
www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 57

COLUMNS

iVoyeur
Stacks and Piles

D A V E J O S E P H S E N

Dave Josephsen is a book
author, code developer, and
monitoring expert who works
for Sparkpost. His continuing
mission: to help engineers

worldwide close the feedback loop.
dave-usenix@skeptech.org

I keep having this conversation with my coworkers. Honestly, it’s prob-
ably to be expected given my penchant for harping on about monitoring
tools. Also, I was admittedly quite spoiled at my last job, Librato—a place

whose singular mission in life is operational visibility, where everyone has
unfettered access to a functionally infinite, free, world-class, metrics plat-
form—where things were, of course, different.

Anyway, the conversation I’m talking about usually starts off with me suggesting some tool that
we could use to measure something. “Well how many foos per second are actually happening in
real life?” I’ll ask, expecting a number rather than a shrug in response. Alas, no one will know, so
I’ll suggest that we count them. “Do we have a graphite instance up anywhere?” I’ll ask.

“No,” they’ll answer slightly annoyed, knowing full damn-well that I know full damn-well by
now that there is no graphite instance, “we use Monitoring Tool X.”

“Ah hah,” I reply delighted, having successfully baited them into my personal little Platonic
dialog. “But I’m not talking about monitoring, I’m talking about measuring.”

Yes, delight. It delights me every single time, which, I recognize maybe is a little pathetic, but
I’m already too old to care. In fact, one of the things I’m genuinely enjoying about the aging
process is a certain sort of selfish introspection. It’s great. You’ll be walking down the street
and suddenly realize that you keep on offering to meet people for a beer when you don’t par-
ticularly like beer. And it just goes on like that, realization after realization that you’ve been
engaging in all these behaviors that you kind of despise, and then, best of all, you just stop
doing those things—like pretending to know what DevOps means, or living in Texas.

Anyway, most people don’t really catch my meaning when I say I’m talking about measuring
things as an activity distinct from monitoring things, so this portion of the conversation usu-
ally involves a lot of skeptical sideways glances and eye-rolling. And, honestly, I hear myself.
I sound like a pompous windbag who swallowed a know-it-all jerk. The words emerging from
my lips sound like something a televangelist might say if televangelists were really opinion-
ated on the subject of IT monitoring tools. Like, these sentences could only emerge from the
lips of someone who doesn’t live here, in the bloody trenches with you and me. Someone who
will soon jet back to the money-laden consulting partnership from which he oozed. I get that.
I do. So the first thing I do is remind them what they have to go through to measure the num-
ber of foos traversing the wire with Monitoring Tool X.

First you need to know Monitoring Tool X itself: its YAML/XML/JSON/whatever configu-
ration DSL along with its questionable world-view and unique collection of pseudo-random
assumptions that I’m sure totally made sense at the time. Then, these days, there’s usually
a code promotion and review process, so you’ll have to traverse those as well as possibly
a change control process. Those things only apply if you’re lucky enough to be allowed to
actually change Monitoring Tool X. I don’t have numbers, but I’m willing to bet that most
engineers in most places aren’t. Most engineers in 2017 still need to traverse a gatekeeper to
affect Monitoring Tool X, which means filling out something akin to a trouble-ticket.

58  FA L L 20 17 VO L . 42 , N O. 3 www.usenix.org

COLUMNS
iVoyeur: Stacks and Piles

And so nobody measures.

Of course they don’t. What carpenter would measure if she had
to submit paperwork in XML before she could use the tape mea-
sure? Maybe someone would, but I would not hire that person
and neither should you. I mean, at this point I’ve been dealing
with monitoring system configuration syntax for over 20 years,
and I wouldn’t bother to measure if that alone was the bar to
entry. I’d monitor, sure. But 10–15 minutes config time per new
metric? I’d never measure.

But what’s the big deal? I mean, ultimately, what do I lose? Obvi-
ously, we can get by without measuring. We can make things
that work. Yesterday I walked in to my living room and brushed
against a stack of recently purchased books in want of a shelf,
but I did not knock them over. They teetered off balance, and,
eventually, they might fall over as a result of their imbalance, but
for the time being that stack remained a stack rather than a pile.

That stack is working. It’s getting by. Exactly like so many other
well-monitored tech-stacks in the interclouds. And when they fall
over…when the stack becomes a pile, our monitoring tells us so and
we intervene. Like a fire-alarm. That’s how monitoring works. You
don’t want the fire-alarm going off when stuff isn’t on fire, and so
you restrict access to it, to make sure nobody messes it up.

That’s not measuring. Measuring is what we do when we want
to understand the things we build. How many queries is my
service actually putting on the wire? How many threads does it
spawn with real-life users? What’s actually faster, the new pars-
ing function or the old? Is round-robin actually round-robining
(Hint: No)? Measuring invites us to answer these questions for
ourselves. No paperwork. No fuss. Like a tape measure in our
pocket, this is self-service. Nobody is worried about you breaking
your tape measure.

When we measure, we can communicate actual, real-life sys-
tems behavior to one another, rather than hunches and esti-
mates. Its output is truth. Not Warning, not Critical, just Truth.
Measurement, therefore, gives us a common basis of under-
standing. It reaches across disciplines like application-develop-
ment and ops (or SRE or whathaveyou) and provides a common
comprehension of operational reality. Measurement gives us the
ability to have objective conversations about the best way to fix
things, and as your operational visibility improves, you begin to
formulate a tangible sense of normality, and inversely, abnormal-
ity. You move from alerting on problems to detecting imbalance.
You stop saying holy shit and start saying huh, that’s weird, and
seemingly overnight, you find yourself intervening before the
stack falls over rather than scrambling to clean up piles.

Most importantly, measuring things changes you. It’s one thing
to read about the process versus thread model in Web serv-
ers, but it’s quite another thing to see it for yourself. Measur-

ing things, it turns out, removes the political subtext from our
technology discussions. You no longer have to invest belief in the
solutions for which you advocate. You are free to question and to
formulate hypotheses and test them. It’s habit forming, and it’s a
really good habit for an engineer.

From Logs to Sprites
A few days ago I participated in my first Hackathon at Spark-
post, and since I kept having this conversation, I thought I’d
try to make something that celebrated the act of measuring as
opposed to monitoring. Coincidentally, I’ve also been playing
around lately with Phaser.io [1], a videogame development frame-
work for HTML5-enabled browsers, so I thought I’d try to make
a little traffic visualization toy.

DNS and SMTP are the lifeblood of Sparkpost, yet no second-
scale metrics systems currently exist to visualize this traffic.
Given this, I figured it would be impossible to render this traffic
and not learn something in the process. I wanted to show every-
one what our mail flow actually looked like, so I settled on SMTP
and got coding.

Some 24ish hours later, Sparkviz was born, and I was super
happy with how it came out. Here’s a video of it in action [2].

On the far left, you see two Amazon ELBs: one balances inbound
REST traffic from our customers and the other SMTP. This
traffic is represented by green balls. The next tier inwards is our
MTA tier. These servers relay mail outward to various proxies
(the third tier), which in turn deliver to the Internet (represented
as a large orange ball on the right). You’ll notice the right-hand
side of the screen is metered from 10 to 256. These obviously
form a scale of first octets. Email successfully delivered appear
as blue dots, which hit the far right-hand side of the screen at the
point matching their destination IP’s first octet.

The yellow balls represent transient bounces, and the red balls
that impact the floor are permanent delivery errors. As the
project took shape I noticed that heavy traffic often obscured
patterns, so I used phaser’s “enableDrag()” method on each of
the sprites to make them draggable, as you can see in the video.
When this wasn’t quite enough I added a toggle to squelch out the
errors entirely.

The project totaled 407 lines of code: 161 lines of JavaScript and
246 lines of Go. Unfortunately, I can’t share it, but there’s no
reason it couldn’t be open-sourced eventually.

It’s implemented as a daemon designed to run on our internal
log aggregation boxes. It listens on a UNIX domain socket for
log-lines, which it parses and extracts into JSON blobs. You can
see my highly technical architectural design document for the
daemon in Figure 1.

www.usenix.org FA L L 20 17 VO L . 42 , N O. 3 59

COLUMNS
iVoyeur: Stacks and Piles

The daemon also listens on port 8000 for HTTP clients, to whom
it delivers the phaser-based JavaScript UI. The UI, running in
the browser on the client, turns around and creates a WebSocket
connection back to the server. The daemon keeps a globally
scoped slice of these connected WebSockets and broadcasts each
parsed log line to every connected client as a JSON blob (using
a millisecond sleep function inside each client’s broadcast go-
routine to throttle the outbound traffic to 1000 blobs per client
per second).

Differentiation of traffic type happens client-side, where the
JavaScript UI uses a series of handler functions to parse out the
event-type from each inbound JSON blob, pushing them on to
another queue with the appropriate sprite value for phaser to
render and tween. The tl;dr is that I created a firehose between
the MTA logs and the end-user’s browser. As always with hack-
day projects, there’s plenty of room for improvement, but as you
can see, it gets the job done.

As I suspected, we all learned quite a bit from the exercise. It’s
kind of impossible for humans to avoid pattern-parsing data like
this, and you don’t need to look at it very long to recognize that
we have a distribution imbalance in this environment. Certain
MTAs clearly prefer certain proxies. Like the books in my living
room, this stack works despite its imbalance. I, for one, am really
looking forward to smugly pointing back to Sparkviz when I
curmudgeonly lecture my contemporaries on the importance
of operational telemetry, a process from which I’m sure I will
extract far more than 407 lines of delight.

Take it easy.

References
[1] Phaser.io: http://phaser.io/.

[2] My traffic visualization tool in action: https://www.youtube
.com/watch?v=htidm6DWq2s.

Figure 1: Highly technical architectural design document

http://phaser.io/
https://www.youtube.com/watch?v=htidm6DWq2s
https://www.youtube.com/watch?v=htidm6DWq2s

