
2  WI N T ER 20 17 VO L . 42 , N O. 4 www.usenix.org

EDITORIALMusings
R I K F A R R O W

Rik is the editor of ;login:.
rik@usenix.org A lthough ;login: no longer has theme issues, this issue is loaded with

articles about security. Sitting in lofty isolation, I thought I would
muse this time about the three problems we have with computer

security: hardware, software, and people. I don’t think I’ve left anything out.

Hardware
Most of the computers that people use (as opposed to simpler IoT devices) have hardware
designs roughly like early timesharing mainframes. For the purposes of security, our com-
puters have two relevant features: memory management and privileged modes. Memory man-
agement was designed to keep processes from interfering with each other and the operating
system. You really don’t want someone else who is logged into another terminal (a device
capable of displaying 24 lines of 80 characters each, a keyboard, and a serial interface maxing
out at 19,200 baud [1]) writing into your process’s memory, and especially not the operating
system’s memory. Note that terminals on early systems were often Teletype Model 33 ASRs,
capable of uppercase only but also allowed input or output via a paper tape reader/puncher
[2]. Teletypes used Baudot, just five bits per character, with a maximum rate of 10 characters
per second. I actually used Teletypes on a Multics system in 1969.

Memory management on mainframes in the 1970s didn’t always work well. In 1979, I crashed
a mainframe, using a DECwriter 300, a much nicer and quieter terminal, while taking an
operating systems course. I made a mistake entering a substitute command and only noticed
when the command was taking forever to complete. I had created an infinite loop, essentially
replacing each character with two copies of itself. What clued me in to what I had done was
when other people in the terminal room started getting up and leaving, knowing it would take
at least 20 minutes to reboot the mainframe.

In our “modern” systems, memory management works very well at protecting processes from
one another, and events like the one I just described won’t happen. This is where privilege
mode [3] comes in. Because the operating system needs to be capable of doing things that
normal processes cannot, the CPU switches into privilege mode when executing operating
system code. While in privilege mode, the executing software can read or write anywhere
in memory. Needless to say, this has made writing kernel exploits extremely popular. And
as kernels are the largest single images with the most complex code (think multiple threads,
locking, and device drivers) you generally run, there are lots of vulnerabilities to be found.

You might be wondering why we rely on such ancient mechanisms as the hardware basis for
our security. Think of these mechanisms as being like internal combustion engines: they’ve
been around a long time and have gotten fantastically more efficient. There are other reasons
for using these mechanisms: they are familiar to both CPU designers and programmers (see
People, below).

There was an alternative design, a mainframe built in the mid-to-late ’60s: the GE 645 (later
Honeywell). The GE 645 had segment registers, essentially hardware used to add an offset
to each memory address. Unlike memory management, segment registers as used in this
design weren’t limited to large page sizes, so it was possible to have programs that could treat

www.usenix.org WI N T ER 20 17 VO L . 42 , N O. 4 3

EDITORIAL
Musings

different areas of memory as if they were different physical
compartments, and limit access to those compartments. Please
read my interview with Peter G. Neumann in this issue for more
on segmentation.

Intel’s flagship CPUs in the later ’80s also used segment regis-
ters as a method for extending memory from 64K to 640K. Later
incarnations of segment registers in Intel CPUs were more flex-
ible and used in early hypervisors.

What’s neat about being able to segment memory is that it
becomes possible to protect regions within the kernel by making
them read-only, and control access to other kernel regions. Cur-
rently, our operating systems are write-anywhere, leaving them
ripe for exploitation. User-level programs can also use segments,
so they can have code within a single process that operates with
different sets of privileges. I suggest reading about CHERI [4],
an example of a modern design that has segment registers as a
key feature.

Software
At the time I am writing, Equifax has been hacked, and all of
the data needed to steal 143 million US identities has been
downloaded. Equifax has blamed the Apache Struts software
for the exploit, even though they allegedly failed to install the
update that would have prevented the attack. Obviously, even if
Equifax’s hardware had hardware features only available in the
future, a Web script that allows customers making credit queries
to access their database would still allow this attack. After all,
requesting credit queries needs to work in this application.

Of course, attacks like this succeed because the software actu-
ally supports doing things, like downloading 143 million credit
reports, through mistakes in design.

I’ve selected many papers about how to improve software design,
the most recent appearing in the Fall 2017 issue [5]. Essentially,
using carefully designed parsers as well as protocols that allow
simple parsers (no looping or recursion allowed) would elimi-
nate attacks like this. The parsers pass safe arguments to other
routines for execution instead of any old thing that a clever
attacker can slip through. There are companies that focus on
reverse engineering input parsers, so they can report the exploit-
able weaknesses in the code they are processing (Veracode, for
example), so making money honestly from coding mistakes in
parsers is already a successful business [6].

People
Last but not least on the list of why our systems are insecure are
people: the people who manage the systems and the people who
program their software.

If I had been working as the CSO of a large financial company
whose main business had to do with identity records, I would
have insisted on having simple parsers, but also a gateway, a type
of application firewall, that would limit access to the database
to the expected queries, and rate limit the number of responses
permitted.

Of course, I’ve left out an important aspect in my imaginary sce-
nario: other people. Those other people might be programmers
who don’t understand what I have in mind, those topics having
not been covered in any course. The programming of safe pars-
ers is actually not something most people can do properly, which
is why there are tools for doing this [5].

Other people who would balk at adding what would, in hindsight,
turn out to be saving-the-business-important security would
be managers and C-level executives, who would point out that
adding security would “cost money” and “take time.” Well, those
people do need to balance risk against potential income, even
though ignoring security has caused companies to go out of
business.

The Lineup
We start off this issue with four articles about pretty basic
stuff that people commonly get wrong. First up is Pearce et al.,
who examine the prevalence of DNS spoofing. They carefully
designed a way to test whether DNS resolvers were lying, and
found that a significant number of countries, most often but not
always repressive regimes, did falsify results of DNS queries.

Next up, Chung et al. look at just how well people are doing at
DNSSEC, the protocol for providing cryptographic proof that
DNS queries return accurate results. The answer is: not well
at all. Only a tiny fraction of domains use DNSSEC, and a very
small fraction of that fraction have done it correctly. Part of
the reason for this problem is design (DNSSEC is complicated,
although just reading their article did more to help me under-
stand DNSSEC than anything else I’ve read). There are other
problems, like registrars that either do not accept the hashes
(“DS” records) required to prove the correctness of their regis-
tered, second-level domains, or do so insecurely. To top that off,
few resolvers actually check the correctness of the DNSSEC
records they have downloaded.

Mayer and the team at SBA Research examine another mainstay
of Internet security: HTTPS. They set up a user study where they
asked more senior college students who allegedly could perform
system administration to set up HTTPS securely. Hint: the vast
majority of people are better off using https://letsencrypt.org/.

The last article in this series, where the ability of people to
behave securely is in question, is about checking password
strength. Melicher et al. developed a neural network small
enough to download as part of a Web page, and proved their tool

4  WI N T ER 20 17 VO L . 42 , N O. 4 www.usenix.org

EDITORIAL
Musings

(https://github.com/cupslab/password_meter) works much
better than the current crop of tools, which reward people for
capitalizing the first letter and ending their password with “!”.

Bano, Al-Bassam, and Danezis volunteered an article about
fixing the Bitcoin blockchain. The Bitcoin blockchain can only
handle a few transactions per second and takes at least 10 min-
utes before those transactions can be committed. Talk about a
failing database, even if it uses strong public key encryption for
security. Bano and his co-authors explain several alternative
methods for increasing the performance of blockchains.

I decided to interview Peter G. Neumann for this issue. He was
part of the design team for Multics, worked on several design
papers for better security, and is part of the CHERI team for
improving hardware security. Peter is fun to listen to, a great
storyteller, and someone who has been involved in some amazing
work.

Gu and co-authors from the EECS Department at the Univer-
sity of Michigan provide the lone Systems article in this issue.
Their modification-free solution for memory disaggregation,
INFINISWAP, takes advantage of RDMA to share unused
memory in a cluster of systems as faster swap devices. Using
the combination of a daemon and a kernel module that presents
a block device interface, INFINISWAP improves performance
over swap on hard drives for paging while still providing reli-
ability, a pretty cool idea.

In the SRE and Sysadmin section, John Looney writes about
psychological safety for SRE teams. Using his experience as
part of a specialized team that studied SRE teams, John makes
great use of examples of how not to support team members, then
shows how things could have been done better.

Vladimir Legeza wanted to write about the difference between
system administration and SRE. Through the use of examples,
Vladimir lays out what he considers key differences between
how the two groups work and what sysadmins could learn from
the SRE way of doing things.

Kurt Lidl shares his knowledge of Docker. I liked this article a lot
for the level of useful detail provided, as well as for the compari-
sons to other mechanisms for isolation of groups of processes.

David Beazley has written his final column for ;login:. Appropri-
ately, he wrote about exiting gracefully (in Python, although the
double meaning is obvious). We will miss David for his careful
and thorough explanations of Python.

David Blank-Edelman writes about Perl-without-Perl. While this
might sound strange, there are a lot of times when you want a tool
or script that processes a Perl script, perhaps just for extracting
some portion of the script, without involving execution of the
script. David covers a module and other tools for doing this.

Chris (Mac) McEniry explains how to use Hashicorp’s Vault, a
Go library used for storing secrets, such as the passphrases used
to decrypt private TLS keys. Mac also includes the use of dep, a
tool for managing Go dependencies.

Dave Josephsen describes how he used tcpdump to monitor
network traffic of images his company is running in Amazon’s
cloud. Anyone who needs an effective way of monitoring network
traffic when the network is run and controlled by someone else
needs to read Dave’s column.

Dan Geer writes an essay about Data with a capital D. Dan
ruminates about the importance of the “Big Data” we collect, and
explains the two things we should consider whenever we decide
to collect data.

Robert Ferrell has written his humor column this time about
third-party loss of personal data and risk mismanagement.

We have three book reviews this time, one by ;login:’s Managing
Editor, Michele Nelson, and two by Mark Lamourine.

Conclusion
I know that I have written about the failure of people in the past.
I also know that it’s just not a good idea to expect most people to
write software or manage systems securely when even experts
do these tasks poorly. Computing is complex, abstract in many
ways (how often have you looked at a heap?), and generally the
people responsible for the software and hardware that becomes
the most popular (think C) are geniuses or work with geniuses.
Expecting the bulk of humanity to reach this level is simply
unreasonable. Geniuses, by definition, represent a tiny fraction
of the population.

Services like Let’s Encrypt go a long way toward removing the
requirement that everyone who wants to use HTTPS needs to
be an expert or a genius. We need to extend this type of service
to include programming languages, system management, and
improved hardware-based security if we ever expect to have
even moderately secure systems and a reliable Internet.

References
[1] Example of terminal: http://bit.ly/2fLWPdQ.

[2] Teletype 33 ASR: https://en.wikipedia.org/wiki/Teletype
_Model_33.

[3] Microsoft on privilege mode: http://bit.ly/2yD6f3l.

[4] CHERI: http://www.cl.cam.ac.uk/research/security/ctsrd
/cheri/.

[5] G. Couprie and P. Chifflier, “Safe Parsers in Rust: Chang-
ing the World Step by Step,” ;login:, vol. 42, no. 3 (Fall 2017):
https://www.usenix.org/publications/login/fall2017/couprie.

[6] Veracode sold: http://bit.ly/2lX8TtT.

http://bit.ly/2fLWPdQ
https://en.wikipedia.org/wiki/Teletype_Model_33
https://en.wikipedia.org/wiki/Teletype_Model_33
http://bit.ly/2yD6f3l
http://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
http://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.usenix.org/publications/login/fall2017/couprie
http://bit.ly/2lX8TtT

SREcon is a gathering of engineers who care deeply about site reliability, systems engineering,
and working with complex distributed systems at scale. It strives to challenge both those new to
the profession as well as those who have been involved in it for decades. The conference has a
culture of critical thought, deep technical insights, continuous improvement, and innovation.

SAVE THE DATES!

JUNE 6–8, 2018 • SINGAPORE
The Call for Participation will be available in December 2017.
www.usenix.org/srecon18asia

AUGUST 29–31, 2018 • DUSSELDORF, GERMANY
The Call for Participation will be available in February 2018.
www.usenix.org/srecon18europe

MARCH 27–29, 2018 • SANTA CLARA, CA, USA
www.usenix.org/srecon18americas

Follow us at @srecon

