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In the previous installment [1], we dived into some of the low-level details 

and problems related to Python threads. As a brief recap, although 
Python threads are real system threads, there is a global interpreter lock 

(GIL) that restricts their execution to a single CPU core. Moreover, if your 
program performs any kind of CPU-intensive processing, the GIL can impose 
a severe degradation in the responsiveness of other threads that happen to be 
performing I/O.

In response to some of the perceived limitations of threads, some Python programmers have 
turned to alternative approaches based on coroutines or green threads. In a nutshell, these 
approaches rely on implementing concurrency entirely in user space without relying on 
threads as provided by the operating system. Of course, how one actually goes about doing 
that often remains a big mystery.

In this installment, we’re going to dive under the covers of Python concurrency based on 
coroutines (or generators). Rather than focusing on the usage of particular libraries, the 
main goal is to gain a deeper understanding of the underlying implementation to see how it 
works, performance characteristics, and limitations. As with the previous installment, the 
examples presented are meant to be tried as experiments. There’s a pretty good chance that 
some of the code presented will bend your brain—it’s not often that you get to write a small 
operating system in the space of an article. Also, certain parts of the code require Python 3. 
So, with that in mind, let’s start!

Threads, What Are They Good For?
Previously, we created a simple multithreaded network service that computed Fibonacci 
numbers. Here was the code:

# server.py

from socket import *

from threading import Thread

def tcp_server(address, handler):

    sock = socket(AF_INET, SOCK_STREAM)

    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

    sock.bind(address)

    sock.listen(5)

    while True:

        client, addr = sock.accept()

        t = Thread(target=handler, args=(client, addr))

        t.daemon=True

        t.start()
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def fib(n):

    if n <= 2:

       return 1

    else:

       return fib(n-1) + fib(n-2)

def fib_handler(client, address):

    print(‘Connection from’, address)

    while True:

        data = client.recv(1000)

        if not data:

            break

        result = fib(int(data))

        client.send(str(result).encode(‘ascii’)+b’\n’)

    print(‘Connection closed’)

    client.close()

if __name__ == ‘__main__’:

    tcp_server((‘’,25000), fib_handler)

When you run the server, you can connect any number of con-
current clients using nc or telnet, type numbers as input, and get 
a Fibonacci number returned as a result. For example:

bash % nc 127.0.0.1 25000

10

55

20

6765

If you carefully study this code and think about the role of 
threads, their primary utility is in handling code that blocks. For 
example, consider operations such as sock.accept() and client.

recv(). Both of those operations stop progress of the currently 
executing thread until incoming data is available. That’s not a 
problem, though, when each client is handled by its own thread. 
If a thread decides to block, the other threads are unaffected and 
can continue to run. Basically, you just don’t have to worry about 
it, because all of the underlying details of blocking, awaking, 
and so forth are handled by the operating system and associated 
thread libraries.

If threads aren’t going to be used, then you have to devise some 
kind of solution that addresses the blocking problem so that mul-
tiple clients can concurrently operate. That is the main problem 
that needs to be addressed.

Enter Generator Functions
In order to implement blocking, you have to figure out some 
way to temporarily suspend and later resume the execution of a 
Python function. As it turns out, Python provides a special kind 
of function that can be used in exactly this way—a generator 
function. Generator functions are most commonly used to drive 
iteration. For example, here is a simple generator function:

def countdown(n):

    while n > 0:

        yield n

        n -= 1

Normally, this function would be used to feed a for- loop like 
this:

>>> for x in countdown(5):

...     print(x)

...

5

4

3

2

1

>>>

Under the covers, the yield statement emits values to be con-
sumed by the iteration loop. However, it also causes the generator 
function to temporarily suspend itself. Here is a low-level view of 
the mechanics involved.

>>> c = countdown(5)

>>> next(c)     # Run to the yield

5

>>> next(c)

4

>>> next(c)

3

...

>>> next(c)

1

>>> next(c)

Traceback (most recent call last):

  File “<stdin>”, line 1, in <module>

StopIteration

>>>

On each next() call, the function runs to the yield, emits a value, 
and stops. A StopIteration exception is raised when the func-
tion terminates. The fact that yield causes a function to stop 
is interesting—that’s exactly the behavior you need to handle 
blocking. Perhaps it can be used to do more than simple iteration.

Generators as Tasks
Rather than thinking of generator functions as simply imple-
menting iteration, you can alternatively view them as more 
generally implementing a task (note: when used in this way, 
generators are typically called “coroutines,” although that term 
seems to be applied rather loosely in the Python community). If 
you make a task queue and task scheduler, you can make genera-
tors or coroutines look a lot like threads. For example, here’s an 
experiment you can try using the above generator function:
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from collections import deque

# A task queue

tasks = deque()

# Create some tasks

tasks.append(countdown(10))

tasks.append(countdown(20))

tasks.append(countdown(5))

# Run the tasks

def run():

    while tasks:

        task = tasks.popleft()

        # Run to the yield

        try:

            x = next(task)

            print(x)

            tasks.append(task)   # Reschedule

        except StopIteration:

            print(‘Task done’)

run()

In this code, multiple invocations of the countdown() generator 
are being driven by a simple round-robin scheduler. The output 
will appear something like this if you run it:

10

20

5

9

19

4

8

18

3

7

17

2

...

That’s interesting, but not very compelling since no one would 
typically want to run a simple iteration pattern like the count-

down() function in this manner.

A much more interesting generator-based task might be a 
rewritten version of the fib_handler() function from our server. 
For example:

def fib_handler(client, address):

    print(‘Connection from’, address)

    while True:

        yield (‘recv’, client)    # Added

        data = client.recv(1000)

        if not data:

            break

        result = fib(int(data))

        yield (‘send’, client)    # Added

        client.send(str(result).encode(‘ascii’)+b’\n’)

    print(‘Connection closed’)

    client.close()

In this new version, yield statements are placed immediately 
before each socket operation that might block. Each yield indi-
cates both a reason for blocking (‘recv’ or ‘send’) and a resource 
(the socket client) on which blocking might occur.

With the interactive interpreter, let’s see how to drive it. First, 
create a socket and wait for a connection:

>>> from socket import *

>>> sock = socket(AF_INET, SOCK_STREAM)

>>> sock.bind((‘’, 25000))

>>> sock.listen(1)

>>> client, addr = sock.accept()

Next, establish a connection using a command such as nc local-

host 25000 at the shell. Once you’ve done this, try these steps:

>>> task = fib_handler(client, addr)

>>> task

<generator object fib_handler at 0x10a7c53b8>

>>> reason, resource = next(task)

Connection from (‘127.0.0.1’, 52474)

>>> reason

‘recv’

>>> resource

<socket.socket fd=4, family=AddressFamily.AF_INET, 

type=SocketKind.SOCK_STREAM, proto=0, 

laddr=(‘127.0.0.1’, 25000), raddr=(‘127.0.0.1’, 52474)>

>>>

If you carefully study this output, you’ll see that the handler task 
ran to the first yield statement and is now suspended. Before 
resuming the handler, you need to wait until input is available on 
the supplied socket (resource). To do that, you can poll the socket 
using a system call such as select() [2]. For example:

>>> from select import select

>>> select([resource], [], [])  # Blocks until data available

Go back to the terminal with the connected nc session and type 
an integer and return. This should force the above select() state-
ment to return. Once it’s returned, you can resume the generator 
by typing the following:
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>>> reason, resource = next(task)

>>> reason

‘send’

>>> resource

<socket.socket fd=4, family=AddressFamily.AF_INET, 

type=SocketKind.SOCK_STREAM, proto=0, 

laddr=(‘127.0.0.1’, 25000), raddr=(‘127.0.0.1’, 52474)>

>>>

Now you see that the task has advanced to the next yield state-
ment. Use the select() statement again to see if it’s safe to 
proceed with sending.

>>> select([], [resource], [])

>>> reason, resource = next(task)

>>>

In this example, you are using next() to drive the generator task 
forward to the next yield statement. The select() call is polling 
for I/O and is being used to know when it is safe to resume the 
generator.

A Generator-Based Task Scheduler
Putting the pieces of the last section together, you can make a 
small generator-based task scheduler like this:

from socket import *

from collections import deque

from select import select

tasks = deque()

recv_wait = {}   # sockets -> tasks waiting to receive

send_wait = {}   # sockets -> tasks waiting to send

def run():

    while any([tasks, recv_wait, send_wait]):

        while not tasks:

            can_read, can_send, _ = select(recv_wait, send_wait, [])

            for s in can_read:

                tasks.append(recv_wait.pop(s))

            for s in can_send:

                tasks.append(send_wait.pop(s))

        task = tasks.popleft()

        try:

            reason, resource = next(task)

            if reason == ‘recv’:

                recv_wait[resource] = task

            elif reason == ‘send’:

                send_wait[resource] = task

            else:

                raise RuntimeError(‘Bad reason: %s’ % reason)

        except StopIteration:

            print(‘Task done’)

The scheduler is essentially a small operating system. There 
is a queue of ready-to-run tasks (tasks) and two waiting areas 
for tasks that need to perform I/O (recv_wait and send_wait). 
The core of the scheduler takes a ready-to-run task and runs 
it to the next yield statement, which acts as a kind of “trap” or 
“system call.” Based on the result of the yield, the task is placed 
into one of the I/O holding areas. If there are no tasks ready to 
run, a select call is made to wait for I/O and place a previously 
suspended task back onto the task queue.

To use this scheduler, you take your previous thread-based code 
and simply instrument it with yield calls. For example:

def tcp_server(address, handler):

    sock = socket(AF_INET, SOCK_STREAM)

    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

    sock.bind(address)

    sock.listen(5)

    while True:

        yield ‘recv’, sock

        client, addr = sock.accept()

        # Create a new handler task and add to the task queue

        tasks.append(handler(client, addr))

def fib(n):

    if n <= 2:

       return 1

    else:

       return fib(n-1) + fib(n-2)

def fib_handler(client, address):

    print(‘Connection from’, address)

    while True:

        yield ‘recv’, client

        data = client.recv(1000)

        if not data:

            break

        result = fib(int(data))

        yield ‘send’, client

        client.send(str(result).encode(‘ascii’)+b’\n’)

    print(‘Connection closed’)

    client.close()

if __name__ == ‘__main__’:

    tasks.append(tcp_server((‘’,25000), fib_handler))

    run()

This code will require a bit of study, but if you try it out, you’ll 
find that it supports concurrent connections without the slight-
est hint of a thread—interesting indeed.
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Hiding Implementation Details
One complaint about the generator solution is the addition of the 
extra yield statements. Not only do they introduce extra code, 
they are somewhat low-level, requiring the user to know some 
details about the underlying scheduling code. However, Python 
3.3 introduced the ability to write generator-based subroutines 
using the yield from statement [3]. You can use this to make a 
wrapper around socket objects.

class GenSocket(object):

    def __init__(self, sock):

        self.sock = sock

    def accept(self):

        yield ‘recv’, self.sock

        client, addr = self.sock.accept()

        return GenSocket(client), addr

    def recv(self, maxbytes):

        yield ‘recv’, self.sock

        return self.sock.recv(maxbytes)

    def send(self, data):

        yield ‘send’, self.sock

        return self.sock.send(data)

    def __getattr__(self, name):

        return getattr(self.sock, name)

This wrapper class merely combines the appropriate yield state-
ment with the subsequent socket operation. Here is a modified 
server that uses the wrapper:

def tcp_server(address, handler):

    sock = GenSocket(socket(AF_INET, SOCK_STREAM))

    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

    sock.bind(address)

    sock.listen(5)

    while True:

        client, addr = yield from sock.accept()

        # Create a new handler task and add to the task queue

        tasks.append(handler(client, addr))

def fib_handler(client, address):

    print(‘Connection from’, address)

    while True:

        data = yield from client.recv(1000)

        if not data:

            break

        result = fib(int(data))

        yield from client.send(str(result).encode(‘ascii’)+b’\n’)

    print(‘Connection closed’)

    client.close()

In this version, blocking calls such as client.recv() are replaced 
by calls of the form yield from client.recv(). Other than that, 
the code looks virtually identical to the threaded version. More-
over, details of the underlying task scheduler are now hidden. 
Again, keep in mind that no threads are in use.

Studying the Performance
Previously, two performance tests were performed. The first test 
simply measured the performance of the server on CPU-bound 
work:

# perf1.py

from socket import *

import time

sock = socket(AF_INET, SOCK_STREAM)

sock.connect((‘127.0.0.1’, 25000))

while True:

    start = time.time()

    sock.send(b’30’)

    resp = sock.recv(100)

    end = time.time()

    print(end-start)

If you run this program, it will start producing a series of timing 
measurements that are essentially the same as the threaded ver-
sion of code. If you run multiple clients, however, you’ll find that 
the server is limited to using a single CPU core as before. There’s 
no global interpreter lock in play, but since the entire server 
executes within a single execution thread, there’s no way for it to 
take advantage of multiple CPU cores either. That’s one impor-
tant lesson—using coroutines is not a technique that can be used 
to make code scale to multiple processors.

The second performance test measured the performance on a 
rapid-fire series of fast-running operations. Here it is again:

# perf2.py

import threading

import time

from socket import *

sock = socket(AF_INET, SOCK_STREAM)

sock.connect((‘127.0.0.1’, 25000))

N = 0

def monitor():

    global N

    while True:

        time.sleep(1)

        print(N, ‘requests/second’)

        N = 0
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t = threading.Thread(target=monitor)

t.daemon=True

t.start()

while True:

     sock.send(b’1’)

     resp = sock.recv(100)

     N += 1

If you run the program, you’ll see output similar to the following:

bash % python3 perf2.py

16121 requests/second

16245 requests/second

16179 requests/second

16305 requests/second

16210 requests/second

...

The initial request rate will be lower than that reported with 
the examples involving threads in the previous article. There is 
simply more overhead in managing the various generator func-
tions, invoking select(), and so forth. While the test is running, 
computing a large Fibonacci number from a separate connection 
produces:

bash % nc 127.0.0.1 25000

40

102334155     (takes a while to appear)

After you do this, the perf2.py will stop responding entirely. For 
example:

16151 requests/second

16265 requests/second

0 requests/second

0 requests/second

0 requests/second

...

This will continue until the large request completes entirely. 
Since there are no threads at work, there is no notion of preemp-
tion or parallelism. In fact, any operation that decides to block or 
take a lot of compute cycles will block the progress of everything 
else.

Back to Subprocesses
As it turns out, problems with performance and blocking have to 
be solved in the same manner as with threads. Specifically, you 
have to use threads or process pools to carry out such calcula-
tions outside of the task scheduler. For example, you might 
rewrite the fib_handler() function using concurrent.futures 
exactly as you did before with threads:

from concurrent.futures import ProcessPoolExecutor as Pool

NPROCS = 4

pool = Pool(NPROCS)

def fib_handler(client, address):

    print(‘Connection from’, address)

    while True:

        data = yield client.recv(1000)

        if not data:

            break

        future = pool.submit(fib, int(data))

        result = future.result()

        yield from client.send(str(result).encode(‘ascii’)+b’\n’)

    print(‘Connection closed’)

    client.close()

...

The only catch is that even if you make this change, you’ll find 
that it still doesn’t work. The problem here is that the future.

result() operation blocks, waiting for the result to come back. 
By blocking, it stalls the entire task scheduler. In fact, this will 
happen for any operation at all that might block (e.g., resolving a 
domain name, accessing a database, etc.).

Generators: It’s All In
In order for a generator-based solution to work, every blocking 
operation has to be written to work with the task loop. In the pre-
vious example, attempts to use a process pool are unsuccessful 
since calls to obtain the result block. To make it work, you need 
to write additional supporting code to turn blocking operations 
into something that can yield to the task loop. The following code 
gives an idea of how you might do it.

The first step is to write a wrapper around the Future object’s 
result() method to make it use yield. For example: 

class GenFuture(object):

    def __init__(self, future):

        self.future = future

    def result(self):

        yield ‘future’, self.future

        return self.future.result()

    def __getattr__(self, name):

        return getattr(self.future, name)

Next, you might create a wrapper around pools to adjust the out-
put of the pool.submit() to return a GenFuture object:
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class GenPool(object):

    def __init__(self, pool):

        self.pool = pool

        

    def submit(self, func, *args, **kwargs):

        f = self.pool.submit(func, *args, **kwargs)

        return GenFuture(f)

    def __getattr__(self, name):

        return getattr(self.pool, name)

The main goal of these classes is to preserve the programming 
interface of the blocking code. In fact, you will only make a slight 
change to the fib_handler() code as shown here:

from concurrent.futures import ProcessPoolExecutor as Pool

NPROCS = 4

pool = GenPool(Pool(NPROCS))     # Note: Use GenPool

def fib_handler(client, address):

    print(‘Connection from’, address)

    while True:

        data = yield client.recv(1000)

        if not data:

            break

        future = pool.submit(fib, int(data))

        result = yield from future.result()     # Note yield from

        yield from client.send(str(result).encode(‘ascii’)+b’\n’)

    print(‘Connection closed’)

    client.close()

...

Carefully observe how all blocking operations are now pre-
ceded by a yield from declaration. The only remaining task is to 
modify the task scheduler to support futures. Here is that code:

from socket import socketpair

tasks = deque()

recv_wait = {}

send_wait = {}

future_wait = {}

# Callback triggered on future completion

def _future_callback(future):

    tasks.append(future_wait.pop(future))

    _loop_wake()

# Sockets to allow waking of the I/O loop

_loop_notify_socket, _loop_wait_socket = socketpair()

# Function to wake the task loop when blocked on select()

def _loop_wake():

    _loop_notify_socket.send(b’x’)

# Dummy task that allows select() to wake

def _loop_sleeper():

    while True:

        yield ‘recv’, _loop_wait_socket

        _loop_wait_socket.recv(1000)

tasks.append(_loop_sleeper())

def run():

    while any([tasks, recv_wait, send_wait, future_wait]):

        while not tasks:

            can_read, can_send, _ = select(recv_wait, send_wait, [])

            for s in can_read:

                tasks.append(recv_wait.pop(s))

            for s in can_send:

                tasks.append(send_wait.pop(s))

        task = tasks.popleft()

        try:

            reason, resource = next(task)

            if reason == ‘recv’:

                recv_wait[resource] = task

            elif reason == ‘send’:

                send_wait[resource] = task

            elif reason == ‘future’:

                future_wait[resource] = task

                resource.add_done_callback(_future_callback)

            else:

                raise RuntimeError(‘Bad reason: %s’ % reason)

        except StopIteration:

            print(‘Task done’)

Whew! There are a lot of moving parts, but the general idea is 
as follows. For futures, the task is placed into a waiting area as 
before (future_wait). A callback function (_future_callback) 
is then attached to the future to be triggered upon completion. 
When results return, the callback function puts the task back 
onto the tasks queue. A byte of I/O is then written to a spe-
cial loopback socket (_loop_notify_socket). A separate task 
(_loop_sleeper) constantly monitors this socket and wakes to 
read the byte. (The main purpose of this special task is really 
just to get the task loop to wake from the select() call to allow 
ready tasks to run again.)
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This Is Crazy (But Most Things Are When You 
Think About It)
Needless to say, if you’re going to abandon threads for concur-
rency, you’re going to have to do more work to make it work. If 
you get down to it, the code involving generators is actually a lot 
like a small user-level operating system, with all of the underly-
ing task scheduling, I/O polling, and so forth. At first glance, the 
whole approach might seem crazy. However, keep in mind that it 
would rarely be necessary to write such code yourself. Instead, you 
would use an existing library such as the new asyncio module [4].

Even if you use a library, you still have to know what you’re 
doing. Specifically, you need to be fully aware of places where 
your code might block and stall the task scheduler. Coroutines 
also do not free you from limitations such as Python’s GIL—you 
should still be prepared to execute work in thread or process 
pools as appropriate.

At this point, you might be seeking some kind of sage advice 
on how to proceed with Python concurrency. Should you use 
threads? Should you use coroutines? Unfortunately, I can’t offer 
anything more than it depends a lot on the problem that you 
are trying to solve. Python provides a wide variety of tools for 
addressing the concurrency problem. All of those tools have vari-
ous tradeoffs and limitations. As such, anyone expecting a kind 
of “magic” solution that solves every possible problem will likely 
be disappointed. Again, some thinking is required—in the end, it 
really helps to understand what you’re doing and how things work.

Postscript
The code examples in this article were the foundation of a PyCon 
2015 talk I gave on concurrency. If you’re interested in seeing the 
code work with a live coding demonstration, the talk video can 
be found online [5].
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