
48    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSADMINTuning OpenZFS
A L L A N J U D E A N D M I C H A E L W . L U C A S

Allan Jude is VP of Operations
at ScaleEngine Inc., a global
HTTP and Video Streaming
CDN, where he makes extensive
use of ZFS on FreeBSD. He is

also the host of the video podcasts BSDNow.
tv (with Kris Moore) and TechSNAP.tv. He is
a FreeBSD src and doc committer, and was
elected to the FreeBSD Core team in the
summer of 2016. allanjude@freebsd.org

Michael W. Lucas has used
UNIX since the late ’80s and
started his sysadmin career in
1995. He’s the author of over
20 technology books, including

Absolute OpenBSD, PAM Mastery, and SSH
Mastery. Lucas lives with his wife in Detroit,
Michigan, has pet rats, and practices martial
arts. mwlucas@michaelwlucas.com

OpenZFS is such a powerful file system that it has found its way into
illumos, Linux, FreeBSD, and other operating systems. Its flexibility
requires whole new ways of thinking, however. If you’re using Open-

ZFS for a special purpose, such as database storage or retaining particular
sizes of files, you’ll want to tune the file system for those purposes.

This article uses FreeBSD as a reference platform, as it’s one of the biggest OpenZFS con-
sumers. You will need to change paths and such for other operating systems, but all the ZFS
information is consistent across platforms.

Recordsize
While many ZFS properties impact performance, start with recordsize.

The recordsize property gives the maximum size of a logical block in a ZFS dataset. The
default recordsize is 128 KB, which comes to 32 sectors on a disk with 4 KB sectors, or 256
sectors on a disk with 512-byte sectors. The maximum recordsize was increased to 1 MB
with the introduction of the large_blocks feature flag in 2015. Many database engines prefer
smaller blocks, such as 4 KB or 8 KB. It makes sense to change the recordsize on datasets
dedicated to such files. Even if you don’t change the recordsize, ZFS automatically sizes
records as needed. Writing a 16 KB file should take up only 16 KB of space (plus metadata
and redundancy space), not waste an entire 128 KB record.

The most important tuning you can perform for an application is the dataset block size. If an
application consistently writes blocks of a certain size, recordsize should match the block
size used by the application. This becomes really important with databases.

Databases and ZFS
Many ZFS features are highly advantageous for databases. Every DBA wants fast, easy, and
efficient replication, snapshots, clones, tunable caches, and pooled storage. While ZFS is
designed as a general-purpose file system, you can tune it to make your databases fly.

Databases usually consist of more than one type of file, and since each has different char-
acteristics and usage patterns, each requires different tuning. We’ll discuss MySQL and
PostgreSQL in particular, but the principles apply to any database software.

Tuning the block size avoids write amplification. Write amplification happens when chang-
ing a small amount of data requires writing a large amount of data. Suppose you must change
8 KB in the middle of a 128 KB block. ZFS must read the 128 KB, modify 8 KB somewhere
in it, calculate a new checksum, and write the new 128 KB block. ZFS is a copy-on-write
file system, so it would wind up writing a whole new 128 KB block just to change that 8 KB.
You don’t want that. Now multiply this by the number of writes your database makes. Write
amplification eviscerates performance.

Low-load databases might not need this sort of optimization, but on a high-performance
system it is invaluable. Write amplification reduces the life of SSDs and other flash-based
storage that can handle a limited volume of writes over their lifetime.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  49

SYSADMIN
Tuning OpenZFS

The different database engines don’t make recordsize tuning
easy. Each database server has different needs. Journals, binary
replication logs, error and query logs, and other miscellaneous
files also require different tuning.

Before creating a dataset with a small recordsize, be sure you
understand the interaction between VDEV type and space utili-
zation. In some situations, disks with the smaller 512-byte sector
size can provide better storage efficiency. It is entirely possible
you may be better off with a separate pool specifically for your
database, with the main pool for your other files.

For high-performance systems, use mirrors rather than any type
of RAID-Z. Yes, for resiliency you probably want RAID-Z. Hard
choices are what makes system administration fun!

All Databases
Enabling lz4 compression on a database can, unintuitively,
decrease latency. Compressed data can be read more quickly
from the physical media, as there is less to read, which can result
in shorter transfer times. With lz4’s early abort feature, the
worst case is only a few milliseconds slower than opting out of
compression, but the benefits are usually quite significant. This
is why ZFS uses lz4 compression for all of its own metadata and
for the L2ARC (level 2 adaptive replacement cache).

The Compressed ARC feature recently landed in OpenZFS and
is slowly trickling out to OpenZFS consumers. Enabling cache
compression on the dataset allows more data to be kept in the
ARC, the fastest ZFS cache. In a production case study done by
Delphix, a database server with 768 GB of RAM went from using
more than 90 percent of its memory to cache a database to using
only 446 GB to cache 1.2 TB of compressed data. Compress-
ing the in-memory cache resulted in a significant performance
improvement. As the machine could not support any more RAM,
compression was the only way to improve. When your operating
system gets compressed ARC, definitely check it out.

ZFS metadata can also affect databases. When a database is
rapidly changing, writing out two or three copies of the metadata
for each change can take up a significant number of the available
IOPS of the backing storage. Normally, the quantity of metadata
is relatively small compared to the default 128 KB record size.
Databases work better with small record sizes, though. Keeping
three copies of the metadata can cause as much disk activity, or
more, than writing actual data to the pool.

Newer versions of OpenZFS also contain a redundant_meta-

data property, which defaults to all. This is the original behavior
from previous versions of ZFS. However, this property can also
be set to most, which causes ZFS to reduce the number of copies
of some types of metadata that it keeps.

Depending on your needs and workload, allowing the database
engine to manage caching might be better. ZFS defaults to cach-
ing much or all of the data from your database in the ARC, while
the database engine keeps its own cache, resulting in wasteful
double caching. Setting the primarycache property to metadata
rather than the default all tells ZFS to avoid caching actual data
in the ARC. The secondarycache property similarly controls the
L2ARC.

Depending on the access pattern and the database engine, ZFS
may already be more efficient. Use a tool like zfsmon from the
zfs-tools package to monitor the ARC cache hit ratio, and com-
pare it to that of the database’s internal cache.

Once the Compressed ARC feature is available, it might be wise
to consider reducing the size of the database’s internal cache and
let ZFS handle the caching instead. The ARC might be able to fit
significantly more data in the same amount of RAM than your
database can.

Now let’s talk about some specific databases.

MySQL—InnoDB/XtraDB
InnoDB became the default storage engine in MySQL 5.5 and has
significantly different characteristics than the previously used
MyISAM engine. Percona’s XtraDB, also used by MariaDB, is
similar to InnoDB. Both InnoDB and XtraDB use a 16 KB block
size, so the ZFS dataset that contains the actual data files should
have its recordsize property set to match. We also recommend
using MySQL’s innodb_one_file_per_table setting to keep the
InnoDB data for each table in a separate file, rather than group-
ing it all into a single ibdata file. This makes snapshots more
useful and allows more selective restoration or rollback.

Store different types of files on different datasets. The data files
need 16 KB block size, lz4 compression, and reduced metadata.
You might see performance gains from caching only metadata,
but this also disables prefetch. Experiment and see how your
environment behaves.

zfs create -o recordsize=16k -o compress=lz4 -o redundant_

metadata=most -o primarycache=metadata mypool/var/db/mysql

The primary MySQL logs compress best with gzip, and don’t
need caching in memory.

zfs create -o compress=gzip1 -o primarycache=none mysql/var/

log/mysql

The replication log works best with lz4 compression.

zfs create -o compress=lz4 mypool/var/log/mysql/replication

50    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSADMIN
Tuning OpenZFS

Tell MySQL to use these datasets with these my.cnf settings.

data_path=/var/db/mysql

log_path=/var/log/mysql

binlog_path=/var/log/mysql/replication

You can now initialize your database and start loading data.

MySQL—MyISAM
Many MySQL applications still use the older MyISAM storage
engine, either because of its simplicity or just because they have
not been converted to using InnoDB.

MyISAM uses an 8 KB block size. The dataset record size should
be set to match. The dataset layout should otherwise be the same
as for InnoDB.

PostgreSQL
ZFS can support very large and fast PostgreSQL systems, if
tuned properly. Don’t initialize your database until you’ve cre-
ated the needed datasets.

PostgreSQL defaults to using 8 KB storage blocks for everything.
If you change PostgreSQL’s block size, you must change the data-
set size to match.

The examples here use FreeBSD. Other operating systems will
use different paths and have their own database initialization
scripts. Substitute your preferred operating system commands
and paths as needed.

PostgreSQL data goes in /usr/local/pgsql/data. For a big
install, you probably have a separate pool for that data. Here I’m
using the pool pgsql for PostgreSQL.

zfs set mountpoint=/usr/local/pgsql pgsql

zfs create pgsql/data

Now we have a chicken-and-egg problem. PostgreSQL’s database
initialization routine expects to create its own directory tree, but
we want particular subdirectories to have their own datasets.
The easiest way to do this is to let PostgreSQL initialize, and
then create datasets and move the files. Here’s how FreeBSD
initializes a PostgreSQL database.

/usr/local/etc/rc.d/postgresql oneinitdb

The initialization routine creates databases, views, schemas,
configuration files, and all the other components of a high-end
database. Now you can create datasets for the special parts.

Our test system’s PostgreSQL install stores databases in
/usr/local/pgsql/data/base. The Write Ahead Log, or WAL, lives
in /usr/local/pgsql/data/pg_xlog. Move both of these out of
the way.

cd /usr/local/pgsql/data

mv base base-old

mv pg_xlog pg_xlog-old

Both of these parts of PostgreSQL use an 8 KB block size, and
you would want to snapshot them separately, so create a dataset
for each. As with MySQL, tell the ARC to cache only the meta-
data. Also tell these datasets to bias throughput over latency
with the logbias property.

zfs create -o recordsize=8k -o redundant_metadata=most -o

primarycache=metadata logbias=throughput pgsql/data/pg_xlog

zfs create -o recordsize=8k -o redundant_metadata=most -o

primarycache=metadata logbias=throughput pgsql/data/base

Copy the contents of the original directories into the new datasets.

cp -Rp base-old/* base

cp -Rp pg_xlog-old/* pg_xlog

You can now start PostgreSQL.

Tuning for File Size
ZFS is designed to be a good general-purpose file system. If you
have a ZFS system serving as file server for a typical office,
you don’t really have to tune for file size. If you know what size
of files you’re going to have, though, you can make changes to
improve performance.

Small Files
When creating many small files at high speed in a system with-
out a SLOG (Separate (ZFS-Intent) Log), ZFS spends a signifi-
cant amount of time waiting for the files and metadata to finish
flushing to stable storage.

If you are willing to risk the loss of any new files created in the
last five seconds (or more if your vfs.zfs.txg.timeout is higher),
setting the sync property to disabled tells ZFS to treat all writes
as asynchronous. Even if an application asks that it not be told
that the write is complete until the file is safe, ZFS returns
immediately and writes the file along with the next regularly
scheduled txg.

A high-speed SLOG lets you store those tiny files both synchro-
nously and quickly.

Big Files
ZFS recently added support for blocks larger than 128 KB via the
large_block feature. If you’re storing many large files, certainly
consider this. The default maximum block size is 1 MB.

Theoretically, you can use block sizes larger than 1 MB. Very few
systems have extensively tested this, however, and the interac-
tion with the kernel memory allocation subsystem has not been
tested under prolonged use. You can try really large record sizes,
but be sure to file a bug report when everything goes sideways.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  51

SYSADMIN
Tuning OpenZFS

On FreeBSD, the sysctl vfs.zfs.max_recordsize controls the
maximum block size. On Linux, zfs_max_recordsize is a mod-
ule parameter.

Once you activate large_blocks (or any other feature), the pool
can no longer be used by hosts that do not support the feature.
Deactivate the feature by destroying any datasets that have ever
had their recordsize set to larger than 128 KB.

Storage systems struggle to balance latency and throughput.
ZFS uses the logbias property to decide which way it should
lean. ZFS uses a logbias of latency by default, so that data is

quickly synched to disk, allowing databases and other applica-
tions to continue working. When dealing with large files, chang-
ing the logbias property to throughput might result in better
performance. You must do your own testing and decide which
setting is right for your workload.

With a few adjustments, you can make your database’s file sys-
tem fly…leaving you capacity to cope with your next headache.

This article was adapted from Allan Jude and Michael W Lucas,
FreeBSD Mastery: Advanced ZFS (Tilted Windmill Press, 2016).

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX
is always looking for academics to participate. The program is designed for faculty or staff who directly interact with stu-
dents. We fund one representative from a campus at a time.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for student use

■ Distributing calls for papers and upcoming event
 brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas
of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus Representative),
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty
have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four-year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

■ Providing students who wish to join USENIX with
 information and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions on
how the organization can better serve students

For more information about our Student Programs, please contact office@usenix.org

www.usenix.org/students

Do you have a USENIX Representative
on your university or college campus?

If not, USENIX is interested in having one!

