
6    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMSYour Cores Are Slacking Off—
Or Why OS Scheduling Is a Hard Problem
J E A N - P I E R R E L O Z I , B A P T I S T E L E P E R S , J U S T I N F U N S T O N , F A B I E N G A U D ,
V I V I E N Q U É M A , A N D A L E X A N D R A F E D O R O V A

Jean-Pierre Lozi is an Associate
Professor at the University
of Nice Sophia-Antipolis, in
the French Riviera. When
he’s not reading OS papers

on the beach, you can usually find him
around Château Valrose, teaching multicore
programming, big data, and other hot topics.
jplozi@unice.fr

Baptiste Lepers is a postdoc
at EPFL. His research
topics include performance
profiling, optimizations for
NUMA systems, multicore

programming, and proofs of concurrent
programs. baptiste.lepers@gmail.com

Justin Funston is a PhD student
at the University of British
Columbia and is advised by
Alexandra Fedorova. His
research interests include

contention management on multicore and
NUMA systems, parallel and high performance
computing, and operating systems in general.
jfunston@ece.ubc.ca

Fabien Gaud is a Senior
Software Engineer at Coho
Data, focusing on performance
and scalability. He received his
PhD in 2010 from Grenoble

University, and from 2011 to 2014 he was a
postdoctoral fellow at Simon Fraser University.
me@fabiengaud.net

A s a central component of resource management, the OS thread sched-
uler must make sure that ready threads are scheduled on available
cores. As surprising as it may seem, we found that this simple rule is

often broken in Linux. Cores may stay idle for seconds while ready threads
are waiting in run queues, delaying applications and wasting energy. This
phenomenon is not due to an intentional design but to performance bugs.
These bugs can slow down scientific applications many-fold and degrade
performance of workloads like kernel compilation and OLAP on a widely
used commercial database by tens of percent, particularly on machines with
a large number of cores. The root cause of the bugs is the increasing sched-
uler complexity, linked to rapid evolution in modern hardware. In this article,
we describe the bugs and their effects and reflect on ways to combat them.

Our recent experience with the Linux scheduler revealed that the pressure to work around
the challenging properties of modern hardware, such as non-uniform memory access
(NUMA) latencies, high costs of cache coherency and synchronization, and diverging CPU
and memory latencies, resulted in a scheduler with an incredibly complex implementation.
As a result, the very basic function of the scheduler, which is to make sure that runnable
threads use idle cores, fell through the cracks. We have discovered four performance bugs
that cause the scheduler to leave cores idle while runnable threads are waiting for their
turn to run. Resulting performance degradations are in the range 13–24% for typical Linux
workloads, and reach many-fold slowdowns in some corner cases. In this article, we describe
three of the four bugs. For the complete description, please refer to our extended paper [7].

Detecting the aforementioned bugs is difficult. They do not cause the system to crash or
hang, but eat away at performance, often in ways that are difficult to notice with standard
performance monitoring tools. For instance, when executing the OLAP workload TPC-H
on a widely used commercial database, the symptom occurred many times throughout the
execution, but each time it lasted only a few hundreds of milliseconds—too short to detect
with tools like htop, sar, or perf. Yet, collectively, these occurrences did enough damage to
slow down the most affected query by 23%. Even in cases where the symptom was present
for a much longer duration, the root cause was difficult to discover because it was a result of
many asynchronous events in the scheduler.

In the rest of this article we provide relevant background on the Linux scheduler, describe
the bugs and their root causes, demonstrate their performance effects, and finally reflect on
ways to combat them, focusing especially on the tools that were crucial for the bug discovery.

The Linux Scheduler
Linux’s Completely Fair Scheduling (CFS) is an implementation of the weighted fair queue-
ing (WFQ) scheduling algorithm, wherein the available CPU cycles of each core are divided
among threads in proportion to their weights. To support this abstraction, CFS time-slices
the CPU cycles among the running threads.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  7

Vivien Quéma is a Professor at
Grenoble INP (ENSIMAG). His
research is about understand-
ing, designing, and building
(distributed) systems. He

works on Byzantine fault tolerance, multicore
systems, and P2P systems.
vivien.quema@grenoble-inp.fr

Alexandra Fedorova is an
Associate Professor at the
University of British Columbia.
In her day-to-day life, she
measures and hacks operating

systems, runtime libraries, and other system
software. In her spare time she consults for
MongoDB. sashs@ece.ucb.ca

The scheduler defines a fixed time interval during which each thread in the system must
run at least once. The interval is divided among threads proportionally to their weights. The
resulting interval (after division) is what we call the timeslice. A thread’s weight is essen-
tially its priority, or niceness in UNIX parlance. Threads with lower niceness have higher
weights and vice versa.

When a thread runs, it accumulates vruntime (the runtime of the thread divided by its
weight). Once a thread’s vruntime exceeds its assigned timeslice, the thread is preempted
from the CPU if there are other runnable threads available. A thread might also get pre-
empted if another thread with a smaller vruntime is awoken.

Threads are organized in run queues. As a matter of efficiency, there is one run queue per
core. When a core looks for a new thread to run, it picks the thread in its run queue that has
the smallest vruntime.

For the overall system to be efficient, run queues must be kept balanced. To this end, CFS
periodically runs a load-balancing algorithm that will keep the queues roughly balanced.

CFS balances run queues based on a metric called load, which is the combination of the
thread’s weight and its average CPU utilization. Intuitively, if a thread does not use much of a
CPU, its load will be decreased accordingly. Additionally, the load-tracking metric accounts
for varying levels of multithreading in different processes.

When a thread belongs to a group of threads (called a cgroup), its load is further divided by
the total number of threads in its cgroup. Cgroups are used to group threads or processes
that logically belong together, such as threads in the same application or processes launched
from the same terminal (tty). This is done for fairness purposes, such that the CPU is shared
among applications rather than individual instruction streams.

CFS implements a hierarchical load-balancing strategy. The cores are logically organized
in a hierarchy, at the bottom of which is a single core. How the cores are grouped at the
hierarchy’s next levels depends on how they share the machine’s physical resources. On the
example machine illustrated in Figure 1, pairs of cores share functional units, such as the

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

Figure 1: A machine with 32 cores, four NUMA nodes (eight cores per node sharing a last-level cache),
and pairs of cores sharing a floating point unit. The dashed lines outline the scheduling domains as
perceived by the left-topmost core. Level 3 of the hierarchy shows a group of three nodes: that is because
these nodes are reachable from the left-topmost core in a single hop. (See Figure 3 for a detailed overview
of node connectivity in our system.) At the fourth level, we have all the nodes of the machine, because
they can be reached from the left-topmost core in at most two hops.

8    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

f loating point unit, and groups of eight cores share a last-
level cache; these groups of eight also form a NUMA node. As a
result, at the second level of the hierarchy we have pairs of cores,
and at the third level we have NUMA nodes. NUMA nodes are
further grouped according to their level of connectivity. This
is where things become a bit tricky, because the hierarchy is
constructed from the point of view of a particular “designated”
core; in the load-balancing algorithm it is the core that performs
load balancing. In Figure 1 the hierarchy levels are shown as if
the left-topmost core were designated. Hence, the third level of
the hierarchy includes all nodes that can be reached from that
designated core in one hop. The fourth level includes the nodes
that can be reached from it in at most two hops, i.e., all nodes in
the system.

Each level of the hierarchy is called a scheduling domain. If a
scheduling domain includes sub-domains, such as the NUMA-
node domain including core-pair domains, those sub-domains
are referred to in Linux terminology as scheduling groups.

At the high level, the load-balancing algorithm works as follows.
Load balancing is run for each scheduling domain, starting
from the lowest level of the hierarchy that contains more than
a single core (the pair-of-cores level in our example) to the top.
At each level, the algorithm is run by the designated core. The
core is designated if it is either the first idle core of the domain
or, if none of the cores are idle, the core with the lowest ID in
the domain. The designated core computes the average load for
each scheduling group of the domain and picks the busiest group,
based on the load and on heuristics that favor overloaded and
imbalanced groups. If the load of the busiest group is higher than
the load of the designated core’s home group, the designated core
steals threads from the busiest group so as to balance the load.

The scheduler implements a set of optimizations to improve the
efficiency of the load-balancing mechanism, but as we will see
later they increase complexity and nurture bugs. For example,
in earlier versions of Linux, idle cores, which are typically
transitioned into a lower power state, were always awoken on
every clock tick; at this point they would run the load-balancing
algorithm. Since version 2.6.21, Linux included the option, now
enabled by default, to avoid periodically waking up sleeping
cores. It is the responsibility of overloaded cores to wake up the
sleeping cores when needed. Another set of optimizations has
to do with the placement of threads that become unblocked.
Normally when a thread wakes up, after sleeping or waiting for
a resource like a lock or I/O, the scheduler tries to place it on
the idlest core. However, when a thread is awoken by another
“waker” thread, the scheduler will favor cores sharing a cache
with the waker thread to improve cache reuse.

The Group Imbalance Bug
The first bug we encountered is illustrated in Figures 2a and 2b.
The figures show the state of the scheduler when we execute a
workload on an eight-node NUMA system summarized in Table
1. The x-axis shows the time and the y-axis shows the cores,
grouped by their node number. In the time period shown in the
figure, the machine was executing a compilation of the kernel
(make with 64 threads) and running two R processes (each with
one thread). The make and the two R processes were launched
from three different ssh connections (i.e., three different ttys).
Figure 2a is a heatmap showing the number of threads in each

Figure 2: The Group Imbalance bug. The y-axis shows CPU cores. Nodes
are numbered 0–7. Each node contains eight cores.

(a) # threads in each core’s run queue over time

(b) Load of each core’s run queue over time

(c) Same as (a), with fix applied

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  9

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

core’s run queue over time. The chart shows that there are two
nodes (zero and four) whose cores run either only one thread or
no threads at all, while the rest of the nodes are overloaded, with
many of the cores having two threads in their run queue.

After investigation, we found that the scheduler is not balancing
the load properly. Remember that a thread’s load is a combina-
tion of its weight and its CPU utilization. Threads launched from
the same tty belong to the same cgroup, and their load is thus
divided by the number of threads in their cgroup. As a result, a
thread in the 64-thread make process has a load roughly 64 times
smaller than a thread in a single-threaded R process.

Discrepancies between threads’ loads are illustrated in Figure
2b, which shows the combined load of threads in each core’s run
queue: a darker color corresponds to a higher load. Nodes 0 and 4,
the ones running the R processes, each have one core with a very
high load. These are the cores that run the R threads.

The Linux load balancer steals work from other run queues
based on load; obviously the underloaded cores in Nodes 0 and
4 should not steal from the overloaded core in their own node,
because that core runs only a single thread. However, they must
be able to steal from the more loaded cores in other nodes. This
is not happening for the following reason. Remember that to
limit algorithmic complexity, the load-balancing algorithm uses
a hierarchical design. When a core attempts to steal work from
another node or, in other words, from another scheduling group,
it does not examine the load of every core in that group, it only
looks at the group’s average load. If the average load of the victim
group is greater than that of its own, it will attempt to steal
threads from that group; otherwise it will not. In our case, the
idle core looking for work is in the same group as the high-load
R thread. So the average load for that group is actually the same
as the load of the group with many overloaded cores. As a result,
no stealing occurs, despite the victim group having overloaded
cores with waiting threads.

To fix this bug, we changed the part of the algorithm that com-
pares the load of scheduling groups. Instead of comparing the
average loads, we compare the minimum loads. The minimum
load is the load of the least loaded core in that group. Intuitively,
if the minimum load of one scheduling group is lower than the
minimum load of another scheduling group, it means that the
first scheduling group has a core that is less loaded than any core
in the other group, and thus a core in the first group must steal
from the second.

Figure 2c is a visualization of the same workload after we fixed
the bug (showing a heatmap of run queue sizes, in the same
fashion as Figure 2a). We observe that the imbalance disappears.
With the fix, the completion time of the make job, in the make/R
workload decreased by 13%. Performance impact could be much
higher in other circumstances. For example, in a workload run-
ning lu from the NPB (NASA Advanced Supercomputing Paral-
lel Benchmarks) suite with 60 threads, and four single-threaded
R processes, lu ran 13x faster after fixing the Group Imbalance
bug. lu experienced a super-linear speedup, because the bug
exacerbated lock contention when multiple lu threads ran on the
same core.

The Scheduling Group Construction Bug
Linux defines a command, called taskset, that enables pinning
applications to run on a subset of the available cores. The bug we
describe in this section occurs when an application is pinned on
nodes that are two hops apart. For example, in Figure 3, which
demonstrates the topology of our NUMA machine, Nodes 1 and
2 are two hops apart. The bug will prevent the load-balancing
algorithm from migrating threads between these two nodes.

The bug results from the way scheduling groups are constructed,
which is not adapted to modern NUMA machines such as the one
we use in our experiments. In brief, the groups are constructed
from the perspective of a specific core (Core 0), whereas they
should be constructed from the perspective of the core respon-
sible for load balancing on each node, the designated core. We
explain with an example.

Figure 3: Topology of our 8-node AMD Bulldozer machine

CPUs 4 × 16-core Opteron 6272 CPUs (64 threads
in total)

Clock rate 2.1 GHz

Caches 64 KB shared L1 i-cache

(Each core) 16 KB L1 d-cache

2 MB shared L2

8 MB shared L3

Memory 512 GB of 1.6 GHz DDR-3

Interconnect HyperTransport 3.0 (see Figure 3)

Table 1: Hardware of our AMD Bulldozer machine

10    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

Let us walk through the key steps of the load-balancing algo-
rithm when the balancing is performed at the top of the hierar-
chy, i.e., at the scheduling domain including all the machine’s
nodes. The algorithm will construct the scheduling groups (the
sub-domains) included within that scheduling domain. The first
scheduling group on the machine in Figure 3 will include Node
0 plus all the nodes that are one hop apart from Node 0, namely
Nodes 1, 2, 4, and 6. The second group will include the lowest-
numbered node that was not included in the first group: Node 3,
in this case, and all nodes that are one hop apart from Node 3:
Nodes 1, 2, 4, 5, 7. The two scheduling groups are thus: {0, 1, 2, 4,
6} and {1, 2, 3, 4, 5, 7}.

Suppose that an application is pinned on Nodes 1 and 2 and that
all of its threads are being created on Node 1. Eventually we
would like the load to be balanced between Nodes 1 and 2. How-
ever, when a core in Node 2 looks for work to steal, it will compare
the load between the two scheduling groups shown earlier. Since
each scheduling group contains both Nodes 1 and 2, the average
loads will be the same, so Node 2 will not steal any work!

The bug originates from an attempt to improve the performance
of Linux on large NUMA systems. Before the introduction of the
bug, Linux would balance the load inside NUMA nodes and then
across all NUMA nodes. New levels of hierarchy (nodes one hop
apart, nodes two hops apart, etc.) were introduced to increase
the likelihood for threads to remain close to their original
NUMA node.

To fix the bug, we modified the construction of scheduling
groups so that each core uses scheduling groups constructed
from its own perspective. After the fix, the cores were able to
detect the imbalance and to steal the work. Table 2 presents the
performance difference in NPB applications with and without the
Scheduling Group Construction bug. Applications are launched
on two nodes with as many threads as there are cores. The maxi-
mum slowdown of 27x is experienced by lu. The slowdown is a
lot more than the expected 2x because of locking effects.

The Overload-on-Wakeup Bug
The gist of this bug is that a thread that was asleep may wake up
on an overloaded core while other cores in the system are idle.
The bug was introduced by an optimization in the wakeup code
(select_task_rq_fair function). When a thread goes to sleep
on Node X and the thread that wakes it up later is running on
that same node, the scheduler only considers the cores of Node
X for scheduling the awakened thread. If all cores of Node X are
busy, the thread will wake up on an already busy core and miss
opportunities to use idle cores on other nodes. This can lead to a
significant under-utilization of the machine, especially on work-
loads where threads frequently wait.

The rationale behind this optimization is to maximize cache
reuse. Essentially, the scheduler attempts to place the woken up
thread physically close to the waker thread, e.g., so both run on
cores sharing a last-level cache, in consideration of producer-
consumer workloads where the woken up thread will consume

Figure 4: Several instances of the Overload-on-Wakeup bug

Application Time w/ bug Time w/o bug Speedup
(sec) (sec) factor (x)

bt 99 56 1.75

cg 42 15 2.73

ep 73 36 2

ft 96 50 1.92

is 271 202 1.33

lu 1040 38 27

mg 49 24 2.03

sp 31 14 2.23

ua 206 56 3.63

Table 2: Execution time of NPB applications with the Scheduling Group
Construction bug and without it

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  11

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

the data produced by the waker thread. This seems like a reason-
able idea, but for some workloads, waiting in the run queue for
the sake of better cache reuse does not pay off.

This bug was triggered by and affected the runtime of a widely
used commercial database configured with 64 worker threads
(one thread per core) and running an OLAP (TPC-H) workload.

Figure 4 illustrates several instances of the Overload-on-
Wakeup bug. During the first time period (1), one core is idle
while a thread that ideally should be scheduled on that core
keeps waking up on other cores, which are busy. During the
second time period (2), there is a triple instance of the bug:
three cores are idle for a long time, while three extra threads
that should be scheduled on those cores keep waking up on other
busy cores. The Overload-on-Wakeup bug is typically caused
when a transient thread is scheduled on a core that runs a data-
base thread. When this happens, the load balancer observes a
heavier load on the node that runs the transient thread (Node A)
and migrates one of the threads to another node (Node B). This
is not an issue if the transient thread is the one being migrated,
but if it is the database thread, then the Overload-on-Wakeup
bug will kick in. Node B now runs an extra database thread, and
threads of Node B, which often sleep and wake up, keep waking
up on that node, even if there are no idle cores on that node. This
occurs because the wakeup code only considers cores from the
local node for the sake of better cache reuse and results in a core
running multiple threads when some cores that are always idle
are present on other nodes.

To fix this bug, we alter the code that is executed when a thread
wakes up. We wake up the thread on the local core—i.e., the core
where the thread was scheduled last—if it is idle; otherwise, if
there are idle cores in the system, we wake up the thread on the
core that has been idle for the longest amount of time. If there are
no idle cores, we fall back to the original algorithm to find the
core where the thread will wake up.

Our bug fix improves performance by 22.6% on the 18th query of
TPC-H, and by 13.2% on the full TPC-H workload.

Discussions and Lessons Learned
The first question to ask is whether these bugs could be fixed
with a new, cleaner scheduler design that is less error-prone and
easier to debug, but still maintains the features we have today.
Historically, though, this does not seem like a long-term solu-
tion, in addition to the fact that the new design would need to be
implemented and tested from scratch. The Linux scheduler has
gone through a couple of major redesigns. The original scheduler
had high algorithmic complexity, which resulted in poor perfor-
mance when highly multithreaded workloads became common.
In 2001, it was replaced by a new scheduler with O(1) complexity
and better scalability on SMP systems. It was initially success-
ful but soon required modifications for new architectures like

NUMA and SMT (simultaneous multithreading). At the same
time, users wanted better support for desktop use cases such as
interactive and audio applications, which required more changes
to the scheduler. Despite numerous modifications and proposed
heuristics, the O(1) scheduler was not able to meet expectations
and was replaced by CFS in 2007. Interestingly, CFS sacrifices
O(1) complexity for O(log (# threads)), but it was deemed worth-
while to provide the desired features.

As the hardware and workloads became more complex, CFS,
too, succumbed to bugs. The addition of autogroups (i.e., the
automatic grouping of threads from the same tty into a cgroup)
coupled with hierarchical load balancing introduced the Group
Imbalance bug. Asymmetry in new, increasingly complex NUMA
systems triggered the Scheduling Group Construction bug.
Cache-coherency overheads on modern multi-node machines
motivated the cache locality optimization that caused the
Overload-on-Wakeup bug.

The takeaway is that new scheduler designs come and go. How
ever, a new design, even if clean and purportedly bug-free
initially, is not a long-term solution. Linux is a large open-source
system developed by dozens of contributors. In this environment,
we will inevitably see new features and “hacks” retrofitted into
the source base to address evolving hardware and applications.

The recently released Linux 4.3 kernel features a new imple-
mentation of the load metric. This change is reported to be “done
in a way that significantly reduces complexity of the code” [1].
Simplifying the load metric could get rid of the Group Imbalance
bug, which is directly related to it. However, we confirmed, using
our tools (see [7] for a full description of our tools and the end of
this article for a link to the code), that the bug is still present.

Kernel developers rely on mutual code review and testing to pre-
vent the introduction of bugs. This could potentially be effective
for bugs, like the Scheduling Group Construction bug, that are
easier to spot in the code (of course, it still was not effective in
these cases), but it is unlikely to be reliable for the more arcane
types of bugs.

Catching these bugs with testing or conventional performance
monitoring tools is tricky. They do not cause the system to
crash or to run out of memory, but they do silently eat away at
performance. As we have seen with the Group Imbalance and
the Overload-on-Wakeup bugs, they introduce short-term idle
periods that “move around” between different cores. These
microscopic idle periods cannot be noticed with performance
monitoring tools like htop, sar, or perf. Standard performance
regression testing is also unlikely to catch these bugs, as they
occur in very specific situations (e.g., multiple applications
with different thread counts launched from distinct ttys). In
practice, performance testing on Linux is done with only one
application running at a time on a dedicated machine—this is the

12    WI N T ER 20 16  VO L . 41 , N O. 4 	 www.usenix.org

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

standard way of limiting factors that could explain performance
differences.

One of the most important lessons we learned in the process of
finding and diagnosing these bugs is that it was crucially impor-
tant to have the tools that trace and visualize microscopic events
during the execution, such as the state of the kernel run queues
and the transitions of threads between the cores. The visualiza-
tions that we relied on for detection and diagnosis of the bugs are
shown in Figures 2 and 4. We built our own tools that perform
precise tracing of kernel events and plot them as the space/time
charts shown earlier.

Although we found it convenient to build our own tools, there
is also a variety of powerful third-party dynamic tracing tools,
such as DTrace, LTTNG, Event Tracing for Windows, Ftrace,
and SystemTap. Unfortunately, effective visual front-ends and
trace analysis tools that are necessary to make the traces useful
are lacking. Most of the user-friendly performance tools avail-
able today rely on sampling and display averages and aggregates,
which is not powerful enough for detecting performance anoma-
lies like those caused by the scheduler bugs. We strongly feel that
the software engineering community must embrace dynamic
tracing and visualization for efficient diagnosis of egregious
performance anomalies.

Reflection on the Future of OS Scheduling
The bugs we described resulted from increasingly more optimi-
zations in the scheduler, whose purpose was mostly to cater to
complexity of modern hardware. As a result, the scheduler, that
once used to be a simple isolated part of the kernel, grew into
a complex monster whose tentacles reached into many other
parts of the system, such as power and memory management.
The optimizations studied in this paper are part of the mainline
Linux, but even more scheduling optimizations were proposed in
the research community.

Since 2000, dozens of papers have described new scheduling
algorithms catering to resource contention, coherency bottle-
necks, and other idiosyncrasies of modern multicore systems.
There were algorithms that scheduled threads so as to minimize
contention for shared caches, memory controllers, and multi-
threaded CPU pipelines [2, 6, 8]. There were algorithms that
reduced communication distance among threads sharing data
[10]. There were algorithms that addressed scheduling on asym-
metric multicore CPUs [4, 9] and algorithms that integrated
scheduling with the management of power and temperature
[3]. Finally, there were algorithms that scheduled threads to
minimize communication latency on systems with an asym-
metric interconnect [5]. All of these algorithms showed positive
benefits, either in terms of performance or power, for some real
applications. However, few of them were adopted in mainstream

operating systems, mainly because it is not clear how to inte-
grate all these ideas in the scheduler safely.

If every good scheduling idea is slapped as an add-on to a single
monolithic scheduler, we risk more complexity and more bugs,
as we saw from the case studies in this paper. Rapid evolution of
hardware that we are witnessing today will motivate more and
more scheduler optimizations. Instead of producing yet another
monolithic scheduler design, what we may need is to switch to a
more modular architecture..

One possible avenue is to decouple time management from space
management. Historically, on single-core systems, the sched-
uler was tasked with managing time, that is, sharing the CPU
cycles among the threads. On multicore systems, the scheduler
evolved to also manage space, that is to decide where to place the
threads. Several researchers postulated that space management
need not be done at as fine a time granularity as time manage-
ment, and this idea becomes more and more feasible in the age
where machines are evolving to have more cores than most
applications need. Perhaps space management could be done at
coarse time intervals by placing groups of threads on subsets
of cores such that each thread always has a free core whenever
it needs one. Then time management would be largely out of
the picture, and the space manager would deal with issues like
NUMA locality and resource contention. It would adjust the
mapping of threads to cores somewhat infrequently to reflect the
changes in application behavior over time. Still, understanding
how to combine different, perhaps conflicting, space optimi-
zations and reason about how they interact remains an open
research problem.

Our bug fixes and tools are available at http://git.io/vaGOW.

www.usenix.org	   WI N T ER 20 16  VO L . 41 , N O. 4  13

SYSTEMS
Your Cores Are Slacking Off—Or Why OS Scheduling Is a Hard Problem

References
[1] Michael Larabel, “The Linux 4.3 Scheduler Change
‘Potentially Affects Every SMP Workload in Existence,’”
Phoronix, September 2015: https://www.phoronix.com/scan
.php?page=news_item&px=Linux-4.3-Scheduler-SMP.

[2] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A
Case for NUMA-Aware Contention Management on Multicore
Systems,” in Proceedings of the 2011 USENIX Annual Technical
Conference (USENIX ATC ’11): https://www.usenix.org/legacy
/events/atc11/tech/final_files/Blagodurov.pdf.

[3] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, “Heat-and-
Run: Leveraging SMT and CMP to Manage Power Density
Through the Operating System,” in Proceedings of the 11th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XI), 2004:
https://engineering.purdue.edu/~vijay/papers/2004/heat-and
-run.pdf.

[4] D. Koufaty, D. Reddy, and S. Hahn, “Bias Scheduling in
Heterogeneous Multi-Core Architectures,” in Proceedings of the
5th European Conference on Computer Systems (EuroSys ’10):
http://eurosys2010.sigops-france.fr/proceedings/docs/p125.pdf.

[5] B. Lepers, V. Quéma, and A. Fedorova, “Thread and Memory
Placement on NUMA Systems: Asymmetry Matters,” in
Proceedings of the 2015 USENIX Annual Technical Conference
(USENIX ATC ’15): https://www.usenix.org/system/files
/conference/atc15/atc15-paper-lepers.pdf.

[6] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient
Operating System Scheduling for Performance-Asymmetric
Multi-Core Architectures,” in Proceedings of the 2007 ACM
/IEEE Conference on Supercomputing (SC ’07): http://happyli
.org/Tong/papers/amps.pdf.

[7] J. P. Lozi, B. Lepers, J. R. Funston, F. Gaud, V. Quéma, and A.
Fedorova, “The Linux Scheduler: A Decade of Wasted Cores,” in
Proceedings of the 11th European Conference on Computer Sys-
tem (EuroSys 2016), pp. 1:1–1:16: http://www.ece.ubc.ca/~sasha
/papers/eurosys16-final29.pdf.

[8] K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kalogeraki,
“FACT: A Framework for Adaptive Contention-Aware Thread
Migrations,” in Proceedings of the 8th ACM International Con-
ference on Computing Frontiers (CF ’11): https://www.cs.sfu
.ca/~fedorova/papers/cf150-pusukuri.pdf.

[9] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov, “A
Comprehensive Scheduler for Asymmetric Multicore Systems,”
in Proceedings of the 5th European Conference on Computer
Systems (EuroSys ’10): https://www.cs.sfu.ca/~fedorova/papers
/eurosys163-saez.pdf.

[10] D. Tam, R. Azimi, and M. Stumm, “Thread Clustering:
Sharing-Aware Scheduling on SMP-CMP-SMT Multiproces-
sors,” in Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007 (EuroSys ’07): http://
www.cs.toronto.edu/~demke/2227/S.14/Papers/p47-tam.pdf.

