
64    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

COLUMNS
Much maligned and misunderstood, metaclasses might be one

of Python’s most useful features. On the surface, it might not be
clear why this would be the case. Just the name “metaclass” alone

is enough to conjure up an image of swooping manta rays and stinging bats
attacking your coworkers in a code review. I’m sure that there are also some
downsides, but metaclasses really are a pretty useful thing to know about
for all sorts of problems of practical interest to systems programmers. This
includes simplifying the specification of network protocols, parsers, and
more. In this installment, we’ll explore the practical side of metaclasses and
making Python do some things you never thought possible. Note: This article
assumes the use of Python 3.

When I was first learning Python 20 years ago, I remember taking a trip to attend the Python
conference. At that time, it was a small affair with just 50 or 60 enthusiastic programmers.
I also remember one presentation in particular—the one that proposed the so-called “meta-
class hack” for Python. There were a lot of frightened stares during that presentation and to
be honest, it didn’t make a whole lot of sense to me at the time. Some short time later, meta-
classes became known as Python’s “killer joke” in reference to a particular Monty Python
sketch. Nobody was able to understand them without dying apparently.

Flash forward to the present and I find myself at home writing some Python code to interact
with the game Minecraft. I’m buried in a sea of annoying low-level network protocol details.
The solution? Metaclasses. In an unrelated project, I find myself modernizing some parsing
tools I wrote about 15 years ago. Once again, I’m faced with a problem of managing lots of fid-
dly details. The solution? Metaclasses again. Needless to say, I’m thinking that metaclasses
are actually kind of cool—maybe even awesome.

That said, metaclasses have never really been able to shake their “killer joke” quality in the
Python community. They involve defining objects with the “class” statement, and inheri-
tance is involved. Combine that with the word “meta” and surely it’s just going to be some
kind of icky object-oriented monstrosity birthed from the bowels of a Java framework or
something. This is really too bad and misses the point.

In this article, I’m going to take a stab at rectifying that situation. We’ll take a brief look at
what happens when you define a class in Python, show what a metaclass is, and describe how
you can use this newfound knowledge to practical advantage with an example.

Defining Classes
Most Python programmers are familiar with the idea of defining and using a class. One use
of classes is to help you organize code by bundling data and functions together. For example,
instead of having separate data structures and functions like this:

p = { ‘x’: 2, ‘y’: 3 }

def move(p, dx, dy):

 p[‘x’] += dx

 p[‘y’] += dy

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

In Praise of Metaclasses!
D A V I D B E A Z L E Y

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  65

COLUMNS
In Praise of Metaclasses!

a class lets you glue them together in a more coherent way:

class Point(object):

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def move(self, dx, dy):

 self.x += dx

 self.y += dy

Another use of classes is as a code-reuse tool. This is common
in libraries and frameworks. For example, a library will provide
a base set of code for you to use and then you extend it with your
own functionality via inheritance. For example, here is some
code using the socketserver module in the standard library:

from socketserver import TCPServer, BaseRequestHandler

class EchoHandler(BaseRequestHandler):

 def handle(self):

 while True:

 data = self.request.recv(1024)

 if not data:

 break

 self.request.sendall(data)

serv = TCPServer((‘’, 25000), EchoHandler)

serv.serve_forever()

There is a third use of classes, however, that is a bit more inter-
esting. Step back for a moment and think about what’s happen-
ing when you define a class. Essentially, a class serves as an
enclosing environment for the statements that appear inside.
Within this environment, you actually have a lot of control over
how Python behaves—you can bend the rules and make Python
do things that are not normally possible. For example, altering
definitions, validating code, or building little domain-specific
languages. A good example can be found in defining an enum in
the standard library [1]. Here is an example:

from enum import Enum

class State(Enum):

 OPEN = 1

 CLOSED = 2

If you start using this class and start thinking about it, you’ll
find that it has some unusual behavior. For example, the class
variables OPEN and CLOSED that were defined as integers no
longer possess those types:

>>> State.OPEN

<State.OPEN: 1>

>>> type(State.OPEN)

<enum ‘State’>

>>> isinstance(State.OPEN, int)

False

>>>

Something has implicitly altered the class body in some way.
You’ll also find that Enum classes don’t allow duplicate defini-
tions. For example, this produces an error:

class State(Enum):

 OPEN = 1

 CLOSED = 2

 OPEN = 3

Traceback (most recent call last):

...

TypeError: Attempted to reuse key: ‘OPEN’

If you give different names to the same value, you get an alias.

class State(Enum):

 OPEN = 1

 CLOSED = 2

 SHUTDOWN = 2

>>> State.CLOSED

<State.CLOSED: 2>

>>> State.SHUTDOWN

<State.CLOSED: 2>

>>> State.CLOSED is State.SHUTDOWN

True

>>>

If you try to inherit from an enumeration, you’ll find that it’s not
allowed:

class NewState(State):

 PENDING = 3

Traceback (most recent call last):

...

TypeError: Cannot extend enumerations

Finally, attempting to create instances of an Enum results in a
kind of type-cast rather than the creation of a new object. For
example:

>>> s = State(2)

>>> s

<State.CLOSED>

>>> s is State.CLOSED

True

>>>

So something is not only changing the body of the class, it’s
monitoring the definition process itself. It’s bending the normal
rules of assignment. It’s looking for errors and enforcing rules.
Even the rules of instance creation and memory allocation have
apparently changed.

These unusual features of Enum are an example of a metaclass in
action—metaclasses are about changing the very meaning of a
class definition itself. A metaclass can make a class do interest-
ing things all while hiding in the background.

66    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

COLUMNS
In Praise of Metaclasses!

Metaclasses
Now that we’ve seen an example of a metaclass in action, how do
you plug into this machinery yourself? The key insight is that a
class definition is itself an instance of an object called type. For
example:

class Spam(object):

 def yow(self):

 print(‘Yow!’)

>>> type(Spam)

<class ‘type’>

>>>

The type of a class is its metaclass. So type is the metaclass of
Spam. This means that type is responsible for everything associ-
ated with the definition of the Spam class.

Now suppose you wanted to alter what happens in class cre-
ation? Here are the neat, head-exploding tricks that you can use
to hook into it. This is going to look rather frightening at first,
but it will make much more sense once you try it afterwards.
Official documentation on the process can be found at [2].

class mytype(type):

 @classmethod

 def __prepare__(meta, clsname, bases):

 print(‘Preparing class dictionary:’, clsname, bases)

 return super().__prepare__(clsname, bases)

 @staticmethod

 def __new__(meta, clsname, bases, attrs):

 print(‘Creating class:’, clsname)

 print(‘Bases:’, bases)

 print(‘Attributes:’, list(attrs))

 return super().__new__(meta, clsname, bases, attrs)

 def __init__(cls, clsname, bases, attrs):

 print(‘Initializing class:’, cls)

 super().__init__(clsname, bases, attrs)

 def __call__(cls, *args, **kwargs):

 print(‘Creating an instance of’, cls)

 return super().__call__(*args, **kwargs)

In this code, we’ve subclassed type and installed hooks onto a
few important methods that will be described shortly. To use
this new type as a metaclass, you need to define a new top-level
object like this:

Top-level class

class myobject(metaclass=mytype):

 pass

After you’ve done that, using this new metaclass requires you to
inherit from myobject like this:

class Spam(myobject):

 print(‘—Starting:’, locals())

 def yow(self):

 print(‘Yow!’)

 print(‘—Ending:’, locals())

When you do this, you’re going to see output from the various
methods:

Preparing class dictionary: Spam (<class ‘__main__.myobject’>,)

—Starting: {‘__qualname__’: ‘Spam’, ‘__module__’: ‘__main__’}

—Ending: {‘__qualname__’: ‘Spam’, ‘__module__’: ‘__main__’,

‘yow’: <function Spam.yow at 0x10e6cc9d8>}

Creating class: Spam

Bases: (<class ‘__main__.myobject’>,)

Attributes: [‘__qualname__’, ‘__module__’, ‘yow’]

Initializing class: <class ‘__main__.Spam’>

Keep in mind, you have not created an instance of Spam. All of
this is triggered automatically merely by the definition of the
Spam class. An end user will see that the class Spam is using
inheritance, but the use of a metaclass is not apparent in the
specification. Let’s talk about the specifics.

Before anything happens at all, you will see the __prepare__()
method fire. The purpose of this method is to create and prepare
the dictionary that’s going to hold class members. This is the
same dictionary that locals() returns in the class body. But
how does Python know to use the __prepare__() method of
our custom type? This is determined by looking at the type of
the parent of Spam. In this case myobject is the parent, so this is
what happens:

>>> ty = type(myobject)

>>> ty

<class ‘meta.mytype’>

>>> d = ty.__prepare__(‘Spam’, (myobject,))

Preparing class dictionary: Spam (<class ‘__main__.myobject’>,)

>>> d

{}

>>>

Once the class dictionary has been created, it’s populated with
a few bits of name information, including the class name and
enclosing module.

>>> d[‘__qualname__’] = ‘Spam’

>>> d[‘__module__’] == __name__

>>>

Afterwards, the body of the Spam class executes in this diction-
ary. You will see new definitions being added. Upon conclusion,
the dictionary is fully populated with definitions. The print
statements in the top and bottom of the class are meant to show
the state of the dictionary and how it changes.

After the class body has executed, the __new__() method of
the metaclass is triggered. This method receives information
about the class, including the name, bases, and populated class
dictionary. If you wanted to write code that did anything with
this data prior to creating the class, this is the place to do it.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  67

COLUMNS
In Praise of Metaclasses!

After __new__() is complete, the __init__() method fires. This
method is given the newly created class as an argument. Again,
this is an opportunity to change parts of the class. The main dif-
ference between __new__() and __init__() is that __new__()
executes prior to class creation, __init__() executes after class
creation.

The __call__() method of a metaclass concerns instance cre-
ation. For example:

>>> s = Spam()

Creating an instance of <class ‘__main__.Spam’>

>>> s.yow()

Yow!

>>>

“Yow” is right! You have just entered a whole new realm of magic.
The key idea is that you can put your fingers on the knobs of class
definition and instance creation—and you can start turning the
knobs. Let’s do it.

Example: Building a Text Tokenizer
Let’s say you were building a text parser or compiler. One of the
first steps of parsing is to tokenize input. For example, suppose
you had an input string like this:

text = ‘a = 3 + 4 * 5’

And you wanted to tokenize it in a sequence of tuples like this:

[(‘NAME’, ‘a’), (‘ASSIGN’, ‘=’), (‘NUM’, 3),

 (‘PLUS’, ‘+’), (‘NUM’, 4), (‘TIMES’, ‘*’), (‘NUM’, 5)]

One way to do this is write low-level code using regular expres-
sions and the re module. For example:

tok.py

import re

Patterns for the different tokens

NAME = r’(?P<NAME>[a-zA-Z_][a-zA-Z0-9_]*)’

NUM = r’(?P<NUM>\d+)’

ASSIGN = r’(?P<ASSIGN>=)’

PLUS = r’(?P<PLUS>\+)’

TIMES = r’(?P<TIMES>*)’

ignore = r’(?P<ignore>\s+)’

Master re pattern

pat = re.compile(‘|’.join([NAME, NUM, ASSIGN, PLUS, TIMES,

ignore]))

Tokenization function

def tokenize(text):

 index = 0

 while index < len(text):

 m = pat.match(text, index)

 if m:

 tokname = m.lastgroup

 toktext = m.group()

 if tokname != ‘ignore’:

 yield (tokname, toktext)

 index = m.end()

 else:

 raise SyntaxError(‘Bad character %r’ % text[index])

if __name__ == ‘__main__’:

 text = ‘a = 3 + 4 * 5’

 for tok in tokenize(text):

 print(tok)

Although there’s not a lot of code, it’s kind of low-level and nasty
looking. For example, having to use named regex groups, form-
ing the master pattern, and so forth. Let’s look at a completely
different formulation using metaclasses. Define the following
metaclass:

from collections import OrderedDict

import re

class tokenizemeta(type):

 @classmethod

 def __prepare__(meta, name, bases):

 return OrderedDict()

 @staticmethod

 def __new__(meta, clsname, bases, attrs):

 # Make named regex groups for all strings in the class body

 patterns = [‘(?P<%s>%s)’ % (key, val) for key, val in attrs

.items()

 if isinstance(val, str)]

 # Make the master regex pattern

 attrs[‘_pattern’] = re.compile(‘|’.join(patterns))

 return super().__new__(meta, clsname, bases, attrs)

This metaclass inspects the class body for strings, makes named
regex groups out of them, and forms a master regular expression.
The use of an OrderedDict is to capture definition order—some-
thing that matters for proper regular expression matching.

Now, define a base class with the general tokenize() method:

class Tokenizer(metaclass=tokenizemeta):

 def tokenize(self, text):

 index = 0

 while index < len(text):

 m = self._pattern.match(text, index)

 if m:

 tokname = m.lastgroup

 toktext = m.group()

 if not tokname.startswith(‘ignore’):

 yield (tokname, toktext)

 index = m.end()

 else:

 raise SyntaxError(‘Bad character %r’ % text[index])

Now why did we go through all of this trouble? It makes the
specification of a tokenizer easy. Try this:

68    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

COLUMNS
In Praise of Metaclasses!

class Simple(Tokenizer):

 NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’

 NUM = r’\d+’

 ASSIGN = r’=’

 PLUS = r’\+’

 TIMES = r’*’

 ignore = r’\s+’

Use the tokenizer

text = ‘a = 3 + 4 * 5’

tokenizer = Simple()

for tok in tokenizer.tokenize(text):

 print(tok)

That’s pretty cool. Using metaclasses, you were able to make a little
specification language for tokenizing. The user of the Tokenizer
class just gives the token names and regular expressions. The meta-
class machinery behind the scenes takes care of the rest.

Adding Class Dictionary Magic
You can do even more with your tokenizer class if you’re willing
to stretch the definition of a dictionary. Let’s subclass Ordered-

Dict and change assignment slightly so that it detects duplicates:

class TokDict(OrderedDict):

 def __setitem__(self, key, value):

 if key in self and isinstance(key, str):

 raise KeyError(‘Token %s already defined’ % key)

 else:

 super().__setitem__(key, value)

class tokenizemeta(type):

 @classmethod

 def __prepare__(meta, name, bases):

 return TokDict()

 ...

In this new version, a specification with a duplicate pattern
name creates an error:

class Simple(Tokenizer):

 NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’

 NUM = r’\d+’

 ASSIGN = r’=’

 PLUS = r’\+’

 TIMES = r’*’

 NUM = r’\d+’

 ignore = r’\s+’

Traceback (most recent call last):

 ...

KeyError: ‘Token NUM already defined’

You could stretch it a bit further, though. This version allows
optional action methods to be defined for any of the tokens:

from collections import OrderedDict

import re

class TokDict(OrderedDict):

 def __init__(self):

 super().__init__()

 self.actions = {}

 def __setitem__(self, key, value):

 if key in self and isinstance(key, str):

 if callable(value):

 self.actions[key] = value

 else:

 raise KeyError(‘Token %s already defined’ % key)

 else:

 super().__setitem__(key, value)

class tokenizemeta(type):

 @classmethod

 def __prepare__(meta, name, bases):

 return TokDict()

 @staticmethod

 def __new__(meta, clsname, bases, attrs):

 # Make named regex groups for all strings in the class body

 patterns = [‘(?P<%s>%s)’ % (key, val) for key, val in

attrs.items() if isinstance(val, str)]

 # Make the master regex pattern

 attrs[‘_pattern’] = re.compile(‘|’.join(patterns))

 # Record action functions (if any)

 attrs[‘_actions’] = attrs.actions

 return super().__new__(meta, clsname, bases, attrs)

class Tokenizer(metaclass=tokenizemeta):

 def tokenize(self, text):

 index = 0

 while index < len(text):

 m = self._pattern.match(text, index)

 if m:

 tokname = m.lastgroup

 toktext = m.group()

 if not tokname.startswith(‘ignore’):

 if tokname in self._actions:

 yield (tokname, self._actions[tokname](self,

toktext))

 else:

 yield (tokname, toktext)

 index = m.end()

 else:

 raise SyntaxError(‘Bad character %r’ % text[index])

This last one might require a bit of study, but it allows you to
write a tokenizer like this:

class Simple(Tokenizer):

 NAME = r’[a-zA-Z_][a-zA-Z0-9_]*’

 NUM = r’\d+’

 ASSIGN = r’=’

 PLUS = r’\+’

 TIMES = r’*’

 ignore = r’\s+’

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  69

COLUMNS
In Praise of Metaclasses!

 # Convert NUM tokens to ints

 def NUM(self, text):

 return int(text)

 # Uppercase all names (case-insensitivity)

 def NAME(self, text):

 return text.upper()

Example

text = ‘a = 3 + 4 * 5’

tokenizer = Simple()

for tok in tokenizer.tokenize(text):

 print(tok)

If it’s working, the final output should appear like this:

(‘NAME’, ‘A’)

(‘ASSIGN’, ‘=’)

(‘NUM’, 3)

(‘PLUS’, ‘+’)

(‘NUM’, 4)

(‘TIMES’, ‘*’)

(‘NUM’, 5)

Notice how the names have been uppercased and numbers con-
verted to integers.

The Big Picture
By now, you’re either staring at amazement or in horror at what
we’ve done. In the big picture, one of the great powers of meta-
classes is that you can use them to turn class definitions into
a kind of small domain-specific language (DSL). By doing this,
you can often simplify the specification of complex problems.
Tokenization is just one such example. However, it’s moti-
vated by a long history of DSLs being used for various facets of
software development (e.g., lex, yacc, RPC, interface definition
languages, database models, etc.).

If you’ve used more advanced libraries or frameworks, chances
are you’ve encountered metaclasses without even knowing it.
For example, if you’ve ever used the Django Web framework, you
describe database models using classes like this [3]:

from django.db import models

class Musician(models.Model):

 first_name = models.CharField(max_length=50)

 last_name = models.CharField(max_length=50)

 instrument = models.CharField(max_length=100)

class Album(models.Model):

 artist = models.ForeignKey(Musician, on_delete=models

.CASCADE)

 name = models.CharField(max_length=100)

 release_date = models.DateField()

 num_stars = models.IntegerField()

This involves metaclasses. It might not be obvious, but there is a
whole set of code sitting behind the models.Model base class that
is watching definitions and using that information to carry out
various magic behind the scenes. A benefit of using a metaclass
is that it can make it much easier for an end user to write speci-
fications. They can write simple definitions and not worry so
much about what’s happening behind the scenes.

A Contrarian View
A common complaint lodged against metaclasses is that they
introduce too much implicit magic into your program—violating
the “Explicit is better than implicit” rule from the Zen of Python.
To be sure, you don’t actually need to use a metaclass to solve
the problem presented here. For example, we possibly could have
written a Tokenizer with more explicit data structures using a
class definition like this:

class Simple(Tokenizer):

 tokens = [

 (‘NAME’, r’[a-zA-Z_][a-zA-Z0-9_]*’),

 (‘NUM’, r’\d+’),

 (‘ASSIGN’, r’=’),

 (‘PLUS’, r’\+’),

 (‘TIMES’, ‘*’),

 (‘ignore’, r’\s+’)

]

 actions = {

 ‘NAME’: lambda text: text.upper(),

 ‘NUM’: lambda text: int(text)

 }

It’s not much more code than the metaclass version, but it
frankly forces me to squint my eyes more than usual. Of course,
they also say that beauty is in the eye of the beholder. So your
mileage might vary.

Final Words
In parting, be on the lookout for metaclass magic the next time
you use an interesting library or framework—they’re often out
there hiding in plain sight. If you’re writing your own code and
faced with problems involving complex or domain-specific
specifications, metaclasses can be a useful tool for simplifying it.

References
[1] enum module: https://docs.python.org/3/library/enum
.html.

[2] Customizing class creation (official documentation):
https://docs.python.org/3/reference/datamodel.html
#customizing-class-creation.

[3] Django models: https://docs.djangoproject.com/en/1.10
/topics/db/models/.

