
www.usenix.org  S U M M ER 2020  VO L .  45 ,  N O.  2 27

PROGRAMMING

Revisiting Conway’s Law
M A R I A N N E  B E L L O T T I

A fter more than six years helping engineering organizations figure out 
how to modernize their technology, I’ve come to realize that Conway’s 
Law is more about how organizational structure creates incentives 

than where boxes and lines are drawn on an org chart. Misaligned incentives 
for managers and individual contributors carve their impact into the system 
design, influencing tool selection and complicating future maintenance. 

In 1968 Melvin Conway published a paper titled “How Do Committees Invent?” This paper, 
originally intended for Harvard Business Review but rejected for being too speculative, 
outlined the ways in which the structure and incentives of an organization influenced the 
software product it produced. It received little response but eventually made its way to the 
chair of the University of North Carolina at Chapel Hill’s computer science department, 
Fred Brooks. At the time, Brooks had been pondering a question from his exit interview 
at IBM: why is it so much harder to manage software projects than hardware projects? 
Conway’s insight linking the structure of software to the structure of the committees that 
invented them seemed significant enough for Brooks to repackage the thesis as “Conway’s 
Law” when he published his guide on effectively managing software teams—The Mythical 
Man-Month—in 1975.

Yet this was not the only useful observation in Conway’s paper. As it has subsequently been 
referenced by hundreds of computer science texts since Brooks’s adoption of it as a universal 
truth, the more nuanced observations that supported Conway’s argument have largely been 
omitted from the conversation. Conway’s Law has become a voodoo curse, something that 
people believe only in retrospect. Few engineers attribute their architectural success to the 
structure of their organization, but when a product is malformed the explanation of Conway’s 
Law is easily accepted.

Conway’s original paper outlined not just how organizational structure influenced tech-
nology but also how human factors contributed to its evolution. Conway felt organizational 
structure influenced architecture because organizational structure influenced incentives. 
How individual contributors get ahead in a particular organization determined which tech-
nical choices were appealing to them. 

Conway’s observations are more important in maintaining existing systems than they are 
in building new systems. Organizations and products both change, but they do not always 
change at the same pace. Figuring out whether to change the organization or change the 
design of the technology is just another scaling challenge.

Individual Incentives
How do software engineers get ahead? What does an engineer on one level need to accomplish 
for the organization in order to be promoted to another level? Such questions are usually dele-
gated to the world of engineering managers and not incorporated in technical decisions. And 
yet the answers absolutely have technical impacts.

Marianne Bellotti has worked 
as a software engineer for 
over 15 years. She built data 
infrastructure for the United 
Nations to help humanitarian 

organizations share crisis data worldwide and 
spent three and a half years running incident 
response for the United States Digital Service. 
While in government she found success 
applying organizational change management 
techniques to the problem of modernizing 
legacy software systems. More recently, she 
was in charge of Platform Services at Auth0 and 
currently works as Principal Engineer for System 
Safety at Rebellion Defense. She has a book on 
running legacy modernization projects coming 
out this year from No Starch Press called Kill It 
with Fire. marianne.bellotti@gmail.com



28   S U M M ER 2020  VO L .  45 ,  N O.  2  www.usenix.org

PROGRAMMING
Revisiting Conway’s Law

Most of us have encountered this in the wild: a service, a library, 
or a piece of a system that is inexplicably different from the rest 
of the applications it connects to. Sometimes this is an older com-
ponent of the system reimplemented using a different set of tools. 
Sometimes this is a new feature. It’s always technology that was 
trendy at the time the code was introduced.

When the organization has no clear career pathway for  engineers, 
software engineers grow their careers by building their reputa-
tion externally. This means getting drawn into the race of being 
one of the first to prove the production scale benefits of a new 
paradigm, language, or technical product. While it’s good for the 
engineering team to experiment with different approaches as 
they iterate, introducing new tools and databases, and supporting 
new languages and infrastructures, increases the complexity of 
maintaining the system over time.

One organization I worked for had an entire stable of custom-
built solutions for things like caching, routing, and message 
handling. Senior management hated this but felt their com-
plaints—even their instructions that it stop—did little to course 
correct. Culturally, the engineering organization was flat, with 
teams formed on an ad hoc basis. Opportunities to work on 
interesting technical challenges were awarded based on personal 
relationships, so the organization’s regular hack days became 
critical networking events. Engineering wanted to build difficult 
and complex solutions in order to advertise their skills to the lead 
engineers who were assembling teams.

Stern lectures about the importance of choosing the right tech-
nology for the job did not stop this behavior. It stopped when the 
organization hired engineering managers who developed a career 
ladder. By defining what the expectations were for every experi-
ence level of engineering and by hiring managers who would 
coach and advocate for their engineers, engineers could earn 
promotions and opportunities without the need to show off.

Organizations end up with patchwork solutions because the tech 
community rewards explorers. Being among the first with tales 
of documenting, experimenting with, or destroying a piece of 
technology builds an individual’s prestige. Pushing the boundar-
ies of performance by adopting something new and innovative 
contributes even more so to one’s reputation.

Software engineers are incentivized to forego tried-and-true 
approaches in favor of new frontiers. Left to their own devices, 
software engineers will proliferate tools, ignoring feature over-
laps for the sake of that one thing tool X does better than tool Y 
that is only relevant in that specific situation.

Well-integrated, high-functioning software that is easy to 
under stand usually blends in. Simple solutions do not do much 
to enhance personal brand. They are rarely worth talking about. 
Therefore, when an organization provides no pathway to promo-

tion for software engineers, the engineers are incentivized to 
make technical decisions that emphasize their individual con-
tribution over smoothly integrating into an existing system.

Typically this manifests itself in one of three different patterns: 

1. Creating frameworks, tooling, and other abstraction layers in 
order to make code that is unlikely to have more than one use 
case theoretically “reusable.”

2. Breaking off functions into new services, particularly  
middleware.

3. Introducing new languages or tools in order to optimize perfor-
mance for the sake of optimizing performance (in other words, 
without any need to improve an SLO or existing benchmark).

Essentially, engineers are motivated to create named things. If 
something can be named it can have a creator. If the named thing 
turns out to be popular, then the engineer’s prestige is increased 
and her career will advance.

This is not to say that good software engineers should never 
create a new service, or introduce a new tool, or try out a new 
 language on a production system. There just needs to be a 
 compelling reason why these actions benefit the system versus 
benefit the prospects of the individual engineer. 

Most of the systems I work on rescuing are not badly built. They 
are badly maintained. Technical decisions that highlight indi-
viduals’ unique contributions are not always comprehensible to 
the rest of the team. For example, switching from language X to 
 language Z may in fact boost memory performance significantly, 
but if no one else on the team understands the new language well 
enough to continue developing the code, those gains will be whit-
tled away over time by technical debt that no one knows how to fix.

The folly of engineering culture is that we are often ashamed of 
signing our organization up for a future rewrite by picking the 
right architecture for right now, but we have no misgivings about 
producing systems that are difficult for others to understand and 
therefore impossible to maintain. This was a constant problem 
for software engineers answering the call to public service from 
organizations like United States Digital Service and 18F. When 
modernizing a critical government system, when should the 
team build it using common private sector tools and train the 
government owners on said tools, and when should the solution 
be built with the tools the government worker already knows? 
Wasn’t the newest, greatest web application stack always the 
best option? Conway argued against aspiring for a universally 
correct architecture. He wrote in 1968, “It is an article of faith 
among experienced system designers that given any system 
design, someone someday will find a better one to do the same 
job. In other words, it is misleading and incorrect to speak of the 
design for a specific job, unless this is understood in the context 
of space, time, knowledge, and technology.”



www.usenix.org  S U M M ER 2020  VO L .  45 ,  N O.  2 29

PROGRAMMING
Revisiting Conway’s Law

Manager Incentives
An engineering manager is a strange creature in the technical 
organization. How should we judge a good one from a bad one? 
Unfortunately, far too often managers advance in their careers 
by managing more people. And if the organization isn’t properly 
controlling for that, then system design will be overcomplicated 
by the need to broadcast importance. Or as Conway put it: “The 
greatest single common factor behind many poorly designed 
systems now in existence has been the availability of a design 
organization in need of work.”

Opportunities to go from an engineering manager and senior 
engineering manager come up from time to time as the organi-
zation grows and changes. It’s the difference between handling 
one team and handling many. Managers leave, new teams form, 
existing teams grow past their ideal size. A good manager could 
easily earn those opportunities in the normal course of business. 
Going from senior manager to director, though, is more difficult. 
Going from director to vice president or higher even more so. It 
takes a long time for an organization to reach that level of growth 
organically.

Organizations that are unprepared to grow talent end up with 
managers who are incentivized to subdivide their teams into 
more specialized units before there is either enough people or 
enough work to maintain such a unit. The manager gets to check 
off career-building experiences of running multiple teams, hir-
ing more engineers, and taking on more ambitious projects while 
the needs of the overall architecture are ignored.

Scaling an organization before it needs to be scaled has very 
similar consequences to scaling technology too early. It restricts 
your future technical choices. Deciding to skip the monolith 
phase of development and “build it right the first time” with 
microservices means the organization must successfully 

anticipate a number of future requirements and determine how 
code should be best abstracted to create shared services based 
on those predictions. Rarely if ever are all of those predictions 
right, but once a shared service is deployed, changing it is often 
difficult. 

In the same way, a manager who subdivides a team before there is 
need to do so is making a prediction about future needs that may 
or may not come true. In my last role, our director of engineering 
decided the new platform we were building needed a dedicated 
team to manage data storage. Predictions about future scaling 
challenges supported her conclusions, but in order to get the head 
count for this new team, she had to cut it from teams that were 
working on the organization’s existing scaling challenges. Sud-
denly, new abstractions around data storage that we didn’t need 
yet were being developed while systems that affected our SLAs 
had maintenance and updates deferred.

Carrying existing initiatives to completion was not as attractive 
an accomplishment as breaking new ground. But the problem 
with designing team structure around the desired future state of 
the technology is that if it doesn’t come true the team is thrown 
into the chaos of a reorganization. Aversions to reorganizations 
alone often incentivize people to build to their organizational 
structure.

Conclusion
Both individual contributors and managers make decisions with 
their future careers in mind. Those decisions create constraints 
on possible design choices that drive the organization to design 
systems that ref lect the structure of the organization itself. 
Those wishing to benefit from the forces of Conway’s Law would 
do well to consider how people within the engineering organiza-
tion are incentivized before asking them to design a system.




