
64    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

COLUMNS
Network programming has been a part of Python since its earliest

days. Not only are there a wide variety of standard library modules
ranging from low-level socket programming to various aspects of

Web programming, there are a large number of third-party packages that
simplify various tasks or provide different kinds of I/O models. As the net­
work evolves and new standards emerge, though, one can’t help but wonder
whether the existing set of networking libraries are up to the task. For
example, if you start to look at technologies such as websockets, HTTP/2, or
coroutines, the whole picture starts to get rather fuzzy. Is there any room for
innovation in this space? Or must one be resigned to legacy approaches from
its past. In this article, I spend some time exploring some projects that are at
the edge of Python networking. This includes my own Curio project as well
as some protocol implementation libraries, including hyper-h2 and h11.

Introduction
For the past year, I’ve been working on a side project, Curio, that implements asynchronous
I/O in Python using coroutines and the newfangled async and await syntax added in Python
3.5 [1]. Curio allows you to write low-level network servers almost exactly like you would
with threads. Here is an example of a simple TCP Echo server:

from curio import run, spawn

from curio.socket import *

async def echo_server(address):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, True)

 sock.bind(address)

 sock.listen(1)

 while True:

 client, addr = await sock.accept()

 print(‘Connection from’, addr)

 await spawn(echo_handler(client))

async def echo_handler(client):

 async with client:

 while True:

 data = await client.recv(100000)

 if not data:

 break

 await client.sendall(data)

 print(‘Connection closed’)

if __name__ == ‘__main__’:

 run(echo_server((‘’,25000)))

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

The Networks of Reinvention
D A V I D B E A Z L E Y

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  65

COLUMNS
The Networks of Reinvention

If you haven’t been looking at Python 3 recently, there is a certain
risk that this example will shatter your head. Functions defined
with async are coroutines. Coroutines can be called from other
coroutines using the special await qualifier. Admittedly, it looks
a little funny, but if you run the above code, you’ll find that it has
no problem serving up thousands of concurrent connections
even though threads are nowhere to be found. You’ll also find
it to be rather fast. This article isn’t about the details of my pet
project though.

Here’s the real issue—even though I’ve written an experimental
networking library, where do I take it from here? Most develop­
ers don’t want to program directly with sockets. They want to
use higher-level protocols such as HTTP. However, how do I
support that? Because of the use of coroutines, async, and await,
none of Python’s standard libraries are going to work (coroutines
are “all-in”—to use them they must be used everywhere). I could
look at code in third-party libraries such as Twisted, Tornado,
or Gevent, but they each implement HTTP in their own way
that can’t be applied to my problem in isolation. I’m left with few
choices except to reimplement HTTP from scratch—and that’s
probably the last thing the world needs. Another custom imple­
mentation of HTTP, that is.

It turns out that other developers in the Python world have been
pondering such problems. For example, how are all of the differ­
ent networking libraries and frameworks going to go about sup­
porting the new HTTP/2 protocol? There is no support for this in
the standard library, and the protocol itself is significantly more
complicated than HTTP/1.1. Is every library going to reimple­
ment the protocol from scratch? If so, how many thousands of
hours are going to be wasted sorting out all of the bugs and weird
corner cases? How many developers even understand HTTP/2
well enough to do it? I am not one of those developers.

At PyCon 2016, Cory Benfield gave a talk, “Building Proto­
col Libraries the Right Way,” in which he outlined the central
problem with I/O libraries [2]. In a nutshell, these libraries mix
I/O and protocol parsing together in a way that makes it nearly
impossible for anyone to reuse code. As a result, everyone ends
up reinventing the wheel. It causes a lot of problems as everyone
makes the same mistakes, and there is little opportunity to reap
the rewards of having a shared effort. To break out of that cycle,
an alternative approach is to decouple protocol parsing entirely
from I/O. Cory has done just that with the hyper-h2 project for
HTTP/2 [3]. Nathaniel Smith, inspired by the idea, has taken a
similar approach for the h11 library, which provides a standalone
HTTP/1.1 protocol implementation [4].

The idea of decoupling network protocols from I/O is interest­
ing. It’s something that could have huge benefits for Python
development down the road. However, it’s also pretty experimen­
tal. Given the experimental nature of my own Curio project, I

thought it might be interesting to put some of these ideas about
protocols to the test to see whether they can work in practice.
Admittedly, this is a bit self-serving, but Curio has the distinct
advantage of being incompatible with everything. There is no
other option than going it alone—so maybe these protocol librar­
ies can make life a whole heck of a lot easier. Let’s find out.

Reinventing Requests
As a test, my end goal is to reinvent a tiny portion of the popular
requests library so that it works with coroutines [5]. Requests
is a great way to fetch data from the Web, but it only works in a
purely synchronous manner. For example, if I wanted to down­
load a Web page, I’d do this:

>>> import requests

>>> r = requests.get(‘https://httpbin.org’)

>>> r.status_code

200

>>> r.headers

{‘connection’: ‘keep-alive’, ‘content-type’: ‘text/html;

charset=utf-8’, ‘access-control-allow-origin’: ‘*’,

‘access-control-allow-credentials’: ‘true’,

 ‘server’: ‘nginx’, ‘content-length’: ‘12150’,

 ‘date’: ‘Tue, 28 Jun 2016 14:58:04 GMT’}

>>> r.content

b’<!DOCTYPE html>\n<html>\n<head>\n ...’

>>>

Under the covers, requests uses the urllib3 library for HTTP
handling [6]. To adapt requests to coroutines, one approach
might be to port it and urllib3 to coroutines—a task that would
involve identifying and changing every line of code related to
I/O. It’s probably not an impossible task, but it would require a lot
of work. Let’s not do that.

Understanding the Problem
The core of the problem is that existing I/O libraries mix proto­
col parsing and I/O together. For example, if I wanted to estab­
lish an HTTP client connection, I could certainly use the built-in
http.client library like this:

>>> import http.client

>>> c = http.client.HTTPConnection(‘httpbin.org’)

>>> c.request(‘GET’, ‘/’)

>>> r = c.getresponse()

>>> r.status

200

>>> data = r.read()

>>>

However, this code performs both the task of managing the pro­
tocol and the underlying socket I/O. There is no way to replace
the I/O with something different or to extract just the code
related to the protocol itself. I’m stuck.

66    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

COLUMNS
The Networks of Reinvention

Using a Protocol Parser
Let’s look at the problem in a different way using the h11 module.
First, you’ll want to install h11 directly from its GitHub page
[4]. h11 is an HTTP/1.1 protocol parser. It performs no I/O itself.
Let’s play with it to see what this means:

>>> import h11

>>> conn = h11.Connection(our_role=h11.CLIENT)

>>>

At first glance, this is going to look odd. We created a “Connec­
tion,” but there is none of the usual network-related flavor to it.
No host name. No port number. What exactly is this connected
to? As it turns out, it’s not “connected” to anything. Instead, it
is an abstract representation of an HTTP/1.1 connection. Let’s
make a request on the connection:

>>> request = h11.Request(method=’GET’, target=’/’,

headers=[(‘Host’, ‘httpbin.org’)])

>>> bytes_to_send = conn.send(request)

>>> bytes_to_send

b’GET / HTTP/1.1\r\nhost: httpbin.org\r\n\r\n’

>>>

Notice that the send() method of the connection returned a byte
string? These are the bytes that need to be sent someplace. To do
that, you are on your own. For example, you could create a socket
and do it manually:

>>> from socket import *

>>> sock = socket(AF_INET, SOCK_STREAM)

>>> sock.connect((‘httpbin.org’, 80))

>>> sock.sendall(bytes_to_send)

>>> # Send end of message to mark the end of the request

>>> sock.sendall(conn.send(h11.EndOfMessage()))

>>>

Upon sending the request over a socket, the server will respond.
Let’s read a tiny fragment of the response:

>>> data = sock.recv(10) # Read 10 bytes

>>> data

b’HTTP/1.1 2’

>>>

This is just a fragment of what’s being sent to us, but let’s feed it
into the HTTP/1.1 connection object and see how it responds:

>>> conn.receive_data(data)

>>> conn.next_event()

NEED_DATA

>>>

The receive_data() call feeds incoming data to the connection.
After you do that, the next_event() call will tell you more about

what has been received. In this case, the NEED_DATA response
means that incomplete data has been received (the connection
has not received a full response). You have to read more data.
Let’s do that.

>>> data = sock.recv(1000)

>>> conn.receive_data(data)

>>> conn.next_event()

Response(status_code=200, headers=[(b’server’, b’nginx’),

(b’date’, b’Tue, 28 Jun 2016 15:31:50 GMT’),

(b’content-type’, b’text/html; charset=utf-8’),

(b’content-length’, b’12150’), (b’connection’, b’keep-alive’),

(b’access-control-allow-origin’, b’*’),

(b’access-control-allow-credentials’, b’true’)], http

_version=b’1.1’)

>>>

Aha! Now we see the response and some headers. There is a
very important but subtle aspect to all of this. When using the
protocol library, you just feed it byte fragments without worrying
about low-level details (e.g., splitting into lines, worrying about
the header size, etc.). It just works. If more data is needed, the
library lets you know with the NEED_DATA event.

After getting the basic response, you can move on to reading
data. To do that, call conn.next_event() again.

>>> conn.next_event()

Data(data=bytearray(b”<!DOCTYPE html>\n<html>\n<head>\n...”)

>>>

This is a block of data found in the last read of the underlying
sock. You can continue to call conn.receive_data() and conn.

next_event() to process the entire stream.

>>> conn.next_event()

NEED_DATA

>>> data = sock.recv(100000) # Get more data

>>> conn.receive_data(data)

>>> conn.next_event()

Data(data=bytearray(b’p h3+pre {margin-top:5px}\n .mp img ...’)

>>> conn.next_event()

EndOfMessage(headers=[])

>>>

The EndOfMessage event means that the end of the received
data has been reached. At this point, you’re done. You’ve made a
request and completely read the response.

The really critical part of this example is that the HTTP/1.1
protocol handling is completely decoupled from the underlying
socket. Yes, bytes are sent and received on the socket, but none
of that is mixed up with protocol handling. This means that you
can make the I/O as crazy as you want to make it.

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  67

COLUMNS
The Networks of Reinvention

A More Advanced Example: HTTP/2
The hyper-h2 library implements a similar idea as the previous
example, but for the HTTP/2 protocol [3]. HTTP/2 is a much
more complicated beast, but here is an example of what it looks
like to drive it with h2. This program makes a request to https://

http2bin.org and prints out the events that are returned.

from socket import *

import ssl

Establish a socket connection with TLS

sock = socket(AF_INET, SOCK_STREAM)

sock.connect((‘http2bin.org’, 443))

ssl_context = ssl.create_default_context()

sock = ssl_context.wrap_socket(sock, server_hostname=

	 ‘http2bin.org’)

Create HTTP/2 connection

import h2.connection

import h2.events

conn = h2.connection.H2Connection(client_side=True)

conn.initiate_connection()

sock.sendall(conn.data_to_send())

Get the response to the initial connection request

data = sock.recv(10000)

events = conn.receive_data(data)

for evt in events:

 print(evt)

Send out a request

request_headers = [

 (‘:method’, ‘GET’),

 (‘:authority’, ‘http2bin.org’),

 (‘:scheme’, ‘https’),

 (‘:path’, ‘/’)

]

conn.send_headers(1, request_headers, end_stream=True)

sock.sendall(conn.data_to_send())

Read all responses until stream is ended

done = False

while not done:

 data = sock.recv(100000)

 events = conn.receive_data(data)

 for evt in events:

 print(evt)

 if isinstance(evt, h2.events.StreamEnded):

 done = True

If you run this, you should get output like this:

<RemoteSettingsChanged changed_settings:{3:

ChangedSetting(setting=3,

original_value=None, new_value=100),

4: ChangedSetting(setting=4, original_value=65535,

new_value=16777216)}>

<SettingsAcknowledged changed_settings:{}>

<ResponseReceived stream_id:1, headers:[(‘:status’, ‘200’),

(‘server’, ‘h2o/1.7.0’),

(‘date’, ‘Tue, 28 Jun 2016 16:12:48 GMT’), (‘content-type’,

‘text/html; charset=utf-8’),

(‘access-control-allow-origin’, ‘*’),

(‘access-control-allow-credentials’, ‘true’),

(‘x-clacks-overhead’, ‘GNU Terry Pratchett’),

(‘content-length’, ‘11729’)]>

<DataReceived stream_id:1, flow_controlled_length:11729,

data:3c21444f43545950452068746d6c3e0a3c68746d>

<StreamEnded stream_id:1>

This probably looks fairly low-level, but the key part of it is that
all of the protocol handling and the underlying I/O are decou­
pled. There is a TLS socket on which low-level sendall() and
recv() operations are performed. However, all interpretation of
the data is performed by the H2Connection instance. I don’t have
to worry about the precise nature of those details.

Putting It All Together
Looking at the previous two examples, you might wonder who
these libraries are for? Yes, they handle low-level protocol
details, but they provide none of the convenience of higher-
level libraries. In the big picture, the main beneficiaries are the
authors of I/O libraries, such as myself. To see how this might
work, here is bare-bones implementation of a requests-like clone
using coroutines and Curio:

example.py

from urllib.parse import urlparse

import socket

import curio

import h11

class Response(object):

 def __init__(self, url, status_code, headers, conn, sock):

 self.url = url

 self.status_code = status_code

 self.headers = headers

 self._conn = conn

 self._sock = sock

68    FA L L 20 16  VO L . 41 , N O. 3 	 www.usenix.org

COLUMNS
The Networks of Reinvention

 # Asynchronous iteration for a streaming response

 async def __aiter__(self):

 return self

 async def __anext__(self):

 while True:

 evt = self._conn.next_event()

 if evt == h11.NEED_DATA:

 data = await self._sock.recv(100000)

 self._conn.receive_data(data)

 else:

 break

 if isinstance(evt, h11.Data):

 return evt.data

 elif isinstance(evt, h11.EndOfMessage):

 raise StopAsyncIteration

 else:

 raise RuntimeError(‘Bad response %r’ % evt)

 # Asynchronous property for getting all content

 @property

 async def content(self):

 if not hasattr(self, ‘_content’):

 chunks = []

 async for data in self:

 chunks.append(data)

 self._content = b’’.join(chunks)

 return self._content

async def get(url, params=None):

 url_parts = urlparse(url)

 if ‘:’ in url_parts.netloc:

 host, _, port = url_parts.netloc.partition(‘:’)

 port = int(port)

 else:

 host = url_parts.netloc

 port = socket.getservbyname(url_parts.scheme)

 # Establish a socket connection

 use_ssl = (url_parts.scheme == ‘https’)

 sock = await curio.open_connection(host,

	 port,

	 ssl=use_ssl,

	 server_hostname=host if use_ssl else None)

 # Make a HTTP/1.1 protocol connection

 conn = h11.Connection(our_role=h11.CLIENT)

 request = h11.Request(method=’GET’,

	 target=url_parts.path,

	 headers=[(‘Host’, host)])

 bytes_to_send = conn.send(request) + conn.send(h11.

EndOfMessage())

 await sock.sendall(bytes_to_send)

 # Read the response

 while True:

 evt = conn.next_event()

 if evt == h11.NEED_DATA:

 data = await sock.recv(100000)

 conn.receive_data(data)

 elif isinstance(evt, h11.Response):

 break

 else:

 raise RuntimeError(‘Unexpected %r’ % evt)

 resp = Response(url, evt.status_code, dict(evt.headers),

conn, sock)

 return resp

Using this code, here is an example that makes an HTTP request
and retrieves the result using coroutines:

import example

import curio

async def main():

 r = await example.get(‘http://httpbin.org/’)

 print(r.status)

 print(r.headers)

 print(await r.content)

curio.run(main())

Or, if you want to stream the response back in chunks, you can
do this:

async def main():

 r = await example.get(‘http://httpbin.org/bytes:100000’)

 with open(‘out.bin’, ‘wb’) as f:

 async for chunk in r:

 print(‘Writing’, len(chunk))

 f.write(chunk)

curio.run(main())

Fleshing out this code to something more worthy of produc­
tion would obviously require more work. However, it didn’t take
a lot of code to make a bare-bones implementation. Nor was it
necessary to worry too much about underlying mechanics of the
HTTP/1.1 protocol. That’s pretty neat.

The Future
If it catches on, the whole idea of breaking out network proto­
cols into libraries decoupled from I/O would be an interesting
direction for Python. There are certain obvious benefits such as
eliminating the need for every I/O library to implement its own
protocol handling. It also makes experimental work in I/O han­
dling much more feasible as it is no longer necessary to imple­
ment all of that code from scratch.

www.usenix.org	   FA L L 20 16  VO L . 41 , N O. 3  69

COLUMNS
The Networks of Reinvention

Although Cory Benfield’s work on HTTP/2 handling may be the
most visible, one can’t help wonder whether a similar approach
to other protocols might be useful. For example, isolating the
protocols used for database engines (MySQL, Postgres), Redis,
ZeroMQ, DNS, FTP, and other network-related technologies
might produce interesting results if it enabled those protocols
to be used in different kinds of I/O libraries. It seems that there
might be opportunities here.

References
[1] Curio project: https://curio.readthedocs.io.

[2] C. Benfield, “Building Protocol Libraries the Right Way,”
PyCon 2016: https://www.youtube.com/watch?v=7cC3_jGwl_U.

[3] Hyper-h2 Project: http://python-hyper.org/projects/h2/.

[4] H11 Project: https://github.com/njsmith/h11.

[5] Requests Project: https://docs.python-requests.org.

[6] Urllib3 Project: https://urllib3.readthedocs.io.

We are looking for people with personal experience and ex pertise who
want to share their knowledge by writing. USENIX supports many confer-
ences and workshops, and articles about topics related to any of these
subject areas (system administration, programming, SRE, file systems,
storage, networking, distributed systems, operating systems, and security)
are welcome. We will also publish opinion articles that are relevant to the
computer sciences research community, as well as the system adminstra-
tor and SRE communities.

Writing is not easy for most of us. Having your writing rejected, for any
reason, is no fun at all. The way to get your articles published in ;login:,
with the least effort on your part and on the part of the staff of ;login:, is
to submit a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new. If you plan
on writing a book, you need to write one chapter, a proposed table of
contents, and the proposal itself and send the package to a book pub-
lisher. Writing the entire book first is asking for rejection, unless you are a
well-known, popular writer.

;login: proposals are not like paper submission abstracts. We are not asking
you to write a draft of the article as the proposal, but instead to describe
the article you wish to write. There are some elements that you will want
to include in any proposal:

• What’s the topic of the article?

• What type of article is it (case study, tutorial, editorial, article based
on published paper, etc.)?

• Who is the intended audience (syadmins, programmers, security
wonks, network admins, etc.)?

• Why does this article need to be read?

• What, if any, non-text elements (illustrations, code, diagrams, etc.)
will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answering the ques-
tion about length, the limit for articles is about 3,000 words, and we avoid
publishing articles longer than six pages. We suggest that you try to keep
your article between two and five pages, as this matches the attention
span of many people.

The answer to the question about why the article needs to be read is
the place to wax enthusiastic. We do not want marketing, but your most
eloquent explanation of why this article is important to the readership of
;login:, which is also the membership of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are not limited to:

• Previously published articles. A piece that has appeared on your own
Web server but has not been posted to USENET or slashdot is not
considered to have been published.

• Marketing pieces of any type. We don’t accept articles about
products. “Marketing” does not include being enthusiastic about
a new tool or software that you can download for free, and you are
encouraged to write case studies of hardware or software that you
helped install and configure, as long as you are not affiliated with
or paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people using UNIX sys-
tems. Later phases involve Macs, but please send us text/plain formatted
documents for the proposal. Send pro posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown, LaTex, or
Microsoft Word/Libre Office. Illustrations should be EPS if possible.
Raster formats (TIFF, PNG, or JPG) are also acceptable, and should be a
minimum of 1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can expect to be
asked to read proofs of your article, see the online schedule at
www.usenix.org/publications/login/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first publication
rights. USENIX owns the copyright on the collection that is each issue of
;login:. You have control over who may reprint your text; financial nego-
tiations are a private matter between you and any reprinter.

Writing for ;login:

