
60  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS

iVoyeur
Tests and Metrics

D A V E J O S E P H S E N

Dave Josephsen is the
sometime book-authoring
developer evangelist at Librato.
com. His continuing mission: to
help engineers worldwide close

the feedback loop. dave-usenix@skeptech.org

I realized this morning that I haven’t been to a change management meet-
ing in years. I imagine that many people who make software for a living
haven’t been to one in a decade or more. Continuous integration (CI) and

automated testing killed change management for the modern software engi-
neering shop, but those of us who fix things were left only with configuration
management, which was not quite enough to keep us out of change meetings.

As I write this in the brief lull between AutomaCon, which finished last week, and LISA15,
which will arrive before I’m ready for it, I can’t help but muse a little bit on “infrastructure as
code” (IaC)—the somewhat ungainly offspring of configuration management and continu-
ous integration that has killed change management for me and increasing numbers of other
operations folks.

Setting aside for a moment the somewhat utopian notion of abstracting away all of our ugly
pipes and wires into software, IaC is a good thing because it gives most of IT a common inter-
face to make changes—namely, the deployment pipeline. Software engineers make changes
to files that represent applications, and commit them to Git, which calls out to a CI tool to
run some tests on it, and if they pass, a process or person deploys it to production. Now opera-
tions folks do pretty much the same thing, making changes to files that represent servers or
routers or whatever, and committing them to Git and etc.

All of this rests on the foundation of continuous deployment, and continuous deployment
rests on the foundation of tests. But testing infrastructure as code is a pretty new endeavor;
it’s just not something your typical sysadmin or operations person has much experience with.
We’re starting to see a few tools pop up, most notably Serverspec [1], but we’re still going to
need to become skilled in choosing and crafting good tests.

One thing I’ve noticed in my ongoing developer anthropology is that a lot of software engi-
neers had and continue to have the same problem with choosing monitoring metrics. It’s just
not something the typical software engineer has a lot of experience with (which is tragic, but
that’s beside the point). And from that observation follows another: it turns out that choos-
ing good tests and choosing good metrics are similar endeavors, and in this article, I’d like to
explore some of those parallels with you.

Our Deployment Pipeline
Librato is a prolific engineering shop. We range between 40 and 60 deployments per day. In
fact, as I write this, so far today we’ve deployed code 40 times—12 of which were production
changes (the others targeted for various staging environments). I can see all of these deploy-
ments in our corporate chatroom, because we use chatbots to push code into production. In
fact, most of our interaction with the services we maintain is abstracted behind chatbots in
one way or another. So when someone merges some code into a production repo, I can see it in
group-chat:

mailto:dave-usenix@skeptech.org
http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 61

COLUMNS
iVoyeur: Tests and Metrics

And not only can I see the pull request (PR), I can see whether
the proposed change passes or fails its unit tests:

And then I can watch with bated breath as the developer then
deploys the change into production.

How Often Do Good Testers Test?
I’ll pick on our alerting service because it’s written in Go and,
since it uses Go’s built-in testing framework [2], is easy for a
knuckle-dragger like myself to inspect with grep. Let’s see how
many test files there are:

find . | grep _test.go | wc -l

That returns 44 individual, test-laden files. Roughly one for
every other .go-suffixed file in this repository, each one named
for the unit it tests. Ergo, for foo.go, we find foo_test.go about
half the time. Lightly poking into the files that don’t have an
associated test file, I find mostly type definitions and other data-
structure-related code (not the sort of thing you normally test
directly).

How about actual test functions?

grep -ri ‘func Test.*(*testing.T’ . | wc -l

This yields 172 individual tests. About a 4-1 ratio of total func-
tions to test functions. So about 25% of the functions we create
are tests.

What about by sheer volume of code?

find . | grep _test.go | while read i; do egrep -v ‘({|})’ ${i} |

grep ‘[a-z][A-Z]’; done | wc -l

Gives me close to 2400 lines of code devoted to tests. In fact,
test-related code makes up almost half of this repository mea-
sured by lines. So OK, we test a lot, but then all of us who work in
continuous integration shops do nowadays.

Change-control meetings are intended to protect healthy pro-
duction environments from human error by instituting a layer
of peer review. Whether this works or not is debatable, but it is
unquestionably slow and drains productivity. Long release cycles
allow more time for development and production branches to
diverge. The classical change-control methodology, therefore,
by slowing down the release cycle, tends to foster larger, more
substantial (and therefore more error-prone) changes.

Relying on unit tests to protect us from human error instead
allows us to make smaller, simpler, safer changes more often.
We can spend as much time creating tests as we might other-
wise spend on halting productivity to create change proposals
and argue about them in a weekly meeting.

What Makes Good Tests Good?
The operative word there is RELY. Our tests can’t protect the
production environment if they aren’t meaningful. In creating
them, we generally need to be both procedural and selective. We
need to select test criteria that we can genuinely rely on to help
us ship quickly and safely.

GOOD TESTS ADD CONTEXT AND ENCOURAGE
COOPERATION
If we make our tests too difficult, obtrusive, or meaningless, or
if we try to enforce things like coding style that everyone hasn’t
already agreed to, people will just work around them. Self-
defeating behavior like this is more likely to emerge when we
sequester test creation to a particular team. Tests should mostly
enforce the expected operational parameters of the things we
create. Everyone should craft them, because they help us all
reason about what we expect from the things we build. Tests that
we didn’t write should give us insight into new code-bases rather
than encourage adversarial relationships between engineers.

Figure 1: Chat transcript of a GitHub PR

Figure 2: Chat transcript of a passed unit test

Figure 3: Chat transcript of a deployment

http://www.usenix.org

62  D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 www.usenix.org

COLUMNS
iVoyeur: Tests and Metrics

GOOD TESTS IMPROVE OUR DESIGN
Creating and maintaining good tests requires that we reason
about correctness when we design and create software, thereby
making us cognizant of our own expectations and assumptions.
Choosing good test parameters means thoroughly understand-
ing not only what we’ve created, but also the difference between
what we’ve created and what we set out to create in the first
place. Testable code is well-designed code, and poorly designed
code is usually hard to test.

Metrics Are Tests that Never Stop Running
There’s another class of code in this alerting repository that’s
neither functional to the application nor related to unit tests. An
example looks something like this:

metrics.Measure(“outlet.poll.alerts.count”, len(alerts))

This is instrumentation code, and grep counts a little over 200
lines of it in this repository. The idea behind instrumentation
is to measure important aspects of the application from within.
Instrumentation like this quantifies things like queue sizes,
worker-thread counts, inter-service latency, and request types.
These metrics are then exported to a centralized system that
helps us visualize the inner workings of our applications. In fact,
here’s a screenshot of the dashboard (Figure 4) where the met-
rics from this alerting service wind up.

Unit testing is like the sign at the theme park that says we need
to be this tall before we can deploy to production. Our metrics
are more like the canary in the coal mine. They are tests that
can follow our code into production. They help us continuously
vet our assumptions about the changes we introduce. Like test-
driven development, which uses carefully crafted unit tests to
verify correctness, metrics-driven development uses well-chosen
metrics to directly show us the effect of our changes.

What Makes Good Metrics Good?
At this point I could en masse copy/paste the section I just wrote
about what makes good tests good, substituting the word metric
for test. Our metrics are the primary means by which we under-
stand the behavior of our applications in the wild, and so we need
to rely on them arguably even more than on our tests.

Like our tests, our metrics also help us protect the production
environment from human error. If they aren’t meaningful, our
continuous integration pipeline suffers.

GOOD TESTS ADD CONTEXT AND ENCOURAGE
COOPERATION
Good metrics test systems hypotheses. They confirm our
expectations about how the things we build perform in real life.
Just like tests, everyone should be able to choose and work with
their own metrics because they help us all reason about what we

Figure 4: The alerting service dashboard

http://www.usenix.org

www.usenix.org D ECE M B ER 20 1 5 VO L . 4 0, N O. 6 63

So even if you’ve never created a unit test and find the notion of
Serverspec and IaC daunting, you can take comfort in the reality
that being a diligent student of systems monitoring and read-
ing excellently crafted columns like this one has prepared you
for what is to come. No need to thank me, I’m already positively
drowning in acclaim.

Take it easy.

COLUMNS
iVoyeur: Tests and Metrics

expect from the things we build. Metrics can teach us about code
bases that we aren’t familiar with. Without any documentation
whatsoever, I can infer many things from the metric in Figure 5
(e.g., this service sends alerts, the number of customers using it,
the total and individual rates at which alerts are fired etc.).

GOOD METRICS MAKE GOOD CODEBASES
Choosing meaningful metrics also requires us to reason about
correctness when we design and create software, but when we
succeed, we gain ongoing operational insight that’s invaluable to
everyone, whether they’re designing systems, regression testing,
supporting infrastructure, or shipping features.

Good instrumentation is a sign of operational health. It keeps us
cognizant of our own expectations and assumptions. Well-mea-
sured code is usually well-designed code, and poorly designed
code is usually difficult to measure.

Resources
[1] Serverspec: http://serverspec.org/.

[2] Testing in Go: https://golang.org/pkg/testing.

Figure 5: A well-chosen metric

http://serverspec.org/
https://golang.org/pkg/testing
http://www.usenix.org

