
48  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
In the previous installment [1], we dived into some of the low-level details

and problems related to Python threads. As a brief recap, although
Python threads are real system threads, there is a global interpreter lock

(GIL) that restricts their execution to a single CPU core. Moreover, if your
program performs any kind of CPU-intensive processing, the GIL can impose
a severe degradation in the responsiveness of other threads that happen to be
performing I/O.

In response to some of the perceived limitations of threads, some Python programmers have
turned to alternative approaches based on coroutines or green threads. In a nutshell, these
approaches rely on implementing concurrency entirely in user space without relying on
threads as provided by the operating system. Of course, how one actually goes about doing
that often remains a big mystery.

In this installment, we’re going to dive under the covers of Python concurrency based on
coroutines (or generators). Rather than focusing on the usage of particular libraries, the
main goal is to gain a deeper understanding of the underlying implementation to see how it
works, performance characteristics, and limitations. As with the previous installment, the
examples presented are meant to be tried as experiments. There’s a pretty good chance that
some of the code presented will bend your brain—it’s not often that you get to write a small
operating system in the space of an article. Also, certain parts of the code require Python 3.
So, with that in mind, let’s start!

Threads, What Are They Good For?
Previously, we created a simple multithreaded network service that computed Fibonacci
numbers. Here was the code:

server.py

from socket import *

from threading import Thread

def tcp_server(address, handler):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 while True:

 client, addr = sock.accept()

 t = Thread(target=handler, args=(client, addr))

 t.daemon=True

 t.start()

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (www.swig.org) and Python
Lex-Yacc (www.dabeaz.com/ply.html). Beazley
is based in Chicago, where he also teaches a
variety of Python courses. dave@dabeaz.com

A Tale of Two Concurrencies (Part 2)
D A V I D B E A Z L E Y

http://www.usenix.org
http://www.swig.org
http://www.dabeaz.com/ply.html
mailto:dave@dabeaz.com

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 49

COLUMNS
A Tale of Two Concurrencies (Part 2)

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 data = client.recv(1000)

 if not data:

 break

 result = fib(int(data))

 client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

if __name__ == ‘__main__’:

 tcp_server((‘’,25000), fib_handler)

When you run the server, you can connect any number of con-
current clients using nc or telnet, type numbers as input, and get
a Fibonacci number returned as a result. For example:

bash % nc 127.0.0.1 25000

10

55

20

6765

If you carefully study this code and think about the role of
threads, their primary utility is in handling code that blocks. For
example, consider operations such as sock.accept() and client.

recv(). Both of those operations stop progress of the currently
executing thread until incoming data is available. That’s not a
problem, though, when each client is handled by its own thread.
If a thread decides to block, the other threads are unaffected and
can continue to run. Basically, you just don’t have to worry about
it, because all of the underlying details of blocking, awaking,
and so forth are handled by the operating system and associated
thread libraries.

If threads aren’t going to be used, then you have to devise some
kind of solution that addresses the blocking problem so that mul-
tiple clients can concurrently operate. That is the main problem
that needs to be addressed.

Enter Generator Functions
In order to implement blocking, you have to figure out some
way to temporarily suspend and later resume the execution of a
Python function. As it turns out, Python provides a special kind
of function that can be used in exactly this way—a generator
function. Generator functions are most commonly used to drive
iteration. For example, here is a simple generator function:

def countdown(n):

 while n > 0:

 yield n

 n -= 1

Normally, this function would be used to feed a for- loop like
this:

>>> for x in countdown(5):

... print(x)

...

5

4

3

2

1

>>>

Under the covers, the yield statement emits values to be con-
sumed by the iteration loop. However, it also causes the generator
function to temporarily suspend itself. Here is a low-level view of
the mechanics involved.

>>> c = countdown(5)

>>> next(c) # Run to the yield

5

>>> next(c)

4

>>> next(c)

3

...

>>> next(c)

1

>>> next(c)

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

StopIteration

>>>

On each next() call, the function runs to the yield, emits a value,
and stops. A StopIteration exception is raised when the func-
tion terminates. The fact that yield causes a function to stop
is interesting—that’s exactly the behavior you need to handle
blocking. Perhaps it can be used to do more than simple iteration.

Generators as Tasks
Rather than thinking of generator functions as simply imple-
menting iteration, you can alternatively view them as more
generally implementing a task (note: when used in this way,
generators are typically called “coroutines,” although that term
seems to be applied rather loosely in the Python community). If
you make a task queue and task scheduler, you can make genera-
tors or coroutines look a lot like threads. For example, here’s an
experiment you can try using the above generator function:

http://www.usenix.org

50  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
A Tale of Two Concurrencies (Part 2)

from collections import deque

A task queue

tasks = deque()

Create some tasks

tasks.append(countdown(10))

tasks.append(countdown(20))

tasks.append(countdown(5))

Run the tasks

def run():

 while tasks:

 task = tasks.popleft()

 # Run to the yield

 try:

 x = next(task)

 print(x)

 tasks.append(task) # Reschedule

 except StopIteration:

 print(‘Task done’)

run()

In this code, multiple invocations of the countdown() generator
are being driven by a simple round-robin scheduler. The output
will appear something like this if you run it:

10

20

5

9

19

4

8

18

3

7

17

2

...

That’s interesting, but not very compelling since no one would
typically want to run a simple iteration pattern like the count-

down() function in this manner.

A much more interesting generator-based task might be a
rewritten version of the fib_handler() function from our server.
For example:

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 yield (‘recv’, client) # Added

 data = client.recv(1000)

 if not data:

 break

 result = fib(int(data))

 yield (‘send’, client) # Added

 client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

In this new version, yield statements are placed immediately
before each socket operation that might block. Each yield indi-
cates both a reason for blocking (‘recv’ or ‘send’) and a resource
(the socket client) on which blocking might occur.

With the interactive interpreter, let’s see how to drive it. First,
create a socket and wait for a connection:

>>> from socket import *

>>> sock = socket(AF_INET, SOCK_STREAM)

>>> sock.bind((‘’, 25000))

>>> sock.listen(1)

>>> client, addr = sock.accept()

Next, establish a connection using a command such as nc local-

host 25000 at the shell. Once you’ve done this, try these steps:

>>> task = fib_handler(client, addr)

>>> task

<generator object fib_handler at 0x10a7c53b8>

>>> reason, resource = next(task)

Connection from (‘127.0.0.1’, 52474)

>>> reason

‘recv’

>>> resource

<socket.socket fd=4, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0,

laddr=(‘127.0.0.1’, 25000), raddr=(‘127.0.0.1’, 52474)>

>>>

If you carefully study this output, you’ll see that the handler task
ran to the first yield statement and is now suspended. Before
resuming the handler, you need to wait until input is available on
the supplied socket (resource). To do that, you can poll the socket
using a system call such as select() [2]. For example:

>>> from select import select

>>> select([resource], [], []) # Blocks until data available

Go back to the terminal with the connected nc session and type
an integer and return. This should force the above select() state-
ment to return. Once it’s returned, you can resume the generator
by typing the following:

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 51

COLUMNS
A Tale of Two Concurrencies (Part 2)

>>> reason, resource = next(task)

>>> reason

‘send’

>>> resource

<socket.socket fd=4, family=AddressFamily.AF_INET,

type=SocketKind.SOCK_STREAM, proto=0,

laddr=(‘127.0.0.1’, 25000), raddr=(‘127.0.0.1’, 52474)>

>>>

Now you see that the task has advanced to the next yield state-
ment. Use the select() statement again to see if it’s safe to
proceed with sending.

>>> select([], [resource], [])

>>> reason, resource = next(task)

>>>

In this example, you are using next() to drive the generator task
forward to the next yield statement. The select() call is polling
for I/O and is being used to know when it is safe to resume the
generator.

A Generator-Based Task Scheduler
Putting the pieces of the last section together, you can make a
small generator-based task scheduler like this:

from socket import *

from collections import deque

from select import select

tasks = deque()

recv_wait = {} # sockets -> tasks waiting to receive

send_wait = {} # sockets -> tasks waiting to send

def run():

 while any([tasks, recv_wait, send_wait]):

 while not tasks:

 can_read, can_send, _ = select(recv_wait, send_wait, [])

 for s in can_read:

 tasks.append(recv_wait.pop(s))

 for s in can_send:

 tasks.append(send_wait.pop(s))

 task = tasks.popleft()

 try:

 reason, resource = next(task)

 if reason == ‘recv’:

 recv_wait[resource] = task

 elif reason == ‘send’:

 send_wait[resource] = task

 else:

 raise RuntimeError(‘Bad reason: %s’ % reason)

 except StopIteration:

 print(‘Task done’)

The scheduler is essentially a small operating system. There
is a queue of ready-to-run tasks (tasks) and two waiting areas
for tasks that need to perform I/O (recv_wait and send_wait).
The core of the scheduler takes a ready-to-run task and runs
it to the next yield statement, which acts as a kind of “trap” or
“system call.” Based on the result of the yield, the task is placed
into one of the I/O holding areas. If there are no tasks ready to
run, a select call is made to wait for I/O and place a previously
suspended task back onto the task queue.

To use this scheduler, you take your previous thread-based code
and simply instrument it with yield calls. For example:

def tcp_server(address, handler):

 sock = socket(AF_INET, SOCK_STREAM)

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 while True:

 yield ‘recv’, sock

 client, addr = sock.accept()

 # Create a new handler task and add to the task queue

 tasks.append(handler(client, addr))

def fib(n):

 if n <= 2:

 return 1

 else:

 return fib(n-1) + fib(n-2)

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 yield ‘recv’, client

 data = client.recv(1000)

 if not data:

 break

 result = fib(int(data))

 yield ‘send’, client

 client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

if __name__ == ‘__main__’:

 tasks.append(tcp_server((‘’,25000), fib_handler))

 run()

This code will require a bit of study, but if you try it out, you’ll
find that it supports concurrent connections without the slight-
est hint of a thread—interesting indeed.

http://www.usenix.org

52  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
A Tale of Two Concurrencies (Part 2)

Hiding Implementation Details
One complaint about the generator solution is the addition of the
extra yield statements. Not only do they introduce extra code,
they are somewhat low-level, requiring the user to know some
details about the underlying scheduling code. However, Python
3.3 introduced the ability to write generator-based subroutines
using the yield from statement [3]. You can use this to make a
wrapper around socket objects.

class GenSocket(object):

 def __init__(self, sock):

 self.sock = sock

 def accept(self):

 yield ‘recv’, self.sock

 client, addr = self.sock.accept()

 return GenSocket(client), addr

 def recv(self, maxbytes):

 yield ‘recv’, self.sock

 return self.sock.recv(maxbytes)

 def send(self, data):

 yield ‘send’, self.sock

 return self.sock.send(data)

 def __getattr__(self, name):

 return getattr(self.sock, name)

This wrapper class merely combines the appropriate yield state-
ment with the subsequent socket operation. Here is a modified
server that uses the wrapper:

def tcp_server(address, handler):

 sock = GenSocket(socket(AF_INET, SOCK_STREAM))

 sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

 sock.bind(address)

 sock.listen(5)

 while True:

 client, addr = yield from sock.accept()

 # Create a new handler task and add to the task queue

 tasks.append(handler(client, addr))

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 data = yield from client.recv(1000)

 if not data:

 break

 result = fib(int(data))

 yield from client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

In this version, blocking calls such as client.recv() are replaced
by calls of the form yield from client.recv(). Other than that,
the code looks virtually identical to the threaded version. More-
over, details of the underlying task scheduler are now hidden.
Again, keep in mind that no threads are in use.

Studying the Performance
Previously, two performance tests were performed. The first test
simply measured the performance of the server on CPU-bound
work:

perf1.py

from socket import *

import time

sock = socket(AF_INET, SOCK_STREAM)

sock.connect((‘127.0.0.1’, 25000))

while True:

 start = time.time()

 sock.send(b’30’)

 resp = sock.recv(100)

 end = time.time()

 print(end-start)

If you run this program, it will start producing a series of timing
measurements that are essentially the same as the threaded ver-
sion of code. If you run multiple clients, however, you’ll find that
the server is limited to using a single CPU core as before. There’s
no global interpreter lock in play, but since the entire server
executes within a single execution thread, there’s no way for it to
take advantage of multiple CPU cores either. That’s one impor-
tant lesson—using coroutines is not a technique that can be used
to make code scale to multiple processors.

The second performance test measured the performance on a
rapid-fire series of fast-running operations. Here it is again:

perf2.py

import threading

import time

from socket import *

sock = socket(AF_INET, SOCK_STREAM)

sock.connect((‘127.0.0.1’, 25000))

N = 0

def monitor():

 global N

 while True:

 time.sleep(1)

 print(N, ‘requests/second’)

 N = 0

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 53

COLUMNS
A Tale of Two Concurrencies (Part 2)

t = threading.Thread(target=monitor)

t.daemon=True

t.start()

while True:

 sock.send(b’1’)

 resp = sock.recv(100)

 N += 1

If you run the program, you’ll see output similar to the following:

bash % python3 perf2.py

16121 requests/second

16245 requests/second

16179 requests/second

16305 requests/second

16210 requests/second

...

The initial request rate will be lower than that reported with
the examples involving threads in the previous article. There is
simply more overhead in managing the various generator func-
tions, invoking select(), and so forth. While the test is running,
computing a large Fibonacci number from a separate connection
produces:

bash % nc 127.0.0.1 25000

40

102334155 (takes a while to appear)

After you do this, the perf2.py will stop responding entirely. For
example:

16151 requests/second

16265 requests/second

0 requests/second

0 requests/second

0 requests/second

...

This will continue until the large request completes entirely.
Since there are no threads at work, there is no notion of preemp-
tion or parallelism. In fact, any operation that decides to block or
take a lot of compute cycles will block the progress of everything
else.

Back to Subprocesses
As it turns out, problems with performance and blocking have to
be solved in the same manner as with threads. Specifically, you
have to use threads or process pools to carry out such calcula-
tions outside of the task scheduler. For example, you might
rewrite the fib_handler() function using concurrent.futures
exactly as you did before with threads:

from concurrent.futures import ProcessPoolExecutor as Pool

NPROCS = 4

pool = Pool(NPROCS)

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 data = yield client.recv(1000)

 if not data:

 break

 future = pool.submit(fib, int(data))

 result = future.result()

 yield from client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

...

The only catch is that even if you make this change, you’ll find
that it still doesn’t work. The problem here is that the future.

result() operation blocks, waiting for the result to come back.
By blocking, it stalls the entire task scheduler. In fact, this will
happen for any operation at all that might block (e.g., resolving a
domain name, accessing a database, etc.).

Generators: It’s All In
In order for a generator-based solution to work, every blocking
operation has to be written to work with the task loop. In the pre-
vious example, attempts to use a process pool are unsuccessful
since calls to obtain the result block. To make it work, you need
to write additional supporting code to turn blocking operations
into something that can yield to the task loop. The following code
gives an idea of how you might do it.

The first step is to write a wrapper around the Future object’s
result() method to make it use yield. For example:

class GenFuture(object):

 def __init__(self, future):

 self.future = future

 def result(self):

 yield ‘future’, self.future

 return self.future.result()

 def __getattr__(self, name):

 return getattr(self.future, name)

Next, you might create a wrapper around pools to adjust the out-
put of the pool.submit() to return a GenFuture object:

http://www.usenix.org

54  AU G U S T 20 1 5 VO L . 4 0, N O. 4 www.usenix.org

COLUMNS
A Tale of Two Concurrencies (Part 2)

class GenPool(object):

 def __init__(self, pool):

 self.pool = pool

 def submit(self, func, *args, **kwargs):

 f = self.pool.submit(func, *args, **kwargs)

 return GenFuture(f)

 def __getattr__(self, name):

 return getattr(self.pool, name)

The main goal of these classes is to preserve the programming
interface of the blocking code. In fact, you will only make a slight
change to the fib_handler() code as shown here:

from concurrent.futures import ProcessPoolExecutor as Pool

NPROCS = 4

pool = GenPool(Pool(NPROCS)) # Note: Use GenPool

def fib_handler(client, address):

 print(‘Connection from’, address)

 while True:

 data = yield client.recv(1000)

 if not data:

 break

 future = pool.submit(fib, int(data))

 result = yield from future.result() # Note yield from

 yield from client.send(str(result).encode(‘ascii’)+b’\n’)

 print(‘Connection closed’)

 client.close()

...

Carefully observe how all blocking operations are now pre-
ceded by a yield from declaration. The only remaining task is to
modify the task scheduler to support futures. Here is that code:

from socket import socketpair

tasks = deque()

recv_wait = {}

send_wait = {}

future_wait = {}

Callback triggered on future completion

def _future_callback(future):

 tasks.append(future_wait.pop(future))

 _loop_wake()

Sockets to allow waking of the I/O loop

_loop_notify_socket, _loop_wait_socket = socketpair()

Function to wake the task loop when blocked on select()

def _loop_wake():

 _loop_notify_socket.send(b’x’)

Dummy task that allows select() to wake

def _loop_sleeper():

 while True:

 yield ‘recv’, _loop_wait_socket

 _loop_wait_socket.recv(1000)

tasks.append(_loop_sleeper())

def run():

 while any([tasks, recv_wait, send_wait, future_wait]):

 while not tasks:

 can_read, can_send, _ = select(recv_wait, send_wait, [])

 for s in can_read:

 tasks.append(recv_wait.pop(s))

 for s in can_send:

 tasks.append(send_wait.pop(s))

 task = tasks.popleft()

 try:

 reason, resource = next(task)

 if reason == ‘recv’:

 recv_wait[resource] = task

 elif reason == ‘send’:

 send_wait[resource] = task

 elif reason == ‘future’:

 future_wait[resource] = task

 resource.add_done_callback(_future_callback)

 else:

 raise RuntimeError(‘Bad reason: %s’ % reason)

 except StopIteration:

 print(‘Task done’)

Whew! There are a lot of moving parts, but the general idea is
as follows. For futures, the task is placed into a waiting area as
before (future_wait). A callback function (_future_callback)
is then attached to the future to be triggered upon completion.
When results return, the callback function puts the task back
onto the tasks queue. A byte of I/O is then written to a spe-
cial loopback socket (_loop_notify_socket). A separate task
(_loop_sleeper) constantly monitors this socket and wakes to
read the byte. (The main purpose of this special task is really
just to get the task loop to wake from the select() call to allow
ready tasks to run again.)

http://www.usenix.org

www.usenix.org AU G U S T 20 1 5 VO L . 4 0, N O. 4 55

COLUMNS
A Tale of Two Concurrencies (Part 2)

This Is Crazy (But Most Things Are When You
Think About It)
Needless to say, if you’re going to abandon threads for concur-
rency, you’re going to have to do more work to make it work. If
you get down to it, the code involving generators is actually a lot
like a small user-level operating system, with all of the underly-
ing task scheduling, I/O polling, and so forth. At first glance, the
whole approach might seem crazy. However, keep in mind that it
would rarely be necessary to write such code yourself. Instead, you
would use an existing library such as the new asyncio module [4].

Even if you use a library, you still have to know what you’re
doing. Specifically, you need to be fully aware of places where
your code might block and stall the task scheduler. Coroutines
also do not free you from limitations such as Python’s GIL—you
should still be prepared to execute work in thread or process
pools as appropriate.

At this point, you might be seeking some kind of sage advice
on how to proceed with Python concurrency. Should you use
threads? Should you use coroutines? Unfortunately, I can’t offer
anything more than it depends a lot on the problem that you
are trying to solve. Python provides a wide variety of tools for
addressing the concurrency problem. All of those tools have vari-
ous tradeoffs and limitations. As such, anyone expecting a kind
of “magic” solution that solves every possible problem will likely
be disappointed. Again, some thinking is required—in the end, it
really helps to understand what you’re doing and how things work.

Postscript
The code examples in this article were the foundation of a PyCon
2015 talk I gave on concurrency. If you’re interested in seeing the
code work with a live coding demonstration, the talk video can
be found online [5].

References
[1] D. Beazley, “A Tale of Two Concurrencies (Part 1),” ;login:,
vol. 40, no. 3, June 2015: https://www.usenix.org/publications/
login/june15/beazley.

[2] “select—Waiting for I/O Completion”: https://docs.python
.org/3/library/select.html (select module).

[3] “PEP 380: Syntax for Delegating to a Subgenerator”:
https://www.python.org/dev/peps/pep-0380/.

[4] “asyncio—Asynchronous I/O, event loop, coroutines and
tasks”: https://docs.python.org/3/library/asyncio.html
(asyncio module).

[5] PyCon 2015 presentation on concurrency: http://pyvideo
.org/video/3432/python-concurrency-from-the-ground-up
-live.

http://www.usenix.org
https://www.usenix.org/publications/
https://docs.python
https://www.python.org/dev/peps/pep-0380/
https://docs.python.org/3/library/asyncio.html
http://pyvideo

