
88    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

BOOKSBook Reviews
M A R K L A M O U R I N E

Introducing Go
Caleb Doxsey
O’Reilly Media, 2016, 112 pages
ISBN: 978-1-491-94195-9

I didn’t look twice when I saw this title come up as a “people
also bought” on Amazon. A lot of my work recently has been
developing or using applications written in Go(lang), and I’ve
been looking for good books on Go for more than a year. For the
longest time there were no professionally published books on
Go, and the only resources were blogs, the official godoc Web
site (https://godoc.org), and a couple of Creative Commons texts
written by developers mostly found on the Golang Web site
(https://golang.org/doc/). (Don’t misunderstand me. These are
great resources, but I like books, made of paper, in my hand.)
Recently this has changed dramatically: there are half a dozen
books on learning Go in my local bookstore. I’m really glad about
this and have started picking up books to read.

When I first open a box of books, I take each one out and leaf
through it before setting it on the pile of “to be read” books. I
stopped when I got to Introducing Go and looked more carefully.
It turns out that I’d read and reviewed the same book in 2014.
Well, not quite the same book.

Caleb Doxsey was one of the first authors to publish a book on
learning Go. It was first available as a Web site in collaboration
with Google, then a PDF entitled “An Introduction to Program­
ming in Go” made available by Doxsey and Google under a CC3
license in 2012. It’s still there if you want to read it (http://www
.golang-book.com/books/intro). For a time the book was also
available as a paperback, but the conversion from e-text to paper
was a mixed success.

Introducing Go is, at its core, Doxsey’s original corpus but pub­
lished by O’Reilly. It’s still a slim volume and the contents and
flow are largely lifted from the earlier work, but that’s not what’s
important. The text has been updated and reformatted, and this
is a significant improvement over the self-published version
from 2012. It’s not that Doxsey didn’t do a good job, but O’Reilly
really enforces good editing and layout: the code examples stand
out and are much easier to read in the standard typeset style; the
paragraphing and tables are clearer; and although the book is
physically smaller, what’s there is what’s important and it’s clear.

There is a small set of books that I call the “slim classics.” I’m
thinking of The C Programming Language (Kernighan and
Ritchie), Unix Programming Environment (Kernighan and Pike),
and a couple of others like them. They’re not always the best

all-around guides or references, but they distill the essence of a
topic in a way that thicker tomes sometimes lose in their quest
for authoritative completeness. In these days of fast-moving lan­
guage development, I don’t know if there’s room for slim classics,
but I think Introducing Go could be a contender.

Go in Action
William Kennedy, with Brian Ketelsen and Erik St Martin
Manning Publications Company, 2016, 241 pages
ISBN: 978-1-61729-178-1

As just mentioned, I’ve been on a bit of a Go(lang) book kick
recently. Go in Action is one I looked forward to. In general I like
Manning’s style, and their editorial choices tend to walk the fine
line between traditional dusty references and frothy Dummies-
style tutorials.

The authors used the MEAP (Manning Early Access Program)
process for writing and pre-release editing and commentary, in
which early subscribers get to see the chapters raw as they are
submitted, and the authors and editors get commentary during
the writing process. In other words, they use the Internet to
apply the “many eyes” principle to writing.

After reading a number of texts on Go, I see a kind of standard
narrative path emerging: “Hello, world,” general development
and build environment, pulling packages for inclusion, then into
the language constructs themselves, finally ending with a chap­
ter on testing. This is a perfectly reasonable path to take, but
after reading a number of them, I’m finding it harder to see what
distinguishes one book from another.

Go in Action does have a number of aspects that set it apart.
The first I noted above: Manning has developed a very clean
typography and layout style, which makes following the com­
mentary and code very easy. Line numbering each code block
makes following references easy both for the authors and for the
reader. Using a registration table inside the front cover of the
book, Manning offers a watermarked copy of every book in PDF,
EPUB, and MOBI for every paper copy purchased. Their focus on
writing for both paper and electronic documents means that the
two forms have parity. I can read the EPUB version and get as
good an experience as when reading the hard copy.

Once you get below the general arc of these books, Kennedy et
al. do a very good job of showing both how to use Go constructs
and what happens when you do. The Go runtime environment is
very different from anything that readers coming from scripting
languages or Java might be familiar with. Each language con­

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  89

BOOKS

struct has a deliberate effect and behavior in the runtime, and
unlike modern scripting languages, Go is explicitly designed not
to hide the underlying mechanisms. You can stick your hand in
the running motor if you want to. Kennedy et al. provide text and
diagrams that illustrate these behaviors. This helps new devel­
opers avoid (or in my case, recognize after the fact) the pitfalls
that can lead to lost fingers.

This is not an introductory book on programming. It’s likely to
be too much for a reader who isn’t already proficient in one or
several other languages.

The code examples are available online as are updates to the
e-text (assuming you’ve registered your copy). The authors are
available by email or other means for questions or commentary.

If you’re coming to Go as a student or professional developer,
Go in Action would not be a bad introduction. I don’t think you’ll
want to stop there, though.

Docker in Action
Jeff Nickoloff
Manning Publications, 2016, 284 pages
ISBN 978-1-63343-023-5

As with the Go language, there has been a shortage of good books
on Docker. There is a relationship between the two. Docker
is written in Go, and Go and Docker both have reached a level
of maturity and stability where it makes sense to begin writing
about them, and Docker in Action does a good job.

Often when people try to explain software containers they begin
with Docker’s shipping container metaphor. Unfortunately, this
isn’t really an apt metaphor. It’s neither insightful or informa­
tive when applied to software containers. Then they start trying
to define them as “not virtual machines” which is similarly
uninformative.

Nickoloff opens Docker in Action with one of the best descrip­
tions of software containers that I’ve seen (though he does at
one point tip a hat to shipping containers). Containers are just
processes with blinders on, and Nickoloff shows clearly how
they relate to the OS, to VMs, and traditional processes.

I really like the progression of the narrative in this book. The
author begins with simple containers doing simple jobs locally.
All of the examples involve real-world tasks, using containers to
replace the traditional applications. Along the way he discusses
both the benefits and costs of this. Every case shows the CLI
command, which invokes the container, the overt result, and

then goes under the covers to show how the result was achieved
in the context of containers. When readers follow the text care­
fully, they will know “what happened” at each of the appropriate
layers. This is really important when readers put their under­
standing to use doing new tasks.

Another thing I really like about the book is Nickoloff’s restraint
when it comes to building new containers. Dockerfiles and cus­
tom images are sexy and interesting looking, but for containers
to fulfill their promise, most people should be using off-the-shelf
images. Nickoloff manages to get more than half way through the
text before discussing container builds. Even then he treats it as
a small step, merely extending existing images and moving right
on to continuous integration and publishing, the true life cycle of
container images. I suspect he knows that there are other texts
that go into Dockerfile management in painful detail and that
the “best practices” for creating new images for composition are
still being developed.

I did learn quite a bit about a more open topic in container man­
agement: orchestration. Docker Inc. has been developing in-house
tools for composing containers into applications. Others have
been doing similar work, but Docker Inc. would really like you to
use theirs. This final section introduces Docker’s offerings.

Docker Compose is Docker’s answer to Kubernetes. It provides
a way to create containers that are meant to work in unison to
form an application or service. Docker Machine (which was
once known as “boot to docker”) is a tuned bootable image meant
solely to host the Docker runtime. It is an analog of CoreOS or
Project Atomic, both minimized bootable images meant to host
container runtime environments. Docker Swarm is meant to
allow for scaling and distribution of containers across a multi-
host environment. Again, this is comparable to Kubernetes or
OpenShift.

Each of these tools gets a chapter and a little more at the end of
the book. The examples and illustrations are every bit as good
here as they are in the chapters covering the more mature ele­
ments of Docker. Even though I’m familiar with Kubernetes, I
expect I will turn back here the next time I need to build a multi-
container application quickly. Once I am more familiar with the
Docker tools, I can evaluate whether they will fill the needs of
the kinds of large-scale systems that Kubernetes means to build.
Nickoloff has made it easy for me to explore a tool set I would
otherwise not have considered given my current experience.
Make of that what you will.

Of the few texts I’ve seen on Docker so far, this is the one I would
hold out to someone who asked me where to start. Nicely done.

