
32  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

PROGRAMMINGRunway
A New Tool for Distributed Systems Design

D I E G O O N G A R O

Diego Ongaro is the creator
of Runway and is a Lead
Software Engineer on the
Compute Infrastructure team
at Salesforce. He is interested

in improving the way people build distributed
systems. He received his PhD in 2014 from
Stanford University, where he worked on
Raft, a consensus algorithm designed for
understandability, and RAMCloud, a
low-latency storage system.
dongaro@salesforce.com

We strive to build correct systems that are always on and always
fast. They must be distributed, yet the complexity inherent in dis
tributed systems poses a major design challenge. Runway is a new

tool for distributed systems design, enabling interactive visualizations to
help people learn about designs, and simulation and model checking to help
evaluate their key properties. This article introduces Runway and discusses
key issues in modeling distributed systems.

More than ever, companies are building and deploying distributed systems. They are forced
to distribute computation and data across servers to improve the availability, performance,
and scale of their services. Unfortunately, this comes at a steep cost of complexity:

◆◆ In a distributed system, multiple servers can operate concurrently. Their events can end up
happening in orders that are hard to anticipate.

◆◆ Due to network latency, by the time a server receives a message, its contents may already
be stale.

◆◆ Failures such as server crashes and network partitions are common at scale, and they can
happen at any time, even while the system is trying to recover from another failure.

◆◆ Because servers are separated by a network, visibility into running systems is reduced,
and debugging environments are limited.

The best way to manage this complexity is to focus more efforts on system design. In the
design phase, we should communicate clearly about a design and also evaluate that design’s
key properties, such as its understandability and simplicity, correctness, availability, perfor
mance, and scalability. Exploring and resolving design issues early, before investing heavily
in implementation, should help lower the cost of developing distributed systems and improve
their quality.

Many existing tools aim to help with specifying, checking, or simulating distributed system
models (some are listed on the Runway wiki [1]). However, none of these seems to be widely
used for designing distributed systems in industry. Instead, industry engineers still rely on
primitive tools like whiteboards, backoftheenvelope calculations, and design documents.
These are valuable, but they fall short of communicating clearly about a design or evaluating
its important properties. Why don’t industry engineers use more sophisticated design tools?
We can only assume that they are unwilling, existing tools are impractical, or the engineers
haven’t found the right tools. If it’s the former, there is little hope. But if it’s the latter two,
Runway might have a chance.

Runway is a new design tool for distributed systems. It’s not technically superior to existing
tools, but it may be better optimized for a chance at widespread adoption in industry. There
are three primary reasons for this:

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 33

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

1. Integration: Runway combines specification, model check
ing, simulation, and visualization in the same tool. Integrating
many components might tip the costbenefit calculation in
Runway’s favor: you can write one system model and get a lot
of value from it. Compared to using separate tools, Runway has
only a single learning curve. Plus, you can start by specifying
and visualizing a model, then decide how to evaluate it later
(using model checking, simulation, or both).

2. Usability: Runway aims to be approachable, with only a small
learning curve. The interactive visualizations allow people with
no special knowledge of Runway to learn about a design. For
modeling, Runway’s specification language is designed to be
familiar to most engineers and encourages simple code without
many abstractions.

3. Social: Runway visualizations run in a Web browser, enabling
people to share their models easily. We’re currently designing
a registry to help people discover other models, as well as a
component system to enable using one model within another.
We hope a community will grow around modeling systems in
Runway and learning about them.

Although Runway is still early in its development, it can already
provide significant value. A public instance of Runway is avail
able at https://runway.systems/, and its source code [2] is freely
available under the MIT license.

Overview of Runway
A Runway model consists of a specification and a view. The
specification describes the model’s state and how that state may
change over time. Specifications are written in code using a new
domainspecific language. This language aims to be familiar
to programmers and have simple semantics, while expressing
concurrency in a way suited for formal and informal reasoning.
A specification describes a labeled transition system, which is
like a state machine, for how state changes. It can also include
invariants, properties that must hold for every correct state. The
view draws a model’s state visually. For example, the view for the
Runway model of the Raft consensus algorithm [3] is shown in
Figure 1.

Runway includes a compiler for its specification language, and
it can execute the specification using a randomized simulator.
This produces an execution, an ordered history or schedule of
events that captures a sequence of state changes. Runway can
then visualize or animate these state changes over time. Runway
employs the model’s view for the main component of the visual
ization and also adds several generic widgets, including a time
line, an editable table of the model’s entire state, and a toolbar of
transition rules that can be applied to the state. The visualiza
tion is interactive, allowing users to manipulate the state of a
model and see how it reacts. It also serves as a great debugger
when developing specifications.

The simulator can do more than power a visualization: it can
also collect data. A single execution can include many interest
ing data points, and as a planned feature, data could be aggre
gated across a family of executions. The data can be presented
in the form of graphs, and by selecting a point on a graph, the
visualization can load and replay the exact event of interest.

The final major component of Runway is the model checker,
which can verify that a model will never break an invariant, up
to some limit in model size. The model checker begins at the
model’s starting state and tries to explore all reachable states,
evaluating the invariants at each step. It never expands the same
state twice, using a hash table to track the states it’s already
visited. Runway’s model checker today is quite slow; we plan to
either implement optimizations from the literature or to have
Runway invoke an efficient model checker behindthescenes. If
the model checker finds a bug, it can produce an execution show
ing how the model reaches a bad state. As a planned feature, this
execution could be loaded into the visualization so that a user
could easily understand what went wrong.

Runway’s Specification Language
Although Runway’s specification language is still a work in prog
ress, several basic principles are shaping its design:

◆◆ It aims to be easy for industry developers to read and write,
with only a small learning curve. Although a functional ap
proach is possible, an imperative, procedural approach is likely
to be more familiar.

◆◆ It intentionally includes a limited set of language features,
favoring specifications with straightforward code, even at the
cost of larger specification sizes.

Figure 1: The view of the Raft model. The ring on the left is optimized for
understanding leader election. Each server has a randomized election
timer, drawn as an arc around the server. Heartbeat messages from the
leader reset that timer, and a server begins an election when its timer
expires. The servers’ logs on the right are optimized for understanding
log replication; they are lined up in tidy rows for easy comparisons. This
interactive visualization is available at https://runway.systems/.

34  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

◆◆ Its strong type system is intended to help developers avoid silly
errors like typos and misused variables.

◆◆ It permits modeling concurrency without writing concurrent
code. Transition rules are applied atomically, one at a time. To
model concurrency, one rule can model the start of a longlived,
concurrent operation, and another can model its completion.

◆◆ It keeps all state explicitly in global variables, which simpli
fies reasoning about the current state. This is in contrast with
generalpurpose languages, which use the instruction pointer
to track information, without giving it a name.

◆◆ Although Runway does not yet include an efficient imple
mentation, it must be possible to evaluate Runway models
efficiently, and, especially for model checking, their state must
be efficient to copy and hash. We hope to store the global state
variables contiguously in memory even as the language evolves,
although this may need to be relaxed in favor of more flexible
models (every variable has a static upper bound on its size
today).

The Too Many Bananas problem serves as a good example to
illustrate Runway’s specification language. It is a simple concur
rency problem similar to those taught in introductory systems
classes. You live in a house with roommates, and everyone likes
to eat bananas. When you run out of bananas, you go to the store
to buy more and bring those home. Due to a race condition, it’s
possible for your roommate to leave for the store while you’re
already out buying more bananas. When you both return home,
you might end up with too many bananas, a critical problem
since bananas spoil over time.

This specification models the Too Many Bananas problem:

 01 var bananas : 0..100;

 02 type Person : either {

 03 Happy,

 04 Hungry,

 05 GoingToStore,

 06 ReturningFromStore {

 07 carrying: 0..8

 08 }

 09 };

 10 var roommates: Array<Person>[1..5];

 11 rule step for person in roommates {

 12 match person {

 13 Happy {

 14 person = Hungry;

 15 }

 16 Hungry {

 17 if bananas == 0 {

 18 person = GoingToStore;

 19 } else {

 20 bananas -= 1;

 21 person = Happy;

 22 }

 23 }

 24 GoingToStore {

 25 person = ReturningFromStore {

 26 carrying: urandomRange(0, 8)

 27 };

 28 }

 29 ReturningFromStore(bag) {

 30 bananas += bag.carrying;

 31 person = Hungry;

 32 }

 33 }

 34 }

 35 invariant BananaLimit {

 36 assert bananas <= 8;

 37 }

For the purpose of this model, it’s never OK to have more than
eight bananas at home. This is checked by the invariant on lines
35–37. More sophisticated models could factor in a rate of decay
and rate of consumption, but let’s start simple.

Lines 1–10 declare two variables: “bananas” is the number of
bananas at home, and “roommates” represents the five people
who live there, each of whom is in one of various possible states
at any given time. By default, Runway initializes variables to
the upperleft possible value, so “bananas” starts at 0 and each
person starts out “Happy.”

Lines 11–34 declare a state transition rule named “step,” which
applies to one roommate at a time. If that person is “Happy,” they
can become “Hungry” (lines 13–15). If they are “Hungry” and a
banana is available, they can eat a banana and become “Happy”;
if no banana is available, they can go to the store (lines 16–23).
If they’re going to the store, they can return from the store with
a random number of bananas between 0 and 8 (bunches vary in
size, and sometimes the store has run out; lines 24–28). And if
they are coming back from the store, they can leave the bananas
they’ve purchased at home and return to being “Hungry,” where
they are likely to eat a banana soon (lines 29–32).

Note that specifications define which state transitions may
happen, but they do not say when they should happen or in what
order: that’s up to the simulator or the model checker. If the
specification permits multiple roommates to take a step from a
given state, Runway’s simulator will pick one at random. Alter
natively, Runway’s model checker will explore all possibilities,
looking for any state that violates the invariant. To use the model
checker with this specification, replace the random number on
line 26 with a constant.

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 35

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

Inside Runway Views
Runway relies on a model’s view to draw the main component
of the visualization. Views are built using offtheshelf Web
technologies, so that Runway visualizations can run in a Web
browser (the ubiquitous graphical toolkit). Although views are
not necessarily constrained to these technologies, we’re cur
rently using JavaScript, SVG, and D3.js [4]:

◆◆ JavaScript is the scripting language running in every Web
browser.

◆◆ SVG, Scalable Vector Graphics, is analogous to HTML but used
for images instead of text and layout. Just like HTML, SVG is
styled with CSS to assign properties like colors and borders.

◆◆ D3.js is a JavaScript library that assists with drawing SVG.

At a first approximation, specification and views tend to be similar
in size. However, they are very different in nature. A view serves
the necessary function of drawing the model’s state, and its imple
mentation tends to be uninteresting. You might study a specifica
tion to learn about the precise workings of a design, but the only
thing you can learn from a view’s code is how it draws the state.

Modeling Distributed Systems
Beyond simple banana problems, Runway can be used to model
concurrent and distributed systems. Modeling distributed
systems, in particular, introduces a new set of challenges. This
section describes Runway’s approach to modeling failures, net
works, and clocks in distributed systems, as well as using invari
ants and assertions effectively to check properties of distributed
system models.

Failures
In most distributed systems, servers can fail, and, down to
some limit, the system should remain available. Messages can
be delayed and perhaps dropped and reordered. These failures
can be extremely important to understanding and evaluating
designs, but different systems make different assumptions about
their environments and have different requirements. In Runway,
failures are encoded the same way as normal events, permitting
specifications to model their own assumptions. A server crash
ing is modeled the same as a client submitting a request.

However, transition rules representing failures and client
requests are different from normal transition rules in one regard:
typically, they should not be applied all the time. For example,
not every message should be dropped, and client requests should
arrive at a limited rate. Currently, the specification can limit the
rates of these events by imposing additional conditions on them,
using random values. For example, when a message is sent, the
specification can compute whether or when it will be dropped
based on a coin toss. However, this need is recurring and fun
damental to modeling, so we’re exploring ways to express these
event rates intuitively and conveniently in Runway.

Networks
Modeling a distributed system also requires modeling a network.
This, too, can be done in Runway using normal state variables
and transition rules. For example, the basic Raft model has a flat
network modeled as a set. When a server sends a message, the
message is added to the set. When a server receives a message, it
is removed from the set.

Visualizing a network introduces its own challenge. For
example, the Raft view draws each message as it moves from the
sender to the recipient. To calculate the position of a message, it
needs to know when the message will be received, but that infor
mation isn’t normally available ahead of time. The Raft model
currently takes a simple approach: the specification assigns each
message a randomized delay when it is sent and will not deliver
the message before then. An alternative, more complex approach
would be to delay the visualization until the message’s future
delivery time had been determined by the simulator; we will
implement this in Runway only if the simpler approach is found
to be insufficient for common use cases.

In principle, more complex networks with links, switches/rout
ers, and propagation and queueing delays can be modeled the
same as simple networks, using variables and rules. However, as
the network’s wiring complexity increases, it would be tedious
to express the wiring in Runway today, and we may explore addi
tional language features to make this more convenient.

Runway also needs a way to import reusable components. This
would be useful at various levels of scale, including:

◆◆ Choosing from several network models to load into a distrib
uted system model,

◆◆ Loading a model of, for example, a coordination service into a
model of a larger system, and

◆◆ Loading larger system models together into a model of an entire
cluster’s workload.

We are currently designing the language features to enable this.

Time and Clocks
Runway supports two modes of operation: synchronous, which
generates events over time, and asynchronous, which generates
only an ordered sequence of events. These two modes of opera
tion have been useful for different models. For example, the basic
Too Many Bananas model is asynchronous, while the model of
a building’s elevator system is primarily interesting to measure
delays in synchronous mode.

The two modes can also be useful for the same model. Many
algorithms are designed to maintain safety properties under
asynchronous assumptions, making them robust to errone
ous clocks and unexpected delays (typically, even a “small”
race condition is not acceptable). With Runway, it’s possible to

36  FA L L 20 16 VO L . 41 , N O. 3 www.usenix.org

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

check these properties asynchronously with the model checker
and still run timingbased simulations on the same model. For
example, we can check that Raft always keeps committed log
entries no matter how long communication steps take, then use
the same model in synchronous mode to estimate leader election
times on a datacenter network.

In Runway, a timer is typically modeled by storing the time when
an action should be taken, then guarding a transition rule for the
action with an ifstatement:

 rule fireTimer {

 if past(timeoutAt) {

 /* take action, reset timeoutAt */

 }

 }

This is another example of making all state explicit in Runway.
There is no question of whether or not a timer has been set.

When running in synchronous mode, Runway keeps a global
clock for the simulation, and “past()” evaluates to true if the
given timestamp is earlier than the simulation’s clock. In asyn
chronous mode, however, “past()” always returns true. This has
the effect of making all timers fireable immediately after they
are scheduled, allowing unlikely schedules to be explored.

We have only tried Runway’s current approach to clocks on a
handful of models, and it may need further enhancements. Spe
cifically, it may be burdensome to model clock drift across serv
ers using one global clock, as Runway provides today. We plan to
revisit this issue based on actual use cases.

Access Restrictions and Distributed Invariants
Runway expects you to follow two ground rules in modeling dis
tributed systems, but to keep the specification language simple,
it does not enforce these rules. First, one server should not
access another server’s internal state. Second, the only shared
state should be the network, which should only be accessed
in limited ways (such as following send/receive semantics). It
would be impossible to implement a real distributed system that
violated these rules.

However, accessing unshared state is OK for assertions and
invariants. In fact, it’s a key advantage to modeling an entire
distributed system in a single process. For example, in Raft there
should be at most one leader per term. This is easy to check in an
invariant by directly accessing and comparing all the servers’
states. The alternative, to check this property by exchanging
messages as in a truly distributed system, would be much more
complex, would be less effective due to message delays, and could
interfere with the normal operation of the model.

Defining history variables as shared global state is also OK. His
tory variables record information about the past. These variables
should not affect the normal execution of the model, but they
may be read by assertions and invariants. For example, Raft’s
property that there is at most one leader per term should actually
hold across time. If one server was leader in a particular term,
no other server should ever become leader in that term. The Raft
model tracks past leaders using a history variable, and when a
server becomes leader in some term, it asserts that that term has
not yet had a leader:

 var electionsWon : Array<Boolean>[Term];

 rule becomeLeader for server in servers {

 if (/* this candidate has a majority of votes */) {

 assert !electionsWon[server.term];

 electionsWon[server.term] = True;

 /* update local state to become leader */

 }

 }

Conclusion
Distributed systems are challenging, and their complexity
justifies careful design. Using the proper tools, we could be
communicating clearly and evaluating our designs thoroughly,
even before investing in their implementation. However, existing
design tools have not been adopted widely in industry.

Runway hopes to change that. It combines specification, model
checking, simulation, and interactive visualization into one tool.
This improves Runway’s potential benefit without significantly
increasing the cost of developing a model. Runway aims to be
easy to learn by using a specification language based on impera
tive, procedural code that discourages unnecessary abstractions.
Runway models are also easily shareable on the Web, so others
can learn about designs through interactive visualization, even if
they have not learned how to read Runway specifications.

At Salesforce, we are redesigning our infrastructure for the next
order of scale, and we’ve already been applying Runway to a few
design challenges internally. We found Runway to be effective
for concurrent problems as well as distributed ones, and, encour
agingly, engineers seem to find value early in specifying their
designs more formally and in watching them run.

Runway is open source [2] and still in the early stages of its devel
opment. We have made it available early to find out whether other
engineers will adopt it, and if not, to learn what is stopping them.
We hope you will join us in forming a community around Runway.

www.usenix.org FA L L 20 16 VO L . 41 , N O. 3 37

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

References
[1] Runway Wiki, Related Work: https://github.com/salesforce
/runwaybrowser/wiki/RelatedWork.

[2] Runway source code: https://github.com/salesforce
/runwaybrowser.

[3] Raft Consensus Algorithm: https://raft.github.io.

[4] D3: Data Driven Documents, JavaScript library: https://
d3js.org.

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX
is always looking for academics to participate. The program is designed for faculty or staff who directly interact with stu-
dents. We fund one representative from a campus at a time.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for student use

■ Distributing calls for papers and upcoming event
 brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas
of the USENIX Web site, free conference registration once a year (after one full year of service as a Campus Representative),
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty
have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four-year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

■ Providing students who wish to join USENIX with
 information and applications

■ Helping students to submit research papers to relevant
USENIX conferences

■ Providing USENIX with feedback and suggestions on
how the organization can better serve students

For more information about our Student Programs, please contact office@usenix.org

Do you have a USENIX Representative
on your university or college campus?

If not, USENIX is interested in having one!

Acknowledgments
Thanks to Rik Farrow, Pat Helland, Jennifer Wolochow, and Nat
Wyatt (Runway’s first user) for their helpful comments on ear
lier versions of this article, and to David Leon Gil, Steve Sandke,
and many others for helping design Runway itself.

