
70    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

COLUMNS

iVoyeur
Pager Trauma Statistics Daemon, PTSD

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato
.com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

I began writing this article late in the third and final day at Monitorama,
the single-track monitoring conference. In fact, as I wrote these first few
paragraphs, a man named Joey Parsons from Airbnb was talking about

the health and well-being of Airbnb’s on-call workers. In fact, “people matter”
was something of a theme this year—a pretty drastic change for a normally
tools and techniques focused crowd. It is certainly true, for whatever reason,
that this Monitorama took a heavy turn toward introspection about measure­
ment culture and especially on-call pain.

Over the last several years, a few speakers have talked about what can only be described as
post-traumatic reactions to other people’s ringtones, wherein they’ll react in visceral, lizard-
brain terror to the sound of someone else’s phone, or even just ambient noise that sounds
similar to their own phone’s notification tone. This resonates very strongly with me, and I
suspect that if you’re reading this, it might resonate with you as well.

In 2012 I took a much needed break from Operations to travel the conference circuit, speak­
ing and writing in the name of developer advocacy, outreach, and evangelism. By the time I
finally quit Ops to find a job without an on-call component, I’d been on-call for seven years.
Yep, every day and every night, as the (usually) sole technical lead for one startup or another.

I think I still underestimate the stress I put on myself and my family during this nearly
decade-long on-call stint. I spent three consecutive Thanksgiving dinners alone at a data­
center in what became a running joke at my last startup: the “Thanksgiving Day Curse.” The
last time this happened in 2012, when my phone went off shortly after I sat down for Thanks­
giving dinner, my exasperated wife dumped the contents of my plate into a large zip-lock bag
and handed it to me on the way out the door.

Talks on “alert fatigue” have popped up now and again. I’ve even given one myself, but these
normally focus on tools and techniques to reduce and filter false-positives. It seems to me
that we rarely talk about the more intangible “people problems” that on-call work can intro­
duce into our lives, or attempt to quantify the amount of pain on-call participants experience
on a weekly basis. There are what can only be described as support groups, like the “I made a
huge mistake” BoF Shawn Sterling has thrown for years at LISA, but these have always been
tertiary events, rather than main-event fodder.

But because we are engineers, and especially because we are engineers who enjoy the mea­
suring and quantification of things, many of the talks at Monitorama this year went beyond
descriptions of the problem and described efforts to actually assess the cognitive and emo­
tional stress that the computational first-responders in their organizations have to put up
with. Many shared data, either in the form of graphs or spreadsheets, and a few even shared
HR techniques like sleep-tracking, and mandatory three-day weekends for individuals com­
ing off their on-call rotation.

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  71

COLUMNS
iVoyeur: Pager Trauma Statistics Daemon, PTSD

I especially found the numbers fascinating. In Joey Parsons’
talk “Monitoring and Health at Airbnb” [1], he shared that
they’ve had some success at Airbnb making on-call a voluntary
endeavor that is spread among engineers across every internal
discipline. Airbnb’s 50(!) on-call volunteers take three-day shifts
and participate in weekly sysop meetings to keep everyone up
to date with respect to chronic, ongoing production issues. The
top on-call volunteer for the week before Monitorama fielded 48
production issues.

One of the most important things enabling teams like Airbnb to
quantify their on-call stress is the use of third-party alert pro­
cessing systems like PagerDuty and VictorOps. These systems
export APIs that expose a wealth of information about every
incident. Who was on-call when it happened, to whom it was
assigned, the number of actual notifications that each incident
spawned and on and on.

As I write this, I’m also in the process of transitioning back to
Ops, so as you can imagine I’m certainly interested in seeing how
our own on-call endeavors line up. We have, of course, no hope
of finding 50 on-call volunteers in a company of < 20 people, but
the ebb and flow of our production issues is a line I’d like to see.
To that end, on the plane ride home I spent some time playing
with the PagerDuty API, and landed with a rough first-pass at
a Go program that can interrogate the PagerDuty API for total
incidents, per-user pager notifications, and per-user acknowl­
edgments, and forward these as counter increments to StatsD
for visualization.

For the moment I’m calling it PTSD (Pager Trauma Statistics
Daemon), and you can find it at http://github.com/djosephsen
/ptsd. My hope is that it’ll make it trivial for anyone using Pager­
Duty to get some stats about their on-call volume. It dumps these
stats to STDOUT and a locally running StatsD instance.

Using Go
Increasingly, I find myself reaching for Go over something like
Bash or Python to write API glue code like this. And I’d like to
share the reasons with you, since I feel like it’s rare to see real
talk about Go in a context other than Web services and hard-
core systems tooling. Here, I want to write some longish-term
maintainable glue code to tie together a REST API and a service
listening on a network socket.

Traditionally, Go has not been my first choice for parsing JSON
responses from Web APIs. The built-in net/http library is fan­
tastic for running queries, but the built-in JSON library, encod­
ing/json, is a complete pain when it comes to working with large,
complex, or unknown structures. In these cases I almost always
find myself decoding into a hash-map (map[string]interface),
and then manually type-casting my way to the real values. This
process is error-prone, painful, and fragile, and you wind up with
line upon line of incomprehensible nested expressions like:

‘foo[‘people’].(map[string]interface)[‘dave’].(string)’

By comparison Bash and Python have lovely JSON parsing capa­
bilities, but I’ve never really cared for their HTTP clients, which
are sufficiently complicated that I’ve never really been able to
commit their syntax to memory. Python, especially, is somewhat
of a mess in this regard, with urllib vs. requests vs. httplib.
To be clear, I’m a pretty down to earth practitioner who doesn’t
have anything in particular against any of these libraries, but it’s
basically a nightmare to have to go back and forth between them
depending on the project/people I’m working on/with. I’ve seri­
ously considered picking one and just severing ties with all of the
people who use the others.

Recently, however, I discovered Anton Holmquist’s “Jason”
library [3], and I have to say it’s made Go my…well, go-to language
for working with JSON Web-APIs. Here’s the pattern for making
a GET request to an API and parsing the JSON response into
something we can work with:

client := &http.Client{}

req, _ := http.NewRequest(“GET”, url, nil)

req.Header.Add(“Authorization”, authToken)

resp,err := client.Do(req)

body,err := jq.NewObjectFromReader(resp.Body)

First, we make a new http.Client object. This is unnecessary
unless you need to do advanced things to the request like add
headers. You can make simple requests directly with http.

Post(). In this case, I add a header to submit my auth token.
Once the request is built, we send it with client.Do(), and
then we parse the response body directly into a JSON object
with NewObjectFromReader, which we’ve imported from
antonholmquist/jason.

Once the response is in a json.Object, a vast and powerful
assortment of functions enable us to read out top-level or nested
values straight into strings, ints, and etc. without any type­
casting on our part. For example, to parse out a top-level type
attribute into a Go-native string variable we would:

type_of_thingie := body.GetString(“type”)

There are even functions that return ‘[]*jason.Object,’ which
makes it completely trivial to iterate through arrays nested
inside the JSON.

logs, _ := body.GetObjectArray(“log_entries”)

for _,log := range logs{

 fmt.Printf(“log type :: %s”, log.getString(“type”))

}

Needless to say, if I ever meet Anton Holmquist and he needs any­
thing, like a ride home or a free beer or a dude with a truck to help
him move, I’ll happily oblige him. He’s made my life much easier.

72    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

COLUMNS
iVoyeur: Pager Trauma Statistics Daemon, PTSD

The second reason I chose Go was because I was going to want
this to be a somewhat extensible project, by which I mean, I
wanted to make it as easy as possible for other people to extend
it without having to refactor. That meant implementing both the
“collector” piece (e.g., PagerDuty) as well as the “outputter” piece
(e.g., StatsD) as modules from the…well, get-go.

There are two reasons I find Go pretty nice for writing modular
code. The first of these is the Package system. Suffice to say,
within the same Go “Package” you can pretty much drop files
in the package directory and Go will just use them. I’ve written
a lot of top-level framework code that accepts user-contributed
extensions in languages like Python (see, for example, Graphios),
and it’s just never as easy as it should be. I’m always having to
manually include things at the very least, or more likely, fiddle
around with ugly stuff like __init__py and sys.path.insert.

With PTSD, if you want to implement VictorOps, you just make a
victorops.go file in the package dir and implement the Collector
interface. That’s pretty much it. The go build tooling will pick
your file right up along with the rest of it and do the right thing.
Literally zero messing around with meta-import magic.

The second reason I like writing modular code is the type
system. Types are just so easy to create in Go, and interfaces
are, IMO, a much more straightforward way of modeling logic
in a systems-programming context than Java-style classes. Go
interfaces let you reason about the functionality that’s common
between objects rather than the attributes or data-structures
they have in common. In this context, writing a new PTSD Col­
lector means creating a type that implements three simple func­
tions (methods, whatever).

Enabled takes no arguments and returns a Boolean indicating
whether or not PTSD should enable your collector. This allows
us to import all available collector add-ons and just switch on
the ones we want. The PagerDuty collector’s Enabled function
returns true if you’ve set a PDTOKEN environment variable con­
taining your PagerDuty token.

Run takes an int and returns nothing. This int is PTSD’s polling
interval (60 minutes by default). The PagerDuty collector uses
this interval to decide how far back it should query the PD API
for records of incidents.

Finally, Name returns the name of the Collector as a string.
This is really just used for debugging (e.g., “enabled collector:
<name>”).

That’s it. Just implement those three functions, and the rest
of PTSD knows how to deal with your code, and your code can
pretty much do anything it wants vis-à-vis actually collect­
ing metrics and sending them to the Outputters via the global
increment function. When I’m dealing with class-based systems
like Python that use object inheritance, I somewhat ironically
wind up creating much more formal and therefore usually less
flexible object definitions.

The final reason I chose Go was to make it easy for other people
to actually use PTSD in real life. This really boils down to the
fact that I get a compiled binary as output so I don’t have to worry
about moving the toolchain around with the executable. This
makes things mind-numbingly simple when I want to embed
this in a Docker container or toss it on a Heroku Dyno. Really, I
know that this thing I just made is going to just run pretty much
wherever I throw it, without any bundler, pip, npm, or any other
kind of toolchain dependency hell, and by extension I know that
nobody else who wants to use this will have to experience any of
that either.

By the time you read this, PTSD should be stable and in use at
Librato. Despite the latent scarring, I’m really looking forward
to returning to Ops work again, and I hope I’ve inspired you to
think about quantifying the on-call stress in your organization,
and possibly giving Go a whirl if you haven’t already.

Take it easy.

References:
[1] Monitorama, Joey Parsons talk: https://www.youtube
.com/watch?v=1SlljMU9V5k&feature=youtu.be&t=20704).

[2] PTSD (Pager Trauma Statistics Daemon): http://github
.com/djosephsen/ptsd.

[3] Anton Holmquist’s “Jason” library: https://github.com
/antonholmquist/jason.

