
www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 19

SECURITYInterview with Natalie Silvanovich
R I K F A R R O W

Natalie Silvanovich is a security
researcher on Google Project
Zero. Her current focus is
browser security, including
script engines, WebAssembly,

and WebRTC. Previously, she worked in
mobile security on the Android Security Team
at Google and as a team lead of the Security
Research Group at BlackBerry, where her work
included finding security issues in mobile
software and improving the security of mobile
platforms. Outside of work, Natalie enjoys
applying her hacking and reverse-engineering
skills to unusual targets and has spoken at sev-
eral conferences on the subject of Tamagotchi
hacking. natalie@natashenka.ca

Rik is the editor of ;login:.
rik@usenix.org

I met Natalie Silvanovich at the luncheon during USENIX Security ’19 in
Santa Clara. We had a fun discussion, and I resolved to spend some time
following up later.

Rik Farrow: I am familiar with a really “old” way of finding bugs: fuzzing. I know this was
very common in the late ’90s, and I assume you were using fuzzing sometimes when you
worked at BlackBerry. What’s different about how you search for bugs today?

Natalie Silvanovich: It’s been nearly 15 years since I started doing vulnerability research, and
in some ways the fundamental techniques for finding security bugs haven’t changed much.
Fuzzing and code review (or binary analysis for software that doesn’t have source code avail-
able) are still the techniques I use to find the majority of bugs I report. What has changed is
the maturity of each methodology.

There have been a lot of tools and techniques developed over the past few years that have
greatly improved the efficiency and effectiveness of fuzzing. I think one of the most impor-
tant innovations is fuzzers like AFL (http://lcamtuf.coredump.cx/afl/) that use code coverage
measurements to guide fuzzing, so that the fuzzer can focus on testing new and unexplored
areas of software. Also important are tools that allow for fuzzing to be performed at scale, for
developers to easily integrate fuzzing into the development process, and for errors to be more
consistently detected when fuzzers hit them.

The flip side of this is that, in general, it is more difficult to find bugs with fuzzing these days.
I think this is due to more security awareness among developers, as well as more software
teams fuzzing their code as a part of the development process. Fifteen years ago, it was com-
mon to find security bugs using simple mutation fuzzing on a single host in a few hours. Now
it usually takes more advanced techniques on multiple cores.

Code review techniques have been fairly consistent throughout the years, although now,
of course, we know a lot more about bug classes and how attackers can exploit them. It is
also generally more challenging to find security bugs with code review these days, probably
because software is both better tested and more complex.

RF: As part of Project Zero, do you ever work as groups/teams on a project?

NS: Yes, we do. In fact, I worked on a large research project on the iPhone [1–5] with Samuel
Groß last year. We also do team hackathons a few times a year where we work on the same target
together. While we do a lot of independent research, there’s a lot to be gained by sharing ideas!

RF: Do you and others in Project Zero get direction on what software to search, or can you
pick and choose?

NS: Project Zero’s mission is to “make zero-day hard,” and we pick our targets based on this
mission. Usually, this means software that has a large user base, a history of being targeted
by certain attackers, and/or a vulnerable user base. Team members are free to pick their own
targets within the mission, although we also often discuss targets and make goals as a team.

http://lcamtuf.coredump.cx/afl/

20  S U M M ER 2020 VO L . 45 , N O. 2 www.usenix.org

SECURITY
Interview with Natalie Silvanovich

RF: You wrote about what someone should do to get hired
at Project Zero (https://googleprojectzero.blogspot.com
/p/working-at-project-zero.html), and I wondered if you have
thought of anything you’d like to add since you posted that?

NS: Not really, but I would like to mention that vulnerability
research is just one of the many careers available in information
security, and that post is very specific to our team.

RF: Are there other women working on the Project Zero team?
In my experience, the number of women working in security is
even lower than in other areas in IT—much lower.

NS: I was the only woman on Project Zero for about four years,
but we’ve recently been joined by the amazing Maddie Stone.
There are fewer women in information than a lot of other IT
fields, but it’s improved somewhat over the last few years.

RF: With your goal of making zero-day hard, I wonder what
things you consider can make security better. I find myself sur-
prised that things have gotten better, as most programmers are
average in skill, and the languages they most often write in,
C and C++, are the same as they were when they were first cre-
ated when it comes to security. For example, a programmer can
still use gets() on Linux, and buffer overflows are still possible,
although compiler support for protecting the stack has pushed
their exploitation to the heap.

NS: This is a huge question, because there are so many ways to
improve software security. And I also want to qualify “things get-
ting better”—while I suspect there are fewer bugs per line of code
today than there were in the past, there is also more software
being used by more users for more applications than ever before.
So overall, software security is a more important problem than it
has ever been.

Taking the example of a call to gets() that causes an overflow,
there’s a lot of things that can happen during the development
process that can stop it from getting into release code. For
example:

 3 The developer understands that gets() can lead to vulnerabili-
ties, and doesn’t use it.
 3 The developer’s compiler or development environment warns
them about gets(), and they remove it.
 3 The repository they submit the code to has pre-submit or com-
piler checks that reject gets(), and the developer can’t submit
their code until they fix it.
 3 Submitting code requires the commit to be reviewed by another
developer, and that developer finds and fixes the bug.
 3 The code in the repository is automatically fuzzed, and the bug
gets found before release.

 3 The code is security reviewed before it is released, and the bug
gets found before release.
 3 The crash occurs during beta testing, and the developer fixes it
based on the crash log.
 3 The release binary contains mitigations that make it more time-
consuming to exploit memory corruption bugs.

Good “development discipline” can greatly reduce the number
of security (and other) bugs in software, and there are a lot of
tools and technology available to help with this. Of course, this
requires that the organization produce the software to prioritize
and invest in security, which is unfortunately not always the case.

RF: While I am still a fan of LangSec (langsec.org), I now realize
that it is just a part of the overall picture of secure programming
practices. What do you think of LangSec, and where do you see
that LangSec falls short of what programmers need to be doing?

NS: LangSec aims to improve software security by creating
formally verifiable languages and parsers that are immune to
many common security problems. They view the root cause of
security issues to be that most protocols and other input formats
are poorly defined and often have many undefined states, and the
programming languages that process them also support a huge
amount of undefined behavior. They think all software should
abstract out all input processing code, and design and imple-
ment it in a way that is verifiable and has no undefined states or
behavior.

One observation behind LangSec’s philosophy is that the lan-
guage software is written in has a huge influence on the number
of vulnerabilities it contains. There is a lot of evidence for this.
The most important distinction in my mind is managed (does not
allow dynamic memory allocation) versus unmanaged (allows
dynamic memory allocation) languages. Since the majority of
vulnerabilities exploited by attackers are memory corruption
vulnerabilities that occur due to the misuse of dynamically allo-
cated memory, even just moving to dynamic languages has a lot
of potential to reduce the number of vulnerabilities in software.

LangSec’s goal is lot broader than increasing the use of managed
languages, though. Dynamically allocated memory is just one of
the causes of the undefined and unverifiable software behavior
they want to prevent. Unfortunately, while there would be a lot
of benefits to fully verifiable input processing, the reality is that
technology is not quite there yet. Even just with managed lan-
guages, there are a lot of reasons that developers don’t use them,
including performance, capabilities, and compatibility with
legacy code, and formally verifiable languages have even more
limitations. So while LangSec’s ideas are very promising for the
future, I feel that a lot more work needs to be done before their
work is practical for most applications.

https://googleprojectzero.blogspot.com/p/working-at-project-zero.html
https://googleprojectzero.blogspot.com/p/working-at-project-zero.html

www.usenix.org S U M M ER 2020 VO L . 45 , N O. 2 21

SECURITY
Interview with Natalie Silvanovich

Another concern is that LangSec’s approach doesn’t prevent logic
bugs. For example, imagine a shopping website that notifies the
warehouse to ship an item before it collects payment. This design
has a security problem where if a user gets to the point where
the shopping service notifies the warehouse to ship, and then
the user stops interacting with the site, the user will get the item
for free. Formal verification won’t prevent this type of problem,
it will only check that the implementation conforms exactly to
the design. It is also likely that any formally verifiable language
or parser has at least some bugs in it (because all software has
bugs), which could lead to security bugs in software that uses
that language. It’s also possible attackers think of new types of
vulnerabilities that no one has thought of yet. So while LangSec’s
approach would likely greatly reduce the number of vulnerabili-
ties in software, it won’t eliminate all of them.

That said, there are two important takeaways from LangSec’s
approach that developers can use right now. One is that the lan-
guage they choose to write software in impacts its security a lot.
The other is that design is really important. The better defined
a feature is, and the more thought that is given to making it easy
to implement securely, the more likely it is to be secure.

RF: Other than good “development discipline,” what else can
programmers prevent to make their software more secure?

NS: One important strategy for improving software security is
Attack Surface Reduction. Put simply, every piece of software
has a portion of code that can be manipulated by attackers, and
making this as small as possible can have huge returns with
regards to preventing vulnerabilities. It’s not unusual for Project
Zero to find bugs in software features that have low or no usage,
meaning they present security risk to users with little benefit.
It’s important for developers to be aware that all code creates
a security risk and other bugs, and to make sure that tradeoff
makes sense.

References
[1] The Fully Remote Attack Surface of the iPhone: https://
googleprojectzero.blogspot.com/2019/08/the-fully-remote
-attack-surface-of.html.

[2] The Many Possibilities of CVE-2019-8646: https://
googleprojectzero.blogspot.com/2019/08/the-many
-possibilities-of-cve-2019-8646.html.

[3] Remote iPhone Exploitation, Part 1: https://googleprojectzero
.blogspot.com/2020/01/remote-iphone-exploitation-part
-1.html.

[4] Remote iPhone Exploitation, Part 2: https://googleprojectzero
.blogspot.com/2020/01/remote-iphone-exploitation-part
-2.html.

[5] Remote iPhone Exploitation, Part 3: https://googleprojectzero
.blogspot.com/2020/01/remote-iphone-exploitation-part
-3.html.

https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/08/the-fully-remote-attack-surface-of.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2019/08/the-many-possibilities-of-cve-2019-8646.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-1.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-2.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html
https://googleprojectzero.blogspot.com/2020/01/remote-iphone-exploitation-part-3.html

