
62  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTSConference Reports

11th USENIX Symposium on Operating Systems Design and
Implementation
October 6–8, 2014, Broomfield, CO
Summarized by Radu Banabic, Lucian Carata, Rik Farrow, Rohan Gandhi, Mainak Ghosh, Yanqin Jin, Giorgos Kappes,
Yang Liu, Haonan Lu, Yu Luo, Amirsaman Memaripour, Alexander Merritt, Sankaranarayana Pillai, Ioan Stefanovici,
Alexey Tumanov, Jonas Wagner, David Williams-King, and Xu Zhao

Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)

OSDI ’14 started with a beautiful, sunny day outside of Boulder, Colorado. The nice weather lasted
the entire conference, which was also brightened by record attendance.

The program chairs, Jason Flinn (University of Michigan) and Hank Levy (University of Wash-
ington), told the crowd that they had moved to shorter presentations, just 22 minutes, so they could
fit four presentations into each session. By doing this, they raised the acceptance rate from the old
range of 12–14% to 18%. There were 242 submissions, with 42 papers accepted. The PC spent one-
and-a-half days in meetings in Seattle and used an External Review Committee to help reduce the
workload on the PC. Each PC member reviewed 30 papers (on average), down from 45.

USENIX and OSDI ’14 sponsors made it possible for 108 students to attend the conference via
grants. Overall attendance was also at record levels.

The Jay Lepreau Best Paper Awards were given to the authors of three papers: “Arrakis: The Oper-
ating System Is the Control Plane” (Peter et al.), “IX: A Protected Dataplane Operating System for
High Throughput and Low Latency” (Belay et al.), and “Shielding Applications from an Untrusted
Cloud with Haven” (Baumann et al.). There was no Test of Time award this year.

Who Put the Kernel in My OS Conference?
Summarized by Giorgos Kappes (gkappes@cs.uoi.gr) and Jonas Wagner (jonas.wagner@epfl.ch)

Arrakis: The Operating System Is the Control Plane
Simon Peter, Jialin Li, Irene Zhang, Dan R.K. Ports, Doug Woos,
Arvind Krishnamurthy, and Thomas Anderson, University of Washington; Timothy Roscoe, ETH Zürich

Jay Lepreau Best Paper Award

Simon began his talk by explaining that traditional operating systems like Linux do not take advan-
tage of modern hardware that supports I/O virtualization, and they impose significant overheads
because the kernel mediates all data accesses.

Simon introduced Arrakis, a server OS that splits the role of the kernel into the control and the data
plane. The control plane lies in the kernel and is responsible for functionalities like naming, access
control, and resource limits. These functionalities are used infrequently, to set up a data plane, for
example. On the other hand, the functionality of the data plane is moved into applications. Applica-
tions perform I/O processing themselves by taking advantage of hardware I/O virtualization, while
protection, multiplexing, and I/O scheduling are directly performed by the hardware. The copying
of data between the kernel and the user space is no longer needed. A per application dynamically
linked library implements the data plane interfaces which are tailored to the application. The
network data plane interface allows applications to directly talk with the hardware in order to send
and receive packets. The storage data plane interface allows the applications to asynchronously
read, write, and flush data into its assigned virtual storage area (VSA). The storage controllers map
this virtual area to the underlying physical disks.

There is also a virtual file system (VFS) in the kernel that performs global naming. In fact, the
application has the responsibility to map data onto its VSA and register names to the VFS. The
storage data plane also provides two persistent data structures: a log and a queue. These allow

In this issue:
62 11th USENIX Symposium

on Operating Systems
Design and
Implementation

86 2014 Conference on Timely
Results in Operating
Systems

93 10th Workshop on
Hot Topics in System
Dependability

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 63

REPORTS

operations to be immediately persistent, protect data against
crash failures, and reduce the operations’ latency.

To evaluate Arrakis, the authors implemented it in Barrelfish
OS and compared its performance with Linux. By using several
typical server workloads and well-known key-value stores, they
show that Arrakis significantly reduces the latency of set and
get operations while increasing the write throughput 9x. Arrakis
also scales better than Linux to multiple cores, because I/O
stacks are local to applications and are application specialized.

John Criswell (University of Rochester) asked what would
happen if the Linux kernel made the hardware devices directly
available to applications. Simon replied that there is a lot of
related work that does try to keep the Linux kernel intact. How-
ever, it does not provide the same performance as Arrakis, since
the kernel has to be called eventually. System call batching can
mitigate this, however this trades off latency for higher through-
put. Geoff Kuenning (Harvey Mudd College) asked whether
Redis must be running in order to mediate disk I/O through
its dedicated library and what would happen if someone dam-
aged the Redis config file preventing it from starting up. Simon
answered that the idea behind the indirection interface is pro-
vided by the libIO stack in Redis’s dedicated library. The stack
includes a server that receives I/O operations and directs them
to the config file. Aaron Carol (NICTA) first pointed out that it
seems that Arrakis designates a process as a host for a collection
of files, and then asked what performance implications would
come with accessing these files from a different process. Simon
replied that the process to which the file belongs will have faster
access. Different processes need to perform IPC, which typi-
cally has some costs, but Barrelfish introduced fast IPC. Finally,
Peter Desnoyers (Northeastern University) asked how Arrakis
performs for very high connection rate applications, e.g., a large
Web server. Simon said that not every connect operation needs a
control-plane call. For example, a range of port numbers can be
allocated to a server with a single control-plane call.

Decoupling Cores, Kernels, and Operating Systems
Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe,
ETH Zürich

Gerd motivated his work with current hardware and software
trends: In an era of Turbo Boost, core fusion, and dark silicon,
power management is crucial. Tomorrow’s OSes need to switch
between specialized cores based on their workload. They should
be able to dynamically reconfigure or update themselves. All this
is possible in Barrelfish/DC, a multikernel architecture where
OS state has been carefully factored per CPU. This allows a
separate kernel to control each CPU and to treat CPUs as plug-
gable devices.

The main challenge is to cleanly and quickly shut down a core.
Barrelfish/DC’s solution is to move CPU state out of the way
quickly, then dismantle it lazily, if needed. State is encapsulated
in an “OSnode” containing capabilities that represent applica-
tion and OS state, as well as a Kernel Control Block representing

hardware state. OSnodes can be moved to another CPU, where
they are “parked” until dismantled or restarted.

Experiments show that Barrelfish/DC can shut down nodes very
quickly (in <1 ms). Moreover, the time to do so does not depend on
the system load. The Barrelfish/DC team has demonstrated that
their system enables various new use cases, e.g., live updates of
the OS kernel or temporarily switching to a real-time kernel for a
specific task.

Chris Frost (Google) asked how interrupts interacted with
moving cores. Gerd explained that Barrelfish/DC handles three
types of interrupts: for timers, inter-process communication,
and devices. When a device driver is moved to another core,
device interrupts must be disabled on the source core before the
move, and the driver must poll the device state once it is running
on the destination core. Srivatsa Bhat (MIT) asked whether Bar-
relfish/DC’s energy savings could also be achieved by the power
modes in today’s CPUs. Gerd answered that this is possible,
but that his work goes beyond power savings to explore com-
pletely new ideas. Someone from Stanford asked about the cost
of dismantling a state. Gerd explained that this depends on the
application (e.g., whether it uses shared message channels) and
that it was impossible to give a specific number. Malte Schwarz-
kopf (Cambridge) asked whether this would work on non-cache-
coherent architectures. We don’t know, said Gerd, because such
a system has not yet been built.

Jitk: A Trustworthy In-Kernel Interpreter Infrastructure
Xi Wang, David Lazar, Nickolai Zeldovich, and Adam Chlipala, MIT CSAIL;
Zachary Tatlock, University of Washington

Today’s kernels execute untrusted user-provided code in several
places: BSD Packet Filter (BPF) programs to filter packets
or system calls, DTrace programs for profiling, etc. Xi Wang
started his talk by showing how hard it is to build correct and
secure interpreters for such user-provided code. He and his col-
leagues created Jitk, a verified JIT compiler for programs in the
BPF language, to eradicate interpreter bugs and security vulner-
abilities once and for all.

Jitk models both a BPF program and the CPU as state machines
and comes with a proof that, whenever Jitk successfully trans-
lates a BPF program to machine code, all its state transitions
correspond to transitions at the machine code level. Jitk’s proof
builds on the CPU model and an intermediate language, Cminor,
from the CompCert project. The main proof is complemented by
a proof that decoding BPF bytecode is the inverse operation of
encoding it, and by a high-level specification language that sim-
plifies the creation of BPF programs. Putting these components
together, users can have confidence that the semantics of well-
understood, high-level programs are exactly preserved down to
the machine code level.

Jitk consists of 3510 lines of code, two thirds of them proof code.
The JIT’s performance is comparable to the interpreter that
ships with Linux. Due to the use of optimizations from Comp-
Cert, it often generates code that is smaller.

64  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

Rich Draves (Microsoft) enquired how Jitk compares to proof-
carrying code. Xi Wang answered that Jitk proves strong
correctness properties, whereas proof-carrying code usually
demonstrates only its memory safety. Also, Jitk’s proof holds for
any translated program. Malte Schwarzkopf (Cambridge) won-
dered about the value of Jitk’s proof, given the large trusted code
base. Xi Wang answered that all theorem proofing techniques
share this problem. The trusted code base consists of layers that
build on each other, and we can gain confidence by analyzing
layers in isolation and trusting that errors would not propagate.
Volodymyr Kuznetsov (EPFL) asked whether proven code could
be isolated from untrusted code. Xi Wang pointed to the related
Reflex project (PLDI 2014) where, for example, isolation between
different browser tabs has been proven.

IX: A Protected Dataplane Operating System for High
Throughput and Low Latency
Adam Belay, Stanford University; George Prekas, École Polytechnique
Fédérale de Lausanne (EPFL); Ana Klimovic, Samuel Grossman, and
Christos Kozyrakis, Stanford University; Edouard Bugnion, École
Polytechnique Fédérale de Lausanne (EPFL)

Jay Lepreau Best Paper Award

Adam started by mentioning the increasing mismatch between
modern hardware and traditional operating systems. While
the hardware is very fast, the OS becomes the bottleneck. This
results from the complexity of the kernel and its interface, while
interrupts and scheduling complicate things even further.
Instead, today’s datacenters require scalable API designs in
order to support a large number of connections, high request
rates, and low tail latency.

To achieve these goals, the authors designed IX, a data-plane
OS that splits the kernel into a control plane and multiple data
planes. The control plane consists of the full Linux kernel. It
multiplexes and schedules resources among multiple data planes
and performs configuration. Each data plane runs on dedicated
cores and has direct hardware access by utilizing hardware
virtualization. Additionally, IX leverages VTX virtualization
extensions and Dune (OSDI ’12) to isolate the control plane and
the data planes as well as to divide each data plane in half. The
first half includes the IX data-plane kernel and runs in the high-
est privilege ring (ring 0), while the other half comprises the user
application and libIX and runs in the lowest privilege ring (ring 3).

libIX is a user-level library that provides a libevent-like pro-
gramming model and includes new interfaces for native zero-
copy read and write operations. Describing the IX design, Adam
briefly presented the IX execution pipeline and mentioned its
core characteristics. The IX data plane makes extensive use of
adaptive batching, which is applied on every stage of the network
stack. Batching is size-bounded and only used in the presence
of congestion. This technique decreases latency and improves
instruction cache locality, branch prediction, and prefetching,
and it leads to higher packet rates. Additionally, the IX data plane
runs to completion of all stages needed to receive and transmit
a batch of packets, which improves data cache locality. It also

removes scheduling unpredictability and jitter, and it enables
the use of polling.

The authors evaluated a prototype implementation of IX against
a Linux kernel and mTCP, and showed that IX outperforms both
in terms of throughput and latency. Additionally, IX achieves
better core scalability. The authors also tested memcached and
showed that IX reduces tail latency 2x for Linux clients and by up
to 6x for IX clients. It can also processes 3.6 times more requests.

Brad Karp (UCL) asked whether the technique used to achieve
data cache locality affects instruction cache locality. He also
asked whether integrated layer processing conflicts with the
techniques used in IX. Adam answered that they didn’t observe
that data cache locality adversely affects instruction cache
locality. If the amount of data that accumulates between pro-
cessing phases fits in data cache, then the instruction cache
is not a bottleneck. An upper limit on the batch size also helps.
Simon Peter (University of Washington) asked how the batch-
ing used in IX affects tail latency, especially with future, faster
network cards. Adam said that batch limits have no impact at
low throughputs because batching is not used. But even at high
throughputs, batching leads to low latency because it reduces
head-of-line blocking. The next question was about the run-to-
completion model. Michael Condict (NetApp) asked whether no
one is listening on the NIC when the core is in the application
processing stage. Adam replied that while the application per-
forms processing, the NIC queue is not being polled. Michael
also asked whether this technique can be used on servers that
have high variability in processing time. Adam said that IX dis-
tinguishes between I/O and background threads. Applications
could use background threads for longer-duration work. They
also want to use interrupts to ensure that packets are not unnec-
essarily dropped. However, interrupts should only be a fallback.
Steve Young (Comcast) asked whether they encountered depen-
dencies between consecutive operations due to batching. Adam
answered that this was a big issue when they designed their API,
but careful API design can prevent such problems. They also use a
heuristic: the batch is a set of consolidated network requests from
a single flow. If one fails, they skip the other requests in the flow.

Data in the Abstract
Summarized by Yang Liu (yal036@cs.ucsd.edu) and Yanqin Jin
(y7jin@cs.ucsd.edu)

Willow: A User-Programmable SSD
Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson, University of California,
San Diego

Steve Swanson first highlighted that Willow aims to make pro-
grammability a central feature of storage devices and to provide
a more flexible interface. Then he gave a retrospective view of
the evolution of storage technology, starting from slow hard
disks to emerging PCIe attached SSDs backed by flash or phase
change memory (PCM). Unlike conventional storage, these new
SSDs promise much better performance as well as more flexibil-
ity, urging people to rethink the interface between storage soft-

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 65

REPORTS

ware and storage device. Previously, SSDs had been connected
to the host via rigid interfaces such as SATA, SAS, etc., while
SSDs have flexible internal components. Thus the challenge is to
expose the programmability to application developers who want
to build efficient and safe systems.

Steve presented Willow, a system that (1) provides a f lexible
interface that makes it easy to define new operations using the
C programming language, (2) enforces file system permissions,
(3) allows execution of untrusted code, and (4) provides OS bypass
so that applications can invoke operations without system calls.

Willow is especially suitable for three types of applications: data-
dependent logic, semantic extensions, and privileged execution.
Intensive and complex data analytics is not the sweet spot for
Willow’s design, mainly because of the wimpy CPUs inside the
SSD, limited by power and manufacturing cost.

Steve then presented Willow’s system architecture. Willow,
which is implemented on a BEE3 FPGA board, has similar com-
ponents to a conventional SSD: It contains eight storage proces-
sor units (SPUs), each of which includes a microprocessor, an
interface to an inter-SPU interconnect, and access to an array of
non-volatile memory. Each SPU runs a small SPU-OS, providing
basic functionality such as protection. Willow is connected with
the host machine via NVM Express (NVMe) over PCIe.

Willow allows application programmers to download SSD apps to
the storage device. An SSD app has three components: a host-side
user-space library, the SPU code, and an optional kernel module.
Willow’s interface is very different from that of a conventional
SSD. Host threads and SPUs rely on a RPC mechanism to com-
municate with each other. The RPC mechanism is sufficiently
flexible so that adding new interface is easy. There is nothing
storage-centric about the RPC since SPUs and host can send
RPCs in any direction, from host to storage and vice versa.

Steve also introduced the trust and protection model adopted
by Willow in which a file system sets protection policy while
Willow firmware enforces it. In particular, he pointed out that,
thanks to hardware-written processID information in the mes-
sage headers, RPCs cannot be forged.

To demonstrate the usefulness of Willow, Steve guided the audi-
ence through a case study and invited them to read the paper
for further details. In the talk, he showed that by implementing
moderate amount of transaction support inside Willow, some
applications become easy to write, with a noticeable perfor-
mance gain. He also emphasized that the programmability of
Willow actually makes tweaking and tuning the system faster
and more convenient.

Pankaj Mehra (SanDisk) asked whether future programmable
SSD can work with the new NVMe standard, given the evolution
of non-volatile memory. Steve said that they are actually doing
some work to answer that question, and the simple answer is yes.
One of the possible ways to do that is to go through the NVMe
standard and add some extensions, such as allowing generic

calls from the device to the host, which will fit in the NVMe
framework. Peter Chen (University of Michigan) asked whether
Steve saw any technological trends that could reduce the need
for programmable SSDs, when faster buses emerge. Steve said
that he doesn’t see trends in that direction because latency
doesn’t decrease much even though PCIe bandwidth continues
to grow. Thus, it is still a problem if there is too much back-and-
forth communication between the host and the SSD. In addition,
the programming environment on the SSD is much simpler than
that on the host, making the SSD more reliable and predictable.
He said he can see a consistent trend towards pushing more
capable processors on SSDs, and similar trends on GPUs and
network cards as well. In his opinion, this is a broad trend.

Physical Disentanglement in a Container-Based
File System
Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin-Madison

Isolation is vital for both reliability and performance, and is
widely used in various computer systems. Lanyue Lu pointed
out current system design does not have isolation in the physical
on-disk structures of file systems, resulting in poor reliability
and performance. He further showed several problems caused
by such physical entanglement, and then proposed a novel file
system called IceFS to solve the problem.

Without isolation of the on-disk structures, logically distinct
files may well use co-located metadata, thus the corruption of
one file can affect another unrelated file or even lead to global
errors, such as marking a file system as read-only. File systems
also use bundled transactions to commit changes of multiple
files, causing the performance of independent processes to be
entangled.

IceFS introduces a new abstraction called cubes, which are
implemented as special isolated directories in a file system. The
abstraction of cubes enables applications to specify which files
and directories are logically related. Multiple cubes do not share
the same physical resources. Any cube does not contain refer-
ences to any other cube. Lanyue showed that IceFS offers up to
eight times faster localized recovery and up to 50 times higher
performance. He also told the audience that IceFS can reduce
downtime of virtualized systems and improve recovery effi-
ciency of HDFS.

The design of IceFS follows three core principles: (1) no shared
physical resource across cubes, (2) no access dependency (one
cube will not cross-reference other cubes), and (3) no bundled
transactions. IceFS uses a scheme called “transaction splitting”
to disentangle transactions belonging to different cubes. Lanyue
demonstrated the benefits within a VMware virtualized envi-
ronment and a Hadoop distributed file system, achieving as
much as orders of magnitude performance gain.

Bill Bolosky (MS Research) was curious to know how block
group allocation is done in IceFS and was mainly concerned
about whether IceFS really got rid of global metadata. Lanyue

66  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

said that each block group is self-defined with its own bitmap
and does not share metadata with other block groups. Then Bill
asked how block groups themselves are assigned and suggested
that there might be some global metadata at a higher level to
indicate the allocation status of each block group. Lanyue agreed
with him in that for each block group they store a cube ID that
needs to be examined when traversing the block groups, but such
information is not shared.

Shen Yang (Penn State University) asked how IceFS handled a
case when there is a link across cubes—for example, hard links.
Lanyue replied that first IceFS doesn’t support hard links. And
IceFS can detect many other cases of cross reference. When I/O
is performed at runtime, IceFS can check whether source and
destination belong to the same cube. Another person thought
that the practice of isolation was nice, but that performance
tweaks might violate POSIX security checks under failures.
Lanyue responded that they store the most strict permission at
the root directory, which has to be examined to access any sub-
directory. This can enforce the original protection. Yang Tang
(Columbia University) suggested that ideally he would want a
separate cube for each file. He was curious to know whether this
would work in IceFS. If not, is it better to just have partitions for
complete isolation? Lanyue replied that partitions would lead
to wasted space, and if one file system on one of the partitions
panics, it might lead to a global crash. Partitions cannot solve the
problem of slow recovery either. Finally, in the case of HDFS, it is
hard to make partitions on a local node.

Ziling Huang (NetApp) wondered what the performance would
be like atop an HDD where jumping across different cubes might
incur more disk seek operations. Lanyue confirmed that running
Varmail and SQLite on HDD with IceFS would lead to worse
performance. Although their system would also work for HDD,
it would be more likely to yield better performance on faster
devices such as SSDs.

Customizable and Extensible Deployment for
Mobile/Cloud Applications
Irene Zhang, Adriana Szekeres, Dana Van Aken, and Isaac Ackerman,
University of Washington; Steven D. Gribble, Google and University of
Washington; Arvind Krishnamurthy and Henry M. Levy, University of
Washington

Modern applications have to handle deploying code across dif-
ferent environments from mobile devices to cloud backends.
Such heterogeneity requires application programmers to make
numerous distributed deployment decisions, such as how to
coordinate data and computation across nodes and platforms,
how to hide performance limitations and failures, and how to
manage different programming environments and hardware
resources. In addition, application programmers have differing
requirements: for example, some ask for reliable RPC, while oth-
ers demand caching, etc. All of these contribute to complicating
the development and deployment of applications. Irene Zhang
introduced a system called Sapphire, aiming to free application
developers from such complex but tedious tasks. Sapphire is a
distributed programming platform, which separates application

logic from deployment code. Furthermore, it makes it easy to
choose and change application deployment.

Sapphire has a hierarchical structure and three layers. The top
layer is the distributed Sapphire application. The bottom layer is
the deployment kernel (DK), which provides as basic functional-
ity as possible. DK provides only best-effort communication and
is not fault-tolerant. The key part of Sapphire architecture is
the middle layer, which is a library of deployment managers and
offers control over placement, RPC semantics, fault-tolerance,
load balancing and scaling, etc.

An important entity in Sapphire is a Sapphire Object (SO). The
SO abstraction is key to managing data locality, and provides a
unit of distribution for deployment managers (DM). A Sapphire
application is composed of one or more SOs in communication
with each other using remote procedure calls (RPCs).

Each SO can optionally have an attached DM. Sapphire also
provides a DM library. The programmers select a DM to man-
age each SO, providing features such as failure handling and
data cache among many others. Thus, programmers can easily
compose and extend DMs to further choose, change, and build
deployment.

Kaoutar El Maghraoui (IBM Research) asked how flexible Sap-
phire is for programmers to specify what kind of deployment
they want. In addition, programmers sometimes don’t really
know the correct deployment requirements for their applica-
tions. Irene replied by giving an example of how code offloading
can work with the DM. The code offloading DM is adaptive, and
it can measure the latency of the RPC to figure out the best place
to place the application. Sapphire only asks the programmer to
tell whether the piece of code is computationally intensive, and it
will do the rest. In contrast, the current practice is either imple-
menting the code twice, once for the mobile side and once for the
cloud side, or using some code offloading systems to do pretty
complicated code/program analysis to just figure out what por-
tion of the code can or should be partitioned out. Sapphire gets
a little bit of information from the application programmer and
then does something really powerful.

Howie Huang (George Washington University), asked whether
Sapphire also deals with other issues such as security, scal-
ability, and energy consumption, which are important to mobile
applications. Irene replied that they haven’t looked at energy yet
and encouraged the building of a DM that could take energy into
account. That would require the DK to monitor energy consump-
tion of the system; right now the DK can only provide latency
information. As for privacy and security issues, Irene revealed
that they are actually looking at a similar system that provides
the user with improved data privacy.

Phil Bernstein (Microsoft Research) asked whether Irene could
give the audience an idea of how Sapphire would scale out in a
cluster environment, given that the experiment was done on a
single server. He noted, in addition, that the DM is centralized

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 67

REPORTS

and may become a bottleneck. Irene replied that there are actu-
ally some evaluation results in the paper in which they tested
scalability with multiple servers and DMs. DMs themselves are
not centralized: instead, there is another rarely used but central-
ized service to track SOs when they move or fail.

Phil then asked about multi-player games with hundreds of
thousands of gamers coming and going: Can Sapphire handle
the creation and destruction rate scaling up from there? Irene
thought it would definitely be a problem if this happens a lot.
The other thing she imagined is that Sapphire objects are shared
virtual nodes, and most of them are created on cloud servers as
files, just like you would for most of the games today.

Pebbles: Fine-Grained Data Management Abstractions
for Modern Operating Systems
Riley Spahn and Jonathan Bell, Columbia University; Michael Lee,
The University of Texas at Austin; Sravan Bhamidipati, Roxana Geambasu,
and Gail Kaiser, Columbia University

Riley Spahn first used an interesting email deletion as an
example to motivate this work. In the example, he showed the
audience how an email app can perform unexpectedly in manag-
ing user data: Although a user may believe that the email has
been deleted, it is actually not and is still sitting somewhere in
persistent storage and prone to malicious manipulations. Riley
pointed out that this is a prevailing problem because a number of
popular Android apps suffer from this. Conventional OSes lack
the ability to understand high-level user data abstraction and
understand plain files instead. Such a mismatch between the OS
and the user’s perception of data can lead to difficulty in building
data protection systems on smartphones. To address this prob-
lem, Riley and his colleagues built and proposed Pebbles.

Pebbles is a system-level tool designed to recognize and manage
fine-grained user data. It does not require program change, because
the authors don’t expect application programmers to change
their code. This may seem impossible at first glance, but they
made the amazing discovery that in real life, user data on smart-
phones have quite good uniformity, making it feasible to detect.

Logical Data Objects (LDOs) are different from ordinary files in
that they can be hierarchical and span multiple data stores: e.g.,
plain file, key-value store, and SQLite database. To address the
aforementioned problem, they made several important assump-
tions. First, protection tools are trusted. Second, applications
which produce LDOs will not maliciously act against Pebbles
by manually obfuscating them. Finally, they limit their scope
to persistent data, leaving main memory aside. Given these
assumptions, they want Pebbles to be able to hide some data,
audit access to data, and restrict access to some data.

Pebbles is plugged into Android and modifies Android in three
ways: (1) Dalvik with TaintDroid to track dataflows and dis-
cover relationships, (2) three modified storage APIs to gener-
ate relationships between them, and (3) a new system service
called Pebbles Registrar to record all the relationships and
create object graphs. This graph of LDOs, or object graph, is the

most significant piece of Pebbles since it represents Pebbles’
understanding of application data. They used several mecha-
nisms to build the graph, with details presented in the paper.
They also built four different applications leveraging the service
provided by Pebbles. Evaluation results show that Pebbles is
quite accurate in constructing LDOs without supervision. The
performance overhead is relatively low, and Pebbles provides
reasonably good performance to application users.

Ashvin Goel (University of Toronto) was curious about whether
relations other than foreign key relations and file name relation-
ships could be detected. Riley pointed out that basically all rela-
tions that can be found are dataflow relationships. By tracking
data being written to a certain file that generates a bi-directional
relationship because of data sharing, Pebbles could detect a uni-
directional relationship from there based on the access. Jonas
Wagner (EPFL) commented that many applications want to
encrypt their storage. Riley said they didn’t evaluate applications
that used encryption, although several hundred use a library to
encrypt their SQL storage.

My Insecurities
Summarized by Radu Banabic (radu.banabic@epfl.ch) and David Williams-
King (dwk@cs.columbia.edu)

Protecting Users by Confining JavaScript with COWL
Deian Stefan and Edward Z. Yang, Stanford University; Petr Marchenko,
Google; Alejandro Russo, Chalmers University of Technology; Dave Herman,
Mozilla; Brad Karp, University College London; David Mazières, Stanford
University

Deian Stefan began by observing that today’s Web apps entrust
third-party code with the user’s sensitive data, leaving brows-
ers to prevent mistreatment of that data. Basic protection is
provided by Web browsers’ same-origin policy (SOP), where
content from different sites is separated into browsing contexts
(like tabs and iframes), and scripts can only access data within
their own context. But SOP has two problems: (1) it is not strict
enough, since a site (or libraries like jQuery) can arbitrarily
exfiltrate its data, and (2) it is not flexible enough, because third-
party mashup sites are prevented from combining information
from multiple source Web sites. So browsers have extended SOP
with discretionary access control: The Content Security Policy
(CSP) allows a page to communicate with a whitelist of sites,
and Cross-Origin Resource Sharing (CORS) allows a server to
whitelist sites that can access its data. However, this is still not
a satisfactory solution. Taking CORS as an example, if a bank
grants access to a mashup site, that site can still do anything
with the data (e.g., leak it through buggy or malicious software).
So the bank will be unlikely to whitelist such a site, and the
mashup may instead fall back on the dangerous practice of
requesting the user’s bank login credentials.

Deian explained that the challenge addressed by COWL is to
allow untrusted third-party code to operate on sensitive data.
His motivating example is an untrusted password strength
checker. Ideally, the code should be able to fetch lists of com-
mon passwords from the Internet to compare against the user’s

68  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

password, but as soon as the code gains access to the real user’s
password, it should no longer be able to interact with the net-
work. This is a form of mandatory access control (MAC) known
as confinement, for which there exists prior work, but existing
confinement systems (Hails, Jif, JSFlow) are overly complex for
a Web environment. COWL’s design goal is to avoid changing the
JavaScript language runtime and Web security model to avoid
alienating Web developers.

COWL adds confinement to the existing model of the Web in
a natural way. Just as browsers enforce separate execution
contexts by different origins (source domains), COWL intro-
duces data protection through labels that specify the origins
which care about the data. COWL tracks labels across contexts
(iframes, workers, servers). Any context may add a new origin
to its label in order to read data labeled with some origin, but
then can only communicate with that origin (and cannot com-
municate at all if its label contains two or more origins). COWL
enforces label semantics for outgoing HTTP requests as well as
for communication between browser contexts.

For evaluation, Deian mentioned four applications implemented
on COWL (including a mashup like mint.com which summa-
rizes banking info). COWL itself is implemented for Firefox and
Chromium (by modifying 4k lines of code in each), changing
the gecko and blink layout engines, and adding parameters to
communications infrastructure like postMessage() and XML-
HttpRequest. In terms of performance, there is no additional
overhead for sites that do not use COWL (it is only enabled the
first time the COWL API is called), while the overhead for the
mashup example, excluding network latency, is 16% (16 millisec-
onds). Deian claimed that COWL can be easily deployed, given
its backwards compatibility, reuse of existing Web concepts,
and implementation in real Web browsers. One limitation of
COWL is that it does not deal with covert channels. In addition,
apps must be partially redesigned with compartmentalization
in mind (simply adding labels to sensitive variables is insuf-
ficient). Some related work includes (1) BFlow, a coarse-grained
confinement system for the Web which does not handle the case
where two parties mutually distrust each other, and (2) JSFlow,
which does fine-grained confinement, is better suited for tightly
coupled libraries, and has high overhead (100x). Deian concluded
by saying that today we give up privacy for flexibility to allow
apps to compute on sensitive data, but the mandatory access
control provided by COWL—a natural extension of the existing
Web model—allows developers to do better.

The first question was about covert channels: Couldn’t informa-
tion be leaked by sending labeled data to another context and
having it respond with one of two messages, leaking one bit of the
protected data, and couldn’t this process be repeated to leak the
entire data? Deian answered that the intent of COWL is to close
off all overt communication channels, and while covert chan-
nels might still be possible, COWL’s approach is better than the
current approach where a site is given all-or-nothing access to
the data through discretionary access control. Mike Freedman

(Princeton) mentioned that mandatory access control systems
often have trouble with declassification, and was this ever
necessary with COWL, or are browsers essentially stateless?
Deian answered that a site can read its own data labeled with
its own origin, and this is a sufficient form of declassification.
Another attendee asked about the ramifications of defaulting to
open access instead of defaulting to closed access before COWL
becomes universally deployed. The answer is that a site must
opt-in to COWL’s mandatory access control by adding a label to
some data in order to loosen mechanisms like CORS, and clients
that do not support COWL would fall back on the default discre-
tionary access control as deployed today.

Code-Pointer Integrity
Volodymyr Kuznetsov, École Polytechnique Fédérale de Lausanne (EPFL);
László Szekeres, Stony Brook University; Mathias Payer, Purdue University;
George Candea, École Polytechnique Fédérale de Lausanne (EPFL); R. Sekar,
Stony Brook University; Dawn Song, University of California, Berkeley

Volodymyr started by explaining control-flow hijack vulner-
abilities: By exploiting a memory safety error in a program, an
attacker can overwrite function pointers in program memory
and divert the control-flow of the program to execute any code
the attacker wants. Despite this being a known problem for 50
years, it is still relevant today; there are more and more control-
flow hijack vulnerability reports in the CVE database every year.
Code written in high-level languages avoids this problem, but
such code often requires millions of lines of C/C++ code to run
(language runtimes, native libraries, etc.). There are techniques
to retrofit precise memory safety in unsafe languages, but the
overhead of such techniques is too high for practical deployment.
The control-flow integrity technique provides control-flow
hijack protection at lower overhead, but many of control-flow
integrity implementations were recently shown to be bypassable.

The authors proposed Code-Pointer Integrity as a technique
to eliminate control-flow hijack vulnerabilities from C/C++
programs, while still keeping the overhead low. The key insight
is to only protect code pointers in the program; as these are only
a minority of all the pointers in the program, the overhead due to
the memory safety instrumentation for just these pointers is low.

The implementation of the technique separates memory into two
regions: safe and regular memory. The isolation between the two
is enforced through instruction-level isolation and type-based
static analysis. Instructions that manipulate program data
pointers are not allowed to change values in the safe memory
region, even if compromised by an attacker. This ensures that
attackers will not be able to exploit memory safety errors in
order to forge new code pointers. This protection mechanism is
called code-pointer separation (CPS). However, this still leaves
the potential of an attack, where attackers manipulate pointers
that indirectly point to code pointers (such as through a struct)
and are thus able to swap valid code pointers in memory, causing
a program to call a different function (only a function whose
address was previously taken by the program). In order to protect
against this type of attack, the authors also propose the code-
pointer integrity (CPI) mechanism, which also puts in the safe

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 69

REPORTS

memory region all sensitive pointers, i.e., all pointers that are
used to indirectly access other sensitive pointers (essentially, the
transitive closure of all direct and indirect code pointers). CPI
has a bit more overhead than CPS but has guaranteed protection
against control-flow hijacks.

In the evaluation, the authors showed that both CPS and CPI
protect against all vulnerabilities in the RIPE benchmark and
that CPI has a formal proof of correctness. The authors com-
pared CPS and CPI to existing techniques, such as CFI (both
coarse- and fine-grained) and ASLR, DEP, and stack cookies,
showing that CPS and CPI compare favorably to all: The pro-
posed techniques have either lower overhead, higher guarantees,
or both. CPS provides practical protection against all existing
control-flow hijack attack and has an average overhead of 0.5%–
1.9%, depending on the benchmark, while CPI provides guaran-
teed protection at an average overhead of 8.4%–10.5%, depending
on the benchmark. The stack protection (a component of both
CPS and CPI that protects the stack) has an average overhead
of 0.03%. The authors released an open-source implementation
of their techniques; the protection can be enabled using a single
flag in the LLVM compiler.

Jon Howell (MSR) commented that the overhead of CPI is still
relatively high, at 10%, but that the attacks against CPS cannot
easily be dismissed, since ROP attacks are known. Volodymyr
answered that CPS still protects against ROP attacks, since the
attacker cannot manipulate the return addresses in any way, and
can only change function pointers to point to a function whose
address was already taken by the program (and not to any func-
tion in a library used by the program). Úlfar Erlingsson (Google)
commented that the authors misrepresented prior work. He
argued that there is no principled attack against fine-grained
CFI and that the cited overheads were true 10 years ago, but a
current implementation in GCC has an overhead of 4% (instead
of 10% as was cited). Finally, Úlfar asked how the proposed tech-
nique is not affected by conversions between pointers and inte-
gers, which affected PointGuard several years ago. Volodymyr
answered that the analysis handles such cases, and the authors
successfully ran the tool on all SPEC benchmarks, which shows
the robustness of the analysis.

The next question was about switch statements: Some compilers
generate jump tables for such code; is this case handled by the
tool? Volodymyr answered that compilers add bound checks for
the generated jump table, and they are fully covered by the tool.
David Williams-King (Columbia) asked about the 64-bit imple-
mentation of the tool, where the lack of hardware support for
segmentation forced the authors to use alternative techniques.
David asked whether OS or future HW support would help avoid
any information leak attacks. Volodymyr answered that the
authors have two mechanisms that work on 64-bit, one stronger
and one faster. The faster support relies on randomization that is
not vulnerable to information leaks, while the stronger approach
relies on software fault isolation. Joe Ducek (HP Labs) asked
how much of the performance overhead in CPI is due to the

imprecision in the analysis and how much to the actual instru-
mentation. Volodymyr answered that most overhead comes
from handling of char* and void* pointers, which in C/C++ are
universal, but char* is also used for strings; the tool needs to
protect all occurrences of these types of pointers, which leads to
the majority of the overhead.

Ironclad Apps: End-to-End Security via Automated
Full-System Verification
Chris Hawblitzel, Jon Howell, and Jacob R. Lorch, Microsoft Research;
Arjun Narayan, University of Pennsylvania; Bryan Parno, Microsoft Research;
Danfeng Zhang, Cornell University; Brian Zill, Microsoft Research

Bryan Parno started by pointing out the very weak guarantees
that users have today when submitting private data online. The
only guarantees come in the form of a promise from service
providers that they will use good security practices, but a single
mistake in their software can lead to a data breach. In contrast,
Ironclad, the approach proposed by the authors, guarantees that
every low-level instruction in the service adheres to a high-
level security specification. Ironclad relies on HW support to
run the entire software stack in a trusted environment and on
software verification to ensure that the software respects a
high-level specification. The hardest part is software verifica-
tion of complex software; in Ironclad, the authors managed to
go a step beyond the verification of a kernel (the seL4 work), by
verifying an entire software stack with a reasonable amount of
effort (without trusting OS, drivers, compiler, runtime, libraries,
etc.). To allow this, the authors had to abandon the verification
of existing code and rely on developers to specifically write their
software with verification in mind.

First, developers write a trusted high-level specification for the
application. Then they write an untrusted implementation of the
application. Both the specification and implementation are writ-
ten in a high-level language called Dafny. The implementation
looks like an imperative program, except that it has annotations,
such as contracts and invariants. The specification is translated
by Ironclad to a low-level specification that handles the low-
level details of the hardware on which the application will run.
Similarly, the implementation is compiled to a low-level assem-
bly language, where both code and annotations handle registers,
instead of high-level variables; the compiler can also insert some
additional invariants. Finally, a verifier checks whether the low-
level implementation matches the low-level specification, and
then the app can be stripped of annotations and assembled into
an executable.

Bryan gave a live demo of how the system works. The demo
showed that Ironclad provides constant, rich feedback to the
developer, significantly simplifying the process of writing
 verifiable code.

The system relies on accurate specifications of the low-level
behavior of the hardware that is used. Writing such specifica-
tions seems like a daunting task; the Intel manual, for instance,
has 3439 pages. The authors bypassed this issue by only specify-
ing a small subset of the instructions, and enforcing the rule that

70  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

the system only use those instructions. Similarly, the authors
developed specifications for the OS functionality and for librar-
ies. In order to prevent information leaks, Ironclad uses a Declas-
sifier component, which checks whether any data output by the
implementation to the outside world (e.g., over the network)
would also be output by the abstract representation of the app in
its current state.

When discussing the evaluation of Ironclad, Bryan first pointed
out that the development overhead for writing a verifiable
system wasn’t too bad: The authors wrote 4.8 lines of “proof
hints” for every 1 line of code in the system. Moreover, part of
this effort will be amortized further over time, since a bulk of
the proof hints were in reusable components, like the math and
standard library. Even as it is now, the ratio of 4.8:1 is signifi-
cantly better than previously reported ratios of 25:1. In terms
of total number of lines of code, the trusted specification of the
system has ~3,500 lines of code, split just about evenly between
hardware and software, and ~7,000 lines of code of high-level
implementation. The latter get compiled automatically to over
41,000 assembly instructions, which means that the ratio of
low-level code to high-level spec is 23:1. In terms of performance,
initial versions of the implementation were much slower than
their non-verifiable counterparts but are amenable to signifi-
cant manual optimizations; in the case of SHA-256 OpenSSL,
the verifiable application is within 30% of the performance of
the native, unsafe OpenSSL. The code, specification, and tools of
Ironclad will be made available online.

One attendee asked the presenter to say a few words on concur-
rency. Bryan answered that the authors are currently working
on a single processor model; some colleagues are working on
multicore, but the state of the art in verification for multicore
processors is way behind that for single-threaded programs. The
next question was whether the authors have any experience with
more complex data structures, such as doubly linked lists. The
answer was that the data structures used so far were fairly sim-
ple, and most of the time was spent on number-theoretic proofs.
Someone from Stanford asked whether the verification could be
extended to handle timing-based attacks. Bryan answered that
they have not looked into that yet, but there are other groups that
are considering timing: for example, the seL4 project. Gernot
Heiser (NICTA and UNSW) commented that the entire verifica-
tion relies on the correctness of the specification and that the
authors’ approach to ensure correctness is a traditional top-
down approach, which is known not to work for real software.
He then asked how it is possible to ensure specification correct-
ness for software that uses more modern software development
approaches. Bryan answered that there is always a human aspect
in the process and that the authors found spec reviews particu-
larly useful. Also, one can pick a particular property of interest,
such as information flow, and prove that property against the
specification. Finally, Kent Williams-King (University of British
Columbia) asked what happens if an annotation is wrong. Bryan
replied that the annotations are only used by the verifier as

hints. If an annotation is invalid, the verifier will complain to the
user and discard the annotation for the rest of the proof.

SHILL: A Secure Shell Scripting Language
Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong, Harvard
University

Scott Moore opened by describing how difficult it can be to
figure out what a shell script does. Such comprehension requires
fully reading the script’s code and understanding its execution
environment. Yet, going against the Principle of Least Privilege,
every script runs with far broader privileges than it needs to do
its job. This has security implications since, as in the case of
the Shellshock vulnerability, every instance of bash that runs a
malicious script can open network connections and execute with
the full privileges of its invoking user. Scott then asked two ques-
tions: How can the authority of scripts be limited, and how can
the authority necessary for a script’s operation be determined?
To answer these questions, Scott presented Shill, a scripting
language where every script comes with its own declarative
security policy. In addition to enforcing runtime restrictions,
the policy can also be examined by the user to decide whether
the script seems safe. Shill scripts can recursively call other
Shill scripts if the policy allows, or invoke native executables,
which are run inside a sandbox to ensure end-to-end enforce-
ment of the original security policy.

Besides sandboxing, Shill’s implementation relies on capabili-
ties, which make the script’s authority explicit rather than an
artifact of its environment, and contracts, which are the declara-
tions describing how capabilities can be used. Capabilities are
an unforgeable token of authority, the possession of which grants
the right to perform some action (like keys open doors). This
contrasts with existing mandatory access control mechanisms,
like UNIX file permissions, which are a property of the environ-
ment. There has been a great deal of related work on capabili-
ties. In Shill, functions take capabilities as parameters: files,
directories, pipes, sockets are each represented as a capability.
Operations like opening or reading a file require privileges on the
capability (and “opening” a file in a directory returns a derived
capability for the file). All resources are represented as capabili-
ties, and the only capabilities a script has are the ones passed in,
making it easy to reason about a script’s effects; this is termed
“capability safety.”

Software contracts in general essentially specify pre- and post-
conditions that can be executed to verify that a program runs as
it should. In Shill, every function has a grammatically compat-
ible specification written before it; the Shill interpreter checks
for contract violations at runtime, and if any are found, termi-
nates the script. The contracts may list the privileges required by
the script for each capability (e.g., list files in directory). A callee
may assume it has these privileges; the caller can use the privi-
leges to reason about the possible side effects of the call. This
aids in reasoning about composing scripts together. This reason-
ing can extend to any native binaries the Shill script invokes,
because Shill sandboxes binaries (without modifying them) to

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 71

REPORTS

continue checking for contract violations. In the presentation,
Scott gave an example of a sandboxed program opening a file in
another directory, and all the privilege checks that occur. Since
running most programs requires a large number of (file) capa-
bilities, Shill supports capability wallets, which are composite
capabilities necessary to perform common tasks. Bootstrap-
ping—providing the capabilities necessary to run the original
script—is achieved with ambient scripts, which are limited and
can only create capabilities to pass to Shill scripts.

Shill is implemented in a capability-safe subset of the Racket
programming language, and Shill’s sandbox is implemented in
TrustedBSD’s MAC framework. Scott described several case
studies for Shill, including an Emacs installer script (which
can only create/remove files in certain directories), a modi-
fied Apache server (which can only read its configuration and
content directories), find-and-grep, and a grading script. In the
last case, a TA is tasked with grading programming assignments
from many different students using a test suite. The TA might
create a script to automate the compiling, running, and test veri-
fication process; but it is difficult to ensure that each student’s
assignment doesn’t corrupt other files, leak the test suite, or
interact with other students’ code. When the script is written in
Shill, the security policy allows the TA to reason that the stu-
dents’ assignments will behave themselves, even if the TA’s own
script is buggy. In terms of performance, Shill generally has less
than 20% overhead on these four examples, except find-and-grep
which may spawn many sandboxes, leading to 6x overhead. The
overhead is proportional to the security guarantees. In sum-
mary, Shill allows the Principle of Least Privilege to be applied
to scripting, using a combination of capabilities, contracts, and
sandboxing. The code and a VM with Shill are available online.

Xu Zhao (University of Toronto) asked about the motivating
example of downloading a large untrusted script from the Inter-
net, because such a script might have a very complex security
policy. Scott’s answer was that with existing scripts, the whole
script must be scrutinized along with its execution environment,
whereas the security policy provides a single place to focus one’s
attention. A student-attendee from Columbia University asked
why use capabilities instead of access control, and how does
Shill compare with SELinux. Scott answered that SELinux cre-
ates system-wide policies, while Shill allows more fine-grained
control, and Shill turns the question about whether a script is
safe to run into a local decision instead of a question about the
environment

Brian Ford (Yale) asked about confused deputy attacks on the
sandbox, where an incorrect capability is used to gain access
to a resource. Scott answered that to mitigate such attacks,
components could be rewritten in Shill to leverage its security
checks. Stefan Bucur (EPFL) asked about the development time
overhead for programmers writing Shill (since many scripting
languages are used for quick prototyping). Scott answered that
it is similar to writing in Python instead of in bash; one has to
think in terms of data types instead of paths. But it is possible to

start with broad, permissive security policies and refine them
later. Someone from UC San Diego asked whether the authors
had applied security policies to existing scripts to see how many
misbehave. Scott replied that the closest they got was translat-
ing some of their own bash scripts into Shill. Someone from CU
Boulder asked about enforcing security policies across multiple
machines through ssh. Scott explained that Shill will not make
guarantees about the remote machine, but it will control whether
a script is allowed to create ssh connections in the first place.

Variety Pack
GPUnet: Networking Abstractions for GPU Programs
Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, and Emmett Witchel,
The University of Texas at Austin; Amir Wated and Mark Silberstein,
Technion—Israel Institute of Technology
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Mark Silberstein presented GPUnet, a socket API for GPGPU
applications. The aim is to target the development efforts of
server-based GPGPU applications: Due to both their complex
designs and the burden of manually managing data flow between
the GPGPU, network, and host memory, such systems require
more time and effort to develop and make efficient. Costs arise
from the coordination of data movement between the GPGPU,
DRAM, and NIC using only low-level interfaces and abstractions
(e.g., CUDA). As is the nature of modern GPGPUs, a host CPU is
required to hand off data or work between the GPGPU and other
devices, adding complexity and overhead. Mark argues that such
a CPU-centric design is not optimal, and that GPGPUs should be
viewed as peer processors instead of as co-processors. The lack
of I/O abstractions for GPGPU applications, however, makes this
challenging.

To avoid costs of data movement and synchronization com-
plexity placed on developers, GPUnet provides a socket API for
GPGPU-native applications. Additional contributions include a
variety of optimizations enabling GPGPU-based network serv-
ers to efficiently manipulate network traffic, and the develop-
ment and evaluation of three workloads using GPUnet: a face
verification server, a GPGPU-based MapReduce application, and
a matrix product workload.

Underlying their interface are two example designs that evalu-
ate where one can place the execution of the network stack. The
first resembles modern approaches where the CPU processes
network packets, utilizing the GPGPU for accelerated parallel
processing of received data, and scheduling data movements
between the NIC and the GPGPU. A second design exports the
network stack to execute natively on the GPGPU itself, where
most of the effort involved was in porting the CPU code to the
GPGPU. The latter design removes CPU-GPGPU memory cop-
ies, as the host CPU can schedule peer-to-peer DMA transfers
using NVIDIA’s GPUDirect. Their implementation provides two
libraries exporting a socket API, one for CPU-based code and the
other for GPGPU-based codes.

72  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

The design of an in-GPGPU-memory MapReduce application
uses GPUfs (prior work) to load image and other data from the
host disk to GPGPU-resident memory buffers. Experiments
were performed using both one and four GPGPUs each, showing
speedups of 3.5x for a K-means workload, and 2.9x for a word-
count workload. The latter has a lower performance gain due to
its I/O-intensive nature, leaving little room for opportunities
from the use of GPUnet. A second application was implemented
representing a face verification workload. One machine hosts
the client code, a second an instance of memcached, and a third
the server implementation. Three implementations for the server
were compared: CPU-only, CUDA, and GPUnet. Results show
the GPUnet implementation to provide less variable and overall
lower response latencies.

Their code has been published on GitHub at https://github.com
/ut-osa/gpunet.

Rodrigo Fonseco (Brown University) questioned the use of
GPUnet over something like RDMA, which already bypasses
the socket interface. Mark responded that there is a usability vs.
performance tradeoff, and that they are currently working on a
socket-compatible zero-copy API. Pramod Bhatotia (Max Planck
Institute for Software Systems) asked for a comparison of this
work with the use of GPUDirect. Mark clarified that their work
leverages GPUDirect for registering GPGPU memory directly
with the InfiniBand network device. Another attendee asked for
thoughts on obtaining speedup for the more general case of appli-
cations, as opposed to the event-driven, asynchronous workload
designs presented. It is a more philosophical discussion, Mark
responded; GPUnet gives the freedom to choose where to host
the network API. If a workload is parallel and suited for execu-
tion on a GPGPU, then you are likely to achieve speedups.

The Mystery Machine: End-to-End Performance Analysis
of Large-Scale Internet Services
Michael Chow, University of Michigan; David Meisner, Facebook, Inc.;
Jason Flinn, University of Michigan; Daniel Peek, Facebook, Inc.;
Thomas F. Wenisch, University of Michigan
Summarized by Yu Luo (jack.luo@mail.utoronto.ca)

Michael Chow presented a technique (the Mystery Machine) to
scale familiar performance analysis techniques such as criti-
cal path analysis on complex Web sites such as Facebook. The
approach to deriving a causal relationship between different
components is divided into four steps: identifying segments,
inferring a causal model, analyzing individual requests, and
aggregating results. Identifying segments refers to coming out
with a waterfall diagram of segments executed in a request.
Existing logs are aggregated and components are identified.
To infer a causal model from the waterfall diagram, we can
automatically analyze a large number of traces to find relation-
ships such as happens-before, mutual exclusion, and pipelines.
Through the generated causal model, we then apply it to the indi-
vidual traces. The final step aggregates the results and builds
up statistics about the end-to-end system. An earlier method to
derive a causal model is through instrumentation of the entire

system. Another method is to have every engineer on the team
draw up a model of the entire system. Both methods do not scale
well. The Mystery Machine applies the four-step approach to
provide a scalable performance analysis on large complex Web
sites such as Facebook, which allows it to do daily performance
refinements.

Greg Hill (Stanford) asked how to deal with clock drifts between
machines. Michael answered that there are techniques out-
lined in the paper. A short answer is that the Mystery Machine
assumes the round-trip time (RTT) is symmetric between client
and server. It then looks at repeated requests and calculates the
clock drift. Someone from the University of Chicago asked how
to deal with request failure. Michael answered that this is a
natural variation in the server processing time and is taken into
consideration. Ryan (University of San Diego) asked how to deal
with inaccurate lower level logging messages. Michael replied
that we cannot do anything about it.

End-to-End Performance Isolation through Virtual
Datacenters
Sebastian Angel, The University of Texas at Austin; Hitesh Ballani,
Thomas Karagiannis, Greg O’Shea, and Eno Thereska, Microsoft Research
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Sebastian Angel began by stating that tenants are moving away
from enterprise datacenters into multi-tenanted cloud datacen-
ters. The key benefits are cost saving and elasticity. Datacen-
ters offer services implemented via appliances. Because these
appliances are shared among the tenants, the performance is
degraded and unpredictable at times. Aggressive tenants tend to
consume a majority of resources. Tenants should get end-to-end
guarantees regardless of any bottleneck resources. To achieve
the end-to-end guarantees, Sebastian introduced the virtual
datacenter (VDC) abstraction and associated virtual capacities.
The VDC abstraction is implemented by an architecture called
Pulsar. It requires no modification to appliances, switches, guest
OSes, and applications. Pulsar can allocate virtual resources
based on policies from both tenants and provider. Tenants may
specify how VDC resources are divided to VMs. The provider
may specify the distribution of resources to maximize profit or
to attain fair distribution. The VDC data plane overhead is 2%
(15% for small requests) and 256 bytes/sec in the control plane
for each VM.

The first questioner (Stanford University) asked how often the
application needs to reevaluate relationships between tokens
and requests. Sebastian answered that cost functions are fixed.
The same person then asked if VDC offers latency guarantees.
Sebastian answered that VDC does not offer latency guaran-
tees. Tim Wood (George Washington University) asked how to
map performance to tokens. Sebastian answered that tenants
can use research tools to take high-level requirements, such as
job completion time, and map them to tokens. Henry (Stanford
University) asked when there are a lot of short-lived applications,
have they considered what would happen during the dip in per-
formance during the initial Pulsar capacity estimation phase?

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 73

REPORTS

Sebastian answered that the estimation phase time is configu-
rable and thus the dip in performance can be adjusted.

Simple Testing Can Prevent Most Critical Failures:
An Analysis of Production Failures in Distributed
Data-Intensive Systems
Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, and Michael Stumm, University of Toronto
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Ding Yuan presented a study of the most common failures found
within distributed services. The key finding was that failures
are a result of a complex sequence of events between a small
number of machines, mostly attributed to incorrect error han-
dling within the source code.

The group developed a tool called Aspirator, a simple rule-based
static checker, that uncovered 143 confirmed bugs in systems
evaluated by the study, such as HBase, HDFS, and Redis. Ding
illustrated the severity of failures in current systems; some can
even be catastrophic. As an example, when Amazon’s AWS expe-
rienced a brief outage, it took down many unrelated Web sites
during that time. Why would such services fail like this? They
studied end-to-end failure propagation sequences between ele-
ments composing such services, as prior studies had examined
failures of elements individually in isolation, such as correla-
tions between failures and configuration file mistakes. This
study examined interactions between elements themselves.

The findings were very interesting. Starting with 198 user-
reported failures, they studied the discussions between develop-
ers and users via the mailing lists and were able to reproduce
73. Of these, 48 were catastrophic—those which led to system
instability or downtime affecting at least a large majority of
users; 92% of the catastrophic failures were a result of largely
trivial bugs, such as incorrect error handling of non-fatal errors
in Java code (try/catch blocks). An example of such was given in
the use of ZooKeeper, where a race condition caused two events
to signal the removal of a ZooKeeper node. One attempt resulted
in an error, the handling of which led to an abort. Seventy-seven
percent of failures required more than one input event, leading to
very complex scenarios mostly found on long-running systems.
Other interesting results uncovered included: 88% of failures
were due to the specific order of events in multi-event sequences,
and 26% were non-deterministic (the ZooKeeper example falls
into this classification).

By focusing on the 92% of failures that were a result of bad error
handling, Ding said, they built a static checker to detect such
bugs by feeding it the Java bytecode. Three rules were employed
by the checker to signal a possible bug: the error handler was
empty, aborted, or had some comment such as “TODO” or
“FIXME”. The checker was run on nine real-world systems and
uncovered a multitude of bugs. Developers gave mixed feedback
after having been notified of the group’s findings: 17 patches
were rejected, but 143 confirmed fixes were adopted. Responses
included, “Nobody would have looked at such a hidden feature”

and “I fail to see why every exception should be handled.” The
reason for mixed responses is due to prioritization of developer
responsibilities, among other things, such as developers thinking
errors will not happen, evolving code, and bad judgment.

Many audience members praised this work prior to asking their
questions. A researcher from IBM Research asked whether the
problem of ignoring exceptions could be solved through static
analysis. Ding asked in return whether she thought she meant to
remove the burden of handling all exceptions from the develop-
ers. She clarified to mean just the gaps should be filled. Ding
responded with skepticism. Error handling is messy, as seen
from the examples. Doing so is definitely burdensome for devel-
opers, but automating this may lead to even more catastrophic
failures. A researcher at NC State asked Ding to explain the
8% of the bugs that were not caused by mishandled exceptions.
Ding replied that this 8% represented silent errors not seen by
developers. An example in Redis was a failure that resulted from
too many file descriptors, a scenario not verified by developers.
The researcher followed up with a thought that error masking
at the lower levels in the software stack may affect this. Ding
suggested that it is hard to suggest more generally which layer
in the stack is responsible for handling any given error, except to
suggest that an error should be returned to the layer that is most
apt to deal with it. He said he was unsure if either silent handling
or masking are appropriate techniques in the general case. It
might be best to just return the error to the developers, but it is
a profound question to which he really can’t provide a definite
answer. Finally, a researcher (John) asked Ding to compare the
tool against something like FindBugs. Ding replied that FindBugs
has checks for around 400 scenarios but not for the specific pat-
terns they looked for in this study.

Posters I
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Unit Testing Framework for Operating System Kernels
Maxwell Walter, Sven Karlsson, Technical University of Denmark

New operating system kernels need to be tested as they are being
developed, before hardware becomes available, and across mul-
tiple hardware setups. To make this process more streamlined
and manageable for kernel developers, Maxwell’s proposed sys-
tem leverages system virtualization with a new testing API. A
kernel is booted inside a virtualized environment using QEMU
and is presented as virtual hardware configurations, or devices
configured as pass-through, e.g., using IOMMUs. A kernel test-
ing API they develop enables a client to use their framework to
specify means for creating and executing tests. Capturing state
for post-analysis is accomplished via Virtual Machine Intro-
spection (VMI), enabling users to inspect kernel and virtual
machine state to locate sources of bugs or race conditions. One
limitation is that the virtual implementation of devices and
hardware presented to kernels within QEMU behave ideally,
unlike real hardware.

74  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

Head in the Cloud
Summarized by Alexey Tumanov (atumanov@cmu.edu) and Rohan Gandhi
(gandhir@purdue.edu)

Shielding Applications from an Untrusted Cloud
with Haven
Andrew Baumann, Marcus Peinado, and Galen Hunt, Microsoft Research

Jay Lepreau Best Paper Award

Andrew Baumann introduced Haven, a prototype to provide
shielded execution of an application on an untrusted OS and
hardware (except CPU). The motivation for Haven stems from
limitations of existing cloud platforms to support trusted com-
puting, where the cloud user has to trust the cloud provider’s
software, including privileged software (the hypervisor, firm-
ware, etc.), the management stack, which could be malicious,
administrative personnel or support staff who can potentially
have access to the cloud user’s data, and law enforcement. The
existing alternatives to this problem are also severely limited
for general purpose computing, e.g., hardware security modules
(HSMs) that are expensive and have a limited set of APIs.

Haven aims to provide similar guarantees as guarantees pro-
vided by “secure collocation of data,” where the only way for
an outsider to access the data is through the network and not
through other hardware and software. In this environment, the
cloud provider only provides resources and untrusted I/O chan-
nels. Haven ensures confidentiality and integrity of the unmodi-
fied application throughout its execution.

Haven makes several key contributions. First, it provides
shielded execution using Intel’s SGX that offers a process with a
secure address space called an “enclave.” Intel SGX protects the
execution of code in the enclave from malicious code and hard-
ware. SGX was introduced for protecting execution of a small
part of the code and not large unmodified applications. Haven
extends the original intent of SGX to shield entire applications,
which requires Haven to address numerous challenges, includ-
ing dynamic memory allocation and exception handling. Second,
Haven protects the applications from Iago attacks where even
the OS can be malicious and the syscalls can provide incorrect
results. Haven uses an in-enclave library to address this chal-
lenge. Third, Haven presents the limitations of the SGX as well
as a small set of suggestions to improve shielded execution.

Haven was evaluated based on the functional emulator, as the
authors don’t have any access to the current SGX implementa-
tion. The authors constructed a model for SGX performance
considering TLB flush latencies, variable delay in instruction
executions, and a penalty for accessing encrypted memory. In the
pessimistic case, Haven can slow down execution by 1.5x to 3x.

John Stalworth asked whether they used a public key for attesta-
tion and who owns the key. Andrew replied that Intel provides
attestation through a group signature scheme and suggested an
Intel workshop paper for details. The owner of the key will be the
processor manufacturer (Intel). Nicky Dunworth (UIUC) asked
about the programming model and about legacy applications.

Andrew again redirected the questioner to the Intel workshop
paper with a remark that they still need to support legacy appli-
cations due to their large number. Another questioner wondered
about Haven’s limitations, especially about the memory size/
swapping. Andrew said that the size of the memory is fixed, and
paging is supported in hardware. John Griswald (University of
Rochester) asked about the impact of the cloud provider dis-
abling the SGX. Andrew responded that applications can still
run but the attestation will fail.

Apollo: Scalable and Coordinated Scheduling for
Cloud-Scale Computing
Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, and Jingren Zhou, Microsoft;
Zhengping Qian, Ming Wu, and Lidong Zhou, Microsoft Research

Eric Boutin introduced Apollo as a cluster scheduler deployed at
Microsoft to schedule cloud-scale big data jobs. These jobs are
typically specified in a higher-level (SCOPE) SQL-like language
that compiles to a DAG of tasks. Apollo sets the goal to minimize
job latency while maximizing cluster utilization given the chal-
lenges of scale and heterogeneous workloads. Specifically, the
target scale of this system is 170k tasks over 20k servers with
100k scheduling requests per second.

First, Apollo adopts a distributed coordinated architecture
approach, with one independent scheduler per job making inde-
pendent decisions but with access to global cluster information,
aggregated and provided by the Resource Monitor (RM). Second,
Apollo introduces the abstraction of the wait-time matrix, which
captures estimated wait time for a given <CPU, Mem> resource
request. It masks the underlying heterogeneity of the hardware
by grouping servers of the same capacity (e.g., quad-core, 8 GB
nodes) and reporting the estimated wait time to acquire that
type of server. The wait-time matrix allows Apollo to minimize
the total task completion time, simultaneously considering both
the queueing delay and the effect of a given node on execu-
tion runtime of the scheduled task. The authors refer to this as
estimation-based scheduling.

Apollo has the ability to reevaluate prior scheduling decisions.
When the scheduler’s updated placement decision differs from
the one previously made, or there’s a conflict, Apollo issues a
duplicate task to the more desired server. Lastly, Apollo uses
opportunistic scheduling to allow currently running jobs to
allocate additional tasks above their allowed quota. This helps
Apollo reach their desired goal of maximizing cluster utilization.

Christos Kozyrakis (Stanford) asked about interference of
tasks co-located on the same node, sharing cache, disk/flash
bandwidth, etc. Christos was specifically interested in whether
the problem of interference was measured. The answer was no;
Apollo depends on robust local resource management to isolate
performance, like JVM and Linux Containers. Henry (Temple
University) asked whether the authors considered utilization
for other resource types, like disk I/O or memory. Eric replied
that the CPU was the primary resource they optimized for in
their particular environment. Memory utilization was recog-
nized as important, but no numbers for memory utilization were

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 75

REPORTS

published in the paper. Lastly, disk I/O was also recognized as
important for good performance, but Christos repeated that
Apollo, relied on the local node performance isolation mecha-
nisms “to do their job.”

Malte Schwarzkopf (University of Cambridge) pointed out that
the formulation used for the wait-time and runtime assumed
batch jobs. Related work (Omega) looked at placing other types
of jobs, such as service tasks. The question was whether Apollo
had support for that or could be extended to support it. At a first
approximation, Eric argued that long-running services could be
modeled as infinite batch jobs. It would simply block out the cor-
responding rows and columns of the wait-time matrix. Malte’s
follow-up concern was that it would not lead to a good schedule,
as there are no tradeoffs to be made if tasks are assumed to be
running forever. Additionally, the quality of service task place-
ment also varies. Eric responded that Apollo was targeted at
cloud-scale big data analytics, with the architecture generally
supportive of other schedulers, such as a service scheduler.

Vijay (Twitter) asked about dealing with discrepancies in load
across clusters, wondering whether Apollo could make consid-
erations across multiple cluster cells, based on load. The answer
was no, as Apollo’s workload is such that data locality dominates
the decision about which cluster the job would run in.

The Power of Choice in Data-Aware Cluster Scheduling
Shivaram Venkataraman and Aurojit Panda, University of California,
Berkeley; Ganesh Ananthanarayanan, Microsoft Research; Michael J. Franklin
and Ion Stoica, University of California, Berkeley

Shivaram Venkataraman stated that the context for this work is
that the volume of data and jobs that consume it grows, while job
latency is expected to drop, down to the near-interactive range
of seconds. One specific feature of jobs exploited by this work is
the ability to work with a subset or a sample of the data instead
of the whole data set. Applications that exhibit these proper-
ties include approximate query processing and ML algorithms.
The key insight is that the scheduler should be able to leverage
the choices afforded by the combinatorial number of K-samples
out of N units of data. In this work, the authors’ goal is to build
a scheduler that’s choice-aware. Shivaram presented KMN
Scheduler, which is built to leverage the choices that result from
choosing subsets of data blocks to operate on.

Making systems aware of application semantics, finding a way
to express application specifics to the scheduler, in other words,
is shown to be highly beneficial for this narrow class of applica-
tions that benefit from operating on the subset of their data. The
authors explore ways to propagate the choices available to the
applications to the scheduler and thus leverage the flexibility
that is present. Using such a system was shown to improve local-
ity and also balance network transfer, with evaluation evidence
that it benefits this emerging class of applications.

Bill Bolosky (Microsoft Research) pointed out that statistical
theorems about sampling assume random sampling. Data local-
ity makes that pseudo-random, but particularly concerning is

the fact that the data-dependency in the execution time of map
tasks coupled with picking first map finishers could really skew
results. The authors found no discernible difference between
picking the first finishers versus waiting for all map tasks to fin-
ish. The data skew is likely the one that exhibits the most amount
of determinism. System effects on stragglers are otherwise
mostly non-deterministic, as also supported by prior literature.
Non-determinism allegedly helps the authors get away from the
issues that arise as a result of map task duration skew.

Callas (VMware) was happy to see a DB talk at OSDI. He had a
follow-up question about randomness and sampling based on
random distributions. The issue is that depending on the parti-
tioning of data across racks (range partitioning) may also skew
results. Shivaram pointed out that KMN only counts the number
of blocks that are coming from each rack, not their size, which
was left for future work. Being agnostic to size gives KMN the
advantage that partition size differences do not bear as much of
an effect.

Malte Schwarzkopf (University of Cambridge) pointed out that
Quincy may yield better results. A major fraction of this work is
about trading off locality and minimizing cross-rack transfers.
Quincy is actually very closely related to this work, taking the
approach of modeling this problem as an optimization problem,
instead of using heuristics. Quincy does not support “n choose k”
in the general case, because it does not support combinatorial
constraints. In the KMN scheduler, however, getting m > k out
of n is allowed, and Quincy does have the ability to model this,
by carefully assigning increasing costs. The question is how
well does Quincy compare to the KMN scheduler, given that
Quincy’s optimization approach may actually yield better results
than KMN Scheduler? Shivaram admitted that the authors
haven’t tried to apply optimization on top of their solution. No
 comparison with Quincy was made. The starting point was the
“n choose k” property, which was subsequently relaxed to help
with cross-rack transfers. This discussion was taken offline.

Heading Off Correlated Failures through
Independence-as-a-Service
Ennan Zhai, Yale University; Ruichuan Chen, Bell Labs and Alcatel-Lucent;
David Isaac Wolinsky and Bryan Ford, Yale University

Ennan presented work on providing independence-as-a-service.
Previously, reliability against failures was provided through
redundancy, but seemingly independent systems may share deep
and hidden dependencies that may lead to correlated failures.
Ennan highlighted multiple examples of correlated failures, e.g.,
racks connected to the same aggregation switch, the EBS glitch
that brought multiple physical machines down in Amazon, the
correlated failures across Amazon and Microsoft clouds due to
lightning.

The focus of this work is to prevent unexpected co-related fail-
ures before they happen. The authors propose INDaaS (indepen-
dence-as-a-service) that tells which redundancy configurations
are most independent. INDaaS calculates an independence score
based on the notion of the data-sources (servers/VMs or even

76  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

cloud providers) that hold the copy of the data. INDaaS auto-
matically collects dependency data from different data-sources
and produces a dependency representation to evaluate the inde-
pendence of the redundancy configuration. However, collecting
data-sources might not be possible across cloud service provid-
ers, as cloud service providers won’t share all the details about
the sources in their infrastructure. To address this, INDaaS
offers a privacy preserving approach to privately calculate inde-
pendence. Each data source can privately calculate the indepen-
dence score and relay it to the INDaaS.

INDaaS faces several non-trivial challenges including: (1) how to
collect dependency data, (2) how to represent collected data, (3)
how to efficiently audit the data to calculate independence score,
and (4) how to do it privately, when dependency data cannot be
obtained. INDaaS calculates dependency data using existing
hooks provided by the cloud provider (details in paper). Depen-
dency representation uses fault graphs that consist of DAG
and logic gates (AND/OR gates). To efficiently audit the data,
INDaaS provides two algorithms with the tradeoff between cost
and accuracy. Lastly, INDaaS privately calculates the indepen-
dence score using Jaccard similarity.

INDaaS was evaluated using (1) case studies based on its deploy-
ment at Yale (detailed in paper); (2) efficiency and accuracy trad-
eoffs between the two algorithms (minimum fault set, failure
sampling) using the fat tree network topology, in which the fail-
ure sampling algorithm detected important fault sets in 1 million
sampling runs in 200 minutes; and (3) network and computation
overhead compared to the KS protocol (details in paper).

Mark Lillibridge (HP Labs) asked about other (ill) uses of the
system. Amazon can use INDaaS to see what infrastructure
and dependencies they have in common with Microsoft. Ennan
answered that might be hard since INDaaS only provides
the independence score and not any specifics. Someone from
Columbia University asked about handling the failure probabil-
ity of each individual component. Ennan said that in practice
it is hard to get correct probability numbers. INDaaS relies on
the numbers provided by the cloud service provider. Another
questioner wondered how to find configuration that achieves
99.9999% uptime. Ennan noted that it might not be straightfor-
ward because INDaaS ranks different configurations based on
their independence score.

Storage Runs Hot and Cold
Summarized by Amirsaman Memaripour (amemarip@eng.ucsd.edu)
and Haonan Lu (haonanlu@usc.edu)

Characterizing Storage Workloads with Counter Stacks
Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas Harvey,
and Andrew Warfield (Coho Data)

Jake started his presentation with a demonstration of storage
hierarchy and how it has changed over the years, with the aim
of better performance for lower cost. We have been adding
more layers to this hierarchy in order to bridge the latency gap
between different technologies, making provisioning of storage

systems challenging and not-optimized. A major problem in this
area is data placement that requires knowledge about future
accesses, which is speculated based on previous data access pat-
terns. An example of such speculation techniques is LRU, which
tries to move least recently accessed data to lower layers of the
storage hierarchy. However, it does not always result in optimum
placement decisions. Additionally, its accuracy is time-variant
and varies from application to application. Jake then posed the
question, “Can we do reuse-distance computing for each request
in a more efficient way?” and answered with a “Yes.”

He proposed a new data structure, called Counter Stacks, and a
set of matrix calculations that will be applied to this structure to
compute reuse-distance. The basic idea is to have a good approxi-
mation of miss ratio curves with less memory usage. The initial
version of the algorithm was quite expensive, so he went through
a set of optimizations, including down sampling, pruning, and
approximate counting, to make the algorithm run online. He also
introduced a method to reduce the memory usage of the algo-
rithm, making it possible to keep traces of three terabytes of mem-
ory within a 80 megabytes region. He concluded his talk by going
over a list of applications and pointing out that the accuracy of
their algorithm is related to the shape of the miss ratio curve.

Michael Condit (NetApp) asked about their memory usage and
how they can perform computation while only keeping a portion
of the access matrix. Jake pointed out that the algorithm only
requires non-zero elements to do the required computations.
Scott Kaplan (Amherst) asked about how the proposed method
compares to the previous work in this area. Jake pointed out that
those methods only maintain workload histories over a short
period, not for the entire workload. Consequently, those methods
will not be applicable to their cases. Tim Wood (George Wash-
ington University) suggested using the elbows in the miss ratio
curve to improve the effectiveness of the proposed algorithm.

Pelican: A Building Block for Exa-Scale Cloud Data Storage
Shobana Balakrishnan, Richard Black, Austin Donnelly, Paul England,
Adam Glass, Dave Harper, and Sergey Legtchenko, Microsoft Research;
Aaron Ogus, Microsoft; Eric Peterson and Antony Rowstron, Microsoft
Research

Starting his presentation with a chart comparing different stor-
age technologies in terms of latency and cost, Sergey argued that
we need to have a new storage abstraction to efficiently store
cold data, which is written once and read rarely. Currently, we
are storing cold data on hard disk drives, where we are accus-
tomed to storing warm data. Pelican is going to fill this gap by
providing better performance than tape but with similar cost.
Their prototype provides 5+ PB of storage connected to two
 servers with no top-rack switch.

Due to power, cooling, bandwidth, and vibration constraints,
only 8% of disks can be active at any given time. In this archi-
tecture, disks are grouped into conflict domains where only one
domain can be active at a time. Having these conflict domains,
they designed data placement mechanisms to maximize concur-
rency while keeping conflict probability minimized at the same

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 77

REPORTS

time. Applying a set of optimizations such as request batching,
Pelican can provide a throughput close to having all disks active
concurrently. In terms of performance, Pelican consumes 70%
less power on average compared to the case that all disks are
active concurrently. However, it will add 14.2 seconds overhead
for accessing the first byte of an inactive group.

Someone pointed out that there are more recent works that they
have not considered in their related works. He mentioned that a
startup (Copan Systems) had actually built a similar system a
couple of years ago. They decided to take the conversation offline.
Someone from Cornell pointed out that most disks die after switch-
ing on and off hundreds of times. In response, Sergey mentioned
that they have optimized disks for this process but due to confi-
dentiality, he cannot disclose the changes they have made.

A Self-Configurable Geo-Replicated Cloud Storage System
Masoud Saeida Ardekani, INRIA and Sorbonne Universités; Douglas B. Terry,
Microsoft Research

Doug Terry presented Tuba, a geo-replicated key-value store
that can reconfigure the sets of replicas when facing changes
like access rate, user locations, etc., so as to provide better
overall services. It’s an extension work from Azure with several
consistency model choices.

Doug started his presentation with a funny point about the
recent shutdown of one of Microsoft Research’s labs (in Sili-
con Valley, where he had been working). He posed the question,
“What if someone decides to get rid of the data stored in Califor-
nia without any warning?” which would result in wrong configu-
rations on all other clusters outside California. He proposed a
solution based on a configuration service for such situations.

The aim of this service is to choose a better configuration for
better overall utility, and to install a new configuration while
clients continue reading and writing data. He presented Tuba,
which extends Microsoft’s Azure Storage and provides a wide
range of consistency levels and supports consistency-based
SLAs. Tuba’s design is based on Pileus and maintains two sets
of replicas: primaries and secondaries. Primaries are mutually
consistent and completely updated at all times, while secondar-
ies are lazily updated from primary replicas.

Doug then talked about how configuration selection and instal-
lation work. For instance, to select a configuration, it takes as
input SLAs, read/write rate, latencies, constraints, cost, and the
results of a configuration generator module. Applications can
declare their acceptable level of consistency or latency and Tuba
will generate all possible configurations satisfying the requested
service, which is reasonable as the number of datacenters is usually
small. Based on constraints defined by the application, such as
cost model or data placement policies, the configuration man-
ager will try to pick a configuration and put primary replicas for
maximized consistency. Next, it will start moving data based on
the new configuration. In this system, clients run in either Slow
or Fast mode. Running in the Fast mode, clients read from the
best replica and write data to all primaries. Running in the Slow

mode, clients do speculation for reading and then check the con-
figuration to make sure data is read from a primary. In order to
write data in Slow mode, clients should acquire a lock that guar-
antees no reconfiguration is in progress. He showed an example
to demonstrate how to move the primary datacenter with Tuba.

Doug provided a quick evaluation setup. One cluster in the U.S.,
one in Europe, and one in Asia, and they used the YCSB bench-
mark to evaluate their system. He showed that the results on
latency and utility were promising, and he also showed that
Tuba can increase the overall number of strongly consistent
reads by 63%.

A questioner asked about the way that Tuba takes into account
future changes in client workloads. Doug mentioned this as the
reason that reconfiguration improvements fade after some time.
Another reconfiguration can solve the issue and its cost can be
amortized.

f4: Facebook’s Warm BLOB Storage System
Subramanian Muralidhar, Facebook; Wyatt Lloyd, University of Southern
California and Facebook; Sabyasachi Roy, Cory Hill, Ernest Lin, Weiwen Liu,
Satadru Pan, Shiva Shankar, and Viswanath Sivakumar, Facebook;
Linpeng Tang, Princeton University and Facebook; Sanjeev Kumar, Facebook

Sabyasachi Roy presented f4, an efficient warm BLOB storage
system. Based on access patterns, warm BLOB content is isolated
from hot content and f4 is used to store these contents. By being
efficient, f4 lowers effective-replication-factor significantly and
also provides fault tolerance in disk, host, rack, and datacenter
levels. It’s been deployed at Facebook and hosts a large amount of
warm BLOB data.

Sabyasachi started his presentation with the definition of BLOB
content, mentioning that most of the data stored in Facebook
are photos and videos, which are immutable and unstructured.
Moreover, these types of data cool down over time, making
existing systems like Haystack less efficient for storing them.
Basically, they split data into two rough categories, hot and
warm. They do replication in various tiers to handle failures of
disks, hosts, and racks. In order to make data access and recov-
ery fast, their previous system stores 3.6 bytes for each byte of
data. As this level of replication is too much for warm data, they
tried to build a system that reduces space without compromis-
ing reliability. Using Reed-Solomon error correction coding and
a decoder node to retrieve data and handle rack failures, they
reduced the replication cost to 2.8x. Additionally, applying XOR
on two BLOBs and storing the result in a third datacenter allows
them to reduce the overhead down to 2.1x. In production, they
consider hot data to be warm after three months or below the
querying threshold of 80 reads/sec, then move it to a designated
cluster designed for storing warm data.

Doug Terry highlighted the amount of data that would be trans-
ferred between datacenters when a failure happens. Sabyasachi
mentioned that it would be a very rare event, but it might happen
and they have already considered the bandwidth required for
such situations. Someone from NetApp mentioned that one

78  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

of the charts in the paper does not make sense as 15 disks can
saturate 10 Gb connections. They preferred to discuss this ques-
tion offline. Finally, Jonas Wagner (EPFL) asked how f4 handles
deletes. Sabyasachi replied that writes are handled by their old
Haystack system, but a different system will take care of deletes.

Pest Control
Summarized by Jonas Wagner (jonas.wagner@epfl.ch)

SAMC: Semantic-Aware Model Checking for Fast
Discovery of Deep Bugs in Cloud Systems
Tanakorn Leesatapornwongsa and Mingzhe Hao, University of Chicago;
Pallavi Joshi, NEC Labs America; Jeffrey F. Lukman, Surya University;
Haryadi S. Gunawi, University of Chicago

Tanakorn Leesatapornwongsa pointed out that serious bugs hide
deep within today’s distributed systems and are triggered only
by combinations of multiple messages and a specific ordering
of events. Model checking has been proposed as a systematic
solution for bug finding, but it cannot find the critical event
interleavings in an exponentially large search space. Tanakorn
presented SAMC, a tool that exponentially reduces the size of
the search space through semantic knowledge about which event
orderings matter for the application.

SAMC’s users need to specify a set of rules (~35 lines of code for
the protocols in SAMC’s evaluation) that describe conditions
where event order matters. SAMC evaluates these rules to prune
unnecessary interleavings. Experiments show that this leads to
speedups of 2–400x compared to state-of-the-art model check-
ers with partial order reduction. SAMC reproduces known bugs
in Cassandra, Hadoop, and ZooKeeper, and also found two previ-
ously unknown bugs.

Ivan Beschastnikh (U. of British Columbia) asked whether
relying on semantic information could cause bugs to be missed.
Tanakorn replied that SAMC could not find those bugs that
depended on non-deterministic behavior. SAMC also requires
the developer-provided policies to be correct. Jonas Wagner
wondered why SAMC did not find more previously unknown
bugs. Tanakorn answered that this was because each bug
requires a specific initial environment to be triggered, and this
needs to be set up before running SAMC.

SKI: Exposing Kernel Concurrency Bugs through
Systematic Schedule Exploration
Pedro Fonseca, Max Planck Institute for Software Systems (MPI-SWS);
Rodrigo Rodrigues, CITI/NOVA University of Lisbon; Bjørn B. Brandenburg,
Max Planck Institute for Software Systems (MPI-SWS)

Concurrency bugs are hard to find and reproduce, because they
need specific event interleavings to be triggered. Existing tools
can explore possible interleavings for user-mode programs, but
not in the kernel. Pedro Fonseca presented SKI, the first system-
atic approach for finding concurrency bugs in unmodified OS
kernels. It runs the kernel and guest applications in a modified
VMM, where each thread is pinned to a virtual CPU. By throt-
tling these CPUs, SKI can exercise a diverse range of schedules.

SKI detects which CPUs/threads are schedulable by analyzing
their instruction stream and memory access patterns. It uses

the PCT algorithm (ASPLOS 2010) to assign priorities to CPUs
and systematically explore schedules. A number of heuristics
and optimizations speed this up and are described in the paper.
SKI supports several existing bug detectors to find data races,
crashes, assertion violations, or semantic errors such as disk
corruption.

SKI’s authors used it to successfully reproduce four known bugs
on several different kernels. This only takes seconds, because
SKI explores 169k–500k schedules per second. SKI also found 11
new concurrency bugs in Linux file system implementations.

Stefan Bucur (EPFL) asked whether SKI could detect deadlocks.
Pedro replied that they did not try this, although it is supported
in a number of OSes that run on top of SKI. Bucur also asked
how the effort of building SKI compares to the effort needed
to instrument the kernel scheduler. Pedro pointed to related
work, DataCollider, that, like SKI, avoided modifying the kernel
because this was presumed to be very complicated. Srivatsa Bhat
(MIT) asked about the maximum number of threads, to which
Pedro replied that the number of virtual CPUs in QEMU (and
thus SKI) is not limited.

All File Systems Are Not Created Equal: On the Complexity
of Crafting Crash-Consistent Applications
Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan
Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of Wisconsin—Madison

Many applications, like databases and version control systems,
employ techniques such as journaling, copy-on-write, or soft
updates to keep their data consistent in the presence of system
crashes. Yet their implementation is often incorrect. Thanuma-
layan Sankaranarayana Pillai identified file systems as the main
cause for this, because they provide very weak guarantees that
differ subtly for various configuration settings. He presented
a study on file system guarantees and how these are used by
applications.

Thanumalayan’s tool, BOB (Block-Order Breaker), stress-tests
a file system to produce an Abstract Persistence Model (APM),
a compact representation of all the guarantees that have been
observed not to hold. The companion tool ALICE (Application-
Level Intelligent Crash Explorer) runs a user-provided workload,
collects a system call trace, and uses the APM to enumerate pos-
sible intermediate states at various instants in this trace. If one
of these states leads to inconsistent data after crash recovery, a
bug has been found.

Alice found 60 such bugs, many of which lead to data loss. About
half of these vulnerabilities are possible even for common file
system configurations like btrfs.

Stephane Belmon (Google) asked what it meant for a “rename”
system call to not be atomic. Thanumalayan explained that one
can end up in a state where the destination file is already deleted
but the source file is still present. Geoff Kuenning (Harvey Mudd
College) asked for ideas for a better API that would make consis-
tency easier for developers. Thanumalayan said related work had

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 79

REPORTS

attempted this, but no API other than POSIX is actually being
used. POSIX is hard to use because there is no good description
of the possible states after an API call. Emery Berger (Amherst)
compared the situation to weak memory models. He asked if this
is an API issue or a file system issue. Thanumalayan believes
it’s a combination of both. The current API is comparable to
assembly language; a higher-level API would help. David Holland
(Harvard) asked whether databases were more robust than other
types of applications. Thanumalayan affirmed and said that
databases in general fared better than version control systems.

Torturing Databases for Fun and Profit
Mai Zheng, Ohio State University; Joseph Tucek, HP Labs; Dachuan Huang
and Feng Qin, Ohio State University; Mark Lillibridge, Elizabeth S. Yang, and
Bill W Zhao, HP Labs; Shashank Singh, Ohio State University

Mai Zheng presented a system to test the ACID properties that
we expect our database systems to provide. He showed that all
examined database systems fail to guarantee these properties
under some cases. At the heart of his work is a high-fidelity
testing infrastructure that enforces a simple fault model: clean
termination of the I/O stream at a block boundary. Because this
model is simple (it does not consider packet reordering or cor-
ruptions), the errors it exposes are very relevant.

The system generates a workload that stresses a specific ACID
property. It records the resulting disk I/O at the iSCSI interface
level. It then truncates the iSCSI command stream at various
instants to simulate an outage, performs database recovery, and
scans the result for violations of an ACID property. The system
augments the iSCSI command trace with timestamps, system
calls, file names etc., and it uses this information to select fault
points that are likely to lead to ACID violations. Such points are
tried first to increase the rate at which problems are found. Once
a bug is found, a delta debugging approach minimizes the com-
mand trace to narrow down the root cause of the problem.

The system was applied to four commercial and four open-source
databases running on three file systems and four operating sys-
tems. It found ACID violations in all of them, especially durabil-
ity violations. The speedups from using pattern-based fault point
selection were instrumental for finding some of these bugs.

The first question concerned the configuration of the tested
databases. Mai Zheng said that, whenever they were aware of
options, his team configured the databases for maximum cor-
rectness. When asked why the work found mostly durability
violations and few isolation violations, Mai Zheng explained
that, although their workloads were designed to catch all types
of violations, it is possible that isolation violations went unde-
tected. Philip Bernstein (Microsoft Research) asked how likely
the found bugs were to happen in practice. Mai Zheng replied
that, in their traces, about 10–20% of the fault points led to a bug.

Award Announcements
Summarized by Rik Farrow (rik@usenix.org)

Rather than attempt to announce more awards while people
were conversing during an outdoor luncheon, annual awards,
as opposed to the ones specific to this particular OSDI, were
announced before the afternoon break. Mona Attariyan (Univer-
sity of Michigan) received the SIGOPS Dennis Ritchie Doctoral
Dissertation Award for her work on improving the troubleshoot-
ing and management of complex software. An ACM DMC Doc-
toral Dissertation Award went to Austin Clements of MIT for his
work on improving database performance on multicore systems.

Steven Hand said that there would be no SIGOPS Hall of Fame
awards this year. Instead, a committee will elect a large number
of papers into the Hall of Fame at SOSP in 2015. Franz Kaashoek
and Hank Levy will be committee chairs. At OSDI ’16, they will
focus on papers from 10–11 years previous to make things sim-
pler. SOSP 2015 will be in Monterey and include an extra day for
history. The first SOSP was in 1965.

Eddie Kohler won the Weiser Award for his prolific, impactful
work on Asbestos, routing, and performing improvements in
multicore databases among other things. Mark Weiser had asked
that people make their code available, and Eddie has certainly
done this, said Stefan Savage, who presented the award. Eddie
also maintains HotCRP. Kohler, who wasn’t present, had pre-
pared a short video in which he said that what might not be obvi-
ous to people who know how cranky he is is that this community
means a lot to him. Kohler thanked various people and the places
where he had worked, like MIT, ICSI (Sally Ford), UCSD, Meraki
(please use their systems). Kohler, now at Harvard, thanked
everybody there, including Franz Kazakh, whom he described as
close to an overlord, adding that it’s lucky that he is so benevo-
lent. Kohler ended by saying there are “a lot of white men on the
Weiser award list. I am perhaps the only one that is gay. I hope we
get a more diverse group of winners for the Weiser award.”

Transaction Action
Summarized by Mainak Ghosh (mghosh4@illinois.edu)

Fast Databases with Fast Durability and Recovery
through Multicore Parallelism
Wenting Zheng and Stephen Tu, Massachusetts Institute of Technology;
Eddie Kohler, Harvard University; Barbara Liskov, Massachusetts Institute
of Technology

Wenting motivated the problem by pointing to the popularity of
in-memory databases due to their low latency. Unfortunately,
they are not durable. Thus the goal of the work was to make
an in-memory database durable with little impact on runtime
throughput and latency. In addition, failure recovery should be
fast. Wenting identified interference from ongoing transactions
and slow serial disk-based recovery techniques as a major chal-
lenge. She proposed SiloR, which builds on top of Silo (a high per-
formance in-memory database) and described how it achieves
durability using logging, checkpointing, and fast disk recovery.

80  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

To make logging and checkpointing fast, SiloR uses multiple
disks and multiple threads to parallel write. Wenting pointed out
that SiloR logs values as opposed to operations because it enables
parallel writes. SiloR also facilitates fast recovery because the
need to preserve order among different log versions in operation
logging is obviated. Recovery can be done in parallel as well. In
the evaluation, Wenting showed the achieved throughput for
SiloR to be less than vanilla Silo since some cores are dedicated
for persistence. Checkpointing adds minimal overhead to the sys-
tem. Recovery is also fast because SiloR can consume gigabytes
of log and checkpoint data to recover a database in a few minutes.

Mark Lillibridge (HP Labs) asked about SiloR’s performance if
the system replicates logs and checkpoints. Wenting replied by
admitting that replication is something that they are hoping to
address in the future. Brad Morrey (HP Labs) asked about the
lower per-core performance of SiloR in comparison to Silo. Wen-
ting pointed out that SiloR does some additional work during
logging and checkpointing which creates that difference. Brad’s
second question was about bottleneck during recovery. Went-
ing replied that SiloR tries to avoid being I/O bound by having
multiple disk-based architecture.

Salt: Combining ACID and BASE in a Distributed Database
Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,
Lorenzo Alvisi, and Prince Mahajan, University of Texas at Austin

Chao started his talk by pointing out how transaction abstrac-
tion eases programming and is easy to reason about in ACID
databases. Unfortunately, they are slow because providing
isolation requires concurrency-control techniques like locks. In
a distributed setting, complex protocols like 2PC make it even
worse. The alternative, BASE, which does away with transac-
tions for weaker forms of consistency, provides performance at
the cost of code complexity. To bridge this gap, Chao proposed
a new abstraction, Salt, which provides the best of both worlds.
At this point, Chao made a key observation: following the
Pareto principle, in a modern day application only a small set
of transactions lead to performance limitation. This is because
many transactions are not run frequently and a lot of them are
lightweight. Their solution tries to BASE-ify this small set after
identifying them.

Chao discussed the tradeoff between performance and complex-
ity by using a bank transfer balance as an example. Splitting the
transfer balance transaction such that deduction is in one half
and addition is in another will lead to an inconsistent state being
exposed for any transaction that tries to read the balance after
the first transaction completes but before the second one begins.
Since these transactions are critical, parallelizing them will
lead to a lot of gains. Chao proposed BASE transactions, which
consist of smaller alkaline transactions. Alkaline transactions
can interleave with other alkaline transactions, but an ACID
transaction cannot. This guarantees that the critical transac-
tion provides the performance improvement without exposing
inconsistent state to other transactions. The multiple granulari-
ties are provided by Salt isolation. Chao introduced three types

of locks: ACID, alkaline, and saline, which together provide the
Salt isolation.

For evaluation, the whole abstraction was implemented on
top of a MySQL cluster, and three workloads were used. Chao
reported a 6.5x improvement in transaction throughput with
just a single transaction BASE-ified. Thus, their goal for achiev-
ing per formance with minimal effort while ensuring developer
ease was met.

Marcos (Microsoft Research) asked about guidelines for devel-
opers on which transaction to BASE-ify. To identify a long-run-
ning, high-contention transaction, Chao proposed running the
transaction with larger workloads and spot those whose latency
increases. Marcos followed up by asking how to ensure BASE-
ifying a transaction will not affect invariants like replication.
To that Chao put the responsibility on the developer for ensuring
this consistency. Henry (Stanford University) sought a clarifica-
tion on the “Performance Gain” slide datapoints. Chao said it rep-
resented number of clients. Dave Andersen (CMU) asked about
the future of their solution. Chao said he was very optimistic.

Play It Again, Sam
Summarized by Lucian Carata (lucian.carata@cl.cam.ac.uk)

Eidetic Systems
David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and
Peter M. Chen, University of Michigan

David Devecsery introduced the concept of eidetic systems:
systems that can “remember” all the computations they have
performed (recording things like past memory states, network
inputs and communications between processes), together with
the relationships between the different pieces of data involved
in those computations (provenance, or how data came to be—
i.e., what inputs or data sources were involved in creating a
given output).

David presented Arnold, an implementation of such a system
based on deterministic record and replay techniques. During
normal process execution, Arnold records sufficient infor-
mation to allow for later replay at the granularity of a replay
group (where a group is the set of threads/processes that share
memory). At the same time, it maintains a dependency graph
of inter-group data flows in order to support the tracking of
provenance across replay groups. The more expensive operation
of tracking the provenance of a piece of data within a group is left
for the replay stage, when processes are instrumented using PIN
to perform fine-grained taint tracking.

To reduce the storage overhead of recorded data, Arnold employs
multiple data reduction and compression techniques (model-
based compression, semi-deterministic time recording, and
gzip). With those in place, the storage overhead for the typical
utilization scenario (desktop or workstation machines) is pre-
dicted to be below 4 TB for four years.

Two motivating use cases were detailed, the first referring to
tracking what data might have been leaked on a system with the

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 81

REPORTS

Heartbleed vulnerability, and the second covering the backward
tracing for the source of an incorrect bibliographical citation
(through the PDF viewer, LaTeX/BiBteX processes and eventu-
ally to the browser window from where the data was copied).
Forward tracing from the point of the mistake (in what other
places was this wrong citation used?) is also possible using the
same underlying mechanisms.

Fred Douglis (EMC) asked whether the system does anything
to avoid duplication of data, such as copy-on-write techniques.
David answered affirmatively. Arnold employs a copy-on-read-
after-write optimization. As a follow-up, Fred asked whether
the replay continues to work if the original inputs to a process
are deleted. David replied that Arnold will continue to store
those inputs for replay, employing deduplication and caches to
reduce overheads. Ethan Miller (UC Santa Cruz) asked what
happens when Arnold encounters programs that exhibit inher-
ent randomness. David answered that they haven’t found lots of
programs with this behavior, but that such randomness would
be treated as any other non-deterministic input that needs to
be recorded in order to assure correct replay. Someone asked
what happens if the users don’t want provenance tracking for
some pieces of data. David noted that Arnold itself can be used
to determine all the places where a piece of data was used—and
subsequently use that information to remove any trace of that
data. Gilles Muller (INRIA) asked whether temporary files
are kept, whether they are useful or a problem when trying to
understand the source of information. David answered that
temporary files are something like intermediate states (written
out and read later). So Arnold will cache them in the file cache or
regenerate them if needed.

Detecting Covert Timing Channels with Time-
Deterministic Replay
Ang Chen, University of Pennsylvania; W. Brad Moore, Georgetown
University; Hanjun Xiao, Andreas Haeberlen, and Linh Thi Xuan Phan,
University of Pennsylvania; Micah Sherr and Wenchao Zhou, Georgetown
University

Ang Chen presented the general idea behind covert timing
channels, with an example of a compromised application send-
ing normal packets over the network but encoding some sensi-
tive data in the timing of those packets. The motivation behind
the work in the paper is that existing state-of-art systems for
detecting such covert timing channels look for specific statisti-
cal deviations in timing. However, those can be circumvented by
attackers creating new encoding schemes or by altering the tim-
ing of just one packet in the whole encoding so that no statistical
deviation exists.

The proposed solution relies on determining the expected timing
of events and then detecting deviations from it. The insight is
that instead of predicting the expected timing (a hard problem),
one can just reproduce it using record and replay techniques:
recording the inputs to an application on one machine and
replaying them on a different one.

However, Ang explained that existing deterministic replay sys-
tems are not sufficient for the stated purpose, as they reproduce
functional behavior of an application, but not its timing behavior
(e.g., XenTT shows large time differences between actual pro-
gram execution and replay). In this context, time-deterministic
replay is needed. To achieve this, various sources of “time noise”
must be handled.

During the presentation, the focus was placed on time noise
generated by different memory allocations and cache behavior.
The solution presented for that problem aims to maintain the
same access patterns across record and replay. This is achieved
by flushing caches before record and replay and by managing all
memory allocations to place all variables in the same locations
in both cases.

A prototype of time-deterministic replay, Sanity, was imple-
mented as a combination of a Java VM with limited features and
a Linux kernel module. The evaluation of this prototype shows
that Sanity managed to achieve a very small timing variance
across multiple runs of a computation-intensive benchmark
(max 1.2%) and provided accurate timing reproduction (largest
timing deviation of 1.9%) on a separate workload. Sanity was
also able to detect timing channels without any false positives or
false negatives.

John Howell (Microsoft Research) asked about the scope of
attacks being considered, and in particular, whether an attack
payload present in the input stream wouldn’t still be replayed
by Sanity on the reference machine. Ang answered that for the
replay, the system has to assume that the implementation of
the system is correct. One of the creators of XenTT noted that
XenTT provided a fairly accurate time model (in the microsec-
ond range): Was that model used for the XenTT results? Ang
answered that the same type of replay was used, and the results
were the ones shown during the presentation. Gernot Heiser
(University of New South Wales and NICTA) questioned the
 feasibility of the given solution in realistic scenarios since it
relies on the existence of a reference (trusted) machine that
is identical to the machine running the normal application. In
this case, the application could be run directly on the trusted
machine. Ang acknowledged that the current solution requires
a correct software implementation and an identical machine
but pointed out that there are still multiple situations where the
solution might be feasible and where such identical machines
exist (e.g., a datacenter).

Identifying Information Disclosure in Web Applications
with Retroactive Auditing
Haogang Chen, Taesoo Kim, Xi Wang, Nickolai Zeldovich, and
M. Frans Kaashoek, MIT CSAIL

Haogang Chen started his presentation by highlighting the
recurrent cases of data breaches leading to user data being
 compromised as a result of Web site vulnerabilities. Multiple
solutions deal with preventing such breaches, but not with
 damage control solutions after a breach occurs.

82  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

However, Haogang observed that even if vulnerabilities exist,
they might not be exploited, or the attackers might not actually
steal all the data they obtain access to. Therefore, an important
goal would be to precisely identify breached data items.

The state-of-the-art in this respect requires logging all accesses
to sensitive data, and careful inspection after an intrusion, but
this is often impractical. An alternative is presented in Rail, a
system that aims to identify previously breached data after a
vulnerability is fixed. The insight used is that Web application
requests/responses can be recorded during normal execution
and then replayed after an administrator fixes a vulnerability.
The difference in data being sent can be attributed to the infor-
mation that was leaked due to that vulnerability.

Compared to other record/replay systems, the challenge in
implementing Rail is minimizing the state divergence on replay as
that might lead to the reporting of false positives. The proposed
solution assumes that the software stack below the application
is trusted, and consists of an API for Web application developers
facilitating deterministic record/replay and data identification
at the object level.

The design revolves around the notion of action history graphs:
An action is generated for each external application event (e.g.,
user request, timer), and all application code triggered by that
event is executed in the context of the action. Any objects used
in that code are connected to the action, resulting in a history
graph. This is then used to replay each action in time order,
whenever one of its inputs/outputs has changed.

Haogang also discussed the case of replay in the presence of
application code changes and non-deterministic inputs. The
chosen example involved changes in the components of an array
(list of admins), which in turn invalidated replay data associ-
ated with particular indexes in the array (e.g., password assign-
ments). Rail provides an input context object that can be used for
associating such data with particular stable object keys.

In the evaluation of Rails, Haogang highlighted that it performed
better than log-inspection approaches, giving no false negatives
and (for the tested workloads) only one false positive, the result
of a malicious account created by the attacker. In terms of replay,
Rails needed to do so only for the fraction of requests related to
the attack (max 10.7%). Overall throughput overhead varied
between 5% and 22%.

Stefan (Google) raised the issue of the threat model being con-
sidered; in particular, the fact that the application must trust the
Web framework and other software stack components. If one
manages to inject random code into the process, logging might
be bypassed. Haogang acknowledged that that is the case, as the
assumption is that the framework is trusted.

Help Me Learn
Summarized by Xu Zhao (nuk.zhao@mail.utoronto.ca) and
Sankaranarayana Pillai (madthanu@gmail.com)

Building an Efficient and Scalable Deep Learning
Training System
Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, Karthik Kalyanaraman,
Microsoft Research

Trishul began by introducing machine learning and deep learn-
ing. Deep learning differs from other kinds of machine learning
by not requiring a human to extract the features of the training
data. Deep learning can automatically learn complex representa-
tions (without requiring humans); an example utility is computer
vision. Deep learning algorithms can be thought of as a network
of multiple levels of neurons that work level-by-level. For exam-
ple, in computer vision, initial levels identify simple representa-
tions such as color and edges, while higher levels automatically
learn complex representations such as edges and textures. The
accuracy of deep learning can be improved by increasing the size
of the model (such as the number of levels in the deep learning
network) and by increasing the amount of data used for training
the model. Both of these require better, scalable systems.

The authors proposed Adam, a scalable deep learning system.
Adam contains three parts: a data server (that supplies data to
the models), a model training system (where multiple models
learn), and a model parameter server (where all models store
their learned weights). The overall design aims at data parallel-
ism and model parallelism: a large data set is divided, and each
part is simultaneously used for training, with multiple models
also trained at the same time. Adam uses an asynchronized
weight update technique, where learned weights are propagated
to the model-parameter server slowly (the weight update opera-
tion is both commutative and associative). To make the models
distributed, Adam partitions the models to fit a single machine;
the working version of the model is fit into the L3 cache, so that
memory is not a bottleneck. Furthermore, Adam optimizes com-
munication with the model-parameter server by asynchronous
batching.

The authors evaluated the accuracy of Adam using MNIST as
a baseline. By turning on asynchronization, Adam gets tre-
mendous improvement; asynchronization can help the system
jump out of local minimum. On a computer vision task, Adam
has twice the accuracy of the world’s best photograph classifier,
because it can use bigger models and a larger training data set.

John Ousterhout (Stanford) asked about the size of the model
in terms of bytes and how much data is shared among how
many models. Trishul answered that, usually, 20 to 30 models
share terabytes of data. A student from Rice University asked
how hardware improvements can help (can bigger models be
combated with bigger hardware?). Trishul answered that bigger
models are harder to train; hence, hardware improvement does
not simply solve the problem. Another question concerned the
number of machines assigned for the model replica and how a
replica fits into the L3 cache. Trishul answered that there are

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 83

REPORTS

four machines assigned to model replicas and only the working
set of the model needs to fit into the L3 cache.

Scaling Distributed Machine Learning with the
Parameter Server
Mu Li, Carnegie Mellon University and Baidu; David G. Andersen and
Jun Woo Park, Carnegie Mellon University; Alexander J. Smola, Carnegie
Mellon University and Google, Inc.; Amr Ahmed, Vanja Josifovski,
James Long, Eugene J. Shekita, and Bor-Yiing Su, Google, Inc.

Mu began by showing users a real-world example of machine
learning: ad-click analysis, similar to Google’s advertisements
on its search results. While machine-learning accuracy can be
improved by increasing the size of the model and by increas-
ing the amount of data, dealing with huge model sizes and data
requires distributing the work among multiple machines.

In the presented system, the training data is fit into worker
machines, while the model is fit into server machines. Worker
machines compute gradients and push them to the servers,
which compute and update the model; the model is then pulled
by the worker machines. The authors found that accessing the
shared model is costly because of barriers and the network
communication. To reduce the cost, the authors introduce the
concept of a Task. Each Task contains separate CPU-intensive
and network-intensive stages, and performance can be increased
by running the stages asynchronously. The system also allows
users to trade off consistency for reduced network traffic; wait-
ing time is eliminated by relaxing consistency requirements.
Mu also briefly talked about other features like user-defined
filters, explained further in the paper. Apart from performance,
the system achieves practical fault tolerance using consistent
hashing on model partitions. By only replicating the aggregating
gradient, the system reduces network traffic (while, however,
introducing CPU overhead). Also, the system exposes the output
using a key-value API.

For the evaluation, the authors ran sparse logistic regression
with 636 terabytes of real data on 1,000 machines with 16,000
cores in total. The system outperformed two baselines; further-
more, the waiting time of training can be eliminated by relaxing
the consistency requirement. Mu also presented the result of
running another application, Topic Model LDA: increasing the
number of machines from 1,000 to 6,000 provided a 4x speedup.
Finally, Mu showed the results with 104 cores; the key here is the
tradeoff between network communication and consistency.

A student from NYU asked about more quantitative details of
the tradeoff between consistency and accuracy. Mu answered
that it really depends on the model and the training algorithm,
and that he authored an NIPS paper showing the theoretical
upper-bound. Kimberly Keeton (HP Labs) asked why the authors
chose Boundary Delay instead of other consistency models; Mu
answered that Boundary Delay was just one of the consistency
models they used; they actually used different consistency
models for different applications. A questioner from Microsoft
Research asked what accuracy meant in the y-axis of the accu-
racy graph; Mu answered that when the model gets the accuracy
quantity needed, they will stop training.

GraphX: Graph Processing in a Distributed
Dataflow Framework
Joseph E. Gonzalez, University of California, Berkeley; Reynold S. Xin,
University of California, Berkeley and Databricks; Ankur Dave, Daniel
Crankshaw, and Michael J. Franklin, University of California, Berkeley;
Ion Stoica, University of California, Berkeley and Databricks

Joseph began the talk by explaining how, in modern machine
learning, combining two representations of the data, tables and
graphs, is difficult. For tables, there are already many existing
solutions, like Hadoop and Spark. For graphs, we have GraphLab
and Apache Graph. However, users have to learn both table and
graph solutions, and migrating data between them is difficult.
GraphX unifies tables and graphs; the authors show that there is
a performance gap between Hadoop/Spark and GraphX, indicat-
ing GraphX is really needed.

Joseph showed how GraphX converts graphs into table repre-
sentation, and how it represents graph operations (like gather and
scatter) into table operations (like Triplet and mrTriplet). The
authors did many optimizations on the system, such as remote
caching, local aggregation, join elimination, and active set tracking.

The authors evaluated GraphX by calculating connected
components on the Twitter-following graph; with active vertex
tracking, GraphX got better performance, while with join elimi-
nation, GraphX decreased data transmission in the combining
stage. The evaluation was done by comparing the performance
between GraphX, GraphLab, Giraph, and naive Spark. GraphX is
comparable to state-of-the-art graph-processing systems.

Greg Hill (Stanford University) asked how a graph can be
updated in GraphX; Joseph answered that, currently, GraphX
doesn’t support updating. Schwarzkopf (Cambridge) asked why
there are no evaluations and comparisons between GraphX and
Naiad; Joseph answered that the authors found it difficult to
express application details in Naiad. The third questioner asked
whether ideas in GraphX can be backported into existing sys-
tems; Joseph answered that some techniques can be backported,
but many techniques are tied to GraphX’s particular design.

Hammers and Saws
Summarized by Ioan Stefanovici (ioan@cs.toronto.edu)

Nail: A Practical Tool for Parsing and Generating
Data Formats
Julian Bangert and Nickolai Zeldovich, MIT CSAIL

Julian motivated Nail by describing the problems of binary
data parsers today: Most of them are handwritten and highly
error-prone (indeed, a number of recent parsing bugs generated
high-profile security vulnerabilities in SSL certification, and
code signing on iOS and Android applications). One option is to
employ parser generators like Bison to generate a parser, but this
would still involve extra handwritten code by the programmer to
manipulate the parsed data in the application, and output it back
to the binary format. In addition, this approach cannot handle
non-linear data formats (such as ZIP archives). With Nail, pro-
grammers write a single grammar that specifies both the format
of the data and the C data type to represent it, and Nail will cre-

84  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

ate a parser, associated C structure definitions, and a generator
(to turn the parsed data back into a string of bytes).

The Nail grammar supports standard data properties (size, value
constraints, etc.), but it also reduces redundancy introduced
by having multiple copies of the same data by including the
notion of dependent fields (values that depend on other values).
Non-linear parsing (e.g., parsing a ZIP archive backwards from
the header field) is supported using “streams”: multiple paths
that can each be parsed linearly. For unforeseen stream encod-
ings (e.g., parsing dependent on arbitrary offset and size fields),
Nail provides a plugin interface for arbitrary programmer code
(which would be much smaller than an entire parser). Output
generation back to binary format is not a pure bijection but,
rather, preserves only the semantics of the specification, allow-
ing Nail to discard things like padding and other redundant data.

Nail is implemented for C data types. The code generator is imple-
mented using Nail itself (100 lines of Nail + 1800 lines of C++). To
evaluate Nail’s ability to handle real formats, Julian implemented
various grammars: Ethernet stack (supporting UDP, ARP, ICMP),
DNS packets, and ZIP archives. In all cases, the implementa-
tion with Nail consisted of many fewer lines of code than a
handwritten alternative, and captured all the complexities of
each respective data format. A Nail-generated DNS server also
outperformed the Bind 9 DNS server in queries/sec. Nail builds
on previous work in the area (e.g., the basic parsing algorithm is
the Packrat algorithm described in Bryan Ford’s MSc thesis).

Eddie Kohler (Harvard University) remarked that memory
usage is a known disadvantage of Packrat parsers, and asked
whether that was a valid reason to continue using handwritten
parsers instead. Julian replied that for most parsing that does
not involve backtracking (such as DNS packet parsing), memory
usage and performance is not a concern.

lprof: A Non-Intrusive Request Flow Profiler for
Distributed Systems
Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo,
Ding Yuan, and Michael Stumm, University of Toronto

Yongle opened by discussing a critical problem of distributed
systems: performance anomalies. Such anomalies increase
user latency and are very hard to understand and diagnose,
since they typically involve understanding the flow of a request
across many nodes in a distributed system. Existing solutions
for distributed request profiling (MagPie, X-Trace, Dapper,
etc.) typically involve intrusive, system-specific instrumenta-
tion. A key observation is that most distributed systems today
already generate TBs of log data per day, much of which consists
of information about the flow of requests through the system
(since developers rely on this information for post-mortem,
manual debugging). lprof is a non-intrusive profiler that infers
request control flow by combining information generated from
static analysis of source code with parsing of runtime-generated
system logs. Yongle presented a sample “latency over time”
graph generated by lprof that showed unusually high latency for
a writeBlock request in HDFS. Combined with per-node latency

information (also generated by lprof), the problem can conclu-
sively be attributed to unnecessary network communication.

lprof generates a model by performing static analysis on applica-
tion byte code. This model is then used while performing log
analysis at runtime (using a MapReduce job) to profile request
flow and save the information into a database (e.g., for use later
in visualization). Challenges involved in log analysis include:
interleaved messages from different request types, lack of per-
fect request identifiers, and log entries generated by the same
request spread across several machines. In order to trace the
flow of a request, lprof needs to identify a top-level method (that
starts to process the request) and a request identifier (that is not
modified during the request) and maintain log temporal order.
The model generated by static byte code analysis is used during
the log analysis to solve all these problems. The key intuition is
that unique request identifiers are already included by devel-
opers in logs for manual post-mortem debugging. Cross-node
communication pairs are identified as socket or RPC serialize/
deserialize methods. Temporal order is inferred by comparing
the output generated for a specific request with the order of the
corresponding source code that generated it.

lprof was evaluated on logs from HDFS, Yarn, HBase, and Cas-
sandra using HiBench and YCSB as workloads. lprof grouped
90.4% of log messages correctly; 5.7% of messages involved
request identifiers that were too complicated for lprof to handle,
while 3% of logs could not be parsed, and 1% of log messages were
incorrectly grouped. lprof was also helpful in identifying the root
cause of 65% of 23 real-world performance anomalies (the 35%
where it was not helpful was due to insufficient log messages).

Rodrigo Fonseca (Brown University) asked what developers
could add to their logging messages to help lprof work better.
Yongle replied that better request identifiers would help. Rodrigo
further asked how this could be extended to combine informa-
tion across multiple applications. This remains as future work.
A developer of HDFS mentioned that they log per-node metrics
(e.g., bytes processed/sec) at runtime, and was wondering how
lprof can be used with this information for performance debug-
ging. Yongle replied that lprof would provide the cross-node
request tracing, while the per-node metrics could complemen-
tarily be used for finer-grained debugging. Someone from North
Carolina State University wondered how block replication in
HDFS would affect the analysis performed by lprof, but the
discussion was taken offline.

Pydron: Semi-Automatic Parallelization for Multi-Core
and the Cloud
Stefan C. Müller, ETH Zürich and University of Applied Sciences
Northwestern Switzerland; Gustavo Alonso and Adam Amara, ETH Zürich;
André Csillaghy, University of Applied Sciences Northwestern Switzerland

Stefan began by describing the motivation for their work: large-
scale astronomy data processing. Astronomers enjoy coding in
Python due to its simplicity and great support for numeric and
graphing libraries. Pydron takes single-threaded code written by
astronomers and semi-automatically parallelizes it, deploys it on
EC2 or private clusters, and returns the output to the astronomer.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 85

REPORTS

Astronomers can’t just use MapReduce (or similar big-data
“solutions”). Compared to the large-scale commercial systems
for big-data processing with thousands of deployments and
millions of users, astronomy projects typically have just a single
deployment, and fewer than 10 people. Furthermore, that single
deployment involves never-seen-before data processing and
analysis on never-seen-before kinds and volumes of data. Code
reusability across such projects is very limited. Astronomers are
also developers, not users: They continuously iterate the logic in
the analysis code and rerun experiments until they obtain pub-
lishable results and never run the code again. The goal of Pydron
is not only to reduce total execution time, but also decrease the
amount of time spent by astronomers writing code (i.e., writing
sequential code involves much less effort than a highly parallel
MPI program).

Most astronomy code is broken up into two types of functions:
those that “orchestrate” the overall analysis and those called
from the orchestrator function to compute on data, with no
global side-effects. Pydron only requires “orchestrator” func-
tions to be annotated with a “@schedule” decorator, and compute
functions with a “@functional” decorator. At runtime, upon
encountering a @schedule decorator, Pydron will start up EC2
instances and Python processes, transfer over all the code and
libraries, schedule the execution, and return the results back to
the user’s workstation (as if the code had been executed locally).

A random forest machine learning training example shows
almost-linear speedup in execution time with an increasing
number of cores using Pydron. Pydron generates data-flow
graphs for functions annotated with the “@schedule” decorator,
and dynamically updates the data flow graph at runtime with
information that is unknown statically in Python (data-depen-
dent control flow, dynamic type information, invoked functions,
etc.). The changing data flow graph then informs decisions about
the degree of parallelization possible from the code. The runtime
of exo-planet detection code parallelized with Pydron decreased
from 8.5 hours on a single EC2 instance down to 20 minutes on
32 instances, significantly reducing the turnaround time for
astronomer tasks. Future work includes better scheduling algo-
rithms, data-specific optimizations, pre-fetching, and dynamic
resource allocation.

Brad Morrey (HP Labs) complimented the effort of improving
the workflow of non-computer scientists by doing good systems
work, but wondered where Pydron’s approach of graph-based
decomposition fails (and where performance is poor). Stefan
answered by admitting that some algorithms are inherently
sequential (and parallelization is not possible), and the system
is designed for coarse-grained parallelization (where compute-
intensive tasks take seconds/minutes), so that’s where it sees the
most benefit. Another limitation is that the system is currently
designed for functional algorithms (that don’t require changes
to global mutable state). Stefan (Google) wondered whether the
images in the example (specified by paths) were stored as files
somewhere, and whether large data sets would limit the use of

Pydron. Stefan admitted that Pydron currently uses Python’s
native serialization library (pickle) and sends objects over
TCP, and there is room for future work. Scott Moore (Harvard
University) asked whether the authors had looked into validat-
ing functional annotations dynamically (using graph updates).
Stefan said that at the moment, no checks take place, but that
it would be useful for developers to find bugs as well. Someone
from Stanford clarified Pydron’s assumption that each function
must be able to run independently (no side-effects) in order for
it to be parallelized and wondered how Pydron would work with
stencil functions. Stefan replied that the inputs to the function
would need to be passed as arguments (respecting the “no side-
effects” rule).

User-Guided Device Driver Synthesis
Leonid Ryzhyk, University of Toronto, NICTA, and University of New South
Wales; Adam Walker, NICTA and University of New South Wales; John Keys,
Intel Corporation; Alexander Legg, NICTA and University of New South
Wales; Arun Raghunath, Intel Corporation; Michael Stumm, University of
Toronto; Mona Vij, Intel Corporation

Leonid began by remarking that device drivers are hard to write
correctly, hard to debug, and often delay product delivery (as
well as being a common source of OS failures). A key observation
motivating the work is that device driver development is a very
mechanical task: It boils down to taking an OS interface spec
and a device spec and proceeding to generate the driver without
much freedom into how the driver can interact with the device.
In principle, this task should be amenable to automation. Leonid
approached the device driver synthesis problem as a two-player
game: driver vs. (device + OS). The driver is the controller for
the device, and the device is a finite state machine where some
transitions are controllable (triggered by the driver), while others
are not controllable (e.g., packet arriving on the network, error
conditions). The problem can be seen as a game, where the driver
plays by making controllable actions, and the device plays by
making uncontrollable actions. A winning strategy for the driver
guarantees that it will satisfy a given OS request regardless of
the device’s possible uncontrollable actions.

Leonid used a LED display clock as an example. A driver that
wants to set a new time on the clock to an arbitrary time must
first turn off the internal oscillator of the clock to guarantee an
atomic change of all the hour, minute, and second values (with-
out oscillator-induced clock ticks changing the time in between
operations). All the possible strategies are considered, and by
backtracking from the winning goal (in which the new time is set
correctly on the clock) to the current, initial state, you can find
all the winning states in the game. Leonid proceeded to demo his
device driver synthesis tool (called Termite) and showed how the
tool generated code to change the time on the clock according to
the winning strategy.

Crucially, Termite is a “user-guided” synthesis tool (in con-
trast to “push-button” synthesis tools, that generate the entire
implementation automatically). The rationale is to keep devel-
opers in charge of important implementation decisions (e.g.,
polling vs. interrupt). The driver synthesis tool then works as

86  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

a very smart auto-complete-like tool (smart enough to gener-
ate the entire driver for you!), but maintains correctness in the
face of arbitrary user code changes (and will inform the user if
their proposed code changes cannot lead to a winning strategy).
Termite also serves as a driver verification tool for a manually
written driver.

Leonid then addressed the problem of specification generation
for OS and devices: If developing the specifications for synthe-
sis takes longer than writing the driver by hand, is it worth it?
Two important observations are that OS specs are generic (i.e.,
made for a class of devices) and can often be reused, and device
specs from the hardware development cycle can be obtained
from hardware developers and used for synthesis. Some drivers
synthesized to evaluate Termite include drivers for: a real-time
clock, a Webcam, and a hard disk. Leonid then addressed the
limitations of the work: the focus is currently on synthesizing
control code (none of the boilerplate resource allocation code), it
is single-threaded (current work-in-progress focuses on multi-
threading the generated code), and it does not currently provide
DMA support (also work-in-progress).

Ardalan Amiri Sani (Rice University) wanted to know how
difficult it would be to figure out what the code that Termite
generated is doing. Leonid explained that the kind of expertise
you need to use Termite is the same you need to write a driver.
There are tools that can help you make sense of what instruc-
tions are doing to the device, but at the end of the day you need to
understand what you’re doing. Someone from INRIA wondered
whether it would be interesting for the tool to generate a Devil
specification that described what the device does instead of
generated code. Leonid replied that a better strategy would be to
change the Termite specification language to include Devil-style
syntax. Joe Ducek (HP Labs) wondered about the difficulty in
getting DMA support and whether it would be possible to have
the developer handle the DMA bits and let Termite do the rest.
Leonid replied that Termite currently supports user-written
DMA code in addition to the Termite-generated code. Auto-
matically generating driver code for DMA is difficult because it
generates a state explosion in the game-based framework. Brad
Morrey (HP Labs) asked how exploring the state space to solve
the two-player game scales. Leonid replied that a big part of the
whole project was implementing a scalable game solver, and the
results are published in a separate publication.

2014 Conference on Timely Results in
Operating Systems
October 5, 2014, Broomfield, CO
Summarized by Timo Hönig, Alexander Merritt, Andy Sayler, Ennan Zhai,
and Xu Zhang

Memory Management
Working Set Model for Multithreaded Programs
Kishore Kumar Pusukuri, Oracle Inc.
Summarized by Xu Zhang (xzhang@cs.uic.edu)

Kishore opened his talk with the definition of working set size
(WSS) of multithreaded programs, which is the measure of the
number of pages referenced by the program during a certain
period of time multiplied by the page size. Knowing the WSS
helps provide insight into application memory demand and
is useful for dynamic resource allocation: for example, the
page replacement algorithm in operating systems. Various
approaches for approximating WSS exist, including simulation-
based and program traces-based techniques. However, they only
work on single-threaded programs, and more importantly, such
measurements are too expensive to be applicable for effective
resource management.

Characterizing WSS is also non-trivial. Not only does WSS vary
from application to application, it is also affected by several
factors. The author collected data from running 20 CPU-bound
multithreaded programs on large scale multicore machines and
identified four factors—what he denotes as “predictors”—that
correlate to WSS: resident set size (RSS), the number of threads,
TLB miss rate, and last-level cache (LLC) miss rate. To increase
prediction accuracy and reduce the cost of approximation, Kishore
further refined the predictors by pruning the ones of less
importance using Akaike information criterion (AIC), avoiding
overfitting and multicollinearity at the same time.

The resulting major predictors are RSS and TLB miss per
instruction. Based on them, three statistical models were
developed using supervised learning: linear regression (LR),
K nearest neighbor (KNN), and regression tree (RT). These
models are further selected using cross-validation tests, with
KNN being the most accurate, which enjoys an approximation
accuracy of 93% and 88% by normalized root mean squared
error (NRMSE) on memcached and SPECjbb05. Notably, the
developed model has very little overhead, which is in granularity
of microseconds compared to hours.

Kishore also briefly talked about their ongoing work for WSS-
aware thread scheduling on large scale multicore systems. He
explained two existing scheduling algorithms, grouping and
spreading, both using the number of threads as a scheduling
metric. Grouping gangs threads together on a few cores initially
and spreads them out if the number of threads exceeds the limit.
By contrast, spreading distributes all threads uniformly across
all cores and sockets at the start of the day. The author argued
that using the number of threads for thread scheduling is not
sufficient on the target system and illustrated this with two
examples.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 87

REPORTS

Ken Birman (Cornell) noted that approximating WSS is less
important as memory has become larger and asked whether
there were other contexts where such a machine-learning
approach might be usable. Kishore replied yes and pointed out
an application in virtual machine allocation, scheduling, find-
ing failures, and providing high availability in the cloud. Ken
followed up asking whether the author had the same findings in
those cases where a small subset of the available metrics become
dominant and are adequate for training. Kishore replied yes.
The second questioner asked whether the errors are under- or
overestimated. The author said it doesn’t matter since WSS
varies greatly from app to app. Someone asked what accuracy
is acceptable for an application using such models. Based on his
understanding of the literature, Kishore noted that above 80%
is considered good. The final question was architecture related:
Why not use a translation storage buffer (TSB) in the SPARC
architecture, which caches the most recently used memory
mappings, for WSS or data migration decisions? Kishore said
their work is based on the proc file system without any kernel
modifications.

MLB: A Memory-Aware Load Balancing for Mitigating
Memory Contention
Dongyou Seo, Hyeonsang Eom, and Heon Y. Yeom, Seoul National University
Summarized by Alexander Merritt (merritt.alex@gatech.edu)

Dongyou Seo began by illustrating how modern CPUs are
manycore and that future chips are envisioned to continue this
trend; he referred to a forward-looking statement made by Intel
for 1,000-core chips. To maximize the use of all cores, many
systems accept more work by becoming multi-tenant, as is the
case in server systems. Such scenarios, however, expose applica-
tions to possible contention on resources shared by cores, such
as the last-level cache, and the limited bus bandwidth to local
DRAM. A challenge, then, is to efficiently manage these shared
resources to limit the effects of contention on applications, e.g.,
prolonged execution times. Existing OS task schedulers, such as
in Linux, manage multicore chips by migrating tasks between
cores, using the measured CPU load that a task places on a core
as an important metric for load-balancing, while not prioritizing,
or fully ignoring, the impact of memory bandwidth contention on
task performance. The authors argue that memory bandwidth is
one of the most important shared resources to understand, since
the ratio between the number of cores and available bandwidth
per core is increasing across generations of processors.

To address this challenge, their work presents a memory
contention-aware task load balancer, “MLB,” which performs
task migration based on an understanding of a task’s mem-
ory-bandwidth pressure. Their work contributes a memory-
bandwidth load model to characterize tasks, a task scheduling
algorithm using this model to influence when/where tasks are
migrated among all processors, and an implementation of the
first two contributions in the Linux CFS scheduler. An analysis
was extended to compare against Vector Balancing and Sorted
Co-scheduling (VBSC) and systems hosting a mix of CPU- and
GPU-based applications.

Their contention model is defined by the amount of retired mem-
ory traffic measured by memory request events from last-level
cache misses and prefetcher requests. Because each application’s
performance may be differently affected by the same level of
contention, a sensitivity metric is defined for each application.
Together, both metrics are used by an implementation of MLB
in the Linux CFS scheduler. Tasks are grouped based on those
that are highly memory intensive and those that are not. Two
task run-queue lists are used (one for each category of task), with
a single run queue assigned to a given core. Tasks are migrated
between cores via the run queues when indicated by the memory
contention model. An evaluation of their methods included a
comparison with a port of the VBSC model into a modern version
of Linux for a variety of applications from the SPEC benchmark
suite as well as TPC-B and TPC-C. An extension of their work
supports multithreaded applications. NUMA platforms, how-
ever, were not examined in this work.

Someone asked when their task migration mechanisms are trig-
gered. Dongyou replied that a burn-in time is required to collect
sufficient information for the model to stabilize (to distinguish
memory intensive vs. non-memory intensive tasks). A second
questioner addressed the extension of MLB to multithreaded
tasks, asking whether the techniques in the paper would still
apply. Dongyou responded that their methods can increase the
hit rates of the last-level cache and that he plans to optimize
them further. Following up, the questioner suggested it would
be interesting to compare MLB to a manually optimized task-
pinning arrangement to illustrate the gains provided by models
presented in the paper.

A final question similarly addressed the lack of analysis on
NUMA platforms, asking what modifications would be neces-
sary. The response suggested that they would need to observe
accesses to pages to understand page migration strategies, as
just migrating the task would not move the memory bandwidth
contention away from that socket.

Cosh: Clear OS Data Sharing in an Incoherent World
Andrew Baumann and Chris Hawblitzel, Microsoft Research; Kornilios Kourtis,
ETH Zürich; Tim Harris, Oracle Labs; Timothy Roscoe, ETH Zürich
Summarized by Xu Zhang (xzhang@cs.uic.edu)

Kornilios started the talk by justifying the multikernel model—
treating the multicore system as a distributed system of inde-
pendent cores and using message passing for inter-process
communication—a useful abstraction to support machines that
have multiple heterogeneous processors. He illustrated with an
example of their target platform—the Intel MIC prototype on
which the Intel Xeon Phi processor is based. It has four NUMA
domains or three cache-coherent islands, and transfers data
with DMA between islands. Such heterogeneity breaks existing
OS assumptions of core uniformity and global cache-coherent
shared memory in hardware architecture. Multikernel models
fit nicely since they treat the operating system as a distributed
system.

88  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

One problem with the multikernel model, however, as Kornilios
pointed out, is that there is no easy way to share bulk data, either
for I/O or for large computation. Lacking support for shared
memory, the multikernel model forces data copying to achieve
message passing. This is the gap that coherence-oblivious
sharing (Cosh) tries to close—to share large data with the aid
of specific knowledge of underlying hardware. Cosh is based
on three primitive transfers: move—exclusive read and write
transfer from sender to receiver; share—read sharing among
sender and receiver; and copy—share plus exclusive receiver
write. And no read-write sharing is allowed by design. To make
bulk sharing practical, two additional features—weak transfer
and aggregate—are built on top of the primitives. Weak trans-
fer allows the sender to retain write permission and to defer or
even neglect permission changes. It is based on the observation
that changing memory permission is costly and is not always
necessary—for example, if the transfer is initiated from a trusted
service. Aggregate provides byte granularity buffer access since
page granularity doesn’t work for everything, particularly han-
dling byte data. Aggregate exports a byte API by maintaining an
aggregate structure on top of page buffers. Kornilios illustrated
the API with examples resembling UNIX pipes and file systems.

A prototype of Cosh was implemented on top of the Barrelfish
operating system, which is an instance of the multikernel model.
The prototype supports MIC cores natively. Kornilios showed
weak transfer being a useful optimization for host-core trans-
fers. And although pipelining helps, host-to-MIC transfers are
bogged down with high latency. Kornilios also demonstrated
results of an “end-to-end” evaluation of replaying panorama
stitching from traces captured on Linux. While Cosh enjoys
the same latency of Barrelfish’s native file system on host-core
transfers, the Cosh prototype still suffers from the high-latency
of DMA transfers between MIC and host cores. With the help of
perfect cache, the latency is reduced by a factor of 20 but is still
17 times greater than host-to-host copying latency. The major
bottleneck is due to slow DMA transfers and slow co-processors.

Someone asked how the performance improved by using cache in
host-to-MIC core transfers. Kornilios explained that the cache
they implemented was a perfect cache and could be as large as
possible, which reduced the number of DMA operations. The sec-
ond questioner asked whether they are planning to support GPU.
Kornilios said they haven’t looked at GPU particularly because
of the lack of support for access permissions. But GPUs are
becoming more general purpose, so he is personally optimistic.
Another question was whether they had explored the multiple
writer concurrency model. Kornilios replied no, because there is
no read-write sharing in Cosh by design. He further commented
that write sharing is difficult for programmers to reason about,
and cache-coherent and shared memory is hard to think about.
He brainstormed that it might be feasible if data partitioning
was provided or if versioning was available. The last questioner
asked whether the Cosh model is used for synchronization.
Kornilios answered no, since the multikernel is based on mes-
sage passing and there is no shared memory.

System Structuring
Summarized by Andy Sayler (andy.sayler@colorado.edu)

Fractured Processes: Adaptive, Fine-Grained Process
Abstractions
Thanumalayan Sankaranarayana Pillai, Remzi H. Arpaci-Dusseau,
Andrea C. Arpaci-Dusseau, University of Wisconsin—Madison

Pillai opened by discussing the traditional OS process abstrac-
tion and noting that most applications are monolithic (single
process). This poses problems when managing or debugging
applications: for example, we are unable to restart just part of a
process if it crashes or is upgraded but must restart the whole
thing (potentially affecting GUIs and other components). Like-
wise, many existing debugging tools like Valgrind produce too
much overhead when run on a large process, making such tools
unfeasible to use in production (e.g., to monitor sensitive parts
of an application for memory leaks). To counter these issues, the
authors propose Fracture, a mechanism for subdividing applica-
tions into an isolated set of processes communicating via RPC.
Fracture is designed to work with C programs and allows the
user to flexibly isolate only the parts of the program that require
it, minimizing the overhead incurred by splitting a monolithic
program into multiple processes.

Using Fracture, a developer divides their program into logically
organized modules (collections of functions) using annotations
in the code. The developer then defines a mapping of each mod-
ule into an associated FMP (fractured mini-process) that will
run as an isolated process. Each FMP can accommodate one or
more modules. Developers can dynamically reconfigure their
applications to run in a single FMP (i.e., as they would have run
without Fracture), or they can split the application into multiple
FMPs to troubleshoot specific bugs, isolate sensitive code, etc.
Fracture is also capable of using a min-cut algorithm and a list
of developer-defined rules regarding which module must be
isolated from which other modules to automatically partition a
program into an optimal set of FMPs. Each FMP acts as a micro-
server, responding to RPC requests from other FMPs. In order
to facilitate this, the developer must adhere to certain rules: no
sharing of global state between modules, annotation of pointers
so the data they point to may be appropriately serialized, etc.

The authors tested Fracture against a handful of existing appli-
cations: Null-httpd, NTFS-3G, SSHFS, and Pidgin, the univer-
sal chat client. The overhead imposed by using Fracture depends
on the specific mapping of modules to FMPs chosen by the devel-
oper. In the base case where all modules map to a single FMP,
Fracture obtains effectively native performance. At the other
extreme, where each module is mapped to its own FMP, perfor-
mance degrades significantly, from 10% of native performance to
80% of native performance depending on the application. Using
Fracture’s intelligent partitioning to automatically produce
an optimal map of modules to FMPs minimizes performance
degradation while also supporting the isolation of application
components into easy to monitor, test, and debug components.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 89

REPORTS

Liuba Shrira (session chair, Brandeis University) asked whether
developers leveraging Fracture must manually define inter-
module interaction in order for Fracture to compute an optimal
partitioning. Pillai answered that no, a developer must only
specify which modules must be kept isolated and provide the
necessary annotations. Tomas Hruby (Vrije Universiteit) asked
whether Fracture must maintain significant state in order to
facilitate restarting FMPs, etc. Pillai answered that Fracture
doesn’t maintain significant internal state, but only requests
state between module RPCs. This has some memory cost but
does not impose significant computational overhead. Another
attendee asked how correctness was affected when a program is
split into multiple FMPs, e.g., when a single FMP crashes and is
restarted. Pillai answered that Fracture requires the developer
to build/divide modules in a manner that supports being safely
restarted. Ken Birman (program chair, Cornell University)
asked whether Fracture’s concepts apply to languages like Java
that have some existing tools for purposes similar to Fracture’s.
Pillai answered that there might still be value in porting the
Fracture ideas to higher level languages, but that it is primarily
designed for C, where no such tools exist.

Leo: A Profile-Driven Dynamic Optimization Framework
for GPU Applications
Naila Farooqui, Georgia Institute of Technology; Christopher Rossbach,
Yuan Yu, Microsoft Research; Karsten Schwan, Georgia Institute of
Technology

Farooqui opened by introducing the audience to the basics of
general purpose GPU computing, including presenting the GPU
as a SIMD machine with a tiered memory hierarchy. GPU per-
formance is often limited by two main factors: irregular control
flow and non-sequential memory access patterns. Tradition-
ally, optimizing GPU code to overcome these factors is difficult,
requiring many manually applied architecture-specific tweaks.
High level frameworks (i.e., Dandelion, Delite, etc.) exist to
reduce the manual optimizing burden, but these frameworks
still fail to capture the performance quirks of specific architec-
tures, especially in terms of dynamically manifested perfor-
mance bottlenecks. Farooqui et al. created Leo as an attempt to
automate this performance-tuning process.

Leo automates performance tuning for GPUs by using profiling
to optimize code for dynamic runtime behaviors. Farooqui pre-
sented a standard manual GPU performance optimization: Data
Layout Transformation (DLT)—e.g., switching from row major
to column major ordering to promote sequential memory access.
To demonstrate the value Leo provides, Farooqui explained the
challenge of applying the DLT optimization to an example pro-
gram: SkyServer. In some cases the DLT optimization improves
SkyServer performance, but in other cases performance is
reduced. SkyServer requires dynamic optimization via a system
like Leo to properly apply DLT when it helps while also forgoing
it when it does not.

Leo employs dynamic instrumentation to drive runtime opti-
mization. First, Leo generates a GPU kernel, then it analyzes,

instruments, and executes this kernel. Next, Leo extracts profil-
ing results and identifies candidate data structures for optimi-
zation. Finally, Leo applies the identified optimizations. Leo
iteratively repeats this process, regressing to the previous state
if no benefits occur. Leo leverages GPU Lynx for instrumenta-
tion and Dandelion for GPU cross-compilation. Leo’s perfor-
mance approaches that of an “oracle”-derived solution (e.g., one
that is hand-optimized for a known input) with gains from 9% to
53% over the unoptimized version. And since Leo’s optimization
is fully automated, these speedups are effectively “free.”

Kishore Papineni (Google) asked whether optimization chal-
lenges in SkyServer were only related to cache misses. Farooqui
answered that there were also likely other factors at play (e.g.,
control flow). Ken Birman asked whether compile-time analy-
sis can provide better layout predictions than Leo’s dynamic
analysis. Farooqui answered that it may be possible, but there
are many challenges since compile-time optimizations can’t,
for example, see cache impacts. Kornilios Kourtis (ETH Zürich)
asked Farooqui to comment on data-flow models vs. other mod-
els (e.g., which are easier to optimize). Farooqui answered that
you can profile and optimize using non-data-flow models, but
that data-flow models make generating multiple code versions
easier. John Reiser asked the bit width at which data coalesc-
ing happens and whether the number of workers affects per-
formance. Farooqui tentatively answered that the width was 8
bytes, but needed to verify that. The optimal number of worker
threads is hardware dependent. Liuba Shrira asked how Leo
handles multiple independent optimizations while avoiding a
combinatorial explosion of profiling results. Farooqui answered
that applying multiple independent optimizations is complicated
and that they are working on how best to handle such optimiza-
tions in Leo.

Proactive Energy-Aware Programming with PEEK
Timo Hönig, Heiko Janker, Christopher Eibel, Wolfgang Schröder-Preikschat,
Friedrich-Alexander-Universität Erlangen-Nürnberg; Oliver Mihelic,
Rüdiger Kapitza, Technische Universität Braunschweig

Hönig opened by highlighting the challenges developers face
today trying to optimize their code for minimal power consump-
tion. Modern hardware has many power-related levers (e.g.,
sleep states, toggling peripherals, processor throttling, etc.), but
developers don’t have good tools for creating code that optimally
utilizes these levers. Instead, developers are limited to infinite
iteration loops, requiring them to hand-tweak code for power
consumption and then manually measure power consumption
using either the limited built-in measurement systems or tradi-
tional tools like oscilloscopes and multimeters. The process of
optimizing code for power consumption today involves (1) writ-
ing and compiling code, (2) running code with a well-defined set
of inputs, (3) performing a manual energy usage analysis, and
(4) optimizing code and repeating the cycle. This is a very time-
consuming process for the developer.

Hönig et al. set out to improve this situation by integrating
energy measurement and optimization suggestion support into

90  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

modern IDEs. They proposed a system for doing this called
PEEK, a proactive energy-aware development kit. The PEEK
framework is split into three parts: the front-end UI (e.g., Eclipse
plugin, or CLI), the middleware that handles data storage and
tracking, and the back-end energy analysis system and optimiza-
tion hint engine. PEEK leverages the Git version control system
to snapshot copies of code to be analyzed as well as various
build-parameters. This allows developers to separate potential
enhancements into separate Git branches and then use PEEK
to analyze and compare the respective energy performance of
each branch. Completed PEEK analysis results and potential
energy optimization tips are also saved via Git. The front-end UI
extracts these data and can automatically generate a source code
patch that the developer may then choose to apply.

In addition to building the PEEK framework, the authors
created a novel dedicated energy measurement device. Exist-
ing energy measurement devices tend to lack programmable
control interfaces and the necessary measurement capabilities
to produce accurate results. The authors’ solution leverages a
current- mirror to produce accurate energy measurements even
at limited sampling rates. Their system uses an ARM Cortex-M4
MCU and contains a USB-based programmable control inter-
face for fully automated energy measurement. Using the PEEK
framework and their custom hardware, the authors were able to
reduce developer energy optimization time by a factor of 8 while
also reducing code energy consumption by about 25%.

Naila Farooqui (Georgia Institute of Technology) referenced
some of Hönig’s result graphs and asked why performance did
not always map to power. Why do slower programs not always
use less power? Hönig answered that they would have to look
more closely at specific situations to know for sure. Kornilios
Kourtis (ETH Zürich) commented that the optimality search
base for power-use tweaks must be huge, including compiler
flags, scheduling options, etc. Kourtis then asked whether there
is additional support PEEK can provide to make it simpler for
the developer to select the ideal set of optimizations. Hönig
answered that future work will aim to tackle this problem
and provide better developer hints. Jay York asked how PEEK
synchronizes hardware measurements with code execution.
Hönig answered that the system uses GPIO signals and relies
on minimal overhead/cycles in the GPIO loop to keep measure-
ments synchronized with code. Liuba Shrira asked whether
PEEK can take advantage of common sections of the code across
multiple snapshots to avoid extra analysis. Hönig answered that
although their previous work explores that, PEEK’s snapshot
batching capabilities are primarily aimed at allowing developers
to logically group potential changes, not at minimizing back-end
analysis effort.

System Structuring
Summarized by Timo Hönig (thoenig@cs.fau.de)

From Feast to Famine: Managing Mobile Network
Resources Across Environments and Preferences
Robert Kiefer, Erik Nordstrom, and Michael J. Freedman, Princeton University

Robert Kiefer presented Tango, a platform that manages network
resource usage through a programmatic model.

Kiefer motivated his talk by demonstrating that network usage
of today’s mobile devices impact other system resources (i.e.,
data cap, battery, performance). Network resources should be
allocated in different ways depending on dynamic conditions
(e.g., if a user changes location) that cause different network
technology (i.e., WiFi, 3G/LTE) to become available. Users’
interests may also change over time (foreground vs. background
applications), and network usage may depend on usage char-
acteristics (e.g., interactive vs. streaming). Divergent goals
between user and application trigger resource conflicts that
have to be moderated by the user.

Using the example of a streaming music app, Kiefer further
illustrated various conflicts between applications and between
applications and users. He showed that one of today’s mobile
systems (Android) only exposes “all or nothing” controls that
are unsuitable for efficiently managing resources. The available
configuration options are application-specific, and the naming
of the configuration options differs between applications. Users
usually cannot control resource usage on their mobile phones as
they want to.

In Tango, user and application configurations are encoded as
policies. With these policies, user configurations have top prior-
ity, while application configurations have some flexibility. Kiefer
further introduced the architecture of their framework (mea-
sure and control primitives, controller, user and application poli-
cies). Policies are actually programs that turn states into actions.
A state of the system is used as input for a policy program to
transform the system into a new state. Actions may impact net-
work interfaces or network flows, where user policies may affect
actions at interface level and flow level, but application policies
may only affect actions at (their own) flow level.

With constraints and hints, Tango detects conflicts regarding
resource usage at the user and application level. Hints for “future
rounds” (e.g., higher network bandwidth) are matched with
existing constraints.

The evaluation of Tango was demonstrated by a streaming music
application used across a campus WiFi with unreliable data
connection. They used this scenario to analyze when to switch
between WiFi and the mobile network (3G/LTE). The evaluation
scenario revealed certain switching problems and demonstrated
which user policies to apply to optimize the 3G usage.

Gilles Muller (INRIA) asked how Kiefer would optimize applica-
tions with two competing policies. Kiefer replied that because
of hierarchies (different classes of applications), his framework

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 91

REPORTS

does not have to know each single application. If an application’s
policy does not fit into a user policy, the user may either change
the constraints or find a different application that fits the user’s
policy. Someone commented on the campus use case that showed
areas of “good” and “bad” WiFi, and asked why a “good” WiFi
actually is good and a “bad” WiFi actually is bad. Kiefer replied
that “good” WiFi meant the user was close to the WiFi access
point. Bad WiFi was usually when noise and transmission errors
increased as the user moved out of reach. Ken Birman asked
whether there was a policy that should say, “Don’t use my cell
connection if my buffer is under x percent.” Kiefer explained
that they have implemented this with a policy that restricts the
amount of data that may be consumed during a specific amount
of time. With this, Kiefer et al. were able to reduce cell usage by
about 30%.

On Sockets and System Calls: Minimizing Context
Switches for the Socket API
Tomas Hruby, Teodor Crivat, Herbert Bos, and Andrew S. Tanenbaum,
Vrije Universität Amsterdam

Tomas Hruby motivated his talk by giving a quick overview
on the problems of the POSIX Sockets API. While the POSIX
 Sockets API is well understood and portable across different
operating systems, Hruby raised the concern that (1) each API
call requires its own system call, (2) system calls are disruptive,
(3) OS execution interleaves with applications, and (4) non-
blocking system calls are expensive. Hruby further outlined how
current solutions address issues of POSIX sockets. In contrast,
Hruby et al. believe that the socket API itself is not broken.
Instead, it is the underlying implementations that are broken.
The system call itself is the key problem.

The approach presented by Hruby tackles the challenge of elimi-
nating system calls from sockets while keeping the API intact.
Their proposed solution is so-called exposed socket buffers,
which allow applications to inspect socket buffer data directly
without going through system calls. This way, most system calls
could be handled in user space. An exposed socket buffer con-
sists of a piece of shared memory between the OS and the appli-
cation, two queues, and two memory areas for allocating data.
With this data structure, an application can test in user space
whether a socket is empty or full. Further, Hruby gave details
on how signaling is implemented in their system. As a result of
the system design, the network stack cannot easily poll without
disturbing the applications. This is why the authors decided to
move the network stack to a dedicated core.

The implementation is based on NewtOS, a multiserver system
based on MINIX 3. Hruby gave numbers on the amount of mes-
sages required to complete a recvfrom() call that returns from
EAGAIN on the modified NewtOS (137 messages) and compared
it to Linux (478 messages). Hruby emphasized the improvement
over the original NewtOS implementation (>19,000 messages).

For the evaluation, the authors used lighttpd (single process)
serving static files cached in memory on a 12-core AMD 1.9 GHz
system with a 10 Gigabit/sec network interface. During the pre-

sentation, Hruby showed numbers on the instruction cache miss
rate of lighttpd where NewtOS (1.5 %) was performing better
than Linux (8.5 %) and the unmodified NewtOS (4.5 %). Before
concluding his talk, Hruby discussed the limitations of the
presented approach (e.g., fork() is not supported) and presented
related work.

Jie Liao (Rice University) asked how much more effort it takes
to adopt applications to the programming model of the pre-
sented approach. Hruby replied that the application remained
unchanged since the programming model is not changed at all.
Jon A. Solworth (University of Illinois at Chicago) asked what
would happen when you have large reads (i.e., megabyte reads)
since caching and shared memory would be affected. Hruby
replied that it really depends on the application and how the
application processes the data. Kishore Pusukuri (Oracle Inc.)
wanted to know how the system handles multithreaded applica-
tions such as memcached. Hruby referred to previous work and
said that their system can run multithreaded applications just
fine. Kishore inquired about the underutilization of available
resources. Hruby answered that this is not an issue. Xinyang Ge
(Pennsylvania State University) asked whether the presented
design impacts the performance of applications which do not use
the network. Hruby answered that this is not a problem because
they use hyper-threading for the network stack and so the core is
not lost for other operations.

Lightning in the Cloud: A Study of Transient Bottlenecks
on n-Tier Web Application Performance
Qingyang Wang, Georgia Institute of Technology; Yasuhiko Kanemasa,
Fujitsu Laboratories Ltd.; Jack Li, Chien-An Lai, and Chien-An Cho, Georgia
Institute of Technology; Yuji Nomura, Fujitsu Laboratories Ltd.; Calton Pu,
Georgia Institute of Technology

Qingyang Wang presented their study analyzing very short
bottlenecks that are also bottlenecks with a very short life span
(~ tens of milliseconds) and their impact on the overall system.
According to Wang, very short bottlenecks are causing large
response-time fluctuations for Web applications (10 millisec-
onds to 10 seconds).

Their study analyzed the reasons for very short bottlenecks in
different system layers (system software, application, architec-
ture) and investigated how such short bottlenecks can lead to
delayed processing, dropped requests, and TCP retransmissions.
Common for the analysis of all three system layers is a four-tier
Web server (Apache/Tomcat/OJDBC/MySQL) running the
RUBBoS benchmark, which emulates the workload of 24 users.
Wang presented results that the Java Garbage Collector of the
evaluation system caused very short bottlenecks in Tomcat.
These short bottlenecks eventually lead to a push-back wave of
queued clients of the Apache Web server. (Wang acknowledged
that the Java Garbage Collector was fixed in JDK 1.7 and no longer
suffers from the very short bottlenecks of Tomcat running with
JDK 1.6.) Wang further demonstrated results of very short bottle-
necks caused by bursty workloads in virtual machines, which
eventually led to dropped requests and TCP retransmissions.

92  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

Someone asked whether there are generic solutions to avoid
push-back waves caused by very short bottlenecks. Wang
answered that there are two different solutions to address very
short bottlenecks for the presented evaluation. First, very short
bottlenecks in the first evaluation scenario can be avoided by
upgrading the Java version. Second, very short bottlenecks in
the second evaluation scenario can be avoided by migrating the
affected virtual machine to a different machine. However, the
authors are still working on a generic solution that addresses the
problem by breaking up the push-back wave. Landon Cox (Duke
University) asked how to generally diagnose the cause of very
short bottlenecks. Wang replied that it is not easy to diagnose
the cause and that it helps to apply fine-grained monitoring tools
that collect as much data as possible. However, Wang admitted
that there is no generic way to diagnose very short bottlenecks.

Security
Summarized by Ennan Zhai (ennan.zhai@yale.edu)

Custos: Increasing Security with Secret Storage as a Service
Andy Sayler and Dirk Grunwald, University of Colorado, Boulder

Andy presented Custos, an SSaaS prototype that can preserve
encryption keys if customers store any encrypted data on the
remote cloud side. Andy first described the Dropbox and Google
Drive storage background: For current cloud providers, custom-
ers either trust the providers or store encrypted data on the cloud
side but keep the key themselves or on other cloud storage pro-
viders. Both cases introduce privacy risks. Custos can provide
the ability to securely store keys, and its goals are: (1) centralized
secret storage, (2) flexible access control, and (3) auditing and
revocation.

For each of the three goals, Andy showed a corresponding
architecture graphic that was very illustrative. For centralized
storage, Custos manages the key between different devices and
sends the key to a centralized server. In addition, the authors
leveraged a scalable SSL processor and multiple providers to
maintain key shares. About this part, Andy said they applied
an n-threshold cryptographic primitive to combine key shares,
finally generating the desired key. For the flexible access con-
trol property, Custos allows the customers to write the access
control specifications and ensure the security of the stored keys.
Using this mechanism, customers can control the access time of
the keys and have time-limited access capability. For the final
property of Custos, i.e., auditing and revocation, the system can
audit logs and keep track of key access, thus offering auditing
and revocation capability.

Ennan Zhai (Yale) asked where the maintainers hold key shares
in practice, and who produces the access control specification.
Andy said in practice there are many individual companies that
offer services maintaining such shares, so Custos can distrib-
ute the shares to them. For the second question, Andy thought
the customers can use existing tools or experts to achieve their
goals; in practice it is not so hard to do. Someone noted that since

Dropbox can share data with some mobile devices, it is harder
for random third-party mobile applications to handle that. Andy
said in principle it is not a concern for Custos, since the Custos
system can flexibly handle such things.

Managing NymBoxes for Identity and Tracking Protection
David Wolinsky, Daniel Jackowitz, and Bryan Ford, Yale University

David Wolinsky began by noting that current anonymity tools
(Tor) still cannot provide perfect privacy protection, and there
have been many examples of an adversary focusing on breaking
the user environment and not the tool. From this observation,
the authors proposed Nymix, an operating system that can offer
isolation for each browser task or session. Each browser or ses-
sion is running in a virtual machine called Nym.

David used three interesting examples to describe the three
target problems, including application-level attacks, correlation
attacks, and confiscation attacks, which can expose users’ pri-
vacy even if they use Tor. David then presented Nymix architec-
ture design: In general, each Nym has two components: AnonVM
and CommVM. AnonVM is mainly responsible for running the
actual applications the user wants to run, while CommVM com-
municates with the outside environment. Since Nymix offers
virtual machine isolations, the user environment cannot be
compromised by the three types of attacks described above.

In the evaluation, David showed how the prototype can be set up
as well as covering CPU overhead, memory usage, and network-
ing overhead. Finally, David talked a lot about future improve-
ments on Nymix, including fingerprintable CPU, VMM timing
channels, accessing local hardware, and storing data retrieved
from the Internet.

Someone asked about a fingerprintable CPUm and whether the
authors had tried any experiments on this level. David thought
in principle the results were not hard to anticipate, but it was
still an interesting direction. The session chair asked about
malicious virtual machines that can communicate with each
other, compromising privacy defenses. David said that basically
the paper does not need to consider such a case, the assumption
being that the virtual machine manager is trusted.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 93

REPORTS

10th Workshop on Hot Topics in System
Dependability
October 5, 2014, Broomfield, CO
Summarized by Martin Küttler, Florian Pester, and Tobias Stumpf

Paper Session 1
Summarized by Florian Pester (florian.pester@tu-dresden.de) and
Tobias Stumpf (tobias.stumpf@tu-dresden.de)

Compute Globally, Act Locally: Protecting Federated
Systems from Systemic Threats
Arjun Narayan, Antonis Papadimitriou, and Andreas Haeberlen, University of
Pennsylvania

Cascading failures can bring down whole systems, and in a world
of critical systems, this should be avoided. However, privacy con-
cerns often prevent the global view necessary to detect impeding
catastrophic cascades. The authors studied this problem using
the example of the financial crisis of 2008.

Banks usually have financial risks that are greater than their
capital, therefore the surplus risk—the difference between their
risk and their capital—is offloaded to other banks. This creates
a network of dependencies between banks that results in a very
large dependency graph. However, each bank only has its local
view of the situation.

System-wide stress tests could be a solution to the problem;
unfortunately, a lot of the input needed for such a test produces
privacy issues for the banks. Therefore, economists do not know
how to compute a system-wide stress test—although they do
know what to compute. A regulator is not an option, because a
regulating entity would require too much access. Secure multi-
party computation, on the other hand, does not scale well enough.

A workable solution must deal with two main challenges: privacy
and scalability. In order to provide scalability, a graph-based
computation is used instead of matrix multiplication. Each bank
is assigned a node and performs what the authors call limited
multi-party computation.

In order to solve the privacy problem, the authors use differential
privacy, which provides strong, provable privacy guarantees.
This works by adding a small amount of imprecision to the
output of the computations, which can be tolerated because the
aim of the computation is detection of early warnings of large
problems. Limited multi-party computation is essentially mul-
tiple multi-party computations with k parties. Each party gets
another party’s output as input for their own computation; in
this way, no party has access to the other party’s secrets.

Implementation was left as future work.

Someone commented that this work could also be applied for
the power grid and other dependable systems. Additionally, the
question was raised whether it is a realistic assumption that the
banks will follow the protocol. The answer was that the regula-
tors get localized data and can enforce the protocol.

Running ZooKeeper Coordination Services in
Untrusted Clouds
Stefan Brenner, Colin Wulf, and Rüdiger Kapitza, Technische Universität
Braunschweig

Privacy issues and insufficient trust in cloud providers slow
down the adoption of cloud technologies. However, computa-
tion of data is tricky if that data is encrypted. Trusted Execution
Environments (TEE) can help to mitigate the problem.

Apache ZooKeeper provides coordination for cloud applications.
The authors added an encryption layer to ZooKeeper in order to
gain trusted coordination.

This encryption layer is provided in the form of the ZooKeeper
privacy proxy, which runs inside a TEE. Communication from
the client to the ZooKeeper privacy proxy is encrypted by SSL,
while communication between ZooKeeper and the ZooKeeper
privacy proxy is encrypted using a shared key between these
two. Name-clashing problems are solved by a dictionary node.

Someone asked the presenter to clarify whose signing key needs
to be trusted ultimately. The answer was the hardware signing
key. A second questioner wanted to know more about the applica-
tions that can be used with the system. The presenter answered
that the system needs specific applications. The final questioner
wondered why the system was implemented as a proxy. The
reason is so that this solution is completely transparent to the
server and the client.

Who Writes What Checkers?—Learning from
Bug Repositories
Takeshi Yoshimura and Kenji Kono, Keio University

Takeshi and Kenji presented a tool that learns from bug reposito-
ries to help developers eliminate bugs. The tool uses static code
analysis to find typical bugs—e.g., not freed memory or infinite
polling—and is based on the Clang analyzer. During analysis
Takeshi figured out that bugs coming from humans are mainly
domain specific. Their tool uses machine-learning techniques
to extract bug patterns from documentations written in English
and the corresponding patches. The tool works in two steps:
First, it uses natural-language processing to extract keywords
from the documentation. Second, their tool extracts bug pat-
terns based on topic. For the paper, Takeshi analyzed 370,000
patch documentations and sorted them into 66 groups called
“clusters.” They also found subclasses by using keywords; for
instance, around 300 patches contain the keyword “free.” They
use the known free-semantic to check patches and see whether a
free statement is missing. The presented tool is useful for detect-
ing typical bugs. In his conclusion, Takeshi mentioned that find-
ing unknown bugs is more complicated but possible.

Someone asked about the documentation used. Takeshi clarified
that they used only the commit messages and not information
from the bug repository. Further questions were related to lan-
guage processing. Takeshi explained that they used techniques
to reduce language noise from developers’ commit messages.

94  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

The last questioner wanted to know which kind of bug patterns
they could find and which not. The presenters clarified that their
tool is limited to known bugs which are already documented.

Leveraging Trusted Computing and Model Checking to
Build Dependable Virtual Machines
Nuno Santos, INESC-ID and Instituto Superior Técnico, Universidade
de Lisboa; Nuno P. Lopes, INESC-ID and Instituto Superior Técnico,
Universidade de Lisboa and Microsoft Research

Nuno Santos and Nuno Lopes developed an approach based on
trusted booting and model checking to ensure that a virtual
machine (VM) in the cloud runs the software that a customer
expects. The basic approach to launch a VM is quite easy. Some-
one creates a VM image and sends it into the cloud, and someone
(maybe the image creator) launches the VM. Previous studies
showed that this approach includes risks for the creator as well
as for the user. For instance, a misconfigured VM image can
contain creator-specific data (e.g., passwords, IDs) or include
obsolete or unlicensed software. To overcome these problems,
Nuno proposed model checking to ensure that a VM image
matches the specifications before it is launched. The specifica-
tion includes all necessary information (e.g., configurations,
applications) to ensure a specification behavior of the VM. After
a VM is checked, a trusted computing environment is used to
ensure that the checked image is launched.

Someone wanted to know how to identify passwords. Nuno
answered that it is done by annotations. A second questioner
asked who he has to trust (machine, cloud provider) to launch a
VM. The software integration can be done outside the cloud, and
therefore it is not necessary to trust any cloud provider. Another
question related to software specification in general. Nuno
answered that their work does not focus on software verification
but on checking the properties of a given instance. Finally, to
the question of how much work it takes to write a specification,
Nuno said the workload depends on the level of fine tuning. It is
simple to write a running specification, but the tuning part can
be quite expensive.

Paper Session 2
Summarized by Martin Küttler (martin.kuettler@os.inf.tu-dresden.de)

Erasure Code with Shingled Local Parity Groups for
Efficient Recovery from Multiple Disk Failures
Takeshi Miyamae, Takanori Nakao, and Kensuke Shiozawa, Fujitsu
Laboratories Ltd.

Takeshi Miyamae began by noting the need for erasure codes
with high durability and an efficient recovery. He presented a
Shingled Erasure Code (SHEC) that targets fast recovery and
correctness in the presence of multiple disk failures.

He discussed the three-way tradeoff between space efficiency,
durability, and recovery efficiency. SHEC targets recovery
efficiency foremost by minimizing the read sizes necessary for
recovery. Compared to Reed Solomon, MS-LRC, and Xorbas,
SHEC has substantially better theoretical recovery speed for
multiple disk failures.

Next, Takeshi showed that SHEC is comparable to MS-LRC in
terms of durability for double disk failures, but is more customiz-
able and offers more fine-grained tradeoffs in efficiency. He then
briefly explained the implementation of SHEC, which is a plugin
for the free storage platform Ceph.

Takeshi presented an experiment comparing SHEC to Reed
Solomon for double disk failures. He found that SHEC’s recov-
ery was 18.6% faster and read 26% less data from disk. Then
he showed that there was 35% more room for recovery time
improvement because the disks were the bottleneck only 65% of
the time.

Someone asked why the disks were not always the bottleneck
during the experiment. Takeshi explained that other resources
can be the bottleneck too, but in their experiment only the disk
was a bottleneck. He was not sure what acted as bottleneck dur-
ing the remaining 35% of the experiment, but it was not the CPU
or the network.

The second questioner wondered how common it is to have mul-
tiple disk failures. Takeshi answered that the probability for that
is higher in practice than in theory.

Providing High Availability in Cloud Storage by
Decreasing Virtual Machine Reboot Time
Shehbaz Jaffer, Mangesh Chitnis, and Ameya Usgaonkar, NetApp Inc.

Shehbaz Jaffer presented work on providing high availability
in cloud storage. Virtual storage architectures (VSA)—storage
servers that run as virtual machines on actual hardware serv-
ers—are considerably cheaper and more flexible than hardware
servers. But they suffer from lower availability, because in case
of failures they need to be rebooted, which introduces long wait
times. The typical solution for hardware servers is to deploy high
availability (HA) pairs, i.e., two servers that both serve requests,
so that one can keep working when the other reboots.

To achieve the goal of this work, reducing the VSA reboot time
in order to increase availability, Shehbaz presented multiple
steps. The first was to cache VM metadata in the host RAM and
provide access to that data on reboot. This improved boot time by
5%, which was less than was expected.

Next the authors tried to improve the SEDA architecture to
improve performance. In particular, synchronously returning
cached file-system information, instead of performing an asyn-
chronous call, reduced boot time by 15%.

Finally, they improved block-fetching time during a reboot.
Turning read-ahead during reboot decreased the boot time by
another 18%.

The time breakdown showed that consistent checkpointing
takes a lot of time. The authors left replacing consistent check-
pointing with a faster technique as an open problem, which they
want to look at in follow-up work.

www.usenix.org FEBRUARY 2015 VOL. 40, NO. 1 95

REPORTS

Somebody asked how often VSA failures, and subsequent
reboots, happen in practice. Shehbaz answered that about
85–90% of the failures are software failures, such as OS bugs
or mishandled client requests. But he had no absolute numbers.
Another questioner asked why not use multiple replicated VMs,
which can take over when one fails. Shehbaz answered that in
deploying a VSA at some datacenter, there is no way to ensure
that the VMs are going to be near each other, and maintaining
consistency is much harder when they aren’t.

Understanding Reliability Implication of Hardware
Error in Virtualization Infrastructure
Xin Xu and H. Howie Huang, George Washington University

As motivation for their work, Xin Xu pointed out that hardware
failures are a common problem in the cloud: If a server has one
failure in three years, a datacenter with 10,000 servers has an
average of nine failures per day. Still, the datacenter provider
needs to handle these incidents to provide a reliable service.

In his work, Xin focused on soft errors such as transient bit flips,
which are not reproducible and are hard to detect. With smaller
process technologies, the probability for transient failures is
expected to increase greatly, which is a major reliability concern
in datacenters.

He also pointed out that hypervisors are a single point of failure
and do not isolate hardware errors. They studied this problem by
doing fault injections into virtualized systems. For these experi-
ments, the authors analyzed the hypervisor to find the most used
functions and found that by injecting errors in them, they could
find more crashes than by doing random injections. Using this
analysis, they also found more errors that propagated into the VMs.

In addition, they categorized the injected faults based on the
crash latency, which is the number of instructions between fault
injection and detection of the crash. Most crashes have a short
latency of fewer than 100 instructions, but some are signifi-
cantly longer and are thus likely to propagate into a VM. To study
this they also analyzed failure location. In many cases, crashes
happen in the C-function where a fault was injected. A small
percentage (up to 5%) leave the hypervisor, meaning there is no
fault-isolation.

Comparing his work to previous approaches, Xin highlighted
two new contributions: a simulation-based fault injection frame-
work, and analysis of error propagation.

Somebody asked whether they considered bit flips in opcodes as
well as in program data. Xin answered that they only injected
bit flips into registers, because injecting errors into memory is
more difficult to track. He was then asked whether he consid-
ered storage more reliable. He responded that he did not, but
that memory is protected by ECC, and that errors in the CPU
are more difficult to detect. Somebody asked how Xin would go
about making the hypervisor more robust, and what implications
their framework had on performance. For the first question, Xin
referred the questioner to another paper on ICPP about detect-

ing failures early, before they propagate to dom0. Regarding the
performance, he said that the overhead was generally less than
1% because they used a lot of hardware support such as perf
counters.

Towards General-Purpose Resource Management in
Shared Cloud Services
Jonathan Mace, Brown University; Peter Bodik, Microsoft Research;
Rodrigo Fonseca, Brown University; Madanlal Musuvathi, Microsoft Research

Jonathan Mace presented the motivation of the work, describ-
ing how performance problems can arise in shared-tenant cloud
services. Requests can drain resources needed by others. The
system typically does not know who generates requests, nor
which requests might interfere, and therefore it can give no per-
formance guarantees to users. Ideally, one would like quality-of-
service guarantees similar to those provided by hypervisors.

To address these issues, Jonathan proposed design principles for
resource policies in shared-tenant systems. He then presented
Retro, a prototype framework for resource instrumentation and
tracking designed according to these principles.

He started by discussing interferences of various file-system
operations on an HDFS installation. He presented measured
throughput rates of random 8k writes with different background
loads. Even tasks like listing or creating directories inter-
fered significantly with the writer task. From that the authors
inferred the first principle: Consider all request types and all
resources in the system.

Jonathan motivated the second principle by discussing latency
requirements of specific tasks. He provided an example where a
high priority tenant required a low latency, and two tenants with
lower priority were running. Throttling one of them could sig-
nificantly decrease the latency of the high priority tenant, while
throttling the other did not change the latency at all. Therefore
only the correct tenant should be throttled, which led to the
second principle: Distinguish between tenants.

Jonathan discussed long requests and the problems they pose
for giving guarantees to other tenants, which generated the third
principle: Schedule early and often. This avoids having long-
running requests taking up resources that should be available
for high priority tenants.

Finally, Jonathan presented Retro, a framework for shared-
tenant systems that can monitor resource accesses by each
request. The framework tracks which tenant issued each
request and resource access, aggregates statistics (thus provid-
ing a global view of all tenants), and allows a controller to make
smart scheduling decisions. He revisited the example of the high
priority tenant interfering with one of two low priority tenants.
Retro figures out which low priority tenant it has to throttle to
improve the latency of the higher priority tenant. Jonathan also
presented measurements showing that Retro introduced less
than 2% overhead.

96  FEBRUARY 2015 VOL. 40, NO. 1 www.usenix.org

REPORTS

Somebody asked about the level of isolation that Retro provides
and whether crashes were considered. Jonathan answered that
Retro can provide performance isolation but no strong guaran-
tees, as only averages can be guaranteed. He also said that they
did not consider crashes.

Scalable BFT for Multi-Cores: Actor-Based Decomposition
and Consensus-Oriented Parallelization
Johannes Behl, Technische Universität Braunschweig; Tobias Distler,
Friedrich-Alexander-Universität Erlangen-Nürnberg; Rüdiger Kapitza,
Technische Universität Braunschweig

Johannes Behl presented a scalable Byzantine fault tolerance
implementation for multicore systems. He motivated this work
by saying that many systems targeting dependability only
consider crashes, which is not enough. To be able to handle more
subtle faults, Byzantine fault tolerance (BFT) is needed. But it
is not common, because current BFT systems do not scale well
with multiple cores, which is required to run efficiently on mod-
ern hardware.

Johannes talked about state-of-the-art BFT systems and their
parallelization. The BFT protocol consists of an agreement
stage and an execution stage, which need to be parallelized. The
parallelization of the second stage depends on the service char-
acteristics. For the agreement stage, Johannes briefly presented
the current method of parallelization. The agreement is split
into multiple tasks, each running in a different thread. Thus,
finding a consensus involves all threads, which has a number
of disadvantages. The number of threads is determined by the
BFT-implementation and is therefore not well aligned with the
number of cores. In addition the slowest task inside the agree-
ment phase dictates the performance. And the need for frequent
synchronization between threads further increases the time to
find consensus.

Johannes presented consensus-oriented parallelization, which
involves vertical parallelization, i.e., having each thread serve
a complete agreement request. That way throughput rates can
scale with the number of CPU cores, and synchronization is
much less frequent.

In the evaluation, Jonathan compared his implementation to a
state-of-the-art implementation of BFT. His implementation
scales much better, and it is already about three times faster
for a single core, because it does not have any synchronization
overhead there.

Someone asked how the logging inside the agreement stage was
parallelized. Johannes answered that they did not log to disk
but only to memory. For disk logging he proposed using multiple
disks or SSDs. The next question was how dependencies across
requests were handled. Johannes answered that they made no
assumptions about dependencies. Somebody asked whether the
evaluation was done in the presence of faults so that non-trivial
agreements had to be found. Jonathan answered that there were
no faults or disagreements in the evaluation. The last question
was whether batching was used in the evaluation. Jonathan said
no and noted that batching can improve performance.

	11th USENIX Symposium on Operating Systems Design and Implementation
	2014 Conference on Timely Results in Operating Systems
	10th Workshop on Hot Topics in System Dependability

