
34  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMINGPersistent Memory Programming
A N D Y R U D O F F

Andy Rudoff is a Senior
Principal Engineer at Intel
Corporation, focusing on non-
volatile memory programming.
He is a contributor to the SNIA

NVM Programming Technical Work Group.
His more than 30 years’ industry experience
includes design and development work in
operating systems, file systems, networking,
and fault management at companies large
and small, including Sun Microsystems and
VMware. Andy has taught various operating
systems classes over the years and is a
co-author of the popular UNIX Network
Programming textbook. andy.rudoff@intel.com

In the June 2013 issue of ;login:, I wrote about future interfaces for non-
volatile memory (NVM) [1]. In it, I described an NVM programming
model specification [2] under development in the SNIA NVM Program-

ming Technical Work Group (TWG). In the four years that have passed, the
spec has been published, and, as predicted, one of the programming models
contained in the spec has become the focus of considerable follow-up work.
That programming model, described in the spec as NVM.PM.FILE, states
that persistent memory (PM) should be exposed by operating systems as
memory-mapped files. In this article, I’ll describe how the intended persistent
memory programming model turned out in actual OS implementations, what
work has been done to build on it, and what challenges are still ahead of us.

The Essential Background on Persistent Memory
The terms persistent memory and storage class memory are synonymous, describing media
with byte-addressable, load/store memory access, but with the persistence properties of
storage. In this article, I will focus on persistent memory connected to the system memory
bus, like a DRAM DIMM, creating a class of non-volatile DIMMs known as NVDIMMs.

To further clarify what I mean by persistent memory, I am only speaking about NVDIMMs
that allow software to access the media as memory (some NVDIMMs only support block
access and are not covered here). This provides all the benefits of memory semantics, like
CPU cache coherency, direct memory access (DMA) by other devices, and cache line granu-
larity access which programmers can treat as byte-addressability. To provide these seman-
tics, the media must be fast enough that it is reasonable to stall a CPU while an instruction
is accessing it. NAND Flash, for example, is too slow to be considered persistent memory
by itself, since access is typically done in block granularity and it takes long enough that
context switching to allow another thread to do work makes more sense than stalling. Where
hard drive accesses are typically measured in milliseconds, and NAND Flash SSD accesses
are measured in microseconds, persistent memory accesses are measured in nanoseconds.
Depending on the exact type of media, an NVDIMM may not be as fast as DRAM, but it is in
the neighborhood.

Some NVDIMM products on the market today use DRAM as the media at runtime but auto-
matically back up the contents to NAND Flash on power loss and restore the contents when
the power returns. These products provide DRAM performance but also require additional
components and an energy source to save the data, giving them a lower per-DIMM capacity
and higher cost per gigabyte than DRAM. Emerging non-volatile media, like the 3D XPoint
technology announced jointly by Intel and Micron in 2015, promises higher capacity at a
price point lower than DRAM. Multiple terabytes per CPU socket are expected, making per-
sistent memory interesting on multiple fronts: persistence, capacity, and cost [3].

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 35

PROGRAMMING
Persistent Memory Programming

The Persistent Memory Programming Model
How does an application get access to persistent memory?
Unlike volatile memory, the application needs a way to con-
nect with specific persistent contents; persistent memory isn’t
anonymous like volatile memory; regions need names so applica-
tions can find them, just like files. And also like files, regions of
persistent memory need permissions to control which applica-
tions have access to the persistent information. The entire point
of the persistent memory programming model specified by
the SNIA TWG was to recommend that operating systems use
standard file semantics to provide naming, permissions, and
memory-mapping of persistent memory.

Now that this has been implemented in multiple operating sys-
tems, including Linux and Windows, it seems very obvious, and
you might wonder why a specification was even necessary. But four
years ago when I wrote the first ;login: article, there were multiple
competing ideas on how to expose persistent memory, and soft-
ware vendors were in danger of having to decide between incom-
patible programming models from different products. Instead, the
ecosystem has unified nicely around the model shown in Figure 1.

The NVDIMM shown at the bottom of the figure represents the
persistent memory installed in the system, potentially spread

across many NVDIMMs, and potentially interleaved (striped)
for performance by the memory controller. On Intel-based
systems, the BIOS creates a table called the NVDIMM Firm-
ware Interface Table (NFIT) that enumerates the NVDIMMs
installed. This table was added to the ACPI specification in ver-
sion 6.0 and continues to evolve as NVDIMMs evolve. As shown
in the figure, some driver (or collection of drivers) consumes
the NFIT information and takes ownership of the persistent
memory, exposing it to management software (left side of the
figure), potentially exposing it as traditional block storage which
is emulated by the driver (middle part of the figure), and expos-
ing it directly to applications through a persistent memory aware
file system (the right side of the figure).

DAX
My definition of a persistent memory aware file system, like the
one shown in Figure 1, is a file system that allows direct access
to persistent memory without using the system page cache as
it would for normal, storage-based files. This feature has been
named DAX by the operating systems folks, short for Direct
Access. Conveniently, both Linux and Windows use the same
term for the same feature.

Figure 1: The SNIA persistent memory programming model

36  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
Persistent Memory Programming

The persistent memory programming model, and the cor-
responding DAX feature, says persistent memory files can be
mapped into memory using standard calls like mmap() on Linux
or MapViewOfFile() on Windows. This results in the far-right
arrow on Figure 1, where the application has direct load/store
access to the persistence. Once these mappings are set up (and
after any initial minor page faults that may be required to create
the mappings in the MMU), this provides the shortest possible
code path to persistence, allowing the applications to perform
loads and stores on the persistent media directly with no kernel
involvement. No interrupts, no context switching, no kernel code
at all is required for media access.

Making Stores Persistent
Just as persistent memory is accessed using standard memory-
mapped files, the steps for making changes persistent follow
the same standards. On Linux (actually any POSIX-compliant
system), the range-based msync() call or file-based fsync() call
may be used to ensure changes are persistent. On Windows,
the combination of FlushViewOfFile() and FlushFileBuffers()
is used. These calls create a store barrier, a point after which
the program can assume the previous changes it made to the
persistent memory are actually persistent. Historically, this
store barrier required the operating system to find dirty pages
in the system page cache, flushing them to block storage, such
as a disk. But since persistent memory doesn’t use the page
cache, the operating system need only flush the CPU caches, as
appropriate, to get changes into the persistence domain. I define
the persistence domain as the point along the data path taken by
stores where they are considered persistent because that point is
power fail safe (see Figure 2).

The dashed box in Figure 2 shows the persistence domain
required by Intel platforms supporting persistent memory. At the
platform level, any stores inside the dashed box are either on the
DIMM, or still in the write pending queue (WPQ) in the memory
controller, on their way to the DIMM. Either way, platforms sup-
porting persistent memory are required to have enough stored
energy to flush any stores inside the dashed box all the way to
persistent media on power loss. This feature, flushing the stores
the rest of the way on power failure, is known as asynchronous
DRAM refresh (ADR) and has been a requirement of NVDIMM
products since they first appeared a few years ago.

At the x86 instruction level, simply executing a store instruction
is not enough to make data persistent, since the data may be sit-
ting in the CPU caches indefinitely and could be lost by a power
failure. Additional cache flush actions are required to make
the stores persistent. The following table describes how each of
these works.

Looking at Figure 2 and the instructions in the Table 1 might
make you wonder why Intel didn’t just make the CPU caches part

of the persistence domain. This is technically possible, produc-
ing the situation shown in Figure 2 but with the dashed box now
including the CPU caches.

The problem with extending the persistence domain to include
the CPU caches is that the x86 caches are quite large, and it would
take more energy than the capacitors in a power supply can prac-
tically provide. This usually means the platform would have to
contain battery. Requiring a battery for every server supporting
persistent memory is not practical at this time, but it is certainly
possible for companies, such as appliance vendors who ship cus-
tom hardware, to include a battery in their product. This would
allow the cache flush instructions described in Table 1 to be
skipped, but the SFENCE instruction would still be required as a
store barrier—stores should be considered persistent only when
they are globally visible, and that’s what the SFENCE ensures.

Because some appliance vendors plan to use batteries as I’ve
described, and because I hope that all platforms will someday
include the CPU caches in the persistence domain, a property is
being added to ACPI so that the BIOS can notify the operating
system when the CPU flushes can be skipped. This allows the
operating system to implement calls like msync() in the most
optimal way.

User Space Flushing to Persistence
With the exception of WBINVD, the instructions I described in
Table 1 are supported in user mode by Intel CPUs. Flushing a
cache line using CLWB (or CLFLUSHOPT or CLFLUSH) and
using non-temporal stores are all supported from user space.

Figure 2: The path taken by a store, and the persistence domain (dashed box)

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 37

PROGRAMMING
Persistent Memory Programming

This could allow the flushing to persistence directly from user
space, without calling into the kernel, a feature documented in
the SNIA programming model spec as Optimized Flush. The
spec describes Optimized Flush as optionally supported by the
platform, depending on the hardware and operating system sup-
port. Despite the CPU support, it is important for applications
to only use Optimized Flush when the operating system says
it is safe to use. The operating system may require the control
point provided by calls like msync() when, for example, there are
changes to file system metadata that need to be written as part
of the msync() operation.

Support for safe userspace flushing is an evolving feature in
the current implementations. At the time of this writing, the
DAX support in Windows, provided by the NTFS file system,
includes unconditional support for Optimized Flush. Windows
programs can ensure stores to persistent memory are persistent
using instruction sequences like CLWB + SFENCE. On Linux,
the two file systems that support DAX, ext4 and XFS, do not
currently consider userspace flushing safe. While hoping to
work out interfaces with these file systems that tell applications
when Optimized Flush is safe, it is an ongoing discussion. Other
file systems, like NOVA [4], a research project from UCSD, are
designed from the start to support Optimized Flush but are not
considered production ready yet. As an interim solution, Linux
provides Device-DAX [5], which allows an application to open a
persistent memory device (without a file system), memory map
it, and utilize userspace flushes to make stores persistent.

To insulate application programmers from this complexity, and
to keep them from having to research the current state of affairs
while programming for persistent memory, the libpmem library
provides a function which tells the application when Optimized
Flush is safe. Programmers are strongly encouraged to use
libpmem to make this determination and to use userspace flush-
ing only when it is safe, falling back on the standard method of
flushing stores to memory mapped files otherwise. The libp-
mem library is also designed to detect the case of the platform
with a battery I described above, turning flush calls into simple
SFENCE instructions instead. I’ve got much more to say about
libraries below, and all the libraries I describe build on this logic
to make sure they transparently depend on the most optimal
type of flushing available to the program.

Persistent Memory Challenges
When a modern program changes any data structure in memory,
the question of atomicity comes up. Is it possible for another
thread to access the data structure and see the change only
partially complete? With multithreaded programming, this
issue is commonly solved using locks to protect data structures.
Sometimes it is solved by using instruction sequences that guar-
antee atomicity in hardware. These issues have been around for
years and are very familiar to programmers, library writers, and
high-level language designers. In this context, the term atomi-
city really refers to visibility, protecting the changes made by one
thread from becoming visible by other threads until the changes
are complete. Adding persistent memory into this picture, the
requirements change from simple atomicity to something more

Table 1: x86 cache flush instructions for use with persistent memory

CLFLUSH
This instruction, supported in many generations of CPU, flushes a single cache line. Historically, this instruction
is serialized, causing multiple CLFLUSH instructions to execute one after the other, without any concurrency.

CLFLUSHOPT
(followed by an
SFENCE)

This instruction, newly introduced for persistent memory support, is like CLFLUSH but without the
serialization. To flush a range, software executes a CLFLUSHOPT instruction for each 64-byte cache line
in the range, followed by a single SFENCE instruction to ensure the flushes are complete before continuing.
CLFLUSHOPT is optimized (hence the name) to allow some concurrency when executing multiple
CLFLUSHOPT instructions back-to-back.

CLWB
(followed by an
SFENCE)

Another newly introduced instruction, CLWB stands for cache line write back. The effect is the same as
CLFLUSHOPT except that the cache line may remain valid in the cache (but no longer dirty, since it was
flushed). This makes it more likely to get a cache hit on this line as the data is accessed again later.

NT stores
(followed by an
SFENCE)

Another feature that has been around for a while in x86 CPUs is the non-temporal store. These stores are “write
combining” and bypass the CPU cache, so using them does not require a flush. The final SFENCE instruction is
still required to ensure the stores have reached the persistence domain.

WBINVD

This kernel-mode-only instruction flushes and invalidates every cache line on the CPU that executes it. After
executing this on all CPUs, all stores to persistent memory are certainly in the persistence domain, but all cache
lines are empty, impacting performance. In addition, the overhead of sending a message to each CPU to execute
this instruction can be significant. Because of this, WBINVD is only expected to be used by the kernel for
flushing very large ranges, many megabytes at least.

38  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
Persistent Memory Programming

like the ACID semantics required for database transactions on
storage [6]. Not only do we want to keep other threads from see-
ing an incomplete change, we want to handle changes that are
interrupted by power failures, program crashes, or exceptions.
Everyone who starts writing programs to use persistent memory
seems to immediately come to this conclusion: we need transac-
tions that are power fail safe.

Before persistent memory existed, if a store was interrupted by
something like power failure, the resulting memory state didn’t
matter much because it was volatile. But with persistent mem-
ory, it is important to understand what is guaranteed by hard-
ware and what is left to software. On Intel, only an eight-byte
store, aligned on an eight-byte boundary, is guaranteed to be
failure atomic. That means if the store is interrupted by a power
failure, the memory contents will contain the previous eight
bytes, or the new eight bytes, but not some combination of the old
and new data. Anything larger than eight bytes can be torn by
power failure and must be handled by software. For example, if
you want to update two eight-byte pointers in your program, and
you want it to happen atomically, protecting those pointers with
a lock will only help you prevent other running threads from
seeing the partial update. A power failure might leave the update
partially done, and there’s no single instruction that will solve

that—software must arrange for the update to be transactional
by building on the eight-byte power-fail-atomic store provided
by hardware. The logic for creating these transactions is a bit
tricky, which points to the need for libraries or language features
to provide them.

Another persistent memory challenge is more basic: manag-
ing the space. Since persistent memory regions are exposed as
files, the file system primarily manages that space. But once the
file is memory-mapped by an application, what happens within
that file is completely up to the application. Functions like C’s
malloc() assume memory is volatile, offering no way on program
start-up to reconnect with a persistent heap and taking no steps
to make sure the heap is consistent in the face of failure. This
adds space allocation to our list of requirements for persistent
memory programming.

The need for location-independence is another challenge.
Although it is technically possible to require that a range of
persistent memory is always mapped at exactly the same address
in a program, it can become impractical when the sizes of other
mapped items change. A security feature known as Address Space
Layout Randomization (ASLR) additionally causes operating
systems to randomly adjust where libraries and files are mapped.
Location-independence means that when one data structure in
persistent memory refers to another using a pointer, that pointer
must be somehow usable even when the file is mapped at a dif-
ferent address. There are several ways to achieve this, such as
relocating pointers after mapping, using relative pointers instead
of absolute pointers, or by using some type of Object ID (OID) to
refer to persistent memory-resident data structures.

The NVM Libraries
The libraries produced by my team at Intel are designed to solve
the challenges described above. They are meant as a conve-
nience, not as a requirement for persistent memory program-
mers. Although I refer to them collectively by the single name
NVML, they are really a suite of six libraries (with additional
libraries already under development). The libraries are all open
source, BSD-licensed, and developed in the open on GitHub. I’ll
describe the libraries here, but much more information is avail-
able at http://pmem.io, including man pages, blog entries, and
lots of example code.

The libraries are written in C and are validated and ready for
use on 64-bit Linux and Windows systems. Some Linux distros
already contain the libraries in their repositories, allowing them
to be installed with simple package management commands.
Otherwise, you can clone the GitHub tree and use make install
to install the library from source (details are on the Web site [7]).

Since these are C libraries, it is possible to call them from various
languages. When using C, we provide some macros to try to help

Figure 3: Using the libpmemobj library, which in turn uses the primitives
in libpmem

http://pmem.io

www.usenix.org S U M M ER 20 17 VO L . 42 , N O. 2 39

PROGRAMMING
Persistent Memory Programming

catch common persistent memory programming errors, but C
macros are never a replacement for full language integration. The
C++ support recently released in libpmemobj (http://pmem.io
/nvml/libpmemobj/; see below) is the cleanest, least error-prone
way we have to do persistent memory programming. For this
reason, if you’re just beginning to explore persistent memory
programming, the C++ examples are the best place to start.

Here’s an overview of the suite of libraries in NVML. Many
examples are available in the examples directory of the source
on GitHub, but to save space I will limit my examples to the most
commonly used library, libpmemobj.

libpmem: Basic Persistence Support
The libpmem library is small and fairly simple, containing the
code that detects which types of flush instructions are sup-
ported by the CPU, as well as performance-tuned routines for
copying ranges of persistence memory using the best instruc-
tion choices for the platform. As mentioned above, a routine
that tells the caller whether Optimized Flush is safe is supplied
(this routine is called is_pmem() for historical reasons—perhaps
optimized_flush_available() would have been a better name in
hindsight).

Even if you decide not to use any of the libraries I describe below,
you might still decide to use libpmem (or steal the code) just to
avoid the tedious development of code that detects supported
instructions, the correct use of non-temporal stores, etc.

libpmemobj: General-Purpose Allocations and
Transactions
This is probably the library you want. As you might guess, the
“obj” in the name is short for object, but by that I mean the vari-
able-sized blob of data referred to by the term object storage, not
the class with methods in an object-oriented language. Figure 3
shows where this library sits in the programming model. Like all
the persistent libraries in the NVML suite, this library builds on
the primitives provided by libpmem.

The libpmemobj library allows persistent memory objects to
be allocated in a way that is power fail safe, allows referring to
them by Object IDs (OIDs), which are location-independent, and
allows making an arbitrary number of changes atomic by encom-
passing the changes in a transaction. The library is multithread
safe and optimized for multithread scalability (by doing things
like maintaining per-thread allocation caches).

As mentioned above, the C++ support in this library provides
the cleanest, easiest-to-use interfaces, so I’ll use a C++ example.
The classic persistent memory example is to link something
into a linked list (a queue in this example, taken verbatim from
the queue.cpp example in the NVML examples area), where
multiple operations are required to be done as a transaction. The

example code below starts by creating a class which defines the
struct pmem_entry, the entries on the queue:

class pmem_queue {

 /* entry in the list */

 struct pmem_entry {

 persistent_ptr<pmem_entry> next;

 p<uint64_t> value;

 };

 /* … */

Notice the persistent_ptr smart pointer template. This indi-
cates a pointer to an object in persistent memory, namely the
next item in the persistent queue. These are the location-inde-
pendent OIDs I mentioned earlier. Also notice the p<> persistent
property in the above declaration, used to indicate fields that
reside in persistent memory. The result of these C++ declara-
tions is that the code to atomically allocate a new entry, initialize
it, and link it into the queue can be done as follows:

 /*

 * Inserts a new element at the end of the queue.

 */

 void

 push(pool_base &pop, uint64_t value)

 {

 transaction::exec_tx(pop, [&] {

 auto n = make_persistent<pmem_entry>();

 n->value = value;

 n->next = nullptr;

 if (head == nullptr) {

 head = tail = n;

 } else {

 tail->next = n;

 tail = n;

 }

 });

 }

The above push operation is transactional. More specifically,
the code in the C++ lambda, indicated by [&] {…}, is transac-
tional, meaning if the program or the machine crashes during
the execution of that code, libpmemobj automatically rolls any
partially done changes back (this includes the allocation done by
the make_persistent call).

There are many more details available for this example, as well
as others, on the pmem.io Web site. The main point of the short
example above is to show that, with no compiler or language
changes, libpmemobj provides a flexible allocation and transac-
tion mechanism for persistent memory.

http://pmem.io​/nvml/libpmemobj/
http://pmem.io​/nvml/libpmemobj/

40  S U M M ER 20 17 VO L . 42 , N O. 2 www.usenix.org

PROGRAMMING
Persistent Memory Programming

libpmemblk and libpmemlog: Support for Specific
Use Cases
In addition to libpmemobj and its flexible transaction sup-
port, two other libraries target specific use cases. The library
libpmemblk is written specifically to maintain a large array of
persistent memory blocks, all the same size. This is useful, for
example, when an application is managing a block cache. The
block size provided by the library is flexible, supporting blocks
512-bytes and larger.

Similarly, the library libpmemlog is written for a specific use
case where the application frequently appends to a private log
file, one that is read rarely, like during crash recovery. This
library takes the relatively long file system append path through
the kernel and turns it into a very short memory copy in persis-
tent memory, followed by an atomic pointer adjustment.

Both of these specific use cases are easily solved using the more
flexible libpmemobj, but the point of libpmemblk and libpmem-
log is they provide APIs that constrain the caller, allowing the
library to assume specific cases and optimize for them.

libmemkind: The Volatile Use of Persistent
Memory
With the large capacity and cheaper-than-DRAM price points
expected for emerging persistent memory products, many vola-
tile use cases have come up. These are cases where the applica-
tion places some data structures in persistent memory to avoid
a large DRAM footprint, but the application doesn’t really care
that the memory is persistent—it is just using it as a second tier
of volatile memory. When NVML was first developed, we created
a library called libvmem (“vmem” for volatile memory). Since
then, another more general library for volatile use cases has been
open sourced on GitHub [8]. Some projects have already been
written to our libvmem interfaces, but for all future development
of volatile use cases, we recommend using libmemkind.

Conclusion
The ideas I outlined in 2013 have come true and have matured
into a fairly complete programming model, resulting at the
operating system level in the DAX feature for both Windows
and Linux (and potentially other operating systems beyond the
scope of this article). Next, libraries have been built on that basic
model to provide application developers with a menu of APIs to
choose from as they leverage the benefits persistent memory has
to offer. There’s still a long list of interesting and fruitful work to
be done, integrating persistent memory support into additional
languages and libraries (see our GitHub area at https://github
.com/pmem for numerous works-in-progress in this space).

References
[1] A. Rudoff, “Programming Models for Emerging Non-
Volatile Memory Technologies,” ;login:, vol. 38, no. 3 (June
2013): https://www.usenix.org/system/files/login/articles/08
_rudoff_040-045_final.pdf.

[2] “SNIA NVM Programming Technical Work Group”: http://
www.snia.org/forums/sssi/nvmp.

[3] “3D XPoint™ Technology Revolutionizes Storage Memory”:
https://www.youtube.com/watch?v=Wgk4U4qVpNY.

[4] J. Xu and S. Swanson, “NOVA: A Log-Structured File
System for Hybrid Volatile/Non-Volatile Main Memories,” in
Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST ’16): https://www.usenix.org/system/files
/conference/fast16/fast16-papers-xu.pdf.

[5] Dan Williams, “Device-DAX”: https://lists.gt.net/linux
/kernel/2434768.

[6] T. Haerder, A. Reuter, “Principles of Transaction-Oriented
Database Recovery,” ACM Computing Surveys, vol. 15, no. 4
(December 1983), pp. 287–317.

[7] NVML install instructions: https://github.com/pmem
/nvml/blob/master/README.md.

[8] libmemkind: https://github.com/memkind.

https://github.com/pmem
https://github.com/pmem
https://www.usenix.org/system/files/login/articles/08_rudoff_040-045_final.pdf
https://www.usenix.org/system/files/login/articles/08_rudoff_040-045_final.pdf
http://www.snia.org/forums/sssi/nvmp
http://www.snia.org/forums/sssi/nvmp
https://www.youtube.com/watch?v=Wgk4U4qVpNY
https://www.usenix.org/system/files/conference/fast16/fast16-papers-xu.pdf
https://www.usenix.org/system/files/conference/fast16/fast16-papers-xu.pdf
https://lists.gt.net/linux/kernel/2434768
https://lists.gt.net/linux/kernel/2434768
https://github.com/pmem/nvml/blob/master/README.md
https://github.com/pmem/nvml/blob/master/README.md
https://github.com/memkind

