offered a generic, extensible 
tag:value configuration file that could be attached to a ZFS file sys-
tem, although this might have changed since the earliest attempts 
at supporting virtual machine metadata in this manner.

Future Directions for Docker
The Docker system is undergoing fairly rapid evolution. There is 
a consortium of companies that have formed the Open Con-
tainer Initiative (OCI). Significant members of the OCI include 
Amazon, AT&T, Cisco, Docker Inc., Facebook, Google, IBM, 
Microsoft, Oracle, Red Hat, and VMware. OCI is attempting to 
standardize both a container runtime system (“runtime-spec”) 
and an image specification (“image-spec”). As a starting point 
for the standardization process, Docker Inc. donated their con-
tainer specification, and their runtime system (runC) to OCI. 
Some of the members of OCI have vested interests in supporting 
more than just a Linux syscall ABI container, and the specifica-
tions are clear in the need to support multiple ABIs, as well as 
multiple operating systems hosting the container runtime. A 
recent development in the standardization process is Oracle’s 
release of an open-source implementation of the oci-runtime 
called Railcar, which is written in Rust.

Docker on FreeBSD
Examining the current state of the Docker system, it seems that 
there are no insurmountable technical impediments to mak-
ing the Docker system run natively on FreeBSD. The future of 
Docker and the support for different ABIs across containers 
implies that supporting a native FreeBSD kernel ABI for the 
containers would be possible. Obviously, this makes deploy-
ment using Docker less of a Linux/amd64 monoculture. Cur-
rently, Docker is effectively only running the Linux ABI on 
amd64 hardware. The Docker community, through the OCI, has 
already tentatively agreed to a multi-architecture system where 
both Linux and Windows will be supported as first-class ABI 
environments across multiple hardware platforms. This cross-
system support is already available in a limited fashion for the 
Linux ABI on IBM’s Z-System hardware, and nascent support 
for the arm64 architecture is available as well. It should be pos-
sible to extend this multi-ABI future to include FreeBSD.

Figure 3: Jail architecture
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