
60  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Most of the Python code that I write isn’t part of an exotic frame-

work or huge application. Instead, it’s usually related to a mun-
dane data analysis task involving a CSV file. It isn’t glamorous,

but Python is an effective tool at getting the job done without too much
fuss. When working on such problems, I prefer to not worry too much about
low-level details (I just want the final answer). However, if you use Python
for manipulating a lot of data, you may find that your scripts use a large
amount of memory. In this article, I’m going to peek under the covers of how
memory gets used in a Python program and explore options for using it more
efficiently. I’ll also look at some techniques for exploring and measuring the
memory use of your programs. Disclosure: Python 3 is assumed for all of the
examples, but the underlying principles apply equally to Python 2.

Reading a Large CSV File
My Chicago office is located along a major bus route, the trusty #22 that will take me down
the road to Wrigley Field if I want to avoid work during the summer. It tends to be a pretty
busy route, but just how busy? Chicago, being a data-friendly city, has historical bus ridership
data posted online [1]. You can download it as a CSV file. If you do, you’ll get a 13.8 MB file
with 676,476 lines of data that give you the ridership of every bus route in the city on every
day of the year going back to the year 2001. It looks like this:

route,date,daytype,rides

3,01/01/2001,U,7354

4,01/01/2001,U,9288

6,01/01/2001,U,6048

8,01/01/2001,U,6309

9,01/01/2001,U,11207

...

By modern standards, a 13.8 MB CSV file isn’t so large. Thus, I’m inclined to grab it using
Python’s csv module. Problem solved:

>>> import csv

>>> with open(‘cta.csv’) as f:

... rows = list(csv.DictReader(f))

...

>>> len(rows)

676476

>>> rows[0]

{‘date’: ‘01/01/2001’, ‘route’: ‘3’, ‘rides’: ‘7354’, ‘daytype’: ‘U’}

>>>

Now let’s tabulate the ridership totals across all of the bus routes using the collections
module:

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com /
ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

Precious Memory
D A V I D B E A Z L E Y

http://www.usenix.org
http://www.swig.org
http://www.dabeaz.com/ply/
http://www.dabeaz.com/ply/
mailto:dave@dabeaz.com

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 61

COLUMNS
Precious Memory

>>> from collections import Counter

>>> ride_counts = Counter()

>>> for row in rows:

... ride_counts[row[‘route’]] += int(row[‘rides’])

...

>>> ride_counts[‘22’]

104039097

>>>

While we’re at it, why don’t we find out the five most common
bus routes.

>>> ride_counts.most_common(5)

[(‘79’, 153736884), (‘9’, 138645554), (‘49’, 113908939),

 (‘4’, 111154851), (‘66’, 110746972)]

>>>

Great. Before you quit, however, go look at the memory use of the
Python interpreter in your system process viewer—you’ll find
that it’s using nearly 300 MB of RAM (maybe more). Yikes! For a
13.8 MB input file, that sure seems like a lot—almost as much as
some of the minimally useful apps on my phone. The horror.

Measuring Memory Use
Measuring the memory use of a Python program in a portable
way was not an entirely easy task until somewhat recently. Yes,
you could always go view the Python process in the system task
viewer, but there were no standard library modules to help you
out. This changed somewhat in Python 2.6 with the addition of
the sys.getsizeof() function. It lets you determine the size in
bytes of individual objects. For example:

>>> import sys

>>> a = 42

>>> sys.getsizeof(a)

28

>>> b = ‘hello world’

>>> sys.getsizeof(b)

60

>>>

Unfortunately, the usefulness of sys.getsizeof() is a bit limited.
For containers such as lists and dicts, it only reports the size of
the container itself, not the cumulative sizes of the items con-
tained inside. It’s subtle, but you can see this yourself if you look
carefully at this example where the combined size of two items
in a list is smaller than the reported size of the list itself:

>>> a = ‘hello’

>>> b = ‘world’

>>> items = [a, b]

>>> sys.getsizeof(a)

54

>>> sys.getsizeof(b)

54

>>> sys.getsizeof(items) # Notice size is less than combined

 # a, b size

80

>>>

Containers also present complications in determining an
accurate use. For example, the same object might appear more
than once such as in a list of [a, a, b, b]. Also, Python tends to
aggressively share immutable values under the covers. So it’s
not a simple case where you can just add up the byte totals for all
of the items in a container and get an accurate figure. Instead
you’d need to gather information on all unique objects using their
object IDs like this:

>>> items = [a, a, b, b]

>>> unique_items = { id(item): sys.getsizeof(item) for item

 in items }

>>> total_size = sys.getsizeof(items) + sum(unique_items.

 values())

204

>>>

If you had deeply nested data structures, you’d have to take
further steps to recursively traverse the entire data structure.
Needless to say, it gets ugly. Just to illustrate, here’s how you
would measure the memory usage of the list holding all of that
bus data.

>>> unique_objects = { id(rows): rows }

>>> unique_objects.update((id(row), row) for row in rows)

>>> unique_objects.update((id(val), val) for row in rows for

 val in row.values())

>>> sum(sys.getsizeof(val) for val in unique_objects.values())

308977196

>>>

Starting in Python 3.4, you can obtain global memory statistics
using the tracemalloc module [2]. This module allows you to
selectively monitor the memory use of Python and have it record
memory allocations. It’s not so useful for small measurements,
but you can use it in a script:

import tracemalloc

import csv

def read_data(filename):

 with open(filename) as f:

 return list(csv.DictReader(f))

tracemalloc.start()

rows = read_data(‘cta.csv’)

print(len(rows), ‘Rows’)

print(‘Current: %d, Peak %d’ % tracemalloc.get_traced_memory())

http://www.usenix.org

62  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Precious Memory

If I run this on my machine with Python 3.5, I get the following
output:

676476 Rows

Current: 308979047, Peak 309009543

The reported memory use is ever so slightly higher than what
was calculated directly with sys.getsizeof(), but basically the
two figures agree.

Exploring Common Data Structure Choices
Given the large memory footprint associated with reading this
file, you might consider other choices for representing a simple
record, such as a list, tuple, or class instance. Here are several
different functions that read the data in different forms:

import csv

def read_data_as_dicts(filename):

 with open(filename) as f:

 return list(csv.DictReader(f))

def read_data_as_lists(filename):

 with open(filename) as f:

 rows = csv.reader(f)

 headers = next(rows)

 return list(rows)

def read_data_as_tuples(filename):

 with open(filename) as f:

 rows = csv.reader(f)

 headers = next(rows)

 return [tuple(row) for row in rows]

class RideData(object):

 def __init__(self, route, date, daytype, rides):

 self.route = route

 self.date = date

 self.daytype = daytype

 self.rides = rides

def read_data_as_instances(filename):

 with open(filename) as f:

 rows = csv.reader(f)

 headers = next(rows)

 return [RideData(*row) for row in rows]

If you run and measure these different functions using
 tracemalloc, you will get memory use as follows:

Record Type Memory Use (MB)
Dict 294.7
List 170.8
Tuple 160.1
Instance 268.5

In these results, you find that tuples provide the most efficient
storage. This shouldn’t be a surprise, but there are still some
subtle aspects to the results. For example, what explains the 10
MB gap between tuples and lists? On the surface it doesn’t seem
like there would be much difference between the two structures
given that they’re both “list like.” We can investigate with
sys.getsizeof():

>>> a = (‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> b = [‘3’, ‘01/01/2001’, ‘U’, ‘7354’]

>>> import sys

>>> sys.getsizeof(a)

80

>>> sys.getsizeof(b)

96

>>>

Here, we find that there is a 16-byte difference in storage
between a list and tuple. Added up across the 676,476 rows of
data, that amounts to about 10 MB of storage. The 16-byte dif-
ference is due to the fact that lists are a little more complicated
than they might first seem. For one, since lists are mutable, their
size can change as elements are added or removed. To manage
this, lists internally contain a memory pointer to a resizable
memory buffer where items are stored. Tuples, being immutable,
don’t have to handle resizing. Thus, the items in a tuple can be
stored directly at the end of the underlying tuple structure. Lists
also overallocate their internal storage so as to make repeated
append() operations faster (this is to minimize a potentially
expensive memory reallocation each time a new element is
added). For example, a list containing only five items might
actually have room to store eight items without asking for more
space. To manage this, lists maintain an extra counter of how
much total space is available in addition to a counter that records
the actual number of elements used. Here is a diagram that illus-
trates the difference in the memory layout of a tuple versus a list:

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 63

COLUMNS
Precious Memory

The header portion contains some bookkeeping informa-
tion, including the object’s type and the reference count used
in memory management. This is the same for all objects. The
16-byte difference in tuple/list storage is explained by the pres-
ence of an extra memory pointer (buffer) and counter (navail) on
lists. Depending on the amount of unused space, lists might even
be a bit larger.

Another surprising result is the efficiency of instances over dic-
tionaries—especially if you happen to know that instances are
actually built using dictionaries. For example:

>>> r = RideData(‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> r.__dict__

{ ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’, ‘rides’: ‘7354’

}

>>>

Thus, what explains the 26 MB advantage of using instances
over dictionaries? As it turns out, this is also another memory
optimization. When creating a lot of instances, Python makes
an assumption that the dictionaries for all of the instances will
probably contain the exact same set of keys. It makes sense—all
objects are initialized in __init__() and are likely to have an
identical underlying structure. Python exploits this and creates
what’s known as a key-sharing dictionary as described in PEP
412 [3]. In a nutshell, the keys for the instance data are split off
from the normal dictionary and stored in a shared structure.
It makes for a slightly smaller dictionary structure. You can
investigate:

>>> c = { ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’,

‘rides’: ‘7354’ }

>>> sys.getsizeof(c)

288

>>> d = RideData(‘3’, ‘01/01/2001’, ‘U’, ‘7354’)

>>> d

<__main__.RideData object at 0x101ad4f60>

>>> d.__dict__

{ ‘route’: ‘3’, ‘date’: ‘01/01/2001’, ‘daytype’: ‘U’, ‘rides’: ‘7354’

}

>>> sys.getsizeof(d.__dict__) # Size of instance dict

192

>>>

Here, you see that the instance dictionary is quite a bit smaller
than a normal dictionary. However, you can’t forget that
instances also contain some state, including the class and refer-
ence count:

>>> sys.getsizeof(d) # Size of the instance structure

56

>>>

So, in this example, you’ll find that an instance requires 56 bytes
of storage plus the storage required for the instance dictionary.
Added together, you find that an instance requires 248 bytes
vs. 288 bytes for a normal dictionary. Multiplied by the 676,476
records, you get a savings of about 26 MB.

Named Tuples
Tuples are efficient, but one downside is that they often lead to
code where you do a lot of ugly indexing. For example:

>>> rows = read_data_as_tuples(‘cta.csv’)

>>> from collections import Counter

>>> ride_counts = Counter()

>>> for row in rows:

... ride_counts[row[0]] += int(row[3])

...

>>>

You can clean this up using the namedtuple() function to define
a class. For example:

from collections import namedtuple

RideTuple = namedtuple(‘RideTuple’, [‘route’,’date’,’daytype’,

‘rides’])

The namedtuple() function performs a neat trick using proper-
ties that produces a class roughly equivalent to this:

class RideTuple(tuple):

 __slots__ = () # Explained in next section

 @property

 def route(self):

 return self[0]

 @property

 def date(self):

 return self[1]

 @property

 def daytype(self):

 return self[2]

 @property

 def rides(self):

 return self[3]

In this class, properties have been added to pull attributes from
a specific tuple index. This gives you nice access to those values
via the dot (.) operator. For example:

>>> r = RideTuple(‘3’,’01/01/2001’,’U’,’7354’)

>>> r.route

‘3’

>>> r.date

‘01/01/2001’

>>> r[0]

‘3’

http://www.usenix.org

64  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Precious Memory

>>> r[1]

‘01/01/2001’

>>>

Named tuples also offer a cautionary tale of measuring Python’s
memory use—namely, that you can’t always trust it to tell you the
truth! For example, suppose you measure the memory of a single
named tuple versus a tuple:

>>> a = (‘3’, ‘01/01/2001’, ‘U’, 7354’)

>>> b = RideTuple(‘3’,’01/01/2001’,’U’,’7354’)

>>> sys.getsizeof(a)

80

>>> sys.getsizeof(b)

80

>>>

Here, you will find that the memory is identical. That looks good.
However, if you run two versions of code under tracemalloc,
you’ll find that they have different behavior.

Record Type Memory Use (MB)
Tuple 160.1

Named tuple 165.3

For reasons unknown, named tuples allocate an extra machine
word (8 bytes on a 64-bit machine) for each instance. Added up
over the 676,476 rows of our data set, that amounts to an extra
5 MB. If there’s any takeaway, the results of sys.getsizeof() are
not always to be trusted. If you must know, objects self-report
their size using a special method __sizeof__() which could be
implemented incorrectly. If you really care about accuracy, it’s a
good idea to measure memory use a few different ways.

Slots
A somewhat lesser known technique for saving memory is to
define a class with a __slots__ specifier like this:

class RideData(object):

 __slots__ = (‘route’, ‘date’, ‘daytype’, ‘rides’)

 def __init__(self, route, date, daytype, rides):

 self.route = route

 self.date = date

 self.daytype = daytype

 self.rides = rides

Normally, instances are represented by a dictionary. However, if
you use slots, you’re giving a hint about how many attributes will
be stored. Python uses this to eliminate the instance dictionary
and rearrange the storage of attributes into something that looks
a lot like a tuple. Here is a diagram showing how instances are
stored with and without slots:

Remarkably, a class that uses slots is even slightly more efficient
than one using a tuple. For example, if you run a test under trace-

malloc, you’ll get these results:

Record Type Memory Use (MB)
Tuple 160.1

Instance with slots 155.0

The savings is due to the fact that unlike a tuple, instances don’t
support indexing of attributes (e.g., r[n]). Thus, it is not neces-
sary for a size to be stored on a per-instance basis. The attributes
are merely loaded and stored from a hardwired position known
in advance. The exact mechanism is almost exactly the same as
the attribute properties defined on a named tuple.

Using the Appropriate Datatypes
In our example, we were being lazy and storing the numeric
ride data as a string (e.g., ‘7354’) instead of as an integer (7354).
However, strings are not the most efficient representation. Let’s
explore:

>>> a = ‘7354’

>>> b = 7354

>>> c = 7354.0

>>> sys.getsizeof(a)

53

>>> sys.getsizeof(b)

28

>>> sys.getsizeof(c)

24

>>>

As you can see, storing the number as an integer saves 25 bytes.
However, storing the value as a floating point number saves a bit
more. Integers require more space because they are allowed to
grow to arbitrary magnitude. To handle this, they must not only
store the integer value, but some additional sizing information.
Floats don’t need this.

http://www.usenix.org

www.usenix.org S U M M ER 20 16 VO L . 41 , N O. 2 65

COLUMNS
Precious Memory

By changing just one column of the data to a float, we save about
18 MB of memory. So being smart about what you store makes a
difference.

Value Sharing
Under the covers, Python memory management is based on
memory pointers. For example, suppose you make a list and
“copy” it to another variable:

>>> a = [1,2,3]

>>> b = a

>>>

This didn’t actually make a copy of the list. Instead, the names
“a” and “b” both refer to the same object. If you change the list,
it’s reflected in both variables.

>>> a.append(4)

>>> a

[1, 2, 3, 4]

>>> b

[1, 2, 3, 4]

>>>

The id() function will give you the object identity, a unique
integer value. You can use this to see that a and b in the above
example are the same object.

>>> id(a)

56623488

>>> id(b)

56623488

>>>

Now, how to use this? When reading certain kinds of data sets,
you might encounter a lot of repetition. To illustrate, let’s grab
the bus data again.

>>> f = open(‘cta.csv’)

>>> rows = list(csv.DictReader(f))

>>> unique_routes = set(row[‘route’] for row in rows)

>>> len(unique_routes)

182

>>> route_ids = set(id(row[‘route’]) for row in rows)

>>> len(route_ids)

634285

>>>

What you’re seeing here is that the data contains only 182 unique
values for the “route” field, yet those values are stored in 634,285
unique objects. It’s a bit odd that there aren’t 676,476 unique
values corresponding to the length of the entire data set. As it
turns out, Python caches objects representing all single-letter
ASCII strings. Thus routes 1–9 get special treatment. You can
verify this:

>>> route_ids = set(id(row[‘route’]) for row in rows if

len(row[‘route’])==1)

>>> len(route_ids)

9

>>>

Perhaps you can take a similar caching strategy for reusing the
rest of the values. Here is a simple function that caches strings:

def cache(value, _values = {}):

 if value not in _values:

 _values[value] = value

 return _values[value]

Next, you can apply the cache function to selected values during
instance creation. For example:

class RideData(object):

 __slots__ = [‘route’,’date’,’daytype’,’rides’]

 def __init__(self, route, date, daytype, rides):

 self.route = cache(route)

 self.date = cache(date)

 self.daytype = daytype

 self.rides = float(rides)

Making this change, the storage required for our example data is
reduced down to about 68 MB—not too bad considering it started
out at over 300 MB.

Changing Your Orientation
So far, we have worked to represent the data as a list of records—
varying the representation of each record. However, another
approach is to turn everything sideways and represent the data
as a collection of columns. For example, suppose you read the
data using this function:

def read_data_as_columns(filename):

 route = []

 date = []

 daytype = []

 rides = []

 with open(filename) as f:

 for row in csv.DictReader(f):

 route.append(cache(row[‘route’]))

 date.append(cache(row[‘date’]))

 daytype.append(row[‘daytype’])

 rides.append(float(row[‘rides’]))

 return {

 ‘route’: route,

 ‘date’: date,

 ‘daytype’: daytype,

 ‘rides’: rides

 }

http://www.usenix.org

66  S U M M ER 20 16 VO L . 41 , N O. 2 www.usenix.org

COLUMNS
Precious Memory

Making this change reduces the memory use to about 38 MB.
However, it also shatters your head as working with the resulting
data is wacky. Instead of getting a single list of records, you get
four lists representing each column. For example:

>>> columns = read_data_as_columns(‘cta.csv’)

>>> len(columns)

4

>>> columns[‘route’][0]

‘3’

>>> columns[‘date’][0]

‘01/01/2001’

>>>

Yes, you can work with the data like this, but doing so might
require a bit of ingenuity and increase your job security. You
would probably be better off using a third party library such as
Pandas, which also stores its data in a column form [4]. This
brings us to the last important point about memory. Third party
libraries often rely on C extensions and code outside of Python
that can’t be measured accurately using the tools described here.
For example, you can try this experiment with Pandas:

>>> import pandas

>>> import tracemalloc

>>> tracemalloc.start()

>>> data = pandas.read_csv(‘cta.csv’)

>>> tracemalloc.get_traced_memory()

(433375, 471219)

>>> import sys

>>> sys.getsizeof(data)

135868754

>>>

Pandas is efficient, but it’s not so efficient that it’s storing all
of the data in only 430 KB. Nor is the reported size of the data
variable 135 MB. A look in the task viewer shows Python actu-
ally using about 56 MB of memory. Bottom line: if you’re using
certain kinds of Python extensions, the memory profiling tools
described here might not work.

If You Liked It, You Should Have Put a Generator
on It
In the end, maybe it’s best to ask yourself if you actually need to
read all of the data at once. Perhaps a generator function can do
the trick:

import csv

from collections import Counter

def read_data(filename):

 with open(filename) as f:

 rows = csv.DictReader(f)

 for row in rows:

 yield { **row, ‘rides’:int(row[‘rides’]) }

ride_counts = Counter()

for row in read_data(‘cta.csv’):

 ride_counts[row[‘route’]] += row[‘rides’]

If you run this version under tracemalloc, you’ll find that it tabu-
lates all of the data and uses only 36K of memory. Yes, generators
are your friend.

Final Thoughts
This article has looked at a variety of issues surrounding Python
memory use. There are probably a few important takeaways.
First, there are some built-in tools such as sys.getsizeof() and
the tracemalloc that you can use to investigate the memory use
of your program. They’re not always reliable, but when used in
combination, you can often get a pretty good idea of what’s hap-
pening. Second, there are a variety of ways in which you can rep-
resent data to reduce the memory footprint. For example, using
__slots__ in a class definition. Small details, such as your
choice of low-level data representation and value sharing with
caching, can also make a big impact. Last but not least, different
data organizations (e.g., rows vs. columns) can be important.

References
[1] CTA-Ridership Data: https://data.cityofchicago.org
/Transportation/CTA-Ridership-Bus-Routes-Daily-Totals-
by-Route/jyb9-n7fm.

[2] tracemalloc module: https://docs.python.org/3/library
/tracemalloc.

[3] PEP 0412 -- Key-Sharing Dictionary: https://www.python
.org/dev/peps/pep-0412/.

[4] Pandas: pandas.pydata.org.

http://www.usenix.org
https://data.cityofchicago.org/Transportation/CTA-Ridership-Bus-Routes-Daily-Totals-by-Route/jyb9-n7fm
https://docs.python.org/3/library/tracemalloc.html
https://www.python.org/dev/peps/pep-0412/
https://data.cityofchicago.org/Transportation/CTA-Ridership-Bus-Routes-Daily-Totals-by-Route/jyb9-n7fm
https://data.cityofchicago.org/Transportation/CTA-Ridership-Bus-Routes-Daily-Totals-by-Route/jyb9-n7fm
https://docs.python.org/3/library/tracemalloc.html
https://www.python.org/dev/peps/pep-0412/
http://pandas.pydata.org/

