
www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  55

SRE AND SYSADMIN

From Sysadmin to SRE in 2587 Words
V L A D I M I R L E G E Z A

“If you cannot measure it, you cannot improve it.”

—William Thomson, Lord Kelvin

Site Reliability Engineering is a set of practices that allow a variety of
companies to run and support systems at large scale efficiently and
cost-effectively. The key difference that distinguishes sysadmins from

SREs is the single property: the point of observation. There is only one funda-
mental principle that can drive you to this relatively new field and lead you
to understand all these practices, origins, adaptations, and further improve-
ment ideas that finally will increase your users’ and customers’ loyalty and
satisfaction.

Instead of jumping directly into the definition of principles, let’s figure it out ourselves
through the following examples.

Let’s say a manager asked you to create a small new service: “A sort of a simplified Web
crawler. It has to receive a base URL, download its content, find and return a list of all URLs
retrieved from that page with the status whether it is valid and accessible or not.” This task
is more or less straightforward. An average software developer can immediately begin the
implementation using not more than a hundred lines of high-level code.

An experienced sysadmin given the same task will, with high probability, try to understand
the technical aspects of the project. For instance, she may ask questions like, “Does the proj-
ect have an SLA?” and dig deeper: “What load should we expect, and what kind of outages do
we need to survive?” At that point, prerequisites might be as simple as, “The load will be no
more than 10 requests per second, and we expect that responses will take no longer than 10
seconds for a single URL request.”

Now let’s invite an SRE to the conversation. One of his first questions would be something
like, “Who are our customers? And why is getting the response in 10 seconds important for
them?” Despite the fact that these questions came primarily from the business perspective
and did not clarify any technical details, the information they reveal may change the game
dramatically. What if this service is for an “information retrieval” development team whose
purpose is to address the necessity of the search engine results page’s content validation, to
make sure that the new index serves only live links? And what if we download a page with a
million links on it?

Now we can see the conflict between the priorities in the SLA and those of the service’s pur-
poses. The SLA stated that the response time is crucial, but the service is intended to verify
data, with accuracy as the most vital aspect of the service for the end user. We therefore need
to adjust project requirements to meet business necessities. There are lots of ways to solve
this difficulty: wait until all million links are checked, check only the first hundred links,
or architect our service so that it can handle a large number of URLs in a reasonable time.
The last solution is highly unlikely, and the SLA should therefore be modified to reflect real
demands.

Vladimir Legeza is a Site
Reliability Engineer in the
Search Operations team at
Amazon Japan. For the last
few decades, he has worked

for various companies in a variety of sizes
and business spheres such as business
consulting, Web portals development, online
gaming, and TV broadcasting. Since 2010,
Vladimir has primarily focused on large-scale,
high-performance solutions. Before Amazon,
he worked on search services and platform
infrastructure at Yandex.
vlegeza@amazon.co.jp

56    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SRE AND SYSADMIN
From SysAdmin to SRE in 2587 Words

What we’ve just done is to raise the discussion to a new level—
the business level. We started with the customer and worked
backward. We understood the service’s use cases, identified its
key aspects, and established and adjusted the SLA. Only now can
we begin to architect the solution. This is the exact meaning of
the first of Amazon’s leadership principles: “Customer Obses-
sion—Leaders start with the customer and work backwards”
(https://www.amazon.jobs/principles). Absolutely the same idea
appears in the first of Google’s “Ten Things” philosophy: “Focus
on the user and all else will follow” (https://www.google.com​
/intl/en/about/philosophy.html).

At this point, I want to present a short, three-character termi-
nology clarification to avoid confusion or uncertainty:

SLI: Service Level Indicator is a single, measurable metric
related to service behavior that is carefully chosen with a deep
understanding of its value’s meaning. Every possible value
should be clearly defined as “good” or “bad.” Also, all barrier val-
ues that turn “good” to “bad” and vice versa should be precisely
specified. It can be measured on its own terms and conditions
and may have more than one axis of measurement. However, the
rule of thumb is that every indicator must be meaningful.

Example SLI: 99% of all requests per one calendar year should be
served in 200 ms.

SLA: Service Level Agreement is a set of SLIs that defines the
overall behavior of what users should expect from the service.
A good SLA represents not only a list of guarantees but also
contains all possible limitations and actions that may take place
in specific circumstances: for instance, graceful degradation in
a case of primary datacenter outage, or what happens if a certain
limit is exhausted.

SLO: Service Level Objective is absolutely the same set of SLIs
that an SLA has but is much less strict and usually raises the bar
of the existing SLA. The SLO is not what we have to have, but
what we want to have.

Example: For an SLA, a single SLI might be defined as “99%
of all requests should be served in 200 ms,” and in the SLO the
same indicator may look like “99.9% of all requests should be
served in 200 ms.”

For further details, please refer to Google’s Site Reliability Engi-
neering (https://landing.google.com/sre/book/chapters/service​
-level-objectives.html).

The principle that the user’s perspective is fundamental is very
powerful and leads us to the understanding of vital service
aspects. Knowing what is valuable for the customer provides a
precise set of expectations that have to be finally reflected in the
SLA. And by being carefully crafted, the SLA may shed light on
many dark corners of a project, predicting and preventing dif-
ficulties and obstacles.

But first, the SLA is designated as a reference point to under-
stand how well a service is performing. There might be hundreds
of metrics that reflect a service’s state, but not all of them are
appropriate for an SLA. Although the number of SLIs tends to
be as minimal as possible, the final list of SLIs should cover all
major user necessities.

Only two relatively simple questions should be answered posi-
tively to indicate that an investigated metric is a good candidate
to be chosen, or otherwise, should definitely not be.

◆◆ Is this metric visible to the user?

◆◆ Is this metric important enough to the user (and from his/
her perspective as a service customer) that it needs to be at a
certain level or inside a particular range?

Internal SLAs
What if the service is not an end-customer-facing one. Should
this service have its own SLA too? To clarify the “Yes” answer,
let’s step back a little bit from the technical terminology; we will
see that the SLA itself is nothing but a list of criteria of what you
can expect from the service, that is, a simple list of expectations.

When you are thinking of a new service to be used in your
project, one of the first questions you want answered is, will this
service meet your expectations or not? It does not matter what
kind of service it is: it might be an external ticket-based authen-
tication system, local corporate storage, or a cross datacenter
distributed message-passing bus. But to figure out whether you
can you use it or not, you should know what this service promises
you and what limitations are applied. Hence, every producer-
consumer relationship is built on certain expectations, and,
hence, every service should provide a list of guarantees for all
valuable expectations regardless of whether the service is an
internal or external one.

To support this statement let’s consider a message distribution
service that consists of four main components:

◆◆ “Data receiver”: accepting and registering messages

◆◆ “Data transformer”: adjusting message content with data from
separate external sources

◆◆ “Distributor”: delivering messages to multiple endpoints

◆◆ “Consumer”: receiving data from the endpoint over a “pub
lisher–subscriber” model

At the moment, this system is working fine: no errors, no alarms.

One day, one of the top project managers comes to us and poses
the following: “One of the projects we are working on now uses
the ‘message distribution service.’ From time to time, we will
need to send a huge amount of data in a short time period. Can
we handle this? Or what should we have in order to use this
service?”

https://www.amazon.jobs/principles
https://www.google.com/intl/en/about/philosophy.html
https://www.google.com/intl/en/about/philosophy.html
https://landing.google.com/sre/book/chapters/service-level-objectives.html
https://landing.google.com/sre/book/chapters/service-level-objectives.html

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  57

SRE AND SYSADMIN
From SysAdmin to SRE in 2587 Words

Let’s work this out gradually. Having actual numbers for the
data amount is handy. Let’s say it will be three times more than
the maximum known peak-time value. However, this will not
provide us with a clear understanding of whether we will be
able to handle this traffic or not. The reason is simple: even if we
know how much data is managed by the service right now during
peak times, we would still need to know the break point where
we reach the service’s capacity limit to be able to compare it with
the forecast.

Our message distribution service has several components. As we
are aware, the slowest component is the one that dictates overall
service capacity: the “strength of the chain is determined by the
weakest link.” So now we have to spend some time to establish a
performance-testing environment and identify breakpoints for
every component separately and determine which component is
the bottleneck.

So far, we have data that will tell us about traffic-handling
possibilities. And if it is fine, we are ready to go on to announce
that no changes are required. Of course, businesspeople may ask
another question: “Why are we over-scaled that heavily?” but
that is a different story, and hopefully it is not the case.

Our calculation reveals that we can deal only with half of
expected growth. And we now need to at least double through-
put. The deeper we dig, the more complicated planning becomes.
Even if we assume that all the components can scale linearly
(and in real life, we have to prove this assumption), we are unable
to compare performance directly without accounting for one
more shared restriction: the delivery time.

Our goal is to pass a number of messages throughout the service
from the entry point to the final consumer, and transfer it in a
reasonable amount of time.

First of all, we have to provide an actual value for the “reason-
able time” metric overall and for every individual component.
Only then can we measure the size of an input that the appli-
cation is able to receive, process, and guarantee to pass as
an output inside that “reasonable time.” This will lower the
throughput even further. However, the positive outcome is that
we can now predict the output and compare performance across
components.

Time constraints are nothing but SLIs, and the maximum num-
ber of messages is the variable that has to be adjusted to process
messages during spikes and not break the time limits defined in
this indicator. One interesting property of an SLI is that it only
rarely changes.

So far, we know:

◆◆ Where the bottleneck is. And we can predict where the bottle-
neck will relocate from where it is now (literally this means
that now we know the next slowest component, the next after
that one, and so on).

◆◆ Expectations for every component (number of messages that
can be processed by a single application instance and the
expected amount of time that message can spend inside this
component).

◆◆ Our capacity and how much capacity is actually in use. We are
also able to predict capacity drops in case of a variety of outages
and make resource reservations accordingly.

And this is still not the end of the story!

External Dependencies
As you remember, the “data transformation” component has
some external dependencies. The “external” means that we are
only consumers and cannot control its behavior. The question is,
“What capacity can these external services provide and how will
their limitations affect our component’s performance and scal-
ability?” We want to know what we may expect, and, technically,
we are asking for an SLA. Once we get it, we will finally have all
we need to figure out what should be adjusted and where and how.

But this real-world scenario gets even more complicated. There
may be many types of messages with different priorities and
time restraints. It would be tough to say what we should do if the
load will grow for only one data type and other types will still be
definitely affected. However, by applying the “divide and con-
quer” principle, we declare specific criteria for every type indi-
vidually; then it will be clearly noticeable what data may have
experienced stagnation and how this issue should be addressed.

A short example: due to high load spikes in high-priority mes-
sages, other message deliveries will be slowed down from a
few seconds to several minutes. The key question then is, “Are
several minutes’ delay acceptable or not?” If we know exact bar-
rier values and can quickly identify “good” and “bad” values, then
there will be no problem taking the right action. Otherwise, we
will fall into a state of not knowing and can only guess what to do
or whether we should do anything at all.

As you can see, SREs mostly focus on service efficiency and
quality. Architecture and what stands behind is secondary,
at least until a service delivers results according to a user’s
expectations.

58    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SRE AND SYSADMIN
From SysAdmin to SRE in 2587 Words

Nontechnical Solutions
Technical solutions are not the limit of SLA potential, and SLAs
will give you a hand in other fields as well. The SLA determines,
for instance, the right time to hand a new service over to the
SRE team to support something as simple as, “If a product meets
expectations (i.e., does not violate an SLA), then the product is
ready; otherwise, it is not.”

All new software projects will have some prerequisites long
before they pass architecture review and a couple of proof-of-
concept models have been built. When it is believed that an
application is ready to be officially launched and begin serving
live production traffic, all SLIs become live, and both objectives
and agreements start to count. This is the measure’s starting
point. Because the SLA defines statements over time (the fre-
quently used period is one calendar year), the project should last
in this state a significant portion of this time (several months
or a quarter) to collect enough datapoints that confirm that the
service is stable enough and that there are no agreement viola-
tion risks.

Conclusion
The SRE philosophy differs from that of the sysadmin just by the
point of view. SRE philosophy was developed based on a simple,
data-driven principle: look at the problem from the user and
business perspectives, where “user” means “to take care of prod-
uct quality,” “business” equals “managing product cases and effi-
ciency,” and “data-driven” signifies “not allowing assumptions.”
Identify, measure, and compare all that is important. Everything
else is the result of this.

If all this sounds very difficult and complicated, start with these
steps:

◆◆ Divide large services into a set of smaller ones (treat each com-
ponent as an individual service).

◆◆ Identify service relationships and dependencies.

◆◆ Establish an SLO for each service first and maintain it.

◆◆ Reassign SLOs to SLAs where required.

Now, as an SRE, you can control systems more accurately and
can precisely know when, what, and how much you should scale
up. You can do this by efficiently identifying bottlenecks and
relocating them from one service to another in a controlled man-
ner. By fine-tuning every part of system capacity to the optimal
amount, you will lower costs and raise the bar for an overall posi-
tive customer experience.

