
26    S P R I N G 20 1 8   VO L .  4 3 ,  N O.  1 	 www.usenix.org

PROGRAMMINGXDP-Programmable Data Path in the  
Linux Kernel
D I P T A N U  G O N  C H O U D H U R Y

Diptanu Gon Choudhury works 
on large-scale distributed 
systems. His interests lie in 
designing large-scale cluster 
schedulers, highly available 

control plane systems, and high-performance 
network services. He is the author of the 
upcoming O’Reilly book Scaling Microservices.  
diptanuc@gmail.com

Berkeley Packet Filter was introduced almost two decades ago and has 
been an important component in the networking subsystem of the 
kernel for assisting with packet filtering. Extended BPF can do much 

more than that and is gradually finding its way into more kernel subsystems 
as a generic event-processing infrastructure. In this article, I provide enough 
background to help you understand how eBPF works, then describe a simple 
and fast firewall using Express Data Path (XDP) and eBPF.

Berkeley Packet Filter (BPF) has been around for more than two decades, born out of the 
requirement for fast and flexible packet filtering machinery to replace the early ’90s imple-
mentations, which were no longer suitable for emerging processors. BPF has since made its 
way into Linux and BSDs via libpcap, which is the foundation of tcpdump.

Instead of writing the packet filtering subsystem as a kernel module, which can be unsafe 
and fragile, McCanne and Jacobson designed an efficient yet minimal virtual machine in the 
kernel, which allows execution of bytecode in the data path of the networking stack.

The virtual machine was very simple in design, providing a minimalistic RISC-based 
instruction set, with two 32-bit registers, but it was very effective in allowing developers to 
express logic around packet filtering. BPF owes its relative longevity to two factors—flex-
ibility and performance. The design goal was to design the subsystem in a protocol-agnostic 
manner and the instruction set to be able to handle unforeseen use cases.

A sample BPF program that filters every IP packet:

(000) ldh      [12]

(001) jeq      #0x800           jt 2        jf 3

(002) ret      #262144

(003) ret      #0

This program loads a half-word from offset 12, checks if the value is #0x800, and returns 
true if it matches and false if it doesn’t.

The flexible instruction set allowed programmers to use BPF for all sorts of use cases such 
as implementing packet filtering logic for iptables, which performs very well under high load 
and allows for more complex filtering logic. Having a protocol-independent instruction set 
allowed developers to update these filters without writing kernel modules; having a virtual 
machine run the instructions provided a secure environment for execution of the filters. A 
significant milestone was reached in 2011 when a just in time (JIT) compiler was added to 
the kernel, which allowed translating BPF bytecode into the host system’s assembly instruc-
tion set. However, it was limited to only x86_64 architecture because every instruction was 
mapped one on one to an x86 instruction or register.

Things took an interesting turn when the BPF subsystem was “extended” in the Linux oper-
ating system in 2013, and since then BPF is used in a lot more places, including tracing and 
security subsystems, besides networking.



www.usenix.org	   S P R I N G 20 1 8   VO L .  4 3 ,  N O.  1  27

PROGRAMMING
XDP-Programmable Data Path in the Linux Kernel

Extended BPF
Linux 3.18 had the first implementation of extended BPF (eBPF), 
which made significant improvements from its precursor. While 
the original BPF virtual machine had two 32-bit registers, 
eBPF had 10 64-bit registers, added more instructions that were 
close to the hardware, and made it possible to call a subset of 
the kernel functions. All the BPF registers matched with the 
actual hardware registers, and BPF’s calling conventions were 
similar to the Linux kernel’s ABI in most architectures. One of 
the important outcomes of this was that it was now possible to 
use a compiler like LLVM to emit BPF bytecode from a subset of 
the C programming language. Another important addition was 
the BPF_CALL instruction, which allows BPF programs to call 
helper functions from the kernel allowing reuse of certain exist-
ing kernel infrastructure. 

The important point to keep in mind is that eBPF today can be 
used as a general-purpose event-processing system by various 
subsystems in the kernel. These events can come from various 
different sources such as a kprobe tracepoint or an arrival of a 
packet in the receive queue of the network driver. Support for 
BPF has gradually been added to various strategic points in the 
kernel such that when code in those kernel subsystems execute, 
the BPF programs are triggered. The kernel subsystems that 
trigger a BPF program dictate the capability of a BPF program, 
and usually every BPF program type is connected to a kernel 
subsystem. For example, the traffic control subsystem supports 
the BPF_PROG_TYPE_SCHED_CLS and BPF_PROG_TYPE_
SCHED_ACT program types that allow developers to write BPF 
to classify traffic and control behavior of the traffic classifier 
actions, respectively. Similarly, the seccomp subsystem can 
invoke a BPF program to determine whether a userspace process 
can make a particular syscall.

Writing the BPF bytecode for anything nontrivial can be chal-
lenging, but things have become a lot simpler since BPF has been 
added as a target in LLVM and users can now generate BPF in a 
subset of the C programming language.

In today’s Linux kernel, the old BPF instruction set, commonly 
known as cBPF, is transparently translated to eBPF instruc-
tions. I will use eBPF and BPF interchangeably from here on.

BPF Maps
An introduction to BPF is incomplete without discussing BPF 
maps. BPF programs by themselves are stateless, and so maps 
allow programs to maintain state between invocations. For 
example, we could write a BPF program that prints a trace mes-
sage whenever the inet_listen function is called in the kernel. 
However, if we wanted to expose that information as a counter 
to some monitoring tool, we would need the program to main-
tain state somewhere and increment a counter every time the 

method is called. This is where BPF maps come in. BPF maps are 
generic data structures implemented in the kernel where eBPF 
programs can store arbitrary data. These data structures, com-
monly referred to as maps, treat the data as opaque, and hence 
programs can store arbitrary bytes as key-value as appropriate. 
Maps can only be created or deleted from the userspace; BPF 
programs access the maps by using helper functions such as 
bpf_map_lookup_elem.

As of this writing, there are 11 different types of maps imple-
mented in the kernel today, some of them generic and others used 
specifically with helper functions. The generic maps are:

BPF_MAP_TYPE_HASH

BPF_MAP_TYPE_ARRAY

BPF_MAP_TYPE_PERCPU_HASH

BPF_MAP_TYPE_PERCPU_ARRAY

BPF_MAP_TYPE_LRU_HASH

BPF_MAP_TYPE_LRU_PERCPU_HASH

BPF_MAP_TYPE_LPM_TRIE

Each of them is designed for a specific use case, so it’s useful to 
understand the performance characteristics and their heuristics 
before starting to use them in BPF programs. For example, if we 
were designing a filter that increments a counter for every UDP 
packet that is being dropped, it would be best to use a per-CPU 
hash map so that the counters can be incremented without 
any synchronization to prevent multiple instances of the BPF 
program being triggered on different CPUs simultaneously. The 
non-generic maps are best described in the context of the docu-
mentation for the operations with which they can be used.

The BPF Syscall
The BPF syscall introduced in kernel 3.18 is the main workhorse 
for userspace programs to interact with the BPF infrastructure. 
The syscall multiplexes almost all the operations that userspace 
processes need to perform when handling BPF programs and 
maps. The syscall’s usage includes, but is not limited to, loading 
BPF filters into the kernel, creating new maps, or retrieving data 
from existing ones.

int bpf(int cmd, union bpf_attr *attr, unsigned int size);

◆◆ cmd—It could be one of the many operations that the syscall can 
perform. There are 10 such commands in total, six of which are 
documented in the man page.

◆◆ attr—A union that provides context to the command. For 
example, when used with the BPF_PROG_LOAD command, 
it allows the bytecode to be passed to the kernel, and with the 
BPF_MAP_CREATE, it lets the user define the size of the key 
and values of the map.

◆◆ size—The size of the attr union.



28    S P R I N G 20 1 8   VO L .  4 3 ,  N O.  1 	 www.usenix.org

PROGRAMMING
XDP-Programmable Data Path in the Linux Kernel

The syscall returns 0 when it succeeds in most cases, except 
for BPF_PROG_LOAD and BPF_MAP_CREATE, which return 
the file descriptor of the BPF object created. For any failures, it 
returns -1 and sets the appropriate errno. 

However, most userspace programs don’t use the raw syscalls; 
the BPF Compiler Collection (BCC) provides the libbpf library, 
which has some wrapper functions that make working with BPF 
objects easier.

int bpf_prog_load(enum bpf_prog_type prog_type, const char 

*name, const struct bpf_insn *insns, int prog_len, const char 

*license, unsigned kern_version, int log_level, char *log_buf, 

unsigned log_buf_size)

For example, the above wrapper function creates the attribute 
union for the bpf() syscall and wires in appropriate parameters. 
The kernel samples include good examples of usage of the libbpf 
library and other userspace helpers.

BPF Verifier
Safety is a very important concern for BPF programs, especially 
because they tend to run in the performance-critical sections of 
the kernel. The BPF infrastructure includes an in-kernel verifier 
that uses CFG (control flow graph) to determine that the BPF 
program terminates within the limit of maximum number of 
instructions. The verifier, for example, forbids loops and makes 
sure that maps are not destroyed until a program that uses it 
doesn’t terminate. The verifier also statically ensures the safety 
of the calls to the helper functions by checking that the types of 
the data in the BPF VM register matches with the types of the 
helper function arguments.

In addition to ensuring type safety, the verifier also ensures 
safety of the program by prohibiting out of bounds jumps and 
out-of-range data access. The verifier also restricts what kernel 
functions and which data structures can be accessed based on 
the BPF program type.

BPF File System
BPF maps and filters are effectively kernel resources exposed to 
userspace via file descriptors backed by anonymous inodes; this 
comes with some benefits but also interesting challenges. Once a 
userspace program exits, the BPF program would get destroyed, 
and so would the maps related to that program. The lifetime of a 
BPF program and maps are tied to that of the userspace process 
that loaded the program, which prevents maps from persist-
ing between filter invocations. As a result, maintaining state 
between program invocations becomes impossible. To overcome 
these limitations, the BPF infrastructure comes with a file sys-
tem where BPF objects like maps and programs can be pinned 
to a path in the file system. This process is commonly known as 
Object Pinning, and two new commands, BPF_OBJ_PIN and 

BPF_OBJ_GET, facilitate pinning and retrieving an existing 
pinned object. The command simply needs file descriptors and 
the path to which the object is going to be pinned.

An interesting aspect of BPF objects being exposed as file sys-
tem objects is that processes with higher privileges could create 
the objects and pin them to the file system and then drop their 
permission. For example, this allows lower-privileged userspace 
tools, like monitoring tools, to read telemetry data from maps.

BPF Tail Calls
BPF programs are limited to 4096 instructions, but it’s possible 
to chain multiple programs together via tail calls. This technique 
allows a BPF program to call another BPF program when it fin-
ishes. Tail calls are implemented by long jumps inside the VM, 
which reuse the same stack frame. BPF tail calls are different 
from normal functions in the sense that once the new function is 
invoked when the current function ends, the previous program 
ends. Data could be shared between stages by using per-CPU 
maps as temporary buffers. Tail calls are used to modularize 
BPF programs. For example, a program could parse the headers 
of a network packet, and the following program could implement 
some other logic like tracing or running classifier actions based 
on the headers.

There are certain limitations to tail calls:

1.	 Only similar programs can be chained together.

2.	 The maximum number of tail calls allowed is 32.

3.	 Programs which are JITed can’t be mixed with the ones that 
are not JITed.

As stated earlier, various kernel subsystems now have support 
for BPF. I will cover one such area that is part of the networking 
subsystem.

Express Data Path (XDP)
The networking subsystem of the kernel is one of the more 
performance-sensitive areas—there is always ongoing work to 
improve performance! Over the years userspace networking 
frameworks like DPDK have attracted users with the promise of 
faster packet processing by bypassing the kernel network stack. 
While it’s lucrative for userspace programs to get access to net-
work devices and improve on some data copies by bypassing the 
kernel, there are some problems with that approach as well. Most 
notably, in some cases packets have to be re-injected back to the 
kernel when they are destined for ssh or other system services. 
XDP provides an in-kernel mechanism for packet processing 
for certain use cases by providing access to the raw packets, so 
BPF filters can make decisions based on the headers or contents 
within the packets. XDP programs run in the network driver, 
which enables them to read an ethernet frame from the Rx ring of 
the NIC and take actions before any memory is allocated for the 



www.usenix.org	   S P R I N G 20 1 8   VO L .  4 3 ,  N O.  1  29

PROGRAMMING
XDP-Programmable Data Path in the Linux Kernel

packet in the kernel’s socket buffers (skb). As a use case, XDP pro-
grams can drop packets in the event of denial-of-service attacks 
at the line rate without overwhelming the kernel’s TCP stack or 
the userspace application. It is important to note that XDP is 
designed to cooperate with the existing networking subsystem of 
the kernel, and so developers can selectively use XDP to imple-
ment certain features that don’t need to leave the kernel space.

XDP programs currently can make the following decisions:

1.	 XDP_DROP—Instructs the driver to simply drop the packet. 
It’s essentially recycling a page in the Rx ring queue, since 
this happens at the earliest possible stage of the Rx flow.

2.	 XDP_TX—Retransmits a packet on the same NIC source. In 
most scenarios the eBPF program alters the headers or the 
contents of the packet before retransmitting. This allows 
for some very interesting use cases, such as load balancing 
where the load balancing decision is entirely done in the eBPF 
program. In this scenario, the networking stack or any user-
space code doesn’t need to participate in the decision making 
or packet retransmission flow, which allows for throughput 
close to line rate. One important point to keep in mind is 
that the XDP infrastructure doesn’t have any sort of buffer, 
because the packets are processed at the driver layer, so when 
a packet is retransmitted and the TX device is slower, packets 
might simply get dropped.

3.	 XDP_PASS—The eBPF program has allowed the packet to 
move on to the networking stack of the kernel. It’s also pos-
sible to rewrite the contents of the packets before the packet 
is passed on.

4.	 XDP_ABORT—This action is reserved for usage when the 
program encounters some form of an internal error; it essen-
tially results in the packet getting dropped.

XDP depends on drivers to implement the Rx hook and plug into 
the eBPF infrastructure. Currently, there can be only one XDP 
program attached to a driver, but programs can call other pro-
grams using the tail calls infrastructure.

Case Study: XDP-Based Firewall
To demonstrate how XDP programs work, we can go through the 
design of a simple packet filtering service. Services like firewalls 
are usually divided into a distributed control plane and a data 
plane. The control plane provides APIs for operators to create 
filtering rules and introspects the filters to provide telemetry 
data. The data plane runs on every host in a cluster where packet 
filtering happens. XDP filters naturally constitute the data plane 
of such a system.

In general, software using BPF filters are divided into three parts:

1.	 BPF filter code and maps that are loaded into the kernel

2.	 Userspace program that loads the filter and provide APIs to 
update various maps

3.	 Optional processes like command line tools to access the maps

BPF Maps
The BPF maps form the most essential part of the firewall 
system. As stated above, they essentially allow the userspace 
processes to provide the rule set for performing packet filtering 
and the XDP program to emit telemetry data. We use the follow-
ing maps in the data plane:

1.	 LPM trie map—The trie data structure allows doing prefix-
based lookups efficiently, and BPF includes an implemen-
tation of LPM (longest prefix match) trie. We will use the 
LPM trie map to store the CIDR blocks of the source and the 
destination addresses which have to be either blacklisted or 
whitelisted.

2.	 Map array—For whitelisted or blacklisted destination ports.

3.	 Hash maps—Hold counters for packets dropped and passed 
based on the rule set.

XDP Filters
The BPF program that XDP invokes when a packet is received in 
the driver contains the logic for parsing incoming packets, reads 
the maps to look up the rules provided by the userspace process, 
and makes filtering decisions based on them. The BPF program 
also updates maps with telemetry data to provide observability 
into the actions taken.

There would be separate XDP filters for whitelisting and black-
listing flows, so we will have two different XDP filters:

1.	 The blacklisting filter would parse the ethernet frame and 
extract the source IP address and the destination port. If 
the source IP address has a match in the LPM trie, it would 
simply return the XDP_DROP action. From there on, it would 
look up the blacklist’s array map and return the XDP_DROP 
action if there is a match. If none of the above checks has a 
positive outcome, the filter returns the XDP_PASS action, 
thereby passing on the packet to the kernel’s networking stack.

2.	 The whitelisting filter behaves similarly except that it 
returns the XDP_PASS action and allows the packet to pass 
into the kernel only if the lookups within the LPM trie map 
and the array map have a successful match. In other cases it 
returns the XDP_DROP action, thereby dropping the packet.



30    S P R I N G 20 1 8   VO L .  4 3 ,  N O.  1 	 www.usenix.org

PROGRAMMING
XDP-Programmable Data Path in the Linux Kernel

Userspace Program
The userspace program has all the necessary infrastructure to 
interact with the control plane service and also interacts with 
the BPF infrastructure. It retrieves the rules that need to be 
enforced, creates the necessary maps, and loads either of the 
whitelisting or the blacklisting filters based on the rules that 
need to be enforced. Any updates from the control plane would in 
turn update the maps containing the rules so that the filters can 
enforce the new rules. It can also provide APIs for other tools, 
such as monitoring system APIs that get telemetry data.

In addition to the XDP program and the userspace process that 
loads it, there could also be additional userspace tools that might 
interact with the pinned BPF objects. For example, third-party 
monitoring system tools could implement logic to read the maps 
and push telemetry data.

Conclusion
eBPF and XDP have been a major step towards achieving pro-
grammability in the kernel’s data path, which provides safety 
without compromising on speed. Beyond networking, eBPF has 
made a significant improvement in the tracing capabilities in 
the kernel, which has enabled instrumentations in areas that 
were previously not possible. The future of eBPF in the kernel 
is strong, and we will see more tools using the power of the BPF 
infrastructure.

XKCD xkcd.com



Save the Date!

www.usenix.org/lisa18

October 29–31, 2018
Nashville, TN, USA

LISA: Where systems engineering and operations professionals
share real-world knowledge about designing, building, and

maintaining the critical systems of our interconnected world.

The Call for Participation is now available.
Submissions are due May 24, 2018.

Program Co-Chairs

Rikki Endsley
Opensource.com

Brendan Gregg
Netflix




