
78  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS
Over the last few years Python has changed substantially, introducing

a variety of new language syntax and libraries. While certain fea-
tures have received more of the limelight (e.g., asynchronous I/O), an

easily overlooked aspect of Python is its revamped handling of file names and
directories. I introduced some of this when I wrote about the pathlib mod-
ule in ;login: back in October 2014 [1]). Since writing that, however, I’ve been
unable to bring myself to use this new feature of the library. It was simply too
different, and it didn’t play nicely with others. Apparently, I wasn’t alone in
finding it strange--pathlib [2] was almost removed from the standard library
before being rescued in Python 3.6. Given that three years have passed,
maybe it’s time to revisit the topic of file and directory handling.

The Old Ways
If you have to do anything with files and directories, you know that the functionality is
spread out across a wide variety of built-in functions and standard library modules. For
example, you have the open function for opening files:

with open(‘Data.txt’) as f:

 data = f.read()

And there are functions in the os module for dealing with directories:

import os

files = os.listdir(‘.’) # Directory listing

os.mkdir(‘data’) # Make a directory

And then there is the problem of manipulating pathnames. For that, there is the os.path
module. For example, if you needed to pull a file name apart, you could write code like this:

>>> filename = ‘/Users/beazley/Pictures/img123.jpg’

>>> import os.path

>>> # Get the base directory name

>>> os.path.dirname(filename)

‘/Users/beazley/Pictures’

>>> # Get the base filename

>>> os.path.basename(filename)

‘img123.jpg’

>>> # Split a filename into directory and filename components

>>> os.path.split(filename)

(‘/Users/beazley/Pictures’, ‘img123.jpg’)

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Revisiting Pathlib
D A V I D B E A Z L E Y

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 79

COLUMNS
Revisiting Pathlib

>>> # Get the filename and extension

>>> os.path.splitext(filename)

(‘/Users/beazley/Pictures/img123’, ‘.jpg’)

>>>

>>> # Get just the extension

>>> os.path.splitext(filename)[1]

‘.jpg’

>>>

Or if you needed to rewrite part of a file name, you might do this:

>>> filename

‘/Users/beazley/Pictures/img123.jpg’

>>> dirname, basename = os.path.split(filename)

>>> base, ext = os.path.splitext(basename)

>>> newfilename = os.path.join(dirname, ‘thumbnails’, base+’.png’)

>>> newfilename

‘/Users/beazley/Pictures/thumbnails/img123.png’

>>>

Finally, there are an assortment of other file-related features
that get regular use. For example, the glob module can be used
to get file listings with shell wildcards. The shutil module has
functions for copying and moving files. The os module has a
walk() function for walking directories. You might use these to
search for files and perform some kind of processing:

import os

import os.path

import glob

def make_dir_thumbnails(dirname, pat):

 filenames = glob.glob(os.path.join(dirname, pat))

 for filename in filenames:

 dirname, basename = os.path.split(filename)

 base, ext = os.path.splitext(basename)

 origfilename = os.path.join(dirname, filename)

 newfilename = os.path.join(dirname, ‘thumbnails’, base+’.png’)

 print(‘Making thumbnail %s -> %s’ % (filename, newfilename))

 out = subprocess.check_output([‘convert’, ‘-resize’,

 ‘100x100’, origfilename, newfilename])

def make_all_thumbnails(dirname, pat):

 for path, dirs, files in os.walk(dirname):

 make_dir_thumbnails(path, pat)

Example

make_all_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

If you’ve written any kind of Python code that manipulates files,
you’re probably already familiar with this sort of code (for better
or worse).

The New Way
Starting in Python 3.4, it became possible to think about path-
names in a different way. Instead of merely being a string, a
pathname could be a proper object in its own right. For example,
you could make a Path [3] instance and do this like this:

>>> from pathlib import Path

>>> filename = Path(‘/Users/beazley/Pictures/img123.jpg’)

>>> filename

PosixPath(‘/Users/beazley/Pictures/img123.jpg’)

>>> data = filename.read_bytes()

>>> newname = filename.with_name(‘backup_’ + filename.name)

>>> newname

PosixPath(‘/Users/beazley/Pictures/backup_img123.jpg’)

>>> newname.write_bytes(data)

1805312

>>>

Manipulation of the file name itself turns into methods:

>>> filename.parent

PosixPath(‘/Users/beazley/Pictures’)

>>> filename.name

‘img123.jpg’

>>> filename.parts

(‘/’, ‘Users’, ‘beazley’, ‘Pictures’, ‘img123.jpg’)

>>> filename.parent / ‘newdir’ / filename.name

PosixPath(‘/Users/beazley/Pictures/newdir/img123.jpg’)

>>> filename.stem

‘img123’

>>> filename.suffix

‘.jpg’

>>> filename.with_suffix(‘.png’)

PosixPath(‘/Users/beazley/Pictures/img123.png’)

>>> filename.as_uri()

‘file:///Users/beazley/Pictures/img123.jpg’

>>> filename.match(‘*.jpg’)

True

>>>

Paths have a lot of other useful features. For example, you can
easily get file metadata:

>>> filename.exists()

True

>>> filename.is_file()

True

>>> filename.owner()

‘beazley’

>>> filename.stat().st_size

1805312

>>> filename.stat().st_mtime

1388575451

>>>

80  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

COLUMNS
Revisiting Pathlib

There are also some nice directory manipulation features. For
example, the glob method returns an iterator for finding match-
ing files:

>>> pics = Path(‘/Users/beazley/Pictures’)

>>> for pngfile in pics.glob(‘*.PNG’):

... print(pngfile)

...

/Users/beazley/Pictures/IMG_3383.PNG

/Users/beazley/Pictures/IMG_3384.PNG

/Users/beazley/Pictures/IMG_3385.PNG

...

>>>

If you use rglob(), you will search an entire directory tree. For
example, this finds all PNG files in my home directory:

for pngfile in Path(‘/Users/beazley’).rglob(‘*.PNG’):

 print(pngfile)

The Achilles Heel…And Much Sadness
At first glance, it looks like Path objects are quite useful—and
they are. Until recently, however, they were a bit of an “all-in”
proposition: if you created a Path object, it couldn’t be used
anywhere else in the non-path world. In Python 3.5, for example,
you’d get all sorts of errors if you ever used a Path with more
traditional file-related functionality:

>>> # PYTHON 3.5

>>> filename = Path(‘/Users/beazley/Pictures/img123.png’)

>>> open(filename, ‘rb’)

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

TypeError: invalid file: PosixPath(‘/Users/beazley/Pictures/

img123.png’)

>>> os.path.dirname(filename)

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 File “/usr/local/lib/python3.5/posixpath.py”, line 148,

in dirname i = p.rfind(sep) + 1

AttributeError: ‘PosixPath’ object has no attribute ‘rfind’

>>>

>>> import subprocess

>>> subprocess.check_output([‘convert’, ‘-resize’, ‘100x100’,

filename, newfilename])

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

 File “/usr/local/lib/python3.5/subprocess.py”, line 626,

in check_output **kwargs).stdout

 File “/usr/local/lib/python3.5/subprocess.py”, line 693,

in run with Popen(*popenargs, **kwargs) as process:

 File “/usr/local/lib/python3.5/subprocess.py”, line 947,

in __init__ restore_signals, start_new_session)

 File “/usr/local/lib/python3.5/subprocess.py”, line 1490,

in _execute_child restore_signals, start_new_session, preexec_fn)

TypeError: Can’t convert ‘PosixPath’ object to str implicitly

>>>

Basically, pathlib partitioned Python into two worlds—the
world of pathlib and the world of everything else. It’s not entirely
unlike the separation of Unicode versus bytes, which is to say
rather unpleasant if you don’t know what’s going on. You could
get around these limitations, but the fix involves placing explicit
string conversions everywhere. For example:

>>> import subprocess

>>> subprocess.check_output([‘convert’, ‘-resize’, ‘100x100’,

str(filename), str(newfilename)])

>>>

Frankly, that’s pretty annoying. It makes it virtually impossible
to pass Path objects around in your program as a substitute for a
file name. Everywhere that passed the name a low-level func-
tion would have to remember to include the string conversion.
Modifying the whole universe of Python code is just not practi-
cal. It’s forcing me to think about a problem that I don’t want to
think about.

Python 3.6 to the Rescue!
The good news is that pathlib was rescued in Python 3.6. A new
magic protocol was introduced for file names. Specifically, if a
class defines a __fspath__() method, it is called to produce a
valid path string. For example:

>>> filename = Path(‘/Users/beazley/Pictures/img123.png’)

>>> filename.__fspath__()

‘/Users/beazley/Pictures/img123.png’

>>>

A corresponding function fspath() that was added to the os
module for coercing a path to a string (or returning a string
unmodified):

>>> import os

>>> os.fspath(filename)

‘/Users/beazley/Pictures/img123.png’

>>>

A corresponding C API function was also added so that C exten-
sions to Python could receive path-like objects.

Finally, there is also an abstract base class that can be used to
implement your own custom path objects:

class MyPath(os.PathLike):

 def __init__(self, name):

 self.name = name

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 81

COLUMNS
Revisiting Pathlib

 def __fspath__(self):

 print(‘Converting path’)

 return self.name

The above class allows you to investigate conversions. For
example:

>>> p = MyPath(‘/Users/beazley/Pictures/img123.jpg’)

>>> f = open(p, ‘rb’)

Converting path

>>> os.path.dirname(p)

Converting path

‘/Users/beazley/Pictures’

>>> subprocess.check_output([‘ls’, p])

Converting path

b’/Users/beazley/Pictures/img123.png\n’

>>>

So far as I can tell, the integration of Path objects with the
Python standard library is fairly extensive. All of the core file-
related functionality in modules such as os, os.path, shutil,
subprocess seems to work. By extension, nearly any standard
library module that accepts a file name and uses that standard
functionality will also work. It’s nice. Here’s a revised example of
code that uses pathlib:

from pathlib import Path

import subprocess

def make_thumbnails(topdir, pat):

 topdir = Path(topdir)

 for filename in topdir.rglob(pat):

 newdirname = filename.parent / ‘thumbnails’

 newdirname.mkdir(exist_ok=True)

 newfilename = newdirname / (filename.stem + ‘.png’)

 out = subprocess.check_output([‘convert’, ‘-resize’,’100x100’,

 filename, newfilename])

if __name__ == ‘__main__’:

 make_thumbnails(‘/Users/beazley/PhotoLibrary’, ‘*.JPG’)

That’s pretty nice.

Potential Potholes
Alas, all is still not entirely perfect in the world of paths. One
area where you could get tripped up is in code that’s too finicky
about type checking. For example, a function like this will hate
paths:

def read_data(filename):

 assert isinstance(filename, str), “Filename must be a string”

 ...

If you’re a library writer, it’s probably best to coerce the input
through os.fspath() instead. This will report an exception if the
input isn’t compatible. Thus, you could write this:

def read_data(filename):

 filename = os.fspath(filename)

 ...

You can also get tripped up by code that assumes the use of
strings and performs string manipulation to do things with file
names. For example:

def make_backup(filename):

 backup_file = filename + ‘.bak’

 ...

If you pass a Path object to this function, it will crash with a
TypeError since Path instances don’t implement the + operator.
Shame on the author for not using the os.path module in the first
place. Again, the problem can likely be solved with a coercion.

def make_backup(filename):

 filename = os.fspath(filename)

 backup_file = filename + ‘.bak’

 ...

But be aware that file names are allowed to be byte-strings. Even
if you make the above change, the code is still basically broken.
The concatenation will fail if a byte-string file name is passed.

C extensions accepting file names could also potentially break
unless they are using the new protocol. Hopefully, such cases are
rare—it’s not too common to see libraries that directly open files
on their own as opposed to using Python’s built-in functions.

Final Words
All things considered, it now seems like pathlib might be some-
thing that can be used as a replacement for os.path without too
much annoyance. Now, I just need to train my brain to use it—
honestly, this might be even harder than switching from print to
print(). However, let’s not discuss that.

References
[1] D. Beazley, “A Path Less Traveled,” ;login:, vol. 39, no. 5
(October 2014), pp. 47–51: https://www.usenix.org/system
/files/login/articles/login_1410_10_beazley.pdf.

[2] pathlib module: https://docs.python.org/3/library/pathlib
.html.

[3] PEP 519—Adding a file system path protocol: https://www
.python.org/dev/peps/pep-0519/.

https://www.usenix.org/system/files/login/articles/login_1410_10_beazley.pdf
https://www.usenix.org/system/files/login/articles/login_1410_10_beazley.pdf
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://www.python.org/dev/peps/pep-0519/
https://www.python.org/dev/peps/pep-0519/

