
58   J U N E 20 1 5  VO L .  4 0,  N O.  3  www.usenix.org

COLUMNS
Talk to any Python programmer long enough and eventually the topic 

of concurrent programming will arise—usually followed by some 
groans, some incoherent mumbling about the dreaded global inter-

preter lock (GIL), and a request to change the topic. Yet Python continues to 
be used in a lot of applications that require concurrent operation whether it 
is a small Web service or full-fledged application. To support concurrency, 
Python provides both support for threads and coroutines. However, there is 
often a lot of confusion surrounding both topics. So in the next two install-
ments, we’re going to peel back the covers and take a look at the differences 
and similarities in the two approaches, with an emphasis on their low-level 
interaction with the system. The goal is simply to better understand how 
things work in order to make informed decisions about larger libraries and 
frameworks.

To get the most out of this article, I suggest that you try the examples yourself. I’ve tried to 
strip them down to their bare essentials so there’s not so much code—the main purpose is to 
try some simple experiments. The article assumes the use of Python 3.3 or newer. 

First, Some Socket Programming
To start our exploration, let’s begin with a little bit of network programming. Here’s an 
example of a simple TCP server implemented using Python’s low-level socket module [1]:

# server.py

from socket import *

def tcp_server(address, handler):

    sock = socket(AF_INET, SOCK_STREAM)

    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

    sock.bind(address)

    sock.listen(5)

    while True:

        client, addr = sock.accept()

        handler(client, addr)

def echo_handler(client, address):

    print('Connection from', address)

    while True:

        data = client.recv(1000)

        if not data:

            break

        client.send(data)

    print('Connection closed')

    client.close()

if __name__ == '__main__':

    tcp_server((‘’,25000), echo_handler)

David Beazley is an open 
source developer and author of 
the Python Essential Reference 
(4th Edition, Addison-Wesley, 
2009). He is also known as the 

creator of Swig (www.swig.org) and Python 
Lex-Yacc (www.dabeaz.com/ply.html). Beazley 
is based in Chicago, where he also teaches a 
variety of Python courses. dave@dabeaz.com

A Tale of Two Concurrencies (Part 1)
D A V I D  B E A Z L E Y



www.usenix.org  J U N E 20 1 5  VO L .  4 0,  N O.  3 59

COLUMNS
A Tale of Two Concurrencies (Part 1)

Run this program in its own terminal window. Next, try con-
necting to it using a command such as nc 127.0.0.1 25000 or 
telnet 127.0.0.1 25000. You should see the server echoing 
what you type back to you. However, open up another terminal 
window and try repeating the nc or telnet command. Now you’ll 
see nothing happening. This is because the server only supports 
a single client. No support has been added to make it manage 
multiple simultaneous connections.

Programming with Threads
One way to support concurrency is to use the built-in threading 
library [2]. Simply change the tcp_server() function to launch a 
new thread for each new connection as follows:

# server.py

from socket import *

from threading import Thread

def tcp_server(address, handler):

    sock = socket(AF_INET, SOCK_STREAM)

    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

    sock.bind(address)

    sock.listen(5)

    while True:

        client, addr = sock.accept()

        t = Thread(target=handler, args=(client, addr))

        t.daemon=True

        t.start()

...

That’s it. If you repeat the connection experiment, you’ll find 
that multiple clients work perfectly fine.

Under the covers, a Thread represents a concurrently execut-
ing Python callable. On UNIX, threads are implemented using 
POSIX threads and are fully managed by the operating system. 
A common confusion concerning Python is a belief that it uses 
some kind of “fake” threading model—not true. Threads in 
Python are the same first-class citizens as you would find in C, 
Java, or any number of programming languages with threads. 
In fact, Python has supported threads for most of its existence 
(the first implementations provided thread support on Irix and 
Solaris around 1992). There is also support for various synchro-
nization primitives such as locks, semaphores, events, condition 
variables, and more. However, the focus of this article is not on 
concurrent programming algorithms per se, so we’re not going to 
focus further on that.

The Global Interpreter Lock
The biggest downside to using threads in Python is that although 
the interpreter allows for concurrent execution, it does not 
support parallel execution of multiple threads on multiple CPU 
cores. Internally, there is a global interpreter lock (GIL) that 
synchronizes threads and limits their execution to a single core 

(see [3] for a detailed description of how it works). There are 
various reasons for the existence of the GIL, but most of them 
relate to aspects of the implementation of the Python interpreter 
itself. For example, the use of reference-counting-based garbage 
collection is poorly suited for multithreaded execution (since 
all reference count updates must be locked). Also, Python has 
historically been used to call out to C extensions that may or may 
not be thread-safe themselves. So the GIL provides an element of 
safety.

For tasks that are mostly based on I/O processing, the restriction 
imposed by the GIL is rarely critical—such programs spend most 
of their time waiting for I/O events, and waiting works just as 
well on one CPU as on many. The major concern is in programs 
that need to perform a significant amount of CPU processing. 
To see this in action, let’s make a slightly modified server that, 
instead of echoing data, computes Fibonacci numbers using a 
particularly inefficient algorithm:

# server.py

...

def fib(n):

    if n <= 2:

       return 1

    else:

       return fib(n-1) + fib(n-2)

def fib_handler(client, addr):

    print('Connection from', address)

    while True:

        data = client.recv(1000)

        if not data:

            break

        result = fib(int(data))

        client.send(str(result).encode('ascii')+b'\n')

    print('Connection closed')

    client.close()

if __name__ == '__main__':

    tcp_server((‘’,25000), fib_handler)

If you try this example and connect using nc or telnet, you 
should be able to type a number as input and get a Fibonacci 
number returned as a result. For example:

bash % nc 127.0.0.1 25000

10

55

20

6765

Larger numbers take longer and longer to compute. For example, 
if you enter a value such as 40, it might take as long as a minute 
to finish.



60   J U N E 20 1 5  VO L .  4 0,  N O.  3  www.usenix.org

COLUMNS
A Tale of Two Concurrencies (Part 1)

Now, let’s write a little performance test. The purpose of this test 
is to repeatedly hit the server with a CPU-intensive request and 
to measure its response time.

# perf1.py

from socket import *

import time

sock = socket(AF_INET, SOCK_STREAM)

sock.connect(('127.0.0.1', 25000))

while True:

    start = time.time()

    sock.send(b'30')

    resp = sock.recv(100)

    end = time.time()

    print(end-start)

Try running this program. It should start producing a series of 
timing measurements such as this:

bash % python3 perf1.py

0.6157200336456299

0.6006970405578613

0.6721141338348389

0.7784650325775146

0.5988950729370117

...

Go to a different terminal window and run the same perfor-
mance test as the first one runs (you have two clients making 
requests to the server). Carefully watch the reported times. 
You’ll see them suddenly double like this:

0.6514902114868164

0.629213809967041

1.2837769985198975             # 2nd test started

1.4181411266326904

1.3628699779510498

...

This happens even if you’re on a machine with multiple CPU 
cores. The reason? The global interpreter lock. Python is limited 
to one CPU, so both clients are forced to share cycles.

Lesser Known Evils of the GIL
The restriction of execution to a single CPU core is the most 
widely known evil of the GIL. However, there are two other 
lesser known facets to it that are worth considering. The first 
concerns the instructions that Python executes under the cov-
ers. Consider a simple Python function:

def countdown(n):

    while n > 0:

        print('T-minus', n)

        n -= 1

To execute the function, it is compiled down to a Python-specific 
machine code that you can view using the dis.dis() function:

>>> import dis

>>> dis.dis(countdown)

 2 0  SETUP_LOOP 39 (to 42)

    >> 3  LOAD_FAST 0 (n)

  6  LOAD_CONST 1 (0)

  9  COMPARE_OP 4 (>)

  12  POP_JUMP_IF_FALSE 41

 3 15  LOAD_GLOBAL 0 (print)

  18  LOAD_CONST 2 ('T-minus')

  21  LOAD_FAST 0 (n)

  24  CALL_FUNCTION 2 (2 positional, 0 keyword pair)

  27  POP_TOP

 4 28  LOAD_FAST 0 (n)

  31 LOAD_CONST 3 (1)

  34 INPLACE_SUBTRACT

  35 STORE_FAST 0 (n)

  38 JUMP_ABSOLUTE 3

    >> 41 POP_BLOCK

    >> 42 LOAD_CONST 0 (None)

  45  RETURN_VALUE

In this code, each low-level instruction executes atomically. That 
is, each instruction is uninterruptible and can’t be preempted. 
Although most instructions execute very quickly, there are edge 
cases where a single instruction might take a very long time to 
execute. To see that, try this experiment where you first launch a 
simple thread that simply prints a message every few seconds:

>>> import time

>>> def hello():

...     while True:

...         print('Hello')

...         time.sleep(5)

...

>>> import threading

>>> t = threading.Thread(target=hello)

>>> t.daemon=True

>>> t.start()

Hello

Hello

... repeats every 5 seconds

Now, while that thread is running, type the following commands 
into the interactive interpreter (note: it might be a bit weird since 
“Hello” is being printed at the same time).

>>> nums = range(1000000000) # Use xrange on Python 2

>>> ‘spam’ in nums

At this point, the Python interpreter will go completely silent. 
You’ll see no output from the thread. You’ll also find that not even 
the Control-C works to interrupt the program. The reason is that 



www.usenix.org  J U N E 20 1 5  VO L .  4 0,  N O.  3 61

COLUMNS
A Tale of Two Concurrencies (Part 1)

the “in” operator in this example is executing as a single inter-
preter instruction—it just happens to be taking a very long time 
to execute due to the size of the data. In practice, it’s actually 
quite difficult to stall pure-Python code in this way. Ironically, 
it’s most likely to occur in code that calls out to long-running 
operations implemented in C extension modules. Unless the 
author of an extension module has programmed it to explicitly 
release the GIL, long operations will stall everything else until 
they complete (see [4] for information on avoiding this).

The second subtle problem with the GIL is that it makes Python 
prioritize long-running CPU-bound tasks over short-running 
I/O-bound tasks. To see this, type in the following test program, 
which measures how many requests are made per second:

# perf2.py

import threading

import time

from socket import *

sock = socket(AF_INET, SOCK_STREAM)

sock.connect(('127.0.0.1', 25000))

N = 0

def monitor():

    global N

    while True:

        time.sleep(1)

        print(N, 'requests/second')

        N = 0

t = threading.Thread(target=monitor)

t.daemon=True

t.start()

while True:

     sock.send(b'1')

     resp = sock.recv(100)

     N += 1

This program hits the server with a rapid-fire stream of 
requests. Start your server and run it; you should see output such 
as this:

bash % python3 perf2.py

22114 requests/second

21874 requests/second

21734 requests/second

21137 requests/second

21866 requests/second

...

While that is running, initiate a separate session and try com-
puting a large Fibonacci number:

bash % nc 127.0.0.1 25000

40

102334155     (takes awhile to appear)

When you do this, the perf2.py program will have its request 
rate drop precipitously like this:

21451 requests/second

21913 requests/second

6942 requests/second 

99 requests/second

103 requests/second

101 requests/second

99 requests/second

...

This more than 99% drop in the request rate is due to the fact 
that if any thread wants to execute, it waits as long as 5 ms before 
trying to preempt the currently executing thread. However, if 
any computationally intensive task is running, it will almost 
always be holding the CPU for the entire 5 ms period and stall 
progress on short I/O intensive tasks that want to run.

Both of these problems, uninterruptible instructions and 
prioritization of CPU-bound work, would manifest themselves 
in an application as a kind of performance “glitch” or a kind 
of sluggishness. For example, suppose that this service was 
implementing a backend service for a Web site. Maybe most of 
the operations are fast-running data queries, but suppose that 
there were a few corner cases where the service had to perform 
a significant amount of CPU processing. For those cases, you 
would find that the responsiveness of the service would degrade 
significantly as those CPU-intensive tasks are carried out.

Personally, I think the inversion of priority of CPU-bound 
threads over I/O-bound threads might be the most serious prob-
lem with using Python threads—more so than the limitation of 
execution to a single CPU core. This preference for CPU-bound 
tasks is exactly the opposite of how operating systems typically 
prioritize processes (short-running interactive processes usu-
ally get priority). In most applications, it’s almost always better 
to maintain a quick response time even if it means certain long-
running operations take a slight bit longer to complete than they 
already do.

Using Subprocesses
Although you might look in dismay at the performance of Python 
threads, keep in mind that their primary limitation concerns 
long-running CPU-bound tasks. If this applies, you’ll want to 
seek some other subdivision of tasks in your system. A typical 
solution is to run multiple instances of the Python interpreter, 
either through process forking or the use of a process pool.

For example, to use a process pool, you can modify the server to 
use the concurrent.futures module as follows:



62   J U N E 20 1 5  VO L .  4 0,  N O.  3  www.usenix.org

COLUMNS
A Tale of Two Concurrencies (Part 1)

# server.py

from concurrent.futures import ProcessPoolExecutor as Pool

NPROCS = 4

pool = Pool(NPROCS)

def fib_handler(client, address):

    print('Connection from', address)

    while True:

        data = client.recv(1000)

        if not data:

            break

        future = pool.submit(fib, int(data))

        result = future.result()

        client.send(str(result).encode('ascii')+b'\n')

    print('Connection closed')

    client.close()

...

If you make this simple change, you’ll find that the first perfor-
mance test (perf1.py) now nicely scales to use all available CPU 
cores.

However, using a process Pool for short-running tasks is prob-
ably not the best approach. If you run the second performance 
test (perf2.py), you’ll see about a 95% reduction in the request 
rate such as this:

bash % python3 perf2.py

1319 reqs/sec

1313 reqs/sec

1315 reqs/sec

1308 reqs/sec

This performance reduction is solely due to all of the extra over-
head associated with sending the request to another process, 
serializing data, and so forth. If there’s any bright spot, it’s that 
this request rate will now remain constant even if another client 
starts performing a long-running task (so, at the very least, the 
performance will simply be consistently and predictably bad). A 
smarter approach might involve a threshold that only kicks work 
out to a pool if it’s known in advance that it will take a long time 
to compute. For example:

# server.py

...

def fib_handler(client, address):

    print('Connection from', address)

    while True:

        data = client.recv(1000)

        if not data:

            break

        n = int(data)

        if n > 15:

           future = pool.submit(fib, n)

           result = future.result()

        else:

           result = fib(n)

        client.send(str(result).encode('ascii')+b'\n')

    print('Connection closed')

    client.close()

...

Using a process pool is not the only approach. For example, an 
alternative approach might involve a pre-forked server like this:

# server.py

from socket import *

import os

NPROCS = 8

def tcp_server(address, handler):

    sock = socket(AF_INET, SOCK_STREAM)

    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

    sock.bind(address)

    sock.listen(5)

    # Fork copies of the server

    for n in range(NPROCS):

        if os.fork() == 0:

            break

    while True:

        client, addr = sock.accept()

        handler(client, addr)

...

In this case, there is no communication overhead associated 
with submitting work out to a pool. However, you’re also strictly 
limiting your concurrency to the number of processes spawned. 
So if a large number of long-running requests were made, they 
might lock everything out of the server until they finish.

Memory Overhead of Threads
A common complaint lodged against threads is that they impose 
a steep memory overhead. To be sure, if you create 1000 threads, 
each thread requires some dedicated memory to use as a call 
stack and some data structures for management in the operating 
system. However, this overhead is intrinsic to POSIX threads 
and not to Python specifically. The Python-specific overhead is 
actually quite small. Internally, each Python thread is repre-
sented by a small C data structure that is less than 200 bytes 
in size. Beyond that, the only additional overhead are the stack 
frames used to make function calls in the thread.

Even the apparent memory overhead of threads can be decep-
tive. For example, by default, each thread might be given 8 MB 
of memory for its stack (thus, in a program with 1000 threads, it 
will appear that more than 8 GB of RAM is being used). However, 
it’s important to realize that this memory allocation is typically 
just a maximum reservation of virtual memory, not actual physi-
cal RAM. The operating system will allocate page-sized chunks 



www.usenix.org  J U N E 20 1 5  VO L .  4 0,  N O.  3 63

COLUMNS
A Tale of Two Concurrencies (Part 1)

of memory (typically 4096 bytes) to this space as it’s needed 
during execution but leave the unused space unmapped. Many 
operating systems (e.g., Linux) take it a step further and won’t 
even reserve space on the swap disk for thread stacks unless 
specifically configured [5]. So the actual memory overhead of 
threads is far less than it might seem at first glance. (Note: the 
lack of a swap allocation for threads presents a possible danger 
to production systems—if memory is ever exhausted, the system 
might start randomly killing processes to make space!)

As far as Python is concerned, the main memory overhead risk is 
in code based on deeply recursive algorithms because this would 
create the potential to use up all of the thread stack space. How-
ever, most Python programmers just don’t write code like this. In 
fact, if you blow up the stack on purpose, you’ll find that it takes 
nearly 15,000 levels of recursive function calls to do it. The bot-
tom line: it’s unlikely that you would need to worry about this in 
normal code. In addition, if you’re really concerned, you can set a 
much smaller thread stack size using the threading.stack 

_size(nbytes) function.

All of this said, the overhead of threads is still a real concern. 
Many systems place an upper limit on the number of threads a 
single process or user can create. There are also certain kinds 
of applications where the degree of concurrency is so high that 
threads simply aren’t practical. For example, if you’re writing a 
server to support something like WebSockets, you might have a 
scenario where the system needs to maintain tens of thousands 
of open socket connections simultaneously. In that case, you 
probably don’t want to manage each socket in its own thread 
(we’ll address this in the next installment).

Everything Is Terrible, Well, Only Sometimes. 
Maybe.
If you’ve made it this far, you might be inclined to think that just 
about everything with Python threads is terrible. To be sure, 
threads are probably not the best way to handle CPU-intensive 
work in Python, and they might not be appropriate if your problem 
involves managing 30,000 open socket connections. However, for 
everything else in the middle, they offer a sensible choice.

For one, threads work great with programs that are primar-
ily performing I/O. For example, if you’re simply moving data 
around on network connections, manipulating files, or interact-
ing with a database, most of your program’s time is going to be 
spent waiting around. So you’re unlikely to see the worst effects 
of the GIL. Second, threads offer a relatively simple program-
ming model. Launching a thread is easy: they are generally 
compatible with most Python code that you’re likely to write, 
and they’re likely to work with most Python extensions (caveat: 
if you’re manipulating shared state, be prepared to add locks). 
Finally, Python provides libraries for moving work off to sepa-
rate processes if you need to.

In the next installment, we’ll look at an alternative to program-
ming with threads based on Python coroutines. Coroutines are 
the basis of Python’s new asyncio module, and the techniques 
are being used a variety of other programming languages as well.

References
[1] Python3 socket module: https://docs.python.org/3/library/
socket.html. 

[2] Python3 threading module: https://docs.python.org/3/
library/threading.html. 

[3] Dave Beazley, “Understanding the Python GIL”: http:/www 
.dabeaz.com/GIL.

[4] Thread state and the Global Interpreter Lock: https://docs 
.python.org/3/c-api/init.html#thread-state-and-the-global 
-interpreter-lock.

[5] R. Love, “Linux System Programming,” 2nd ed. (O’Reilly 
Media, Inc., 2013); see the section on “Opportunistic Alloca-
tion” in Chapter 9.




