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In the June 2013 issue of ;login:, I wrote about future interfaces for non-
volatile memory (NVM) [1]. In it, I described an NVM programming 
model specification [2] under development in the SNIA NVM Program-

ming Technical Work Group (TWG). In the four years that have passed, the 
spec has been published, and, as predicted, one of the programming models 
contained in the spec has become the focus of considerable follow-up work. 
That programming model, described in the spec as NVM.PM.FILE, states 
that persistent memory (PM) should be exposed by operating systems as 
memory-mapped files. In this article, I’ll describe how the intended persistent 
memory programming model turned out in actual OS implementations, what 
work has been done to build on it, and what challenges are still ahead of us.

The Essential Background on Persistent Memory
The terms persistent memory and storage class memory are synonymous, describing media 
with byte-addressable, load/store memory access, but with the persistence properties of 
storage. In this article, I will focus on persistent memory connected to the system memory 
bus, like a DRAM DIMM, creating a class of non-volatile DIMMs known as NVDIMMs.

To further clarify what I mean by persistent memory, I am only speaking about NVDIMMs 
that allow software to access the media as memory (some NVDIMMs only support block 
access and are not covered here). This provides all the benefits of memory semantics, like 
CPU cache coherency, direct memory access (DMA) by other devices, and cache line granu-
larity access which programmers can treat as byte-addressability. To provide these seman-
tics, the media must be fast enough that it is reasonable to stall a CPU while an instruction 
is accessing it. NAND Flash, for example, is too slow to be considered persistent memory 
by itself, since access is typically done in block granularity and it takes long enough that 
context switching to allow another thread to do work makes more sense than stalling. Where 
hard drive accesses are typically measured in milliseconds, and NAND Flash SSD accesses 
are measured in microseconds, persistent memory accesses are measured in nanoseconds. 
Depending on the exact type of media, an NVDIMM may not be as fast as DRAM, but it is in 
the neighborhood.

Some NVDIMM products on the market today use DRAM as the media at runtime but auto-
matically back up the contents to NAND Flash on power loss and restore the contents when 
the power returns. These products provide DRAM performance but also require additional 
components and an energy source to save the data, giving them a lower per-DIMM capacity 
and higher cost per gigabyte than DRAM. Emerging non-volatile media, like the 3D XPoint 
technology announced jointly by Intel and Micron in 2015, promises higher capacity at a 
price point lower than DRAM. Multiple terabytes per CPU socket are expected, making per-
sistent memory interesting on multiple fronts: persistence, capacity, and cost [3].
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The Persistent Memory Programming Model
How does an application get access to persistent memory? 
Unlike volatile memory, the application needs a way to con-
nect with specific persistent contents; persistent memory isn’t 
anonymous like volatile memory; regions need names so applica-
tions can find them, just like files. And also like files, regions of 
persistent memory need permissions to control which applica-
tions have access to the persistent information. The entire point 
of the persistent memory programming model specified by 
the SNIA TWG was to recommend that operating systems use 
standard file semantics to provide naming, permissions, and 
memory-mapping of persistent memory. 

Now that this has been implemented in multiple operating sys-
tems, including Linux and Windows, it seems very obvious, and 
you might wonder why a specification was even necessary. But four 
years ago when I wrote the first ;login: article, there were multiple 
competing ideas on how to expose persistent memory, and soft-
ware vendors were in danger of having to decide between incom-
patible programming models from different products. Instead, the 
ecosystem has unified nicely around the model shown in Figure 1.

The NVDIMM shown at the bottom of the figure represents the 
persistent memory installed in the system, potentially spread 

across many NVDIMMs, and potentially interleaved (striped) 
for performance by the memory controller. On Intel-based 
systems, the BIOS creates a table called the NVDIMM Firm-
ware Interface Table (NFIT) that enumerates the NVDIMMs 
installed. This table was added to the ACPI specification in ver-
sion 6.0 and continues to evolve as NVDIMMs evolve. As shown 
in the figure, some driver (or collection of drivers) consumes 
the NFIT information and takes ownership of the persistent 
memory, exposing it to management software (left side of the 
figure), potentially exposing it as traditional block storage which 
is emulated by the driver (middle part of the figure), and expos-
ing it directly to applications through a persistent memory aware 
file system (the right side of the figure).

DAX
My definition of a persistent memory aware file system, like the 
one shown in Figure 1, is a file system that allows direct access 
to persistent memory without using the system page cache as 
it would for normal, storage-based files. This feature has been 
named DAX by the operating systems folks, short for Direct 
Access. Conveniently, both Linux and Windows use the same 
term for the same feature.

Figure 1: The SNIA persistent memory programming model
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The persistent memory programming model, and the cor-
responding DAX feature, says persistent memory files can be 
mapped into memory using standard calls like mmap() on Linux 
or MapViewOfFile() on Windows. This results in the far-right 
arrow on Figure 1, where the application has direct load/store 
access to the persistence. Once these mappings are set up (and 
after any initial minor page faults that may be required to create 
the mappings in the MMU), this provides the shortest possible 
code path to persistence, allowing the applications to perform 
loads and stores on the persistent media directly with no kernel 
involvement. No interrupts, no context switching, no kernel code 
at all is required for media access.

Making Stores Persistent
Just as persistent memory is accessed using standard memory-
mapped files, the steps for making changes persistent follow 
the same standards. On Linux (actually any POSIX-compliant 
system), the range-based msync() call or file-based fsync() call 
may be used to ensure changes are persistent. On Windows, 
the combination of FlushViewOfFile() and FlushFileBuffers() 
is used. These calls create a store barrier, a point after which 
the program can assume the previous changes it made to the 
persistent memory are actually persistent. Historically, this 
store barrier required the operating system to find dirty pages 
in the system page cache, flushing them to block storage, such 
as a disk. But since persistent memory doesn’t use the page 
cache, the operating system need only flush the CPU caches, as 
appropriate, to get changes into the persistence domain. I define 
the persistence domain as the point along the data path taken by 
stores where they are considered persistent because that point is 
power fail safe (see Figure 2).

The dashed box in Figure 2 shows the persistence domain 
required by Intel platforms supporting persistent memory. At the 
platform level, any stores inside the dashed box are either on the 
DIMM, or still in the write pending queue (WPQ) in the memory 
controller, on their way to the DIMM. Either way, platforms sup-
porting persistent memory are required to have enough stored 
energy to flush any stores inside the dashed box all the way to 
persistent media on power loss. This feature, flushing the stores 
the rest of the way on power failure, is known as asynchronous 
DRAM refresh (ADR) and has been a requirement of NVDIMM 
products since they first appeared a few years ago.

At the x86 instruction level, simply executing a store instruction 
is not enough to make data persistent, since the data may be sit-
ting in the CPU caches indefinitely and could be lost by a power 
failure. Additional cache flush actions are required to make 
the stores persistent. The following table describes how each of 
these works.

Looking at Figure 2 and the instructions in the Table 1 might 
make you wonder why Intel didn’t just make the CPU caches part 

of the persistence domain. This is technically possible, produc-
ing the situation shown in Figure 2 but with the dashed box now 
including the CPU caches.

The problem with extending the persistence domain to include 
the CPU caches is that the x86 caches are quite large, and it would 
take more energy than the capacitors in a power supply can prac-
tically provide. This usually means the platform would have to 
contain battery. Requiring a battery for every server supporting 
persistent memory is not practical at this time, but it is certainly 
possible for companies, such as appliance vendors who ship cus-
tom hardware, to include a battery in their product. This would 
allow the cache flush instructions described in Table 1 to be 
skipped, but the SFENCE instruction would still be required as a 
store barrier—stores should be considered persistent only when 
they are globally visible, and that’s what the SFENCE ensures.

Because some appliance vendors plan to use batteries as I’ve 
described, and because I hope that all platforms will someday 
include the CPU caches in the persistence domain, a property is 
being added to ACPI so that the BIOS can notify the operating 
system when the CPU flushes can be skipped. This allows the 
operating system to implement calls like msync() in the most 
optimal way.

User Space Flushing to Persistence
With the exception of WBINVD, the instructions I described in 
Table 1 are supported in user mode by Intel CPUs. Flushing a 
cache line using CLWB (or CLFLUSHOPT or CLFLUSH) and 
using non-temporal stores are all supported from user space. 

Figure 2: The path taken by a store, and the persistence domain (dashed box)
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This could allow the flushing to persistence directly from user 
space, without calling into the kernel, a feature documented in 
the SNIA programming model spec as Optimized Flush. The 
spec describes Optimized Flush as optionally supported by the 
platform, depending on the hardware and operating system sup-
port. Despite the CPU support, it is important for applications 
to only use Optimized Flush when the operating system says 
it is safe to use. The operating system may require the control 
point provided by calls like msync() when, for example, there are 
changes to file system metadata that need to be written as part 
of the msync() operation.

Support for safe userspace flushing is an evolving feature in 
the current implementations. At the time of this writing, the 
DAX support in Windows, provided by the NTFS file system, 
includes unconditional support for Optimized Flush. Windows 
programs can ensure stores to persistent memory are persistent 
using instruction sequences like CLWB + SFENCE. On Linux, 
the two file systems that support DAX, ext4 and XFS, do not 
currently consider userspace flushing safe. While hoping to 
work out interfaces with these file systems that tell applications 
when Optimized Flush is safe, it is an ongoing discussion. Other 
file systems, like NOVA [4], a research project from UCSD, are 
designed from the start to support Optimized Flush but are not 
considered production ready yet. As an interim solution, Linux 
provides Device-DAX [5], which allows an application to open a 
persistent memory device (without a file system), memory map 
it, and utilize userspace flushes to make stores persistent.

To insulate application programmers from this complexity, and 
to keep them from having to research the current state of affairs 
while programming for persistent memory, the libpmem library 
provides a function which tells the application when Optimized 
Flush is safe. Programmers are strongly encouraged to use 
libpmem to make this determination and to use userspace flush-
ing only when it is safe, falling back on the standard method of 
flushing stores to memory mapped files otherwise. The libp-
mem library is also designed to detect the case of the platform 
with a battery I described above, turning flush calls into simple 
SFENCE instructions instead. I’ve got much more to say about 
libraries below, and all the libraries I describe build on this logic 
to make sure they transparently depend on the most optimal 
type of flushing available to the program.

Persistent Memory Challenges
When a modern program changes any data structure in memory, 
the question of atomicity comes up. Is it possible for another 
thread to access the data structure and see the change only 
partially complete? With multithreaded programming, this 
issue is commonly solved using locks to protect data structures. 
Sometimes it is solved by using instruction sequences that guar-
antee atomicity in hardware. These issues have been around for 
years and are very familiar to programmers, library writers, and 
high-level language designers. In this context, the term atomi-
city really refers to visibility, protecting the changes made by one 
thread from becoming visible by other threads until the changes 
are complete. Adding persistent memory into this picture, the 
requirements change from simple atomicity to something more 

Table 1: x86 cache flush instructions for use with persistent memory

CLFLUSH
This instruction, supported in many generations of CPU, flushes a single cache line. Historically, this instruction 
is serialized, causing multiple CLFLUSH instructions to execute one after the other, without any concurrency.

CLFLUSHOPT 
(followed by an 
SFENCE)

This instruction, newly introduced for persistent memory support, is like CLFLUSH but without the 
serialization. To flush a range, software executes a CLFLUSHOPT instruction for each 64-byte cache line 
in the range, followed by a single SFENCE instruction to ensure the flushes are complete before continuing. 
CLFLUSHOPT is optimized (hence the name) to allow some concurrency when executing multiple 
CLFLUSHOPT instructions back-to-back.

CLWB  
(followed by an 
SFENCE)

Another newly introduced instruction, CLWB stands for cache line write back. The effect is the same as 
CLFLUSHOPT except that the cache line may remain valid in the cache (but no longer dirty, since it was 
flushed). This makes it more likely to get a cache hit on this line as the data is accessed again later.

NT stores 
(followed by an 
SFENCE)

Another feature that has been around for a while in x86 CPUs is the non-temporal store. These stores are “write 
combining” and bypass the CPU cache, so using them does not require a flush. The final SFENCE instruction is 
still required to ensure the stores have reached the persistence domain.

WBINVD

This kernel-mode-only instruction flushes and invalidates every cache line on the CPU that executes it. After 
executing this on all CPUs, all stores to persistent memory are certainly in the persistence domain, but all cache 
lines are empty, impacting performance. In addition, the overhead of sending a message to each CPU to execute 
this instruction can be significant. Because of this, WBINVD is only expected to be used by the kernel for 
flushing very large ranges, many megabytes at least.
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like the ACID semantics required for database transactions on 
storage [6]. Not only do we want to keep other threads from see-
ing an incomplete change, we want to handle changes that are 
interrupted by power failures, program crashes, or exceptions. 
Everyone who starts writing programs to use persistent memory 
seems to immediately come to this conclusion: we need transac-
tions that are power fail safe.

Before persistent memory existed, if a store was interrupted by 
something like power failure, the resulting memory state didn’t 
matter much because it was volatile. But with persistent mem-
ory, it is important to understand what is guaranteed by hard-
ware and what is left to software. On Intel, only an eight-byte 
store, aligned on an eight-byte boundary, is guaranteed to be 
failure atomic. That means if the store is interrupted by a power 
failure, the memory contents will contain the previous eight 
bytes, or the new eight bytes, but not some combination of the old 
and new data. Anything larger than eight bytes can be torn by 
power failure and must be handled by software. For example, if 
you want to update two eight-byte pointers in your program, and 
you want it to happen atomically, protecting those pointers with 
a lock will only help you prevent other running threads from 
seeing the partial update. A power failure might leave the update 
partially done, and there’s no single instruction that will solve 

that—software must arrange for the update to be transactional 
by building on the eight-byte power-fail-atomic store provided 
by hardware. The logic for creating these transactions is a bit 
tricky, which points to the need for libraries or language features 
to provide them.

Another persistent memory challenge is more basic: manag-
ing the space. Since persistent memory regions are exposed as 
files, the file system primarily manages that space. But once the 
file is memory-mapped by an application, what happens within 
that file is completely up to the application. Functions like C’s 
malloc() assume memory is volatile, offering no way on program 
start-up to reconnect with a persistent heap and taking no steps 
to make sure the heap is consistent in the face of failure. This 
adds space allocation to our list of requirements for persistent 
memory programming.

The need for location-independence is another challenge. 
Although it is technically possible to require that a range of 
persistent memory is always mapped at exactly the same address 
in a program, it can become impractical when the sizes of other 
mapped items change. A security feature known as Address Space 
Layout Randomization (ASLR) additionally causes operating 
systems to randomly adjust where libraries and files are mapped. 
Location-independence means that when one data structure in 
persistent memory refers to another using a pointer, that pointer 
must be somehow usable even when the file is mapped at a dif-
ferent address. There are several ways to achieve this, such as 
relocating pointers after mapping, using relative pointers instead 
of absolute pointers, or by using some type of Object ID (OID) to 
refer to persistent memory-resident data structures.

The NVM Libraries
The libraries produced by my team at Intel are designed to solve 
the challenges described above. They are meant as a conve-
nience, not as a requirement for persistent memory program-
mers. Although I refer to them collectively by the single name 
NVML, they are really a suite of six libraries (with additional 
libraries already under development). The libraries are all open 
source, BSD-licensed, and developed in the open on GitHub. I’ll 
describe the libraries here, but much more information is avail-
able at http://pmem.io, including man pages, blog entries, and 
lots of example code.

The libraries are written in C and are validated and ready for 
use on 64-bit Linux and Windows systems. Some Linux distros 
already contain the libraries in their repositories, allowing them 
to be installed with simple package management commands. 
Otherwise, you can clone the GitHub tree and use make install 
to install the library from source (details are on the Web site [7]).

Since these are C libraries, it is possible to call them from  various 
languages. When using C, we provide some macros to try to help 

Figure 3: Using the libpmemobj library, which in turn uses the primitives 
in libpmem

http://pmem.io
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catch common persistent memory programming errors, but C 
macros are never a replacement for full language integration. The 
C++ support recently released in libpmemobj (http://pmem.io 
/nvml/libpmemobj/; see below) is the cleanest, least error-prone 
way we have to do persistent memory programming. For this 
reason, if you’re just beginning to explore persistent memory 
programming, the C++ examples are the best place to start.

Here’s an overview of the suite of libraries in NVML. Many 
examples are available in the examples directory of the source 
on GitHub, but to save space I will limit my examples to the most 
commonly used library, libpmemobj.

libpmem: Basic Persistence Support
The libpmem library is small and fairly simple, containing the 
code that detects which types of flush instructions are sup-
ported by the CPU, as well as performance-tuned routines for 
copying ranges of persistence memory using the best instruc-
tion choices for the platform. As mentioned above, a routine 
that tells the caller whether Optimized Flush is safe is supplied 
(this routine is called is_pmem() for historical reasons—perhaps 
optimized_flush_available() would have been a better name in 
hindsight).

Even if you decide not to use any of the libraries I describe below, 
you might still decide to use libpmem (or steal the code) just to 
avoid the tedious development of code that detects supported 
instructions, the correct use of non-temporal stores, etc.

libpmemobj: General-Purpose Allocations and 
Transactions
This is probably the library you want. As you might guess, the 
“obj” in the name is short for object, but by that I mean the vari-
able-sized blob of data referred to by the term object storage, not 
the class with methods in an object-oriented language. Figure 3 
shows where this library sits in the programming model. Like all 
the persistent libraries in the NVML suite, this library builds on 
the primitives provided by libpmem.

The libpmemobj library allows persistent memory objects to 
be allocated in a way that is power fail safe, allows referring to 
them by Object IDs (OIDs), which are location-independent, and 
allows making an arbitrary number of changes atomic by encom-
passing the changes in a transaction. The library is multithread 
safe and optimized for multithread scalability (by doing things 
like maintaining per-thread allocation caches).

As mentioned above, the C++ support in this library provides 
the cleanest, easiest-to-use interfaces, so I’ll use a C++ example. 
The classic persistent memory example is to link something 
into a linked list (a queue in this example, taken verbatim from 
the queue.cpp example in the NVML examples area), where 
multiple operations are required to be done as a transaction. The 

example code below starts by creating a class which defines the 
struct pmem_entry, the entries on the queue:

class pmem_queue {

 /* entry in the list */

 struct pmem_entry {

  persistent_ptr<pmem_entry> next;

  p<uint64_t> value;

 };

 /* … */

Notice the persistent_ptr smart pointer template. This indi-
cates a pointer to an object in persistent memory, namely the 
next item in the persistent queue. These are the location-inde-
pendent OIDs I mentioned earlier. Also notice the p<> persistent 
property in the above declaration, used to indicate fields that 
reside in persistent memory. The result of these C++ declara-
tions is that the code to atomically allocate a new entry, initialize 
it, and link it into the queue can be done as follows:

 /*

  * Inserts a new element at the end of the queue.

  */

 void

 push(pool_base &pop, uint64_t value)

 {

  transaction::exec_tx(pop, [&] {

   auto n = make_persistent<pmem_entry>();

   n->value = value;

   n->next = nullptr;

   if (head == nullptr) {

    head = tail = n;

   } else {

    tail->next = n;

    tail = n;

   }

  });

 } 

The above push operation is transactional. More specifically, 
the code in the C++ lambda, indicated by [&] {…}, is transac-
tional, meaning if the program or the machine crashes during 
the execution of that code, libpmemobj automatically rolls any 
partially done changes back (this includes the allocation done by 
the make_persistent call).

There are many more details available for this example, as well 
as others, on the pmem.io Web site. The main point of the short 
example above is to show that, with no compiler or language 
changes, libpmemobj provides a flexible allocation and transac-
tion mechanism for persistent memory.

http://pmem.io​/nvml/libpmemobj/
http://pmem.io​/nvml/libpmemobj/


40   S U M M ER 20 17  VO L .  42 ,  N O.  2  www.usenix.org

PROGRAMMING
Persistent Memory Programming

libpmemblk and libpmemlog: Support for Specific 
Use Cases
In addition to libpmemobj and its flexible transaction sup-
port, two other libraries target specific use cases. The library 
libpmemblk is written specifically to maintain a large array of 
persistent memory blocks, all the same size. This is useful, for 
example, when an application is managing a block cache. The 
block size provided by the library is flexible, supporting blocks 
512-bytes and larger.

Similarly, the library libpmemlog is written for a specific use 
case where the application frequently appends to a private log 
file, one that is read rarely, like during crash recovery. This 
library takes the relatively long file system append path through 
the kernel and turns it into a very short memory copy in persis-
tent memory, followed by an atomic pointer adjustment.

Both of these specific use cases are easily solved using the more 
flexible libpmemobj, but the point of libpmemblk and libpmem-
log is they provide APIs that constrain the caller, allowing the 
library to assume specific cases and optimize for them.

libmemkind: The Volatile Use of Persistent 
Memory
With the large capacity and cheaper-than-DRAM price points 
expected for emerging persistent memory products, many vola-
tile use cases have come up. These are cases where the applica-
tion places some data structures in persistent memory to avoid 
a large DRAM footprint, but the application doesn’t really care 
that the memory is persistent—it is just using it as a second tier 
of volatile memory. When NVML was first developed, we created 
a library called libvmem (“vmem” for volatile memory). Since 
then, another more general library for volatile use cases has been 
open sourced on GitHub [8]. Some projects have already been 
written to our libvmem interfaces, but for all future development 
of volatile use cases, we recommend using libmemkind.

Conclusion
The ideas I outlined in 2013 have come true and have matured 
into a fairly complete programming model, resulting at the 
operating system level in the DAX feature for both Windows 
and Linux (and potentially other operating systems beyond the 
scope of this article). Next, libraries have been built on that basic 
model to provide application developers with a menu of APIs to 
choose from as they leverage the benefits persistent memory has 
to offer. There’s still a long list of interesting and fruitful work to 
be done, integrating persistent memory support into additional 
languages and libraries (see our GitHub area at https://github 
.com/pmem for numerous works-in-progress in this space).
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